Distributed Fault Tolerant Controllers *

Leonardo Mostarda, Rudi Ball, Naranker Dulay
Department of Computing
Imperial College London
Email: {Imostard, rkb, ndl@imperial.ac.uk

Abstract In this paper we present a novel approach to generate
adistributedandfault-tolerantimplementation from a sin-
Distributed applications are often built from sets of dis- gle Finite State Machine (FSM) definition. We model the
tributed components that must be co-ordinated in order to system as a set of components providing and requiring ser-
achieve some global behaviour. The common approachis tovices. Co-ordination (global behaviour) is defined by a
use a centralised controller for co-ordination, or occasio global FSM that defines the interactions ameatsof com-
ally a set of distributed entities. Centralised co-ordioat ponents. Sets provide supportdooup available compo-
is simpler but introduces a single point of failure and poses nents at runtime and allows the selection of an alternative
problems of scalability. Distributed co-ordination offer instance of a component in case of failure. A global state
greater scalability, reliability and applicability but isarder machine is automatically translated into a collection of lo
to reason about and requires more complex algorithms for cal ones, one for each set. A FSM Manager at each host is
synchronisation and consensus among components. responsible for handling the events and invocations for its
In this paper we present a system called GOANNA thatlocal state machines and ensuring correct global behaviour
from a state machine specification (FSM) of the global be- A Leader is responsible for the management and synchro-
haviour of interacting components can automatically gener nisation of FSM Managers. This is achieved through an
ate a correct, scalable and fault tolerant distributed iepl extension of a Paxos-based consensus protocol that imple-
mentation. GOANNA can be used as a backend for differentments correct, scalable and fault tolerant execution diajlo
tools as well as an implementation platform in its own right. FSM. In particular scalability is obtained by using diffete
optimisations that are derived from the FSM structure.
1 Introduction Various approaches could benefit from having automat-
ically generated distributed implementations provideaby

Programmers often face the problem of correctly co- centralised specification. For instance the automaticdeynt
ordinating distributed components in order to achieve a Sis of component based applications suchi as [4. 10, 19] are
global behaviour. These problems include sense and reacéommonly used to generate a centralised controller where
systems[[P], military reconnaissance and rescue missionglobal state machines are obtained through composition and
[1], autonomous control systems as found in aviation and ¢an have millions of states. Such approaches would benefit
safety critical systems. from our distribution approach that ensures correctneds an

The common approach used is to build of a centralised Provides scqlabll|ty. _
control system that enforces the global behaviour of the ~We have implemented our approach in a system called
distributed components. The advantages of centralised coGOANNA [16] that takes as input, state machines and gen-
ordination are that implementation is much simplet [11, 17] €rates as output, distributed implementations in JAVA, C or
as there is no need to implement synchronisation and connesC. The system is being used to develop distributed appli-
sensus among components, furthermore many tools areations for sensor networks, unmanned vehicles and home
available for the definition and implementation of cen- networks[20[18] and could be used as backend for tools
tralised controllers[[2]. Existing distributed solutionge ~ that produce centralised controllers using finite state ma-
typically application-specific and require that the pragra chmes[@_@]- o _ _
mer understands and implements (often subtle) algorithms ~The main contributions of this paper are the following:
for synchronisation and consensus[7, 5] 1. The GOANNA platform that supports the co-

*This research was supported by UK EPSRC research grant Ord_ination of components as a state ma(?hine s_pecifi—
EP/D076633/1 (UBIVAL). cation and automatically generates a distributed imple-

Smoke
void smokeEvent(int val)

Temperature
void tempEvent(int val)Q

Sprinkler

@ required
void waterOn() a

® o provided

b
void waterOff()é

Figure 1. Fire Alarm Components

mentation utilising a Paxos-based consensus protocol.

1

. We show that distributed co-ordination is equivalent t§
the central one.

4
5

haviour in the presence of node and communication
8

failures or new nodes discovered at runtime. o
10

. We show that our optimisations significantly increasle1
scalability with respect to the number of components

and present the space and time overheads of the réh

time system. 15

Overview

In this section we overview how we describe and dis-
tribute the co-ordination for a small fire alarm sensor syste

. We show that the system guarantees the global be-

fire alarm application. Each rule states that when the sys-
tem is in a given state, the related event is observed and
the condition is true then an action is applied. For example
the rule of line10 states that when the statelisthe event
snokeEvent is observed on anoke and the smoke value

is greater thar20 than the water must be enabled and the
state changed 2.

gl obal fsmfireAl arn(set Tenperature tenperatureSet,
set Snoke snpkeSet, set Sprinkler sprinklerSet){

tenpEvent on tenperatureSet from *
0-1: event.val >50 -> {}
3-4: !(event.val >50) -> {signal to sprinklerSet
waterOff();}

snmokeEvent on snokeSet from *

1-0: !(event.val >20) -> {}
1-2: event.val >20 -> {signal to sprinklerSet
wat er On(); }

wat er On on sprinkl erSet from *

2-3: {} ->{}

on timeout (10000)
2-2:{} -> {signal to sprinklerSet waterOn();}

wat er Of f on sprinklerSet from *

4-0: {} -> {}
}

Figure 2. The GOANNA global FSM.

[20]. The system is composed of temperature and smoke

sensors and a sprinkler actuator. The basic requirement is

that the sprinkler_should operate only when the_te_mperaturez_lll Events

and smoke readings exceed a threshold. Defining the co-

ordination requires that the programmer understands the unComponent interactions currently map to four GOANNA

derlying system model, the fault tolerance model and how events, two for client endpoints (outgoing call and retdrne

to specify state machines using events, sets and signallingeply) and two for server endpoints (incoming call and out-

primitives in GOANNA. going reply). In the global finite state machine of Fig-

ure[2 we show events expressed using our syntax. For

example, the eventt enpEvent on tenper at ureSet

to =" corresponds to aenpEvent service call from a
We assume the system is composed of a set ongnper ature componer)t inside th.e temperatureSet. In

components that provide and require services. Com_th|s case we do not specify the receiver of the event (a hard-

ponents can be already bound together. In Fiddre pware sensor).

we show the component related to the fire alarm appli- GJATJE?AL\H ehvents arel alﬁo sgpported l‘?‘”cf a.ri.ger;]erated by
cation. The componenspri nkl er provides the ser- when no rule has been applied within the spec-

vices vat er Of f () and water n() to enable and dis- ified timet¢. For examplet i meout (10000) will raise a
able water flow. The componentenperature and timeout after 10 seconds if no other rule has been applied.

Smoke require the servicesenpEvent (i nt val) and
snokeEvent (i nt val) whereval denotes the value of
the temperature and smoke, respectively.

Our global FSM specifies the sequence of events (result-
ing from component interactions) that are permitted in the
running system and can proactively invoke service. More
specifically, a global state machine is defined by a list of
event-state-condition-action rules defined in terms of par
ticipating components (grouped into sets as described be-
low). In Figurel2 we show the state machine related to our

2.1 System model and state machines

smokeEvent on smokeSet timeout(10000)

@ tempEvent on) 1t on ,Qwa(er()n on sprinklerSet 3
—/ 2/
waterOff on sprinklerSet tempEvent on temperatureSet

Figure 3. The graphical form of the global
FSM

o0 A W N e

configuration fireAlarnConfiguration (floor:int)
global fsm leader T=tem
= perature

set t:Tenperature where place == floor
(:)—» = Sm=smoke
set sm Snoke where place == fl oor ©)] Sp=sprinkler
set sp: Sprinkler where place == fl oor decomposition
instance is:fireAlarn(t, sm sp);
Synchronisation
Manager Manager

Figure 4. Fire alarm configuration

Sp-local
FSM

FSM FSM

2.1.2 State-condition-action rules

For each event the global FSM can define a list of state-
condition-action rules. A rule is of the formy, — ¢4 :
condition — action wheregs and gy are states. When
the event is observed, the state of the global FSk] isnd

the condition is true then the action can be applied and the
state changed t@;. When an event is observed but no rule

can be applied (the condition does not hold or there are not _
relevant transitions) then action policycan be applied timeout state machine as the skeleton. The FSM Manager

Figure 5. Centralised Control System - Distri-
bution Implementation

such agliscard(the event.) local to each host uses the local FSMs while the leader uses
the skeleton to implement the global FSM. More specifi-
2.2 System configuration cally the leader contains the correct state of the global FSM

When a FSM manager must validate an event it uses its local
FSMs and its local state of the global FSM. This state (even
F out of date) can be sufficient to reject locally the event
reducing the number of synchronisations with the leader. If

GOANNA system configurations specify both compo-
nent sets and global FSM instances. Sets provide suppor

to classifycomponents as they are discovered and allows he ESM h .
the selection of an alternative instance of a component inthe manager can accept the event it triegraposea

case of failure. Sets are arouned by component tvpe and by"€W state to the leader. The leader denies the propose when
group y b yP }{qhe FSM manager has an outdated state (in which case the

awher e predicate that can use attributes such as host namel, q d he FSM ith th h
position, node capabilities, to group components when they eaderup atesthe manager with the cc_)rrect state), oth-
erwise the leader grants the propose. In this case the FSM

are discovered. In Figufd 4, the three satssmandsp _)
will group all components of typeBenper at ur e, Smoke manager performs the actions from its local FSM and syn-
chronise leader with the new state.

andSpr i nkl er respectively running on flodrl oor of the

building. Components can join and leave the set at run time. .

When an action from the global FSM must be performed an 2-4 ~ State machine consensus protocol

instance from the appropriate set is selected. This removes

the need to manage the availability of components fromthe Our consensus protocol extends Multi-Paxos with

state machine specification and allows the selection of a newSteady State [14] with additional information in order to

componentin case of failures. have a correct distributed state machine implementation.
Sets are used to implement the following asynchronousMO_re specifically, it adds all information needed to execute

best-effort primitives: (isignal to set callnd (ii) signal to actions (from the FSMs) and correctly parse system traces.

cin set call The former is used to invoke the methodal | This is achieved using timeouts to manage the one to one
on all components belonging tet while the latter to call communications between FSM managers (executing the ac-
the same service on exactly one component tion) and the leader checking it. Multi-Paxos is normally

Global FSM definitions can be multiply instantiated. For described using client, acceptor, learner, and e,
example, for our fireAlarm application we could instantiate N our implementation the client, acceptor and learnersrole

a global FSM for each floor in a building. are included in our FSM Manager. B
The basic idea is that a FSM manager locally verifies
2.3 Distribution event acceptance before proposing its new state. After a

new state proposal the leader can either decline the request
(e.g., the FSM manager’s state can be out of date) or ac-
cept it, waiting for the action to complete and the new state
to be updated. Although these steps are the basis for cor-

GOANNA automatically decomposes a global FSM into
a collection of local ones (see Figurk 5), one for each set
plus a special FSM which contains all timeout events de-
fined in the global FSM. In the following we refer to this 1The leader is also known as the proposer.

rect distribution they are not efficient in terms of memory Definition1 Let S = {¢1,...,¢;,...} be a system. Let
and traffic overhead. State machines (automatically gen-7., and7., be the local traces of the component instances
erated from high level tool$ 4, 19]) can be composed of c1 and 2, respectively. Anerge trace,, ¢ 7., is a new
millions of states so their deployment on each host can betrace defined by, eses ... e; ... where: (i) e, appears in
inefficient. Moreover, FSM managers could continuously 7., & T, if and only ife; appears either irf,, or T.,; (ii)
propose their new local states overloading the network. Ourfor eache; ande;, withi < j, e; — e;.
global state machine distribution process offers a partiti
of the FSM transitions and are loaded only when needed. In order to prove the correctness of our distributed im-
Our protocol takes advantage of the state machine structurd@lementation we need to prove that the merge of all FSM
in order to avoid useless protocol instances. The idea s thamanager traces is accepted by the global state machine (see
an outdated local state can be enough to reject an event (segppendix A).
Sectior 3.6 for details).
3.2 State machine definitions
2.5 Fault tolerance model
In the following we provide definitions for state ma-

In GOANNA we make the following assumptions: (i) chines and the related acceptance criterion.
software components fail independently from their FSM
Manager; (i) FSM Managers can fail and recover; (iii) the Definition2 A state machine is ad-tuple A =
leader fails and stops (but a new leader from a ranked set of @, qo, I, rules) where: (i) Q is a finite set of states;
nodes will be chosen) ; (iv) the ranked leaders control each(ii) g € @ is the initial state; (iii) I is a finite set of
other using reliable communication; (v) we assume a set ofévents s.t. I C E; and (iv) rules is a list of 5-tuples
backups that are used as a stable storage for the last stat4s,qa,condition,action) where € E andg;, g4 € Q.
accepted by the leader. o _

These assumptions are used to guarantee that a transPefinition 3 Let A = (Q, go, I, rules) be a state machine
tion of a global FSM is performed if a FSM Manager can @nde € I be an event. Lef be the current state of. The

select an available component, the leader is running and théVente can be acceptely a rule ¢,qs,qa,condition,action)
majority of backups are running. in rules if ¢ = ¢, and the condition is satisfied.

L. . L Definition 4 Let A = (Q, qo, I, rules) be a state machine
3 Distributed state machine co-ordination andt = ey ... e; ... atrace inTs. Letgy be the initial
state ofA ande; be the first symbol to readd accepts the
In this section we describe in detail how GOANNA gen- sequence if for each current state;_; and next symbol
erates a distributed state machine implementation from ac; A can accept; by a rule ¢;,¢;_1,q;,condition,action).
global FSM specification. When the rule is applied the action is performedis the
new state ofd ande;; the next symbol to read.
3.1 The system model
Definition 5 The languagéel’y recognised by a state ma-
We first introduce some notation used to describe the chineA is composed of all traces accepted by it.
system model. The sdf denotes the set of all possible

component events while, . . . e,, are elements it£. The Event outside the FSM alphabet are ignored (i.e., they
set ¢ denotes the set of events |0ca||y observed on a Com_are not SubjeCt to the FSM Validation). When different state

ponent: andes . . . e¢ elements inE*. We usel’, to denote machines are defined the event must be accepted by all of

all possible traces (i.e., sequence of events) inside the sy them. We emphasis thdt, is a subset of’; (all possible
tem. We usel, to denote all traces local to a component System traces). More specifically a global FSM define all
c. permitted traces inside the system.

Traces are subject to thbappened-beforeaelation
(—) [A3], i.e., a message can be received only after it has3.3 Local state machine generation
been sent. In the following we define the merge of compo-
nent traces.The basic idea is that the merge of two or more In order to distribute the global state machine, we auto-
traces should conform to the following two rules: (i) all matically decompose it into a set of local ones, one for each
independent events from different traces can occur in anyset, and a skeleton. We will use= (Q, qo, I, rules) to de-
order in the merged trace; (ii) events within the same tracenote a global state maching,to denote a setdefined over
must retain their order. A trace resulting from this merge is the componenttypeandA;sc = (Qse, ¢s0, Ise, rulesse) to
usually called dinearisation[3]. denote the local state machine assigned to the‘set

(@) okt on smokese (O)emeesenen onguaser_ 7 cept the event. More specifically the FSM Manager finds
@:smokD@eEvenwn smokeSa (B~ mEventon emperatreset_ all sets® the component belong to, loads the related lo-
(@ smoteSetocatiem (O tempEenticcatim cal FSM A,. and uses;i to accept (see Definitiofl 3 for
the definition of acceptance) the eventlf the event can
O O be accepted the FSM manager starts the protocol by send-
(c) sprinklerSet-local fsm (d) skeleton . .
ing apropose(result) request to the leader containing
the fsm instance naméi and new proposed statge. The
leader receives the request and compares the received state
Figure 6. Generated local state machines and ¢; with its local state, e.ggi. Moreover it checks whether
skeleton or not the fsmAi has been locked by another FSM man-
ager. Suppose that the states are the same+£ ¢i) and
no fsm instance has been locked. Then the leader gener-
AT e _aa]) ates a new key and responds withesponse data struc-
_ ture to the FSM manager. This structure contairsg
! validate(c,e i pmpo) | (denoting the protocol instance) and aat cone (set to
N | accept ed). With this answer the leader promises to the
=] %Iock 0 i FSM manager the lock on the required fsm instaA¢eThe

waterOn on sprinklerSet timeout(10000)

response .
§ FSM manager receives the response, performs the local ac-
T actionExeouted(key) tions (from the rules of the local FSM), and sends back to
: E grooptinowStaios) the leader amction Executed(key, newStates) response

accepted("ewsmtes); wherenewStates contains the new state after the execu-

i tion of the rule. The leader receives the request and checks
the existence of the key. In case the key exists it deletes the
key, unlocks the fsm instancé& and updates its local state
with the received one. The process of updating the state re-
quires to perform a Multi-Paxos protocol with Steady State.
More specifically, the new state is sent to a set of backups

In order to generate all local state machines we con-through araccept request. When the majority of them no-
sider all sets defined in the global FSM. For eachsset ify the update (through aaccept ed request) the protocol
we generate the local state machidg. by examining ~ Can correctly terminate.

<= unlock ()

|-\ _______
1

Figure 7. Successful protocol execution

the global state maching for rules of the formR = When multiple state machine instances are defined the
(€€, s, qa, condition, action). Every time one of these ~FSM manager must check the event acceptance for all of
rules is found, the event® is added tol,., the states;, them. As for the aforementioned execution if the event
andgq, are added t@),. and the ruleR is added to-ules,e. is accepted the FSM manager starts the protocol but com-

In other words the state machink. contains all interac- Municates all the states, locks all state machine instances

tions that take place locally on a component of the type and applies all actions (when it receives the grant from the

belonging to the set®. The skeletom,, contains the listof ~ leader).

all time out rules. A protocol execution can raise different exceptions as
In Figure[® we show all local state machines generatedconsequence of link failures, node failures and so on. In

from the global state machine of Figure 3. We emphasisethe next section we show how our protocol handles those

that each transition has been projected locally to the set th failures.

its event relates to. Effectively our distribution algbrit

defines a partition of the global state machine transitions. 3.5 Protocol exceptions

3.4 Successful protocol execution A protocol instance can raisenaanager out-of-synand
fsm instancdockedexceptions. Amanager out-of-synex-

In Figure[T we show the global flow of a successful ceptionis raised when any of the state sent by the FSM man-
protocol execution. We denote withi a component in- ager and the leader one are different. This is a consequence
stance of the typel. The protocol starts when an instru- of a FSM manager whose proposed states are not synchro-
mentation point related to a component instance ¢ detectsised with the global execution and is detected and notified
an incoming/outgoing message. This generates an evenby the leader. In particular after the leader receives the re
e and invokes the proceduval i dat e(c, e) on its local questpropose(result) it replies with an out-of-sync error
FSM manager. This uses its local stateof Ai to ac- containing its state (i.e., the most updated one). Thisad us

by the FSM to updated its local state Iéckedexception is (i) while waiting after the propose requegtrépose re-
generated when a FSM manager proposes a state related &ponse failurg (iii) when invoking the actionExecution
an instancedi that has been locked by another FSM man- (actionExecution invocation failuje(iv) while waiting the
ager. In this case the leader sends baclksponse data actionExecution responsadtionExecution response fail-
structure with théockederror. ure). These faults can be a result of a leader fault, a com-
Failures on FSM managers and communication links aremunication failure or slow leader execution. In all cases th
handled in our protocol by using timeouts. In the following FSM Manager ends the protocol execution and returns an
we describe those failures and how they are handled by theerror to the instrumentation point. We emphasis that for
leader and by FSM managers. actionExecution invocation and actionExecution response
A leader can see a FSM manager or link failure dur- failures there is the possibility that the FSM Manager per-
ing three possible steps of the protocol execution: (i) when forms invocations from its local FSMs. In the case of non-
it is responding to ar opose request ropose response recoverable actions that the global execution can be incon-
failure); (ii) while waiting for anact i onExecut i on mes- sistent.
sage &ction execution timeolt (iii) when responding to In our protocol, we have a set of ranked leaders. While
anact i onExecut i on messagegction execution response the highest ranked leader is servicing FSM Managers the
failure). These faults can be a result of a FSM manager lower ranked leaders monitor the highest ranked leader for
fault, a communication failure or a slow (overloaded) FSM failure. More specifically when the highest ranked leader

manager. is no longer detected, the next leader in the rank is elected.
_ This recovers all correct global states from the backups.
e A propose response failureccurs when the leader An error on the protocol execution is always returned to

fails to communicate to a FSM manager the outcome the instrumentation point that can be programmed to imple-
of a proposal of states (i.ey@sponse data structure). ment different reactions such aetry the parsinggdiscard

In this case a time out is raised and the leader deleteshe event and so on.

any key or lock granted. One should be aware that there are cases in which the
protocol may not make any progress. For instance this is

e An action execution timeowtccurs when a FSM man- . . .
. o . . the case in which the same FSM manager is always granted
ager receives the permission to execute its local actions

. . . permission and always fails. In order to avoid this kind of
but it does not respond with antion Executed mes- I
. . S ivelock the leader always chooses a random FSM manager
sage. In this case the timeout s triggered on the IeaderWhen granting permission
side. This causes the key to be deleted (i.e., the proto- '
col instance to be ended) and all FSMs to be unlocked. L.
It is worth mentioning that even if the FSM manager 5-6 Protocol optimisations
sends amction Frecuted invocation after the timeout
expires this will be detected (the key is no longer ex- In this section we describe various optimisations that are
istent) and the FSM states will not be updated. There- based on the structure of the state machine. In other words
fore in the case of non-recoverable actions the global while our protocol solves the general problem of consensus
execution can be inconsistent. among FSM managers, the state machine can guide us in
avoiding useless protocol instances. In particular we have
implemented the following optimisationsdrop duplicate
requestsgroupinganddrop unreachable requests
In drop duplicate requestiie FSM manager buffers each
result data structure that has been sent witlr apose re-
qguest. Any further propose that contains the same state ma-
chine instanced: with the same stategi is locally buffered
and held until the first request has returned its result.df th
e An action execution response failuogcurs when the ~ result contains an error related o then the same error
leader correctly receives at i onExecut i on mes- is returned for all instrumentation points, otherwise i th
sage from a FSM manager but fails to acknowledge request has been accepted the FSM manager waits for the
the reception. In this case the leader ends the protocolaction to complete and releases one of the requests.
instance and waits for the next request. Grouping allows different operations to be sent in the
same message reducing the amount of messages sent. For
A FSM manager can see a leader or link failure during instance allsignal requests related to the same action exe-
four possible steps of the protocol execution: (i) when in- cution are grouped together and sent in a single message.
voking to a propose requegbrbpose invocation failufe The drop unreachable requestsptimisation avoids

The action execution timeouprovides resilience to
component faults. When one component fails to ex-
ecute its action the leader does not update the FSMs
(that s, the global behaviour did not progress), it times
out and waits for a new request. In this way a new
component instance (correctly synchronised) can still
perform another action.

sendingpropose requests that are certain to be dropped.
This is based on thecachables : Q x @Q — Bool func-
tion that is derived from the structure of a global state ma-
chine A. In particular, reachable(qs, qq) is true when
the stateg, is reachable from the statg and false oth-
erwise. The FSM manager keeps track, for each instance
Ai, of the last updated statg. Before proposing a new
stateg, the FSM manager verifiegachable(gs, ga). When
reachable(gs, qq) 1S false the event is locally rejected with-
out interacting with the leader. Effectively, the proposed
stategy cannot be reached from.

4 Evaluation and Results
Figure 8. Example GOANNA Topology

GOANNA for Java 1.5 was evaluated on a 100 Mbit net-

) ;) Protocol message Bytes Time (ms)
work using a cluster of 50 Intel Pentium architecture ma- propose Zx(fsm instance number) 3
; ; H ; response 4x(fsm instance number) 13
chlne_s each ope_ratmg with at Ieast 2 GB of RAM running aCTonExeeuted | 2Hax(5m Instance number =
the Linux operating system. A single Leader and as many actionExecuted ACK 2 13

as 2600 Components (sensors) were executed.
Experiments sought to (a) validate the GOANNA im-

plementation, (b) measure the outcome of induced faults

(killing and rebooting hosts) and (d) highlight the perfor-

mance optimisations resulting from using the FSM struc- cution of the consensus protocol requires four message ex-
ture. changes between a FSM Manager and the Leader.

We first determined the memory OVerhead, prOtOCO| The overheads of the exchanged messages are sum-
overhead and baselifererage Event Tm@AET) per FSM marised in tablE]1. We note however, that actions can gen-
Manager. AET represents the time taken for thegi- erate additional traffic througsignalcalls. These are per-
date(c,e)Figure[T). In effect it measures the time it takes formed locally by the FSM Manager and their cost is equiv-
for a FSM Manager tosalidate a component interaction alent to an inter-host remote procedure calls in the imple-
event. We also consider this the average number of requestgentation language (e.g. the sending of the parameters and

Table 1. Protocol overhead

that a Leader can handle per secotitdughpu). Effec- the service identifier). A major cost of this is the procegsin
tively the latter measures the additional traffic generaied of validate requests, which, if not distributed among sev-
our distributed state machine implementation. eral FSM Managers, will lead to a bottleneck equivalent of

All experiments created FSM Managers and allocated ag centralised solution.

set of Components (sensors) to each. The scenario used Taple2 summarises the memory costs of the FSM Man-
considered a GOANNA hierarchy made up of a single ager and leader for systems with 10, 80 and 120 compo-
Leader, multiple FSM Managers and multiple Components. nents. In the worst case with 120 components running, the
A typical system consisted of a Leader (L), multiple FSM FSM Manager and leader memory (both heap and data) is
Managers (M) and bound Components (C), where arrows489KB and 902KB, respectively.

represent directional send-receive communications (Bigu Taple[3 shows the sizes of the Global FSM and each of

[8). We assumed various sensors (Components) to bind tgpe generated local FSM machines for the Fire Alarm ex-
FSM Managers at start-up - hence no allocation algorithm

was applied during runtime, rather sensors were statically

bound to FSM Managers. Process Components | Heap (KB) | JVM (MB)
leader 10 366 10
leader 80 464 11
leader 120 489 13
4.1 Memory Overhead FSM manager 15 557 T
FSM manager 80 763 13
FSM manager 120 902 14

A FSM Manager performs three main functions: (i)
checking conditions; (ii) executing the consensus prdtoco
and (iii) executing state machine actions. Functions (@ an Table 2. Leader and FSM Manager memory
(iii) can be arbitrary code, but are typically simple boalea consumption.
expressions or calls to methods/services. Successful exe-

glo';iﬂsm Stze (<8) figuration B, it was 404 ms. In configuration C, it was 280
Temperature 15 ms. In configuration D, it was 76 ms.
Sf)';‘:gzr 12 This shows that the protocol scales linearly when com-

ponents are distributed across different hosts. The atitic
bottleneck is the FSM manager and not the leader. The
Table 3. State machine file size FSM manager performs most of the computation, i.e., cre-
ates a new thread for each component instance, verifies ac-
) _ o . ceptance and applies the actions. The leader only responds
ample. The sizes correspond to sizes of the serialisedtobjec; requests by sending a few integers. The more FSM man-
for each FSM. agers (hosts) we have, the more efficient the implementation

is.
4.2 Execution Overhead

160

Execution overhead was measured using AET to main- 140
tain consistency between experiments. The evaluation was 120
performed on several configurations to show the effect of
increasing distribution: (A) one FSM Manager and three
Leaders; (B) two FSM Managers and three Leaders; (C)
three FSM Managers and three Leaders; (D) ten FSM Man-
agers and three Leaders.

100

80

60

Requests per Second

40

We ran systems with between 10 to 125 smoke and tem- 20
perature sensor components. Each sensor Component was 0
runin a separate thread and sent a reading every 400 ms. For o 2 0 60 80 100 120
configuration A, all sensors were run on the same host. For Number of Components
configuration B, two hosts ran half of the sensor instances «-Manager Requests -Leader Requests

each. For configuration C, a third of the sensors were run on
each host. For configuration D, a tenth of the sensors were

Figure 10. Throughput of validation requests
run on each host.

900 Figure[I0 shows the throughput of the Leader and FSM

200 A Managers, that is the number of validate requests handled
per second. For a single FSM Manager and a Leader, the
FSM Manager receives an average of 140 requests per sec-

700

éizz ond while the leader receiyes 83 (i.e. 35% less), a sign_ifi-

= cant improvement to reducing processing and communica-

;i, 400 / tion load. It is this difference in performance between FSM

§ 30 Manager Requests and Leader Requests which is notewor-
200 / thy. This improvement is a consequence, both the scalabil-
100

ity of the architecture and our optimisation process, since
most of the requests are dropped because they cannot be
0 20 40 60 8 100 120 140 accepted in the current state of the FSM Manager.

Number of Components

o

-®-1 Manager 2 Managers =3 Managers %10 Managers 4 3 Average Event Time Performance

Measurement
Figure 9. Event Validation Time
We considered a standard system containing a three

In Figur[® we show a FSM Manager’s response time for Leadersyn many FSM Managers and 52 Components per
all four configurations. Each value was obtained by running FSM Manager (50 temperature sensors, 1 smoke sensor and
the experiments for 10 minutes and calculating the averagel sprinkler). Components provided stress-test sensor read
of all validate request response times experienced by everyings as common with the previous benchmark experiments
sensor. For example, in the case where 125 sensors werévery 400 ms). Performance was measured according to
running at the same time, the results were as follows. Ina standard instantiation of the GOANNA system: (1) three
configuration A, the average time for a FSM manager to Leaders were created on separte hosts within the cluster;
validate a component interaction was 834 ms. In the con-(2)m many FSM Managers were created; {3)x ¢ many

Components were created and allocated equally betweertion, where Fault Injection either killed or rebooted FSM
FSM Managers (distribution), wheegepresented the num- Managers in sets of 10, 20, 30, 40 and 50 FSM Managers.
ber of Components allocated to a single FSM Manager. Three Leaders (L) and a collection wfFSM Managers

An increase in FSM Managers multiplied the number of (M) were started and components allocated. Each FSM
Components providing sensor data to the Leader, using theManager’s components were instructed to operate and pro-
hierarchical communication network we saw a distribution vide sensor readings for 30 seconds.
of load commonly seen in hierarchical network architec-
tures (Figuré_T11). This would place increased load on they 41 kil
Leader. GOANNA was considered to be effective if it could

limit this Component load. In each experiment a set of 50 FSM Managers were seen
to operate normally. We introduced faults by killing the

1800 Management processes on individual hosts. Given the Kkill

1600 - scenario, once a FSM Manager was removed from the
1400 GOANNA system it wasnot restarted. A reduced load

1200 of FSM Managers on the Leader was seen to improve the
1000 performance of GOANNA, with reduced AET existing af-

ter a FSM Manager had been killed, however the loss of
a FSM Manager lost subset of Components providing data
to the system. Figurés12 ahdl 14 represents the final AET
value reported for the Kill experiment, illustrating the re
duced AET where increasing the number of FSM Managers
killed. Significant maximum values exist due to GOANNA
timeouts occurring after FSM Managers have been killed.
Figure[12 illustrates the Maximum, Minimum and Aver-
age Event Time occurring where FSM Managers are re-
moved from the GOANNA system. Where FSM Managers
are not rebooted, we see improved overall performance of
GOANNA - fewer FSM Managers present a reduced load
on the Leader. If all 50 FSM Managers are killed, there is
0 system provision.

800

Event Time (ms)

600
400
200

0
520 1040 1560 2080 2600

Number of Components

-®-Average Event Time Maximum Event Time <&Minimum Event Time

Figure 11. Base Average Event Time Perfor-
mance

Indeed, baseline performance was seen to increase fro
360 ms for 520 Components to 1196 ms for 2600 Compo-
nents a change of 835 ms with a 5 fold increase in total 0000 \
Components - 167 ms cost per 520 Components added to 5000
the system.

This performance reduction while significant presents 4000
the opportunity to further distribute load amongst Leaders 3000
for the maintenance of a low AET. In other words, users 2000 \

of GOANNA can determine according to AET the optimal
number of Components, FSM Managers and Leadersto use ™ 1000
to achieve a specific AET performance, based on the archi-

tecture a base line benchmark is made. GOANNA is scal- °

Average Event Time (ms)

1 10 20 30 40 50
able and this scalability is both measurable and predietabl Number of Managers Killed
“¢Average Event Time (ms) Minimum Event Time (ms)
4.4 Fault TOleI'ance -®-Maximum Event Time (ms)
While the previous performance tests had consid- Figure 12. Kill Performance

ered GOANNA in simple initialisation and computation

phases, faults were introduced to measure the capacity for The Leader was seen to handle the removal and time-out
GOANNA to deal with the addition (booting) and removal of Management messages sufficiently not to let the entire
(killing) of FSM Managers and Components at runtime. system be affected by the loss of specific FSM Managers. In
Two experiments were conducted in relation to the base scethis respect GOANNA proved successful at maintaining op-
nario, namely (akill and (b)kill and reboot Two phases eration given these changes, providing a mean performance
occurred in each experiment: Initialisation and Faulténje per FSM Manager which was acceptable to the continued

operation of the GOANNA system. 1400

1200 H/’_.* o

1000

4.4.2 Kill-Reboot

As an derivative test, GOANNA was seen to perform con-
sistently and normally where FSM Managers were first
killed and then rebooted. As rebooting restarted Manage-
ment processes the final effect was seen to not affect the
AET of the overall system. In contrast to the results pro-
duced by the removal of FSM Managers, AET has limited
fluctuation between 1143 ms and 1271 ms for increasing
FSM Managers. Figufe 13 shows the Maximum, Minimum
and Average Event Time occurring where FSM Managers
are killed and then rebooted.

Average Event Time (ms)
N H (=2} oo
o o o o
o o o o

o

1 10 20 30 40 50
Number of Managers Killed / Rebooted

No Reboot <@-Reboot

1800 Figure 14. Comparison of Performance: Kill

1600 0\’______‘~‘\/. and Kill-Reboot

1200 W e———

[N
&
o
o

1000 4.5 Summary
800

600
400

Average Event Time (ms)

We should note that multiple factors affect the capacity
of GOANNA to operate effectively, including network and
host performance. This aside, performance data presents a
scalable system where FSM Managers can be added and re-
moved at runtime with predictable effect on the GOANNA
hierarchy. We attribute the success of GOANNA to both the
GOANNA protocols and the hybrid FSM approach used.

The increased AET outcome, given increased Compo-
nents, commonly affects such distributed systems and was
expected, however the performance degradation for systems
exceeding 2600 components is a gradual change - we ob-
serve a shallow gradient (or derivative) in terms of AET per-
formance loss (Figufe11). As such, it is possible to facili-
tate extra distribution of Leaders in a scalable and stiateg
manner, tuning the number of Leaders or FSM Managers to
4.4.3 Comparison achieve a specific AET performance that a system builder
deems acceptable for a given deployment of sensors. Fur-
thermore, GOANNA is capable of tolerating node addition
and subtraction gracefully. Faults occurring are conthine
"and localised to specific FSM Managers.

The implementation of GOANNA considers the provi-
sion of three redundant Leaders. Where Leaders are killed
of 413ms (FigurET4). the upper-bound performance of the system was limited by

: Leader response time which was depending on the under-
In the instance where FSM Managers were rebooted the b P g

. c!lining TCP timeout.
system performance was seen to behave as if no fault ha
occurred in the system - results mimicked a faultless sys-
tem. GOANNA is hence capable of adapting to loads on a® Related work
specific Leader, limited only by the capacity of the Leader
to handle further FSM Managers. We can expect perfor- Various techniques have been developed in order to have
mance to be influenced minimally by the removal and ad- a distributed implementation from a logically centralised
dition of FSM Managers, based on the limitations of the specification. In[[6] the authors use an aspect-oriented ap-
network GOANNA is being executed on. proach in order to automatically generate the global be-

200

1 10 20 30 40 50
Number of Managers Killed and then Rebooted

<-Average Event Time (ms) Minimum Event Time (ms)
“®-Maximum Event Time (ms)

Figure 13. Kill-Reboot Performance

The process of rebooting FSM Managers restores the
GOANNA system to normal processing and hence normal
AET results occur for a capacity benchmarked system.

GOANNA is seen to continue to execute normally where

FSM Managers were removed from the system. A Leaders
performance was seen to adapt to the loss of FSM Man
agers, improving provision of service to FSM Managers
which still existed. We see this as a reduction in AET.
Killing up to 40 FSM Managers resulted in a reduced AET

10

haviour. They specify componentdefinitions and aspectsre- [4] A. Bertolino, P.

lated to functional and non-functional requirements. Some

of the aspects are used to weave components together. Our

global state machines offer a more structured way to spec-
ify the global behaviour and can be used in property veri-

fication. In [8] the authors propose a monitoring-oriented [

approach. They combine formal specifications with im-
plementation to check conformance of an implementation

at runtime. System requirements can be expressed using[e]

languages such as temporal logic. Specifications are veri-

fied against the system execution and user-defined actions

can be triggered upon violation of the formal specifications
Although this approach allows the specification of global

behaviour, it is verified by a centralised server.

In con-

trast, in our approach all conditions and predicates are exe
cuted locally. Our earlier work[12] performs state-maehin

monitoring, but on closed distributed systems and assumes

no failures. GOANNA supports active co-ordination, dy-

namic systems, and fault-management using consensus. In

[15] the authors present a workflow engine that migrates
the workflow instance (specification plus run-time data) be-
tween execution nodes. In[21] they split the specification
into several parts in order to have a distributed execution. [9] A. Deshpande, C. Guestrin, and S. Madden. Resource-

However, this approach defines a set of independent com-

municating entities rather than a global behaviour.
6 Conclusions

: . [
In this paper we have described GOANNA, a system that
models the co-ordination of component-based systems as a

global state machine specification and automatically gener
ates a correct, scalable and fault-tolerant implementatio [11] R. Guerraoui and L. Rodrigue®eliable Distributed
GOANNA decomposes global state machines into local

ones, and uses a consensus protocol to synchronise them.

Inverardi, P. Pelliccione, and
M. Tivoli. Automatic synthesis of behavior proto-
cols for composable web-servicesHEEC/SIGSOFT
FSE pages 141-150, 2009.

] M. Burrows. The chubby lock service for loosely-

coupled distributed systems. @SDI, 2006.

F. Cao, B. R. Bryant, C. C. Burt, R. R. Raje, A. M.
Olson, and M. Auguston. A component assembly
approach based on aspect-oriented generative domain
modeling.Electr. Notes Theor. Comput. Sdi14:119—
136, 2005.

[7] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos

made live: an engineering perspective PODC '07,
pages 398-407, 2007.

] F. Chen and G. Rosu. Towards monitoring-oriented

programming: A paradigm combining specification
and implementation. Electr. Notes Theor. Comput.
Sci, 89(2), 2003.

aware wireless sensor-actuator networks. |HEE
Data Engineering2005.

10] D. Giannakopoulou, C. S. Pasareanu, and H. Bar-

ringer. Assumption generation for software compo-
nent verification. IPASE pages 3—-12, 2002.

Programming Springer, 2006.

The system guarantees the global behaviour in the presencEl2] P. Inverardi, L. Mostarda, M. Tivoli, and M. Au-
of failures and supports the introduction of new component
instances at runtime. Performance for the GOANNA-Java
version shows that distributed co-ordination scales wath r
spect to the number of FSM managers (hodes).

[13]

References

(1]

E. Asmare, A. Gopalan, M. Sloman, N. Dulay, and
E. C. Lupu. A mission management framework for un-
manned autonomous vehiclesMIOBILWARE pages
222-235, 2009.

[2] A. Avizienis, J. Laprie, B. Randell, and C. Landwehr.

(3]

Basic Concepts and Taxonomy of Dependable and Se-
cure Computing.IEEE Transaction on Dependable-
and Secure Computing:11-33, 2004.

M. Ben-Ari. Principles of Concurrent and Distributed
Programming (2nd Edition)Addison-Wesley, 2006.

11

[14]

[15]

[16]

tili. Synthesis of correct and distributed adaptors for
component-based systems: an automatic approach. In
ASE pages 405-409, 2005.

L. Lamport. Time, clocks, and the ordering of events
in a distributed systemCommun. ACM21(7):558—
565, 1978.

L. Lamport. Paxos made simple, fast, and byzantine.
In OPODIS pages 7-9, 2002.

F. Montagut and R. Molva. Enabling pervasive execu-
tion of workflows. 2005 International Conference on
Collaborative Computing: Networking, Applications
and Worksharing2005.

L. Mostarda and N. Dulay. GOANNA
www.doc.ic.ac.uk/"Imostard/goanna, 2008.

[17] P. Oppenheimefliop-down network desigEisco sys-

teminc., 2004.

[18] D. Pediaditakis, L. Mostarda, C. Dong, and N. Dulay. At the beginning, the leader’'s fsm instance is in state
Policies for Self Tuning Home Networks. IEEE go and each state machine instardelocal to the FSM
POLICIES 09 July 2009. managerM -, is in a statey.. Our distribution scheme en-

sures that each rule,(qo, ¢d, condition, action) is projected

on FSM managers belonging to the setnagers(qo).

Therefore only a FSM manager in this set can propose

N the stategq that is consistent with the leader one. Sup-

pose thatMq, in managers(qy) receives the request

[20] G. Russello, L. Mostarda, and N. Dulay. Escape: A Val i date(Co, o) from a componen€y. It first tries to
component-based policy framework for sense and re-Perform thet ryAccept (Co, o) procedure to accept the

act applications. ICBSE pages 212-229, 2008. eventey. If the procedure finds a ruleq, ¢s, ¢d, condi-
tion, action), withgs # qo, that can be applied. Then the

[21] R. Sen, G.-C. Roman, and C. Gill. CiAN: A Work- new statey, is proposed to the leader. The leader refuses
flow Engine for MANETSs. Coordination Models and the proposal (since it is in statg) and sends the correct

[19] G. D. Penna, D. Magazzeni, B. Intrigila, 1. Melatti,
and E. Tronci. Automatic generation of optimal
controllers through model checking techniques.
ICINCO-ICSQ pages 26-33, 2006.

Languagespages 280-295, 2008. global statey, back to the manger. The FSM managér;,
receives the state and performs thpelat e function. Since
A Correctness Mg, is in managers(qo) it contains at least a local state

machineA,.; where a transition of the forneg, qo, qd,

We now outline a proof that our distributed implemen- condition, action) has been projected. Therefore the epdat
unction returns the valuer ue. In this case the state of

tation correctly executes global state machines. We assum% 10 the ESM o) is set t dih
that we have exactly one state machine instahter a state ocarto the managet Co) IS set toge and he accep-
tance of the eveny is tried in the state (this is performed

hine definitioM = I, rules).
machine definitio (@, g0, I, rules) through the callaccept Eval uati on). Suppose that the

Definition 6 Let A = (Q, qo, I, rules) be a state machine ~ 'ule R=(o, o, ¢1, condition, action) can be applied. Then
and letg be a state ofs. A FSM managel belongstothe ~ Mc, Proposes the new stagg to the leader. This receives

setmanagers(q) if there exists a ruled, ¢, ¢q, condition, ~ the proposal and accepts it. The FSM manager can apply
action) defined in a local state machide,.;. the rule R (that generates the traggand set the new leader

state tog1. Since the rule R is a projection of the state ma-
In other words the setanagers(q) includes every FSM chine definitionA the traces is accepted byl.
managerM such that a local state machide.,; contains Letey,...,e, be the trace generated applying the rules
a g-exiting rule. These are the only FSM managers that (e;—1, ¢i—1, qi, condition;, action;), with 0 < i < n. By
can perform a successful synchronisation when the leader’snduction we assume that the trace is acceptedibgnd

FSM instance is in statg we prove the acceptanceqf, . .., e,, e,+1. We can prove
that after the rule application the leader is in state(this
Theorem 1 Let A be a state machine instance ard = would contradict the inductive hypothesis). Thereforeyonl
(Q, qo, I, rules) be its definition. Leb = {c1,...,cn,.. .} a FSM manager imanagers(qn) can apply a local rule
be the componentinstances ad= {M.,, ..., M.,,...} (éns qn, qd, conditiony 1, action,y1). As for the base
the corresponding FSM managers. Lktbe the leader. case a ESM managéic, ., can apply a ruled;,, ¢., ¢.+1,
The state machine instangeaccepts a system tradés = conditionn 1, action,,1) and propose the statg,. The
T, ®...0T,... if and only if all each traced:; are |eader will accept the propose and the FSM manager will
accepted by each corresponding FSM managgr with apply the rule generating the new trage. . . , e,,, e,11 that
1<j<n. is accepted byl.

h . lead . IfweletT =T, @©...®Ts, be atrace accepted by.

Eac time —a FS(;/TI er rec;l[ves | a I MESSage e can always find a schedule (of events delivered to each
actl onExecuted a managerii.,_, locally ap- FSM manager) such that each compongntroduces the
plies a rule é;_1, ¢;—1, ¢;, condition, action). This is traceT

S; "

consequence of aalidate(ci—i,ei—1) request from The proof can be easily extended to the case where mul-
component;_;. If we prove that the sequence or rules tiple state machine instances are defined.

(ei—1, gi—1, ¢i, condition, action), withO < i < n,
produces a tracey,...,e, accepted by the global state
machineA then we have proved that the merge of traces
generated by the component instances is accepted.by
The proof is performed by induction on the length of the
traceeq, ..., e,.

12

	Introduction
	Overview
	System model and state machines
	Events
	State-condition-action rules

	System configuration
	Distribution
	State machine consensus protocol
	Fault tolerance model

	Distributed state machine co-ordination
	The system model
	State machine definitions
	Local state machine generation
	Successful protocol execution
	Protocol exceptions
	Protocol optimisations

	Evaluation and Results
	Memory Overhead
	Execution Overhead
	Average Event Time Performance Measurement
	Fault Tolerance
	Kill
	Kill-Reboot
	Comparison

	Summary

	Related work
	Conclusions
	Correctness

