
Distributed Fault Tolerant Controllers ∗

Leonardo Mostarda, Rudi Ball, Naranker Dulay
Department of Computing
Imperial College London

Email: {lmostard, rkb, nd}@imperial.ac.uk

Abstract

Distributed applications are often built from sets of dis-
tributed components that must be co-ordinated in order to
achieve some global behaviour. The common approach is to
use a centralised controller for co-ordination, or occasion-
ally a set of distributed entities. Centralised co-ordination
is simpler but introduces a single point of failure and poses
problems of scalability. Distributed co-ordination offers
greater scalability, reliability and applicability but isharder
to reason about and requires more complex algorithms for
synchronisation and consensus among components.

In this paper we present a system called GOANNA that
from a state machine specification (FSM) of the global be-
haviour of interacting components can automatically gener-
ate a correct, scalable and fault tolerant distributed imple-
mentation. GOANNA can be used as a backend for different
tools as well as an implementation platform in its own right.

1 Introduction

Programmers often face the problem of correctly co-
ordinating distributed components in order to achieve a
global behaviour. These problems include sense and react
systems [9], military reconnaissance and rescue missions
[1], autonomous control systems as found in aviation and
safety critical systems.

The common approach used is to build of a centralised
control system that enforces the global behaviour of the
distributed components. The advantages of centralised co-
ordination are that implementation is much simpler [11, 17]
as there is no need to implement synchronisation and con-
sensus among components, furthermore many tools are
available for the definition and implementation of cen-
tralised controllers [2]. Existing distributed solutionsare
typically application-specific and require that the program-
mer understands and implements (often subtle) algorithms
for synchronisation and consensus [7, 5].

∗This research was supported by UK EPSRC research grant
EP/D076633/1 (UBIVAL).

In this paper we present a novel approach to generate
a distributedandfault-tolerantimplementation from a sin-
gle Finite State Machine (FSM) definition. We model the
system as a set of components providing and requiring ser-
vices. Co-ordination (global behaviour) is defined by a
global FSM that defines the interactions amongsetsof com-
ponents. Sets provide support togroup available compo-
nents at runtime and allows the selection of an alternative
instance of a component in case of failure. A global state
machine is automatically translated into a collection of lo-
cal ones, one for each set. A FSM Manager at each host is
responsible for handling the events and invocations for its
local state machines and ensuring correct global behaviour.
A Leader is responsible for the management and synchro-
nisation of FSM Managers. This is achieved through an
extension of a Paxos-based consensus protocol that imple-
ments correct, scalable and fault tolerant execution of global
FSM. In particular scalability is obtained by using different
optimisations that are derived from the FSM structure.

Various approaches could benefit from having automat-
ically generated distributed implementations provided bya
centralised specification. For instance the automatic synthe-
sis of component based applications such as [4, 10, 19] are
commonly used to generate a centralised controller where
global state machines are obtained through composition and
can have millions of states. Such approaches would benefit
from our distribution approach that ensures correctness and
provides scalability.

We have implemented our approach in a system called
GOANNA [16] that takes as input, state machines and gen-
erates as output, distributed implementations in JAVA, C or
nesC. The system is being used to develop distributed appli-
cations for sensor networks, unmanned vehicles and home
networks [20, 18] and could be used as backend for tools
that produce centralised controllers using finite state ma-
chines [19, 4].

The main contributions of this paper are the following:

1. The GOANNA platform that supports the co-
ordination of components as a state machine specifi-
cation and automatically generates a distributed imple-



void waterOn()
void waterOff()

Sprinkler

void tempEvent(int val)

Temperature

void smokeEvent(int val)

Smoke
required
provided

Figure 1. Fire Alarm Components

mentation utilising a Paxos-based consensus protocol.

2. We show that distributed co-ordination is equivalent to
the central one.

3. We show that the system guarantees the global be-
haviour in the presence of node and communication
failures or new nodes discovered at runtime.

4. We show that our optimisations significantly increase
scalability with respect to the number of components
and present the space and time overheads of the run-
time system.

2 Overview

In this section we overview how we describe and dis-
tribute the co-ordination for a small fire alarm sensor system
[20]. The system is composed of temperature and smoke
sensors and a sprinkler actuator. The basic requirement is
that the sprinkler should operate only when the temperature
and smoke readings exceed a threshold. Defining the co-
ordination requires that the programmer understands the un-
derlying system model, the fault tolerance model and how
to specify state machines using events, sets and signalling
primitives in GOANNA.

2.1 System model and state machines

We assume the system is composed of a set of
components that provide and require services. Com-
ponents can be already bound together. In Figure 1
we show the component related to the fire alarm appli-
cation. The componentSprinkler provides the ser-
vices waterOff() and waterOn() to enable and dis-
able water flow. The componentsTemperature and
Smoke require the servicestempEvent(int val) and
smokeEvent(int val) whereval denotes the value of
the temperature and smoke, respectively.

Our global FSM specifies the sequence of events (result-
ing from component interactions) that are permitted in the
running system and can proactively invoke service. More
specifically, a global state machine is defined by a list of
event-state-condition-action rules defined in terms of par-
ticipating components (grouped into sets as described be-
low). In Figure 2 we show the state machine related to our

fire alarm application. Each rule states that when the sys-
tem is in a given state, the related event is observed and
the condition is true then an action is applied. For example
the rule of line10 states that when the state is1, the event
smokeEvent is observed on asmoke and the smoke value
is greater than20 than the water must be enabled and the
state changed to2.

1 global fsm fireAlarm(set Temperature temperatureSet,
2 set Smoke smokeSet,set Sprinkler sprinklerSet){
3

4 tempEvent on temperatureSet from *
5 0-1: event.val>50 -> {}
6 3-4: !(event.val>50) -> {signal to sprinklerSet

waterOff();}
7

8 smokeEvent on smokeSet from *
9 1-0: !(event.val>20) -> {}

10 1-2: event.val>20 -> {signal to sprinklerSet
waterOn();}

11

12 waterOn on sprinklerSet from *
13 2-3: {} -> {}
14

15 on timeout(10000)
16 2-2:{} -> {signal to sprinklerSet waterOn();}
17

18 waterOff on sprinklerSet from *
19 4-0: {} -> {}
20 }

Figure 2. The GOANNA global FSM.

2.1.1 Events

Component interactions currently map to four GOANNA
events, two for client endpoints (outgoing call and returned
reply) and two for server endpoints (incoming call and out-
going reply). In the global finite state machine of Fig-
ure 2 we show events expressed using our syntax. For
example, the event"tempEvent on temperatureSet

to *" corresponds to atempEvent service call from a
Temperature component inside the temperatureSet. In
this case we do not specify the receiver of the event (a hard-
ware sensor).

Timeout events are also supported and are generated by
GOANNA when no rule has been applied within the spec-
ified time t. For example,timeout(10000) will raise a
timeout after 10 seconds if no other rule has been applied.

0 1 2 3

4

tempEvent on temperatureSet smokeEvent on smokeSet

timeout(10000)

waterOff on sprinklerSet

waterOn on sprinklerSet

tempEvent on temperatureSet

smokeEvent on smokeSet

Figure 3. The graphical form of the global
FSM

2



1 configuration fireAlarmConfiguration (floor:int)
2 set t:Temperature where place == floor
3 set sm:Smoke where place == floor
4 set sp:Sprinkler where place == floor
5

6 instance is:fireAlarm(t, sm, sp);

Figure 4. Fire alarm configuration

2.1.2 State-condition-action rules

For each event the global FSM can define a list of state-
condition-action rules. A rule is of the formqs − qd :
condition → action whereqs and qd are states. When
the event is observed, the state of the global FSM isqs and
the condition is true then the action can be applied and the
state changed toqd. When an event is observed but no rule
can be applied (the condition does not hold or there are not
relevant transitions) then areaction policycan be applied
such asdiscard(the event.)

2.2 System configuration

GOANNA system configurations specify both compo-
nent sets and global FSM instances. Sets provide support
to classifycomponents as they are discovered and allows
the selection of an alternative instance of a component in
case of failure. Sets are grouped by component type and by
awhere predicate that can use attributes such as host name,
position, node capabilities, to group components when they
are discovered. In Figure 4, the three sets:t, sm andsp
will group all components of typesTemperature, Smoke
andSprinkler respectively running on floorfloor of the
building. Components can join and leave the set at run time.
When an action from the global FSM must be performed an
instance from the appropriate set is selected. This removes
the need to manage the availability of components from the
state machine specification and allows the selection of a new
component in case of failures.

Sets are used to implement the following asynchronous
best-effort primitives: (i)signal to set calland (ii) signal to
c in set call. The former is used to invoke the methodcall
on all components belonging toset while the latter to call
the same service on exactly one componentc.

Global FSM definitions can be multiply instantiated. For
example, for our fireAlarm application we could instantiate
a global FSM for each floor in a building.

2.3 Distribution

GOANNA automatically decomposes a global FSM into
a collection of local ones (see Figure 5), one for each set
plus a special FSM which contains all timeout events de-
fined in the global FSM. In the following we refer to this

Sp

Manager

Sm

leader

T

decomposition

1

2

3

global fsm

skeleton

Manager
fsm state=1

T-local 
FSM

Sm-local 
FSM

Sp-local 
FSM

synchronisation

T=temperature
Sm=smoke
Sp=sprinkler

fsm state=1

fsm state=1

Figure 5. Centralised Control System - Distri-
bution Implementation

timeout state machine as the skeleton. The FSM Manager
local to each host uses the local FSMs while the leader uses
the skeleton to implement the global FSM. More specifi-
cally the leader contains the correct state of the global FSM.
When a FSM manager must validate an event it uses its local
FSMs and its local state of the global FSM. This state (even
if out of date) can be sufficient to reject locally the event
reducing the number of synchronisations with the leader. If
the FSM manager can accept the event it tries toproposea
new state to the leader. The leader denies the propose when
the FSM manager has an outdated state (in which case the
leader updates the FSM manager with the correct state), oth-
erwise the leader grants the propose. In this case the FSM
manager performs the actions from its local FSM and syn-
chronise leader with the new state.

2.4 State machine consensus protocol

Our consensus protocol extends Multi-Paxos with
Steady State [14] with additional information in order to
have a correct distributed state machine implementation.
More specifically, it adds all information needed to execute
actions (from the FSMs) and correctly parse system traces.
This is achieved using timeouts to manage the one to one
communications between FSM managers (executing the ac-
tion) and the leader checking it. Multi-Paxos is normally
described using client, acceptor, learner, and leader1 roles.
In our implementation the client, acceptor and learner roles
are included in our FSM Manager.

The basic idea is that a FSM manager locally verifies
event acceptance before proposing its new state. After a
new state proposal the leader can either decline the request
(e.g., the FSM manager’s state can be out of date) or ac-
cept it, waiting for the action to complete and the new state
to be updated. Although these steps are the basis for cor-

1The leader is also known as the proposer.

3



rect distribution they are not efficient in terms of memory
and traffic overhead. State machines (automatically gen-
erated from high level tools [4, 19] ) can be composed of
millions of states so their deployment on each host can be
inefficient. Moreover, FSM managers could continuously
propose their new local states overloading the network. Our
global state machine distribution process offers a partition
of the FSM transitions and are loaded only when needed.
Our protocol takes advantage of the state machine structure
in order to avoid useless protocol instances. The idea is that
an outdated local state can be enough to reject an event (see
Section 3.6 for details).

2.5 Fault tolerance model

In GOANNA we make the following assumptions: (i)
software components fail independently from their FSM
Manager; (ii) FSM Managers can fail and recover; (iii) the
leader fails and stops (but a new leader from a ranked set of
nodes will be chosen) ; (iv) the ranked leaders control each
other using reliable communication; (v) we assume a set of
backups that are used as a stable storage for the last state
accepted by the leader.

These assumptions are used to guarantee that a transi-
tion of a global FSM is performed if a FSM Manager can
select an available component, the leader is running and the
majority of backups are running.

3 Distributed state machine co-ordination

In this section we describe in detail how GOANNA gen-
erates a distributed state machine implementation from a
global FSM specification.

3.1 The system model

We first introduce some notation used to describe the
system model. The setE denotes the set of all possible
component events whilee1, . . . en are elements inE. The
setEc denotes the set of events locally observed on a com-
ponentc andec

1 . . . ec
n elements inEc. We useTs to denote

all possible traces (i.e., sequence of events) inside the sys-
tem. We useTc to denote all traces local to a component
c.

Traces are subject to thehappened-beforerelation
(→) [13], i.e., a message can be received only after it has
been sent. In the following we define the merge of compo-
nent traces.The basic idea is that the merge of two or more
traces should conform to the following two rules: (i) all
independent events from different traces can occur in any
order in the merged trace; (ii) events within the same trace
must retain their order. A trace resulting from this merge is
usually called alinearisation[3].

Definition 1 Let S = {c1, . . . , ci, . . .} be a system. Let
Tc1

andTc2
be the local traces of the component instances

c1 andc2, respectively. Amerge traceTc1
⊕ Tc2

is a new
trace defined bye1 e2e3 . . . et . . . where: (i)et appears in
Tc1

⊕ Tc2
if and only ifet appears either inTc1

or Tc2
; (ii)

for eachei andej , with i < j, ei → ej .

In order to prove the correctness of our distributed im-
plementation we need to prove that the merge of all FSM
manager traces is accepted by the global state machine (see
appendix A).

3.2 State machine definitions

In the following we provide definitions for state ma-
chines and the related acceptance criterion.

Definition 2 A state machine is a4-tuple A =
(Q, q0, I, rules) where: (i) Q is a finite set of states;
(ii) q0 ∈ Q is the initial state; (iii) I is a finite set of
events s.t. I ⊆ E; and (iv) rules is a list of 5-tuples
(e,qs,qd,condition,action) wheree ∈ E andqs, qd ∈ Q.

Definition 3 Let A = (Q, q0, I, rules) be a state machine
ande ∈ I be an event. Letq be the current state ofA. The
evente can be acceptedby a rule (e,qs,qd,condition,action)
in rules if q = qs and the condition is satisfied.

Definition 4 Let A = (Q, q0, I, rules) be a state machine
and t = e1 . . . ei . . . a trace inTS . Let q0 be the initial
state ofA ande1 be the first symbol to read.A accepts the
sequencet if for each current stateqi−1 and next symbol
ei, A can acceptei by a rule (ei,qi−1,qi,condition,action).
When the rule is applied the action is performed,qi is the
new state ofA andei+1 the next symbol to read.

Definition 5 The languageTA recognised by a state ma-
chineA is composed of all traces accepted by it.

Event outside the FSM alphabet are ignored (i.e., they
are not subject to the FSM validation). When different state
machines are defined the event must be accepted by all of
them. We emphasis thatTA is a subset ofTs (all possible
system traces). More specifically a global FSM define all
permitted traces inside the system.

3.3 Local state machine generation

In order to distribute the global state machine, we auto-
matically decompose it into a set of local ones, one for each
set, and a skeleton. We will useA = (Q, q0, I, rules) to de-
note a global state machine,sc to denote a sets defined over
the component typec andAsc = (Qsc , qs0, Isc , rulessc) to
denote the local state machine assigned to the setsc.

4



0

12
smokeEvent on smokeSet

smokeEvent on smokeSet
0 1

34

tempEvent on temperatureSet

tempEvent on temperatureSet

0

2 3

4
waterOff on sprinklerSet

waterOn on sprinklerSet

2

timeout(10000)

(a) smokeSet-local fsm (b) tempEvent localfsm

(c) sprinklerSet-local fsm (d) skeleton

Figure 6. Generated local state machines and
skeleton

manager leader

C instrumentation 
point

propose(result)

response

actionExecuted(key,newStates)

validate(c,e)

accepted

Ai,qi
lock key

Ai,qi

key

Ai,qi

backups

accept(newStates)

unlock ()

accepted(newStates)

lock ()

Figure 7. Successful protocol execution

In order to generate all local state machines we con-
sider all sets defined in the global FSM. For each setsc

we generate the local state machineAsc by examining
the global state machineA for rules of the formR =
(ec, qs, qd, condition, action). Every time one of these
rules is found, the eventec is added toIsc , the statesqs

andqd are added toQsc and the ruleR is added torulessc .
In other words the state machineAsc contains all interac-
tions that take place locally on a component of the typec

belonging to the setsc. The skeletonAk contains the list of
all time out rules.

In Figure 6 we show all local state machines generated
from the global state machine of Figure 3. We emphasise
that each transition has been projected locally to the set that
its event relates to. Effectively our distribution algorithm
defines a partition of the global state machine transitions.

3.4 Successful protocol execution

In Figure 7 we show the global flow of a successful
protocol execution. We denote withAi a component in-
stance of the typeA. The protocol starts when an instru-
mentation point related to a component instance c detects
an incoming/outgoing message. This generates an event
e and invokes the procedurevalidate(c,e) on its local
FSM manager. This uses its local stateqi of Ai to ac-

cept the event. More specifically the FSM Manager finds
all setsc the componentc belong to, loads the related lo-
cal FSM Asc and usesqi to accept (see Definition 3 for
the definition of acceptance) the evente. If the event can
be accepted the FSM manager starts the protocol by send-
ing apropose(result) request to the leader containing
the fsm instance nameAi and new proposed stateqi. The
leader receives the request and compares the received state
qi with its local state, e.g.,qi. Moreover it checks whether
or not the fsmAi has been locked by another FSM man-
ager. Suppose that the states are the same (qi == qi) and
no fsm instance has been locked. Then the leader gener-
ates a new key and responds with aresponse data struc-
ture to the FSM manager. This structure contains akey

(denoting the protocol instance) and anoutcome (set to
accepted). With this answer the leader promises to the
FSM manager the lock on the required fsm instanceAi. The
FSM manager receives the response, performs the local ac-
tions (from the rules of the local FSM), and sends back to
the leader anactionExecuted(key, newStates) response
wherenewStates contains the new state after the execu-
tion of the rule. The leader receives the request and checks
the existence of the key. In case the key exists it deletes the
key, unlocks the fsm instanceAi and updates its local state
with the received one. The process of updating the state re-
quires to perform a Multi-Paxos protocol with Steady State.
More specifically, the new state is sent to a set of backups
through anaccept request. When the majority of them no-
tify the update (through anaccepted request) the protocol
can correctly terminate.

When multiple state machine instances are defined the
FSM manager must check the event acceptance for all of
them. As for the aforementioned execution if the event
is accepted the FSM manager starts the protocol but com-
municates all the states, locks all state machine instances
and applies all actions (when it receives the grant from the
leader).

A protocol execution can raise different exceptions as
consequence of link failures, node failures and so on. In
the next section we show how our protocol handles those
failures.

3.5 Protocol exceptions

A protocol instance can raise amanager out-of-syncand
fsm instancelockedexceptions. Amanager out-of-syncex-
ception is raised when any of the state sent by the FSM man-
ager and the leader one are different. This is a consequence
of a FSM manager whose proposed states are not synchro-
nised with the global execution and is detected and notified
by the leader. In particular after the leader receives the re-
questpropose(result) it replies with an out-of-sync error
containing its state (i.e., the most updated one). This is used

5



by the FSM to updated its local state. Alockedexception is
generated when a FSM manager proposes a state related to
an instanceAi that has been locked by another FSM man-
ager. In this case the leader sends back aresponse data
structure with thelockederror.

Failures on FSM managers and communication links are
handled in our protocol by using timeouts. In the following
we describe those failures and how they are handled by the
leader and by FSM managers.

A leader can see a FSM manager or link failure dur-
ing three possible steps of the protocol execution: (i) when
it is responding to apropose request (propose response
failure); (ii) while waiting for anactionExecution mes-
sage (action execution timeout); (iii) when responding to
anactionExecutionmessage (action execution response
failure). These faults can be a result of a FSM manager
fault, a communication failure or a slow (overloaded) FSM
manager.

• A propose response failureoccurs when the leader
fails to communicate to a FSM manager the outcome
of a proposal of states (i.e, aresponse data structure).
In this case a time out is raised and the leader deletes
any key or lock granted.

• An action execution timeoutoccurs when a FSM man-
ager receives the permission to execute its local actions
but it does not respond with anactionExecuted mes-
sage. In this case the timeout is triggered on the leader
side. This causes the key to be deleted (i.e., the proto-
col instance to be ended) and all FSMs to be unlocked.
It is worth mentioning that even if the FSM manager
sends anactionExecuted invocation after the timeout
expires this will be detected (the key is no longer ex-
istent) and the FSM states will not be updated. There-
fore in the case of non-recoverable actions the global
execution can be inconsistent.

The action execution timeoutprovides resilience to
component faults. When one component fails to ex-
ecute its action the leader does not update the FSMs
(that is, the global behaviour did not progress), it times
out and waits for a new request. In this way a new
component instance (correctly synchronised) can still
perform another action.

• An action execution response failureoccurs when the
leader correctly receives anactionExecution mes-
sage from a FSM manager but fails to acknowledge
the reception. In this case the leader ends the protocol
instance and waits for the next request.

A FSM manager can see a leader or link failure during
four possible steps of the protocol execution: (i) when in-
voking to a propose request (propose invocation failure);

(ii) while waiting after the propose request (propose re-
sponse failure); (iii) when invoking the actionExecution
(actionExecution invocation failure); (iv) while waiting the
actionExecution response (actionExecution response fail-
ure). These faults can be a result of a leader fault, a com-
munication failure or slow leader execution. In all cases the
FSM Manager ends the protocol execution and returns an
error to the instrumentation point. We emphasis that for
actionExecution invocation and actionExecution response
failures there is the possibility that the FSM Manager per-
forms invocations from its local FSMs. In the case of non-
recoverable actions that the global execution can be incon-
sistent.

In our protocol, we have a set of ranked leaders. While
the highest ranked leader is servicing FSM Managers the
lower ranked leaders monitor the highest ranked leader for
failure. More specifically when the highest ranked leader
is no longer detected, the next leader in the rank is elected.
This recovers all correct global states from the backups.

An error on the protocol execution is always returned to
the instrumentation point that can be programmed to imple-
ment different reactions such asretry the parsing,discard
the event and so on.

One should be aware that there are cases in which the
protocol may not make any progress. For instance this is
the case in which the same FSM manager is always granted
permission and always fails. In order to avoid this kind of
livelock the leader always chooses a random FSM manager
when granting permission.

3.6 Protocol optimisations

In this section we describe various optimisations that are
based on the structure of the state machine. In other words
while our protocol solves the general problem of consensus
among FSM managers, the state machine can guide us in
avoiding useless protocol instances. In particular we have
implemented the following optimisations:drop duplicate
requests, groupinganddrop unreachable requests

In drop duplicate requeststhe FSM manager buffers each
result data structure that has been sent with apropose re-
quest. Any further propose that contains the same state ma-
chine instanceAi with the same stateqi is locally buffered
and held until the first request has returned its result. If the
result contains an error related toAi then the same error
is returned for all instrumentation points, otherwise if the
request has been accepted the FSM manager waits for the
action to complete and releases one of the requests.

Grouping allows different operations to be sent in the
same message reducing the amount of messages sent. For
instance allsignal requests related to the same action exe-
cution are grouped together and sent in a single message.

The drop unreachable requestsoptimisation avoids

6



sendingpropose requests that are certain to be dropped.
This is based on thereachableA : Q × Q → Bool func-
tion that is derived from the structure of a global state ma-
chine A. In particular,reachableA(qs, qd) is true when
the stateqd is reachable from the stateqs and false oth-
erwise. The FSM manager keeps track, for each instance
Ai, of the last updated stateqs. Before proposing a new
stateqd the FSM manager verifiesreachable(qs, qd). When
reachable(qs, qd) is false the event is locally rejected with-
out interacting with the leader. Effectively, the proposed
stateqd cannot be reached fromqs.

4 Evaluation and Results

GOANNA for Java 1.5 was evaluated on a 100 Mbit net-
work using a cluster of 50 Intel Pentium architecture ma-
chines each operating with at least 2 GB of RAM running
the Linux operating system. A single Leader and as many
as 2600 Components (sensors) were executed.

Experiments sought to (a) validate the GOANNA im-
plementation, (b) measure the outcome of induced faults
(killing and rebooting hosts) and (d) highlight the perfor-
mance optimisations resulting from using the FSM struc-
ture.

We first determined the memory overhead, protocol
overhead and baselineAverage Event Time(AET) per FSM
Manager. AET represents the time taken for thevali-
date(c,e)(Figure 7). In effect it measures the time it takes
for a FSM Manager tovalidate a component interaction
event. We also consider this the average number of requests
that a Leader can handle per second (throughput). Effec-
tively the latter measures the additional traffic generatedby
our distributed state machine implementation.

All experiments created FSM Managers and allocated a
set of Components (sensors) to each. The scenario used
considered a GOANNA hierarchy made up of a single
Leader, multiple FSM Managers and multiple Components.
A typical system consisted of a Leader (L), multiple FSM
Managers (M) and bound Components (C), where arrows
represent directional send-receive communications (Figure
8). We assumed various sensors (Components) to bind to
FSM Managers at start-up - hence no allocation algorithm
was applied during runtime, rather sensors were statically
bound to FSM Managers.

4.1 Memory Overhead

A FSM Manager performs three main functions: (i)
checking conditions; (ii) executing the consensus protocol
and (iii) executing state machine actions. Functions (i) and
(iii) can be arbitrary code, but are typically simple boolean
expressions or calls to methods/services. Successful exe-

Figure 8. Example GOANNA Topology

Protocol message Bytes Time (ms)
propose 4x(fsm instance number) 13
response 4x(fsm instance number) 13

actionExecuted 2+4x(fsm instance number) 13
actionExecuted ACK 2 13

Table 1. Protocol overhead

cution of the consensus protocol requires four message ex-
changes between a FSM Manager and the Leader.

The overheads of the exchanged messages are sum-
marised in table 1. We note however, that actions can gen-
erate additional traffic throughsignalcalls. These are per-
formed locally by the FSM Manager and their cost is equiv-
alent to an inter-host remote procedure calls in the imple-
mentation language (e.g. the sending of the parameters and
the service identifier). A major cost of this is the processing
of validate requests, which, if not distributed among sev-
eral FSM Managers, will lead to a bottleneck equivalent of
a centralised solution.

Table 2 summarises the memory costs of the FSM Man-
ager and leader for systems with 10, 80 and 120 compo-
nents. In the worst case with 120 components running, the
FSM Manager and leader memory (both heap and data) is
489KB and 902KB, respectively.

Table 3 shows the sizes of the Global FSM and each of
the generated local FSM machines for the Fire Alarm ex-

Process Components Heap (KB) JVM (MB)
leader 10 366 10
leader 80 464 11
leader 120 489 13

FSM manager 10 697 11
FSM manager 80 763 13
FSM manager 120 902 14

Table 2. Leader and FSM Manager memory
consumption.

7



FSM Size (KB)
global fsm 3

Temperature 1.5
Smoke 1.5

Sprinkler 1.4

Table 3. State machine file size

ample. The sizes correspond to sizes of the serialised object
for each FSM.

4.2 Execution Overhead

Execution overhead was measured using AET to main-
tain consistency between experiments. The evaluation was
performed on several configurations to show the effect of
increasing distribution: (A) one FSM Manager and three
Leaders; (B) two FSM Managers and three Leaders; (C)
three FSM Managers and three Leaders; (D) ten FSM Man-
agers and three Leaders.

We ran systems with between 10 to 125 smoke and tem-
perature sensor components. Each sensor Component was
run in a separate thread and sent a reading every 400 ms. For
configuration A, all sensors were run on the same host. For
configuration B, two hosts ran half of the sensor instances
each. For configuration C, a third of the sensors were run on
each host. For configuration D, a tenth of the sensors were
run on each host.

Figure 9. Event Validation Time

In Figure 9 we show a FSM Manager’s response time for
all four configurations. Each value was obtained by running
the experiments for 10 minutes and calculating the average
of all validate request response times experienced by every
sensor. For example, in the case where 125 sensors were
running at the same time, the results were as follows. In
configuration A, the average time for a FSM manager to
validate a component interaction was 834 ms. In the con-

figuration B, it was 404 ms. In configuration C, it was 280
ms. In configuration D, it was 76 ms.

This shows that the protocol scales linearly when com-
ponents are distributed across different hosts. The critical
bottleneck is the FSM manager and not the leader. The
FSM manager performs most of the computation, i.e., cre-
ates a new thread for each component instance, verifies ac-
ceptance and applies the actions. The leader only responds
to requests by sending a few integers. The more FSM man-
agers (hosts) we have, the more efficient the implementation
is.

Figure 10. Throughput of validation requests

Figure 10 shows the throughput of the Leader and FSM
Managers, that is the number of validate requests handled
per second. For a single FSM Manager and a Leader, the
FSM Manager receives an average of 140 requests per sec-
ond while the leader receives 83 (i.e. 35% less), a signifi-
cant improvement to reducing processing and communica-
tion load. It is this difference in performance between FSM
Manager Requests and Leader Requests which is notewor-
thy. This improvement is a consequence, both the scalabil-
ity of the architecture and our optimisation process, since
most of the requests are dropped because they cannot be
accepted in the current state of the FSM Manager.

4.3 Average Event Time Performance
Measurement

We considered a standard system containing a three
Leaders,m many FSM Managers and 52 Components per
FSM Manager (50 temperature sensors, 1 smoke sensor and
1 sprinkler). Components provided stress-test sensor read-
ings as common with the previous benchmark experiments
(every 400 ms). Performance was measured according to
a standard instantiation of the GOANNA system: (1) three
Leaders were created on separte hosts within the cluster;
(2)m many FSM Managers were created; (3)m × c many

8



Components were created and allocated equally between
FSM Managers (distribution), wherec represented the num-
ber of Components allocated to a single FSM Manager.

An increase in FSM Managers multiplied the number of
Components providing sensor data to the Leader, using the
hierarchical communication network we saw a distribution
of load commonly seen in hierarchical network architec-
tures (Figure 11). This would place increased load on the
Leader. GOANNA was considered to be effective if it could
limit this Component load.

Figure 11. Base Average Event Time Perfor-
mance

Indeed, baseline performance was seen to increase from
360 ms for 520 Components to 1196 ms for 2600 Compo-
nents a change of 835 ms with a 5 fold increase in total
Components - 167 ms cost per 520 Components added to
the system.

This performance reduction while significant presents
the opportunity to further distribute load amongst Leaders
for the maintenance of a low AET. In other words, users
of GOANNA can determine according to AET the optimal
number of Components, FSM Managers and Leaders to use
to achieve a specific AET performance, based on the archi-
tecture a base line benchmark is made. GOANNA is scal-
able and this scalability is both measurable and predictable.

4.4 Fault Tolerance

While the previous performance tests had consid-
ered GOANNA in simple initialisation and computation
phases, faults were introduced to measure the capacity for
GOANNA to deal with the addition (booting) and removal
(killing) of FSM Managers and Components at runtime.
Two experiments were conducted in relation to the base sce-
nario, namely (a)kill and (b)kill and reboot. Two phases
occurred in each experiment: Initialisation and Fault Injec-

tion, where Fault Injection either killed or rebooted FSM
Managers in sets of 10, 20, 30, 40 and 50 FSM Managers.

Three Leaders (L) and a collection ofm FSM Managers
(M) were started and components allocated. Each FSM
Manager’s components were instructed to operate and pro-
vide sensor readings for 30 seconds.

4.4.1 Kill

In each experiment a set of 50 FSM Managers were seen
to operate normally. We introduced faults by killing the
Management processes on individual hosts. Given the kill
scenario, once a FSM Manager was removed from the
GOANNA system it wasnot restarted. A reduced load
of FSM Managers on the Leader was seen to improve the
performance of GOANNA, with reduced AET existing af-
ter a FSM Manager had been killed, however the loss of
a FSM Manager lost subset of Components providing data
to the system. Figures 12 and 14 represents the final AET
value reported for the Kill experiment, illustrating the re-
duced AET where increasing the number of FSM Managers
killed. Significant maximum values exist due to GOANNA
timeouts occurring after FSM Managers have been killed.
Figure 12 illustrates the Maximum, Minimum and Aver-
age Event Time occurring where FSM Managers are re-
moved from the GOANNA system. Where FSM Managers
are not rebooted, we see improved overall performance of
GOANNA - fewer FSM Managers present a reduced load
on the Leader. If all 50 FSM Managers are killed, there is
no system provision.

Figure 12. Kill Performance

The Leader was seen to handle the removal and time-out
of Management messages sufficiently not to let the entire
system be affected by the loss of specific FSM Managers. In
this respect GOANNA proved successful at maintaining op-
eration given these changes, providing a mean performance
per FSM Manager which was acceptable to the continued

9



operation of the GOANNA system.

4.4.2 Kill-Reboot

As an derivative test, GOANNA was seen to perform con-
sistently and normally where FSM Managers were first
killed and then rebooted. As rebooting restarted Manage-
ment processes the final effect was seen to not affect the
AET of the overall system. In contrast to the results pro-
duced by the removal of FSM Managers, AET has limited
fluctuation between 1143 ms and 1271 ms for increasing
FSM Managers. Figure 13 shows the Maximum, Minimum
and Average Event Time occurring where FSM Managers
are killed and then rebooted.

Figure 13. Kill-Reboot Performance

The process of rebooting FSM Managers restores the
GOANNA system to normal processing and hence normal
AET results occur for a capacity benchmarked system.

4.4.3 Comparison

GOANNA is seen to continue to execute normally where
FSM Managers were removed from the system. A Leaders
performance was seen to adapt to the loss of FSM Man-
agers, improving provision of service to FSM Managers
which still existed. We see this as a reduction in AET.
Killing up to 40 FSM Managers resulted in a reduced AET
of 413ms (Figure 14).

In the instance where FSM Managers were rebooted the
system performance was seen to behave as if no fault had
occurred in the system - results mimicked a faultless sys-
tem. GOANNA is hence capable of adapting to loads on a
specific Leader, limited only by the capacity of the Leader
to handle further FSM Managers. We can expect perfor-
mance to be influenced minimally by the removal and ad-
dition of FSM Managers, based on the limitations of the
network GOANNA is being executed on.

Figure 14. Comparison of Performance: Kill
and Kill-Reboot

4.5 Summary

We should note that multiple factors affect the capacity
of GOANNA to operate effectively, including network and
host performance. This aside, performance data presents a
scalable system where FSM Managers can be added and re-
moved at runtime with predictable effect on the GOANNA
hierarchy. We attribute the success of GOANNA to both the
GOANNA protocols and the hybrid FSM approach used.

The increased AET outcome, given increased Compo-
nents, commonly affects such distributed systems and was
expected, however the performance degradation for systems
exceeding 2600 components is a gradual change - we ob-
serve a shallow gradient (or derivative) in terms of AET per-
formance loss (Figure 11). As such, it is possible to facili-
tate extra distribution of Leaders in a scalable and strategic
manner, tuning the number of Leaders or FSM Managers to
achieve a specific AET performance that a system builder
deems acceptable for a given deployment of sensors. Fur-
thermore, GOANNA is capable of tolerating node addition
and subtraction gracefully. Faults occurring are contained
and localised to specific FSM Managers.

The implementation of GOANNA considers the provi-
sion of three redundant Leaders. Where Leaders are killed
the upper-bound performance of the system was limited by
Leader response time which was depending on the under-
lining TCP timeout.

5 Related work

Various techniques have been developed in order to have
a distributed implementation from a logically centralised
specification. In [6] the authors use an aspect-oriented ap-
proach in order to automatically generate the global be-

10



haviour. They specify component definitions and aspects re-
lated to functional and non-functional requirements. Some
of the aspects are used to weave components together. Our
global state machines offer a more structured way to spec-
ify the global behaviour and can be used in property veri-
fication. In [8] the authors propose a monitoring-oriented
approach. They combine formal specifications with im-
plementation to check conformance of an implementation
at runtime. System requirements can be expressed using
languages such as temporal logic. Specifications are veri-
fied against the system execution and user-defined actions
can be triggered upon violation of the formal specifications.
Although this approach allows the specification of global
behaviour, it is verified by a centralised server. In con-
trast, in our approach all conditions and predicates are exe-
cuted locally. Our earlier work [12] performs state-machine
monitoring, but on closed distributed systems and assumes
no failures. GOANNA supports active co-ordination, dy-
namic systems, and fault-management using consensus. In
[15] the authors present a workflow engine that migrates
the workflow instance (specification plus run-time data) be-
tween execution nodes. In [21] they split the specification
into several parts in order to have a distributed execution.
However, this approach defines a set of independent com-
municating entities rather than a global behaviour.

6 Conclusions
In this paper we have described GOANNA, a system that

models the co-ordination of component-based systems as a
global state machine specification and automatically gener-
ates a correct, scalable and fault-tolerant implementation.
GOANNA decomposes global state machines into local
ones, and uses a consensus protocol to synchronise them.
The system guarantees the global behaviour in the presence
of failures and supports the introduction of new component
instances at runtime. Performance for the GOANNA-Java
version shows that distributed co-ordination scales with re-
spect to the number of FSM managers (nodes).

References

[1] E. Asmare, A. Gopalan, M. Sloman, N. Dulay, and
E. C. Lupu. A mission management framework for un-
manned autonomous vehicles. InMOBILWARE, pages
222–235, 2009.

[2] A. Avizienis, J. Laprie, B. Randell, and C. Landwehr.
Basic Concepts and Taxonomy of Dependable and Se-
cure Computing.IEEE Transaction on Dependable-
and Secure Computing, 1:11–33, 2004.

[3] M. Ben-Ari. Principles of Concurrent and Distributed
Programming (2nd Edition). Addison-Wesley, 2006.

[4] A. Bertolino, P. Inverardi, P. Pelliccione, and
M. Tivoli. Automatic synthesis of behavior proto-
cols for composable web-services. InESEC/SIGSOFT
FSE, pages 141–150, 2009.

[5] M. Burrows. The chubby lock service for loosely-
coupled distributed systems. InOSDI, 2006.

[6] F. Cao, B. R. Bryant, C. C. Burt, R. R. Raje, A. M.
Olson, and M. Auguston. A component assembly
approach based on aspect-oriented generative domain
modeling.Electr. Notes Theor. Comput. Sci., 114:119–
136, 2005.

[7] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos
made live: an engineering perspective. InPODC ’07,
pages 398–407, 2007.

[8] F. Chen and G. Rosu. Towards monitoring-oriented
programming: A paradigm combining specification
and implementation. Electr. Notes Theor. Comput.
Sci., 89(2), 2003.

[9] A. Deshpande, C. Guestrin, and S. Madden. Resource-
aware wireless sensor-actuator networks. InIEEE
Data Engineering, 2005.

[10] D. Giannakopoulou, C. S. Pasareanu, and H. Bar-
ringer. Assumption generation for software compo-
nent verification. InASE, pages 3–12, 2002.

[11] R. Guerraoui and L. Rodrigues.Reliable Distributed
Programming. Springer, 2006.

[12] P. Inverardi, L. Mostarda, M. Tivoli, and M. Au-
tili. Synthesis of correct and distributed adaptors for
component-based systems: an automatic approach. In
ASE, pages 405–409, 2005.

[13] L. Lamport. Time, clocks, and the ordering of events
in a distributed system.Commun. ACM, 21(7):558–
565, 1978.

[14] L. Lamport. Paxos made simple, fast, and byzantine.
In OPODIS, pages 7–9, 2002.

[15] F. Montagut and R. Molva. Enabling pervasive execu-
tion of workflows. 2005 International Conference on
Collaborative Computing: Networking, Applications
and Worksharing, 2005.

[16] L. Mostarda and N. Dulay. GOANNA.
www.doc.ic.ac.uk/˜lmostard/goanna, 2008.

[17] P. Oppenheimer.Top-down network design. Cisco sys-
tem inc., 2004.

11



[18] D. Pediaditakis, L. Mostarda, C. Dong, and N. Dulay.
Policies for Self Tuning Home Networks. InIEEE
POLICIES 09, July 2009.

[19] G. D. Penna, D. Magazzeni, B. Intrigila, I. Melatti,
and E. Tronci. Automatic generation of optimal
controllers through model checking techniques. In
ICINCO-ICSO, pages 26–33, 2006.

[20] G. Russello, L. Mostarda, and N. Dulay. Escape: A
component-based policy framework for sense and re-
act applications. InCBSE, pages 212–229, 2008.

[21] R. Sen, G.-C. Roman, and C. Gill. CiAN: A Work-
flow Engine for MANETs.Coordination Models and
Languages, pages 280–295, 2008.

A Correctness

We now outline a proof that our distributed implemen-
tation correctly executes global state machines. We assume
that we have exactly one state machine instanceA for a state
machine definitionA = (Q, q0, I, rules).

Definition 6 Let A = (Q, q0, I, rules) be a state machine
and letq be a state ofA. A FSM managerM belongs to the
setmanagers(q) if there exists a rule (e, q, qd, condition,
action) defined in a local state machineAset.

In other words the setmanagers(q) includes every FSM
managerM such that a local state machineAset contains
a q-exiting rule. These are the only FSM managers that
can perform a successful synchronisation when the leader’s
FSM instance is in stateq.

Theorem 1 Let A be a state machine instance andA =
(Q, q0, I, rules) be its definition. LetS = {c1, . . . , cn, . . .}
be the component instances andM = {Mc1

, . . . , Mcn
, . . .}

the corresponding FSM managers. LetL be the leader.
The state machine instanceA accepts a system traceTs =
Tc1

⊕ . . . ⊕ Tcn
. . . if and only if all each tracesTcj

are
accepted by each corresponding FSM managerMcj

with
1 ≤ j ≤ n.

Each time a leader receives a message
actionExecuted a FSM managerMci−1

locally ap-
plies a rule (ei−1, qi−1, qi, condition, action). This is
consequence of avalidate(ci−1,ei−1) request from
componentci−1. If we prove that the sequence or rules
(ei−1, qi−1, qi, condition, action), with0 ≤ i ≤ n,
produces a tracee0, . . . , en accepted by the global state
machineA then we have proved that the merge of traces
generated by the component instances is accepted byA.
The proof is performed by induction on the length of the
tracee0, . . . , en.

At the beginning, the leader’s fsm instance is in state
q0 and each state machine instanceA, local to the FSM
managerMC , is in a stateqc. Our distribution scheme en-
sures that each rule (e, q0, qd, condition, action) is projected
on FSM managers belonging to the setmanagers(q0).
Therefore only a FSM manager in this set can propose
the stateq0 that is consistent with the leader one. Sup-
pose thatMC0

in managers(q0) receives the request
validate(C0,e0) from a componentC0. It first tries to
perform thetryAccept(C0,e0) procedure to accept the
evente0. If the procedure finds a rule (e0, qs, qd, condi-
tion, action), withqs 6= q0, that can be applied. Then the
new stateqs is proposed to the leader. The leader refuses
the proposal (since it is in stateq0) and sends the correct
global stateq0 back to the manger. The FSM managerMC0

receives the state and performs theupdate function. Since
MC0

is in managers(q0) it contains at least a local state
machineAset where a transition of the form (e0, q0, qd,
condition, action) has been projected. Therefore the update
function returns the valuetrue. In this case the state ofA

(local to the FSM managerMC0
) is set toq0 and the accep-

tance of the evente0 is tried in the stateq0 (this is performed
through the callacceptEvaluation). Suppose that the
rule R=(e0, q0, q1, condition, action) can be applied. Then
MC0

proposes the new stateq0 to the leader. This receives
the proposal and accepts it. The FSM manager can apply
the rule R (that generates the tracee0) and set the new leader
state toq1. Since the rule R is a projection of the state ma-
chine definitionA the tracee0 is accepted byA.

Let e0, . . . , en be the trace generated applying the rules
(ei−1, qi−1, qi, conditioni, actioni), with 0 ≤ i ≤ n. By
induction we assume that the trace is accepted byA and
we prove the acceptance ofe0, . . . , en, en+1. We can prove
that after the rule application the leader is in stateqn (this
would contradict the inductive hypothesis). Therefore only
a FSM manager inmanagers(qn) can apply a local rule
(en, qn, qd, conditionn+1, actionn+1). As for the base
case a FSM managerMCn+1

can apply a rule (en, qn, qn+1,
conditionn+1, actionn+1) and propose the stateqn. The
leader will accept the propose and the FSM manager will
apply the rule generating the new tracee0, . . . , en, en+1 that
is accepted byA.

If we let T = Ts1
⊕ . . . ⊕ Tsp

be a trace accepted byA.
We can always find a schedule (of events delivered to each
FSM manager) such that each componentci produces the
traceTsi

.
The proof can be easily extended to the case where mul-

tiple state machine instances are defined.

12


	Introduction
	Overview
	System model and state machines
	Events
	State-condition-action rules

	System configuration
	Distribution
	State machine consensus protocol
	Fault tolerance model

	Distributed state machine co-ordination
	The system model
	State machine definitions
	Local state machine generation
	Successful protocol execution
	Protocol exceptions
	Protocol optimisations

	Evaluation and Results
	Memory Overhead
	Execution Overhead
	Average Event Time Performance Measurement
	Fault Tolerance
	Kill
	Kill-Reboot
	Comparison

	Summary

	Related work
	Conclusions
	Correctness

