
Shinren: Non-monotonic Trust Management for
Distributed Systems

Changyu Dong, Naranker Dulay

Department of Computing
Imperial College London

180 Queen’s Gate, London, SW7 2AZ, UK
{changyu.dong,n.dulay}@imperial.ac.uk

Abstract. The open and dynamic nature of modern distributed systems and per-
vasive environments presents significant challenges to security management. One
solution may be trust management which utilises the notion of trust in order to
specify and interpret security policies and make decisionson security-related ac-
tions. Most trust management systems assume monotonicity where additional in-
formation can only result in the increasing of trust. The monotonic assumption
oversimplifies the real world by not considering negative information, thus it can-
not handle many real world scenarios. In this paper we present Shinren1, a novel
non-monotonic trust management system based on bilattice theory and the any-
world assumption. Shinren takes into account negative information and supports
reasoning with incomplete information, uncertainty and inconsistency. Informa-
tion from multiple sources such as credentials, recommendations, reputation and
local knowledge can be used and combined in order to establish trust. Shinren
also supports prioritisation which is important in decision making and resolving
modality conflicts that are caused by non-monotonicity.

1 Introduction

The advances in communications and computing research havebrought distributed
systems and pervasive environments to new prominence. Applications are now dis-
tributed across the boundaries of networks, organisations, even countries and deployed
on smaller mobile devices. The increasing scope of distributed applications also im-
plies that applications must deal with “strangers” from other organisations and places.
This leads to new challenges. How does the security system determine whether or not
a request should be allowed if the request comes from an unknown user? The system
must be able to decide without pre-knowledge of the user in order to authorise/deny the
access. In other words, the system must determine whether and by how much does it
trust a user. Trust management [1] was introduced in response to the challenges posed
by modern distributed systems and pervasive enviroments.

In real-life, trust is normallynon-monotonic. Consider the following:
“You are the CEO of a bank and looking for someone to manage a multi-billion

pounds investment fund. A CV arrives on your computer. You quickly read through it:

1 Shinren: the pronunciation of trust in Chinese

worked for the UK’s oldest investment bank (interesting), had more than ten years ex-
perience as a derivatives trader (good), was the Chief Trader and General Manager of
operations in futures markets on the Singapore Monetary Exchange (great), made £10
million a year which accounted for 10% of former employer’s annual income (excel-
lent). You almost make up your mind. Then you see the candidate’s name: Nick Leeson2.
Everything is turned upside down. You trash the email.”

Fig. 1. Non-monotonic trust for CV

If we draw a diagram of this trust-information relation, it might look like Figure 1.
From the diagram we can see that when new information comes in, trust can decrease,
as well as increase, sometimes drastically. In other words,trust is non-monotonic. The
non-monotonicity of trust is a natural consequence of the existence of both goodness
and badness in the world. Trust, as defined by Mayer and Davis [2], is “the willing-
ness of a party to be vulnerable to the actions of another party”. To trust someone, the
trustor needs to judge how competent, how honest, how dependable the trustee is, but
more importantly, how incompetent, how dishonest and how undependable the trustee
is. Positive information tells us how much we may gain from a trust relationship, while
negative information tells us how much we may lose from it. Ignoring negative infor-
mation may result in misplaced trust which may in turn cause serious damage to the
trustor.

Although trust is non-monotonic, mainstream trust management systems [1, 3–7]
are monotonic. The reason is that complete knowledge is hardto achieve in large dis-
tributed systems and also that those systems are based on classical logic which cannot
cope with this situation. Classical logic is monotonic which means a conclusion will
never be retracted with new information, i.e. ifΓ |= φ thenΓ ∪ γ |= φ. To model
trust with classical logic, a monotonic assumption is introduced to solve the problem
and simplify the design by not using negative information about the world. Monotonic
systems do not have problems with incomplete information because all missing infor-
mation is positive and every decision that they make can onlybe more “correct” with
more information. Accepting the monotonic assumption means accepting the world is
always positive (however if there were no negative things inthe world, do we still need

2 Nicholas Leeson, the infamous rogue trader who caused the collapse of Barings Bank.

trust management systems?). Monotonic trust management systems have many advan-
tages, but the monotonic assumption is too limiting for manyscenarios.

The gap between real world requirements and the current design of trust manage-
ment systems motivates our work. A more realistic solution is needed for managing trust
in distributed systems. In this paper, we describe Shinren,a novel non-monotonic trust
management system based on bilattice theory and the any-world assumption. Shinren
can make reasonable decisions even with incomplete information. Moreover, it can also
utilise unreliable information which makes it more suitable for open distributed sys-
tems where reliable information is often hard to come by. Shinren does not just simply
make use of the existing theories, it also supports prioritisation, which is achieved by
a non-trivial extension of the original theories. Prioritisation is important in resolving
conflicts and providing support for decision making.

This paper is organised as follows: We review related work insection 2 and compare
Shinren with current non-monotonic trust management systems in section 3. We discuss
the motivation of this work in section 4. In section 5 we introduce bilattice theory and
the any-world assumption. In section 6, we describe Shinren, its policy language and
semantics. In section 7 and 8, we present two examples to showthe details of policy
evaluation in Shinren. In section 9 we show a prototype implementation. Section 10
concludes the paper.

2 Related Work

Trust management has attracted a lot of interest from the research community and many
trust management systems have been proposed. For example, PolicyMaker [1] and its
successor KeyNote [8], Simple Distributed Security Infrastructure (SDSI) [9], Simple
public key infrastructure (SPKI) [10], Query Certificate Manager (QCM) [11], the RT
framework [5] and Cassandra [12]. All the above systems are monotonic. It has been
shown in [8] that the correctness of PolicyMaker and Keynoteis guaranteed only if
all the policies are monotonic. In [13], the authors show howSDSI and SPKI rules
can be represented in a monotonic logic and its extension. QCM is based on relational
algebra and can be transformed into non-recursive Datalog.RT is based on Datalog. In
[14], Li and Mitchell proposed an expressive extension of RTbased on Datalog with
constraints as the foundation for trust management languages. Datalog with constraints
is also the semantic foundation of Cassandra. There are alsoseveral non-monotonic
trust management systems which support particular negative policies: REFEREE [15],
the Trust Establishment System from IBM [16] and RT⊖ [17]. We discuss and compare
the existing non-monotonic trust management systems and Shinren in Section 3.

Many systems attempt to assign real values to trust and develop sophisticated math-
ematical models to calculate trust values [18–20]. The values are usually based on past
experience. Although they are also called trust managementsystems, we view them
as a totally different approach from the trust management systems presented above
which rely mostly on logical reasoning and view trust decisions as logical consequences
of certain facts and theories. Quantitative trust management systems are usually non-
monotonic and can provide valuable information. However, the accuracy of the trust
values largely depends on the amount of data input and may take a long time to get

enough data. To differentiate, we call them reputation systems and Shinren can include
such systems as subsystems.

Classical logic is the logical system which has been most intensively studied and
most widely used. However, classical logical systems can only reason monotonically.
The increase in knowledge can never invalidate the conclusions derived from what we
originally know. This is fine in an well-defined mathematicalsystem, but encounters
problems in real world. The arguments on the limitations of classical logic can be
traced back to Aristotle. There have been many formal non-monotonic logics and rea-
soning systems. For example, the Closed world Assumption (CWA) and its variants
[21], Circumscription [22], Default Logic [23], Kleene’s three-valued logic [24], Cour-
teous Logic Programs (CLP) [25] and so on. Ginsberg’s bilattice theory [26] provides
a unified framework which can capture various forms of non-monotonic reasoning, e.g.
default logic and assumption truth maintenance system.

Logic programming is another closely related topic. Many trust policy languages
are based on or can be transformed into logic programs, and ithas be widely ac-
cepted that real classical negation is infeasible for logicprogramming [27]. Usually
only “negation as failure”, a weaker form of negation, is implemented. Negation as
failure, an approximation of the CWA, is by nature non-monotonic. However it does
not make non-monotonic a favourable choice for trust management. One reason is that
non-monotonicity poses difficulties in finding a standard declarative semantics for logic
programming with negation. Several semantics have been proposed, including Clark’s
completion [28], Kripke-Kleene semantics [29], stable model semantics [30] and well-
founded semantics [31]. It is hard to say which one is better than the others because
they all have both advantages and limitations. Another problem is that these semantics,
when used in building trust management systems, can take much more information
from CWA than is desired and thus some unwanted conclusions may be derivable, as
we will show in Section 3.

3 Comparison of Non-monotonic Trust Management Systems

Shinren is not the first non-monotonic trust management system. Rule-Controlled En-
vironment For Evaluation of Rules and Everything Else (REFEREE) [15], the Trust
Establishment System (TES) from IBM [16] and RT⊖ [17] are also non-monotonic. In
Table 1, we summarise Shinren with these three main non-monotonic trust management
systems. We also have some remarks on the table.

The main problem of existing non-monotonic trust management systems is seman-
tics. A well-defined formal semantics is a critical part of any policy language. However,
as we can see from Table 1, REFEREE and TES do not have formallydefined seman-
tics. RT⊖ is based on the well-founded semantics which is a non-monotonic semantics
proposed originally for logic programming with negation [31]. The problem with using
well-founded semantics in trust management is that it is based on CWA and the unifor-
mity of CWA may lead to counter-intuitive results. For example, here is a simple trust
policy trust(a) : –¬bad(a). Under the well-founded semantics, whenbad(a) is miss-
ing or not provable, it is falsified and thus makestrust(a) true. However, this decision
may seem too casual, especially when it is related to security. In Shinren, policy makers

Shinren REFEREE TES RT⊖

Truth Space Bilattice 3-valued 2-valued 3-valued
Semantics Extended

Kripke-Kleene
semantics over bilattice

Not
Specified

Not
Specified

Well-
founded

Semantics
Credentials

√ √ √ √

Recommendations
√ √ √

Reputation
√ √

Local knowledge
√ √

Incomplete
Information

AWA OWA/CWA CWA CWA

Unreliable
Information

√ √

Contradictory
Information

√

Prioritisation
√

Explicit Distrust
Policies

√

Table 1.Comparison of Non-monotonic Trust Management Systems

can useunknown as the default value forbad(a) while still usefalse as the default
value for other positive atoms.

Existing non-monotonic trust management systems are also less expressive than
Shinren. For example, RT⊖ can only express policies using credentials. Among them,
REFEREE is the most expressive one, however it has its own problem. It is capable
of expressing policies utilising evidence from different sources, but it is incapable of
distinguish decisions based on information of different quality. REFEREE is based on
3-valued logic, therefore there is no difference between a decision based on a statement
from an authority and a decision based on rumour. The users ofREFEREE may be
given an unreliable trust decision without warning. In Shinren, a trust decision comes
with a value which tells the user not only how true the decision is, but also how reliable
it is.

4 Why Non-monotonic? Why Shinren?

So why do we need non-monotonic trust management systems? This is because (1) in
the real world trust is non-monotonic and therefore a trust management system should
be able to capture this; (2) monotonic assumption is not necessary in trust management,
it is introduced merely because systems reasoning with classical logic cannot cope with
the non-monotonicity in trust. The assumption does not solve the problem, it just makes
systems ignore the problem. There are at least two bad consequences of the monotonic
assumption: first, a trust management system which can be proved correct under the
monotonic assumption may not be correct in the real world because the assumption does
not hold in general; second, it makes trust management systems incapable of handling
certain real world scenarios.

Under the monotonic assumption, monotonic trust management systems do not con-
sider negative information. Syntactically, this is achieved by not allowing negations in
the policies. Negation-free policies work fine in some cases, however they reflect a
limited view of the world and are inappropriate in many cases. For example, negation-
free policies are quite inconvenient in handlingexceptions. In the world modelled by
negation-free policies, it is quite hard to express, “trustall the police officers except
the bad ones” because without negations, we would be allowedto say “trust police
officers” but not “do not trust the bad police officers”. In the extreme case, we must
specify for each individual good police officer a trust policy in order to exclude the
bad ones. Lacking the ability for specifying exceptions canbe dangerous particularly
in trust management systems where delegations are used. No exceptions means that de-
cisions have to be fully delegated to a delegatee, and the system must fully accept the
delegatee’s opinions. No exceptions also means that the system cannot accept part of
the delegatee’s decision while declining other parts. In other words, the system loses
control after delegation. Another case is that negation-free policies cannot handlemu-
tual exclusion. Coke is tasty, orange juice is tasty too. But the mixture of the two does
not taste so pleasant. There are many examples that are mutually exclusive. However,
with negation-free policies, there is no way to express “A isgood, B is good, but A+B
is not good”. In terms of security policies, separation of duties and conflict of interests
are the most significant examples of this type of policy.

One may argue that in the real world, people try to hide their negative aspects.
Therefore, even if policies are allowed to use negative information, if the system cannot
find it, the non-monotonic feature is useless. It is true thatthe information we can collect
is always limited. But consider the following:

In monotonic trust management systems:trust :– good

In Shinren: distrust :– bad

trust :– good

What is the difference? When the system cannot findbad, i.e. the negative information,
Shinren can behave exactly as the monotonic ones. However, because it is not possible
to use negative information in monotonic trust management systems, their decisions
will still be trust even ifbad is presented! In contrast, Shinren’s decision will no longer
be trust because the distrust policy is applied. Although not guaranteed, Shinren aims
to limit any damage with its best effort approach rather thansilently ignoring it.

By using bilattices, Shinren suffers less from a dilemma which all trust management
systems must face: on the one hand, in order to make a correct trust decision, a large
amount of information is needed; on the other hand, in order to make the decision
correct, most of the information available cannot be used because it is not reliable.
Shinren can reason with unreliable information even with contradictory information.
Monotonic trust management systems cannot. This ability isespecially important in
acquiring negative information.

Prioritisation is not seen in any existing trust managementsystem. The philosophy
is that sometimes trust is not just a Yes/No decision, but also a choice. You might want
to follow one rule even if there are multiple rules you can follow, you might trust some-
one even if there are several persons you can trust. Prioritisation allows policy makers

to specify their preferences and thus make complex policiespossible. And also, in the
presence of modality conflicts, prioritisation seems to be the only way to resolve them.
Although there are overheads in defining and managing policies when using prioritisa-
tion, the overheads are minimised in Shiren because policy makers only assign priorities
to local policies and only trust (distrust) policies are prioritised.

5 Preliminaries

5.1 Bilattices

Bilattice theory [26] was introduced by Ginsberg in the 1980s, and has been widely
used in non-monotonic reasoning, knowledge representation and artificial intelligence.
Bilattice is a non-empty, possibly infinite set of values with two partial orders, each one
giving the set the structure of a lattice. A lattice〈L,�〉 is a non empty setL along with a
partial order� where any pair of elementsl1, l2 ∈ L has a least upper bound (join) and
a greatest lower bound (meet) in terms of�. We writel1 ≺ l2 if l1 � l2 andl1 6= l2.

A bilattice, denoted by〈B,�t,�k〉 whereB is a non-empty set and�t,�k are
two partial orders called the truth-order and the knowledge-order respectively.�t is
an ordering on the “degree of truth”.b1 �t b2 meansb2 represents at least as much
truth asb1 (and possibly more). Meet and join under�t are denoted by∧ and∨ and
correspond to classical conjunction and disjunction.�k is an ordering on the “degree of
knowledge”. Meet and join under�k are denoted by⊗ and⊕. b1 ⊗ b2 corresponds to
the maximal informationb1 andb2 can agree on, whileb1⊕b2 combines the information
represented byb1 andb2.

The class of bilattice we consider in this paper is restricted to interlacedbilattices.
Interlaced bilattices are bilattices which satisfy the following: (1) if b1 �t b2 then
b1 ⊗ b3 �t b2 ⊗ b3 andb1 ⊕ b3 �t b2 ⊕ b3; (2) if b1 �k b2 thenb1 ∧ b3 �k b2 ∧ b3 and
b1∨b3 �k b2∨b3. Thus in an interlaced bilattice an operation associated with one of the
lattice orderings is required to be monotonic with respect to the other lattice ordering.
This relates the two orderings. An alternative way of connecting the two orderings is via
negation which reverses the truth ordering and is monotonicregarding the knowledge
ordering.

Such bilattices can be constructed in a natural way by combining two lattices. Given
two lattices〈L1,�1〉 and〈L2,�2〉, we can construct an interlaced bilattice as〈L1 ×
L2,�t,�k〉, where(x1, y1) �t (x2, y2) if x1 �1 x2 and y2 �2 y1, (x1, y1) �k

(x2, y2) if x1 �1 x2 andy1 �2 y2. Negation can be defined as¬(x, y) = (y, x) if
L1 = L2. As we will see later, the bilattice used in our system is constructed in this
way. We will expand on this later.

5.2 Any-world Assumption

Non-monotonic logics allow a conclusion to be drawn on incomplete information. One
way of doing such reasoning is to complete the missing part byassumptions. Taking
into account assumptions means assigning truth values, implicitly or explicitly, to the
unknown facts. The assumptions are usually based on the estimated states of the facts.

One of the most common assumptions is theClosed World Assumption(CWA). It as-
sumes the default truth states of atoms to befalse, therefore any atoms that cannot
be proved to betrue are taken asfalse. Another well-known assumption is theOpen
World Assumption(OWA). OWA is a more cautious assumption in the sense that it
assumes the default truth states of atoms to beunknown. Therefore, any atoms that
cannot be proved to betrue are taken asunknown. However it also gives us less use-
ful conclusions.

Using only one of these assumptions to represent the world uniformly is usually not
appropriate. It is common that at the same time, some things can be safely assumed
false and others cannot. It is desirable to combine the two assumptions to form a new
non-uniform assumption. More generally, we do not even wantto assume something is
absolutelyfalse or we have absolutely no knowledge in many cases. For example, we
may want to assume that certain facts are “possibly false”. This leads to theAny-World
Assumption(AWA) [32], which was proposed in 2005. AWA gives us the powerto form
a large variety of assumptions on the possible truth of the atoms.

AWA unifies and extends the CWA and OWA by taking truth values from an arbi-
trary bilattice truth space and allow the default value of anatom to be any one of them.
If in the assumptions, all the atoms are assigned tofalse, then it becomes CWA which
says everything that cannot be inferred is false. If in the assumptions, all the atoms are
assigned tounknown, then it becomes OWA which says everything cannot be inferred
is unknown. The advantages are obvious: the truth, incompleteness and uncertainty can
be represented in a finer granularity according to the experience and background infor-
mation, therefore the assumptions we make carry more knowledge than before which in
turn leads to more informed conclusions. The assumptions can be non-uniform which
means the default truth values can vary for different atoms.This allows us to form more
realistic assumptions.

The principle underlying AWA is to regard assumptions as an additional source of
default information to complete the implicit knowledge provided by a logic program.
Assumptions over a bilattice truth space provide default truth values for atoms. In order
to minimise the impact brought by guesswork, assumptions are only used as the last
resort. Only atom whose truth value cannot be inferred from the program is assigned to
the default value given by the assumptions.

6 Shinren

6.1 Bilattice NINE

As introduced in Section 5.1, a standard way of constructingan interlaced bilattice is by
combining two lattices. The bilattice we employ,NINE , is also built in this standard
way.NINE is obtained by combining two identical latticesL1 = L2 = 〈{0, 1

2
, 1},≤〉

where≤ is “less than or equal”. The structure ofNINE is shown in Figure 2. The
truth values are represented as tuples(x, y) wherex, y ∈ {0, 1

2
, 1}. The two orderings,

�t,�k are defined as:
(x1, y1) �t (x2, y2) if x1 ≤ x2 andy2 ≤ y1

(x1, y1) �k (x2, y2) if x1 ≤ x2 andy1 ≤ y2

Fig. 2. The bilattice NINE

Given a statement with a truth value of the form(x, y), the intuitive meaning of
the truth value is thatx represents how much the statement is true (or you believe it is
true), andy represents how much the statement is false (or you believe itis false). Let
us elaborate on the meanings:

– (1,0) – reliably true : This value is given to a statement supported by very strong
and reliable evidence. The possibility of the statement is actually false can be ne-
glected.

– (0,0) –unknown: This value is given to a statement that for which have no infor-
mation or are unable to verify (or falsify).

– (0,1) – reliably false: This value is given to a statement that is opposed by very
strong and reliable evidence.

– (1

2
,0) –not so reliably true: This value is given to a statement that is supported by

weak or unreliable evidence. The statement could be false.
– (0,1

2
) – not so reliably false: This value is given to a statement that is opposed by

weak or unreliable evidence. We are not quite sure about its falsity.
– (1,1

2
) – doubtfully true : This value is given to a statement that is supported by

strong and reliable evidence, but for which we can also find some weak or unreli-
able evidence that opposes it. This usually happens when we combine information
from different sources.

– (1

2
,1) –doubtfully false: This value is given to a statement that is opposed by strong

and reliable evidence, but for which we can also find some weakor unreliable
evidence that supports it.

– (1

2
, 1

2
) – weak contradiction: This value is given to a statement that is both sup-

ported by and opposed by weak or unreliable evidence from different sources.
– (1,1) –strong contradiction: This value is given to a statement that is both sup-

ported by and opposed by strong and reliable evidence from different sources.

From the above it is easy to understand the two orderings. Forexample, a state-
ment which is reliably true contains more truth (or is more likely to be true) than a
statement which is not so reliably true, i.e.(1

2
, 0) �t (1, 0). On the other hand, a re-

liably true statement gives us more information than a not soreliably true statement,
i.e. (1

2
, 0) �k (1, 0). It is possible to extend the bilattice to a finer model of reliability

or uncertainty. For example, using a lattice with the value domain{0, 1

3
, 2

3
, 1}, we can

create a bilattice with 16 truth values that can represent more reliability levels. How-
ever, we do not do so for two reasons: first, enlarging the bilattice also increases the
computational complexity. With enough expressiveness, wewould like to avoid unnec-
essary cost; second, things like reliability and uncertainty cannot typically be measured
precisely. There are no metrics and instruments we can use tostandardise the measure-
ment. A finer scale does not help in solving this problem, evenworse, it may bring a
false sense of precision. For these reasons, we stay with this basic form and extend it
when it is necessary and possible.

Let us also explain the rationale behind this multi-valued truth space. Classical
logic, which is the basis of many trust management systems, is bivalent, i.e. the only
possible truth values aretrue andfalse. It gives rise to “black and white thinking”
where every proposition must be ascribed to “absolutely true” or “absolutely false”.
However, in the real world, many would agree with the statement “the only certainty is
nothing is certain”3. Because classical logic lacks the ability of coping with the uncer-
tainty in truth, mainstream trust management systems restrict the information that can
be taken into account to “credentials”. A credential is a statement signed by an issuer
containing certain information about the credential holder and is believed to be highly
reliable. The problems with credentials are two-fold: first, credentials are not able to
carry every bit of information about the holder. We may find that signed information is
just a very small fraction of all the information we can get. Second, in practice we do
not encode negative information about the holder in credentials. The reason is simple:
no one bothers to ask for a credential which is useless or has anegative effect to him.
Again, we usually recognise a rogue merchant not from a “rogue merchant” credential
signed by a government agency, but from various other sources like reviews in internet
forums. If we want a more complete view of the trustee, using only credentials is not
sufficient. We need to consider more information, possibly even that from the sources
which are not so reliable. The multi-valued truth space gives Shinren the ability to rep-
resent and differentiate information with different qualities. And makes it possible for
Shinren to utilise unreliable information.

The meet and join operators in terms of both orderings and thenegation operator
are then defined as follows:

(x1, y1) ∨ (x2, y2) = (max(x1, x2), min(y1, y2))
(x1, y1) ∧ (x2, y2) = (min(x1, x2), max(y1, y2))
(x1, y1)⊕ (x2, y2) = (max(x1, x2), max(y1, y2))
(x1, y1)⊗ (x2, y2) = (min(x1, x2), min(y1, y2))

¬(x, y) = (y, x)
We will explain these with some examples. Given a statementp which is reliably

true andq that is not so reliably true, the truth value of their conjunction is p ∧ q =

3 Pliny the Elder, Roman scholar (23-79 AD).

(1, 0)∧ (1

2
, 0) = (min(1, 1

2
), max(0, 0)) = (1

2
, 0), i.e. not so reliably true. This is easy

to understand. Letp be “Alice is a student” andq be “Alice is a research assistant”, then
the statement “Alice is both a student and a research assistant” cannot be very reliable
because we are not quite sure about the fact that she is a research assistant. Consider
another example: in the court of a murder case, the prosecutor submits a CCTV record
as evidence showing that the suspect was at the crime scene when the murder was
happening, while the counsel of the suspect has a witness, who is a friend of the suspect,
to certify that the suspect was in a pub 50 km away from the scene at the same time. It
turns out the conclusion of whether the suspect was at the scene after we combine these
two pieces of evidence is:(1, 0)⊕ (0, 1

2
) = (max(1, 0), max(0, 1

2
) = (1, 1

2
). That is,

although doubtful, we would believe the suspect is at the scene. The reason is that the
video record is more reliable evidence.

6.2 Shinren Policy Language

The syntax of Shinren is based on the logic programming language Datalog [33], with
certain extensions. The alphabet consists of the followingclasses of symbols:

1. Variables, written as strings starting with a capital letter. For example,X , Name.
2. Constants, written as strings not starting with a capital letter. For examplealice,

student. The constants set contains several disjoint subsets: a setof entity con-
stants, a set of trust scopes, a set of truth values and a set ofother application
specific constants. A trust scope is what the trustor wants toachieve by relying on
the trustee or how the trustee is expected to behave. For example “be a good car
mechanic” or “to read my document”.

3. Predicate symbols, symbols used to denote properties of objects or relations be-
tween objects. We will give more details on predicate symbols later.

As in Datalog, we do not have function symbols. The restriction is necessary to
ensure finiteness of models and termination of inference. Asusual, aterm is either a
variable or a constant. We useentity termto refer to a term which can be either an entity
constant or a variable, and similar with the others. Ifp is a n-ary predicate symbol
andt1, ..., tn are terms, thenp(t1, ..., tn) is anatomic formulaor simplyatom. A atom
p(t1, ..., tn) is groundif t1, ..., tn are constants. Aliteral is an atom or the negation of
an atom. Furthermore, a positive literal is an atom and a negative literal is the negation
of an atom. Aconsensus formulais of the form ofL1 ⊗ ... ⊗ Ln, whereLi is a literal.
A gullibility formula is of the form ofL1 ⊕ ... ⊕ Ln, whereLi is a literal. A rule, or
policy, is of the form:

A :– ϕ1, ..., ϕn.
whereA is an atom and eachϕi is a literal, a consensus formula or a gullibility

formula. “: –” is taken as “←” and “,” is taken as “∧”. The atomA on the left-hand
side of the rule is called itsheadand the conjunctionϕ1, ..., ϕn on the right-hand side
is called itsbody. Certain types of rules may also have a priority label〈lab〉 attached
before the rules (will explain later). Anassertionis a special type of rule defined as:

A :– b.
WhereA is a ground atom andb is a truth value. An assertion can be understood as

A has a truth valueb. A fact setis a finite set of assertions. Anassumption setis also a

finite set of assertions. The difference is that the fact set contains the real truth values
for the atoms while the assumption set contains the assumptions, i.e. assertions about
the default values of the atoms. The assumptions are used only when no facts about the
atoms can be found in the fact set or be inferred. We do not needto explicitly represent
assumptions of the formA : – (0, 0). If no assumption about an atom can be found in
the assumption set, the default value is(0, 0). A programis the union of a finite set of
rules, a fact set and an assumption set.

We divide the predicates symbols into two sets: extensionaldatabase (EDB) pred-
icates and intensional database (IDB) predicates. The EDB predicates represent the
evidence or facts that can be used in reasoning about trust. The IDB predicates are re-
lations. The EDB predicates can appear in a rule’s body but not in the head. We use the
following EDB predicates in our trust policy language. In the upcoming text, we abuse
the notation a little bit by enclosing the optional arguments of predicates in square
brackets. For example,p(t1, t2[, ..., tn]) means the predicate symbolp is “overloaded”
with the number of arguments varying from2 to n.

– A set ofcredentialpredicates. This is a set of predicatescred name(t1, t2[, ..., tn])
wherecred name is the name of the credential,t1, t2 are entity terms andt3, ..., tn
are attribute values. A credential predicate can be understood as “a credential of the
namecred name is issued by issuert1 to an entityt2 and contains the following
attribute valuest3, ..., tn”. A credential may not contain any attribute value, in this
case the predicate for this credential is simplycred name(t1, t2). We assume the
existence of a standard ontology and a standard format for the credentials so that
they can be represented correctly. For example,student(xu, alice, ug) represents
a student credential signed by X University to Alice, which also certifies that she is
classified as an undergraduate.

– A set of predicatesrecommendation(t1, t2, t3[, ..., tn]), wheret1, t2 are entity
terms,t3 is a trust scope term andt4, ..., tn are other parameters. This type of pred-
icate is used to represent the recommendations, i.e. the trust opinions, which can be
sought from peers. The predicate reads as “the recommendert1 recommendst2 for
the scopet3, with regard tot4, ..., tn”. For example,recommendation(alice, bob,
repairCar). We do not explicitly have another predicate to represent negative rec-
ommendations. This type of recommendation is captured by anassertion with a
negative truth valueb, i.e.b ≺t (0, 0).

– A predicatereputation(t1, t2, t3, t4) wheret1 is a entity term andt2 is a trust
scope. Reputation can be viewed as the aggregation of trust opinions from a com-
munity. This predicate represents an entityt1’s reputation in terms of a scopet2,
which is provided by a reputation systemt3 with a value oft4.

– A set of local knowledgepredicates. This set of predicates represents any other
information that can be gathered by the system. For example,the behaviour patterns
of past interactions (if any), unsigned statements and so on. These can be used to
provide a continuous monitoring and feedback mechanism, sothat the system can
use direct experience in trust evaluation.

The IDB predicates include:

– A set of trust predicatestrust(t1, t2[, ..., tn]) wheret1 is a entity term,t2 is a trust
scope andt3, ..., tn are other parameters of the intended trust relationship. Such

a predicate can be read as “the system trusts the trusteet1 for the scopet2, with
regard tot3, ..., tn”.

– A set of distrust predicatesdistrust(t1, t2[, ..., tn]) which are the counterparts of
the trust predicates. The predicate reads as “the system distrust the trusteet1 for
the scopet2, with regard tot3, ..., tn”. Using distrust predicates enables policy
makers to specify explicitly in which situations the trustee should not be trusted. It
is similar to the concept of “explicit deny” in access control systems.

– A set of constraintpredicates. Constraints are conditions on attribute values and
are useful in specifying conditions such as “age greater than 21”, “reputation no
less than 0.7”. The constraint predicates are special in thesense that they are not
defined in the program, i.e. not in any rule’s head, and their semantics depends on a
constraint solver and a constraint domain. We employ a constraint solver as a black
box component and assume a tractable constraints domain. Wealso require that
each constraint used in a policy must be linked to another non-constraint predicate
(see section 6.3).

– A set of application-specific predicates. These predicatescapture the other possible
relationships existing in the system. They can be defined by policy makers when
necessary.

By using the Shinren trust policy language, policy makers can define both trust
policies and distrust policies, i.e. rules whose heads aretrust or distrust predicates.
They can also label the policies withpriority levels. The priority levels express how
preferable a policy is. The priority levels in Shinren language are defined as a finite set
of non-negative integers{0, 1, ..., n}. 0 is reserved for default assignment rules. The
higher the number is, the higher the priority is. For each priority level, policy makers
also define two thresholds in terms of�t or�k or both, one for distrust policies and one
for trust policies. The thresholds are used to filter poor answers. Answers that satisfy the
threshold are calledadmissible answers. Note that only trust or distrust policies need
labels, the other policies are not prioritised. When the system is asked to evaluate trust,
it starts from policies with the highest priority. Distrustpolicies are evaluated before
trust policies. In other words, distrust policies have a higher priority than trust policies
at the same priority level. If an admissible answer can be found, then the evaluation
ends. Otherwise it continues to evaluate the trust policiesat the same level. If there are
still no admissible answers, the system continues with the policies at the next level.
When an admissible answer is found with truth valueb, an answer for its counterpart is
asserted with a truth value¬b. For example, if the evaluation ends with an admissible
answerdistrust(a) = (1

2
, 0), we also havetrust(a) = (0, 1

2
). If after evaluating all

the policies at higher priority levels, an admissible answer is still not found, the default
value is applied. The default value assignment rules may be omitted, in this case the
default value is(0, 0).

The prioritisation mechanism can be used to resolve modality conflicts introduced
by trust and distrust policies. Trust and distrust are semantically opposite and it is pos-
sible in some situations that both are true based on the policies. Therefore we need to
handle the possible conflicts. With priority levels, the conflicts can be resolved by “in-
terlacing” distrust and trust policies and the decisions are governed by the policies with
the highest priority levels which give admissible answers.The priority levels can also

be used to order trust decisions. For example, if we have decided both Alice and Bob
can be reliably trusted, we may prefer Alice if the decision about her came from a trust
policy with a higher priority level, i.e. a more preferable policy. The truth values and
priority levels can give hints to the decision maker. If the decision is not reliable or from
a less preferable policy, it may indicate that the decision is not favourable and may be
risky. The decision maker can activate some compensative controls based on the truth
value and priority levels.

In order to achieve prioritisation, we also need to pose a syntactical restriction on the
policies in order to guarantee the policies can be evaluatedcorrectly. Simply speaking,
we require that there are no cyclical dependencies between ground atoms. Formally, let
P be a program andP inst be the collection of all the ground instances ofP . For any
ground atomA(a) andB(b), we sayA(a) depends onB(b) if there is a ground rule in
P inst such thatA(a) is in the head andB(b) or¬B(b) is in the body or any of the atoms
in the body depends onB(b). Particularly, we treattrust(a) anddistrust(a) as one
atom because they are always derived together. Therefore, if A(a) depends ontrust(b)
or distrust(b), it also depends ondistrust(b) or trust(b); if trust(a) or distrust(a)
depends onB(b), distrust(a) or trust(a) also depends onB(b). P inst must be able
to be stratified as several disjoint strataP0, ..., Pn such thatP inst = P0 ∪ ... ∪ Pn and
for every ground atomA(a) which is defined inPi and depends onB(b), the definition
of B(b) can be found inP0 ∪ ... ∪ Pi−1.

6.3 Semantics

We first show how the semantics of logic programming can be extended from the clas-
sical 2-valued space to a bilattice. Let〈B,�t,�k〉 be a bilattice. TheInterpretationof
a logic program on the bilattice is a mappingI from ground atoms to members ofB. B
is the set of all the truth values, i.e. the truth space. An interpretation can be extended
from atoms to formulae in the usual way:

– for b ∈ B, I(b) = b;
– for formulaeϕ andϕ′, I(ϕ ∧ ϕ′) = I(ϕ) ∧ I(ϕ′), and similarly for∨,⊗,⊕,¬;
– I(∃xϕ(x)) =

∨

{I(ϕ(t)) : t is a ground term};
– I(∀xϕ(x)) =

∧

{I(ϕ(t)) : t is a ground term}

Here we need to explain a little about the interpretation of constraints. In Shinren,
as in many policy systems using constraints (e.g. [34]), constraints can be seen as a kind
of plug-in. Constraint solving is not dealt internally by Shinren, but is delegated to an
external constraint solver. The constraint solver is givena set of constraints and decides
whether the constraints are satisfied, then returns an answer. The answer may affect
the final result of policy evaluation. The benefits of using constraint solvers as external
black boxes are obvious: we do not need to consider the implementation details of
constraint solvers and we do not need to change the semanticsof the policy language
when dealing with different constraint domains.

A constraint domain, loosely speaking, is a set of constraints with an interpretation
that defines the validity of constraints. Often a constraintdomain is required to satisfy
certain properties, e.g. contains equality predicates, closed under variable renaming and

so on. In the following discussion, we assume a well-defined and tractable constraint
domain, denoted byC. All the constraints used in the policy bodies are taken fromC.
Also, to distinguish the constraints from the other predicates defined in Shinren, we use
c1, ...cn to denote constraint predicate symbols defined inC andp1, ...pn to denote the
other predicate symbols. Given a policy of the form:

A :– p1, ...pn, c1, ...cm.
We sayci is linked topj if there exists a termt such thatt is an argument of bothci

andpj. For example, in the policy:

trust(X, bid, Item) :– soldBy(X, Item), itemPrice(Item,Price), P rice ≤ 20.

the constraintPrice ≤ 20 is linked to predicateitemPrice(Item, Price). Each con-
straint must be linked to at least one non-constraint predicate in the policy. In other
words, we do not want to set any irrelevant constraints in thepolicies. We also define
that for a ground constraintci in a policyA :– p1, ...pn, c1, ...cm:

I(ci) =

{

I(φ) if |=C ci

¬I(φ) otherwise

whereφ =
∧

{pj : ci is linked topj , j ∈ [1, n]}. Loosely speaking, this means that a
constraint’s interpretation in the policy depends on its validity in its constraint domain
and also its linked predicates.

The semantics of Shinren is an extension of the generalised Kripke-Kleene Seman-
tics [29, 35]. A programP is first transformed intoP ∗ in the following way:

1. put inP ∗ all ground instances of rules and facts (over the Herbrand universe).
2. replace all the ground unlabelled rules inP ∗ which have the same head,A :–ϕ1, A :

–ϕ2, . . . with one ruleA :–ϕ1 ∨ ϕ2 ∨
3. replace all the ground labelled rules inP ∗ which have the same head and label,
〈lab〉 A :–ϕ1, 〈lab〉 A :–ϕ2, . . . with one rule〈lab〉 A :–ϕ1 ∨ ϕ2 ∨

4. if a non-constraint ground atomA is not head of any rule inP ∗, then the rule
A : –H(A) is added toP ∗, whereH(A) is the default truth value forA in the
assumption set.

P ∗ can then be partitioned asP ∗
0 , ..., P ∗

n as stated in Section 6.2. ThenM , the
unique minimal model after resolving the conflicts, is constructed iteratively:

M0 = ΦP∗

0
↑ω

Mi = ΦP
∗

i
↑ω (Ii−1), 1 ≤ i ≤ n

M = In

whereΦP∗

i
is the immediate consequence operator which is defined asΦP∗

i
(I)(A) =

I(φ) for all A : –φ ∈ P ∗
i , Mi is the fixpoint obtained by applyingΦP∗

i
to Ii−1 and

Ii is defined as follows:I0 = M0, for 1 ≤ i ≤ n, put intoIi the content ofIi−1 and
any valuations inMi for atoms which are nottrust or distrust, for any pair of atoms
trust(a) anddistrust(a), put intoIi the admissible answer inMi derived from the
policy with highest priority and also its counter part with negated truth value. Intuitively,
M is a model for a program obtained fromP ∗ which removes all the trust and distrust
policies fromP ∗ except those that give admissible answers with highest priorities, i.e.
the preferred program.M is unique and minimal with respect to�k. Detailed theorems
and proofs can be found in Appebdix A.

7 Example: Electronic Marketplace

Alice is a big fan of Internet shopping and she often visits a website called tBay which is
an electronic marketplace like e-bay. Although she has bought a lot of items with very
low prices, she also had several unpleasant experiences. Soshe wants to be cautious
before she bids on anything from the website. She decides that she will only bid on
items from sellers who live in the UK, have been registered noless than 6 months and
have at least 80% positive feedback. She will also ask her friend Bob about his opinion
and will not consider a seller if Bob does not like him. However, she knows tBay has
a special procedure for items with bid prices lower than£20: in case of dispute, tBay
will fully refund the buyer. Since she is not going to lose money, Alice is willing to bid
in such situations regardless of her other constraints above. But Alice also has a more
important principle: she will never trade with someone who has cheated her. She has a
blacklist of such sellers. Alice’s policies are:

〈3〉 distrust(X, bid, Item) :– inBlackList(X).

〈2〉 trust(X, bid, Item) :– soldBy(X, Item), itemPrice(Item,Price), P rice ≤ 20.

〈1〉 distrust(X, bid, Item) :– ¬recommendation(bob,X, bid, Item).

〈1〉 trust(X, bid, Item) :– seller(tBay,X, Location, RegisterPeriod),

Location = uk, RegisterPeriod ≥ 6, soldBy(X, Item),

reputation(X,goodSeller, tBay, Y), Y ≥ 0.8.

Alice’s policies have 3 priority levels. At the highest level is the policy which should
not be overridden by any other policies. At the second level is a trust policy that allows
her to interact with any seller when there is no risk. The lowest level has two policies
for general cases. In the policies,seller(tBay, X, Location, RegisterPeriod) repre-
sents a seller credential signed by tBay.soldBy(X, Item), itemPrice(Item, Price)
andinBlackList(X) are local knowledge predicates supplying useful information. For
each priority level, Alice defines thresholds for admissible answers to be(0, 0) ≺t,
which means only answers somehow true (reliably true, not soreliably true, doubtfully
true) will be admissible.

Along with the policies, Alice also has a set of assumptions:

soldBy(X, Item) :– (0, 1).

itemPrice(Item,Price) :– (0, 1).

inBlackList(X) :– (0, 1).

Recall that(0, 1) means “reliably false”. Alice’s assumptions are: if she cannot find
any information that says an item is sold by sellerX , then this item is not sold byX ;
if she cannot find any information that says an item is sold fora certain price, then it
is not sold for this price; if she cannot find a seller in her blacklist, then he is not in
her blacklist. These are easy to understand. All the other predicates are left with default
values of(0, 0), i.e. unknown. Different default values may make a big difference. For
example, if Alice assumesrecommendation(bob, X, bid, Item) to be false, i.e. add
recommendation(bob, X, bid, Item) : – (0, 1) to her assumption set, then she cannot
bid anything with a price higher than£20 when she cannot contact Bob. In such cases,
since she cannot get recommendations from Bob, the default value will be used and the

policy

distrust(X, bid, Item) :–¬recommendation(bob, X, bid, Item).

will always give results of “distrust” with truth value(1, 0).
More complicated policies are also possible. For example, if Alice has another pol-

icy which says she will bid if at least two of her friends recommend the seller. This can
be written as:

trust(X, bid, Item) :– friend(F1), friend(F2),

recommendation(F1,X, bid, Item) ⊗ recommendation(F2, X, bid, Item).

Alice collects the following facts when she tries to find a cheap iPod on tBay:

soldBy(carol, ipod) :– (1, 0).

seller(tBay, carol, uk, 12) :– (1, 0).

reputation(carol, goodSeller, tBay, 0.9) :– (
1

2
, 0).

itemPrice(ipod, 80) :– (1, 0).

Although not signed, Alice considers the information aboutwho is the seller and the
price of the item as reliable. However, the reputation is not. Alice knows at least ten
ways which sellers can boost their reputation quickly.

When evaluating the policies, only the assumptions:

recommendation(bob, carol, bid, ipod) :– (0, 0)

inBlackList(carol) :– (0, 1)

are used. This is because Alice does not have any relevant information. The other
assumptions are not used because Alice has collected the facts and therefore does not
need to assume anything.

Let us also explain how the trust (distrust) policies are evaluated. Shinren starts from
priority level 3. For the distrust policy at this level, the body is inBlackList(carol)
with truth value(0, 1) in the interpretation. Thereforedistrust(carol, bid, ipod) is
evaluated to be(0, 1), according to this policy. Because(0, 0) 6≺t (0, 1), this answer
is not admissible and is discarded. The policy with priority2 does not have an admis-
sible answer either. GivenitemPrice(ipod, 80) = (1, 0), the constraintPrice ≤ 20 is
not satisfied because the price is£80. This constraint is linked toitemPrice(ipod, 80),
so its truth value is¬(1, 0) = (0, 1). Overall,trust(carol, bid, ipod) is evaluated to
(0, 1) according to this policy. The answer is also discarded. Because Alice cannot get
a recommendation from Bob, the default value is used and the distrust policy at pri-
ority level 1 is evaluated to(0, 0). The answer is also not admissible. The last policy
is evaluated to(1

2
, 0) and therefore is admissible. Because it is a trust policy, weadd

trust(carol, bid, ipod) = (1

2
, 0) and alsodistrust(carol, bid, ipod) = (0, 1

2
) to the

model. Alice now knows that although Carol can be trusted, she might still be cheated.

8 Example: Healthcare in the Community

Dr Taylor runs a medical clinic in a small town. An unconscious patient is brought
to the clinic. From the driver’s licence, Dr Taylor learns that the patient is called Mr
Johnson. Mr Johnson is a tourist and stayed in a local hotel before he was brought here.
The owner of the hotel, who brought Mr Johnson in, tells Dr Taylor that the patient
experienced breathing difficulties during breakfast and then passed out a few minutes
later. Dr Taylor examines the patient’s trachea and hears the lung sound. He decides to
intubate the patient in order to let air pass freely to and from the lungs. The patient’s
temperature is normal and the results of a blood test show no signs of infection. Blood
pressure and heart rate are also normal. Dr Taylor decides tocheck the patient’s medical
history in order to see whether the symptoms were caused by drugs or allergies. From
his computer, Dr Taylor sends a request to the Smith GP practice, found in documents
in Mr Johnson’s wallet.

The electronic medical record system of the Smith GP practice uses the Shinren
trust management system to control who can access patients’medical histories. The
policies which regulate the access to a patient’s medical history are shown blow:

〈3〉 distrust(X, read,med history, Y) :– ¬doctor(bma,X).

〈3〉 trust(X, read,med history, Y) :–consent(Y, X, read,med history)

〈3〉 trust(X, read,med history, Y) :– agent(Y,Z), consent(Z, X, read,med history)

〈2〉 trust(X, read,med history, Y) :–answer(X,DOB, ADDRESS),

personal info(Y, DOB2, ADDRESS2), DOB = DOB2,

ADDRESS = ADDRESS2.

〈1〉 trust(X, read,med history, Y) :– collocated(X, Y).

Patients’ medical histories are sensitive and should only be revealed to doctors who
are treating the patients. The distrust policy at level 3 says thatX is not allowed to
read patientY ’s medical history ifX does not have a doctor credential signed by the
BMA (British Medical Association). The second trust policyat the same level saysX is
trusted to read patientY ’s medical history ifY gives his consent. However, in real-life,
it is not always possible to get the patient’s consent, e.g. in the case that the patient is in
coma. Then a third party consent from the patient’s agent, usually the next of kin, also
has the same effect. In emergency situations where no consent can be obtained, it is
necessary to verify that the doctor is indeed treating the patient before letting the doctor
access the information without consent. For example, the verification might be done by
letting the doctor provide the patient’s personal information and comparing it with the
data stored, or using a location service to verify that the doctor is co-located with the
patient. Accesses without consent are logged and audited.

Dr Taylor provides his doctor credential and also supplies information about Mr
Johnson’s birthday and address correctly. The access is granted and logged. Alas the
medical history does not provide too much useful information. At the same time, Mr
Johnson’s condition becomes worse. He starts to have seizures and EEG (electroen-
cephalogram) shows abnormal brain activities.

Dr Taylor suspects that the problem may be in Mr Johnson’s brain. However, he is
not a neurologist and needs someone to help in diagnosing thepatient. Dr Taylor starts

looking for help. He searches the NHS database using Shinrenwith the policies shown
below:

〈2〉 trust(X,specialist, neurology) :–consultant(Hos, X, neurology),

hospital(NHS,Hos),member(aon,X, Level), Level >= 2.

〈1〉 trust(X,specialist, neurology) :–consultant(Hos, X, neurology),

hospital(NHS,Hos),member(aon,X, 1), member(aon, Y, Level), Level >= 2,

recommendation(Y,X, specialist, neurology).

The first policy says that Dr Taylor will trustX as a specialist in neurology ifX has a
consultant credential signed by an NHS hospital which states thatX is a consultant in
neurology.X must also be a member of the Association of Neurologists withlevel no
lower than senior member. The second policy says almost the same except that if the
level ofX in the Association of Neurologists is not high enough, he needs a recommen-
dation from a senior member or higher.

Dr Taylor finds 20 doctors who fit his requirements. Among them, he selects Dr
Ford, a senior member of the Association of Neurologists whoworks for Victoria Hos-
pital. Dr Ford is also willing to offer assistance. Dr Taylorsets up a video conference
with Dr Ford. After hearing the observations and checking the examination results, Dr
Ford suggests that the problem could be caused by a clot in thepatient’s brain. How-
ever, a brain tumour also fits the symptoms. The diagnosis canbe confirmed by an
MRI (Magnetic Resonance Imaging) scan or a brain biopsy. However, the clinic does
not have the equipment and the patient’s condition is not suitable for transportation. Dr
Ford then suggests that in this situation, Dr Taylor should immediately treat the patient
with tPA (tissue Plasminogen Activator), a medicine which helps resolving blood clots,
because a long delay could cost the patient’s life. If the patient’s condition gets bet-
ter, then the diagnosis of a blood clot can be confirmed, otherwise it suggests a brain
tumour.

Dr Ford’s plan could be quite dangerous. So Dr Taylor wants tohear a second opin-
ion. To ensure the opinion is independent and fair, Dr Tayloradds another policy before
he searches for the second specialist. The policy rules out all the specialists working in
the same hospital as Dr Ford.

〈2〉 distrust(X,specialist, neurology) :– consultant(victoria, X, neurology).

This time Dr Taylor finds Dr Grant, a senior member of the Association of Neurologists
who works for the Albert Hospital. Dr Grant confirms that there is no better solution
in this situation. Dr Taylor starts to treat the patient withtPA, and watches him closely.
24 hours later, the patient wakes up. After the patient’s condition is stabilised, he is
transferred to the nearest major hospital for further diagnosis and treatment.

9 Implementation

We have implemented a prototype of Shinren. As shown in Figure 3, Shiren consists of
five major modules. Among the five modules, the credential module, the recommenda-
tion module, the reputation module and the state module are responsible for retrieving

and interpreting information from different sources, and the policy interpreter module
is responsible for making decisions according to the policies and the information gath-
ered.

Fig. 3. Shinren Trust Engine

The Shinren prototype is implemented in Java 1.5. The policyinterpreter evaluates
queries in a bottom-up fashion as in many other datalog-based systems. Policies are
loaded into the policy interpreter as plain text files. The rules are stratified when they
are loaded by analysing the predicate dependency relationships. To answer a query,
the interpreter first initialises an interpretation which is an instance of the Assertion-
Set class. The interpreter queries the other four modules inorder to gather facts, i.e.
ground instances of the predicates with truth values, whichare needed for policy evalu-
ation. The facts are stored in tables related to the predicates in the interpretation. After
the interpreter obtains all facts, it constructs the Herbrand universe by collecting all
the constants from the query, rules and facts. The interpreter then puts into the initial
interpretation assumptions for all the other ground atoms which are in the Herbrand
base. It then starts evaluating policies iteratively from the lowest strata. Each rule in the
stata is grounded with regard to the Herbrand base and then the interpreter applies the
immediate consequence operator to each ground instance. The immediate consequence
operator retrieves the truth values for the ground atoms in the rule body from the current
interpretation and passes them through the evaluation treeof the rule to obtain the truth
value of the ground head atom. The ground atom along with the truth value is a newly
generated fact and the table for the head predicate in the interpretation is updated. If
an entry with the same ground tuple is already in the table, the truth value of the old
entry is ORed with the truth value of the new entry; otherwisethe new entry is inserted
into the table. Trust (distrust) policies in the same strataare evaluated sequentially by
priority level until an admissible answer, i.e. an answer that satisfies the threshold de-
fined for this level, is found. The evaluation of the strata ends when the interpretation
does not change anymore. Then the interpreter evaluates therules in the next strata. The

evaluation of the query ends after the interpreter evaluates all the strata containing the
rules with the queried atoms as heads.

A preliminary top down policy interpreter which is under developing can be found
in Appendix B. However the correctness of this implementation has not been proved.

10 Conclusion and Future work

In this paper, we have presented Shinren, a novel non-monotonic trust management sys-
tem based on bilattices and the any-world assumption. The syntax of the Shinren pol-
icy language is based on Datalog with certain extensions such as negation, constraints
and prioritisation. The semantics extends the Kripke-Kleene semantics over bilattices.
Shinren can utilise unreliable even contradictory information and supports prioritisation
which resolves conflicts and provides decision support. We demonstrated the power of
Shinren by two comprehensive examples and outlined its implementation.

One aspect that we would like to investigate further is prioritisation. The current
prioritisation mechanism in Shinren is at the meta-level. It works but is not convenient in
practice because it is external to the bilattice. However, prioritisation can also be viewed
as another ordering. We would like to extend our bilattice, so that a third ordering could
be integrated into the theory. This would make prioritisation a built-in feature.

AWA uses the concept of non-uniform assumption. However, its assumptions are
static. We are interested in researching dynamic assumptions which would mean that
changes in knowledge could lead to the change of the assumptions. Dynamic assump-
tions would enable a trust management system to generate more accurate conclusions
according to the context. Previous works in belief revision[36] and dynamic prioritisa-
tion [37] are possible stepping stones in this direction.

Acknowledgments

This research was supported by the UK’s EPSRC research grantEP/C537181/1 (Care-
grid) and EU FP7 research grant 213339 (ALLOW).

References

1. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trustmanagement. In: IEEE Symposium
on Security and Privacy, IEEE Computer Society (1996) 164–173

2. Mayer, R.C., Davis, J.H., Schoorman, D.F.: An integrative model of organizational trust.
The Academy of Management Review20(3) (1995) 709–734

3. Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.D.: The keynote trust-management
system, version 2. RFC 2704 (1999)

4. Jim, T.: Sd3: A trust management system with certified evaluation. In: SP ’01: Proceedings of
the 2001 IEEE Symposium on Security and Privacy, Washington, DC, USA, IEEE Computer
Society (2001) 106–115

5. Li, N., Mitchell, J.C., Winsborough, W.H.: Design of a role-based trust-management frame-
work. In: IEEE Symposium on Security and Privacy. (2002) 114–130

6. Hess, A., Seamons, K.E.: An access control model for dynamic client-side content. In:
SACMAT ’03: Proceedings of the eighth ACM symposium on Access control models and
technologies, New York, NY, USA, ACM Press (2003) 207–216

7. Carbone, M., Nielsen, M., Sassone, V.: A formal model for trust in dynamic networks. In:
SEFM. (2003) 54–61

8. Blaze, M., Feigenbaum, J., Keromytis, A.D.: The role of trust management in distributed
systems security. In Vitek, J., Jensen, C.D., eds.: Secure Internet Programming. Volume
1603 of Lecture Notes in Computer Science., Springer (1999)185–210

9. Rivest, R.L., Lampson, B.: SDSI - a simple distributed security infrastructure.
“http://people.csail.mit.edu/rivest/sdsi10.html” (1996)

10. Ellison, C.: SPKI requirements. RFC 2692 (1999)
11. Gunter, C.A., Jim, T.: Policy-directed certificate retrieval. Softw., Pract. Exper.30(15) (2000)

1609–1640
12. Becker, M.Y., Sewell, P.: Cassandra: Distributed access control policies with tunable expres-

siveness. In: POLICY, IEEE Computer Society (2004) 159–168
13. Halpern, J.Y., van der Meyden, R.: A logic for sdsi’s linked local name spaces. Journal of

Computer Security9(1/2) (2001) 105–142
14. Li, N., Mitchell, J.C.: Datalog with constraints: A foundation for trust management lan-

guages. In Dahl, V., Wadler, P., eds.: PADL. Volume 2562 of Lecture Notes in Computer
Science., Springer (2003) 58–73

15. Chu, Y.H., Feigenbaum, J., LaMacchia, B.A., Resnick, P., Strauss, M.: Referee: Trust man-
agement for web applications. Computer Networks29(8-13) (1997) 953–964

16. Herzberg, A., Mass, Y., Mihaeli, J., Naor, D., Ravid, Y.:Access control meets public key
infrastructure, or: Assigning roles to strangers. In: IEEESymposium on Security and Privacy.
(2000) 2–14

17. Czenko, M., Tran, H., Doumen, J., Etalle, S., Hartel, P.,den Hartog, J.: Nonmonotonic trust
management for P2P applications. Electronic Notes in Theoretical Computer Science157(3)
(2006) 113–130

18. Marsh, S.P.: Formalising Trust as a Computational Concept. PhD thesis, University of
Stirling (1994)

19. Jøsang, A.: A logic for uncertain probabilities. International Journal of Uncertainty, Fuzzi-
ness and Knowledge-Based Systems9(3) (2001) 279–212

20. Yu, B., Singh, M.P.: Detecting deception in reputation management. In: AAMAS, ACM
(2003) 73–80

21. Reiter, R.: On closed world data bases. In: Logic and DataBases. (1977) 55–76
22. McCarthy, J.: Circumscription - a form of non-monotonicreasoning. Artif. Intell.13(1-2)

(1980) 27–39
23. Reiter, R.: A logic for default reasoning. Artif. Intell. 13(1-2) (1980) 81–132
24. Kleene, S.C.: On notation for ordinal numbers. J. Symb. Log.3(4) (1938) 150–155
25. Grosof, B.N.: Courteous logic programs: Prioritized conflict handling for rules. Research

Report RC 20836(92273), IBM (1997)
26. Ginsberg, M.L.: Multivalued logics: a uniform approachto reasoning in artificial intelli-

gence. Computational Intelligence4 (1988) 265–316
27. Shepherdson, J.C.: Negation as failure, completion andstratification. In Gabbay, D.M.,

Hogger, C.J., Robinson, J.A., eds.: Handbook of Logic in Artificial Intelligence and Logic
Programming. Volume 5. Oxford Science Publications (1998)

28. Clark, K.L.: Negation as failure. In: Logic and Data Bases. (1977) 293–322
29. Fitting, M.: A kripke-kleene semantics for logic programs. J. Log. Program.2(4) (1985)

295–312
30. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:

ICLP/SLP. (1988) 1070–1080

31. Gelder, A.V., Ross, K.A., Schlipf, J.S.: Unfounded setsand well-founded semantics for
general logic programs. In: PODS, ACM (1988) 221–230

32. Loyer, Y., Straccia, U.: Any-world assumptions in logicprogramming. Theor. Comput. Sci.
342(2-3) (2005) 351–381

33. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog (and never
dared to ask). IEEE Trans. Knowl. Data Eng.1(1) (1989) 146–166

34. Becker, M.Y., Sewell, P.: Cassandra: Flexible trust management, applied to electronic health
records. In: CSFW, IEEE Computer Society (2004) 139–154

35. Fitting, M.: Bilattices and the semantics of logic programming. J. Log. Program.11(1&2)
(1991) 91–116

36. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet
contraction and revision functions. J. Symb. Log.50(2) (1985) 510–530

37. Brewka, G.: Reasoning about priorities in default logic. In: AAAI. (1994) 940–945
38. Fitting, M.: Billatices are nice things. In Bolander, T., Hendricks, V.F., Pedersen, S.A., eds.:

Self-reference. Number 178 in CSLI Lecture notes. CSLI Publications (2006) 53–77
39. Sterling, L., Shapiro, E.: The art of Prolog (2nd ed.): advanced programming techniques.

MIT Press, Cambridge, MA, USA (1994)

A Theorems and Proofs

Definition 1 A conflicting set w.r.t.P ∗ is a set of labelled rules inP ∗ such that the
heads of the rules are the same ground atomtrust(a) (or its counterpartdistrust(a)).

A conflicting set contains all the rules regardingtrust(a) (distrust(a)) with different
priorities. In the policy evaluation process, only one rulein the set will be fired.

Definition 2 A reductionR∗ w.r.t. P ∗ is obtained in this way: for each conflicting set
w.r.t P ∗, keep one rule and delete the others fromP ∗.

A reduction is a “flattened” program in the sense that regardingtrust(a) (distrust(a))
there is only one rule.

Definition 3 An interpretationI is a model of a reductionR∗ w.r.t. P ∗ iff for all A :
–φ ∈ R∗, I(A) = I(φ) holds.

Theorem 1 Given a reductionR∗ w.r.t. P ∗ there exists a least fixed point of the imme-
diate consequence operatorΦR∗ defined asΦR∗(I)(A) = I(φ) for all A : –φ ∈ R∗.
The least fixed point is the unique�k minimal model ofR∗

The proof follows directly from [38]. The operatorΦR∗ is monotonic regarding the
knowledge ordering. Therefore the least fixed point exists.

A reduction may not be adequate in the sense that some trust decisions produced
from this reduction may not reliable or informative enough.Therefore we introduce
some further constraints.

Definition 4 A reduction w.r.t.P ∗ is admissible if the head of each labelled rule in this
reduction is mapped to a truth valuet in the unique�k minimal model such thatt is an
admissible answer w.r.t to the threshold defined for the priority level.

Even with admissible reductions, we may prefer one to the others. The preference
ordering is defined as follows:

Definition 5 A labelled rules stratificationLR∗
0, ..., LR∗

m of P ∗ is obtained from a
stratification ofP ∗ by removing all levels that do not contain labelled rules andremov-
ing from the remaining levels all the rules that are not labelled.

Definition 6 A mapping to a reductionR∗ from LR∗
i (i ∈ {0, ..., m}) is defined as a

set that contains all the labelled rules inR∗ that are also inLR∗
i .

Definition 7 Let LR∗
0
, ..., LR∗

m be a labelled rules stratification ofP ∗, R∗
1

andR∗
2

be
two reductions w.r.t.P ∗, Mij (i ∈ {0, ..., m}, j ∈ {1, 2}) be the mapping to reduction
R∗

j fromLR∗
i . We define a partial order�p:

1. Mi1 �p Mi2 iff for every labelled ruler1 in Mi1, we can find a labelled ruler2

in Mi2 with the same head (or its counterpart), such thatr2 has a priority higher
than or equal tor1. Mi1 ≺p Mi2 iff Mi1 �p Mi2 andMi1 6= Mi2.

2. R∗
1
≺p R∗

2
iff we can findi ∈ {0, ..., m} such thatMi1 ≺p Mi2 and for anyj < i,

Mj1 = Mj2. R∗
1
�p R∗

2
if R∗

1
≺p R∗

2
or R∗

1
= R∗

2
.

The intuition of this preference ordering is that we prefer labelled rules with higher
priority and for labelled rules which depend on other labelled rules, we prefer those
based on more preferable rules.

Theorem 2 The ordering�p is independence of the choice of labelled rule stratifica-
tion.

The proof follows directly from the above definitions.

Definition 8 An admissible reductionR∗ is called a preferred admissible reduction
w.r.t. P ∗ iff for every reductionR∗

′

w.r.t. P ∗, R∗
′

�p R∗.

Theorem 3 For everyP ∗, there is a unique preferred admissible reduction.

To prove Theorem 3, we first prove the following lemma:

Lemma 1 Given a poset(AD∗,�p) such thatAD∗ is the set of all the admissible
reductions w.r.t.P ∗, for everyR∗

1
, R∗

2
∈ AD∗, the least upper bound exists.

Proof. Let LR∗
0
, ..., LR∗

m be a labelled rules stratification ofP ∗. For everyR∗
1
, R∗

2
∈

AD∗, the least upper bound isLUB12 which can be found by iterating fromi = 0 on a
setS = AD∗:

1. if S has only one element, stop the iteration.
2. otherwise ifMi1 = Mi2 whereMij (j ∈ {1, 2}) is the mapping to reductionR∗

j

from LR∗
i , delete fromS all admissible reductions such that the mappings to the

admissible reductions fromLR∗
i are not equal toMi1.

3. otherwise if (Mi1 6= Mi2), do the following, for every labelled ruler1 in Mi1 and
labelled ruler2 in Mi2 with the same head (or its counterpart), compare the prior-
ities of r1 andr2, put into a setM ′ the labelled rule with the maximum priority.
Delete fromS all the admissible reductions such that the mappings to the admissi-
ble reductions fromLR∗

i are not equal toM ′. Then delete fromS all the elements
except one such that the mapping to it fromLR∗

k i < K ≤ m contains only default
assignment rules.

At the end of the iteration, there will be one and only one element left. This is easy
to check. In trivial cases the procedure only take branch 2 and the only element left
is LUB12 = R∗

1
= R∗

2
. In any non-trivial cases which take branch 3, there must be

at least one element inS such that the mapping to the element fromLR∗
i equalsM ′.

There will be only one element left by definition. Now we show thatLUB12, the only
element left inS is indeed the least upper bound.

LUB12 is an upper bound ofR∗
1, R

∗
2. In the trivial caseLUB12 = R∗

1 = R∗
2, by

definitionR∗
1
�p LUB12, R

∗
2
�p LUB12. In the non-trivial caseR∗

1
6= R∗

2
, when the

iteration takes branch 3, it is guaranteed thatR∗
1
�p LUB12, R

∗
2
�p LUB12 because

Mi1 �p M ′ andMi2 �p M ′.
LUB12 is the least upper bound ofR∗

1
, R∗

2
, i.e. there is noR∗

3
such thatR∗

3
is an

upper bound ofR∗
1
, R∗

2
andR∗

3
�p LUB12. In the trivial caseLUB12 = R∗

1
= R∗

2
,

R∗
3 = LUB12. In the non-trivial case, since there is no otherM ′′ such thatMi1 �p M ′′

andMi2 �p M ′′ andM ′ �p M ′′, andLUB12 contains only default assignment rules,
which have the lowest priority, for the labelled rules at higher levels, there is no way to
find R∗

3 that satisfies the requirements.

BecauseAD∗ is finite, by Lemma 1,(AD∗,�p) has an unique upper bound, i.e.
the preferred admissible reduction.

Theorem 4 For everyP ∗, the modelM described early in this section corresponds to
the unique�k minimal model of the preferred admissible reduction ofP ∗.

Proof. GivenP ∗, the only difference betweenP ∗ and its preferred admissible reduc-
tion P ∗∗ is that for each trust(distrust) atom,P ∗ contains multiple rules each with a
different priority while in the preferred admissible reduction there is only one rule.
Given a stratification ofP ∗, P ∗∗ can be stratified in the same sequence. The immediate
sequence operators are the same. During the evaluation ofP ∗, whenever a labelled rules
is fired, it must also be in the preferred admissible reduction. If a labelled ruler in P ∗

is fired and the corresponding labelled rule in the preferredadmissible reduction has a
lower priority, then we can find another admissible reduction R with r and obviously
R 6�p P ∗∗. It contradicts the definition of preferred admissible reduction. If the corre-
sponding labelled rule in the preferred admissible reduction has a higher priority, then
it contradicts Section 6.3 where the rules generate admissible answers with the highest
priorities should be fired. The evaluation ofP ∗ is literally the same as the evaluation of
P ∗∗. Therefore the model generated should be the same as generated usingP ∗∗ under
the same immediate sequence operators.

B Top Down Policy Interpreter

The top down policy interpreter is a vanilla-style meta-interpreter [39] which answers
a query through a recursive goal reduction procedure. Loosely speaking, the interpreter
works in this way: whenA is queried and a policy rule such asA : – B, C, D can be
found, the evaluation ofA is replaced by the evaluation of the policy bodyB, C, D.
The predicatesB, C, D are then reduced according to the other policy rules, facts and
hypothesis. In the end, the interpreter rewrites the query into a tree where the query is
the root node and all the leave nodes are truth values. Then the truth values are combined
according to the connectives and back-propagated to the root. An example is shown in
4.

Fig. 4. A rewriting Example

As we can see in the example, the queryp(a) is first reduced asq(a)∧(r(a)⊕r(b))
according to the policies. Thenq(a) is rewritten asp(b) ∨ r(a) because there are two
rules with headq(a) can be found.r(a) andr(b) are then reduced to their corresponding
truth value according to the facts listed andp(b) is reduced to[0, 0] according to the
hypothesis. Conceptually, the query can be rewritten as([0, 0]∨ [1, 0])∧ ([1, 0]⊕ [1

2
, 0])

which gives the truth value[1, 0]. Although the example shows a ground query and a
ground program, the same procedure can be generalised to thecases with variables by
simply requiring that unification to be applied as in usual logic programs.

Now let us explain the query evaluation procedure formally.For a queryφ, an an-
swer is a pair〈θ, b〉 whereθ = {X/c} is a substitution of the variablesX in φ with the
constants inc andb is a truth value taken from the bilattice truth space. We useθφ to
denote the substitution instance ofφ by applyingθ to φ. The pseudocode of the query
evaluation procedure is shown in Figure 5.

The procedure defines how to interpret and evaluate queries against the policies,
facts and hypothesis. We do not consider details of unification and backtracking be-
cause they are handled by the underlying Prolog engine. The procedure utilises two

procedure: eval(φ, 〈θ, b〉)
input : queryφ

output : answer〈θ, b〉 whereθ is a substitution andb is a truth value such that the
intended modelM |= θφ :–b.

if φ is a truth valuethen1

θ = {};2

b = φ;3

else ifφ is in the form of¬ϕ then4

eval(ϕ, 〈θ, b′〉);5

b = ¬b′;6

else ifφ is in the form ofϕ1 ◦ ϕ2, where◦ is one of∨,∧,⊕,⊗ then7

eval(ϕ1, 〈θ1, b1〉);8

eval(θ1ϕ2, 〈θ2, b2〉);9

b = b1 ◦ b2;10

θ = θ1θ2;11

else ifφ is atomicthen12

if φ is an EDB predicate andϕ :–b′ is a fact such thatφ unifyϕ with θ′ then13

θ = θ′;14

b = b′;15

else16

ϕ :–b′ is in hypothesis such thatφ unify ϕ with θ′;17

θ = θ′;18

b = b′;19

end20

if φ is an IDB predicatethen21

if φ is a trust or distrust predicatethen22

evalT rust(φ, 〈θ, b〉);23

else ifφ is a constraint predicatethen24

evalConstraint(φ, 〈θ, b〉);25

else26

find all policiesp1, ..., pn such thatφ andhead(pi) unify with θ1;27

ϕ = θ1(body(p1)∨, ... ∨ body(pn));28

eval(ϕ, 〈θ, b〉))29

end30

end31

end32

Fig. 5. Query evaluation procedure

sub-procedures:evalT rust andevalConstraint. evalT rust evaluates trust and dis-
trust goals.evalConstraint evaluates constraints. The pseudocode of these two sub-
procedures are listed below (Figure 6, 7):

evalT rust evaluates trust (distrust) policies from the highest priority level. As de-
scribed in section 6.2, for each level, two thresholds in terms of�t or �k or both
are defined, one for distrust policies and one for trust policies. Answers that satisfy
the threshold are calledadmissible answers. If an admissible answer can be found, the

procedure: evalT rust(φ, 〈θ, b〉)
input : queryφ

output : answer〈θ, b〉.
int level =maxPriorityLevel;1

bool admissible =false;2

while admissible isfalse and level> 0 do3

bool renamed =false;4

if φ is a trust predicatethen5

change the predicate name ofφ to distrust;6

renamed =true;7

end8

for all distrust policiesp1, ..., pn with priority level level such that9

a = φθ0, a = head(pi)θi, (i = 1, .., n);
ϕ = body(p1)θ1∨, ... ∨ body(pn)θn;10

eval(ϕ, 〈θ′, b〉);11

θ = θ0θ
′;12

if b is an admissible answerthen13

admissible =true;14

if renamed is truethen15

b = ¬b;16

end17

else18

change the predicate name ofφ to trust;19

bool renamed =¬renamed;20

find all trust policiesp1, ..., pn with priority level level such that21

a = φθ0, a = head(pi)θi, (i = 1, .., n);
ϕ = body(p1)θ1∨, ... ∨ body(pn)θn;22

eval(ϕ, 〈θ′, b〉);23

θ = θ0θ
′;24

if b is an admissible answerthen25

admissible =true;26

if renamed is truethen27

b = ¬b;28

end29

end30

end31

level = level − 1;32

end33

if admissible is falsethen34

θ = {};35

b = [0, 0];36

end37

Fig. 6.evalT rust procedure

evaluation ends and the answer is returned. Otherwise the interpreter moves to the next
level with lower priority.

procedure: evalConstraint(φ, 〈θ, b〉)
input : queryφ

output : answer〈θ, b〉.
φ is linked to predicateϕ;1

eval(ϕ, 〈θ1, b〉);2

solve(θ1φ) = (θ2, t);3

θ = θ2θ1;4

if t is falsethen5

b = ¬b;6

end7

Fig. 7. evalConstraint procedure

It is easy to see that under the syntactic restrictions we posed earlier in Section
6.2 (finite Herbrand base, tractable constraint domain, no cyclic dependency between
ground atoms), the query evaluation procedure guarantees to terminate. Finite Herbrand
base ensures that the evaluation tree is finite, tractable constraint domain ensures that
theevalConstraint sub-routine terminates and no cyclic dependency ensures that the
reduction process is loop-free.

