Shinren: Non-monotonic Trust Management for
Distributed Systems

Changyu Dong, Naranker Dulay

Department of Computing
Imperial College London
180 Queen’s Gate, London, SW7 2AZ, UK
{changyu. dong, n. dul ay}@ nperi al . ac. uk

Abstract. The open and dynamic nature of modern distributed systethpemn
vasive environments presents significant challenges toiggmanagement. One
solution may be trust management which utilises the notfanust in order to
specify and interpret security policies and make deciswnsecurity-related ac-
tions. Most trust management systems assume monotonib#yeradditional in-
formation can only result in the increasing of trust. The otonic assumption
oversimplifies the real world by not considering negatifeimation, thus it can-
not handle many real world scenarios. In this paper we pt&inrert, a novel
non-monotonic trust management system based on bilalt&mey and the any-
world assumption. Shinren takes into account negativanmition and supports
reasoning with incomplete information, uncertainty ancbimsistency. Informa-
tion from multiple sources such as credentials, recomntémda reputation and
local knowledge can be used and combined in order to edtatolist. Shinren
also supports prioritisation which is important in decisinaking and resolving
modality conflicts that are caused by non-monotonicity.

1 Introduction

The advances in communications and computing research brawght distributed
systems and pervasive environments to new prominence.igapphs are now dis-
tributed across the boundaries of networks, organisgtems countries and deployed
on smaller mobile devices. The increasing scope of didgibapplications also im-
plies that applications must deal with “strangers” fromestbrganisations and places.
This leads to new challenges. How does the security systéenndime whether or not
a request should be allowed if the request comes from an unkoser? The system
must be able to decide without pre-knowledge of the userderdio authorise/deny the
access. In other words, the system must determine whetldnyahow much does it
trust a user. Trust management [1] was introduced in regpiorthe challenges posed
by modern distributed systems and pervasive enviroments.

In real-life, trust is normallynon-monotonic Consider the following:

“You are the CEO of a bank and looking for someone to manage lé-hillion
pounds investment fund. A CV arrives on your computer. Yaklguead through it:

! Shinren: the pronunciation of trust in Chinese

worked for the UK'’s oldest investment bank (interestingl] more than ten years ex-
perience as a derivatives tradegdqod), was the Chief Trader and General Manager of
operations in futures markets on the Singapore Monetanh&mge @reat), made £10
million a year which accounted for 10% of former employermaal income éxcel-
lent). You almost make up your mind. Then you see the candidateis:rNick Leeson
Everything is turned upside down. You trash the email”

Trust

v

Information

Fig. 1. Non-monotonic trust for CV

If we draw a diagram of this trust-information relation, itght look like Figure 1.
From the diagram we can see that when new information comési8t can decrease,
as well as increase, sometimes drastically. In other warndst is non-monotonic. The
non-monotonicity of trust is a natural consequence of thistence of both goodness
and badness in the world. Trust, as defined by Mayer and Dayiss[“the willing-
ness of a party to be vulnerable to the actions of anothey’pdia trust someone, the
trustor needs to judge how competent, how honest, how dejpéathe trustee is, but
more importantly, how incompetent, how dishonest and hodependable the trustee
is. Positive information tells us how much we may gain fromust relationship, while
negative information tells us how much we may lose from ihdgng negative infor-
mation may result in misplaced trust which may in turn caws@®as damage to the
trustor.

Although trust is non-monotonic, mainstream trust managemystems [1, 3-7]
are monotonic. The reason is that complete knowledge istoaadhieve in large dis-
tributed systems and also that those systems are basedssitaldogic which cannot
cope with this situation. Classical logic is monotonic whimeans a conclusion will
never be retracted with new information, i.e.fif = ¢ thenI" U v = ¢. To model
trust with classical logic, a monotonic assumption is idtroed to solve the problem
and simplify the design by not using negative informationwttihe world. Monotonic
systems do not have problems with incomplete informaticzabee all missing infor-
mation is positive and every decision that they make can belynore “correct” with
more information. Accepting the monotonic assumption rsesatepting the world is
always positive (however if there were no negative thingbé@world, do we still need

2 Nicholas Leeson, the infamous rogue trader who caused tlapse of Barings Bank.

trust management systems?). Monotonic trust managemstensy have many advan-
tages, but the monotonic assumption is too limiting for msegnarios.

The gap between real world requirements and the currengriesitrust manage-
ment systems motivates our work. A more realistic solutsamgeded for managing trust
in distributed systems. In this paper, we describe Shiraemvel non-monotonic trust
management system based on bilattice theory and the arg-assumption. Shinren
can make reasonable decisions even with incomplete intiwmavioreover, it can also
utilise unreliable information which makes it more suitlidr open distributed sys-
tems where reliable information is often hard to come byn&ini does not just simply
make use of the existing theories, it also supports priatitbn, which is achieved by
a non-trivial extension of the original theories. Prigydtiion is important in resolving
conflicts and providing support for decision making.

This paper is organised as follows: We review related woseiction 2 and compare
Shinren with current non-monotonic trust management syste section 3. We discuss
the motivation of this work in section 4. In section 5 we irtbae bilattice theory and
the any-world assumption. In section 6, we describe Shjritepolicy language and
semantics. In section 7 and 8, we present two examples to stewdetails of policy
evaluation in Shinren. In section 9 we show a prototype imiglietation. Section 10
concludes the paper.

2 Related Work

Trust management has attracted a lot of interest from tlearels community and many
trust management systems have been proposed. For examoldgMaker [1] and its
successor KeyNote [8], Simple Distributed Security Infinasture (SDSI) [9], Simple
public key infrastructure (SPKI) [10], Query Certificate Mager (QCM) [11], the RT
framework [5] and Cassandra [12]. All the above systems ayeatonic. It has been
shown in [8] that the correctness of PolicyMaker and Keyristguaranteed only if
all the policies are monotonic. In [13], the authors show BRSI and SPKI rules
can be represented in a monotonic logic and its extensioiM @®ased on relational
algebra and can be transformed into non-recursive DatRbgds based on Datalog. In
[14], Li and Mitchell proposed an expressive extension oftiREed on Datalog with
constraints as the foundation for trust management laregu&atalog with constraints
is also the semantic foundation of Cassandra. There aresalsgral non-monotonic
trust management systems which support particular negatilicies: REFEREE [15],
the Trust Establishment System from IBM [16] andJR[IL7]. We discuss and compare
the existing non-monotonic trust management systems ainde®hin Section 3.

Many systems attempt to assign real values to trust andajesephisticated math-
ematical models to calculate trust values [18—20]. Theashre usually based on past
experience. Although they are also called trust managesyetéms, we view them
as a totally different approach from the trust managemestesys presented above
which rely mostly on logical reasoning and view trust demisias logical consequences
of certain facts and theories. Quantitative trust managesyestems are usually non-
monotonic and can provide valuable information. Howeuse, accuracy of the trust
values largely depends on the amount of data input and mayaad&ng time to get

enough data. To differentiate, we call them reputationesystand Shinren can include
such systems as subsystems.

Classical logic is the logical system which has been moshsitely studied and
most widely used. However, classical logical systems cdy i@ason monotonically.
The increase in knowledge can never invalidate the corarisgierived from what we
originally know. This is fine in an well-defined mathematisgktem, but encounters
problems in real world. The arguments on the limitations leksical logic can be
traced back to Aristotle. There have been many formal nonatanic logics and rea-
soning systems. For example, the Closed world AssumptiaddA)Cand its variants
[21], Circumscription [22], Default Logic [23], Kleene’attee-valued logic [24], Cour-
teous Logic Programs (CLP) [25] and so on. Ginsberg’s latkatheory [26] provides
a unified framework which can capture various forms of nomatonic reasoning, e.g.
default logic and assumption truth maintenance system.

Logic programming is another closely related topic. Mamstmpolicy languages
are based on or can be transformed into logic programs, ahdsitbe widely ac-
cepted that real classical negation is infeasible for Iggimgramming [27]. Usually
only “negation as failure”, a weaker form of negation, is Iexpented. Negation as
failure, an approximation of the CWA, is by nature non-mamit. However it does
not make non-monotonic a favourable choice for trust mamage. One reason is that
non-monotonicity poses difficulties in finding a standardldeative semantics for logic
programming with negation. Several semantics have begopeal, including Clark’s
completion [28], Kripke-Kleene semantics [29], stable micgEmantics [30] and well-
founded semantics [31]. It is hard to say which one is beltentthe others because
they all have both advantages and limitations. Another lpralis that these semantics,
when used in building trust management systems, can také mace information
from CWA than is desired and thus some unwanted conclusi@ysha derivable, as
we will show in Section 3.

3 Comparison of Non-monotonic Trust Management Systems

Shinren is not the first non-monotonic trust managemenerysRule-Controlled En-
vironment For Evaluation of Rules and Everything Else (RREE) [15], the Trust
Establishment System (TES) from IBM [16] and RT17] are also non-monotonic. In
Table 1, we summarise Shinren with these three main non-topiedrust management
systems. We also have some remarks on the table.

The main problem of existing non-monotonic trust managersgstems is seman-
tics. A well-defined formal semantics is a critical part of@olicy language. However,
as we can see from Table 1, REFEREE and TES do not have fordefllyed seman-
tics. RTs is based on the well-founded semantics which is a non-maiosemantics
proposed originally for logic programming with negatiori[3The problem with using
well-founded semantics in trust management is that it isthasn CWA and the unifor-
mity of CWA may lead to counter-intuitive results. For exdehere is a simple trust
policy trust(a) : —bad(a). Under the well-founded semantics, whieni(a) is miss-
ing or not provable, it is falsified and thus makesst(a) true. However, this decision
may seem too casual, especially when it is related to sgclri€hinren, policy makers

Shinren REFEREE TES RTs
Truth Space Bilattice 3-valued | 2-valued | 3-valued
Semantics Extended Not Not Well-
Kripke-Kleene Specified | Specified | founded
semantics over bilattide Semantics
Credentials 4 Vv Vv 4
Recommendations v 4 Vv
Reputation 4 Vv
Local knowledge v Vv
Incomplete AWA OWA/CWA CWA CWA
Information
Unreliable v v
Information
Contradictory Vv
Information
Prioritisation Vv
Explicit Distrust vV
Policies

Table 1. Comparison of Non-monotonic Trust Management Systems

can useunknown as the default value fdrad(a) while still use false as the default
value for other positive atoms.

Existing non-monotonic trust management systems are aldxpressive than
Shinren. For example, RT can only express policies using credentials. Among them,
REFEREE is the most expressive one, however it has its owblgnro It is capable
of expressing policies utilising evidence from differentisces, but it is incapable of
distinguish decisions based on information of differerdlgy. REFEREE is based on
3-valued logic, therefore there is no difference betweeadsibn based on a statement
from an authority and a decision based on rumour. The useRESEEREE may be
given an unreliable trust decision without warning. In $bim a trust decision comes
with a value which tells the user not only how true the decis$ but also how reliable
itis.

4 Why Non-monotonic? Why Shinren?

So why do we need non-monotonic trust management systenissTiecause (1) in
the real world trust is non-monotonic and therefore a trushagement system should
be able to capture this; (2) monotonic assumption is notsszey in trust management,
it is introduced merely because systems reasoning witkickdogic cannot cope with
the non-monotonicity in trust. The assumption does notesthle problem, it just makes
systems ignore the problem. There are at least two bad coesegs of the monotonic
assumption: first, a trust management system which can hegmorrect under the
monotonic assumption may not be correctin the real worlédbse the assumption does
not hold in general; second, it makes trust managementregstecapable of handling
certain real world scenarios.

Under the monotonic assumption, monotonic trust managesyetems do not con-
sider negative information. Syntactically, this is acleidby not allowing negations in
the policies. Negation-free policies work fine in some cadesvever they reflect a
limited view of the world and are inappropriate in many cases example, negation-
free policies are quite inconvenient in handliegceptionsin the world modelled by
negation-free policies, it is quite hard to express, “traisthe police officers except
the bad ones” because without negations, we would be alldweay “trust police
officers” but not ‘o not trust the bad police officers”. In the extreme case, we must
specify for each individual good police officer a trust pglio order to exclude the
bad ones. Lacking the ability for specifying exceptions bardangerous particularly
in trust management systems where delegations are useaclpt®ns means that de-
cisions have to be fully delegated to a delegatee, and thersymust fully accept the
delegatee’s opinions. No exceptions also means that thensysannot accept part of
the delegatee’s decision while declining other parts. heotvords, the system loses
control after delegation. Another case is that negatiee-frolicies cannot handiau-
tual exclusion Coke is tasty, orange juice is tasty too. But the mixtureneftivo does
not taste so pleasant. There are many examples that arellpax@usive. However,
with negation-free policies, there is no way to express “g0ded, B is good, but A+B
is not good”. In terms of security policies, separation of dutied aonflict of interests
are the most significant examples of this type of policy.

One may argue that in the real world, people try to hide thegative aspects.
Therefore, even if policies are allowed to use negativerm#dion, if the system cannot
find it, the non-monotonic feature is useless. Itis truettmainformation we can collect
is always limited. But consider the following:

In monotonic trust management system8:ust :— good
In Shinren: distrust :— bad
trust :— good

What is the difference? When the system cannotéind i.e. the negative information,
Shinren can behave exactly as the monotonic ones. Howeagaube it is not possible
to use negative information in monotonic trust managemgstems, their decisions
will still be trust even ifbad is presented! In contrast, Shinren’s decision will no lange
be trust because the distrust policy is applied. Althoughguaranteed, Shinren aims
to limit any damage with its best effort approach rather tsilantly ignoring it.

By using bilattices, Shinren suffers less from a dilemmaohtaill trust management
systems must face: on the one hand, in order to make a comstdecision, a large
amount of information is needed; on the other hand, in ordanake the decision
correct, most of the information available cannot be usethbse it is not reliable.
Shinren can reason with unreliable information even withtadictory information.
Monotonic trust management systems cannot. This abiligsjzecially important in
acquiring negative information.

Prioritisation is not seen in any existing trust managemgstem. The philosophy
is that sometimes trust is not just a Yes/No decision, bt alshoice. You might want
to follow one rule even if there are multiple rules you caindal you might trust some-
one even if there are several persons you can trust. Psatidn allows policy makers

to specify their preferences and thus make complex polmissible. And also, in the
presence of modality conflicts, prioritisation seems tohwednly way to resolve them.
Although there are overheads in defining and managing jeslizhen using prioritisa-
tion, the overheads are minimised in Shiren because poliens only assign priorities
to local policies and only trust (distrust) policies areopitised.

5 Preliminaries

5.1 Bilattices

Bilattice theory [26] was introduced by Ginsberg in the 1988nd has been widely
used in non-monotonic reasoning, knowledge representatid artificial intelligence.
Bilattice is a non-empty, possibly infinite set of valueshwitvo partial orders, each one
giving the set the structure of a lattice. A lattie, <) is @a non empty seft along with a
partial order< where any pair of elemenits, i> € L has a least upper bound (join) and
a greatest lower bound (meet) in terms-afWe writely < I if [< Iy andl; # ls.

A bilattice, denoted by(B, <:, <) where is a non-empty set ang;, <, are
two partial orders called the truth-order and the knowledgker respectively=; is
an ordering on the “degree of truth¥; <; b, meansh, represents at least as much
truth asb; (and possibly more). Meet and join undey are denoted by. andV and
correspond to classical conjunction and disjunctigpis an ordering on the “degree of
knowledge”. Meet and join undet;, are denoted by and®. b; ® b, corresponds to
the maximal informatiot; andb, can agree on, while, &b, combines the information
represented b, andb,.

The class of bilattice we consider in this paper is resti¢tanterlacedbilattices.
Interlaced bilattices are bilattices which satisfy thddweing: (1) if b =<; by then
b1 ® bz =<; by ® bz andby @ bz < by @ b3; (2) if b1 < by thenby A bz <}, ba A by and
b1 Vbs =i baVbs. Thusin an interlaced bilattice an operation associat#uavie of the
lattice orderings is required to be monotonic with respeche other lattice ordering.
This relates the two orderings. An alternative way of cotingc¢he two orderings is via
negation which reverses the truth ordering and is monot@garding the knowledge
ordering.

Such bilattices can be constructed in a natural way by coimiptvo lattices. Given
two lattices(L1, <1) and (L, <2), we can construct an interlaced bilattice(ds x
Lo, <4, =k), where(z1,y1) =¢ (x2,92) if 21 =1 x2 andys =<2 y1, (z1,y1) =k
(x2,y2) if 21 =1 22 andy; =<2 y2. Negation can be defined agz,y) = (y,«) if
L1 = Lo. As we will see later, the bilattice used in our system is tmesed in this
way. We will expand on this later.

5.2 Any-world Assumption

Non-monotonic logics allow a conclusion to be drawn on inptete information. One
way of doing such reasoning is to complete the missing paddsymptionsTaking
into account assumptions means assigning truth valuedicittypor explicitly, to the
unknown facts. The assumptions are usually based on thmatetl states of the facts.

One of the most common assumptions is @lesed World Assumptiogf€WA). It as-
sumes the default truth states of atoms toflaése, therefore any atoms that cannot
be proved to berue are taken agalse. Another well-known assumption is tt@pen
World AssumptiofOWA). OWA is a more cautious assumption in the sense that it
assumes the default truth states of atoms tabenown. Therefore, any atoms that
cannot be proved to heue are taken asnknown. However it also gives us less use-
ful conclusions.

Using only one of these assumptions to represent the woildromly is usually not
appropriate. It is common that at the same time, some thiagsbe safely assumed
false and others cannot. It is desirable to combine the two assangto form a new
non-uniform assumption. More generally, we do not even waassume something is
absolutelyfalse or we have absolutely no knowledge in many cases. For example
may want to assume that certain facts are “possibly falseis leads to thé\ny-World
AssumptiorfAWA) [32], which was proposed in 2005. AWA gives us the poteform
a large variety of assumptions on the possible truth of tbmat

AWA unifies and extends the CWA and OWA by taking truth valugsf an arbi-
trary bilattice truth space and allow the default value oftom to be any one of them.
If in the assumptions, all the atoms are assignefltiae, then it becomes CWA which
says everything that cannot be inferred is false. If in treagptions, all the atoms are
assigned taunknown, then it becomes OWA which says everything cannot be inferre
is unknown. The advantages are obvious: the truth, incaepéss and uncertainty can
be represented in a finer granularity according to the egpee and background infor-
mation, therefore the assumptions we make carry more kruigelthan before which in
turn leads to more informed conclusions. The assumptioneanon-uniform which
means the default truth values can vary for different atarhs allows us to form more
realistic assumptions.

The principle underlying AWA is to regard assumptions as ddiiteonal source of
default information to complete the implicit knowledge piaed by a logic program.
Assumptions over a bilattice truth space provide defauthtvalues for atoms. In order
to minimise the impact brought by guesswork, assumptioasaty used as the last
resort. Only atom whose truth value cannot be inferred fioerogram is assigned to
the default value given by the assumptions.

6 Shinren

6.1 Bilattice NINE

As introduced in Section 5.1, a standard way of construetmigpterlaced bilattice is by
combining two lattices. The bilattice we emplgy,ZN &, is also built in this standard
way. N'ZN¢ is obtained by combining two identical latticés = L, = ({0, 1,1}, <)

where< is “less than or equal”. The structure &fZNE is shown in Figure 2. The
truth values are represented as tugles)) wherez,y € {0, 1, 1}. The two orderings,

929
=4, =, are defined as:

($1,y1)
(z1,91)

¢ (w2,y2) If 21 < o @andyz < 1
k (x2792) if x1 < a9 andy1 <y

ENIPN

Strong contradiction
(1.1

Doubtfully false

(%, 1) Doubtfully true

Reliably false, Reliably true
(1,0)

Knowledge

Not so reliably true
Not so reliably false ("2, 0)

(0,%)

Unknown
(0,0)

Bilattice NZNE

Truth

Fig. 2. The bilattice NINE

Given a statement with a truth value of the fofm y), the intuitive meaning of
the truth value is that represents how much the statement is true (or you beliese it i
true), andy represents how much the statement is false (or you beliésddtse). Let
us elaborate on the meanings:

— (1,0) —reliably true: This value is given to a statement supported by very strong
and reliable evidence. The possibility of the statementisally false can be ne-
glected.

— (0,0) —unknown: This value is given to a statement that for which have norinfo
mation or are unable to verify (or falsify).

— (0,1) —reliably false: This value is given to a statement that is opposed by very
strong and reliable evidence.

- (%,O) —not so reliably true: This value is given to a statement that is supported by
weak or unreliable evidence. The statement could be false.

- (O,%) —not so reliably false This value is given to a statement that is opposed by
weak or unreliable evidence. We are not quite sure aboudlggy.

- (1,%) — doubtfully true : This value is given to a statement that is supported by
strong and reliable evidence, but for which we can also fimdesaveak or unreli-
able evidence that opposes it. This usually happens whemmbioe information
from different sources.

- (%,1) —doubtfully false: This value is given to a statement that is opposed by strong
and reliable evidence, but for which we can also find some weaknreliable
evidence that supports it.

- (%, %) —weak contradiction: This value is given to a statement that is both sup-
ported by and opposed by weak or unreliable evidence frofardifit sources.

— (1,1) —strong contradiction: This value is given to a statement that is both sup-
ported by and opposed by strong and reliable evidence frifereint sources.

From the above it is easy to understand the two orderingsefample, a state-
ment which is reliably true contains more truth (or is mokelly to be true) than a
statement which is not so reliably true, i(&,0) <; (1,0). On the other hand, a re-
Iiably true statement gives us more information than a natediably true statement,
i.e.(3,0) <k (1,0). Itis possible to extend the bilattice to a finer model ofalellity
or uncertalnty For example, using a lattice with the valamdin{0, 3 3, 1}, we can
create a bilattice with 16 truth values that can represememaiability levels. How-
ever, we do not do so for two reasons: first, enlarging thetlméaalso increases the
computational complexity. With enough expressivenessyaudd like to avoid unnec-
essary cost; second, things like reliability and uncetyadannot typically be measured
precisely. There are no metrics and instruments we can aridardise the measure-
ment. A finer scale does not help in solving this problem, everse, it may bring a
false sense of precision. For these reasons, we stay withb#sic form and extend it
when it is necessary and possible.

Let us also explain the rationale behind this multi-valuedht space. Classical
logic, which is the basis of many trust management systesrisivalent, i.e. the only
possible truth values aneue and false. It gives rise to “black and white thinking”
where every proposition must be ascribed to “absolutelg”tnr “absolutely false”.
However, in the real world, many would agree with the statettie only certainty is
nothing is certain®. Because classical logic lacks the ability of coping with tmcer-
tainty in truth, mainstream trust management systemsicesie information that can
be taken into account to “credentials”. A credential is aesteent signed by an issuer
containing certain information about the credential hoklled is believed to be highly
reliable. The problems with credentials are two-fold: fisedentials are not able to
carry every bit of information about the holder. We may findttbigned information is
just a very small fraction of all the information we can getc8nd, in practice we do
not encode negative information about the holder in cradisnfThe reason is simple:
no one bothers to ask for a credential which is useless or hagative effect to him.
Again, we usually recognise a rogue merchant not from a ‘eagarchant” credential
signed by a government agency, but from various other selik@reviews in internet
forums. If we want a more complete view of the trustee, usinly oredentials is not
sufficient. We need to consider more information, possibnethat from the sources
which are not so reliable. The multi-valued truth space gshinren the ability to rep-
resent and differentiate information with different qtiak. And makes it possible for
Shinren to utilise unreliable information.

The meet and join operators in terms of both orderings anaégation operator
are then defined as follows:

($17y1) ($27y2) (ma$($1,$2), m(yl,yz))
($17y1) ($27y2) (mm(IEl, 2) x(yl,yg))
(@1,91) & (22,92) = (maz(21, 22), maz(y1, y2))
(x1,91) ® (22, y2) = (min(x1, z2), min(y1,y2))

_‘(IE,y) - (yv)

We will explain these with some examples. Given a statermemitich is reliably
true andq that is not so reliably true, the truth value of their conjimcis p A ¢ =

3 Pliny the Elder, Roman scholar (23-79 AD).

(1,0)A(3,0) = (min(1, 1), maz(0,0)) = (3,0), i.e. not so reliably true. This is easy
to understand. Let be “Alice is a student” ang be “Alice is a research assistant”, then
the statement “Alice is both a student and a research asSisennot be very reliable
because we are not quite sure about the fact that she is adesesistant. Consider
another example: in the court of a murder case, the prosesuibmits a CCTV record
as evidence showing that the suspect was at the crime sces tvb murder was
happening, while the counsel of the suspect has a witnessisifriend of the suspect,
to certify that the suspect was in a pub 50 km away from theesatthe same time. It
turns out the conclusion of whether the suspect was at thesféer we combine these
two pieces of evidence i§1,0) & (0, 1) = (maz(1,0),maz(0,1) = (1,3). That s,
although doubtful, we would believe the suspect is at theec€he reason is that the
video record is more reliable evidence.

6.2 Shinren Policy Language

The syntax of Shinren is based on the logic programming laggWatalog [33], with
certain extensions. The alphabet consists of the followlagses of symbols:

1. Variables written as strings starting with a capital letter. For epdanX, Name.

2. Constantswritten as strings not starting with a capital letter. Framplealice,
student. The constants set contains several disjoint subsets: af settity con-
stants, a set of trust scopes, a set of truth values and a sghef application
specific constants. A trust scope is what the trustor wangshdeve by relying on
the trustee or how the trustee is expected to behave. Forpadbe a good car
mechanic” or “to read my document”.

3. Predicate symbolssymbols used to denote properties of objects or relatieas b
tween objects. We will give more details on predicate symstaikr.

As in Datalog, we do not have function symbols. The restitis necessary to
ensure finiteness of models and termination of inferenceuAml, atermis either a
variable or a constant. We usatity termto refer to a term which can be either an entity
constant or a variable, and similar with the othersp i§ a n-ary predicate symbol
andty, ..., t, are terms, thep(¢i, ..., t,) is anatomic formulaor simplyatom A atom
p(t1, ..., tn) is groundif ¢4, ..., ¢, are constants. Ateral is an atom or the negation of
an atom. Furthermore, a positive literal is an atom and ativegéeral is the negation
of an atom. Aconsensus formula of the form of L ® ... ® L,,, whereL; is a literal.

A gullibility formula is of the form of Ly & ... ® L,,, whereL; is a literal. A rule, or
policy, is of the form:

A= Pl P
where A is an atom and each,; is a literal, a consensus formula or a gullibility
formula. “ —" is taken as " and “," is taken as A”". The atomA on the left-hand

side of the rule is called itseadand the conjunctiorp, ..., ©,, on the right-hand side
is called itsbody. Certain types of rules may also have a priority lafieb) attached
before the rules (will explain later). Aassertionis a special type of rule defined as:
A:-b.
WhereA is a ground atom anddis a truth value. An assertion can be understood as
A has a truth valué. A fact setis a finite set of assertions. Aassumption sés also a

finite set of assertions. The difference is that the fact eetains the real truth values
for the atoms while the assumption set contains the assangpti.e. assertions about
the default values of the atoms. The assumptions are usgavbieh no facts about the
atoms can be found in the fact set or be inferred. We do not teeexblicitly represent
assumptions of the form : - (0, 0). If no assumption about an atom can be found in
the assumption set, the default valu€(is0). A programis the union of a finite set of
rules, a fact set and an assumption set.

We divide the predicates symbols into two sets: extensidatbase (EDB) pred-
icates and intensional database (IDB) predicates. The Ei@Higates represent the
evidence or facts that can be used in reasoning about triastlOB predicates are re-
lations. The EDB predicates can appear in a rule’s body buinrtbe head. We use the
following EDB predicates in our trust policy language. le tipcoming text, we abuse
the notation a little bit by enclosing the optional argunseot predicates in square
brackets. For example(t:,t2], ..., t,]) means the predicate symhols “overloaded”
with the number of arguments varying frdimo n.

— A set ofcredentialpredicates. This is a set of predicatesd_name(ty, ta|, ..., tn])
wherecred_name is the name of the credential, ¢, are entity terms ant}, ..., ¢,,
are attribute values. A credential predicate can be urmisdists “a credential of the
namecred_name is issued by issuer to an entityt, and contains the following
attribute valuess, ..., t,,”. A credential may not contain any attribute value, in this
case the predicate for this credential is simplyd_name(t1,t2). We assume the
existence of a standard ontology and a standard format éocriédentials so that
they can be represented correctly. For examgledent(xu, alice, ug) represents
a student credential signed by X University to Alice, whitsoecertifies that she is
classified as an undergraduate.

— A set of predicatesecommendation(ty,ta,ts], ..., tn]), Wherety,to are entity
terms,ts is a trust scope term arg, ..., t,, are other parameters. This type of pred-
icate is used to represent the recommendations, i.e. tsiesjpinions, which can be
sought from peers. The predicate reads as “the recommendErommends, for
the scopes, with regard td4, ..., t,,”. For exampleyrecommendation(alice, bob,
repairCar). We do not explicitly have another predicate to represegatiee rec-
ommendations. This type of recommendation is captured bgsaertion with a
negative truth valué, i.e.b <; (0,0).

— A predicatereputation(t1,te, t3, t4) Wheret; is a entity term and- is a trust
scope. Reputation can be viewed as the aggregation of fpirsbas from a com-
munity. This predicate represents an entitis reputation in terms of a scope,
which is provided by a reputation systegwith a value oft,.

— A set oflocal knowledgepredicates. This set of predicates represents any other
information that can be gathered by the system. For exati@d®ehaviour patterns
of past interactions (if any), unsigned statements and sd@lo@se can be used to
provide a continuous monitoring and feedback mechanisrnhatdhe system can
use direct experience in trust evaluation.

The IDB predicates include:

— A set of trust predicate-ust(t1, ta, ..., t,]) wheret; is a entity term¢s is a trust
scope ands, ..., t,, are other parameters of the intended trust relationshiph Su

a predicate can be read as “the system trusts the trustiee the scopée,, with
regard tots, ..., t,".

— A set of distrust predicate#istrust(ti, to, ..., t,]) which are the counterparts of
the trust predicates. The predicate reads as “the systamstithe trustee; for
the scope,, with regard tots, ..., t,,". Using distrust predicates enables policy
makers to specify explicitly in which situations the triesghould not be trusted. It
is similar to the concept of “explicit deny” in access cohgygstems.

— A set of constraintpredicates. Constraints are conditions on attribute safured
are useful in specifying conditions such as “age greater #1d, “reputation no
less than 0.7”. The constraint predicates are special iise¢hse that they are not
defined in the program, i.e. notin any rule’s head, and tesirastics depends on a
constraint solver and a constraint domain. We employ a cainssolver as a black
box component and assume a tractable constraints domaiald®eequire that
each constraint used in a policy must be linked to anothefaomstraint predicate
(see section 6.3).

— A set of application-specific predicates. These predicapture the other possible
relationships existing in the system. They can be defineddbigypmakers when
necessary.

By using the Shinren trust policy language, policy makens dafine both trust
policies and distrust policies, i.e. rules whose headgmaret or distrust predicates.
They can also label the policies wititiority levels The priority levels express how
preferable a policy is. The priority levels in Shinren lange are defined as a finite set
of non-negative integerf), 1, ...,n}. 0 is reserved for default assignment rules. The
higher the number is, the higher the priority is. For eaclonyi level, policy makers
also define two thresholds in terms®f or <, or both, one for distrust policies and one
for trust policies. The thresholds are used to filter poonams. Answers that satisfy the
threshold are calleddmissible answerdNote that only trust or distrust policies need
labels, the other policies are not prioritised. When theesyds asked to evaluate trust,
it starts from policies with the highest priority. Distrystlicies are evaluated before
trust policies. In other words, distrust policies have ehbigpriority than trust policies
at the same priority level. If an admissible answer can bedothen the evaluation
ends. Otherwise it continues to evaluate the trust poli&ig¢se same level. If there are
still no admissible answers, the system continues with tileeips at the next level.
When an admissible answer is found with truth valuan answer for its counterpart is
asserted with a truth valueb. For example, if the evaluation ends with an admissible
answerdistrust(a) = (3,0), we also haverust(a) = (0, 3). If after evaluating all
the policies at higher priority levels, an admissible answstill not found, the default
value is applied. The default value assignment rules maynhigte, in this case the
default value ig0, 0).

The prioritisation mechanism can be used to resolve mgdadibflicts introduced
by trust and distrust policies. Trust and distrust are seitglly opposite and it is pos-
sible in some situations that both are true based on theipsli€herefore we need to
handle the possible conflicts. With priority levels, the ftiots can be resolved by “in-
terlacing” distrust and trust policies and the decisiorsgaverned by the policies with
the highest priority levels which give admissible answétse priority levels can also

be used to order trust decisions. For example, if we havaldddioth Alice and Bob

can be reliably trusted, we may prefer Alice if the decisiboa her came from a trust
policy with a higher priority level, i.e. a more preferablelipy. The truth values and

priority levels can give hints to the decision maker. If tleeidion is not reliable or from

a less preferable policy, it may indicate that the decissondt favourable and may be
risky. The decision maker can activate some compensativieats based on the truth
value and priority levels.

In order to achieve prioritisation, we also need to pose sasyical restriction on the
policies in order to guarantee the policies can be evaluadg@ctly. Simply speaking,
we require that there are no cyclical dependencies betweemd atoms. Formally, let
P be a program an®"** be the collection of all the ground instancesfafFor any
ground atomA(a) andB(b), we sayA(a) depends o3 (b) if there is a ground rule in
Pinst suchthatd(a) is in the head an@(b) or —B(b) is in the body or any of the atoms
in the body depends oB(b). Particularly, we treatrust(a) anddistrust(a) as one
atom because they are always derived together. Therefotéz) depends onrust(b)
or distrust(b), it also depends odii strust(b) or trust(b); if trust(a) or distrust(a)
depends orB(b), distrust(a) or trust(a) also depends of(b). Pt must be able
to be stratified as several disjoint strég ..., P, such thatP™™s* = Py U ... U P, and
for every ground atoml(a) which is defined inP; and depends oB(b), the definition
of B(b) can be found inPy U ... U P;_1.

6.3 Semantics

We first show how the semantics of logic programming can bergdd from the clas-
sical 2-valued space to a bilattice. L@, <, <) be a bilattice. Thénterpretationof

a logic program on the bilattice is a mappihfrom ground atoms to members Bf B

is the set of all the truth values, i.e. the truth space. Aarpretation can be extended
from atoms to formulae in the usual way:

—forbe B,1(b) =0;

— for formulaey andy’, I(p A ¢') = I(p) A I(¢), and similarly forv, ®, ®, —;
— I(3zp(x)) = \V{I(p(t)) : tis a ground term};

— I(Vzp(x)) = N{I(p(t)) : tis a ground term}

Here we need to explain a little about the interpretationasfstraints. In Shinren,
as in many policy systems using constraints (e.g. [34])straints can be seen as a kind
of plug-in. Constraint solving is not dealt internally byiSten, but is delegated to an
external constraint solver. The constraint solver is gaspt of constraints and decides
whether the constraints are satisfied, then returns an an$tve answer may affect
the final result of policy evaluation. The benefits of usingstoaint solvers as external
black boxes are obvious: we do not need to consider the imgitation details of
constraint solvers and we do not need to change the semalitits policy language
when dealing with different constraint domains.

A constraint domain, loosely speaking, is a set of condsaiith an interpretation
that defines the validity of constraints. Often a constrdarhain is required to satisfy
certain properties, e.g. contains equality predicatesed under variable renaming and

so on. In the following discussion, we assume a well-defimetiteactable constraint
domain, denoted bg. All the constraints used in the policy bodies are taken ftbm
Also, to distinguish the constraints from the other pregtisaefined in Shinren, we use
1, ...cn, to denote constraint predicate symbols defined andp,, ...p,, to denote the
other predicate symbols. Given a policy of the form:
A=D1, ..Dn, C1y e Coy.

We sayc; is linked top; if there exists a termsuch that is an argument of botty

andp;. For example, in the policy:

trust(X, bid, Item) :— soldBy(X, Item), item Price(Item, Price), Price < 20.

the constrainPrice < 20 is linked to predicatétem Price(Item, Price). Each con-
straint must be linked to at least one non-constraint pegdi the policy. In other
words, we do not want to set any irrelevant constraints irpthieeies. We also define
that for a ground constrait in a policy A :— p1, ...pn, €1, «--Crm

I(Ci) _ {I(¢) if ':C Ci

| ~I(¢) otherwise

wherep = A{p; : ¢ islinked top,, j € [1,n]}. Loosely speaking, this means that a
constraint’s interpretation in the policy depends on itédity in its constraint domain
and also its linked predicates.

The semantics of Shinren is an extension of the generalisipitécKleene Seman-
tics [29, 35]. A progran® is first transformed intd®* in the following way:

1. putinP* all ground instances of rules and facts (over the Herbraingtse).

2. replace all the ground unlabelled rulestfhwhich have the same headl,; —p, A :
—pa,...Withoneruled :—p1 Vo V... ..

3. replace all the ground labelled rules i which have the same head and label,
(lab) A :—p1, (lab) A :—pa, ... with one rule{lab) A :—p1 V pa V

4. if a non-constraint ground atom is not head of any rule irP*, then the rule
A :—H(A) is added toP*, where H(A) is the default truth value fod in the
assumption set.

P* can then be partitioned &85, ..., P as stated in Section 6.2. TheW, the
unigue minimal model after resolving the conflicts, is comsted iteratively:

Mo = &p; 1
M; = Ppr 1 (Li-1),1<i<n
M =1,

wheredp- is the immediate consequence operator which is defindg-asl)(A) =
I(¢) forall A :—¢ € P, M, is the fixpoint obtained by applyingp- to I;_; and

1; is defined as followsl, = M, for 1 < i < n, put intol; the content ofl;_; and
any valuations inV/; for atoms which are nairust or distrust, for any pair of atoms
trust(a) anddistrust(a), put into I; the admissible answer if/; derived from the
policy with highest priority and also its counter part withgated truth value. Intuitively,
M is a model for a program obtained froRt which removes all the trust and distrust
policies fromP* except those that give admissible answers with highestifieis, i.e.
the preferred progrand{ is unique and minimal with respect t¢,. Detailed theorems
and proofs can be found in Appebdix A.

7 Example: Electronic Marketplace

Alice is a big fan of Internet shopping and she often visitebsite called tBay which is
an electronic marketplace like e-bay. Although she has boadpt of items with very
low prices, she also had several unpleasant experiencesheSwvants to be cautious
before she bids on anything from the website. She decidesktieawill only bid on
items from sellers who live in the UK, have been registeretess than 6 months and
have at least 80% positive feedback. She will also ask hemdrBob about his opinion
and will not consider a seller if Bob does not like him. Howewhe knows tBay has
a special procedure for items with bid prices lower tl20: in case of dispute, tBay
will fully refund the buyer. Since she is not going to lose ragnlice is willing to bid
in such situations regardless of her other constraintsealiwt Alice also has a more
important principle: she will never trade with someone whs bheated her. She has a
blacklist of such sellers. Alice’s policies are:

(3
(2
1
1

distrust(X, bid, Item) :— inBlackList(X).
trust(X, bid, Item) :— soldBy(X, Item), itemPrice(Item, Price), Price < 20.
distrust(X, bid, Item) :— —recommendation(bob, X, bid, Item).
trust(X, bid, Item) :— seller(tBay, X, Location, Register Period),
Location = uk, Register Period > 6, soldBy(X, Item),
reputation(X, goodSeller,tBay,Y),Y > 0.8.

- ~

—~
~ ~—

Alice’s policies have 3 priority levels. At the highest Ié¥gthe policy which should
not be overridden by any other policies. At the second levaltrust policy that allows
her to interact with any seller when there is no risk. The lemevel has two policies
for general cases. In the policieg/ler(tBay, X, Location, Register Period) repre-
sents a seller credential signed by tBayid By(X, Item), item Price(Item, Price)
andinBlack List(X) are local knowledge predicates supplying useful infororatFor
each priority level, Alice defines thresholds for admissibhswers to b€0,0) <,
which means only answers somehow true (reliably true, naglsably true, doubtfully
true) will be admissible.
Along with the policies, Alice also has a set of assumptions:

soldBy(X, Item) :— (0,1).
itemPrice(Item, Price) :— (0,1).
inBlackList(X) :— (0,1).

Recall that(0,1) means “reliably false”. Alice’s assumptions are: if sheroatrfind

any information that says an item is sold by sellerthen this item is not sold by;

if she cannot find any information that says an item is soldafeertain price, then it

is not sold for this price; if she cannot find a seller in herchlest, then he is not in
her blacklist. These are easy to understand. All the ottesfipates are left with default
values of(0, 0), i.e. unknown. Different default values may make a big défee. For
example, if Alice assumescommendation(bob, X, bid, Item) to be false, i.e. add
recommendation(bob, X, bid, Item) : — (0, 1) to her assumption set, then she cannot
bid anything with a price higher th&i20 when she cannot contact Bob. In such cases,
since she cannot get recommendations from Bob, the defauk will be used and the

policy
distrust(X, bid, [tem) :—recommendation(bob, X, bid, [tem).

will always give results of “distrust” with truth valug, 0).

More complicated policies are also possible. For examphdige has another pol-
icy which says she will bid if at least two of her friends reaoend the seller. This can
be written as:

trust(X, bid, Item) :— friend(F1), friend(F2),
recommendation(F1, X, bid, Item) ® recommendation(F2, X, bid, Item).

Alice collects the following facts when she tries to find aahé&@od on tBay:

soldBy(carol,ipod) :— (1,0).

seller(tBay, carol, uk,12) :— (1,0).
reputation(carol, goodSeller,t Bay,0.9) :— (%, 0).
itemPrice(ipod, 80) :— (1, 0).

Although not signed, Alice considers the information abwhb is the seller and the
price of the item as reliable. However, the reputation is Adlite knows at least ten
ways which sellers can boost their reputation quickly.

When evaluating the policies, only the assumptions:

recommendation(bob, carol, bid, ipod) :— (0, 0)
inBlackList(carol) : - (0, 1)

are used. This is because Alice does not have any relevantriafion. The other
assumptions are not used because Alice has collected tiseafaat therefore does not
need to assume anything.

Let us also explain how the trust (distrust) policies arduated. Shinren starts from
priority level 3. For the distrust policy at this level, thedy is inBlack List(carol)
with truth value(0,1) in the interpretation. Thereforéistrust(carol, bid, ipod) is
evaluated to b€0, 1), according to this policy. Becaugé, 0) #4; (0, 1), this answer
is not admissible and is discarded. The policy with prioBitgoes not have an admis-
sible answer either. Givettern Price(ipod, 80) = (1, 0), the constrainPrice < 20 is
not satisfied because the pric&B0. This constraint is linked t@em Price(ipod, 80),
so its truth value is+(1,0) = (0, 1). Overall,trust(carol, bid, ipod) is evaluated to
(0, 1) according to this policy. The answer is also discarded. Bee#lice cannot get
a recommendation from Bob, the default value is used and igtrust policy at pri-
ority level 1 is evaluated t§0, 0). The answer is also not admissible. The last policy
is evaluated tq$, 0) and therefore is admissible. Because it is a trust policyada
trust(carol, bid, ipod) = (%,0) and alsodistrust(carol, bid, ipod) = (0, 3) to the
model. Alice now knows that although Carol can be trusted,ralght still be cheated.

8 Example: Healthcare in the Community

Dr Taylor runs a medical clinic in a small town. An unconsaqatient is brought
to the clinic. From the driver’s licence, Dr Taylor learnsthihe patient is called Mr
Johnson. Mr Johnson is a tourist and stayed in a local hoteidbe was brought here.
The owner of the hotel, who brought Mr Johnson in, tells Dri@ayhat the patient
experienced breathing difficulties during breakfast arehthassed out a few minutes
later. Dr Taylor examines the patient’s trachea and heartutig sound. He decides to
intubate the patient in order to let air pass freely to andhftbe lungs. The patient’s
temperature is normal and the results of a blood test showgng sf infection. Blood
pressure and heart rate are also normal. Dr Taylor deciddeettk the patient’s medical
history in order to see whether the symptoms were causedungsadrr allergies. From
his computer, Dr Taylor sends a request to the Smith GP pedtund in documents

in Mr Johnson’s wallet.

The electronic medical record system of the Smith GP praciges the Shinren
trust management system to control who can access patiastiical histories. The
policies which regulate the access to a patient’s medisabhi are shown blow:

(3) distrust(X,read, med_history,Y) :— =doctor(bma, X).
(3) trust(X,read, med_history,Y) :—consent(Y, X, read, med_history)
(3) trust(X,read, med_history,Y) :— agent(Y, Z), consent(Z, X, read, med_history)
(2) trust(X,read, med_history,Y) :—answer(X, DOB, ADDRESS),
personal_info(Y, DOB2, ADDRESS2), DOB = DOB2,
ADDRESS = ADDRESS?2.
(1) trust(X, read, med_history,Y’) :— collocated(X,Y).

Patients’ medical histories are sensitive and should oelyelvealed to doctors who
are treating the patients. The distrust policy at level 3gapt X is not allowed to
read patien’”’s medical history ifX does not have a doctor credential signed by the
BMA (British Medical Association). The second trust polatythe same level say$ is
trusted to read patient’s medical history ifY” gives his consent. However, in real-life,
it is not always possible to get the patient’'s consent, a.the case that the patient is in
coma. Then a third party consent from the patient’s agengliysthe next of kin, also
has the same effect. In emergency situations where no cboaerbe obtained, it is
necessary to verify that the doctor is indeed treating thiepbefore letting the doctor
access the information without consent. For example, thiécagion might be done by
letting the doctor provide the patient’s personal inforim@gand comparing it with the
data stored, or using a location service to verify that thetalos co-located with the
patient. Accesses without consent are logged and audited.

Dr Taylor provides his doctor credential and also suppligermation about Mr
Johnson’s birthday and address correctly. The accessrigegrand logged. Alas the
medical history does not provide too much useful infornratiét the same time, Mr
Johnson’s condition becomes worse. He starts to have ssizimd EEG (electroen-
cephalogram) shows abnormal brain activities.

Dr Taylor suspects that the problem may be in Mr Johnsonfbkowever, he is
not a neurologist and needs someone to help in diagnosimptient. Dr Taylor starts

looking for help. He searches the NHS database using Shivitbrthe policies shown
below:

(2) trust(X, specialist, neurology) :—consultant(Hos, X, neurology),
hospital(NHS, Hos), member(aon, X, Level), Level >= 2.

(1) trust(X, specialist, neurology) :—consultant(Hos, X, neurology),
hospital(NHS, Hos), member(aon, X, 1), member(aon, Y, Level), Level >= 2,

recommendation(Y, X, specialist, neurology).

The first policy says that Dr Taylor will trust” as a specialist in neurology X has a
consultant credential signed by an NHS hospital which sttitat X is a consultant in
neurology.X must also be a member of the Association of Neurologists leital no
lower than senior member. The second policy says almostatme £xcept that if the
level of X in the Association of Neurologists is not high enough, hedseerecommen-
dation from a senior member or higher.

Dr Taylor finds 20 doctors who fit his requirements. Among thém selects Dr
Ford, a senior member of the Association of Neurologists whiks for Victoria Hos-
pital. Dr Ford is also willing to offer assistance. Dr Tayk®ts up a video conference
with Dr Ford. After hearing the observations and checkirgggkamination results, Dr
Ford suggests that the problem could be caused by a clot ipatent’s brain. How-
ever, a brain tumour also fits the symptoms. The diagnosisheaconfirmed by an
MRI (Magnetic Resonance Imaging) scan or a brain biopsy. él@w the clinic does
not have the equipment and the patient’s condition is neéabld for transportation. Dr
Ford then suggests that in this situation, Dr Taylor shomchediately treat the patient
with tPA (tissue Plasminogen Activator), a medicine whielpss resolving blood clots,
because a long delay could cost the patient’s life. If théepés condition gets bet-
ter, then the diagnosis of a blood clot can be confirmed, wiiserit suggests a brain
tumour.

Dr Ford’s plan could be quite dangerous. So Dr Taylor wanteetar a second opin-
ion. To ensure the opinion is independent and fair, Dr Tagttits another policy before
he searches for the second specialist. The policy ruleslidhesspecialists working in
the same hospital as Dr Ford.

(2) distrust(X, specialist, neurology) :— consultant(victoria, X, neurology).

This time Dr Taylor finds Dr Grant, a senior member of the Agstian of Neurologists

who works for the Albert Hospital. Dr Grant confirms that #és no better solution
in this situation. Dr Taylor starts to treat the patient w4, and watches him closely.
24 hours later, the patient wakes up. After the patient'sd@@m is stabilised, he is
transferred to the nearest major hospital for further disimand treatment.

9 Implementation

We have implemented a prototype of Shinren. As shown in Ei§uShiren consists of
five major modules. Among the five modules, the credentialuteydhe recommenda-
tion module, the reputation module and the state moduleesonsible for retrieving

and interpreting information from different sources, ahd policy interpreter module
is responsible for making decisions according to the padieind the information gath-
ered.

Remote Systems

] 3
Credential| [RecOmMen Reputation State Local
dation —>1
Module Module Module Module Data

Policy Interpreter — __——=

Trust Engine Policies

Fig. 3. Shinren Trust Engine

The Shinren prototype is implemented in Java 1.5. The pdatirpreter evaluates
queries in a bottom-up fashion as in many other datalogebagstems. Policies are
loaded into the policy interpreter as plain text files. Thiesiware stratified when they
are loaded by analysing the predicate dependency relatsisTo answer a query,
the interpreter first initialises an interpretation whishain instance of the Assertion-
Set class. The interpreter queries the other four modulesdar to gather facts, i.e.
ground instances of the predicates with truth values, waiemeeded for policy evalu-
ation. The facts are stored in tables related to the presidatthe interpretation. After
the interpreter obtains all facts, it constructs the Hexbdraniverse by collecting all
the constants from the query, rules and facts. The integptken puts into the initial
interpretation assumptions for all the other ground atorhglware in the Herbrand
base. It then starts evaluating policies iteratively fromm bowest strata. Each rule in the
stata is grounded with regard to the Herbrand base and tledantdrpreter applies the
immediate consequence operator to each ground instaneénhhediate consequence
operator retrieves the truth values for the ground atontsamule body from the current
interpretation and passes them through the evaluatiomfrie rule to obtain the truth
value of the ground head atom. The ground atom along withrtlie value is a newly
generated fact and the table for the head predicate in teepiattation is updated. If
an entry with the same ground tuple is already in the tabkefrith value of the old
entry is ORed with the truth value of the new entry; otherisenew entry is inserted
into the table. Trust (distrust) policies in the same steataevaluated sequentially by
priority level until an admissible answer, i.e. an answait gatisfies the threshold de-
fined for this level, is found. The evaluation of the stratdwhen the interpretation
does not change anymore. Then the interpreter evaluatesiéisan the next strata. The

evaluation of the query ends after the interpreter evadualldhe strata containing the
rules with the queried atoms as heads.

A preliminary top down policy interpreter which is under é&yping can be found
in Appendix B. However the correctness of this implementatias not been proved.

10 Conclusion and Future work

In this paper, we have presented Shinren, a novel non-moiedgtast management sys-
tem based on bilattices and the any-world assumption. Thsyf the Shinren pol-
icy language is based on Datalog with certain extensions aamegation, constraints
and prioritisation. The semantics extends the Kripke-Kéesemantics over bilattices.
Shinren can utilise unreliable even contradictory infotioraand supports prioritisation
which resolves conflicts and provides decision support. &aahstrated the power of
Shinren by two comprehensive examples and outlined itsesmphtation.

One aspect that we would like to investigate further is pgation. The current
prioritisation mechanism in Shinren is at the meta-lewsdrks but is not convenientin
practice because it is external to the bilattice. Howewvaoriisation can also be viewed
as another ordering. We would like to extend our bilattioethst a third ordering could
be integrated into the theory. This would make prioritisat built-in feature.

AWA uses the concept of non-uniform assumption. Howeveragsumptions are
static. We are interested in researching dynamic assungptitich would mean that
changes in knowledge could lead to the change of the assamspynamic assump-
tions would enable a trust management system to generatawourate conclusions
according to the context. Previous works in belief revigi@s] and dynamic prioritisa-
tion [37] are possible stepping stones in this direction.

Acknowledgments

This research was supported by the UK's EPSRC researchigPd65637181/1 (Care-
grid) and EU FP7 research grant 213339 (ALLOW).

References

1. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized mstagement. In: IEEE Symposium
on Security and Privacy, IEEE Computer Society (1996) 183-1

2. Mayer, R.C., Davis, J.H., Schoorman, D.F.: An integmtinodel of organizational trust.
The Academy of Management Revi@f(3) (1995) 709-734

3. Blaze, M., Feigenbaum, J., loannidis, J., Keromytis, A.Dhe keynote trust-management
system, version 2. RFC 2704 (1999)

4. Jim, T.: Sd3: A trust management system with certifieduat@dn. In: SP '01: Proceedings of
the 2001 IEEE Symposium on Security and Privacy, Washindah USA, IEEE Computer
Society (2001) 106-115

5. Li, N., Mitchell, J.C., Winsborough, W.H.: Design of aedbased trust-management frame-
work. In: IEEE Symposium on Security and Privacy. (2002)-1113D

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.
24.
25.
26.
27.
28.
29.

30.

Hess, A., Seamons, K.E.: An access control model for dimafient-side content. In:
SACMAT '03: Proceedings of the eighth ACM symposium on Acceentrol models and
technologies, New York, NY, USA, ACM Press (2003) 207-216

Carbone, M., Nielsen, M., Sassone, V.: A formal model fostin dynamic networks. In:
SEFM. (2003) 54-61

Blaze, M., Feigenbaum, J., Keromytis, A.D.: The role otrmanagement in distributed
systems security. In Vitek, J., Jensen, C.D., eds.: Seauegnet Programming. Volume
1603 of Lecture Notes in Computer Science., Springer (1289)-210

Rivest, R.L., Lampson, B.: SDSI - a simple distributed usiég infrastructure.
“http://people.csail.mit.edu/rivest/sdsi10.html” @)

Ellison, C.: SPKI requirements. RFC 2692 (1999)

Gunter, C.A., Jim, T.: Policy-directed certificate imtal. Softw., Pract. ExpeB0(15) (2000)
1609-1640

Becker, M.Y., Sewell, P.: Cassandra: Distributed axcestrol policies with tunable expres-
siveness. In: POLICY, IEEE Computer Society (2004) 159-168

Halpern, J.Y., van der Meyden, R.: A logic for sdsi’'s Baklocal name spaces. Journal of
Computer Securit®(1/2) (2001) 105-142

Li, N., Mitchell, J.C.: Datalog with constraints: A fodation for trust management lan-
guages. In Dahl, V., Wadler, P., eds.: PADL. Volume 2562 oftuee Notes in Computer
Science., Springer (2003) 58-73

Chu, Y.H., Feigenbaum, J., LaMacchia, B.A., ResnickS®auss, M.: Referee: Trust man-
agement for web applications. Computer Netw@®8-13) (1997) 953-964

Herzberg, A., Mass, Y., Mihaeli, J., Naor, D., Ravid, Yiccess control meets public key
infrastructure, or: Assigning roles to strangers. In: IEBEnposium on Security and Privacy.
(2000) 2-14

Czenko, M., Tran, H., Doumen, J., Etalle, S., Harteldén Hartog, J.: Nonmonotonic trust
management for P2P applications. Electronic Notes in Tét@al Computer Sciencks7(3)
(2006) 113-130

Marsh, S.P.: Formalising Trust as a Computational QuncéhD thesis, University of
Stirling (1994)

Jogsang, A.: A logic for uncertain probabilities. Ineional Journal of Uncertainty, Fuzzi-
ness and Knowledge-Based Systed¢®) (2001) 279-212

Yu, B., Singh, M.P.: Detecting deception in reputatioanagement. In: AAMAS, ACM
(2003) 73-80

Reiter, R.: On closed world data bases. In: Logic and Bates. (1977) 55-76

McCarthy, J.: Circumscription - a form of non-monotoréasoning. Artif. Intell.13(1-2)
(1980) 27-39

Reiter, R.: Alogic for default reasoning. Artif. Intell3(1-2) (1980) 81-132

Kleene, S.C.: On notation for ordinal numbers. J. Synolgy. B(4) (1938) 150-155

Grosof, B.N.: Courteous logic programs: Prioritizedftiot handling for rules. Research
Report RC 20836(92273), IBM (1997)

Ginsberg, M.L.: Multivalued logics: a uniform approatthreasoning in artificial intelli-
gence. Computational Intelligendg1988) 265—-316

Shepherdson, J.C.: Negation as failure, completionstradification. In Gabbay, D.M.,
Hogger, C.J., Robinson, J.A., eds.: Handbook of Logic infigral Intelligence and Logic
Programming. Volume 5. Oxford Science Publications (1998)

Clark, K.L.: Negation as failure. In: Logic and Data Bagd 977) 293-322

Fitting, M.: A kripke-kleene semantics for logic progra. J. Log. Progran2(4) (1985)
295-312

Gelfond, M., Lifschitz, V.: The stable model semantics fogic programming. In:
ICLP/SLP. (1988) 1070-1080

31. Gelder, A.V,, Ross, K.A., Schlipf, J.S.: Unfounded satsl well-founded semantics for
general logic programs. In: PODS, ACM (1988) 221-230

32. Loyer, Y., Straccia, U.: Any-world assumptions in logiogramming. Theor. Comput. Sci.
3422-3) (2005) 351-381

33. Ceri, S., Gottlob, G., Tanca, L.: What you always wantekintow about datalog (and never
dared to ask). IEEE Trans. Knowl. Data Ed¢l) (1989) 146—-166

34. Becker, M.Y., Sewell, P.: Cassandra: Flexible trustagament, applied to electronic health
records. In: CSFW, IEEE Computer Society (2004) 139-154

35. Fitting, M.: Bilattices and the semantics of logic pramming. J. Log. Progranil(1&2)
(1991) 91-116

36. Alchourron, C.E., Gardenfors, P., Makinson, D.: Oaltbhgic of theory change: Partial meet
contraction and revision functions. J. Symb. L6§2) (1985) 510-530

37. Brewka, G.: Reasoning about priorities in default lodic AAAI. (1994) 940-945

38. Fitting, M.: Billatices are nice things. In Bolander, Flendricks, V.F., Pedersen, S.A., eds.:
Self-reference. Number 178 in CSLI Lecture notes. CSLI ieatibns (2006) 53-77

39. Sterling, L., Shapiro, E.: The art of Prolog (2nd ed.y atted programming techniques.
MIT Press, Cambridge, MA, USA (1994)

A Theorems and Proofs

Definition 1 A conflicting set w.r.tP* is a set of labelled rules iP* such that the
heads of the rules are the same ground atenst(a) (or its counterparidistrust(a)).

A conflicting set contains all the rules regarding st(a) (distrust(a)) with different
priorities. In the policy evaluation process, only one linléhe set will be fired.

Definition 2 A reductionR* w.r.t. P* is obtained in this way: for each conflicting set
w.r.t P*, keep one rule and delete the others fréth

Areduction is a “flattened” program in the sense that regeytdiust(a) (distrust(a))
there is only one rule.

Definition 3 An interpretation/ is a model of a reductio®* w.r.t. P* iff for all A :
—¢ € R*,I(A) = I(¢) holds.

Theorem 1 Given a reductiorR* w.r.t. P* there exists a least fixed point of the imme-
diate consequence operatdr- defined asbPp-(I)(A) = I(¢) forall A :—¢ € R*.
The least fixed point is the unigug, minimal model ofR*

The proof follows directly from [38]. The operatdrz- is monotonic regarding the
knowledge ordering. Therefore the least fixed point exists.

A reduction may not be adequate in the sense that some treisiates produced
from this reduction may not reliable or informative enou@herefore we introduce
some further constraints.

Definition 4 A reduction w.r.t.P* is admissible if the head of each labelled rule in this
reduction is mapped to a truth valuén the unique<; minimal model such thatis an
admissible answer w.r.t to the threshold defined for therpyidevel.

Even with admissible reductions, we may prefer one to therstlirhe preference
ordering is defined as follows:

Definition 5 A labelled rules stratification R, ..., LR}, of P* is obtained from a
stratification of P* by removing all levels that do not contain labelled rules asmov-
ing from the remaining levels all the rules that are not ldeeé!

Definition 6 A mapping to a reductio®* from LR} (i € {0, ...,m}) is defined as a
set that contains all the labelled rules R that are also inLR;.

Definition 7 Let LR, ..., LR}, be a labelled rules stratification d*, R} and R be
two reductions w.r.tP*, M;; (i € {0,...,m},j € {1,2}) be the mapping to reduction
R} from LR;. We define a partial ordex,,:

1. M;; =<, M, iff for every labelled ruler; in M;;, we can find a labelled rule,
in M;> with the same head (or its counterpart), such thahas a priority higher
than or equal tory. M1 =p Mo iff M;y jp Mo andMﬂ 7& M;s.

2. R} <, R; iffwe can findi € {0, ..., m} such thatM;; <, M, and for anyj < 4,
Mjl = Mj2. RT jp R; if RT =p R; or RT = R;

The intuition of this preference ordering is that we prefavdlled rules with higher
priority and for labelled rules which depend on other lagxliules, we prefer those
based on more preferable rules.

Theorem 2 The ordering=,, is independence of the choice of labelled rule stratifica-
tion.

The proof follows directly from the above definitions.

Definition 8 An admissible reductio®®* is called a preferred admissible reduction
w.r.t. P* iff for every reductionR*” w.rt. P*, R* <, R*.

Theorem 3 For everyP*, there is a unique preferred admissible reduction.

To prove Theorem 3, we first prove the following lemma:

Lemma 1 Given a pose{AD*, <,) such thatAD* is the set of all the admissible
reductions w.r.tP*, for everyR;, R5 € AD*, the least upper bound exists.

Proof. Let LR, ..., LR}, be a labelled rules stratification &*. For everyR}, R €
AD*, the least upper bound iU B12 which can be found by iterating froin= 0 on a
setS = AD*:

1. if S has only one element, stop the iteration.

2. otherwise ifM;; = M,y whereM;; (j € {1,2}) is the mapping to reductioRj
from LR}, delete fromS all admissible reductions such that the mappings to the
admissible reductions froth R} are not equal td/;;.

3. otherwise if ;1 # M,s), do the following, for every labelled rulg in M;; and
labelled rulery in M;2 with the same head (or its counterpart), compare the prior-
ities of 11 andrs, put into a setM’ the labelled rule with the maximum priority.
Delete fromS all the admissible reductions such that the mappings todhessi-
ble reductions fronL R} are not equal td/’. Then delete fron$ all the elements
except one such that the mapping to it frémR;; ¢ < K < m contains only default
assignment rules.

At the end of the iteration, there will be one and only one @etleft. This is easy
to check. In trivial cases the procedure only take branchd@tha only element left
is LUB12 = R} = Rj3. In any non-trivial cases which take branch 3, there must be
at least one element ifi such that the mapping to the element fr@&mR; equals)M’.
There will be only one element left by definition. Now we shdwattZU B, the only
element left inS is indeed the least upper bound.

LU By is an upper bound oR7, R;. In the trivial caseLU B1; = R} = Rj, by
definition R} <, LU B2, RS <, LU Bi2. In the non-trivial cas&?} # R3, when the
iteration takes branch 3, it is guaranteed tRgt<, LU B2, R <, LU B;» because
M;y jp M’ andMiQ jp M’

LU By, is the least upper bound @i}, R3, i.e. there is naR} such thatR} is an
upper bound of?}, R5 and R <, LU By». In the trivial caseLU B> = R} = Rj,
R% = LU B1». Inthe non-trivial case, since there is no othéf such thatV/;; <, M”
andM,;, <, M" andM’ <, M", andLU B;, contains only default assignment rules,
which have the lowest priority, for the labelled rules atttéglevels, there is no way to
find R3 that satisfies the requirements.

BecauseAD* is finite, by Lemma 1{AD*, <,) has an unique upper bound, i.e.
the preferred admissible reduction.

Theorem 4 For everyP*, the modelM described early in this section corresponds to
the uniquex;, minimal model of the preferred admissible reductiorPof

Proof. Given P*, the only difference betweeR* and its preferred admissible reduc-
tion P** is that for each trust(distrust) ator®* contains multiple rules each with a
different priority while in the preferred admissible retioa there is only one rule.
Given a stratification oP*, P** can be stratified in the same sequence. The immediate
sequence operators are the same. During the evaluatidh efhenever a labelled rules
is fired, it must also be in the preferred admissible reductioa labelled rule- in P*

is fired and the corresponding labelled rule in the prefeadhaissible reduction has a
lower priority, then we can find another admissible reductibwith » and obviously
R £, P**. It contradicts the definition of preferred admissible retéhn. If the corre-
sponding labelled rule in the preferred admissible redadtias a higher priority, then
it contradicts Section 6.3 where the rules generate adnesanswers with the highest
priorities should be fired. The evaluationBf is literally the same as the evaluation of
P**. Therefore the model generated should be the same as gahasaigP** under
the same immediate sequence operators.

B Top Down Policy Interpreter

The top down policy interpreter is a vanilla-style metaeipteter [39] which answers
a query through a recursive goal reduction procedure. lpapeaking, the interpreter
works in this way: whem is queried and a policy rule such ds: - B, C, D can be
found, the evaluation ofl is replaced by the evaluation of the policy bo8yC, D.
The predicate®3, C, D are then reduced according to the other policy rules, fauls a
hypothesis. In the end, the interpreter rewrites the quenya tree where the query is
the root node and all the leave nodes are truth values. Tledruth values are combined
according to the connectives and back-propagated to theAne@xample is shown in

p(b) r(a) r(a) r(b)

[0,0] [1,0] [1,0] [V5,0]

Fig. 4. A rewriting Example

As we can see in the example, the quefy) is first reduced ag(a) A (r(a) ®r(b))
according to the policies. They{a) is rewritten ag(b) Vv r(a) because there are two
rules with head(a) can be found:(a) andr(b) are then reduced to their corresponding
truth value according to the facts listed ap@) is reduced td0, 0] according to the
hypothesis. Conceptually, the query can be rewrittefitas] v [1,0]) A ([1, 0] & [2, 0])
which gives the truth valugl, 0]. Although the example shows a ground query and a
ground program, the same procedure can be generalised taghs with variables by
simply requiring that unification to be applied as in usugid¢gprograms.

Now let us explain the query evaluation procedure form&lby. a queryp, an an-
swer is a paiK6, b) where§ = {X /¢} is a substitution of the variables in ¢ with the
constants irg andb is a truth value taken from the bilattice truth space. Weiséo
denote the substitution instanced®by applyingd to ¢. The pseudocode of the query
evaluation procedure is shown in Figure 5.

The procedure defines how to interpret and evaluate queg@isst the policies,
facts and hypothesis. We do not consider details of unifioaéind backtracking be-
cause they are handled by the underlying Prolog engine. Tdwegure utilises two

procedure: eval(¢, (0, b))

input Jquery¢

output :answer(f, b) whered is a substitution andl is a truth value such that the
intended modeM = 6¢ :—b.

1 if ¢ is a truth valuethen
2 | 0={}k
3 b=9¢;
4 else if¢ is in the form of—¢ then
5 eval(p, (0,V));
6 b=-b;
7 elseifg is in the form ofp; o 2, whereo is one ofv, A, ®, ® then
8 eval(p1, (01,b1));
9 eval (012, (02, b2));
10 b = b1 0 bo;
11 0 = 0102;
12 else if¢ is atomicthen
13 if ¢ is an EDB predicate ang : b’ is a fact such that unify ¢ with 6’ then
14 0=0";
15 b=1"V;
16 else
17 o :—b is in hypothesis such thatunify ¢ with ¢’;
18 0=0";
19 b="0;
20 end
21 if ¢ is an IDB predicatehen
22 if ¢ is a trust or distrust predicatéhen
23 | evalTrust(¢,(6,b));
24 else if¢ is a constraint predicatéhen
25 | evalConstraint(¢, (0,b));
26 else
27 find all policiesps, ..., p» such thatp andhead(p;) unify with 01;
28 © = 01(body(p1)V, ... V body(pn));
29 eval(yp, (0,b)))
30 end
31 end
32 end

Fig. 5. Query evaluation procedure

sub-proceduresivalTrust andevalConstraint. evalTrust evaluates trust and dis-
trust goalseval Constraint evaluates constraints. The pseudocode of these two sub-
procedures are listed below (Figure 6, 7):

evalTrust evaluates trust (distrust) policies from the highest jityidevel. As de-
scribed in section 6.2, for each level, two thresholds imteof <; or <, or both
are defined, one for distrust policies and one for trust pEgicAnswers that satisfy
the threshold are calleadmissible answerdf an admissible answer can be found, the

© 0 N O U~ WN P

11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

procedure: evalTrust(¢,{0,b))

input jquery¢
output :answer(f, b).

int level =max PriorityLevel,

boo

| admissible Ffalse;

while admissible isfalse and level> 0 do

end

end

bool renamed #alse;
if ¢ is a trust predicatehen
change the predicate namegfo distrust;
renamed Frue;
end
for all distrust policie%:, ..., p» With priority level level such that
a = ¢bo,a = head(pi)0;, (i =1,..,n);
» = body(p1)01V, ... V body(pn)0x;
eval(p, (0',b));
0 =600";
if bis an admissible answehen
admissible Zrue;
if renamed is trué¢hen
| b= —b;
end
else
change the predicate namegfo trust;
bool renamed =renamed;
find all trust policiesp1, ..., p» with priority level level such that
a = ¢bo,a = head(pi)0;, (i =1,..,n);
@ = body(p1)01V, ... V body(pn)0n;
eval(p, (¢',0));
0 =600";
if bis an admissible answehen
admissible Zrue;
if renamed is tru¢hen
| b=-b;
end
end

end
level = level — 1;

if admissible is falséhen

0={}
b=10,0;

Fig. 6. evalTrust procedure

evaluation ends and the answer is returned. Otherwise tiigoneter moves to the next
level with lower priority.

procedure: evalConstraint(¢, (0, b))
input Jquery¢
output :answer(f, b).
¢ is linked to predicate;
eval(p, (01, b));
solve(01¢) = (02,1);
0 = 0201,
if tis falsethen
| b=-b;
end

N o oA~ WN P

Fig. 7. evalConstraint procedure

It is easy to see that under the syntactic restrictions wegesrlier in Section
6.2 (finite Herbrand base, tractable constraint domain yaticcdependency between
ground atoms), the query evaluation procedure guarardéesninate. Finite Herbrand
base ensures that the evaluation tree is finite, tractalplistimint domain ensures that
theevalConstraint sub-routine terminates and no cyclic dependency ensuaeghi
reduction process is loop-free.

