
Non-elementary speed up for model checking
synchronous perfect recall

Mika Cohen and Alessio Lomuscio

Department of Computing
Imperial College London

Abstract. We analyse the time complexity of the model check-
ing problem for a logic of knowledge and past time in synchronous
systems with perfect recall. Previously established bounds are k-
exponential in the size of the system for specifications with k nested
knowledge modalities. We show that the upper bound for positive (re-
spectively, negative) specifications is polynomial (respectively, expo-
nential) in the size of the system irrespective of the nesting depth.

1 Introduction

When reasoning about multi-agent systems it is common to assume
that the agents evolve synchronously in a lock-step manner at each
tick of a global clock and that each agent has a perfect recall of all
the information it has been exposed to so far in the run. Synchronous
systems with perfect recall are thus widely studied in artificial intel-
ligence and knowledge representation [6]. Specifically, various work
have addressed the completeness and decidability problem of linear
time epistemic languages (i.e., those built on the logic LTLK) defined
under the assumption of synchronous perfect recall [5].

Model checking is a key technology in computational logic for
automatically verifying systems against properties expressed in tem-
poral logic [3]. The model checking problem amounts to calculating
the satisfaction ofMS |= φP , whereMS is an appropriate model for
a system S, and φP is a formula in temporal logic representing a sys-
tem property P . More recently model checking has been extended to
multi-agent systems and properties specified in temporal-epistemic
logics [8, 10, 11]. While much progress has been made in develop-
ing efficient model checking tools for temporal-epistemic languages,
the computational complexity of the model checking problem has
received comparatively less attention.

The program complexity (i.e., the model checking complexity in
terms of the size of the model) for synchronous systems with perfect
recall is known to be k-EXPTIME for temporal-epistemic formulae
with k nested epistemic modalities [15]. It is reasonable therefore to
look for non-trivial language fragments with an easier complexity.

Many temporal-epistemic properties occurring in practice can be
expressed without future-time modalities in the past-time fragment
of LTLK [7]. In this paper we analyse the complexity of the model
checking problem for past LTLK on synchronous systems with per-
fect recall. Specifically we show that the program complexity is in
PTIME for positive specifications and in EXPTIME for negative
specifications irrespective of the number of nested modalities. In gen-
eral, the program complexity is shown to be k-EXPTIME for an ar-
bitrary specification with k alternations between epistemic diamonds

and negations. The number of these alternations is no larger than the
non-elementary factor in existing complexity bounds, i.e., the nesting
depth of epistemic diamonds, and may be arbitrarily smaller, thereby
resulting in a non-elementary speed-up when compared to known
procedures.

Overview of paper. The rest of the paper is organised as follows.
In section 2 we interpret pure past-time LTL+K on synchronous sys-
tems with perfect recall. In Section 3 we outline the existing model
checking algorithms. In Section 4 we present the improved upper
bounds for the model checking problem. The new bounds are es-
tablished by means of an automata construction given in Section 5.
Appendix A presents basic definitions in automata-theory used in the
proofs.

2 Past LTLK

We model computational systems as transition systems and express
design requirements in the logic of knowledge and past time (past
LTLK); this section summarises the basic definitions.

Transition system with path equivalences. We assume that the
computational system under analysis is given as a transition system
S = 〈S,R, I0〉 consisting of a finite set S of system states s, a tran-
sition relation R ⊆ S × S, and a non-empty set I0 ⊆ S of initial
states. We assume each state s is a subset s ⊆ P of a given set P
of atomic propositions; intuitively, state s is made up of the atomic
facts that hold at s.

A word is a finite sequence σ ∈ S∗ over alphabet S. We write
σ · s for the result of appending state s to word σ, i.e., σ · s =
s0, s1, . . . , st, s if σ = s0, s1, . . . , st. We write σ′ ≤ σ if word σ′

is a prefix of σ, i.e., ≤ is the least reflexive and transitive relation
on S∗ such that σ ≤ σ · s. A (computation) path of S is a word
σ = s0, s1, . . . , st ∈ S+ such that s0 ∈ I0 and (si, si+1) ∈ R for
all 0 ≤ i < t. We write last(σ) for the last state st in the computation
path σ.

We assume a finite setAg of agents; each agent a ∈ Ag observes a
subset Pa ⊆ P of the propositional atoms. Intuitively, the set s∩Pa
represents the local view of agent a at the system state s. We say that
two system states s and s′ are equivalent w.r.t agent a, in symbols
s ∼a s′, if they agree on the propositions observed by agent a, i.e.,
if s ∩ Pa = s′ ∩ Pa.

Definition 2.1. Synchronous perfect recall equivalence w.r.t. agent a
is the least reflexive relation∼a⊆ S∗×S∗ such that σ · s ∼a σ′ · s′
iff σ ∼a σ′ and s ∼a s′, for all σ, σ′ ∈ S∗ and all s, s′ ∈ S.

In short, words over S∗ are equivalent if they are of the same
length and are point-wise equivalent.

Language of past LTLK LTLK [7] extends LTL with knowledge
modalities interpreted through path equivalences. In this paper, we
consider the following past-time fragment:

φ ::= p | ¬φ | φ ∧ φ′ | φ ∨ φ′ | ka φ | 3φ | � φ | �φ

where p ∈ P is an atomic proposition and a ∈ Ag. The knowl-
edge diamond ka is read “Agent a considers it possible that”, the
temporal diamond 3 is read ”Once”, the strong yesterday modality
� is read ”Yesterday”, and the weak yesterday modality � is read
”Yesterday, if there was a yesterday”. We omit the temporal modal-
ity for ”since” for ease of presentation. The length |φ| of a formula
φ is the number of symbols in φ excluding negations, i.e., the num-
ber of atomic propositions, conjunctions, disjunctions, and tempo-
ral/knowledge modalities appearing in φ.

A formula φ is closed if every knowledge diamond is within the
scope of a negation, i.e., if φ is built from atoms, conjunction, dis-
junction, temporal modalities and negated arbitrary formulae:

φ ::= p | φ ∧ φ′ | φ ∨ φ′ | 3φ | � φ | �φ | ¬ψ

where ψ is any formula possibly containing knowledge diamonds;
a formula is open if not closed. A formula φ is in normal form if
negations only apply to atoms and diamonds:

φ ::= p | ¬p | φ ∧ φ′ | φ ∨ φ′ | ka φ | ¬ka φ |
3φ | ¬3φ | � φ | �φ

We can reduce any formula to normal form by eliminating double
negations and distributing negations over conjunctions, disjunctions,
and yesterday modalities. Given a formula φ, the complement φ is
the formula ¬φ after reduction to normal form.1 We introduce box
modalities and implication in terms of complementation in the ex-
pected way:Kaφ (”Agent a knows that φ”) abbreviates ¬kaφ, while
�φ (”Historically φ”) stands for¬3φ; and φ→ φ′ is short for φ∨φ′.

We will consider two language fragments. We say a formula φ is
negative if negations in the formula only apply to atoms:

φ ::= p | ¬p | φ ∧ φ′ | φ ∨ φ′ | ka φ | 3φ | � φ | �φ

A formula φ is positive if it can be obtained from a negative formula
by substituting diamonds with boxes:

φ ::= p | ¬p | φ ∧ φ′ | φ ∨ φ′ | Ka φ | � φ | � φ | �φ

where the box modalities are abbreviations defined as above.

Lemma 2.2. If φ is positive then φ is negative; if φ is negative then
φ is positive.

Proof. By straightforward induction on positive and negative formu-
lae respectively (using the equalities in footnote 1).

1 In detail, the complement φ is defined inductively by: p = ¬p; ¬φ = φ;
φ ∧ φ′ = φ ∨ φ; φ ∨ φ′ = φ ∧ φ; �φ = �φ; �φ = �φ; kaφ = ¬kaφ;
3φ = ¬3φ.

Knowledge depth We consider two measures of the knowledge
depth of a formula. The nesting depth nd(φ) is the number of knowl-
edge diamonds applied consecutively in the formula φ; the inductive
definition is as follows.

• nd(p) = 0
• nd(kaφ) = 1 + nd(φ).
• nd(3φ) = nd(�φ) = nd(�φ) = nd(¬φ) = nd(φ).
• nd(φ ∧ φ′) = nd(φ ∨ φ′) = max(nd(φ), nd(φ′)).

Example 2.3. nd((kakb)
np) = nd((KaKb)

np) = 2n.

The second measure of knowledge depth is the number of alterna-
tions from knowledge diamonds to negations when counting from
the inside and out. In detail, the alternation depth ad(φ) is defined
inductively by:

• ad(p) = 0.
• ad(kaφ) = ad(φ).
• ad(¬φ) = 1 + ad(φ), if φ is open.
• ad(¬φ) = ad(φ), if φ is closed.
• ad(3φ) = ad(�φ) = ad(�φ) = ad(φ)
• ad(φ ∧ φ′) = ad(φ ∨ φ′) = max(ad(φ), ad(φ′)).

Observe there are no alternations from knowledge diamonds to nega-
tions in negative formulae.

Lemma 2.4. ad(φ) = 0 for negative φ.

Proof. By straightforward induction on negative φ.

Example 2.5. ad((kakb)
n¬p) = 0.

Note also that there is at most one alternation in a positive formula.

Lemma 2.6. ad(φ) ≤ 1 for positive φ.

Proof. By induction on positive φ. Induction step, knowledge box:
ad(Kaφ) = ad(¬kaφ) = 1 + ad(φ) ≤ 1 since ad(φ) = 0 by
Lemmas 2.2 and 2.4. Induction step for temporal box � is shown
similarly. Remaining induction steps (and base cases) are straight-
forward.

Example 2.7. ad((KaKb)
np) = ad(¬((kakb)

n¬p)) = 1.

As illustrated by Examples 2.3, 2.5 and 2.7, the alternation depth
ad(φ) may be arbitrarily smaller than the nesting depth nd(φ), but it
is never larger.

Lemma 2.8. ad(φ) ≤ nd(φ).

Proof. We show that:

ad(φ) ≤ nd(φ), if φ is closed. (1)

ad(φ) < nd(φ), if φ is open. (2)

by induction on φ. Base case, atomic φ. (1): ad(p) = 0 and
nd(p) = 0. (2): p is closed. Induction step, negation: (1): Assume
that φ is closed. Then ad(¬φ) = ad(φ) ≤ (by the induction as-
sumption) ≤ nd(φ) = nd(¬φ). Assume instead φ is open. Then
ad(¬φ) = 1 + ad(φ) < (by the induction assumption) < 1 + nd(φ)
= 1 + nd(¬φ), i.e., ad(¬φ) ≤ nd(¬φ). (2): ¬φ is closed. Induction
step, knowledge diamond. (1): kaφ is open. (2): ad(kaφ) = ad(φ)
≤ (by the induction assumption) ≤ nd(φ) < nd(φ) + 1 = nd(kaφ).
Induction step, temporal diamond. (1): ad(3φ) = ad(φ) ≤ (by in-
duction assumption) ≤ nd(φ) = nd(3φ). (2): If 3φ is open then so
is φ. Therefore, ad(3φ) = ad(φ) < (by induction assumption since
φ is open) < nd(φ) = nd(3φ). The induction steps for remaining
operators are shown similarly.

Corollary 2.9. ad(φ) ≤ nd(φ).

Proof. From Lemma 2.8 since nd(φ) = nd(φ).

Semantics Satisfaction of the language above is defined as stan-
dard for atomic propositions, boolean operators and temporal modal-
ities, while the knowledge modalities are interpreted by the path
equivalences. Informally, kaφ holds if proposition φ is consistent
with the past and present observations of agent a.

Definition 2.10. Assume a transition system S. The satisfaction rela-
tion |= between computation paths σ of S and formulae φ is defined
inductively as follows:

• σ |= p iff p ∈ last(σ)
• σ |= ¬φ iff σ 6|= φ.
• σ |= φ ∧ φ′ iff σ |= φ and σ |= φ′.
• σ |= φ ∨ φ′ iff σ |= φ or σ |= φ′.
• σ |= ka φ iff σ′ |= φ for some path σ′ of S such that σ ∼a σ′.
• σ |= 3φ iff σ′ |= φ for some path σ′ ≤ σ.
• σ |= �φ iff σ′ |= �φ for some path σ′ ≤ σ such that |σ′| =
|σ| − 1 ≥ 1.

• σ |= �φ iff σ′ |= �φ for all σ′ ≤ σ such that |σ′| = |σ|−1 ≥ 1.

where |σ| is the length of the path σ.

The extension [[φ]] of formula φ in a given system S is the set of
all computation paths σ of S such that σ |= φ in S. A formula φ is
valid in the given system, S |= φ, iff the extension [[φ]] consists of
all computation paths of S. We use the running example from [14].

Example 2.11 (Bounded message delivery [14]). After waiting a
random number of time steps, a sender agent sends a bit value to
a receiver agent over a channel that delivers messages immediately
or with a delay of one time step.

We model the scenario as a transition system S with agents a, b
and c representing the sender, receiver and channel respectively. We
assume an atomic proposition holds(i, v) read ”Agent i holds the
value v” for each agent i ∈ {a, b, c} and each bit value v ∈ {0, 1}.
We assume agent i observes only atomic propositions about agent
i itself: Pi = {holds(i, 0), holds(i, 1)}. We define the transition
relation R and the set I0 if initial states such that the set of possible
computation paths of the system is given by the regular expression:
{holds(a, 0)}+ ·{holds(c, 0)}? ·{holds(b, 0)}∗+ {holds(a, 1)}+ ·
{holds(c, 1)}? · {holds(b, 1)}∗.

It can be shown that it is always the case that if the receiver has
held the bit value 0 for at least one time step then the receiver knows
that the sender knows that the receiver holds the value 0:

�holds(b, 0)→ KbKa holds(b, 0) (3)

is valid in S. More generally,

�n holds(b, v)→ (KbKa)n holds(b, v) (4)

is valid in S; it is always the case that if the receiver has held the bit
value for n time steps then n levels of knowledge of knowledge have
been established. Moreover, the converse:

(KbKa)n holds(b, v)→ �n holds(b, v) (5)

is valid in S; n levels of knowledge of knowledge can never be
reached in less than n time steps.

Many specifications that occur in practice are either positive or
negative; (3) and (4) above are positive, while (5) is negative.

3 Existing model checking procedure
Given a model S and a formula φ the model checking problem is the
task of deciding whether φ is satisfied in S, S |= φ. Depending on
the underlying semantics the model checking problem has different
complexity. In the case of synchronous systems with perfect recall
the problem is an instance of infinite model checking (since satisfac-
tion S |= φ is in effect defined in terms of a Kripke model over the
infinite set of possible computation paths of S).

Yet, model checking synchronous systems with perfect recall is
known to be decidable. Existing algorithms [1, 2, 4, 9, 13, 14, 15]
are based on [14]. The algorithms transform the given system S into
an equivalent, finite Kripke model by means of a subset construc-
tion for each nesting level of knowledge modalities in the formula
φ. As a simple example, to check a formula with a single epistemic
modality Ka the algorithms extend each state s in the given transi-
tion system with a “knowledge set” X ⊆ S that encodes the states
considered possible by agent a. In the induced Kripke model over
extended states 〈s,X〉, it is assumed that 〈s,X〉 is related to 〈t, Y 〉
if 〈s, t〉 ∈ R in the original system S and Y = {t′ | t′ ∼a t} ∩ {t′ |
∃s′ ∈ X such that 〈s′, t′〉 ∈ R}. In other words the condition states
that s is related to t in the original system and the updated knowl-
edge set is consistent both with the latest observation and the earlier
knowledge set. The temporal modalities for past and future are in-
terpreted through this induced relation on extended states, while the
knowledge modality is interpreted by checking that 〈s,X〉 |= Kaφ
iff 〈s′, X〉 |= φ for all s′ ∈ X .

Each additional nesting level of knowledge modalities in the for-
mula φ requires a further knowledge set construction. This leads to a
Kripke model of size at least exp(nd(φ), |S|), where exp is the iter-
ated exponentiation operation defined inductively by: exp0(x) = x
and expn+1(x) = 2exp

n(x). Informally, expn(x) is a power tower

222.
.x

of 2s of hight n and with x at the top. For instance exp1(5) = 25 =
32 and exp2(5) = 232 = 4 294 967 296.

Example 3.1. Since nd((KaKb)
np) = 2n model checking for-

mula (4) using the existing techniques involves constructing a Kripke
model of size greater than exp(2n, |S|).

It follows that the existing model checking algorithms for
synchronous systems with perfect recall run in time at least
exp(nd(φ), |S|) for a given φ in past LTLK. The upper bound is
greater; we refer to [15] for details.

4 Improved upper bounds
In this section we improve the upper complexity bound for model
checking past LTLK in synchronous systems with perfect recall.

We show that the model checking problem for a positive formula
can be decided in time polynomial in the size of the system and in
time exponential in the length of the formula.

Theorem 4.1. The model checking problem for a positive formula φ
can be decided in time |S|2|φ|.

Existing bounds are by contrast nd(φ)-exponential in the size |S|
of the system as we have just seen. Observe that the new upper bound
for positive φ may in fact be dramatically better than the existing
bounds even when the nesting depth nd(φ) is low: the size |S| of the
system is in practice often large.

Example 4.2. The model checking problem for the positive for-
mula (4) can be decided in time |S|6(n+1) according to Theorem
4.1. This improves on existing techniques that run in time at least
exp(2n, |S|).

We show in addtion that the model checking problem for a nega-
tive formula can be solved in time exponential (in a polynomial) in
the size of the system and in time doubly-exponential in the length
of the formula.

Theorem 4.3. The model checking problem for a negative formula
φ can be decided in time 22|S||φ|+1

.

Again observe that if the size |S| of the system is large the new up-
per bound for negative φmay be considerably better than the existing
bounds even when the nesting depth nd(φ) is low.

Example 4.4. The model checking problem for the negative for-
mula (5) can be decided in time 22|S|3n+4

according to Theorem 4.3.
Again this improves on existing techniques that run in time at least

exp(2n, |S|) = 22.
.|S|

.

We show finally that the model checking problem for arbitrary for-
mulae φ can be decided in time ad(φ)-exponential (in a polynomial)
in the size of the system.

Theorem 4.5. The model checking problem for a formula φ can be
decided in time exp(ad(φ), |S||φ|+ad(φ))2.

While non-elementary, the new upper bound may itself be non-
elementary better than the existing bounds: the height ad(φ) of the
tower exp(ad(φ), |S||φ|+ad(φ)) may be arbitrarily lower than the
height nd(φ) of the tower exp(nd(φ), |S|), and it is never worse
(see Corollary 2.9).

We prove Theorems 4.1, 4.3, and 4.5 by way of the following
automata-theoretic characterization of validity (we refer to the ap-
pendix for some standard terminology from automata theory).

Lemma 4.6. For any formula φ there exists a corresponding au-
tomaton Aφ of size at most exp(ad(φ), |S||φ|+ad(φ)) that accepts
precisely all the computation paths satisfying φ in the given system.

By Lemma 4.6 the model checking problem for a specification φ
can be decided by checking whether the language accepted by the
automatonAφ corresponding to the complemented specification φ is
empty, i.e., by checking whether L(Aφ) = ∅. This can be decided in

time exp(ad(φ), |S||φ|+ad(φ))2 since emptiness is decided in time
quadratic in the size (number of locations) of an automaton. This es-
tablishes Theorem 4.5 since |φ| = |φ|. From Theorem 4.5 we obtain
Theorem 4.1 by Lemmas 2.2 and 2.4, and Theorem 4.3 by Lemmas
2.2 and 2.6.

Example 4.7. To model check the positive formula (4) from Example
2.11 we build an automaton corresponding to its negative comple-
ment:

�n holds(b, v) ∧ (kbka)n¬holds(b, v) (6)

and check whether the automaton has an empty language. To evalu-
ate the negative formula (5), we form the automaton for the positive
complement:

(KbKa)nholds(b, v) ∧�n ¬holds(b, v) (7)

and check whether the automaton has an empty language. By Lem-
mas 2.4, 2.6 and 4.6, the size of the automata for (6) and (7) are at
most exponential in n and doubly-exponential in n respectively.

In the next section we prove Lemma 4.6 by constructing an appro-
priate automaton Aφ corresponding to any formula φ.

5 Automata construction

We assume a transition system S = 〈S,R, I0〉 and proceed to con-
struct for any formula φ an automaton Aφ whose language is the
extension [[φ]] of the formula φ in the given system.

First we introduce some auxiliary operations on automata. The
scalar product of an agent a ∈ Ag and an automaton A over the
alphabet S (the state space of the given system) is the result of replac-
ing (”multiplying”) every transition label s inAwith all a-equivalent
labels s′.

Definition 5.1 (Scalar multiplication). Assume an agent a ∈ Ag
and an automaton A = 〈S,Q,Q0, ρ, F 〉 over the alphabet S. The
product of a and A is the automaton a ? A = 〈S,Q,Q0, ρ

a?, F 〉
over the alphabet S where: ρa?(q, s) =

S
{ρ(q, s′) | s′ ∼a s}.

In other words, for every transition q s−→ q′ in the automaton A
between locations q and q′ labelled by state s and for every equiva-

lent state s′ ∼a s , there is a transition q s′−→ q′ in the automaton
a ?A from q to q′ labelled by the equivalent state s′. Consequently,
the automaton a?Aφ accepts a word σ ∈ S∗ iff automatonA accepts
some a-equivalent word σ′ ∼a σ.

Remaining auxiliary operations needed are standard. The automa-
ton A(F ′) := 〈S,Q,Q0, ρ, F

′〉 substitutes the set of accepting lo-
cations in the automaton A with the set F ′ ⊆ Q. The complement
Ac := A(Q− F) complements the set of accepting locations in A.
The determinization Ac determinizes the automaton A by means of
a subset construction (see Appendix A). The automaton 3A extends
each location in A with a boolean variable that becomes true when
we reach an accepting location q ∈ F and which stays true from
then on; an extended location is accepting in the automaton 3A if
the boolean variable is true. In detail,

3A := 〈S,Q× {0, 1}, Q0 × {0}, ρ3, {〈q, 1〉 | q ∈ Q}〉

where:

• ρ3(〈q, 0〉, s) := {〈q′, 1〉 | q′ ∈ ρ(q, s)} if q′ ∈ F .
• ρ3(〈q, 0〉, s) := {〈q′, 0〉 | q′ ∈ ρ(q, s)} if q′ 6∈ F .
• ρ3(〈q, 1〉, s) := {〈q′, 1〉 | q′ ∈ ρ(q, s)}.

Finally, the automaton AS corresponding to the given system S ac-
cepts precisely all computation path of S (see Appendix A).

We now have the auxiliary operations needed to construct the au-
tomaton Aφ corresponding to a formula φ.

Definition 5.2 (Formulae to automata). The automaton Aφ corre-
sponding to a formula φ is defined inductively as follows:

1. Ap := AS([[p]]).
2. Akaφ := (a ?Aφ)×AS .
3. A¬φ := (Aφ)c, if φ is closed.
4. A¬φ := ((Aφ)d)c ×AS , if φ is open.
5. Aφ∧φ′ := Aφ ×Aφ′ .
6. Aφ∨φ′ := Aφ×Aφ′ .
7. A3φ := 3Aφ.

The automata for �φ and �φ are constructed analogously to the
automaton for 3φ.

In (2) and (4) in Definition 5.2 we form the cross product (×) with
the automatonAS corresponding to the given system so as to exclude
words that are not possible computation paths of the system. The
constructions (1), (5), (6) and (7) in Definition 5.2 for atoms, con-
junction, disjunction and temporal modalities follow standard lines
in compositional automata construction for past LTL (see [12]). The
constructions (3) and (4) in Definition 5.2 for negation are novel. To
obtain the automatonA¬φ from the automatonAφ when φ is closed,
we complement the set of accepting locations inAφ. When φ is open,
we first determinize Aφ by means of a subset construction. Finally,
the construction (2) in Definition 5.2 for the knowledge diamond is
also novel as existing model checking techniques for synchronous
perfect recall handle knowledge modalities quite differently (see Sec-
tion 3).

Example 5.3. The automaton for the second conjunct in formula (6)
is (b ? (a ?A(kbka)n−1¬holds(b,v))×AS)×AS .

Size of automata. It is easily seen that the alternation depth ad(φ)
of a formula φ is equal to the number of subset construction per-
formed when constructing the automaton Aφ for the formula φ. In
detail, we obtain the following lemma.

Lemma 5.4. The size of Aφ is at most exp(ad(φ), |S||φ|+ad(φ)).

Proof. By induction on φ. Base case, atom.2 |Ap| = |S| =
exp(ad(p), |S||p|+ad(p)). Induction step, negation. Assume φ
is closed. Then |A¬φ| = |Aφ| ≤ (by the induction assump-
tion) ≤ exp(ad(φ), |S||φ|+ad(φ)) = (since φ is closed) =
exp(ad(¬φ), |S||¬φ|+ad(¬φ)). Assume instead φ is open. Then
|A¬φ| = 2|Aφ| · |S| ≤ (by the induction assumption) ≤
2exp(ad(φ),|S||φ|+ad(φ)) · |S| = exp(ad(φ) + 1, |S||φ|+ad(φ)) ·
|S| = (since φ is open) = exp(ad(¬φ), |S||¬φ|+ad(φ)) ·
|S| ≤ exp(ad(¬φ), |S||¬φ|+ad(φ)+1) = (since φ is open) =
exp(ad(¬φ), |S||¬φ|+ad(¬φ)). Induction step, knowledge diamond:
|Akaφ| = |Aφ| · |S| ≤ (by the induction assumption) ≤
exp(ad(φ), |S||φ|+ad(φ)) · |S| ≤ exp(ad(φ), |S||φ|+1+ad(φ)) =
exp(ad(kaφ), |S||kaφ|+ad(kaφ)). Induction steps for remaining op-
erators follows similarly from the equalities |A3φ| = |A�φ| =
|A�φ| = 2 · |S| and |Aφ∧φ′ | = |Aφ∨φ′ | = |Aφ| · |Aφ′ |.

Note that the upper bound in Lemma 5.4 depends on the con-
ditional automata construction for negation; defining A¬φ :=
((Aφ)d)c × AS when φ is closed would lead to an upper bound
which can be non-elementary worse than the upper bound in Lemma
5.4. For example, the automaton for the formula (�ka)npwould then
require 2·n subset constructions instead of the n subset constructions
needed now (and needed by the existing model checking techniques).

On the other hand there are some more or less obvious optimiza-
tions that would reduce the exponential |φ| + ad(φ) in Lemma 5.4.
For example, the cross product with AS in Definition 5.2 is some-
times unnecessary and could be deferred. However, for ease of pre-
sentation we have chosen to ignore optimizations that do not effect
the the number of iterated exponentiations.

Correctness To establish Lemma 4.6, it remains to be shown that
the constructed automaton Aφ is correct, L(Aφ) = [[φ]]. First, we
show that the construction for negation is correct. We proceed by way
of three lemmas.

2 |Ap| = |S|+1 but for ease of presentation we approximate this to |S|; the
size of the state space is typically a very large number.

Lemma 5.5. If φ is closed, then Aφ is unambiguous.

Proof. By induction on closed φ. Base case:Ap is deterministic (and
so unambiguous) since AS is deterministic. Induction step for nega-
tion: Assume ψ is closed. By the induction assumption,Aψ is unam-
biguous. Therefore A¬ψ = (Aψ)c is unambiguous. Assume instead
ψ is open. ThenA¬ψ = ((Aψ)d)c ×AS is ambiguous since (Aψ)d

is deterministic and so unambiguous,AS is unambiguous and× pre-
serves unambiguity. Induction steps for conjunction, disjunction and
temporal modalities: ×, ×, etc. preserve unambiguity.

Let the language produced by any automaton A be the set P (A)
of words that would be accepted if we made every location an accept
location, i.e., σ ∈ P (A) iff there exists a run on word σ in A. It
follows immediately that the words accepted by the complement Ac
of an unambiguous automaton A are precisely the words produced
but not accepted by A.

Lemma 5.6. If A is unambiguous, then L(Ac) = P (A)− L(A).

Proof. Immediate.

The third and final lemma says that automaton Aφ produces ex-
actly the set of possible computation paths of the given system:

Lemma 5.7. P (Aφ) = L(AS).

Proof. By induction on φ using:

P (A×A′) = P (A) ∩ P (A′) (8)

P (AS) = L(AS) (9)

where (9) follows from the fact that every location in AS is an ac-
cepts location. Base case, atomic propositions: P (Ap) = P (AS) =
(by (9)) = L(AS). Induction step, negation. Assume φ is closed.
Then P (A¬φ) = P ((Aφ)c) = (by the induction assumption and the
fact that the operation (·)c of complementing the accept locations
preserve the set of produced words) = L(AS). Assume instead φ is
open. Then P (A¬φ) = P (((Aφ)d)c × AS). But ((Aφ)d)c is de-
terministic and so produces every word, P (((Aφ)d)c) = S∗. By (8)
and (9), P (A¬φ) = L(AS). Induction step, knowledge diamond:
From (8) and (9) and the fact that P (a ? Aφ) ⊇ P (Aφ). Induction
steps, temporal modalities: The constructions for temporal modali-
ties preserve the set of produced words. Induction step, disjunction
and conjunction: From (8).

By Lemmas 5.5, 5.6 and 5.7 we can conclude that the construction
for negation is correct, L(A¬φ) = L(AS)− L(Aφ). It follows that
the automaton Aφ is correct.

Lemma 5.8. L(Aφ) = [[φ]].

Proof. By induction on φ. The inductive case for negation follows
from Lemmas 5.5, 5.6 and 5.7; remaining cases are routine.

From Lemmas 5.4 and 5.8 we immediately obtain Lemma 4.6,
which establishes the main theorem, Theorem 4.5.

6 Conclusion
We considered the model checking complexity for the logic of
knowledge and past time in synchronous systems with perfect re-
call, a class of systems often seen in applications. Previous results
show that the program complexity is in k-EXPTIME for specifica-
tions with k nested knowledge modalities. We proved that the pro-
gram complexity is in PTIME (respectively, EXPTIME) for positive
(respectively, negative) specifications irrespective of the number of
nested modalities.

Acknowledgements The authors would like to thank Nir Piterman
for valuable comments on earlier drafts of this paper.

A Finite automata
In this appendix we briefly recall some basic automata theory. An au-
tomaton over an alphabet Σ is a structureA = 〈Σ, Q,Q0, ρ, F 〉 con-
sisting of a finite set Q of locations, a non-empty set Q0 ⊆ Q of ini-
tial locations, a (non-deterministic) transition function ρ : Q×Σ −→
2Q, and a set F ⊆ Q of accepting locations. A run over a word
σ = (s1, . . . , sn) ∈ Σ∗ is a finite sequence q0, . . . , qn of locations
such that q0 ∈ Q0 and qi ∈ ρ(qi−1, si) for all 1 ≤ i ≤ n. The
run q0, . . . , qn is accepting if qn ∈ F . The word σ = s1, . . . , sn is
accepted by the automaton if some run over the word σ is accepting.
The language accepted by the automatonA is the set L(A) of words
accepted by A. The size |A| of automaton A is its number |Q| of
locations.

Automaton A is deterministic if there is exactly one initial lo-
cation, |Q0| = 1, and each letter s ∈ Σ determines a func-
tional transition relation, |ρ(q, s)| = 1 for q ∈ Q. Automaton A
is unambiguous if every run on an accepted word is an accepting
run. Specifically, any deterministic automaton is unambiguous. By
means of a subset construction we can form a deterministic automa-
ton Ad with the same language as A, L(Ad) = L(A). In detail,
Ad = 〈Σ, 2Q, {Q0}, ρd, F d〉 where ρd(X, s) =

S
q∈X

ρ(q, s) and

F d = {X ⊆ Q : X ∩ F 6= ∅}.
The cross product of two automata is an automaton A × A′ that

accepts the intersection of their languages, L(A × A′) = L(A) ∩
L(A′); in detail, given two automata A = 〈Σ, Q,Q0, ρ, F 〉 and
A′ = 〈Σ, Q′, Q′0, ρ′, F ′〉 over the same alphabet Σ, the cross prod-
uctA×A′ is the automaton 〈Σ, Q×Q′, Q0×Q′0, ρ× ρ′, F ×F ′〉
where (ρ × ρ′)(〈q, q′〉, s) = ρ(q, s) × ρ′(q′, s). Defined similarly,
the dual cross product A×A′ of two automata accepts the union of
their languages, L(A×A′) = L(A) ∪ L(A′); in detail, A×A′ :=
〈Σ, Q × Q′, Q0 × Q′0, ρ × ρ′, {〈q, q′〉 : q ∈ F or q′ ∈ F ′}〉. Au-
tomata A×A′ and A×A′ are unambiguous if both A and A are.

Given a transition system S = 〈S,R, I0〉, we can form a corre-
sponding automaton AS over alphabet S whose language consists
precisely of all computation path of S: we add a fresh state ι to S
and make this the initial state in the automaton; we add a transition
from the new initial state ι to each state in I0; we label each transi-
tion 〈s, s′〉 (whether newly added or ”old” from R) with the target
state s′; finally we mark every location in S as accepting. In detail,
AS := 〈S, S∪{ι}, {ι}, ρR, S〉where ρR(s, s′) = {s′ | 〈s, s′〉 ∈ R}
if s ∈ S and ρR(ι, s′) = {s′} if s′ ∈ I0 otherwise ρR(ι, s′) = ∅.

REFERENCES
[1] Rajeev Alur, Pavol Cerný, and Swarat Chaudhuri, ‘Model checking

on trees with path equivalences’, in TACAS, eds., Orna Grumberg and
Michael Huth, volume 4424 of Lecture Notes in Computer Science, pp.
664–678. Springer, (2007).

[2] Ananda Basu, Saddek Bensalem, Doron Peled, and Joseph Sifakis,
‘Priority scheduling of distributed systems based on model check-
ing’, in CAV ’09: Proceedings of the 21st International Conference on
Computer Aided Verification, pp. 79–93, Berlin, Heidelberg, (2009).
Springer-Verlag.

[3] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking, The
MIT Press, Cambridge, Massachusetts, 1999.

[4] Catalin Dima, ‘Revisiting satisfiability and model-checking for ctlk
with synchrony and perfect recall’, in Proceedings of the 9th In-
ternational Workshop on Computational Logic in Multi-Agent Sys-
tems (CLIMA IX), eds., Michael Fisher, Fariba Sadri, and Michael

Thielscher, volume 5405 of Lecture Notes in Computer Science, pp.
117–131. Springer, (2008).

[5] R. Fagin, J. Y. Halpern, and M. Y. Vardi, ‘What can machines know?
On the properties of knowledge in distributed systems’, Journal of the
ACM, 39(2), 328–376, (1992).

[6] Ronald Fagin, Joseph Y. Halpern, Moshe Y. Vardi, and Yoram Moses,
Reasoning about knowledge, MIT Press, Cambridge, MA, USA, 1995.

[7] Tim French, Ron van der Meyden, and Mark Reynolds, ‘Axioms for
logics of knowledge and past time: Synchrony and unique initial states’,
in Advances in Modal Logic, eds., Renate A. Schmidt, Ian Pratt-
Hartmann, Mark Reynolds, and Heinrich Wansing, pp. 53–72. King’s
College Publications, (2004).

[8] Peter Gammie and Ron van der Meyden, ‘Mck: Model checking the
logic of knowledge’, in CAV ’04: Proceedings of the 6th International
Conference on Computer Aided Verification, eds., Rajeev Alur and
Doron Peled, volume 3114 of Lecture Notes in Computer Science, pp.
479–483. Springer, (2004).

[9] Dimitar P. Guelev and Catalin Dima, ‘Model-checking strategic ability
and knowledge of the past of communicating coalitions’, in Proceed-
ings of the 16th International Workshop on Declarative Agent Lan-
guages and Technologies (DALT08), eds., Matteo Baldoni, Tran Cao
Son, M. Birna van Riemsdijk, and Michael Winikoff, volume 5397 of
Lecture Notes in Computer Science, pp. 75–90. Springer, (2008).

[10] Magdalena Kacprzak, Wojciech Nabialek, Artur Niewiadomski, Woj-
ciech Penczek, Agata Pólrola, Maciej Szreter, Bozena Wozna, and An-
drzej Zbrzezny, ‘Verics 2007 - a model checker for knowledge and real-
time’, Fundam. Inform., 85(1-4), 313–328, (2008).

[11] Alessio Lomuscio, Hongyang Qu, and Franco Raimondi, ‘Mcmas: A
model checker for the verification of multi-agent systems’, in CAV ’09:
Proceedings of the 21st International Conference on Computer Aided
Verification, pp. 682–688, Berlin, Heidelberg, (2009). Springer-Verlag.

[12] Amir Pnueli and Aleksandr Zaks, ‘On the merits of temporal testers’, in
25 Years of Model Checking, eds., Orna Grumberg and Helmut Veith,
volume 5000 of Lecture Notes in Computer Science, pp. 172–195.
Springer, (2008).

[13] Nikolay V. Shilov and Natalya Olegovna Garanina, ‘Model check-
ing knowledge and fixpoints’, in FICS, eds., Zoltán Ésik and Anna
Ingólfsdóttir, volume NS-02-2 of BRICS Notes Series, pp. 25–39. Uni-
versity of Aarhus, (2002).

[14] Ron van der Meyden, ‘Common knowledge and update in finite envi-
ronments’, Inf. Comput., 140(2), 115–157, (1998).

[15] Ron van der Meyden and Nikolay V. Shilov, ‘Model checking knowl-
edge and time in systems with perfect recall (extended abstract)’, in
Proceedings of the 19th annual conference on Foundations of Soft-
ware Technology and Theoretical Computer Science (FST TCS 1999),
eds., C. Pandu Rangan, Venkatesh Raman, and Ramaswamy Ramanu-
jam, volume 1738 of Lecture Notes in Computer Science, pp. 432–445.
Springer, (1999).

