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Abstract. We give a general proof-theoretic method for establishing
Craig interpolation for displayable logics, based upon an analysis of the
individual proof rules of their display calculi. Using this uniform method,
we establish interpolation for a spectrum of display calculi differing in
their structural rules, including those for multiplicative linear logic, mul-
tiplicative additive linear logic and ordinary classical logic.
Our analysis at the level of proof rules also provides new insights into the
reasons why interpolation fails, or seems likely to fail, in many substruc-
tural logics. Specifically, we identify contraction as being particularly
problematic for interpolation except in special circumstances.

1 Introduction

I believe or hope that Display logic can be used as a basis for establishing
an interpolation theorem; but that remains to be seen.

Nuel D. Belnap, Display Logic [1], 1982

Craig’s original interpolation theorem for first-order logic [5] states that for
any provable entailment F ` G between formulas, an “intermediate formula” or
interpolant I can be found such that both F ` I and I ` G are provable and
every nonlogical symbol occurring in I occurs in both F and G. This seemingly
innocuous property turns out to have considerable mathematical significance be-
cause Craig interpolation is intimately connected with consistency, compactness
and definability (see [7] for a survey). In computer science, it plays an important
rôle in settings in which modular decomposition of complex theories is a con-
cern. In recent years, interpolation has been applied to such various problems
as invariant generation [15], type inference [11], model checking [4, 14] and the
decomposition of complex ontologies [12]. Thus the question of whether a given
logic satisfies interpolation is of practical importance in computer science as well
as theoretical importance in logic.

In this paper we give a general proof-theoretic method, based on Belnap’s
display logic, for establishing Craig interpolation in propositional logics. Display
logic is a general consecution framework which allows us to combine multiple
families of logical connectives into a single display calculus [1]. Display calculi
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are characterised by the availability of a “display-equivalence” relation on con-
secutions which allows us to rearrange a consecution so that a selected sub-
structure appears alone on one side of the proof turnstile. Various authors have
shown how to capture large classes of modal and substructural logics within
this framework [2, 10, 13, 19], and much work has been done to characterise the
class of Kripke frame conditions which can be captured by displayed logics [9]. A
major advantage of display calculi is that they enjoy an extremely general cut-
elimination theorem which relies on checking eight simple conditions on the rules
of the calculus. Restall has also shown how decidability results can be obtained
from cut-free display calculi [16].

In the case that a cut-free sequent calculus à la Gentzen is available, inter-
polation can typically be established by induction over cut-free derivations (see
e.g. [3]). Besides its theoretical elegance, this method has the advantage that
bounds on the size of the interpolant may easily be obtained as a function of the
size of the derivation. One of the main criticisms levelled against display calculi
is that they do not enjoy a true sub-formula property and hence, in contrast
to the situation in sequent calculus, Belnap’s general cut-elimination theorem
cannot be used to prove results like interpolation for display calculi. Indeed, to
our knowledge there are no interpolation theorems in the literature based on
display logic. Here we (partially) rebut the aforementioned criticism by giving a
general Craig interpolation result for a large class of displayed logics.

Our methodology revolves around the construction of a set of interpolants
at each step of the proof, one for every possible “rearrangement” of the conse-
cution under consideration, where the notion of rearrangement is given by the
combination of display-equivalence and any native associativity principles for the
binary structural connectives. That is, we show that, given interpolants for all
rearrangements of the premises, one can find interpolants for all rearrangements
of the conclusion. This gives us a very general interpolation method that applies
to a wide range of logics with a display calculus presentation, and that is poten-
tially extensible to even bigger classes of logics. However, some proof rules enjoy
the aforementioned local property only under strong restrictions, with contrac-
tion being the most problematic among the rules we study in this paper. This
gives us a significant new insight into the reasons why interpolation fails, or is
likely to fail, in many substructural logics.

The remainder of this paper is structured as follows. In Section 2 we intro-
duce the display calculi that we shall work with throughout the paper. Section 3
introduces our general methodology and shows how to apply it to the more
straightforward display calculus proof rules. Sections 4 and 5 then respectively
treat binary logical rules and structural rules, which are considerably more com-
plicated. Section 6 concludes.

2 Display calculus fundamentals

In this section we give a basic display calculus which can be customised to
various logics by adding structural rules. We note that, in general, one may
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formulate display calculi for logics involving arbitrarily many families of formula
and structure connectives. In order to limit the bureaucracy and general technical
overhead associated with such generality, however, our display calculi in this
paper are limited to those employing only a single family of connectives.

Definition 2.1 (Formula). Formulas are given by the following grammar,
where P ranges over a fixed infinite set of propositional variables:

F ::= P | > | ⊥ | ¬F | F & F | F ∨ F | F → F | >a | ⊥a | F &a F | F ∨a F

We write V(F ) to denote the set of propositional variables occurring in F . We
write F,G, I etc. to range over formulas. The subscript “a” is for “additive”.

Definition 2.2 (Structure / consecution). Structures are given by the fol-
lowing grammar, where F ranges over formulas:

X ::= F | ∅ | ]X | X ; X

A structure is called atomic if it is either a formula or ∅. When we reason by
structural induction on a structure X , we typically conflate the cases X = F
and X = ∅ into the case where X is atomic. We write W,X, Y, Z etc. to range
over structures, and A,B etc. to range over atomic structures.

If X and Y are structures then X ` Y is a consecution. We write C, C′ etc.
to range over consecutions.

Definition 2.3 (Antecedent and consequent parts). A part of a structure
X is an occurrence of one of its substructures. We classify the parts of X as
either positive or negative in X as follows:

– X is a positive part of itself;
– any negative (positive) part of X is a positive (negative) part of ]X ;
– any positive (negative) part of X1 or of X2 is a positive (negative) part of

the structure X1 ; X2.

Z is said to be an antecedent (consequent) part of a consecution X ` Y if it is a
positive (negative) part of X or a negative (positive) part of Y .

The following definition gives the proper reading of consecutions as formulas.

Definition 2.4 (Validity). For any structure X we define the formulas ΨX

and ΥX by mutual structural induction on X as follows:

ΨF = F ΥF = F
Ψ∅ = > Υ∅ = ⊥

Ψ]X = ¬ΥY Υ]X = ¬ΨX

ΨX1;X2
= ΨX1

& ΨX2
ΥX1 ;X2

= ΥX1
∨ ΥX2

X ` Y is said to be valid in a logic L iff ΨX ` ΥY is a valid entailment of L.
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Identity rules:

(Id)
P ` P

X
′ ` Y

′

X ` Y ≡D X ′ ` Y ′ (≡D)
X ` Y

Logical rules:

∅ ` X
(>L)

> ` X
(>R)

∅ ` >

F ;G ` X
(&L)

F & G ` X

X ` F Y ` G
(&R)

X ; Y ` F & G

(⊥L)
⊥ ` ∅

X ` ∅
(⊥R)

X ` ⊥

F ` X G ` Y
(∨L)

F ∨G ` X ; Y

X ` F ;G
(∨R)

X ` F ∨G

]F ` X
(¬L)

¬F ` X

X ` ]F
(¬R)

X ` ¬F

X ` F G ` Y
(→L)

F → G ` ]X ; Y

X ; F ` G
(→R)

X ` F → G

Fig. 1. Proof rules for the basic display calculus D0.

Definition 2.5 (Display-equivalence). We define display-equivalence ≡D to
be the least equivalence on consecutions containing the (symmetric) relation�D

given by the following display postulates :

X ;Y ` Z �D X ` ]Y ;Z �D Y ;X ` Z
X ` Y ;Z �D X ; ]Y ` Z �D X ` Z;Y
X ` Y �D ]Y ` ]X �D ]]X ` Y

We remark that our notion of display-equivalence builds in the commuta-
tivity of ; on the left and right of consecutions, i.e., we are assuming both &
and ∨ commutative. This makes life slightly easier, but is not crucial to our
developments.

Proposition 2.6 (Display property). For any antecedent (consequent) part
Z of a consecution X ` Y , one can construct a structure W such that X ` Y ≡D

Z ` W (X ` Y ≡D W ` Z respectively).

Proof. (Sketch) The required property follows from the fact that, for any con-
secution X ` Y , the display postulates of Defn. 2.5 facilitate the display of each
of the immediate substructures of X and Y (as the antecedent or consequent
as appropriate); it follows that any arbitrary substructure can be displayed by
iteration. ut

The process of rearranging a consecution X ` Y into the consecution Z ` W
or W ` Z via display-equivalence in Prop. 2.6 is called displaying Z, and Z is
said to be displayed in the resulting consecution.

In Figure 1 we give the proof rules of a basic display calculus D0 which only
uses the logical connectives >, ⊥, ¬, &, ∨, and →. Figure 2 presents “structure-
free” proof rules for the additive logical connectives >a, ⊥a, &a and ∨a, and
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(⊥aL)
⊥a ` X

Fi ` X
i ∈ {1, 2} (&aL)

F1 &a F2 ` X

F ` X G ` X
(∨aL)

F ∨a G ` X

(>aR)
X ` >a

X ` F X ` G
(&aR)

X ` F &a G

X ` Fi

i ∈ {1, 2} (∨aR)
X ` F1 ∨a F2

Fig. 2. Structure-free proof rules for the “additive” logical connectives.

∅;X ` Y
(∅CL)

X ` Y

X ` Y
(∅WL)

∅;X ` Y

X ` Y ; ∅
(∅CR)

X ` Y

X ` Y
(∅WR)

X ` Y ; ∅

(W ;X);Y ` Z
(A)

W ; (X;Y ) ` Z

X ` Z
(W)

X;Y ` Z

X;X ` Y
(C)

X ` Y

Fig. 3. Some structural rules.

Figure 3 presents some structural rules governing the behaviour of the structural
connectives ∅, ‘;’ and ]. All of these rules should be regarded as optional; if D is
a display calculus and R is a list of rules drawn from those in Figures 2 and 3
then the extension D+R of D is the display calculus obtained from D by adding
all of the rules in R. We write D+

0 to abbreviate the extension of D0 with all of
the structure-free rules in Figure 2.

Since we will establish interpolation by induction over cut-free derivations,
we have omitted the usual cut rule from D0. The following theorem establishes
that this omission is harmless.

Theorem 2.7. The following cut rule is admissible in any extension of D0:

X ` F F ` Y
(Cut)

X ` Y

Proof. (Sketch) As usual, given the display property (Prop. 2.6), one just verifies
that the proof rules in Figures 1, 2 and 3 meet Belnap’s conditions C1–C8
guaranteeing cut-elimination [1]. ut

Comment 2.8. Under the translation from consecutions to formulas given by
Defn. 2.4, certain of our display calculi can be understood as follows:

DMLL = D0 + (A), (∅CL), (∅CR), (∅WL), (∅WR) is multiplicative linear logic.

DMALL = D+
0 + (A), (∅CL), (∅CR), (∅WL), (∅WR) is multiplicative additive lin-

ear logic;

DCL = D0+(A), (∅CL), (∅CR), (W), (C) is standard classical propositional logic.
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3 Interpolation: unary and structure-free rules

We now turn to the main topic of this paper, the question of whether interpola-
tion holds in our display calculi.

Definition 3.1 (Interpolation). A display calculus D is said to have the in-
terpolation property if for any D-provable consecution X ` Y one can find an
interpolant, defined as a formula I such that X ` I and I ` Y are both D-
provable and such that V(I) ⊆ V(X) ∩ V(Y ), where V(Z) denotes the set of
propositional variables occurring in the structure Z.

We note that, by cut-admissibility (Theorem 2.7), the existence of an inter-
polant for a consecution C implies the provability of C.

We aim to emulate the spirit of the classical proof-theoretic approach to
interpolation for cut-free sequent calculi such as Gentzen’s LK (see e.g. [3]). That
is, given a cut-free display calculus proof of a consecution, we aim to construct
its interpolant by induction over the structure of the proof. However, the display
postulates introduce a difficulty: for example, given an interpolant forX ; Y ` Z,
it is not clear how to use it to obtain an interpolant for X ` ]Y ; Z. In fact,
similar problems arise for sequent calculi as well (e.g., in the classical negation
rules of LK), and the usual solution is to simultaneously construct interpolants
for all possible decompositions of each sequent. We shall employ an analogue of
this strategy for the setting of display calculi: we shall simultaneously construct
interpolants for all possible rearrangements of each consecution, where the notion
of “rearrangement” is provided by the combination of display-equivalence and,
if it is present in the calculus, the associativity rule (A). The latter inclusion is
necessary for similar reasons to those for the inclusion of the display postulates.
(A similar combination of display-equivalence and associativity was employed
by Restall in his work on decidable display calculi for relevant logics [16]).

Definition 3.2. Let D be a display calculus and C, C′ be consecutions. We
define C →A C′ to hold iff D includes (A) and C is the premise of an instance of
(A) with conclusion C′. Then the relation →AD is defined to be →A ∪ �D and
the relation ≡AD is defined to be the reflexive-transitive closure of →AD.

Clearly ≡D ⊆≡AD and ≡AD is ≡D in any display calculus without (A).

Comment 3.3. The relation ≡AD is indeed an equivalence relation, because the
reverse direction of →A is included in ≡AD via the following:

W ; (X ;Y ) ` Z ≡D (Y ;X);W ` Z →A Y ; (X ;W ) ` Z ≡D (W ;X);Y ` Z

Furthermore, the following proof rule (≡AD) is derivable in any extension of D0:

X ′ ` Y ′

X ` Y ≡AD X ′ ` Y ′ (≡AD)
X ` Y

Our definition of ≡AD gives rise to the following “local interpolation” prop-
erty for display calculus proof rules.
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Definition 3.4 (LADI property). A proof rule of a display calculus D with
conclusion C is said to have the local AD-interpolation (LADI) property if for
each premise Ci we have interpolants for all C′

i ≡AD Ci, we can construct inter-
polants for all C′ ≡AD C.

Lemma 3.5. If the proof rules of a display calculus D each have the LADI
property, then D has the interpolation property.

Proof. We must show any D-provable consecution C has an interpolant. We prove
by induction on the proof of C that we have interpolants for all C′ ≡AD C, using
LADI for the proof rules at each induction step. In particular, this yields an
interpolant for C. ut

Thus the LADI property gives a sufficient condition, in terms of individual
proof rules, for interpolation to hold in display calculi. In the remainder of this
section, we shall show that this property holds for the single-premise rules of
D0 and the structure-free rules for the additives in Figure 2. Then, in later
sections, we shall examine the situation for the two-premise rules of D0 and for
the structural rules in Figure 3.

In our proofs, it will be essential to keep track of the atomic parts of a conse-
cution being shuffled around using ≡AD, and possibly substitute other structures
for these parts. It is intuitively obvious how to do this; the next definitions are
intended to formalise the concept.

Definition 3.6 (Substitution). Let Z be a part of the structure X . We write
the substitution notation X [Y/Z], where Y is a structure, to denote the replace-
ment of Z (which we emphasise is a substructure occurrence) by the structure
Y . We extend substitution to consecutions in the obvious way.

Definition 3.7 (Congruence). Let C →AD C′, whence C and C′ are obtained
by assigning structures to the structure variables occurring in our statement
of some display postulate (see Defn. 2.5) or the rule (A) (see Figure 3). Two
atomic parts A and A′ of C and C′ respectively are said to be congruent if they
occupy the same position in the structure assigned to some structure variable. For
example, the two indicated occurrences of F are congruent inX ; (F ; ∅) ` Z →AD

X ` ](F ; ∅);Z, as are the two indicated occurrences of ∅, because they occupy
the same position in the structure (F ; ∅) assigned to the structure variable Y in
our statement of the display postulate X ;Y ` Z �D X ` ]Y ;Z.

We extend congruence to atomic parts of consecutions related by ≡AD by
reflexive-transitive induction on ≡AD as follows:

– If C = C′ then any part of C is congruent to itself.
– If C →AD C′′ ≡AD C′ then parts Z and Z ′ of C and C′ respectively are

congruent if there is a part Z ′′ of C′′ such that Z is congruent to Z ′′ and Z ′′

is congruent to Z ′.

Finally, we extend congruence to non-atomic parts of consecutions as follows.
If C ≡AD C′ and Z, Z ′ are parts of C, C′ respectively then Z and Z ′ are congruent
if every atomic part A of Z is congruent to an atomic part A′ of Z ′, such that
the position of A in Z is identical to the position of A′ in Z ′.
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Comment 3.8. If C ≡AD C′ then, for any atomic part A of C, there is a unique
congruent atomic part of C′. Moreover, congruent parts of C and C′ must be
occurrences of the same structure.

For convenience, we usually drop the explicit mention of congruent parts of
≡AD-related consecutions by using identical names for the congruent parts. E.g.,
when we write C[Z/A] ≡AD C′[Z/A], we mean that the two indicated occurrences
of A are congruent3.

Lemma 3.9 (Substitution lemma). If C ≡AD C′ and A is an atomic part of
C then, for any structure Z, we have C[Z/A] ≡AD C′[Z/A].

Proof. Since the display postulates and the associativity rule (A) are each closed
under substitution of an arbitrary structure for congruent atomic parts, this
follows by an easy reflexive-transitive induction on C ≡AD C′. ut

Proposition 3.10. The proof rules (≡D), (Id), (>L), (>R), (⊥L), (⊥R), (¬L),
(¬R), (&L), (∨R), and (→R) each have the LADI property in any extension
of D0. Furthermore, the associativity rule (A) has the LADI property in any
extension of D0+(A), and the structure-free rules (>aR), (⊥aL), (&aL), (&aR),
(∨aL), and (∨aR) each have the LADI property in any extension of D+

0 .

Proof. We treat each proof rule separately, grouping together the rules for which
the arguments are similar.

Case (≡D).

X ′ ` Y ′

X ` Y ≡D X ′ ` Y ′ (≡D)
X ` Y

By assumption we have interpolants for allW ′ ` Z ′ ≡AD X ′ ` Y ′, and we require
to find interpolants for all W ` Z ≡AD X ` Y . For any such W ` Z we have
W ` Z ≡AD X ` Y ≡D X ′ ` Y ′ by assumption, and thus W ` Z ≡AD X ′ ` Y ′

because ≡D ⊆≡AD (and ≡AD is transitive). Thus we are done by the case as-
sumption.

Case (A).

(W ;X);Y ` Z
(A)

W ; (X ;Y ) ` Z

By assumption we have interpolants for all W ′ ` Z ′ ≡AD (W ;X);Y ` Z and
we require to find interpolants (in D0 + (A)) for all U ` V ≡AD W ; (X ;Y ) ` Z.
For any such U ` V we have U ` V ≡AD W ; (X ;Y ) ` Z ≡AD (W ;X);Y ` Z in
D0 + (A), so are done by the case assumption.

3 We observe that any ambiguity between different occurrences of the same structure
can, in principle, be resolved by uniquely labelling all such occurrences.
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Cases (Id), (⊥L), (>R). We just show the case of (Id) here; the other two cases
are similar.

(Id)
P ` P

We require to find interpolants for all W ` Z ≡AD P ` P , and proceed by
reflexive-transitive induction on ≡AD. In the reflexive case we have W ` Z =
P ` P and choose the interpolant to be P , which obviously satisfies the condi-
tions on interpolants. In the transitive case we have W ` Z →AD W ′ ` Z ′ ≡AD

P ` P , whence by induction hypothesis we have an interpolant I for W ′ ` Z ′.
We distinguish cases on W ` Z →AD W ′ ` Z ′. Since P ` P contains no semi-
colons, it is clear by inspection of the display postulates and the associativity
rule that neither can W ′ ` Z ′. Thus W ` Z →AD W ′ ` Z ′ arises by applying a
display postulate from the block:

X ` Y �D ]Y ` ]X �D ]]X ` Y

We show a typical case, X ` Y →AD ]Y ` ]X . In this case, we have by induc-
tion hypothesis that V(I) ⊆ V(]Y ) ∩ V(]X), and ]Y ` I and I ` ]X are both
D0-provable. We choose ¬I to be the interpolant for X ` Y . Clearly the vari-
able condition is satisfied because V(]X) = V(X) and V(]Y ) = V(Y ). For the
provability conditions we proceed as follows:

·
·
·

I ` ]X
(≡D)

X ` ]I
(¬R)

X ` ¬I

·
·
·

]Y ` I
(≡D)

]I ` Y
(¬L)

¬I ` Y

The other display postulate cases are similar.

Cases (>aR), (⊥aL). We show the case of (⊥aL): the case of (>aR) is similar.

⊥a ` X

We require to produce interpolants for all W ` Z ≡AD ⊥a ` X. Suppose the in-
dicated ⊥a occurs in Z (as a negative part). We pick the interpolant ¬⊥a, which
trivially satisfies the variable condition. We have that W ` ¬⊥a and ¬⊥a ` Z
are derivable as follows:

(⊥aL)
⊥a ` ]W

(≡D)
W ` ]⊥a

(¬R)
W ` ¬⊥a

(⊥aL)
⊥a ` U

(≡D)
¬⊥a ` Z

In the right hand derivation, we use the fact that the indicated ⊥a in ⊥a ` X is
an antecedent part of ¬⊥a ` Z because it is assumed to occur in Z, whence we
have ¬⊥a ` Z ≡D ⊥a ` U for some U by the display property (Prop. 2.6).

If the indicated ⊥a does not occur in Z then it instead occurs in W , in
which case we pick interpolant ⊥a and the argument is similar to the above.
This completes the case.
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Cases (>L), (⊥R), (¬L), (¬R), (&L), (∨R), (→R), (&aL), (∨aR). We show
the case of (&L); the other cases are similar.

F ;G ` X
(&L)

F & G ` X

By assumption we have interpolants for all W ′ ` Z ′ ≡AD F ;G ` X, and we
require to find interpolants for all W ` Z ≡AD F & G ` X.

If W ` Z ≡AD F & G ` X then, by Lemma 3.9, we have that

(W ` Z)[F ;G/F & G] ≡AD F ;G ` X

(where F&G is the indicated occurrence in F & G ` X). Let I be the interpolant
for (W ` Z)[F ;G/F & G] given by assumption. We claim that I is also an
interpolant for W ` Z.

We assume that the indicated F & G occurs in W ; the case where it in-
stead occurs in Z is similar. In this case we have (W ` Z)[F ;G/F & G] =
W [F ;G/F & G] ` Z. By assumption we have W [F ;G/F & G] ` I and I ` Z
provable with V(I) ⊆ V(W [F ;G/F & G])∩V(Z). Then we have V(I) ⊆ V(W )∩
V(Z) as required since clearly V(W ) = V(W [F ;G/F & G]). Since I ` Z is prov-
able by assumption, it just remains to show that W ` I is provable. The required
proof is constructed as follows:

·
·
·

W [F ;G/F & G] ` I
(≡D)

F ;G ` S
(&L)

F & G ` S
(≡D)

W ` I

where S is a placeholder for a consequent structure obtained by displaying the
indicated F & G in W ` I. The fact that W [F ;G/F & G] ` I ≡D F ;G ` S
follows from the fact that W ` I ≡D F & G ` S and Lemma 3.9. This completes
the case.

Cases (&aR), (∨aL). We show the case of (∨aL); the case of (&aR) is similar.

F ` X G ` X

F ∨a G ` X

By assumption we have interpolants for all W1 ` Z1 ≡AD F ` X and for all
W2 ` Z2 ≡AD G ` X, and we must produce interpolants for all W ` Z ≡AD

F ∨a G ` X.
Suppose that the indicated F∨aG occurs in Z. Using the fact that F ∨a G ` X ≡AD

W ` Z, we have by Lemma 3.9 :

F ` X ≡AD (W ` Z)[F/F ∨a G] = W ` Z[F/F ∨a G]
G ` X ≡AD (W ` Z)[G/F ∨a G] = W ` Z[G/F ∨a G]
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Let I1 and I2 be the interpolants given by assumption for W ` Z[F/F ∨a G] and
W ` Z[G/F ∨a G] respectively. We claim that ¬(¬I1 ∨a I2) is an interpolant4

for W ` Z. First we check the variable condition. We have by assumption:

V(I1) ⊆ V(W ) ∩ V(Z[F/F ∨a G]) ⊆ V(W ) ∩ V(Z)
V(I2) ⊆ V(W ) ∩ V(Z[G/F ∨a G]) ⊆ V(W ) ∩ V(Z)

Thus clearly we have V(¬(¬I1 ∨a ¬I2)) ⊆ V(W ) ∩ V(Z) as required. Next we
check the provability conditions. Given that W ` I1 and W ` I2 are provable by
assumption, we can derive W ` ¬(¬I1 ∨a ¬I2) as follows:

·
·
·

W ` I1
(≡D)

]I1 ` ]W
(¬L)

¬I1 ` ]W

·
·
·

W ` I2
(≡D)

]I2 ` ]W
(¬L)

¬I2 ` ]W
(∨aL)

¬I1 ∨a ¬I2 ` ]W
(≡D)

W ` ](¬I1 ∨a ¬I2)
(¬R)

W ` ¬(¬I1 ∨a ¬I2)

Finally, given that I1 ` Z[F/F ∨a G] and I2 ` Z[G/F ∨a G] are provable by as-
sumption, we must show that ¬(¬I1 ∨a ¬I2) ` Z is provable. First, since the
indicated F ∨a G occurs in Z by assumption, we have ¬(¬I1 ∨a ¬I2) ` Z ≡D

F ∨a G ` U for some U . Thus by Lemma 3.9 we have:

¬(¬I1 ∨a ¬I2) ` Z[F/F ∨a G] ≡D F ` U
¬(¬I1 ∨a ¬I2) ` Z[G/F ∨a G] ≡D G ` U

Using these display-equivalences, we can derive ¬(¬I1 ∨a ¬I2) ` Z as follows:

·
·
·

I1 ` Z[F/F ∨a G]
(≡D)

]Z[F/F ∨a G] ` ]I1
(¬R)

]Z[F/F ∨a G] ` ¬I1
(∨aR)

]Z[F/F ∨a G] ` ¬I1 ∨a ¬I2
(≡D)

](¬I1 ∨a ¬I2) ` Z[F/F ∨a G]
(¬L)

¬(¬I1 ∨a ¬I2) ` Z[F/F ∨a G]
(≡D)

F ` U

·
·
·

I2 ` Z[G/F ∨a G]
(≡D)

]Z[G/F ∨a G] ` ]I2
(¬R)

]Z[G/F ∨a G] ` ¬I2
(∨aR)

]Z[G/F ∨a G] ` ¬I1 ∨a ¬I2
(≡D)

](¬I1 ∨a ¬I2) ` Z[G/F ∨a G]
(¬L)

¬(¬I1 ∨a ¬I2) ` Z[G/F ∨a G]
(≡D)

G ` U
(∨aL)

F ∨a G ` U
(≡D)

¬(¬I1 ∨a ¬I2) ` Z

4 I1 &a I2 would also work, but this solution allows us to find an interpolant for (∨aL)
even when &a is not a connective of the logic.
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This completes the subcase when the indicated F ∨a G occurs in Z. If it instead
occurs in W , then we pick the interpolant to be I1 ∨a I2 and the argument is
similar. This completes the case, and the proof. ut

4 Interpolation: binary logical rules

In this section we extend our basic method for establishing local AD-interpolation
of display calculus proof rules to the binary logical rules of D0. These cases are
considerably more complex than the simple 0-ary, unary and structure-free log-
ical rules treated in the previous section, and we will rely heavily on various
substitutivity properties of ≡AD developed here.

The following notion of deletion of a part of a structure or consecution is
similar to the one used by Restall in [16]. Note that we write ]n to abbreviate a
string of n occurrences of ].

Definition 4.1 (Deletion). We say that a part Z of a structure X is delible
from X if X is not of the form ]nZ for some n ≥ 0, i.e., X contains a substructure
occurrence of the form ]nZ;W (up to commutativity of semicolon). If Z is delible
from X then we write X \ Z for the structure X [W/(]nZ;W )], the result of
deleting Z from X .

A part Z of a consecution C is delible from C if it can be deleted from the
side of C of which it is a part, and we write C \ Z for the consecution obtained
by deleting Z from the appropriate side of C.

Lemma 4.2 (Deletion lemma). Let C be a consecution and let A be an atomic
part of C. If C ≡AD C′ and A is delible from C then the following hold:

1. if A is delible from C′ then C \A ≡AD C′ \A;
2. if A is not delible from C′ then one side of C′ is of the form ]m(Z1;Z2) and

we have C \A ≡AD Z1 ` ]Z2 if (Z1;Z2) is an antecedent part of C′, and
C \A ≡AD ]Z1 ` Z2 if (Z1;Z2) is a consequent part of C′.

Proof. By reflexive-transitive induction on C ≡AD C′. In the reflexive case we
have C′ = C and are trivially done. In the transitive case we have C ≡AD C′′ →AD

C′, and we distinguish cases on C′′ →AD C′. We show two typical display postu-
late cases and the associativity case.

Case S ` T →AD ]S ` ]T . For 1, we assume that A is delible from ]S ` ]T
whence it is also delible from S ` T . Thus by induction hypothesis we have
C \A ≡AD (S ` T ) \A. It is easy to see that (S ` T ) \A ≡AD (]T ` ]S) \A so
that C \A ≡AD (]T ` ]S) \A as required.

For 2, suppose A is not delible from ]S ` ]T . Then A cannot be delible
from S ` T either, so by induction hypothesis one side of S ` T is of the form
]m(Z1;Z2), whence one side of ]T ` ]S is then of the form ]m+1(Z1;Z2) as
required. Assuming that Z1;Z2 is an antecedent part of S ` T (the other case
is similar), it is also an antecedent part of ]T ` ]S and thus we have C \A ≡AD

Z1 ` ]Z2 by the induction hypothesis as required.
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Case (S;T );U) ` V →AD S; (T ;U) ` V . For 1, assume that A is delible from
S; (T ;U) ` V . Then it is clearly also delible from (S;T );U ` V , and using the
induction hypothesis we easily have as required

C \A ≡AD ((S;T );U ` V ) \A ≡AD (S; (T ;U) ` V ) \A

For 2, suppose A is not delible from S; (T ;U) ` V , whence we must have V =
]nA and A is clearly not delible from (S;T );U ` V either. Using the induction
hypothesis we have one side of (S;T );U ` V of the form ]j(W1;W2), which
forces j = 0, W1 = (S;T ) and W2 = U with W1;W2 an antecedent part of
(S;T );U ` V . Thus by induction hypothesis we have C \A ≡AD S;T ` ]U . Then
note that we have one side of S; (T ;U) ` V of the form ]m(Z1;Z2) by taking
m = 0, Z1 = S and Z2 = (T ;U). Then we have

C \A ≡AD S;T ` ]U ≡D S ` ](T ;U) = Z1 ` ]Z2

where Z1;Z2 is an antecedent part of S; (T ;U) ` V , so that 2 holds as required.

Case S;T ` U →AD S ` ]T ;U . For 1, assume that A is delible from S ` ]T ;U .
There are two subcases. First, if A is delible from S;T ` U then we can easily
show using the induction hypothesis that:

C \A ≡AD (S;T ` U) \A ≡AD (S ` ]T ;U) \A

and are done. If A is not delible from S;T ` U then we must have U = ]nA,
whence we have by induction hypothesis that C \A ≡AD S ` ]T (because S;T
is an antecedent part of S;T ` U). Then 1 holds as required because we have

C \A ≡AD S ` ]T = (S ` ]T ; ]nA) \A = (S ` ]T ;U) \A

For 2, assume that A is not delible from S ` ]T ;U , which implies that S =
]nA. In that case A is delible from S;T ` U , so by induction hypothesis we have

C \A ≡AD (S;T ` U) \A = (]nA;T ` U) \A = T ` U

Thus by taking m = 0, Z1 = ]T and Z2 = U we have that one side of S ` ]T ;U
is of the form ]m(Z1;Z2) where

C \A ≡AD T ` U ≡D ]]T ` U = ]Z1 ` Z2

so that 2 holds as required. This completes the case, and the proof. ut

Lemma 4.3 (Substitutivity I). For all structures W,X, Y, Z, if W ` X ≡AD

W ` Y then Z ` X ≡AD Z ` Y , and if X ` W ≡AD Y ` W then X ` Z ≡AD

Y ` Z.

Proof. By Lemma 3.9 it suffices to consider the case in which Z is a formula
F . We prove both implications simultaneously by structural induction on W .
In each case we just show how to establish the first implication; the second is
similar.
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Case W atomic. Immediate by Lemma 3.9.

Case W = ]W ′. Using the lemma assumption we have

]X ` W ′ ≡D ]W ′ ` X ≡AD ]W ′ ` Y ≡D ]Y ` W ′

Thus ]X ` W ′ ≡AD ]Y ` W ′ so, using the part of the induction hypothesis given
by the second implication, we have

]F ` X ≡D ]X ` F ≡AD ]Y ` F ≡D ]F ` Y

Thus ]F ` X ≡AD ]F ` Y so, by Lemma 3.9, we have

]]F ` X = (]F ` X)[]F/F ] ≡AD (]F ` Y )[]F/F ] = ]]F ` Y

From this we easily have as required:

F ` X ≡AD ]]F ` X ≡AD ]]F ` Y ≡AD F ` Y

Case W = W1;W2. Using the lemma assumption we have the following:

W1 ` ]W2;X ≡D W1;W2 ` X ≡AD W1;W2 ` Y ≡D W1 ` ]W2;Y

Thus, using (the first part of) the induction hypothesis, we have

W2 ` ]F ;X ≡D F ` ]W2;X ≡AD F ` ]W2;Y ≡D W2 ` ]F ;Y

Applying the induction hypothesis again, we obtain

F ;G ` X ≡D G ` ]F ;X ≡AD G ` ]F ;Y ≡D F ;G ` Y

Then, by Lemma 4.2, we have as required

F ` X = (F ;G ` X) \G ≡AD (F ;G ` Y ) \G = F ` Y

ut

Definition 4.4. Let C ≡AD C′ and let Z, Z ′ be parts of C and C′ respectively.
We say Z ′ is built from Z, written Z ′

�Z, if every atomic part of Z ′ is congruent
to an atomic part of Z.

Lemma 4.5 (Substitutivity B). For any structures W,W ′, X, Y and for any
atomic structure A, all of the following hold:

1. if W ` X ≡AD W ′ ` Y and W ′
�W then ∃U. W ` A ≡AD W ′ ` U ;

2. if X ` W ≡AD W ′ ` Y and W ′
�W then ∃U. A ` W ≡AD W ′ ` U ;

3. if W ` X ≡AD Y ` W ′ and W ′
�W then ∃U. W ` A ≡AD U ` W ′;

4. if X ` W ≡AD Y ` W ′ and W ′
�W then ∃U. A ` W ≡AD U ` W ′.

(Moreover, in each case we still have W ′
� W under the replacement of X by

A.)

Proof. We show all four implications simultaneously by structural induction on
X . In each case, we just show how to establish the first implication; the others
are similar.
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Case X atomic. We have W ` X ≡AD W ′ ` Y by assumption, so by Lemma 3.9
we have W ` A ≡AD (W ′ ` Y )[A/X ]. However, since W ′

�W by assumption,
W ′ does not contain the indicated X , so we have W ` A ≡AD W ′ ` Y [A/X ],
and are done by taking U = Y [A/X ].

Case X = ]X ′. Using the case assumption we have

X ′ ` ]W ≡D W ` ]X ′ ≡AD W ′ ` Y

Now since W ′
�W it is also the case that W ′

�]W , so by part 2 of the induction
hypothesis we have A ` ]W ≡AD W ′ ` U ′ for some U ′. By Lemma 3.9, we then
have ]A ` ]W ≡AD (W ′ ` U ′)[]A/A]. However, since W ′

�W it follows that W ′

does not contain the indicated A, so we have

W ` A ≡D ]A ` ]W ≡AD W ′ ` U ′[]A/A]

and we are done by taking U = U ′[]A/A].

Case X = X1;X2. Using the case assumption we have

W ; ]X2 ` X1 ≡D W ` X1;X2 ≡AD W ′ ` Y

Since W ′
� W we also have W ′

� (W ; ]X2), so we have by part 1 of the in-
duction hypothesis that W ; ]X2 ` A ≡AD W ′ ` U ′ for some U ′. Thus we have
W ; ]A ` X2 ≡AD W ′ ` U ′, where W ′

� W and thus also W ′
� (W ; ]A). Using

part 1 of the induction hypothesis again we obtain, for some U ′′,

W ` A;A ≡D W ; ]A ` A ≡AD W ′ ` U ′′

It must hold that one of the two indicated occurrences of A is delible from
W ′ ` U ′′. Furthermore, since W ′

� W , neither indicated A can occur in W ′.
Thus by Lemma 4.2, we have

W ` A = (W ` A;A) \A ≡AD (W ′ ` U ′′) \A = W ′ ` (U ′′ \A)

whence we are done by taking U = U ′′ \A. This completes the proof. ut

The essence of the next lemma is that, if one finds that sub-parts of disjoint
parts of a consecution have been “mixed together” during an →AD-rewrite se-
quence, this must have been achieved with the help of associativity, in which
case we can use it to “unmix” those parts.

Lemma 4.6 (Filtration). Suppose that X ;Y ` U ≡AD W ` Z, where W �

X ;Y but W 6 X and W 6 Y . Then there exist W1 andW2 such that W ` Z ≡AD

W1;W2 ` Z with W1 �X and W2 � Y .
Similarly, if X ;Y ` U ≡AD Z ` W with W �X ;Y but W 6 X and W 6 Y ,

then there exist W1 and W2 such that Z ` W ≡AD Z ` W1;W2 with W1 � X
and W2 � Y .

Proof. We prove both implications simultaneously by induction on the structure
of W . We only show how to treat the first implication of the lemma; the second
is similar.
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Case W atomic. We are done by contradiction because W , being such that
W � X ;Y but W 6 X and W 6 Y by assumption, must contain at least one
semicolon.

Case W = ]W ′. We have X ;Y ` U ≡AD ]W ′ ` Z ≡AD ]Z ` W ′. Since ]W ′
�

X ;Y and ]W ′ 6 X and ]W ′ 6 Y , it follows that W ′
�X ;Y and W ′ 6 X and

W ′ 6 Y . Thus by (the second part of) the induction hypothesis there exist W ′
1,

W ′
2 that ]Z ` W ′ ≡AD ]Z ` W ′

1;W
′
2 and W ′

1 �X and W ′
2 � Y . Now we proceed

as follows:

]W ′ ` Z ≡D ]Z ` W ′ ≡AD ]Z ` W ′
1;W

′
2 ≡D ]W ′

1; ]W
′
2 ` Z

whence we are done by taking W1 = ]W ′
1 and W2 = ]W ′

2.

Case W = W1;W2. If W1 � X and W2 � Y or vice versa then we are done.
If not, note that by the lemma and case assumptions we have X ;Y ` U ≡AD

W1;W2 ` Z where W1;W2 �X ;Y and either W1 6 X and W1 6 Y , or W2 6 X
and W2 6 Y (or both). It is clear by inspection of the display postulates that
this situation can only arise when the associativity rule (A) is present5. We show
how to treat the case when both W1 and W2 contain parts of both X and Y ;
the cases when only one of W1, W2 contains parts of both X and Y are similar.

We have X ;Y ` U ≡AD W1;W2 ` Z ≡D W1 ` ]W2;Z and W1�X ;Y by the
case assumption, plus W1 6 X and W1 6 Y by the subcase assumption above.
Thus by (the first part of) the induction hypothesis there exist W ′

1, W
′′
1 with

W ′
1 �X and W ′′

1 � Y such that

W1 ` ]W2;Z ≡AD W ′
1;W

′′
1 ` ]W2;Z ≡D W2 ` ](W ′

1;W
′′
1 );Z

Thus by transitivity we have X ;Y ` U ≡AD W2 ` ](W ′
1;W

′′
1 );Z. Again we have

W2 � X ;Y by the case assumption and W2 6 X and W2 6 Y by the subcase
assumption above, so, using (the first part of) the induction hypothesis again,
there exist W ′

2, W
′′
2 with W ′

2 �X and W ′′
2 � Y such that

W2 ` ](W ′
1;W

′′
1 );Z ≡AD W ′

2;W
′′
2 ` ](W ′

1;W
′′
1 );Z ≡D (W ′

1;W
′′
1 ); (W

′
2;W

′′
2 ) ` Z

Therefore, using the fact that ≡AD incorporates the associativity rule, we have

W1;W2 ` Z ≡AD (W ′
1;W

′′
1 ); (W

′
2;W

′′
2 ) ` Z ≡AD (W ′

1;W
′
2); (W

′′
1 ;W

′′
2 ) ` Z

We are done by taking W1 = (W ′
1;W

′
2) and W2 = (W ′′

1 ;W
′′
2 ). This completes

the proof. ut

Theorem 4.7 (Binary rules). The rules (&R), (∨L) and (→L) all have the
local AD-interpolation property in any extension of D0.

5 This can be proven formally by an induction on X; Y ` U ≡AD W1;W2 ` Z under
the assumption that ≡AD is exactly ≡D.
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Proof. We show the case of (&R) here; the rules (∨L) and (→L) are similar.

X ` F Y ` G
(&R)

X ; Y ` F & G

By assumption we have interpolants for all W1 ` Z1 ≡AD X ` F and for all
W2 ` Z2 ≡AD Y ` G, and require to find interpolants for all W ` Z ≡AD

X ;Y ` F & G.
Since W ` Z ≡AD X ;Y ` F & G, the indicated F & G occurs either in W

or Z. We assume it occurs in Z (the case where it occurs in W is symmetric).
Thus we have W �X ;Y . We distinguish three cases: W �X , W �Y and neither
of these.

Cases W �X and W � Y . We show the case W �X ; the other case is similar.
Using the lemma assumption we have

X ` ]Y ;F & G ≡D X ;Y ` F & G ≡AD W ` Z (1)

Thus by part 1 of Lemma 4.5 we have X ` F ≡AD W ` U for some U . Let I be
the interpolant forW ` U given by assumption. We claim I is also an interpolant
for W ` Z.

First we check the variable condition. We have V(I) ⊆ V(W ) ∩ V(U) by as-
sumption. To see that V(I) ⊆ V(W )∩V(Z), just observe that, since X ` F ≡AD

W ` U and X ;Y ` F & G ≡AD W ` Z with W �X , it is clearly the case that
V(U) ⊆ V(Z).

Now we check the provability conditions. We trivially haveW ` I as required.
We must show that I ` Z is derivable, given that I ` U is derivable. First, note
that because X ` F ≡AD W ` U and W �X , the indicated F does not occur in
W , so must instead occur (positively) in U . By the display property (Prop. 2.6)
we thus have I ` U ≡D V ` F for some V . Next, using X ` F ≡AD W ` U , (1)
above and Lemma 3.9, we have

W ` Z ≡AD X ` ]Y ;F & G
= X ` F [(]Y ;F & G)/F ]

≡AD W ` U [(]Y ;F & G)/F ]

Thus by Lemma 4.3 we have, using Lemma 3.9 and I ` U ≡AD V ` F ,

I ` Z ≡AD I ` U [(]Y ;F & G)/F ]
≡AD V ` F [(]Y ;F & G)/F ]
= V ` ]Y ;F & G
≡D V ;Y ` F & G

Thus we can derive I ` Z as follows:

·
·
·

I ` U
(≡D)

V ` F

·
·
·

Y ` G
(&R)

V ;Y ` F & G
(≡AD)

I ` Z
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Case W � X ;Y but W 6 X and W 6 Y . Since X ;Y ` F&G ≡AD W ` Z by
general assumption, we can apply the first part of Lemma 4.6 to obtain W1 and
W2 such that W ` Z ≡AD W1;W2 ` Z with W1�X and W2�Y . Thus we have
both of the following:

X ` ]Y ;F & G ≡AD W ` Z ≡AD W1;W2 ` Z ≡D W1 ` ]W2;Z
Y ` ]X ;F & G ≡AD W ` Z ≡AD W1;W2 ` Z ≡D W2 ` ]W1;Z

where W1 �X and W2 � Y . Thus by part 1 of Lemma 4.5 we have for some U1

and U2

X ` F ≡AD W1 ` U1

Y ` G ≡AD W2 ` U2

Let I1, I2 be the interpolants given by assumption for W1 ` U1 and W2 ` U2

respectively. We claim that the formula I1 & I2 is an interpolant for W ` Z.
First, we check the variable condition. We must show that V(I1 & I2) ⊆

V(W ) ∩ V(Z), given that V(I1) ⊆ V(W1) ∩ V(U1) and V(I2) ⊆ V(W2) ∩ V(U2).
It is clear that V(W1) ⊆ V(W ) and V(W2) ⊆ V(W ) because W ` Z ≡AD

W1;W2 ` Z. Moreover, V(U1) ⊆ V(Z) because we have X ` F ≡AD W1 ` U1

and X ` ]Y ;F & G ≡AD W1 ` ]W2;Z while W1 � X and W2 � Y . Similarly
V(U2) ⊆ V(Z) and thus we have, as required:

V(I1 & I2) = V(I1) ∪ V(I2)
⊆ (V(W1) ∩ V(U1)) ∪ (V(W2) ∩ V(U2))
⊆ (V(W ) ∩ V(Z)) ∪ (V(W ) ∩ V(Z))
= V(W ) ∩ V(Z)

Now, we check the provability conditions. First, we show that W ` I1 & I2 is
provable, given that W1 ` I1 and W2 ` I2 are provable by assumption. Since
W1;W2 ` Z ≡AD W ` Z, we haveW1;W2 ` I1 & I2 ≡AD W ` I1 & I2 by Lemma 4.3.
Thus we can derive W ` I1 & I2 as follows:

·
·
·

W1 ` I1

·
·
·

W2 ` I2
(&R)

W1;W2 ` I1 & I2
(≡AD)

W ` I1 & I2

Finally, we must show that I1 & I2 ` Z is derivable, given that I1 ` U1 and
I2 ` U2 are derivable. First, note that becauseX ` F ≡AD W1 ` U1 andW1�X ,
the indicated F must occur (positively) in U1, and thus I1 ` U1 ≡D V1 ` F for
some V1 by the display property (Prop. 2.6). Similarly, I2 ` U2 ≡D V2 ` G for
some V2. Next, since X ` F ≡AD W1 ` U1 we have by Lemma 3.9

W1 ` ]W2;Z ≡AD W ` Z
≡AD X ` ]Y ;F & G
≡AD W1 ` U1[(]Y ;F & G)/F ]
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Thus by Lemma 4.3 we have

I1 ` ]W2;Z ≡AD I1 ` U1[(]Y ;F & G)/F ] (2)

Since I1 ` U1 ≡D V1 ` F we have by (2) and Lemma 3.9

I1 ` ]W2;Z ≡AD I1 ` U1[(]Y ;F & G)/F ]
≡D V1 ` ]Y ;F & G
≡D V1;Y ` F & G

(3)

Now, since Y ` G ≡AD W2 ` U2 we obtain by Lemma 3.9 and (3) above

W2 ` ]I1;Z ≡D I1 ` ]W2;Z
≡AD V1;Y ` F & G
≡D Y ` ]V1;F & G
≡AD W2 ` U2[(]V1;F & G)/G]

So by applying Lemma 4.3 once more we have

I2 ` ]I1;Z ≡AD I2 ` U2[]V1;F & G/G] (4)

Now, since I2 ` U2 ≡D V2 ` G we obtain by Lemma 3.9 and (4) above

I1; I2 ` Z ≡D I2 ` ]I1;Z
≡AD I2 ` U2[]V1;F & G/G]
≡AD V2 ` ]V1;F & G
≡D V1;V2 ` F & G

This enables us to derive I1 & I2 ` Z as follows:

·
·
·

I1 ` U1
(≡D)

V1 ` F

·
·
·

I2 ` U2
(≡D)

V2 ` G
(&R)

V1;V2 ` F & G
(≡AD)

I1; I2 ` Z
(&L)

I1 & I2 ` Z

This completes the subcase, and the proof. ut

Corollary 4.8. For any D ∈ {D0,D
+
0 ,D0 + (A),D+

0 + (A)}, the proof rules
of D all have the LADI property in (any extension of) D, and thus D has the
interpolation property.

Proof. Let D ∈ {D0,D
+
0 ,D0 + (A),D+

0 + (A)}. LADI for the proof rules of D in
any extension of D is given by Prop. 3.10 and Theorem 4.7. Interpolation for D
then follows by Lemma 3.5.
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5 Interpolation: structural rules

In this section we examine local AD-interpolation for the structural rules given
in Figure 3.

Proposition 5.1 (Unit contraction rules). The unit left-contraction rule
(∅CL) has the LADI property in any extension of D0 + (∅CL). Similarly, the
rule (∅CR) has the LADI property in any extension of D0 + (∅CR).

Proof. We just show the case of (∅CL), as the case of (∅CR) is similar.

∅;X ` Y
(∅CL)

X ` Y

By assumption we have interpolants for all W ′ ` Z ′ ≡AD ∅;X ` Y , and we re-
quire to construct interpolants for all W ` Z ≡AD X ` Y . We show by reflexive-
transitive induction on W ` Z ≡AD X ` Y that one of the following holds:

(a) there is an antecedent part U of W ` Z such that (W ` Z)[(∅;U)/U ] ≡AD

∅;X ` Y , or;
(b) there is a consequent part U of W ` Z such that (W ` Z)[(]∅;U)/U ] ≡AD

∅;X ` Y .

In the reflexive case we trivially have (a) by taking U = X . In the transi-
tive case we have W ` Z →AD X ′ ` Y ′ ≡AD ∅;X ` Y , whence by induction
hypothesis either (a) or (b) holds of X ′ ` Y ′. We assume that (a) holds (the
other case is similar) so that for some antecedent part U of X ′ ` Y ′ we have
(X ′ ` Y ′)[(∅;U)/U ] ≡AD ∅;X ` Y . We proceed by case analysis onW ` Z →AD

X ′ ` Y ′.
The main interesting cases are when the substructure occurrence U is decom-

posed by the rewrite. For example, suppose we haveW ` Z1;Z2 →AD W ; ]Z1 ` Z2,
and that U is the indicated occurrence of W ; ]Z1. In that case, we pick V to be
the consequent part Z2 of W ` Z1;Z2, whence we have as required

(W ` Z)[(]∅;V )/V ] = W ` Z1; (]∅;Z2)
≡D ∅; (W ; ]Z1) ` Z2

= (X ′ ` Y ′)[(∅;U)/U ]
≡AD ∅;X ` Y (by IH)

The other cases are similar. This completes the induction.
Now, we assume without loss of generality that (a) above holds, with U

occurring in Z (the other cases are similar). Let I be the interpolant given
by assumption for W ` Z[(∅;U)/U ]. We claim that I is also an interpolant
for W ` Z. Clearly the variable condition is satisfied since V(Z[(∅;U)/U ]) =
V(Z). We trivially have W ` I provable by assumption. It just remains to ver-
ify that I ` Z is provable, given that I ` Z[(∅;U)/U ] is provable. Note that,
since U is assumed an antecedent part of W ` Z, we have I ` Z ≡D U ` T and
I ` Z[(∅;U)/U ] ≡D ∅;U ` T for some T by the display property (Prop. 2.6).

20



(It is obvious that one obtains the same T by displaying U in I ` Z and by
displaying ∅;U in I ` Z[(∅;U)/U ], since the display property does not depend
on the internal structure of the substructure occurrence being displayed.) Thus
we can derive I ` Z as follows:

·
·
·

I ` Z[(∅;U)/U ]
(≡D)

∅;U ` T
(∅CL)

U ` T
(≡D)

I ` Z

This completes the proof. ut

Proposition 5.2 (Unit weakening rules). The unit left-weakening rule (∅WL)
has the LADI property in any extension of D0+(∅WL). Similarly, the rule (∅WR)
has the LADI property in any extension of D0 + (∅WR).

Proof. We just show the case of (∅WL), as the case of (∅WR) is similar.

X ` Y
(∅WL)

∅;X ` Y

By assumption we have interpolants for all W ′ ` Z ′ ≡AD X ` Y , and require to
find interpolants for all W ` Z ≡AD ∅;X ` Y .

First of all, suppose that the indicated ∅ is not delible from W ` Z, whence
either W or Z is of the form ]n∅ for some n ≥ 0. We suppose Z = ]n∅ (the other
case is similar) in which case n must be odd. We pick the interpolant for W ` Z
to be ¬>. The variable condition is trivially satisfied. Note that we have

∅;X ` Y ≡AD W ` Z = W ` ]n∅ ≡D W ` ]∅

Thus W ` ¬> and ¬> ` Z = ¬> ` ]n∅ are provable as follows:

·
·
·

X ` Y
(∅WL)

∅;X ` Y
(≡AD)

∅ ` ]W
(>L)

> ` ]W
(≡D)

W ` ]>
(¬R)

W ` ¬>

(>R)
∅ ` >

(≡D)
]> ` ]n∅

(¬L)
¬> ` ]n∅

Thus we may assume from now on that the indicated ∅ is delible fromW ` Z.
Thus, by Lemma 4.2, we have that

X ` Y = (∅;X ` Y ) \ ∅ ≡AD (W ` Z) \ ∅
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Let I be the interpolant given for (W ` Z) \ F by assumption. We claim that I
is also an interpolant for W ` Z. Without loss of generality, we assume that the
indicated ∅ occurs in Z, so that (W ` Z) \ ∅ = W ` (Z \ ∅).

First we check the variable condition. By assumption we have V(I) ⊆ V(W )∩
V(Z \ ∅). By the definition of deletion (Defn. 4.1) we have Z \ ∅ = Z[S/(]n∅;S)]
for some substructure occurrence (∅;S) in Z and for some n ≥ 0, and thus
V(Z \ ∅) = V(Z). Thus V(I) ⊆ V(W ) ∩ V(Z) as required.

Now we check the provability conditions. We haveW ` I provable by assump-
tion, so it just remains to show that I ` Z is provable, given that I ` (Z \ ∅) is
provable. We assume that the previously indicated (]n∅;S) is a negative occur-
rence in Z, thus an antecedent part of I ` Z (the other case is similar). Thus n
must be even and by the display property (Prop. 2.6) we have, for some T ,

I ` Z ≡D ]n∅;S ` T ≡D ∅;S ` T
and I ` (Z \ ∅) = I ` Z[S/(]n∅;S)] ≡D S ` T

(Note that we obtain the same structure T by displaying S in I ` Z \ ∅ and by
displaying (]n∅;S) in I ` Z.) Thus we can derive I ` Z as follows:

·
·
·

I ` (Z \ ∅)
(≡D)

S ` T
(∅WL)

∅;S ` T
(≡D)

I ` Z

This completes the proof. ut

Lemma 5.3. The consecutions X ` > and ¬> ` X are provable in any exten-
sion of D0 + {(W), (∅CL)}. Similarly, the consecutions ⊥ ` X and X ` ¬⊥ are
provable in any extension of D0 + {(W), (∅CR)}.

Proof.
(>R)

∅ ` >
(W)

∅; ]X ` >
(≡D)

∅; ]> ` X
(∅CL)

]> ` X
(¬L)

¬> ` X

(⊥L)
⊥ ` ∅

(W)
⊥;X ` ∅

(≡D)
X ` ]⊥; ∅

(∅CR)
X ` ]⊥

(¬R)
X ` ¬⊥

ut

Lemma 5.4 (Advanced deletion). Suppose that either X ;X ′ ` Y ≡AD W ` Z
or X ` X ′;Y ≡AD W ` Z, where W 6 X ′ and Z 6 X ′. Then there are atomic
parts A1, . . . , An of the indicated X ′ such that

X ` Y ≡AD (. . . ((W ` Z) \A1) \A2 . . .) \An

Proof. By structural induction onX ′. In each case we assume thatX ;X ′ ` Y ≡AD

W ` Z; the other case is similar.
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Case X ′ atomic. The indicated X ′ is delible from W ` Z because W 6 X ′ and
Z 6 X ′ by the lemma assumption. Thus we have by Lemma 4.2 that

X ` Y = (X ;X ′ ` Y ) \X ′ ≡AD (W ` Z) \X ′

We are done as, trivially, X ′ is an atomic part of itself.

Case X ′ = ]X ′′. Using the lemma and case assumptions we have

X ` X ′′;Y ≡D X ; ]X ′′ ` Y ≡AD W ` Z

where W 6 ]X ′′ and Z 6 ]X ′′, from which it follows that W 6 X ′′ and Z 6 X ′′.
Thus by the second part of the induction hypothesis there exist atomic parts
A1, . . . , An of the indicated X ′′ such that

X ` Y ≡AD (. . . ((W ` Z) \A1) \A2 . . .) \An

Thus, since A1, . . . , An are also atomic parts of the indicated ]X ′′, we are done.

Case X ′ = X1;X2. Using the lemma and case assumptions we have

X1;X2 ` ]X ;Y ≡D X ; (X1;X2) ` Y ≡AD W ` Z

where W 6 (X1;X2) and Z 6 (X1;X2), from which it follows that W 6 X2 and
Z 6 X2. Thus by the induction hypothesis there exist atomic parts A1, . . . , Am

of the indicated X2 such that

X ;X1 ` Y ≡D X1 ` ]X ;Y ≡AD (. . . ((W ` Z) \A1) \A2 . . .) \Am = W ′ ` Z ′

Now since W 6 (X1;X2) and A1, . . . , Am are all parts of X2, it must be the case
that W ′ 6 X1. Similarly, Z ′ 6 X1. Thus by the induction hypothesis there are
atomic parts B1, . . . , Bk of the indicated X1 such that

X ` Y ≡AD (. . . ((W ′ ` Z ′) \B1) . . .) \Bk

= (. . . (((. . . (W ` Z) \A1 . . .) \Am) \B1) . . .) \Bk

Since A1, . . . , Am, B1, . . . , Bk are all atomic parts of X1;X2, this completes the
case, and the proof. ut

Theorem 5.5 (Weakening). The weakening rule (W) has the LADI property
in any extension of D0 + {(W), (∅CL)} or D0 + {(W), (∅CR)}.

Proof.
X ` Y

(W)
X ;X ′ ` Y

By assumption we have interpolants for all W ′ ` Z ′ ≡AD X ` Y , and require
to find interpolants for all W ` Z ≡AD X ;X ′ ` Y . We distinguish three cases:
W �X ′; Z �X ′; and neither of the preceding.
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Case W �X ′. We pick the interpolant I for W ` Z to be > if (∅CL) is available,
and ¬⊥ if (∅CR) is available instead. The variable condition on interpolants is
trivially satisfied, and W ` I is provable by Lemma 5.3.

It remains to show that I ` Z is provable. We have W ` Z ≡AD X ′ ` ]X ;Y
and, because W � X ′, it is also the case that (]X ;Y ) � Z. Thus, by part 4 of
Lemma 4.5, we have I ` Z ≡AD U ` ]X ;Y ≡D X ;U ` Y for some U , whence
we can derive I ` Z as follows:

·
·
·

X ` Y
(W)

X ;U ` Y
(≡AD)

I ` Z

Case Z � X ′. Symmetric to case (a); we pick the interpolant to be ¬> when
(∅CL) is present, and ⊥ when (∅CR) is present instead.

Case W 6 X ′ and Z 6 X ′. Using the main and case assumptions, we obtain by
Lemma 5.4 atomic parts A1, . . . , An of the indicated X ′ such that

X ` Y ≡AD (. . . (((W ` Z) \A1) \A2) . . .) \An = W ′ ` Z ′

By the definition of deletion (Defn. 4.1), this means that there are substructure
occurrences (]i1A1;U1), . . . , (]

inAn;Un) such that

W ′ ` Z ′ = (. . . (((W ` Z)[U1/(]
i1A1;U1)])[U2/(]

i2A2;U2)]) . . .)[Un/(]
inAn;Un)]

This means that there is a partition of the aforementioned substructure occur-
rences into (]a1B1;S1), . . . , (]

ajBj;Sj) and (]b1C1;T1), . . . , (]
bkCk;Tk) such that

W ′ = (. . . ((W [S1/(]
a1B1;S1)])[S2/(]

a2B2;S2)]) . . .)[Sj/(]
ajBj ;Sj)]

Z ′ = (. . . ((Z[T1/(]
b1C1;T1)])[T2/(]

b2C2;T2)]) . . .)[Tk/(]
bkCk;Tk)]

(5)

Now let I be the interpolant for W ′ ` Z ′ given by assumption. We claim that I
is also an interpolant for W ` Z.

First we check the variable condition. We have V(I) ⊆ V(W ′) ∩ V(Z ′) by
assumption. Using (5) it is clear that V(W ′) ⊆ V(W ) since W ′ is obtained by
deleting some parts ofW , and similarly V(Z ′) ⊆ V(Z). Thus V(I) ⊆ V(W )∩V(Z)
as required.

Now we check the provability conditions. We just show that W ` I is deriv-
able; deriving I ` Z is similar. We proceed by induction on the number j of
substructure occurrences deleted from W to obtain W ′. In the case j = 0 we
have W = W ′ and are done since W ′ ` I is provable by assumption. In the case
j > 0 we have by induction hypothesis that W [S1/(]

a1B1;S1)] ` I is provable.
We assume that the indicated occurrence of (]a1B1;S1) is a consequent part
of W ` I; the case when it is an antecedent part is similar. Using the display
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property (Prop. 2.6) to display the occurrence, we derive W ` I as follows:

·
·
·

W [S1/(]
a1B1;S1)] ` I

(≡D)
V1 ` S1

(W)
V1; ]

a1+1B1 ` S1
(≡D)

V1 ` ]a1B1;S1
(≡D)

W ` I

This completes the case, and the proof. ut

Lemma 5.6 (Duplication lemma). Let D be a calculus that includes the asso-
ciativity rule (A). Then if X ` Y ≡AD C then there exist atomic parts A1, . . . , An

of the indicated X such that

X ;X ` Y ≡AD C[(A1;A1)/A1, . . . , (An;An)/An]

Similarly, if Y ` X ≡AD C then there exist atomic parts A1, . . . , An of the indi-
cated X such that

Y ` X ;X ≡AD C[(A1;A1)/A1, . . . , (An;An)/An]

Proof. We show both implications simultaneously by structural induction on X .
In each case we just show how to establish the first implication; the second is
similar.

Case X atomic. By Lemma 3.9 we have as required:

X ;X ` Y = (X ` Y )[(X ;X)/X ] ≡AD C[(X ;X)/X ]

Case X = ]X ′. Using the case and lemma assumptions we have

]Y ` X ′ ≡D ]X ′ ` Y ≡AD C

Thus by the second part of the induction hypothesis we have atomic parts
A1, . . . , An of the indicated X ′ such that

]X ′; ]X ′ ` Y ≡D ]Y ` X ′;X ′ ≡AD C[(A1;A1)/A1, . . . , (An;An)/An]

whence we are immediately done using the fact that A1, . . . , An are atomic parts
of the (first) indicated ]X ′.

Case X = X1;X2. Using the case and lemma assumptions we have

X1 ` ]X2;Y ≡D X1;X2 ` Y ≡AD C
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Thus by (the first part of) the induction hypothesis there exist atomic parts
A1, . . . , Am of the indicated X1 such that

X2 ` ](X1;X1);Y ≡D X1;X1 ` ]X2;Y ≡AD C[(A1;A1)/A1, . . . , (Am;Am)/Am]

Thus by (the first part of) the induction hypothesis again there exist atomic parts
B1, . . . , Bk of the indicated X2 such that, using the fact that ≡AD contains (A),

(X1;X2); (X1;X2) ` Y
≡AD X2;X2 ` ](X1;X1);Y
≡AD C[(A1;A1)/A1, . . . , (Am;Am)/Am, (B1;B1)/B1, . . . , (Bk;Bk)/Bk]

We are done since A1, . . . , Am, B1, . . . , Bk are all atomic substructure occur-
rences in the (first) indicated X1;X2. ut

We remark that Lemma 5.6 fails in display calculi in which the semicolon
is not associative. It also fails in display calculi with more than one family of
structural connectives.

Proposition 5.7 (Contraction). The contraction rule (C) has the LADI prop-
erty in any extension of D0 + (A).

Proof.
X ;X ` Y

(C)
X ` Y

By assumption we have interpolants for all W ′ ` Z ′ ≡AD X ;X ` Y , and we
require to find interpolants for an arbitrary W ` Z ≡AD X ` Y .

Since ≡AD contains (A) by assumption, we have by Lemma 5.6 that there
exist atomic parts A1, . . . , An of the X indicated in X ` Y such that

X ;X ` Y ≡AD (W ` Z)[(A1;A1)/A1, . . . , (An;An)/An] = W ′ ` Z ′

We observe that there exists a partition of {A1, . . . , An} into {B1, . . . , Bj} and
{C1, . . . , Ck} such that

W ′ = W [(B1;B1)/B1, . . . , (Bj ;Bj)/Bj ]
Z ′ = Z[(C1;C1)/C1, . . . , (Ck;Ck)/Ck]

Let I be the interpolant for W ′ ` Z ′ given by assumption. We claim that I
is also an interpolant for W ` Z. First we check the variable condition. We
have V(I) ⊆ V(W ′) ∩ V(Z ′) by assumption and, clearly, V(W ) = V(W ′) and
V(Z) = V(Z ′), so we trivially have V(I) ⊆ V(W ) ∩ V(Z) as required.

Finally, we check the provability conditions. We just show that W ` I is
provable, as the case of I ` Z is similar. We proceed by induction on the number
j of structures duplicated in W to obtain W ′. In the case j = 0 we have W = W ′

and are done since W ′ ` I is provable by assumption. In the case j > 0 we have
that W [(B1;B1)/B1] ` I is provable by induction hypothesis. We assume that
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B1 is a consequent part of W (the case where it is an antecedent part is similar),
and derive W ` I as follows:

·
·
·

W [(B1;B1)/B1] ` I
(≡D)

V1 ` B1;B1
(≡D)

]B1; ]B1 ` ]V1
(C)

]B1 ` ]V1
(≡D)

V1 ` B1
(≡D)

W ` I

using the display property (Prop. 2.6) to display and then “undisplay” substruc-
ture occurrences as appropriate. This completes the induction, and the proof.

ut

Our conditions on calculi with the contraction rule in Prop. 5.7 can be mo-
tivated by a simple example. Suppose that the rule (A) is not present so that
≡AD is exactly ≡D, and consider the following instance of contraction.

(X1;X2); (X1;X2) ` Y

X1;X2 ` Y

In particular, to show the LADI property, we must find an interpolant for
X1 ` ]X2;Y ≡D X1;X2 ` Y . However, due to the absence of associativity,
we cannot rearrange the premise into X1;X1 ` (]X2; ]X2);Y as would other-
wise be provided by Lemma 5.6. The best we can do without associativity is
X1 ` ]X2; (](X1;X2);Y ), an interpolant I for which is too weak to serve as an
interpolant for X1 ` ]X2;Y both in terms of provability and in terms of the
variable condition. A similar problem occurs if there is more than one binary
structural connective, even if both are associative.

The dependencies for local AD-interpolation of the various proof rules are
set out in Figure 4. As a result, we have the following interpolation results.

Theorem 5.8 (Interpolation). Let D be an extension of D0 subject to the
constraint that if D contains (C) it must also contain (A), and if D contains (W)
then it must also contain either (∅CL) or (∅CR). Then D has the interpolation
property.

Proof. By Lemma 3.5 it suffices to prove local AD-interpolation in D for each
of the proof rules of D. The rules of D0, and (A) if applicable, satisfy local AD-
interpolation in D by Corollary 4.8. The other structural rules of D, if applicable,
satisfy local AD-interpolation in D by Theorem 5.5 and Propositions 5.1, 5.2
and 5.7.

In particular, drawing on the observations in Comment 2.8, Theorem 5.8
yields the following:

Corollary 5.9. DMLL, DMALL and DCL have the interpolation property.
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Thm. 5.5

Fig. 4. Diagrammatic summary of our results. Local AD-interpolation of the proof
rule(s) at a node holds in a calculus with all of the proof rules at its ancestor nodes.

6 Related and future work

The central contribution of the present paper is a general proof-theoretic method
for establishing Craig interpolation in displayable logics, based upon an analysis
of the individual rules of their display calculi. This analysis is “as local as possi-
ble” in that the required local AD-interpolation property to be satisfied by each
proof rule typically depends only on the presence of certain other rules in the
calculus, and the syntax of the rule itself. The practicality and generality of our
method is demonstrated here by its application to a fairly large family of display
calculi differing in their structural rules (and the presence of additive logical
connectives). We obtain by this uniform method the interpolation property for
MLL, MALL and ordinary classical logic, as well as numerous variants of these
logics. To our knowledge, ours are the first interpolation results to be based on
display calculi. Thus, in particular, we provide a positive response to Belnap’s
long-standing open question (cf. [1]) of whether display logic can be used as a
basis for establishing an interpolation result.

While interpolation based on display calculi appears to be new, interpolation
for substructural logics has of course been considered before. The closest work
to our own is probably that of Roorda [17] who demonstrates interpolation for
various fragments of classical linear logic, using induction over cut-free sequent
calculus proofs, and identifies fragments in which interpolation fails (because
certain logical connectives are unavailable). Many of Roorda’s positive interpo-
lation results overlap with our own. However, compared to this work, we cover
some additional logics (e.g., full classical logic, nonassociative or affine logics)
and offer an analysis of the roles played by individual structural rules. An en-
tirely different approach to interpolation for substructural logics is offered by
Galatos and Ono [8], who establish very general interpolation theorems for cer-
tain substructural logics obtained as extensions of the Lambek calculus, based
on their algebraisations.

We remark that our methodology transfers easily to calculi for intuitionistic-
type logics in which our “classical” display postulates in Defn. 2.5 are replaced

28



by “residuated” display postulates:

X,Y ` Z �D X ` Y, Z �D Y,X ` Z

(where the comma is interpreted as conjunction in antecedent position and as
implication in consequent position). A more challenging technical extension is
to the case where we have such a family of structural connectives alongside the
first, as is needed to display relevant logics [16] or bunched logics [2]. Here, the
main technical obstacle is in extending the crucial substitutivity principles in
Section 4 to the more complex notion of display-equivalence induced by this ex-
tension. Other possible extensions to our calculi include the addition of modali-
ties, quantifiers or linear exponentials. In the main, these extensions appear more
straightforward than adding new connective families, since they necessitate lit-
tle or no modification to display-equivalence. We also note that our notion of
interpolant in this paper is relatively blunt since it does not distinguish between
positive and negative occurrences of propositional variables. It should be possible
to read off a sharpened version of interpolation, that does make this distinction,
more or less directly from our proof as written.

As well as showing interpolation for a variety of substructural logics, our proof
gives insights into the reasons why interpolation fails in some logics. Specifically,
we identify contraction as being just as problematic for interpolation as it typ-
ically is for decidability (and even weakening causes an issue for interpolation
when the logic lacks strong units). Our interpolation method is bound to fail
for any multiple-family display calculus including a contraction rule, due to our
observation that contraction generally has the required LADI property only in
certain circumstances which are precluded by the presence of multiple binary
structural connectives. This observation is in keeping with the fact that interpo-
lation fails for the relevant logic R, as famously shown by Urquhart [18], since
its display calculus employs two families of connectives and a contraction rule.
We conjecture that interpolation fails in bunched logics such as BI for similar
reasons.

The technical overhead of our method is fairly substantial, but the tech-
niques themselves are elementary: we mainly appeal to structural induction on
structures and/or reflexive-transitive induction on equivalence relations such as
≡AD. The elementary nature of the reasoning combined with the proliferation
of cases means that our proofs are good candidates for mechanisation in a the-
orem proving assistant. Our colleague Jeremy Dawson is currently working on
an Isabelle formalisation of our proofs, based upon earlier work on mechanising
display calculus with Goré in [6]. We note that our interpolation proofs here
are fully constructive so, in principle, one can use them to extract the inter-
polant from a given cut-free display calculus proof. Thus, as well as providing
the greatest possible degree of confidence in our proofs, such a mechanisation
might also eventually serve as the basis for an automated interpolation tool.
Finally, we note that it should also be possible to extract bounds on the size of
the interpolant for a consecution, given bounds on the size of its cut-free proof.
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