
ASPAL. Proof of soundness and completeness

Domenico Corapi and Alessandra Russo

Department of Computing
Imperial College London

180 Queen’s Gate, SW7 2AZ
London, UK

E-mail: {d.corapi,a.russo}@ic.ac.uk

Abstract. We provide here a brief introduction and proof of soundness
and completeness of the ILP system ASPAL. This document is in support
of our ICLP 2011 submission, for the reviewers’ benefits.

Inductive Logic Programming (ILP) [4] is a machine learning technique con-
cerned with the induction of logic theories, called target theories, that generalise
(positive and negative) examples with respect to a prior background knowledge.
For example, from the observations fly(a), f ly(b),¬fly(c) and a background
knowledge containing the two facts bird(a) and bird(b), we can generalise the
concept fly(X) ← bird(X). In non-trivial problems it is crucial to define the
space of possible solutions accurately. Target theories are within a space defined
by a language bias, which can be expressed using mode declarations [4].

We refer to [3] for notations and preliminary definitions on logic program-
ming. For a given theory T we denote with BT the Herbrand base of T .

Definition 1. A mode declaration is either a head declaration, written modeh(s),
or a body declaration, written modeb(s), where s is a schema. A schema is a
ground literal containing special terms called placemarkers. A placemarker is ei-
ther ‘+type’, ‘−type’ or ‘#type’ where type denotes the type of the placemarker
and the three symbols ‘+’, ‘−’ and ‘#’ indicate that the placemarker is an input,
an output, a constant placemarker, respectively.

In the previous example a possible language bias would be given by the
three mode declarations modeh(fly(+animal)), modeb(bird(+animal)) and
modeb(fish(+animal)).

A rule h ← b1, ..., bn is compatible with a set M of mode declarations iff (a)
h is the schema of a head declaration in M and bi are the schemas of body
declarations in M where every input and output placemarkers are replaced by
variables and constant placemarkers are replaced by constants; (b) every input
variable in any atom bi is either an input variable in h or an output variable
in some bj , j < i; and (c) all variables and constants are of the corresponding
type. From a user perspective, mode declarations establish how rules in the final
hypotheses are structured, defining literals that can be used in the head and in
the body of a well-formed hypothesis. s(M) is the set of all the rules compatible



2 Domenico Corapi, Alessandra Russo

with M . For a set M of mode declarations we denote with Mb the subset of
body declaration and with Mh the subset of head declaration.

Definition 2. An ILP task is a tuple 〈P,B,M〉 where P is a set of conjunc-
tions of literals, called properties, B is a normal program, called background
theory, and M is a set of mode declarations. A theory H, called hypothesis, is
an inductive solution for the task 〈P,B,M〉, if (a) H ⊆ s(M), and (b) P is true
in all the stable models of B ∪H.

The above notion is an instance of the learning from entailment setting [2],
where positive and negative examples are our properties. In the following we omit
the additional control on the type of the arguments in the mode declarations for
simplicity and readability. The extension of the definitions and proofs with type
check is straightforward, they can be added to the bodies of the hypotheses and of
the rules of the additional theories introduced using a standard pre-processing
procedure used in ASP. Furthermore, our definitions and proposition will be
given for ground programs. Rules with variables will be used as a shorthand for
the set of their ground instances. We define a strong completeness requirement,
compared to alternative formulations where completeness only requires that a
solution is found if one exists.

Given a mode declaration id : modeh(s) (or modeb(s)), id is the (unique)
identifier for the mode declaration and sc(id) denotes the schema s of the mode
declaration.

Definition 3. s is the literal obtained from s by replacing all placemarkers with
different variables var(s, s) = (X1, ..., Xn), called a variable list and it is called
the variabilisation of s. con(s, s) = (C1, ..., Cc) is the constant list of variables
in s that replace only constant placemarkers in s. inp(s, s) = (I1, ..., Ii) and
out(s, s) = (O1, ..., Oo) are defined similarly for input and output placemarkers.
A variable is in the variable list if and only if is one of the constant, input or
output list. When s is clear from the context we omit the second argument from
var(s, s), con(s, s), inp(s, s) and out(s, s).

Given a set of mode declarations M , a top theory > = t(M) is constructed
as follows:

– For each head declaration modeh(s), with unique identifier id, the following rule
is in >

s← rule(RId, (id, con(s), ()),
rule id(RId),
body(RId, 1, inp(s))

(1)

– For each body declaration modeb(s), with unique identifier id the following clause
is in >

body(RId, L, I)← rule(RId, L, (id, con(s), Links)),
link(inp(s), I, Link),
s,
append(I, out(s), O),
body(RId, L + 1, O)

(2)



ASPAL. Proof of soundness and completeness. 3

– The following rules are in > together with a standard definition for the append
predicate.

body(RId, L, )← rule(RId, L, last) (3)

link((X), (X), 1).
link((X), (X, ), 2).
link((X), ( , X), 2).
link((X,Y ), (X,Y ), (1, 2)).
link((X,Y ), (Y,X), (2, 1)).
link((X), (X, , ), 1).
link((X), ( , X, ), 2).
...

(4)

rule id(1).
...
rule id(rn).

(5)

rule id(rid) is true whenever 1≤ rid≤ rn where rn is the maximum number of
new rules allowed. link((a1, ..., am), (b1, ..., bn), (o1, ..., om)) are true if for each
element in the first list ai, there exists an element in the second list bj such that
ai unifies with bj and oi = j. Given the top theory, we seek a set of rule atoms
∆, such that P is true in all models of B ∪ > ∪∆.

∆ has a one-to-one mapping to a set of rules H = u(∆,M). Intuitively, each
abduced atom represents a literal of the rule identified by the first argument. The
second argument collects the constant used in the literal and the third defines
the variable linking.

∆rid denotes the subset of ∆ of all the rule abducibles with rid as a first
argument. Each ∆rid corresponds to a rule r in u(∆,M), r = u(∆rid,M). For a
given

∆rid ={rule(rid, (idh, conh),

rule(rid, 1, (id1, con1, links1)),

...,

rule(rid, 1, (idn, conn, linksn))}

r is a rule h← b1, ..., bn such that, given a list of variables defined as follows:

– avar0 is inp(sc(idh))
– avari is such that append(avari−1, out(sc(idi)), avari) is true for each i =

1, ..., n for the standard definition of append

each atom is constructed as follows:

– h = sc(idh) and con(sc(idh)) is unified with the list of constant conh of the
same length



4 Domenico Corapi, Alessandra Russo

– bi = sc(idi), con(sc(idi)) is unified with the list of constant coni of the
same length and link(inp(sc(idi)), avari−1, linksi) is true, according to the
definition of link provided in the top theory for each i = 1, ..., n

Proposition 1. Let H be a theory and M a set of mode declarations. Then
H ∈ s(M) if and only if there exists a ∆ such that H = u(∆,M).

Proof. The proof is immediate as the transformation itself can be used to define
s(M). In fact the transformation requires that the head corresponds to the vari-
abilisation of a schema of a head declaration where all the constants are replaced
by arbitrary constants. Each other condition i in the body can only bind input
to variables in avari−1 by definition and the constants are also replaced by a list
of arbitrary constants. ut

In the proof we will use the unfolding transformation or generalised principle
of partial evaluation (GPPE)[1].

Definition 4. Let P be a theory, h ← b1, ..., bi−1, bi, bi+1, ..., bn ∈ P a rule r
and bi a positive literal. We say we apply a GPPE transformation to r on bi if
P ′ is the theory obtained from P by replacing rule r with the p rules

h← b1, ..., bi−1, bi+1, ..., Aj

where Aj is the conjunction of literals in bi ← Aj ∈ P , j = 1..p.

Definition 5. Let P and Q be theories. We say P is equivalent to Q if, for all
interpretation I, I is a stable model for P if and only if I is a stable model for
Q.

Proposition 2. [1] Let P be a theory. If P ′ is the theory obtained applying
GPPE to any rule in P then P ′ and P are equivalent.

Proposition 3. Let B be a normal program, H be a hypothesis and M a set of
mode declarations such that H = u(∆,M) and > = t(M). Let α denote B ∪H
and β denote B ∪ > ∪ ∆. Let K = I ∪ J be an interpretation for β such that
I ⊆ Bα, J ⊆ (Bβ \ Bα). Then K is a stable model for β if and only if I is a
stable model for α.

Proof. Consider rules (1) of the top theory. Applying GPPE to them on body(RId, 1, inp(s))
we obtain a theory >1 in which rules (1) are replaced by the following:

sc(idh)← rule(RId, (idh, con(sc(idh)), ()),
rule id(RId),
rule(RId, 1, (id1, con(sc(id1)), Links1)),
link(inp(sc(id1)), inp(sc(idh)), Links1),
sc(id1),
append(inp(sc(idh)), out(sc(id1)), O1),
body(RId, 2, O1)

(6)



ASPAL. Proof of soundness and completeness. 5

for all idh such that idh ∈ Mh and for all id1 ∈ Mb. We used the rules (2)
where the second argument is 1. Using (3) in the transformation the following
rules are included in >1

sc(idh)← rule(RId, (idh, con(sc(idh)), ()),
rule id(RId),
rule(RId, 1, last)

(7)

We can now apply the transformation again on body(RId, 2, O1)) and rules
(2) and (3), and again on body(RId, i+ 1, Oi) for each i ≤ nc. nc the maximum
number of conditions allowed is enforced by an additional condition on the second
argument of the body predicate, omitted for ease of exposition. So we obtain a
theory >′ that contains the following rules for each m = 1..nc.

sc(idh)← rule(RId, (idh, con(sc(idh)), ()),
rule id(RId),
rule(RId, 1, (id1, con(sc(id1)), Links1)),
link(inp(sc(id1)), inp(sc(idh)), Links1),
sc(id1),
append(inp(sc(idh)), out(sc(id1)), O1),
...,
rule(RId, n, (idm, con(sc(idm)), Linksm)),
link(Om−1, inp(sc(idm)), Linksm),
sc(idm),
append(Om−1, out(sc(idm)), Om),
rule(RId,m+ 1, last),

(8)

and for all id such that id ∈Mh and idi ∈Mb, i = 1, ..,m.

Of these rules the only rules whose body can be true are those that contain
exactly the atoms in ∆rid for some rid. Consider h← b1, ..., bn = u(∆rid,M)

∆rid ={rule(rid, (idh, conh, ())),
rule(rid, 1, (id1, con1, links1)),

...,

rule(rid, 1, (idn, conn, linksn))}

we can consider all the rules that contain the atoms in such ∆rid and ap-
ply GPPE on conditions rule id and append. Oi as result of the append will
correspond to avari as defined previously:



6 Domenico Corapi, Alessandra Russo

sc(idh)← rule(rid, (idh, conh, ()))

rule(rid, 1, (id1, con1, links1)),

link(inp((s)), avar0, links1),

sc(id1),
...,

rule(rid, n, (idm, conm, linksn)),

link(inp(sc(idn)), avarn−1, linkn),

sc(idn),

rule(rid,m+ 1, last)

(9)

Using the truth values defined in J we can see that rules (9) correspond to
rules h← b1, ..., bn. We can then say B ∪>∪∆ is equivalent to B ∪H ∪>− ∪∆
where >− is the original > without rules (1) that have been transformed into
H. Now >− ∪∆ define a disjoint set of predicates from B ∪H. The set J only
defines those predicates that appear in > and ∆ but not in B, thus it must
define the predicates link, rule id, append, rule and body appearing in the head
of rules in >− ∪∆. The first four predicates are defined extensionally by facts.
The definition of body predicates is given by a stratified theory (as a result of the
increasing value of the integer used as a second variable of body) and completes
the definition of J . I is thus a stable model for the new theory if and only if it
is a stable model for B ∪H that proves the proposition. ut
Proposition 4. Given an ILP task 〈P,B,M〉, H is an inductive solution if and
only if there is a ∆ such that H = u(∆,M), > = t(M) and P is true in all stable
models of B ∪ > ∪∆.

Proof. The proposition is a consequence of the Propositions 3 and 1. H is a
solution if and only if (a) H ⊆ s(M), and (b) P is true in all the stable models
of B ∪ H. H ⊆ s(M) if and only if there exists a ∆ such that H = u(∆,M)
according to Proposition 1. P is true in all answer sets of B ∪H. But all such
answer sets have a corresponding answer set for β, according to Proposition 3
that “agrees” on P , thus proving the proposition. ut

ASPAL is an ILP system that is based on the transformation introduced and
on an ASP solver used abductively to derive ∆. The soundness (if a ∆ is found
than u(∆,M) is an inductive solution) and completeness (if H is an inductive
solution than a ∆ is found such that H = u(∆,M)) of ASPAL follow from
Proposition 1 and the soundness and completeness properties of the underlying
ASP solver that ensures that for any given theory T and conjunction of literals
P , any ∆ such that P is true in a stable model of T ∪ ∆ is an output of the
system.

References

1. Stefan Brass and Jürgen Dix. Characterizations of the stable semantics by partial
evaluation. In Logic Programming and Non-Monotonic Reasoning, Proceedings of
the Third International Conference, LNCS 928, pages 85–98. Springer, 1995.



ASPAL. Proof of soundness and completeness. 7

2. Luc De Raedt. Logical settings for concept-learning. Artif. Intell., 95(1):187–201,
1997.

3. J. W. Lloyd. Foundations of logic programming. Springer-Verlag New York, Inc.,
New York, NY, USA, 1984.

4. S. Muggleton. Inverse entailment and progol. New Gen. Comp., 13(3&4):245–286,
1995.


