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Preface

This volume contains the proceedings of the inaugural Imperial College Student
Workshop (ICCSW ‘11). The workshop took place on 29th–30th September 2011
in London UK. The event was hosted by Imperial College London.

ICCSW ‘11 aimed to be a truly student-run workshop: all of the organisation
was led by students and the majority of the submitting authors acted as reviewers
for other papers. Both the quality and number of the submissions, as well as the
high standard of reviews, exceeded the committee’s initial expectations.

These proceedings contain 16 original contributions in various fields from
across computer science, including both theoretical and applied papers.

Both days of the workshop featured a keynote talk on a facet of computer
science. The talks were titled:

– Artificial Intelligence and Human Thinking, by Robert Kowalski (Imperial
College London); and

– Building and Operating Products at Google-scale, by Ollie Cook (Google Inc.)

The workshop also featured two discussion panels. These panel sessions
discussed various areas of computer science from a provocative angle, to allow for
stimulating and spontaneous discourse on a given topic. The discussion panels
focused on two areas:

– The Future of Machine Learning, featuring Aldo Faisal (Imperial College
London), Artur Garcez (City University London), Stephen Muggleton (Impe-
rial College London), Daniel Roy (University of Cambridge) and Alessandra
Russo (Imperial College London); and

– Software Engineering in the Age of Multi-Scale Computing, featuring Ollie
Cook (Google Inc.), Sam Dutton (Google Inc.), Andrew Eland (Google Inc.)
and Juan Silveira (Google Inc.)

ICCSW ‘11 proved to be an international event, attracting both submissions
and attendees from the UK and the rest of Europe. The workshop was pleased to
host over 80 participants from the following countries: Cyprus, France, Greece,
Italy, the Netherlands, Romania and the United Kingdom.

The organisation of ICCSW ‘11 would not have been possible without the
resources and financial support provided by Imperial College London and Google
Inc. The latter provided travel bursaries for students and committee members
coming from institutions outside of London. Google Inc. also provided one of
the keynote talks and members for one of the discussion panels. For this support
we are truly grateful!

September 2011
London

Andrew V. Jones
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Building and Operating Products at
Google-scale

Ollie Cook

Google Inc.

Abstract. Building products for Google-scale presents some unique chal-
lenges in the software development and operational spheres. Through
exploring techniques relating to design, development, configuration, de-
ployment and monitoring the talk will describe how Google delivers high
availability products with low latency to millions of customers worldwide.

Profile. Ollie Cook is a site reliability manager at Google, managing the oper-
ational teams supporting Google Calendar and real-time communications. His
teams focus on product and system availability, monitoring, capacity planning
and deployment. Prior to joining Google in 2011, Ollie was the technology ser-
vices manager at Betfair, an online gambling provider, specialising in low-latency
trading systems, and deployment and configuration management of their global
computing footprint.

Andrew V. Jones (Ed.): Proceedings of the 1st Imperial College Student Workshop (ICCSW ‘11),
pp. 1–1. September 29th–30th 2011, London UK.



Artificial Intelligence and Human Thinking

Robert Kowalski

Imperial College London, Department of Computing,
Exhibition Road, London SW7 2AZ, UK

Abstract. Research in AI has built upon the tools and techniques of
many different disciplines, including formal logic, probability theory, de-
cision theory, management science, linguistics and philosophy. However,
the application of these disciplines in AI has necessitated the development
of many enhancements and extensions. Among the most powerful of these
are the methods of computational logic.

I will argue that computational logic, embedded in an agent cycle, com-
bines and improves upon both traditional logic and classical decision
theory. I will also argue that many of its methods can be used, not only
in AI, but also in ordinary life, to help people improve their own human
intelligence without the assistance of computers.

Profile. Professor Robert Anthony Kowalski is a Senior Research Investigator and
Emeritus Professor of Computational Logic at the Department of Computing of the
Imperial College London. Professor Kowalski is recognised for his contributions to
logic for knowledge representation and problem solving, including his pioneering
work on automated theorem proving and logic programming.

Andrew V. Jones (Ed.): Proceedings of the 1st Imperial College Student Workshop (ICCSW ‘11),
pp. 2–2. September 29th–30th 2011, London UK.



Combining Markov Decision Processes
with Linear Optimal Controllers

Ekaterina Abramova, Daniel Kuhn, and Aldo Faisal

Imperial College London, Department of Computing,
Exhibition Road, London SW7 2AZ, UK

Abstract. Linear Quadratic Gaussian (LQG) control has a known ana-
lytical solution [1] but non-linear problems do not [2]. The state of the art
method used to find approximate solutions to non-linear control problems
(iterative LQG) [3] carries a large computational cost associated with
iterative calculations [4]. We propose a novel approach for solving non-
linear Optimal Control (OC) problems which combines Reinforcement
Learning (RL) with OC. The new algorithm, RLOC, uses a small set of
localized optimal linear controllers and applies a Monte Carlo algorithm
that learns the mapping from the state space to controllers. We illustrate
our approach by solving a non-linear OC problem of the 2-joint arm oper-
ating in a plane with two point masses. We show that controlling the arm
with the RLOC is less costly than using the Linear Quadratic Regulator
(LQR). This finding shows that non-linear optimal control problems can
be solved using a novel approach of adaptive RL.

Keywords: Reinforcement Learning, non-linear Optimal Control, lo-
cally linear approximations, Linear Quadratic Regulator, robotic arm.

1 Introduction

Optimal Control (OC) theory aims to find a control law which would manipulate
a dynamical system while minimizing a cost associated with that system. Non-
linear OC deals with systems involving non-linear dynamics and is known to
be the most difficult area of the control theory [5]. Difficulties in solution of
Hamilton-Jacobi-Bellman partial differential equation for this class of problems
[2] resulted in use of iterative methods which yield approximate solutions.

Main methods include: Receding Horizon Control (RHC) [6], Control Lya-
punov Functions (CLFs) [7], Differential Dynamic Programming (DDP) [8], [9],
Iterative Linear Quadratic Regulator (iLQR) [10] and Iterative Linear Quadratic
Gaussian control (iLQG) [3]. The CLF method can lack stability unless it fits
closely with the value function and RHC can act suboptimally. The DDP, iLQR
and iLQG involve iterative calculations and are computationally costly.

We propose an alternative general method where the adaptive properties of
Reinforcement Learning (RL) are combined with the power of OC. This method,
RLOC, would be applicable in many different fields as long as the system dy-
namics and costs can be formally stated or approximated.

Andrew V. Jones (Ed.): Proceedings of the 1st Imperial College Student Workshop (ICCSW ‘11),
pp. 3–9. September 29th–30th 2011, London UK.



4 Ekaterina Abramova, Daniel Kuhn, Aldo Faisal

RL involves an agent that interacts with the world through actions and
receives corresponding rewards [11] thus improving the agent’s behaviour. RL
problems that satisfy the Markov Property are called Markov Decision Processes
(MDPs). An MDP represents a framework used to define control problems.

2 Problem Formulation

2.1 Linear Optimal Control

The Linear Quadratic Regulator (LQR) control has a closed form solution [12].
Its dynamics are linear in x and costs are assumed to be quadratic. The deter-
ministic linear optimal control problem has the following form

xk+1 = Axk +Buk (1)

where x is the state vector, u is the control vector, A is the system matrix acting
on the state vector and B is the control gain matrix acting on the control vector.

The continuous system dynamics ẋ = f(x,u), where ẋ is the first derivative
of the state vector with respect to time, can be represented in discrete form
yielding the update rule (Forward Euler)

xk+1 − xk

∆t
= f(xk,uk)

xk+1 = xk +∆tf(xk,uk)

where k is the step number.
The total cost, J , is the overall cost, accumulated over finite horizon through

incremental (Jk) and final (Jn) cost rates

J =
1
2
xn

TQfxn +
n−1∑
k=0

(
1
2
uk

TRuk +
1
2
xk

TQxk) (2)

where n is the number of steps, R is the control cost matrix, Q is the state cost
matrix and Qf is the final state cost matrix.

The control update is linear in x and is calculated using

uk = −Lkxk (3)

where Lk = ((R + BTVk+1B)−1BTVk+1A) is the feedback gain matrix and
Vk = Q + ATVk+1A − ATVk+1B(R + BTVk+1B)−1BTVk+1A is the cost to go
function. The L matrix does not depend on x and therefore can be computed
offline.

2.2 Non-Linear Optimal Control

The deterministic non-linear optimal control problem we choose to study has
the following general form

xk+1 = A(xk)xk +B(xk)uk (4)

It does not have an analytical solution [2] and approximate solutions are
computed using iterative methods.
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2.3 Proposition

Traditional OC methods used for solving non-linear problems need as many lo-
cally linear controllers as there are incremental number of steps. We propose
approximating non-linear OC systems by using a reduced number of linear op-
timal controllers which are joined together for global use with a RL algorithm.

Our problem formulation operates in two spaces: Formulation Space (ϕ1)
and Process Space (ϕ2). The ϕ1 describes every aspect of the OC problem and
incorporates the Formulation States (FS). The ϕ2 describes every aspect of the
Markov Decision Process and incorporates the Process States (PS).

The non-linear control problem is converted into a finite MDP problem by:

1 Discretizing the continuous FS (i.e. variable x) into a finite number of equal
discrete states that correspond to the PS {s1, s2, ..., sn}.

2 Using a Linear Quadratic Regulator (LQR) to obtain a small set of localized
optimal linear controllers, specifically the feedback gain matrices L1, L2, ..., Ln.

3 Using a RL algorithm to learn the mapping from the PS to controllers (i.e.
optimal way of combining localized linear controllers).

3 Application: Modelling Human Arm

Human motor coordination is well predicted by optimal control [13] and the ap-
proximations to non-linear human arm dynamics have been extensively studied
[3], [10], [14], [15]. We illustrate RLOC by solving a non-linear optimal control
problem of a simplified human arm model (Fig. 1).

Fig. 1. Simulated arm representation where θ1 is the angle of the shoulder, θ2 is the
angle of the elbow, both defined on the [0◦, 180◦] continuous interval, l1 is the length
of the first link, l2 is the length of the second link, m1 and m2 are the positions of the
weight on each respective link. Arm is allowed to move in a horizontal plane.

The forward arm dynamics are described by the equation

θ̈ =M(θ)−1(τ − C(θ, θ̇)− Bθ̇) (5)
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where θ ∈ R2 is the joint angle vector (shoulder: θ1, elbow θ2), M(θ) is a PD
symmetric inertia matrix, C(θ, θ̇) ∈ R2 is a vector centripetal and Coriolis forces,
B ∈ R2×2 is the joint friction matrix and τ ∈ R2 is the joint torque (defined to
be the control u = τ) [14].

The FS is defined as a 4D vector containing joint angles and their velocities

x = (θ1, θ2, θ̇1, θ̇2)T (6)

The state dynamics are described as the first derivative of the state vector, ẋ

ẋ = f(x,u) = (θ̇1, θ̇2, θ̈1, θ̈2)T (7)

3.1 Simulation

The arm joint angles are discretized into 36 PS states. Six feedback gain matrices,
corresponding to RL actions, are obtained by linearizing the arm dynamics using
LQR approach. The linearizations are performed around equally spaced points
in the ϕ1 and vary in elbow angle only. This is due to the fact that non-linearity
of the arm depends only on the elbow angle (Fig. 2).

Fig. 2. The x − axis is the shoulder angle, y − axis is the elbow angle. The squares
show PS and the black circles point to locations of feedback gain matrices obtained
by linearization of arm dynamics. The dashed line shows the ϕ1 along which the L
matrices are equal, this is true for any such line parallel to the x− axis.

We choose an epsilon-greedy on-policy Monte Carlo algorithm [11]. It learns
from sampling sequences of states s, actions a and immediate rewards (costs) r.
A full sample path from a starting to an absorbing state is called a trace, Γ , we
use 20000 traces. Optimal policy is learnt for the trajectory of the arm from the
center of any of the 36 states to a target.

Optimal Policy is learnt using the following steps:
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1 Initialize a deterministic policy having equal probability of picking any action
(linearized controller).

2 For each trace: a) pick a random starting Process State and b) chose current
action corresponding to that Process State (determined by the policy).

3 Get a trace: a) start controlling the arm using LQR, b) once enter a new
Process State record the {s,a,r} triplet, c) pick a new controller at random,
d) repeat until reach the target (i.e. end of obtaining a trace).

4 Examine {s,a,r} triplets to calculate Action-Value Function Q. Improve the
Policy by altering probabilities of picking each action in each state. If the
Policy yields lower trace cost, store it as the Optimal Policy.

5 Repeat steps 2. to 4. until obtain a specified number of traces (in our case
20000).

3.2 Results and Discussion

The results show that using RLOC algorithm to optimally control the arm from
any of the 36 states to an arbitrary target of (40◦, 10◦) results in either equal
to or better performance than the LQR (Fig. 3). The results are presented as

’relative differences’ in cost using the following formula (JLQR - JRLOC )

|JLQR|
100%.

This is necessary since some starting states are further away from the target and
hence the acquired cost would be higher simply due to the distance travelled.
Negative values indicate that RLOC is less costly.

Fig. 3. Relative cost differences in % between the cost of RLOC and LQR (both cal-
culated using J in equation (2). Each square corresponds to a PS, numbered as in
(Fig 2) and the target is marked by a circle. The following cost matrices were used:
R = diag[1 1], Q = diag[1.5 1.5 0 0] and Qf = diag[3000 3000 300 300].
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The total costs accumulated during the MC simulation are shown in (Fig. 4).
The algorithm ’learns’ throughout the simulation. This can be seen by the de-
crease in the cost size experienced at the end of each trace for each of the starting
states (picked at random at the beginning of a trace). The agent learns a better
policy with each sampled trace which results in decreasing cost size as the sim-
ulation progresses. Note that the graph has distinctive reduction in the worst
cost experienced for each starting state and these transform into lines as the
algorithm learns. Each line represents minimal possible cost that could be in-
curred by controlling the arm from each starting state to the target under RLOC
algorithm.

Fig. 4. Plot of the total cost of each trace vs. the trace number (20000 traces obtained).
Each starting Process State cost variability is marked with a different line. As the
simulation progresses, the variability of the maximum cost encountered by the learner
is reduced. Therefore this figure demonstrates that the algorithm learns to use better
(less costly) controllers for each Process State.

3.3 Conclusions

We presented the theoretical formulation, supported by a practical example, for
the novel approach of solving non-linear optimal control problems by combining
RL with OC to produce a new algorithm RLOC. The use of the RL agent
is advantageous since the learner is able to explore a large amount of states,
experiencing various state-action scenarios. This allows the learner to pick the
control policy which provides it with the most overall reward (least cost).

We illustrated the proposed algorithm with a model of the human arm move-
ment, where a combination of LQR control and epsilon greedy on policy Monte
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Carlo method was used. The algorithm proved to be able to control the arm
from the moment of initialization. This allows a trade off between speed and
optimality, which may be desirable in practice for on-line computations. The
algorithm was able to reach the desired target in a smooth manner with less
accumulated cost than the LQR. This finding is significant because it is the first
time it has been shown that RL can be combined with OC to produce better
results than using LQR or RL alone. We have therefore taken a step closer to
improving our current ability to control complicated non-linear systems.

An important aspect of this research is that it can be applied to many real
life problems (such as drug delivery, space exploration, algorithmic trading, air
traffic control and robotic control).
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Abstract. In real-world applications, the effective integration of learning and 
reasoning in a cognitive agent model is a difficult task. However, such 
integration may lead to a better understanding, use and construction of more 
realistic models. Unfortunately, existing models are either oversimplified or 
require much processing time, which is unsuitable for online learning and 
reasoning. Currently, controlled environments like training simulators do not 
effectively integrate learning and reasoning. In particular, higher-order concepts 
and cognitive abilities have many unknown temporal relations with the data, 
making it impossible to represent such relationships by hand. We introduce a 
novel cognitive agent model and architecture for online learning and reasoning 
that seeks to effectively represent, learn and reason in complex real-world 
applications. The agent architecture of the model combines neural learning with 
symbolic knowledge representation. It is capable of learning new hypotheses 
from observed data, and inferring new beliefs based on these hypotheses. 
Furthermore, it deals with uncertainty and errors in the data using a Bayesian 
inference model. The model has successfully been applied in real-time 
simulation and visual intelligence systems. 
 
Keywords: Neural-Symbolic, Cognitive Agent, Restricted Boltzmann Machine 
(RBM), Temporal Logic.  

1 World Problem 

The effective integration of automated learning and cognitive reasoning in real-world 
applications is a difficult task [1]. Usually, most applications deal with large amounts 
of data observed in the real-world containing errors, missing values and 
inconsistencies. Even in controlled environments, like training simulators, integrated 
learning and reasoning is not very successful [2], [3].  Although the use of training 

                                                             
1 This paper summarizes and clarifies previous work on Neural-Symbolic Cognitive Agents 

appeared in the proceedings of IJCAI [12] and NeSy [17]. Also it includes a proof of 
soundness of the NSCA model. 

Andrew V. Jones (Ed.): Proceedings of the 1st
 Imperial College Student Workshop (ICCSW ʻ11), 

pp. 10–16. September 29th–30th
 2011, London UK. 
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simulators simplifies the data and knowledge acquisition, it is still very difficult to 
construct a cognitive model of an (intelligent) agent that is able to deal with the many 
complex relations in the observed data. When it comes to the assessment and training 
of high-order cognitive abilities (e.g. leadership, tactical manoeuvring, safe driving, 
etc.) training is still guided or done by human experts [4]. The reason is that expert 
behaviour on high-level cognition is too complex to model, elicit and represent in an 
automated system. There can be many temporal relations between low and high-order 
aspects of a training task. Human behaviour is often non-deterministic and subjective 
(i.e. biased by personal experience and other factors like stress or fatigue) and what is 
known is often described vaguely and limited to explicit (i.e. “explainable”) 
behaviour. 

2 Knowledge Problem  

Several attempts have been made to tackle the problems described in section 1. For 
instance [5] describes a number of systems that use machine learning to learn the 
complex relations from observation of experts and trainees during task execution. 
Although these systems are successful in learning and generalization, they lack the 
expressive power of logic-based (symbolic) systems and are therefore difficult to 
understand and validate [6]. Alternatively, one could add probabilistic reasoning to 
logic-based systems [3]. These systems perform better in expressing their internal 
knowledge as they are logic based and are able to deal with inconsistencies in the data 
because they reason with probabilities. Unfortunately, when it comes to knowledge 
representation and modelling these systems still require either statistical analysis of 
large amounts of data or knowledge representation by hand. Therefore, both 
approaches are time expensive and are not appropriate for use in real-time 
applications, which demand online learning and reasoning. 

In this paper, we present a new cognitive agent model that is able to: (i) learn 
complex temporal relations from real-world observations, (ii) reason probabilistically 
about the knowledge that has been learned and/or encoded, and (iii) represent the 
agent's knowledge in symbolic form for explanation and validation. 

3 Theoretical Relevance 

The construction of effective cognitive agent models is a long standing research 
endeavour in artificial intelligence, cognitive science, and multi-agent systems [1], 
[7]. One of the main challenges toward achieving such models is the provision of 
integrated cognitive abilities, such as learning, reasoning and knowledge 
representation. Recently, cognitive computational models based on artificial neural 
networks have integrated inductive learning and deductive reasoning, see e.g. [8], [9]. 
In such models, neural networks are used to learn and reason about (an agent's) 
knowledge about the world, represented by symbolic logic. In order to do so, 
algorithms map logical theories (or knowledge about the world) T into a neural 
network N which computes the logical consequences of T. This provides also a 
learning system in the network that can be trained by examples using T as background 
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knowledge. In agents endowed with neural computation, induction is typically seen as 
the process of changing the weights of a network in ways that reflect the statistical 
properties of a dataset, allowing for generalizations over unseen examples. In the 
same setting, deduction is the neural computation of output values as a response to 
input values (stimuli from the environment) given a particular set of weights. Such 
network computations have been shown equivalent to a range of temporal logic 
formalisms [10]. Based on this approach the agent architecture of our model can be 
seen as a Neural Symbolic Cognitive Agent (NSCA). In our model, the agent 
architecture uses temporal logic as theory T and a Restricted Boltzmann Machine 
(RBM) as neural network N. A RBM is a partially connected neural network with two 
layers, a visible V and a hidden layer H, and symmetric connections W between these 
layers [11].  

A RBM defines a probability distribution P(V=v, H=h) over pairs of vectors v and 
h encoded in these layers, where v encodes the input data in binary or real values and 
h encodes the posterior probability P(H | v). Such a network can be used to infer or 
reconstruct complete data vectors based on incomplete or inconsistent input data and 
therefore implement an auto-associative memory. It does so by combining the 
posterior probability distributions generated by each unit in the hidden layer with a 
conditional probability distribution for each unit in the visible layer. Each hidden unit 
constrains a different subset of the dimensions in the high-dimensional data presented 
at the visible layer and is therefore called an expert on some feature in the input data. 
Together, the hidden units form a so-called “Products of Experts” model that 
constrains all the dimensions in the input data.  

4 The Cognitive Model and Agent Architecture 

The Neural-Symbolic Cognitive Agent (NSCA), depicted in figure 1, uses a Recurrent 
Temporal Restricted Boltzmann Machine (RTRBM) to encode prior knowledge, 
reason with this knowledge (deduction), infer beliefs about observations (abduction) 
and learn new knowledge from observations (induction) [12]. In this paper we will 
proof that the model can encode symbolic rules R, in the form of temporal logic 
clauses, as a joint probability distribution on hypotheses H (represented by the hidden 
units) and beliefs B (represented by the visible units), and that the model is able to 
encode temporal relations between hypotheses. The latter is possible due to recurrent 
connections between hidden unit activations at time t and the activations at time t-1, 
see [13]. 

Deduction in the RTRBM is similar to Bayesian inference, where for all 
hypotheses H the probability is calculated that the hypotheses are true given the 
observed beliefs b and the previously applied hypotheses Ht-1 (i.e. P(H|B=b,Ht-1)). 
From this posterior probability distribution the RTRBM selects the most likely 
hypotheses h using random Gaussian sampling, i.e. h ~ P(H|B=b,Ht-1). Via abduction 
the RTRBM then infers the most likely beliefs based on h by calculating the 
conditional probability (i.e. P(B|H=h)). The differences between the observed and 
inferred beliefs are then used by the NSCA to determine the implications of the 
applied hypotheses.  
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Fig. 1. Neural-Symbolic Cognitive Agent Architecture. 

 
Induction of new knowledge can be obtained by using the difference to improve 

the hypotheses about the observed beliefs. It does so by updating the weights in the 
RTRBM using Contrastive Divergence and Backpropagation-Through-Time [13]. 

The NSCA architecture also enables the modelling of higher-order temporal 
relations using the probabilities on hypotheses (depicted as the current state of ‘mind’ 
in figure 1) of lower-level NSCAs as observations. Such a layered network of NSCAs 
is called a Deep Belief Network (or Deep Boltzmann Machine when RBMs are used) 
and are in theory capable of learning and reasoning with first-order logic [14].  

5 Temporal Knowledge Representation 

The symbolic rules R, encoded in the RTRBM, are typically in the form of temporal 
logic clauses that describe equivalences between hypotheses and beliefs over time. 
For example, H1 ↔ B1 ∧ Β3 ∧ •H1 denotes that hypothesis H1 holds at time t if and 
only if beliefs B1 and B3 hold at time t and hypothesis H1 holds at time t-1, where we 
use the previous time temporal logic operator •  to denote t-1. We consider a broad set 
of past and future temporal logic operators as described in [10], that also describes a 
set of translations that relate a range of temporal logic formula having both past and 
future operators to a form having only the previous time operator. This enables a 
range of temporal logic formula to be encoded in and extracted from a RTRBM as 
described in the following algorithms and theorem. 
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Extraction Algorithm: Based on [15] we can extract a temporal logic program for R 
from a RTRBM N by finding the states of N that lower the total energy in its energy 
function. This means finding the states that maximize the likelihood of each clause r 
in R encoded in N. Assuming N is stable we can extract these states by assuming the 
hypothesis related to r, denoted by Hr, is true and then infer the related beliefs b and 
previous time formula ht-1 from the RTRBM using random Gaussian sampling of the 
conditional probability distribution (i.e. ∀r ∈ R: br ~ P(B |Hr) and hr

t-1 ~ P(Ht-1|Hr)). 
Similar to Pinkas, we calculate a confidence parameter cr to denote the strength of 

the equivalence in each clause r. This confidence parameter is based on the notion of 
Bayesian credibility [16] and calculated in a similar way (see Eq. 4). 

If we do this for all clauses, we can construct a temporal logic formula P using the 
following equations (where k is the number of beliefs, m the number of hypotheses 
and wij is the weight of the connection between the related visible units and hidden 
units in the RTRBM): 
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The literals for the beliefs, denoted by φj
(i), are calculated using Eq. 2 and depend 

on the weight wij of the connection between the hidden unit that represents hypothesis 
Hj and the visible unit that represents belief Bi. A negative weight will increase the 
probability of Hj when we decrease the value of Bi. So all values for belief Bi less or 
equal to bj(i) will increase the probability of hypothesis Hj. The inverse applies to a 
positive weight. When the weight is zero a belief has no influence on the hypothesis 
and can be left out. The previous time literals for the hypotheses, denoted by ρj

(i), are 
calculated using Eq. 3 and use the temporal operator ●. Notice that the previous time 
literals do not use equality operators, since hr

t-1 is always sampled from the binary 
stochastic hidden units, whereas, beliefs br are sampled from the continues stochastic 
visible units and therefore use equality operators to describe restrictions in the 
continuous data for which the clause applies. 
 
Encoding Algorithm: The extraction algorithm above shows that temporal logic 
clauses can be extracted from the RTRBM efficiently. Encoding these clauses is the 
dual of the extraction algorithm, i.e. for each clause r in R; (i) add a hidden unit to the 
RTRBM to represent the hypothesis Hr in the clause and for each belief literal Bi in 
the clause, add a visible unit, (ii) randomize the weights connecting the visible and 
hidden units, and (iii) minimize the difference between P(Hr | B=br, Ht-1=hr

t-1) and 
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confidence cr of the clause, and the differences between br and P(B  | Hr=cr) and hr
t-1 

and P(Ht-1  | Hr=cr) by applying the contrastive divergence algorithm [13]. 
 
Theorem: For any temporal logic program P there exists a RTRBM N such that N 
computes P.  
 
Proof: The soundness of the encoding of temporal formulas w.r.t. a temporal logic 
programming fixed-point semantics is shown in [10]. For each rule of the form in Eq. 
1, assume that a first time point t=0 exists without loss of generality. Given arbitrary 
initial values for the ●α formulas, we have that the computation of P in the recurrent 
network converges to a least fixed point [8]. Inductive step: at time point t, either N is 
stable with α activated in Hr or a value for α is inferred from B and Hr

t-1. At time 
point t+1, from the encoding algorithm, ●α will be activated in Hr

t-1 with arbitrary 
confidence level c assuming minimization of the contrastive divergence [13]. This 
completes the proof. ■   

6 Experiments and Results 

Several experiments have been conducted with the NSCA in various real-world 
applications. For example, the NSCA has been used to learn relations between 
observed data from a driving simulator (e.g. positions and orientations of vehicles, 
gear, steering wheel angle, etc.) and high-order driving skills (e.g. safe, social and 
economic driving) [12]. Another application was the recognition of human behaviour 
(e.g. fall, chase, exchange, jump, etc.) in video based on low-level visual features (e.g. 
bounding box properties of detected objects) [17]. Results of these experiments have 
shown that the NSCA is capable of learning meaningful temporal relations from 
observation and extract these relations in symbolic form.  

7 Conclusions and Future Work 

The cognitive model and agent architecture presented in this paper offer an effective 
approach that integrates symbolic reasoning and neural learning in a unified model 
and has been successfully applied in several real-world applications. The approach 
allows the modelled agent to learn rules about observed data in complex, real-world 
environments. Learned behaviour can be extracted to update existing knowledge for 
validation, reporting and feedback. Furthermore the approach allows prior knowledge 
to be encoded in the model and deals with uncertainty in real-world data.  

Future work includes research on using Deep Belief Networks [14] to deal with 
first-order logic and “Direction of Fit” to perform various forms of action planning 
and selection.  

In summary, we believe that our work provides an integrated model for knowledge 
representation, learning and reasoning which may indeed lead to realistic 
computational cognitive agent models, thus answering the challenges put forward in 
[1], [7]. 
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Abstract. In this paper we study time-bounded verification of a finite continuous-
time Markov chain (CTMC) C against a real-time specification, provided as a
metric temporal logic (MTL) property ϕ. The key question is: what is the prob-
ability of the set of timed paths of C that satisfy ϕ over a time interval of fixed,
bounded length? We provide approximation algorithms to solve these problems.
We first derive a bound N such that timed paths of C with at most N discrete
jumps are sufficient to approximate the desired probability up to ε. Then, for each
discrete (untimed) path σ of length at mostN , we generate timed constraints over
variables determining the residence time of each state along σ, depending on the
real-time specification under consideration. The probability of the set of timed
paths, determined by the discrete path and the associated timed constraints, can
thus be formulated as a multidimensional integral. Summing up all such proba-
bilities yields the result.

1 Introduction

Verification of continuous-time Markov chains (CTMCs) has received much attention
in recent years [5]. Thanks to considerable improvements of algorithms, (symbolic)
data structures and abstraction techniques, CTMC model checking has emerged as a
valuable analysis technique. Aided by powerful software tools, it has been adopted
by researchers from, e.g., systems biology, queuing networks and dependability. To
mention just a few practical applications, these models have been used to quantify the
throughput of production lines, to determine the mean time between failure in safety-
critical systems, and to identify bottlenecks in high-speed communication networks.

The focus of CTMC model checking [4] has primarily been on checking stochas-
tic versions of the branching-time temporal logic CTL, such as continuous stochas-
tic logic CSL [4]. The verification of linear temporal logic (LTL) properties reduces
to applying well-known algorithms [14,10] to embedded discrete-time Markov chains
(DTMCs). Linear-time properties equipped with timing constraints have only recently
been considered. In particular, [7,8] treat linear real-time specifications that are given as
deterministic timed automata (DTA). These include properties of the form, “what is the
probability to reach a given target state within the deadline, while avoiding unsafe states
and not staying too long in any of the dangerous states on the way?”. Such properties
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?? A longer version of this paper appeared in the proceedings of FORMATS11 [9]
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cannot be expressed in CSL nor in its dialects [3,11]. Model checking DTA properties
can be done by a reduction to computing the reachability probability in a piecewise de-
terministic Markov process, based on the product construction between the CTMC and
DTA [8,6]. It remains a challenge to tackle more general real-time specifications like
Metric Temporal Logics ([1,12], MTL).

For this reason, we study the time-bounded verification problem of a CTMC C,
against a real-time specification provided as an MTL formula ϕ. The key question is:
what is the probability of the set of timed paths of C that satisfy ϕ over a fixed time
interval [0, T ] where T ∈ R>0? We provide approximation algorithms to solve these
problems. Given any ε > 0 a priori, we first derive a bound N such that it is sufficient
only to consider timed paths of C with at most N discrete jumps to approximate the
desired probability up to ε. Then, for each discrete (untimed) path σ of C of length
at most N , we generate a family of linear constraints, S, over variables determining
the residence time of each state in σ. The discrete path σ, together with the associated
timing constraints S, determines a set of timed paths of C, each of which satisfies ϕ.
The probability of this set of timed paths can be formulated as a multidimensional inte-
gral, which can be calculated by Laplace transforms. Summing up all such probabilities
yields the desired result. We believe these results are of independent interest, as they
have potential usage in domains such as runtime verification.

The reader should notice that even though MTL is generally undecidable [2] (if we
include singular intervals), this does not affect our algorithm. In fact, informally we can
state that in any CTMC C, the probability of an event happening in a specific singular
time instant is zero.

2 Preliminaries

2.1 Continuous-time Markov chains

Given a set H, let Pr: F(H) → [0, 1] be a probability measure on the measurable
space (H,F(H)), where F(H) is a σ-algebra over H. Let Distr(H) denote the set of
probability measures on this measurable space.

Definition 1 (CTMC). A (labeled) continuous-time Markov chain (CTMC) is a tuple
C = (S,AP, L, α,P, E) where

– S is a finite set of states;
– AP is a finite set of atomic propositions;
– L : S → 2AP is the labeling function;
– α ∈ Distr(S) is the initial distribution;
– P : S × S → [0, 1] is a stochastic matrix; and
– E : S → R≥0 is the exit rate function.

Example 1. An example CTMC is illustrated in Fig. 1, where AP = {a, b, c} and s0 is
the initial state, i.e., α(s0) = 1 and α(s) = 0 for any s 6= s0. The exit rates are indicated
at the states, whereas the transition probabilities are attached to the transitions.

In a CTMC C, state residence times are exponentially distributed. More precisely,
the residence time X of a state s ∈ S is a random variable governed by a nonnegative
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Fig. 1. An example CTMC

exponential distribution with parameter E(s) (written as X ∼ Exp(E(s))). Hence, the
probability to exit state s in t time units (t.u. for short) is given by

∫ t
0
E(s) · e−E(s)τdτ .

Furthermore, the probability to take the transition from s to s′ in t t.u. equals P(s, s′) ·∫ t
0
E(s) · e−E(s)τdτ .

Definition 2. Given a CTMC C = (S,AP, L, α,P, E), we define the following no-
tions.

– A (finite) discrete path σ = s0 → s1 → s2 → . . . is a (finite) sequence of states;
we define σi to be the state si, and σi to be the prefix of length i of σ.

– A (finite) timed path ρ = s0
x0−→ s1

x1−→ s2
x2−→ . . ., where xi ∈ R>0 for each

i ≥ 0, is a sequence starting in state s0; we define |ρ| to be the length of a finite
timed path ρ; ρ[n] := sn is the n-th state of ρ and ρ〈n〉 := xn is the time spent
in state sn; let ρ@t be the state occupied in ρ at time t ∈ R≥0, i.e. ρ@t := ρ[n],

where n is the smallest index such that
n∑
i=0

ρ〈i〉 ≥ t.

Intuitively, a timed path ρ = s0
x0−→ s1

x1−→ s2
x2−→ . . . suggests that the CTMC

C starts in state s0 and stays in this state for x0 t.u., and then jumps to state s1, staying
there for x1 t.u., and then jumps to s2 and so on. An example timed path is ρ = s0

3−→
s1

2−→ s0
1.5−→ s1

3.4−→ s2 . . . with ρ[2] = s0 and ρ@4 = ρ[1] = s1.

Let PathsC denote the set of infinite timed paths in the CTMC C, and PathsC(s)
the set of infinite timed paths in C that start in s. Given a time bound T ∈ R≥0 and
N ∈ N ∪ {∞}, we define PathsCT,<N (s), to be the set of all timed paths with at most
N − 1 discrete jumps in time interval [0, T ]; and PathsCT,≥N (s), to be the set of all
timed paths with at least N jumps in [0, T ].

For notational simplicity we will omit the superscript C when appropriate and also
we write PathsCT instead of PathsCT,≤∞ for the set of all timed paths with an arbitrary
number of jumps in [0, T ].

In general, computing the probability of a cylinder set with k intervals I0 . . . Ik−1

(i.e. k discrete jumps) reduces to calculating k integrals over I0 . . . Ik−1.

2.2 Metric Temporal Logic

Definition 3 (Syntax of MTL). Let AP be an arbitrary nonempty, finite set of atomic
propositions. Let I = [a, b] be an interval such that a, b ∈ N ∪ {∞}. The Metric



20 Taolue Chen, Marco Diciolla, Marta Kwiatkowska, Alexandru Mereacre

Temporal Logic is inductively defined as:

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1UIϕ2 ,

where p ∈ AP and ϕ1, ϕ2 are MTL formulas.

We introduce the time-bounded semantics for MTL, as follows.

Definition 4 (Semantics of MTL). Given an MTL formula ϕ, a time bound T , a timed
path ρ and a variable t ∈ R≥0, the satisfaction relation (ρ, t) |=T ϕ is inductively
defined as follows:

(ρ, t) |=T p ⇔ p ∈ L(ρ@t) ∧ t ≤ T
(ρ, t) |=T ¬ϕ1 ⇔ (ρ, t) 6|=T ϕ1

(ρ, t) |=T ϕ1 ∧ ϕ2 ⇔ (ρ, t) |=T ϕ1 ∧ (ρ, t) |=T ϕ2

(ρ, t) |=T ϕ1UIϕ2 ⇔ ∃t′. t ≤ t′ ≤ T s.t. t′ − t ∈ I ∧ (ρ, t′) |=T ϕ2 ∧
∀t′′. t ≤ t′′< t′ ⇒ (ρ, t′′) |=T ϕ1

where p ∈ AP and ϕ1, ϕ2 are MTL formulas.

3 MTL Specifications

In this section we study the problem of model checking CTMCs against MTL proper-
ties. Let PrCT (ϕ) := PrC({ρ ∈ PathsCT | (ρ, 0) |=T ϕ}) denote the probability that the
CTMC C satisfies the MTL formula ϕ, for a given time bound T . Instead of comput-
ing PrCT (ϕ), we give a procedure to compute PrCT,<N (ϕ) := PrC(PathsCT,<N (ϕ)) for
sufficiently large N which ensures that PrCT (ϕ)− PrCT,<N (ϕ) < ε for arbitrarily small
ε ∈ R>0. This yields an approximation algorithm. Below we present an algorithm to
compute PrCT,<N (ϕ). We first give a sketch, and provide the crucial sub-procedures in
Sec. 3.1 and Sec. 3.2.

Choose N to get the desired error bound ε. The first step of the algorithm is to choose
the smallest N such that we get the desired error bound ε.

Compute the product C ⊗ Aeϕ. The basic idea of this step is to exclude those CTMC
timed paths which definitely failϕ in order to reduce the number of paths to be analyzed.
To this end, we define an LTL formula ϕ̃ such that, if a discrete path of C fails ϕ̃, then
any timed path with the discrete path as the skeleton must fail ϕ. We then construct an
NFA out of ϕ̃ such that only those finite discrete CTMC paths which are accepted by
the NFA are the prefixes of the potential skeletons of timed paths satisfying ϕ. Then we
apply the standard product construction, which suffices to identify those CTMC finite
discrete paths analyzed in the next step.

Any MTL formula ϕ can be transformed into a positive normal form containing
only two temporal operators: U[a,b] and �[a,b], where (ρ, t) |=T �[a,b]ϕ iff ∀t′ ∈
[a, b]⇒ (ρ, t+ t′) |=T ϕ.

Given any MTL ϕ in positive normal form, we define an (untimed) LTL formula ϕ̃
as follows:
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ϕ = p ⇒ ϕ̃ = p
ϕ = ¬p ⇒ ϕ̃ = ¬p
ϕ = ϕ1 ∨ ϕ2 ⇒ ϕ̃ = ϕ̃1 ∨ ϕ̃2

ϕ = ϕ1 ∧ ϕ2 ⇒ ϕ̃ = ϕ̃1 ∧ ϕ̃2

ϕ = ϕ1UIϕ2 ⇒ ϕ̃ = ϕ̃1U ϕ̃2

ϕ = �Iϕ1 ⇒ ϕ̃ = TRUE U ϕ̃1

where ϕ1 and ϕ2 are MTL formulas and ϕ̃1 and ϕ̃2 are LTL formulas.
As the next step, we construct a nondeterministic finite automaton (NFA)Aeϕ which

accepts all the prefixes of infinite paths satisfying the formula ϕ̃ . The NFA can be
obtained by a minor adaptation of the well-known Vardi-Wolper construction. We then
build the product of C and Aeϕ (C ⊗ Aeϕ).

Compute all the discrete paths of C ⊗ Aeϕ of length at most N and calculate the
probabilities.

1. Search the graph C ⊗ Aeϕ to get all the discrete accepting paths σ of C of length at
most N ;

2. Run Alg. 1 on each discrete path σ of length n ≤ N to obtain the system of linear
inequalities S;

3. Compute the probability of σ[S] (cf. Sec. 3.2);
4. Sum up all the probabilities for each discrete path to obtain PrCT,<N (ϕ).

3.1 Constraints Generation

We describe the Alg. 1 that takes as input a discrete path σ of length n and an MTL
formula ϕ and returns a family of linear constraints S =

∨
i∈I

∧
j∈Ji

cij where cij is a
linear inequality over the set of variables t0, . . . , tn−1.

Algorithm 1 Constraints generation
Require: A finite discrete path σ of length n > 0, an MTL formula ϕ and a time bound T
Ensure: Family of linear inequalities S over t0, . . . , tn−1

S ′ :=Constr Gen(σ,0,ϕ)
S :=Fourier Motzkin(S ′,t0,. . .,tn−1)
return S

Function Constr Gen(σ,t,ϕ)
case(ϕ) :

ϕ = p : return
`Wn

k=0 p ∈ L(σk) ∧
Pk

i=0 ti ≥ t ∧
Pk−1

i=0 ti < t
´
∧ t < T

ϕ = ¬ϕ1 : S ′ := ¬Constr Gen(σ,t,ϕ1)
ϕ = ϕ1 ∧ ϕ2 : S ′ :=Constr Gen(σ,t,ϕ1) ∧ Constr Gen(σ,t,ϕ2)
ϕ = ϕ1U[a,b]ϕ2 : S ′ := ∃t′.

`
t ≤ t′ < T ∧ t′−t≥a ∧ t′−t<b ∧ Constr Gen(σ,t′,ϕ2)

∧ ∀t′′. t ≤ t′′ < t′⇒ Constr Gen(σ,t′′,ϕ1)
´

return S ′
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3.2 Computing Probabilities

Given a CTMC C, a discrete path σ of length N and the family of linear constraints
S(t0, . . . , tN−1) obtained from Alg. 1, the main task of this section is to compute the
probability of σ[S], i.e., PrC(σ[S]). The value of the joint probability can be computed
through the following multidimensional integration:

PrC(σ[S]) =
∫
· · ·

∫
︸ ︷︷ ︸

N

S(t0,...,tN−1)

N−1∏
i=0

E(si) ·P(si, si+1)× e−E(si)τidτi. (1)

We use the algorithm of [13] (Sec. 5) to compute efficiently the multidimensional
integral based on the Laplace transform.

3.3 Main Algorithm

We summarize the time-bounded verification algorithm for a CTMC C against an MTL
formula ϕ in Alg. 2. Recall that Λ is the maximal exit rate appearing in C.

Algorithm 2 Time-bounded verification of a CTMC C against an MTL formula ϕ
Require: C, ϕ, T and ε
Ensure: PrCT,<N (ϕ)

Choose an integer N ≥ ΛTe2 + ln( 1
ε
)

Transform ϕ into eϕ and generate NFA Aeϕ out of eϕ
Compute the product C ⊗ Aeϕ
for each discrete path σ of (C ⊗ Aeϕ) �1 of length n < N do

Generate the family of linear constraints S(t0, . . . , tn−1)
Calculate the probability p of σ[S]
PrCT,<N (ϕ) := PrCT,<N (ϕ) + p

end for
return PrCT,<N (ϕ)

4 Conclusion

In this paper we have studied time-bounded verification of CTMCs against real-time
specifications. In particular, we presented effective procedures to approximate the prob-
ability of the set of timed paths of CTMCs that satisfy real-time specifications over
a time interval of fixed bounded length, arbitrarily closely. Model checking CTMCs
against linear real-time specifications has received scant attention so far. To our knowl-
edge, this issue has only been (partially) addressed in [7,3,11].

A natural question is how to tackle the traditional (time-unbounded) verification.
The scheme introduced in this paper still works. However, one cannot guarantee an
approximation to stay within the given error bound ε, which means that the resulting
procedure is not an approximation algorithm any more. We leave this as future work.
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Abstract. We introduce MASSPA–Modeller, a visual modelling tool for
the recently developed spatial stochastic process algebra MASSPA which
describes Markovian Agent Models (MAM)s. The major advantage of us-
ing a visual editor to generate MASSPA models is that the laborious task
of modelling the communication between agents is partially automated
by the tool. Furthermore the tool can separately check the correctness of
local and spatial aspects of the model and thereby help users to find mis-
takes. For the analysis of the resulting models MASSPA–Modeller uses
the powerful GPA–analyser engine. Additionally we briefly summarise
the latest developments in spatial stochastic process algebras.

Keywords: Performance Analysis, Higher Moment Analysis, Spatial
Stochastic Process Algebra, Spatial Modelling, MAM, MASSPA

1 Introduction

Performance analysis studies modelling techniques for predicting performance of
computer and telecommunication systems. Moreover, it is also applied in other
areas such as crowd modelling, systems biology and various other fields. Com-
mon analysis targets are the average time to complete a job or the probability
distribution of client service times. Most models are described in high-level lan-
guages such as PEPA[1], a Stochastic Process Algebra (SPA), which translate
to Continuous Time Markov Chains (CTMC)s. Alternatively Stochastic Petri
nets can be used to describe CTMCs, but in this paper we will focus on process
algebras. All CTMC models assume that any delay between two events in the
underlying stochastic process is exponentially distributed.

Recent developments in fluid analysis methods [2,3] for CTMCs derived from
high-level model descriptions such as SPAs have given modellers means to anal-
yse extremely large models. Previously such models could only be analysed us-
ing stochastic simulation [4], as traditional analysis techniques, which are based
on linear equation solvers, can only solve small models due to the well-known
state space explosion problem. Fluid techniques exploit the fact that moments

Andrew V. Jones (Ed.): Proceedings of the 1st Imperial College Student Workshop (ICCSW ‘11),
pp. 24–30. September 29th–30th 2011, London UK.
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of stochastic processes, which describe state populations in lumped CTMCs, can
be approximated by Ordinary Differential Equations (ODE)s. Today, there is a
large number of formalisms for which the mapping from the high-level model
description to ODEs has been defined, e.g. GPEPA [3], SCCP [5] and stochastic
π-calculus [6]. More recent research has shown that it is even possible to ap-
proximate measures such as passage time distributions and reward vectors using
ODEs [7,8].

Spatial modelling languages are useful extensions to their non-spatial counter-
parts, for instance when investigating crowd movements, disaster propagation or
network topologies. Evaluation techniques for spatial models are similar to those
for non-spatial models, however, spatial models tend to have larger CTMCs and
allow analysis techniques that take into account the spatial nature of the model.
Fluid analysis techniques have been applied to CTMCs that arise from spatial
models described in Bio-PEPA [9] and the MAM formalism [10] for which we
defined MASSPA, a Markovian Agent Spatial Stochastic Process Algebra [11].
The MAM formalism is a particularly interesting spatial modelling framework
as it has been applied in a large number of different areas such as wireless sen-
sor networks [10], fire propagation [12] and traffic modelling [13] to name but a
few. Research in [11] shows that there is a generic mapping from MASSPA to a
mass-action type reaction system. As a consequence any MAM model expressed
in MASSPA grammar can now be analysed using the powerful GPA–analyser,
which was originally developed for the analysis of massive GPEPA models [14].

Despite the existence of spatial SPAs (SSPA)s, complex spatial models can still
be too large to be expressed in SSPAs by hand. To facilitate the creation of
spatial models, visual editors such as DrawNet [15] and SeSam [16] have been
developed for stochastic Petri nets and agent based simulations. Moreover, a re-
cent extension to DrawNet enables users to describe the spatial aspects of MAMs,
but it currently does not allow users to define sequential Markovian Agents [17].
MASSPA–Modeller, which is described in this paper, is the first spatial mod-
elling tool for MAMs that allows users to define all aspects of MA models. It
further enables users to perform higher moment and continuous reward vector
analysis on spatial models. Moreover, it is the first hybrid tool that allows users
to express local agent behaviour using SPA and spatial behaviour in a visual
editor. This paper is organised as follows. First, we briefly describe the MAM
formalism and MASSPA in Sect. 2. We then demonstrate the MASSPA-Modeller
work-flow in Sect. 3 and finally present conclusions in Sect. 4.

2 MAM and MASSPA

The MAM formalism was first described by Gribaudo et al. in [10]. Each MAM
consists of two parts, a definition for local agent behaviour and a model describ-
ing their distribution and interactions in space. Agents can evolve through local
and message induced transitions. While local transitions are no different from
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those in other formalisms, message induced transitions are novel. Every time an
agent changes state it can emit a message of type M . At the same time another
agent can listen for messages of type M and act on incoming messages. The
perception function u(·), which is part of the model, defines all combinations of
agents in all locations that can exchange messages (cf. [10,11]). In other words
u(·) can be thought of as a directed graph where vertices are pairs of agent state
populations and edges are message channels between them. Note that the MAM
message exchange paradigm is an asynchronous form of communication, as re-
ceiving agents can decide to discard messages without blocking sending agents.
Therefore Markovian Agents (MA)s are said to be autonomous. MASSPA [11],
the Markovian Agent SSPA, simplifies the definition and evaluation of MAMs
and makes comparisons with other formalisms easier. A MASSPA model consists
of sequential agent, topology, agent population size and Channel(·) definitions
(e.g. Fig. 1).

// Agent definitions

Agent OnOff {

On = !(2.0,M,1.0).Off; Off = ?(M,1.0).On + (1.5).On;

};

// Spatial model definition

Locations = {(0),(1),(2)};

// Initial agent distributions

On@(0) = 100; Off@(1) = 200; Off@(2) = 150;

// Channel definition

Channel(On@(1),Off@(0),M) = 1/100;

Channel(On@(0),Off@(1),M) = 1/150;

Channel(On@(2),Off@(1),M) = 1/150;

Channel(On@(1),Off@(2),M) = 1/200;

Fig. 1. Simple MASSPA model for an On/Off agent model generated using MASSPA-
Modeller. In this model agents in the On state emit !(...) messages of type M and
agents in the Off state can turn On if they receive ?(...) a message of this type or
alternatively simply turn On at rate 1.5. The perception function describes all message
channels as well a scaling rate for each channel that will modulate the rate at which
messages can be sent on a particular channel.

3 The MASSPA–Modeller

The example in Fig. 1 shows a fairly simple MASSPA model. However, as the
number of agents states, locations and message types increases, the definition
of the perception function can become large. Moreover, it becomes difficult to
visualise the directions of channels if a model has hundreds or thousands of
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channels. One of the main features of MASSPA–Modeller (http://www.doc.
ic.ac.uk/~mcg05) is its ability to mitigate this by allowing users to define high-
level channels such as: Any state in location (0) can send any kind of message
to any state in location (1). Later this high-level channel description is used to
auto-generate actual MASSPA channels.

Const/Agent
Definitions

Location
Definitions

Channel
Definitions

Evaluation

Agents: On = ... Locations = ... Channel(X@l1,Y@l2,M) E[X@l1], Var[X@l1]

Fig. 2. MASSPA-Modeller work-flow

Having illustrated why a visual editor is necessary for the definition of complex
MASSPA models, we now give a brief description of the MASSPA–Modeller
work-flow, which is shown in Fig. 2. As a running example we will describe how
the MASSPA model shown in Fig. 1 can be created in MASSPA–Modeller. The
first step is to define constants, variables, functions and sequential agent def-
initions in the Agents & Variables tab. In our simple model we only define
the latter, i.e. Agent OnOff {On = !(2.0,M,1.0).Off; Off = ?(M,1.0).On
+ (1.5).On;}, but in more elaborate models each transition rate could be repre-
sented as a expression of constants, variables and functions. Once this definition
has been entered, the user can compile the agent definition. Errors and warnings
will be displayed in the console below the editor tab.

Fig. 3. Location definition in MASSPA–Modeller with one disabled location.

Having defined our agent(s), the Locations tab (see Fig. 3) can be used to gener-
ate different topologies such as rectangular or radial location grids. In our case
we have a simple line consisting of 3 locations. Having generated a topology we
can disable any unwanted location and define initial populations for every agent

http://www.doc.ic.ac.uk/~mcg05
http://www.doc.ic.ac.uk/~mcg05
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state in each location. In our example we use this feature to create the following
three initial populations On@(0) = 100; Off@(1) = 200; Off@(2) = 150;.

Fig. 4. Channel definition in MASSPA–Modeller.

Once users have create the topology and defined the initial populations, they
can define the communication channels between locations or, if more fine grained
communication control is needed, between specific sender and receiver popula-
tions (see Fig. 4). Channels can be generated using a predefined channel gener-
ator or by adding channels manually. Channel generators are useful for models
with many locations, for instance when we want to create a source to sink style
communication pattern with constraints on the maximum length of a single hop.
In our example it is easiest to create the four channels manually in the editor.

The final tab allows users to generate the MASSPA model and to specify the
evaluation method. Having generated the model, the evaluation method needs
to be defined in GPA syntax [14], e.g. ODEs(stopTime=60.0,stepSize=0.1,
density=10,closure=MASSPA infty){E[On@(2)],Var[On@(2)];} uses fluid an-
alysis to determine the mean and variance of On states in location (2) from time
0 to 60. Pressing the Evaluate button will compile the model and use the GPA–
analyser engine to perform the specified analysis and generate Fig. 5.
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Fig. 5. Mean and variance for population On@(2).

4 Conclusions

We have presented a new spatial modelling tool for MASSPA, which allows
users to define all aspects of Markovian Agent models. Users can specify local
agent behaviour using process algebra, while any spatial aspects of the model
can be modelled using visual editors, which is more convenient than defining
communication channels by hand. This combination between letting modellers
define agents using process algebra and spatial aspects using an editor should
be especially appealing to modellers who are familiar with non-spatial process
algebras such as PEPA or GPEPA. In the future we might add this hybrid
modelling approach to DrawNet, as this tool provides a much richer user interface
for composing spatial models than MASSPA–Modeller. A particularly interesting
challenge would be to create a WYSIWYG editor in DrawNet that allows users
to define local agent behaviour as a labelled transition diagram or alternatively
using MASSPA.
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Abstract. We study how the problem of temporal projection can be for-
malized in terms of argumentation. In particular, we extend earlier work
of translating the language E for Reasoning about Actions and Change
into a Logic Programming argumentation framework, by introducing new
types of arguments for (i) backward persistence and (ii) persistence from
observations. This forms a conservative extension of the language E that
gives semantic meaning to domains that cannot be interpreted in the
language E .

Keywords: Argumentation, narrative information, observations, back-
wards and forwards persistence

1 Introduction and Motivation

Given some narrative information we can use argumentation to capture temporal
projection from this and general knowledge about the causal laws of our problem
domain. As shown in [4], where the language E [3] for reasoning about actions
and change was formalized in terms of argumentation, default persistence over
time is captured by assigning higher priority to arguments that are based on
later events over the arguments based on earlier events.

In this paper we extend this argumentation based formulation of language
E by introducing also arguments based on property observations. Thus, we ap-
proach the qualification problem[6]. We review how temporal persistence is cap-
tured and introduce new arguments for backward persistence. This will allow us
to recover and also extend language E , giving a semantic meaning to domains
that cannot be interpreted in the language E . With this form of backward persis-
tence the extended interpretation of the language E comes closer to the original
Event calculus [5] which also include notions for backward temporal conclusions.

As an example of how language E is extended consider a parking domain,
with action constant ParkingCar and property fluent CarInParkingSpace and
the narrative that we park the car at time 4 and that later at time 8 we observed
that the car is not where it was parked:
ParkingCar initiates CarInParkingSpace (∆1)

? An earlier version of this paper appeared in the proceedings of the 7th PLS.
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ParkingCar happens-at 4 (∆2)
¬CarInParkingSpace holds at time 8 (∆3)
For domains like this, where a fluent (e.g. CarInParkingSpace) changes its
truth value without any known causal explanation, language E does not give a
model. On the other hand, our extended argumentation framework of the lan-
guage E that includes arguments for observations and for backwards persistence
as well allows arguments for both truth values of the fluent within this time
interval. Forwards persistence from the action ParkingCar (∆2) that indicates
CarInParkingSpace for every time point t > 4 (∆1) come in conflict with
backwards persistence from the observation argument ¬CarInParkingSpace
(∆3). Allowing same priority to conflicting forward persistence over backwards
persistence will give the natural interpretation of unknown value for the fluent
CarInParkingSpace for every t ∈ (4, 8).

By introducing backwards persistence in our argumentation framework and
assigning suitable priorities we can fully recover and also extend language E .
In our extended version we get models to domains that language E can not
interpret. Furthermore, language E [4] handles domains without observations. We
allow observations as part of our argumentation framework and assign priorities
against all the other already existing arguments. As models must comply to all
observations we treat observations as indisputable arguments. The reason we can
do this is because of backwards persistence arguments and the priority assigned
over forward persistence arguments.

The rest of the paper is organized as follows. Section 2 gives a brief review of
the language E . In section 3 we give the extended argumentation framework of
E . Section 4 presents our formal results and section 5 contains our conclusions.

2 A Brief Review of Language E

Language E [3] is an action language that uses three kinds of propositions: c-
propositions, of the form “A initiates F when C” or “A terminates F when
C”, h-propositions of the form “A happens-at T” and t-propositions of the
form “L holds-at T”, where A is an action constant, F is a fluent constant, T is
a time point, L is a fluent literal and C is a set of fluent literals. Computational
complexity is not the main concern of this paper. Lets note that the number of
such models is exponentially high.

Models of the language E assign a truth value, {true or false} at every fluent
and every time point in the domain such that within any time interval the
truth value assigned by a model to any fluent remains the same or persists,
changing from false to true (resp. from true to false) at an initiation (resp.
termination) time point. A time point T is an initiation (resp. termination) point
when the problem domain description contains a combination of a c-proposition
“A initiates (resp. terminates) F when C” and an h-proposition “A happens-at
T”, such that the model satisfies C at T . Furthermore, a model must confirm all
the t-propositions given in the problem domain description resulting from fluent
observations of the state of the world at various time points. Entailment and
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consistency of formulae of the form “L holds-at T”, where L is a fluent literal
are then defined in the usual way. For formal definitions and results the reader
is referred to [3].

Fig. 1. Example Domains

As examples let us consider the domain descriptions D,D
′

and D
′′

illustrated
in (Figure 1), where A is an action and T1 < T2 are two time points. In domain
D we have an initiation point at time T1 and at time T2 we observe F . Models
of language E , for domain D, require F to be true for all T > T1 whereas, for
T

′ ≤ T1 a model can assign F to be either true or false at all such time points.
In the domain D

′
, where we have an initiation point at time T1 and observation

¬F at time T2, and the domain D
′′
, where we have an observation F at time

T1 and an observation ¬F at time T2, the language E is inconsistent and has no
models. The persistence of the F holding onwards from T1 cannot be reconciled
with the observation of ¬F at T2. Lets note that domain D

′
is similar to the

parking domain example.

3 Argumentation Formulation

Language E has been reformulated in terms of argumentation [4]. In this the
information from t-propositions (observations) is imposed as a-posteriori con-
straints on the argumentation formulation. We will extend this reformulation so
that t-propositions are taken into account directly within the argumentation. To
do so we will generalize the original formulation by allowing backward temporal
persistence arguments as well as forward ones.

Following the earlier approach in [4], we define an argumentation logic pro-
gram with priorities corresponding to a given domain description as follows.

Definition 1. [argumentation program of D] The argumentation program cor-
responding to a domain D is ∆ ≡ (B(D), A,<) where:
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– The background knowledge, B(D), contains the rule definitions of
Initiation(F, t) and Termination(F, t) from c-propositions in D, facts of
the form Observation(L, T ) for every t-proposition “L holds at T” in D and
actions of the form A for every h-propositions “A happens-at T” in D.

– A consists of the following argument rules: For all time points t1, t2 and t
such that t1 < t < t2,
Persistence:
HoldsAt(f, t2)← HoldsAt(f, t) PFP [f, t2; t]
HoldsAt(f, t1)← HoldsAt(f, t) PBP [f, t1; t]
¬HoldsAt(f, t2)← ¬HoldsAt(f, t) NFP [f, t2; t]
¬HoldsAt(f, t1)← ¬HoldsAt(f, t) NBP [f, t1; t]
Local Generation Arguments:
HoldsAt(f, t+ 1)← Initiation(f, t) PGF [f, t]
¬HoldsAt(f, t)← Initiation(f, t) PGB [f, t]
¬HoldsAt(f, t+ 1)← Termination(f, t) NGF [f, t]
HoldsAt(f, t)← Termination(f, t) NGB [f, t]
Local Observation Arguments:
HoldsAt(f, t)← Observation(f, t) PO[f, t]
¬HoldsAt(f, t)← Observation(¬f, t) NO[f, t]
Assumption at 0:
HoldsAt(f, 0) PA[f, 0]
¬HoldsAt(f, 0) NA[f, 0]

– The priority (or strength of argument) relation, <, between these arguments
is given below (t, t∗, t1 and t2 are time points):
If t1 < t2
PFP [f, t∗; t1] < NFP [f, t∗; t2], NFP [f, t∗; t1] < PFP [f, t∗; t2],
PBP [f, t∗; t2] < NBP [f, t∗; t1], NBP [f, t∗; t2] < PBP [f, t∗; t1],
NFP [f, t2; t1] < PO[f, t2], PFP [f, t2; t1] < NO[f, t2],
NBP [f, t1; t2] < PO[f, t1] and PBP [f, t1; t2] < NO[f, t1].
At 0,
PA[f, 0] < NO[f, 0] and NA[f, 0] < PO[f, 0].
At t,
PGB [f, t] < PO[f, t] and NGB [f, t] < NO[f, t].
At t+ 1,
PGF [f, t] < NO[f, t+ 1] and NGF [f, t] < PO[f, t+ 1].

Informally, the above priority makes forward persistence arguments that are
based on later narrative information stronger and similarly for backward persis-
tence arguments that are based on earlier narrative information. Also we assign
higher priority to t-propositions over forward and backwards persistence. With
this assignment observations become part of the argumentation rules and are
treated as constrains that must be satisfied. However, note that there is no pri-
ority between conflicting forward and backward arguments. Such priorities can
be additionally set when we wish to impose further properties on the temporal
reasoning.
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The semantics of these programs is given through the standard argumenta-
tion notion (see [1, 2]) of maximally admissible subsets of the given argumen-
tation program, called admissible extensions. A subset of arguments is ad-
missible if it does not derive HoldsAt(f, t) and ¬HoldsAt(f, t) for any fluent
and time point and it can counter-attack any subset of arguments that attacks
it. This attacking relation is defined such that a set of arguments would attack
another if it derives a contrary conclusion and its argument rules in doing so are
not weaker than the opposing argument rules. For the formal details please refer
to [2, 4].

Fig. 2. Example Domains and Arguments

Comparing our earlier example domains D,D′ and D
′′

(see Figure 1) within
this new argumentation framework (Figure 2) we see that in the new domain D,
for all T > T1 the strongest (and hence admissible) argument is for F to hold. For
T

′ ≤ T1 we can have admissible arguments for F or its negation ¬F depending
on the assumption we make at the initial time point. For the domain D

′′
the

strongest argument for all time points T ≥ T2 is for ¬F . For times between T1

and T2 we have admissible arguments for either F or ¬F : at some time point
Tk, T1 ≤ Tk, the fluent F changes from true to false at Tk+1. This indicates that
the given narrative has some missing information within this time interval that
would explain the change in F . Similar results hold for D

′
where also in this

case there exists an admissible extension where ¬F holds for all times T , such
that T1 ≤ T ≤ T2. This captures the possibility that the generation of F at T1

has failed.

4 Formal Results

In this section we present a set of formal results that show how our proposal for
an argumentation semantics gives a meaning to any theory even when domains
have t-propositions. By allowing forward persistence to be non comparable to



36 E. Hadjisoteriou, A. Kakas

conflicting backwards persistence we can recover and also extend language E
when this can not give a semantic meaning to a domain.

Property 1. Let D be a domain description and E an admissible extension of
D. E is consistent (i.e. there does not exist a t-proposition “holds-at(f, t)” in D
such that D |= ¬holds-at(f, t)).

Theorem 1. Let D be a language E domain description and a countable number
of h-propositions. Then:

– For every language E model, M , of D there exists an admissible extension,
E, of the corresponding argumentation program ∆ ≡ (B(D), A,<) such that
E corresponds to M , i.e. E |= holds-at(f, T ) if and only if M(f, T ) = true
and E |= ¬holds-at(f, T ) if and only if M(f, T ) = false.

– There exists a complete admissible extension D of the corresponding argu-
mentation program ∆ ≡ (B(D), A,<).

For example, consider domain D
′

and D
′′
. With the new argumentation

framework all maximally admissible extensions are consistent while in language
E maximally admissible extensions are inconsistent.

Theorem 2 gives an interpretation of the extended semantic of the argumen-
tation formulation in terms of the original language E . We first need the following
two lemmas:

Lemma 1. Let D be a consistent domain and E a complete admissible extension
of D. Let f be a fluent and tn < tm two time points. If there does not exist a
generation point for the fluent f in E at t1 ∈ [tn, tm) nor an observation point
for the fluent f in E at t2 ∈ (tn, tm) and if
E |= holds-at(f, tn) and E |= holds-at(f, tm) or
E |= ¬holds-at(f, tn) and E |= ¬holds-at(f, tm) then, there does not exist a time
point T ∈ [tn, tm) where the given fluent f changes its truth value in E, i.e.
E |= holds-at(f, T ), for every T ∈ [tn, tm] or E |= ¬holds-at(f, T ), for every
T ∈ [tn, tm].

Informally, when no information is given in the narratives between two time
periods that assign the same truth value for every fluent then a complete ad-
missible extension gives a constant truth value for every fluent over this time
period.

Lemma 2. Let D be a consistent domain and E a complete admissible extension
of D. Let f be a fluent and tn < tm two time points. If there does not exists a
generation point for the fluent f in E at t1 ∈ [tn, tm) nor an observation point
for the fluent f in E at t2 ∈ (tn, tm) and if
E |= holds-at(f, tn) and E |= ¬holds-at(f, tm) or
E |= ¬holds-at(f, tn) and E |= holds-at(f, tm) then, there exist at least one time
points T ∈ [tn, tm) where f can change its truth value in E, i.e.
E |= holds-at(f, T ) and E |= ¬holds-at(f, T + 1) or E |= ¬holds-at(f, T ) and
E |= holds-at(f, T + 1). If the number of such time points is k > 1 then k is an
odd number.
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When two time periods assign opposite values for a fluent f and no infor-
mation is given in the narratives then in a complete admissible extension there
must exist k many (k is an odd number) time points between these two time
points that change the truth value of f .

Theorem 2. Let D be a domain description. For every maximally admissible
extension E there exist a domain D

′
obtained from D by adding new events such

that there exist a language E model, M, of D
′

that corresponds to E (i.e. E |=
holds-at(f, t) if and only if M |= holds-at(f, t)).

For example consider domain D
′′

where from F at time T1 we jump to ¬F at
time T2. Let time point Tk ∈ (T1, T2). By accepting that time Tk is a termination
point for F we explain the semantic meaning given by argumentation to the
domain.

To recover exactly the language E semantics we need to add extra prior-
ities and specifically, to give preference to forward arguments over conflicting
backwards arguments. The formal result for this is given in theorem 3.

Theorem 3. In addition to the priorities given in definition 1 let also the fol-
lowing when t1 < t2:
PFP [f, t; t1] > NBP [f, t; t2] and NFP [f, t; t1] > PBP [f, t; t2].

Then, every maximally admissible extension E, for any domain D corre-
sponds to a model M of the language E, of D.

5 Conclusions and Further Work

We have reexamined the argumentation reformulation of language E and in-
troduced backwards persistence as well as forward persistence arguments. This
enabled us to extend in a meaningful way domains that language E could not
interpret. When language E is inconsistent within two time points, the argu-
mentation interpretation corresponds to the unknown occurrences of events that
could resolve this inconsistency.

As a future work we recommend a planning for more complicated domains
with action A, fluents F and G such that A causes ¬F and ¬G. In addition, even
though there are many ways to deal with ramification problems (F1 causes F2

when L) we leave an open door that one can work on this issue further. Finally,
all sets in this theory are countable. We are very interested to learn if there a
way to extend this theory to uncountable sets and variables.
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Abstract. Most existing work on automatic analysis of facial expres-
sions has focused on a small set of prototypic emotional facial expressions
such as fear, happiness, and surprise. The system proposed here enables
detection of a much larger range of facial behaviour by detecting facial
muscle actions (action units, AUs). It automatically detect all 9 upper
face AUs using local apperance descriptors. Meanwhile, the merits of the
family of local binary pattern descriptors are investigated. We compare
Local Binary Patterns, Local Phase Quantisation, Pyramid Local Binary
Pattern, as well as our proposed descriptors Block-based Pyramid Local
Binary Pattern and Block-based Pyramid Local Phase Quantisation for
AU detection. Results show that our proposed descriptor Block-based
pyramid Local Binary Pattern outperforms all other tested methods for
the problem of FACS Action Unit analysis and the systems that utilise
pyramid representation outperform those that use basic appearance de-
scriptors.

1 Introduction

One limitation of the majority of existing facial expression recognition meth-
ods is that they focus on a small set of prototypic emotional facial expressions,
specifically fear, sadness, happiness, anger, disgust, and surprise. Yet, these six
basic emotion categories form only a subset of the total range of possible facial
displays and the categorisation of facial expressions can therefore be forced and
unnatural. The Facial Action Coding System (FACS) is the best known and
most commonly used system developed for human observers to describe facial
activities. The coding system defines atomic facial muscle actions called Action
Units (AUs). With FACS, every possible facial expression (emotional or other-
wise) can be described as a combination of AUs. For instance, the expression
of happiness contains AU6 and AU12, while the expression of sadness contains
AU1, AU4 and AU15.

Deriving an effective facial representation from images is an essential step
for successful facial expression recognition. Traditionally the feature extraction

Andrew V. Jones (Ed.): Proceedings of the 1st Imperial College Student Workshop (ICCSW ‘11),
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Fig. 1. The outline of our proposed system

approaches may be divided into two streams: geometric feature-based methods
and appearance-based methods. Geometric feature based methods employ the
geometrical properties of a face such as the positions of facial points relative to
each other, the distances between pairs of points or the velocities of separate
facial points. For a method using appearance features, the changes in image
texture such as those created by wrinkles, bulges, and changes in feature shapes
are captured.

Our key contributions are three-fold. First, we propose the novel appear-
ance feature descriptors Block-based Pyramid Local Binary Pattern (B-PLBP)
and Block-based Pyramid Local Phase Quantisation (P-BLPQ). Secondly, the
proposed appearance descriptor B-PLBP and B-PLPQ are applied to the prob-
lem of FACS AU analysis. Finally, the applicability of different SVM kernels for
histogram-based features has been studied. The experimental results show that
our novel descriptor B-PLBP outperforms the three other methods for FACS
AU analysis in terms of recognition accuracy.

The remainder of this paper is organised as follows. Section 2 briefly describes
the methodologies used in this work. It introduced the basic principle of static
appearance descriptors LBP, LPQ, PLBP and our proposed extensions B-PLBP
and B-PLPQ, the training datasets used in our experiments, the classification
technique used in this work and the different kernels tested. The evaluation pro-
cedures and test results are given in Section 3. Section 4 provides the conclusions
of our research.

2 Methodologies

Fig. 1 shows an overview of the proposed system. In order to detect the upper
face AUs, we use 9 SVM classifiers, one for each AU, which are trained on a
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subset of the most informative spatiotemporal features selected by GentleBoost.
To extract these appearance features, we first find the face in the input static
image using an adapted version of the Viola and Jones face detector. Next the
detected face images are registered to remove head rotations and scale variations
by using the OpenCV implementation of an object detector to locate the eyes.
Based on that, the face image is scaled to make the distance between the eye
locations 100 pixels, and then cropped to be 200 by 200 pixels. After that, the
registered image is divided into small blocks and the LBP, LPQ, PLBP, B-
PLBP and B-PLPQ features are extracted. The histograms from all blocks are
concatenated as a feature vector to represent the corresponding face image.

2.1 Local Appearance Descriptors

Method 1. Local Binary Patterns (LBP) were first introduced by Ojala et
al. in [4], and proved to be a powerful means of texture description. By thresh-
olding a 3× 3 neighbourhood of each pixel with respect to the centre value, the
operator labels each pixel. Considering the 8-bit result to be the binary repre-
sentation of a decimal number, a 256-bin histogram of the LBP labels computed
over a region is used as a texture descriptor. This has been successfully applied
to face recognition by Ahonen et al.[1]. They proposed to divide face images into
m local regions, from which LBP histograms can be extracted, and then con-
catenate them into a single,spatially enhanced feature histogram. The resulting
histogram encodes both the local texture and global shape of face images. This
version is what we adopted in our work. Readers are kindly asked to refer to [4,
1] for details.

Method 2. Local Phase Quantisation (LPQ) was originally proposed by
Ojansivu and Heikkila as a texture descriptor that is robust to image blurring
[5]. The descriptor uses local phase information extracted using the 2-D DFT
or, more precisely, a short-term Fourier transform (STFT) computed over a
rectangular M-by-M neighbourhood Nx at each pixel position x of the image
f(x) defined by

F (u,x) =
∑

y∈Nx

f(x-y)e−j2πu
T y = wT

u fx (1)

where wu is the basis vector of the 2-D DFT at frequency u, and fx is the vector
containing all M2 samples from Nx.

The phase information in the Fourier coefficients is recorded by examining
the signs of the real and imaginary parts of each component in Fx. The resulting
eight bit binary coefficients gj(x) are represented as integers using binary coding.
As a result, a histogram of these values from all positions is composed and used
as a 256-dimensional feature vector in classification. Similar to LBP, we use a
block version of LPQ which has shown promising performance in [3]. For more
details, please refer to [5, 3].
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Method 3. Qian et.al [6] extended the conventional LBP to the pyramid trans-
form domain named Pyramid Local Binary Pattern (PLBP). By cascading
the LBP information of hierarchical spatial pyramids, PLBP takes texture reso-
lution variations into account. They comprehensively compared PLBP with other
LBP extensions for texture classification and claimed that PLBP is with satis-
factory performances and with low computational cost. However, a histogram
computed over the whole image represents only the global distribution of the
patterns thus the local information has been ignored. On the other hand, some
researchers are critical of Ahonen’s approach, suggesting that the subregions are
not necessarily well aligned with facial features and the resulting facial descrip-
tion depends on the chosen window size and the position of these subregions [2].
These problems were reflected in our results (see Fig.5).

Motivated by these ideas, we propose two novel descriptors B-PLBP and
B-PLPQ which capture pixel-level, region-level and structure-level information
for face representation. The face image is represented in an image pyramid by
different spatial resolutions. Each pixel in the higher spatial pyramid levels is
obtained by down sampling from its adjacent low-pass filtered high resolution
image. Hence in the low resolution images, a pixel corresponds to a region in
its high-resolution equivalently. For each pyramid level, the image are divided
into regions. The region sizes remain constant. The dense appearance descriptor
features extracted from each region, and each level of the pyramid, are concate-
nated into a single, spatially enhanced feature histogram. As shown in Fig.2, the
blocks in each level encodes different spatial information. In our experiments, a
three level pyramid model and a region size of 25× 25 pixels is used.

Fig. 2. The block-based pyramid represen-
tation

Fig. 3. The criterion of static data selec-
tion. The shaded areas are included in the
dataset

2.2 Data Collection

In this work, the efficiency of the discussed descriptors are tested based on
dataset collected from the MMI Facial Expression Database (MMI database [8]).
The MMI database is a fully web-searchable collection of visual and audio-visual
recordings of subjects displaying facial expressions which are FACS annotated.
It includes 69 different subjects of both sexes (44 female), ranging in age from 19
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to 62, having either a European, African, Asian, Caribbean or South American
ethnic background. All fully FACS-coded recordings show facial expressions that
are posed, and it is these data which will be used in this work.

In [3], the authors proposed a heuristic approach to select data for training.
It is noted that when more than one AU is activated, facial actions can appear
very different from when they occur in isolation. For example, AU1 and AU2 pull
the brow up, whereas AU4 pulls the brows together and down using primarily
the corrugators muscle at the bridge of the nose. The appearance of AU4 changes
dramatically depending on whether it occurs alone or in combination with AU1
and AU2. In order to capture the appearance of each action unit as fully as
possible and thus build a richer data space, the heuristic approach takes in every
video the first apex frames of each target AU, and all the apex frames where
any other upper face AUs are in onset or offset (see Fig. 3). The shaded parts
are the frames selected. However, AU combinations are not treated differently
by the classifiers. In other words, each AU is recognised independently of all the
others.

2.3 Classification

A previous successful technique to facial expression classification is Support
Vector Machine (SVM). In this work, we adopted SVM as classifiers for AU
detection. Given a training set of labelled examples {(xi, yi), i = 1, ..., l}, where
xi ∈ Rn and yi ∈ {1,−1}, a new test example x is classified by the following
function:

f(x) = sgn(
l∑
i=1

αiyiK(xi,x) + b) (2)

where sgn function returns the sign of y, i.e. either 1 or -1, αi are Lagrange mul-
tipliers of a dual optimisation problem that describe the separating hyperplane,
K() is a kernel function, and b is the threshold parameter of the hyperplane.
Performing an implicit mapping of data into a higher dimensional feature space,
which is defined by the kernel function, the training process is achieved by finding
a linear separating hyper-plane with the maximal margin (M) to separate data in
this higher dimensional space. The most popular kernels are linear, polynomial
and Radial Basis Function (RBF). Recently, Maji et.al [7] proposed a histogram
intersection kernel SVMs (IKSVMs). They also introduced a more efficient way
to compute it. It is shown that IKSVM gives comparable accuracy while being
50× faster and require 200× less memory than the standard SVM implementa-
tion in their experiments. In this work, we evaluate the efficiency of these four
kernels in our application.

3 Evaluation

3.1 Comparison Setup

We evaluated the four appearance descriptors on 442 videos taken from the MMI
database. In order to compare different approaches, the same evaluation process
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is performed. As this is a user independent system for FACS Action Unit detec-
tion, the evaluation is done in a subject independent manner. Generalisation to
new subjects is tested using 10-fold cross validation.

The performance measure used in this work is the area under the ROC curve.
By using the signed distance of each sample to the SVM hyper-plane and varying
a decision threshold, we plot the hit rate (true positives) against the false alarm
rate (false positives). The area under this curve is equivalent to percent correct
in a 2-alternative forced task (2AFC), which can be computed more efficiently.

3.2 Results

Fig. 4. Average 2AFC (%) based on differ-
ent kernels for SVM

Fig. 5. The 2AFC (%) using LBP, PLBP,
B-PLBP, LPQ and B-PLPQ based on MMI

Experiment 1. Kernel functions: Fig.4 shows the average 2AFC scores per-
formed with B-PLBP based on different SVM kernel as we discussed in section
2.3. The LBP features and the proved best training data selection method, the
heuristic approach, has been employed. For all the kernels, the parameters are
optimised before training (refer to 3-A). In general, the best results are reached
with the histogram intersection kernel. This is expected as all the features used
in this work are histogram-based. For AU6 and AU7, which our detector poorly
performed, RBF kernel gives the best result. This probably result from the fact
that features that which capture subtle appearance changes, are non-linear sep-
arable.

Experiment 2. Appearance descriptors: Figure 5 presents the 10-fold cross-
validation results using LBP, LPQ, PLBP, B-PLBP and B-PLPQ for 9 upper
face AUs. Note that LBP and LPQ used here are block-based. To report the best
performance of all systems, the heuristic approach and the histogram intersec-
tion kernel SVM are adopted in these experiments. In general, the block-based
pyramid extension outperform their original version (LBP and LPQ). The impor-
tance is more clear for P-PLBP. We can see that, overall speaking, B-PLBP pro-
duces best results among these four descriptors and the PLBP performs worst.
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The average 2AFC scores from B-PLBP is 12.8% higher than that for PLBP.
The importance of local shape information for AU detection is again shown by
our results. Compared to B-PLBP, the improvement of B-PLPQ is less obvious.
This can probably be explained by the blur-invariant characteristic of the LPQ
descriptor, which effectively negates the effect of the image pyramid.

4 Conclusions

We successfully implemented a robust and real-time AU detection system. We
compared the appearance descriptors LBP, LPQ and their block-based pyramid
extension B-PLBP and B-PLPQ. Results show that the systems based on LPQ
generally achieve higher accuracy rate than LBP system, and that the systems
that utilise pyramid representation outperform those that use basic appearance
descriptors. Although the family of block-based pyramid descriptors are more
computationally expensive than the basic ones, they attain a higher recognition
performance. All in all, the experimental results clearly show that our proposed
descriptor B-PLBP outperforms all other tested methods for the problem of
FACS Action Unit analysis. Note that although we only applied the method to
upper face AUs, the method can be readily used for all other AUs.
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Abstract. Adopting a generalised notion of connectives as ptime-computable
symmetric boolean functions, for finite sets C of such connectives the
classes W [P ](C) are defined via the parameterised weighted satisfiabil-
ity problem for circuits with C-gates. This note will prove the following
dichotomy result: for all finite sets C of connectives W [P ](C) = FPT or
W [P ](C) = W [P ].
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1 Introduction

One of the most important parameterised complexity classes is the class W [P ].
It can be considered a natural parameterised analogue of the class NP and was
originally defined in [3] via the parameterised weighted satisfiability problem for
boolean circuits. What happens, if we change the computational power of the
underlying circuits? One possibility is to allow other than the boolean gates,
such as majority gates, which output 1 (true) if the majority of the inputs is 1
(true), and 0 (false) otherwise, or parity gates, which output 1 if the number of
inputs set to 1 is odd, and 0 otherwise. Notice that these gates are symmetric
in the sense that their output is invariant under permutations of the inputs. In
the parameterised setting of [3] this amounts to the question of how difficult
it is to solve the parameterised weighted satisfiability problem for circuits with
symmetric gates of unbounded fan-in. In the following we will call such a family
of symmetric gates which in addition is ptime-computable a connective. For a
finite set C of such connectives the class of problems, which are fpt-reducible
to the parameterised weighted satisfiability problem for C-circuits, will be called
W [P ](C). Of course now an interesting question is the relationship between these
classes and W [P ]. This note proves that a full dichotomy holds, i.e. that for every
finite set C of connectives W [P ](C) = FPT or W [P ](C) = W [P ]. The proof will
also give characterisations of the connectives for both alternatives.

Yet, the study of W [P ](C) is not just interesting in its own right. These classes
were first defined in [5], where the authors also defined the W (C)-hierarchies via
the notion of weft and showed that for sufficiently strong bounded C the levels of
the W (C)-hierarchy and the W -hierarchy coincide. Unfortunately for unbounded
C there are only a few exemplary (although very interesting) results. When trying
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to show such results for unbounded connectives it is vital to first have a look at
the class W [P ](C), which contains the W (C)-hierarchy. Using the dichotomy, the
connectives with W [P ](C) = FPT can be omitted from such an analysis straight
away.

2 Preliminaries

In the following N denotes the set of natural numbers. As usual for a finite
alphabet Σ the set Σ∗ consists of the finite strings over Σ. If x̄ is a string in
Σ∗ then |x̄| denotes the length of x̄, and we write x̄n for the concatenation of n
copies of x̄. The weight of a binary string x̄ ∈ {0, 1}∗ is the number of 1’s in x̄.

A parameterised problem P is a subset of Σ∗×N for a finite alphabet Σ. Here
N is encoded in unary. Given an instance (x̄, k) ∈ Σ∗×N of the problem, x̄ is the
input, and k is the parameter. The problem P is fixed-parameter-tractable, if there
are a computable function h : N → N and a polynomial p, such that for every
instance (x̄, k) membership in P can be decided in time h(k) ·p(|x̄|). The class of
fixed-parameter-tractable problems is denoted by FPT. Given two parameterised
problems P ⊆ Σ∗ × N and Q ⊆ (Σ′)∗ × N a mapping f : Σ∗ × N → (Σ′)∗ × N
is an fpt-reduction of P to Q, if the following holds:

– for all (x̄, k) ∈ Σ∗ × N: (x̄, k) ∈ P iff f(x̄, k) ∈ Q
– there are a computable function h : N→ N and a polynomial p such that f

is computable in time h(k) · p(|x̄|)
– there is a computable function g : N→ N such that for all (x̄, k) and (x̄′, k′)

with f(x̄, k) = (x̄′, k′) we have k′ ≤ g(k).

If there is such an fpt-reduction, then P is fpt-reducible to Q and we write
P ≤fpt Q. For detailed information on parameterised complexity see [4, 7, 8].

3 The general framework

Arguably the most important property of boolean connectives is that they are
symmetric, that is that the output depends only on the number of the inputs,
which are set to ’1’ (true) respective ’0’ (false). Thus we generalise the notion of
a boolean connective in the following way (following [5]).

Definition 1. A connective C is a function C : N×N −→ {0, 1} computable in
time polynomial in the sum of its arguments.

For m,n ∈ N we interpret the value C(m,n) as the truth value of the connec-
tive C when its input consists of m ones and n zeros. For n ∈ N and x̄ ∈ {0, 1}n
with weight k we write C[x̄] for C(k, n − k). For ` ∈ N it will be convenient to
write C �` for the connective C restricted to tuples (m,n) with m+ n = `.
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Example 1. The standard connectives
∧
,
∨
,Maj ,⊕ fit in this framework via:∧

(m,n) = 1 ⇐⇒ n = 0∨
(m,n) = 1 ⇐⇒ m 6= 0

Maj (m,n) = 1 ⇐⇒ m > n

⊕(m,n) = 1 ⇐⇒ m is odd

Substituting boolean gates in a boolean circuit by gates labelled with a con-
nective in C, we get the obvious notion of a C-circuit as follows: Let C be a finite
set of connectives. A C-circuit is a finite directed acyclic graph with multiple
edges and with labelled vertices, which we will call gates. There are two kinds of
gates with in-degree 0: the input-gates, which are labelled with distinct consecu-
tive natural numbers starting with 1, and the constant-gates, which are labelled
with one of the constants 0 and 1, or a connective C ∈ C. Gates with in-degree
> 0 are labelled with a connective C ∈ C each. The gates with out-degree 0 are
called the output-gates of the circuit. In the following all circuits are assumed to
have exactly one output-gate. A C-circuit D with ` input gates and one output
gate computes a function fD : {0, 1}` → {0, 1} in the obvious way. As usual
we say that the C-circuit D is satisfiable, if there is a x̄ ∈ {0, 1}`, such that
fD(x̄) = 1. The circuit is k-satisfiable, if there is a x̄ ∈ {0, 1}` with weight k,
such that fD(x̄) = 1.

Notice that boolean circuits are a special case of C-circuits for C = {¬,
∨
,
∧
},

where ¬ is the connective defined by ¬(m,n) = 1⇔ m = 0. Analogously to the
parameterised weighted satisfiability problem for boolean circuits (see [4, 7]), the
parameterised weighted satisfiability problem for C-circuits is defined as:

p-WSat(Circ(C))
Input: a C-circuit and k ∈ N
Question: Is the circuit k-satisfiable?

Definition 2. Let C be a set of connectives. A parameterised problem is in the
class W [P ](C) iff it is fpt-reducible to the parameterised problem p-WSat(Circ(C)).

If the set C contains only one connective C we write W [P ](C) instead of
W [P ]({C}). Since every ptime-computable boolean function with domain {0, 1}∗
is computed by a family of boolean circuits computable in polynomial time in
the length of the input [9, Theorem 11.5], we immediately get

Proposition 1. W [P ](C) ⊆W [P ] for all finite sets C of connectives.

Proof. Replacing the C-gates with the corresponding subcircuits yields an fpt-
reduction to W [P ]. ut
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4 The Dichotomy Theorem

Lemma 1. Let C be one of the connectives
∨
,
∧
,⊕. Then W [P ](C) ⊆ FPT.

Proof. Let C be one of the connectives ⊕,
∨
,
∧

. Then for all x̄, ȳ ∈ {0, 1}∗ we
have C[C[x̄] ȳ] = C[x̄ ȳ], and thus every C-circuit is equivalent to a C-circuit
consisting of a single C-gate, which receives (possibly multiple) edges from the
old input-gates and possibly from constant-gates. If C ∈ {

∨
,
∧
} we further

simplify the circuit by substituting every multiple edge by a single edge. If C =
⊕, we substitute every multiple edge of odd cardinality by a single edge and
delete every multiple edge of even cardinality. The resulting circuit is equivalent
to the original circuit. As this clearly can be done in fpt-time, and as the k-
satisfiability of the simplified circuit easily can be checked in polynomial time,
we have p-WSat(Circ(C)) ∈ FPT and thus W [P ](C) ⊆ FPT. ut

Theorem 1 (Dichotomy Theorem). Let C be a finite set of connectives. Then
W [P ](C) = W [P ] or W [P ](C) = FPT.

Proof. By Proposition 1, closure of W [P ](C) under fpt-reductions and availabil-
ity of constant gates we have FPT ⊆W [P ](C) ⊆W [P ]. Call a connective C

– ∨-closed if there are n,m ∈ N with C(m,n+ 2) = 0 and C(m+ 1, n+ 1) =
C(m+ 2, n) = 1

– ∧-closed if there are n,m ∈ N with C(m,n+ 2) = C(m+ 1, n+ 1) = 0 and
C(m+ 2, n) = 1

– monotone, if for all m,n ∈ N we have C(m,n+ 1) ≤ C(m+ 1, n).

If the connectives C1, C2, C3 are ∨- and ∧-closed and not monotone respectively,
they simulate the boolean connectives via

x ∨ y = C1[1m1 x y 0n1 ] (1)
x ∧ y = C2[1m2 x y 0n2 ] (2)
¬x = C3[ 1m3 x 0n3 ] (3)

A set C of connectives is monotone, if every connective in C is monotone, and
∨-closed (respective ∧-closed), if there is a ∨-closed (∧-closed) connective in C.
For monotone C we have four cases.

Case 1: C is ∨-closed and ∧-closed. As then C is able to simulate small disjunc-
tions and conjunctions according to equivalences (1) and (2) above, the parame-
terised weighted satisfiability problem for boolean circuits without negation gates
p-WSat(Circ+) is fpt-reducible to p-WSat(Circ(C)). Since p-WSat(Circ+)
is W [P ]-complete [1] we have W [P ] ⊆W [P ](C).

Case 2: C is ∨-closed, but not ∧-closed. For all C ∈ C and for all ` ∈ N we then
have C �`= const or C �`=

∨
�`, because otherwise the connective C would be

∧-closed as well. But then we have p-WSat(Circ(C)) ≤fpt p-WSat(Circ(
∨

))
via the following reduction: Given a C-circuit we compute for every gate ν with
`ν inputs and label C ∈ C the values C[0`ν ] and C[1 0`ν−1]. This can be done in
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polynomial time as a connective is ptime-computable. If both values are the same
we replace the gate by a gate labelled with the respective constant 0 or 1 and
delete the incoming edges. If the values differ, we know that C �`ν =

∨
�`ν and

thus replace the gate by a gate labelled with
∨

. Then we delete all gates from
which there is no path to the output-gate. The resulting circuit is equivalent to
the original circuit. By Lemma 1 we have W [P ](

∨
) ⊆ FPT and thus W [P ](C) ⊆

FPT
Case 3: C is ∧-closed, but not ∨-closed. Similar to Case 2 we get a reduction

p-WSat(Circ(C)) ≤fpt p-WSat(Circ(
∧

)) and therefore W [P ](C) ⊆ FPT.
Case 4: C is neither ∨-closed nor ∧-closed. Then every connective in C must

be constant on inputs of length ` > 1, and on inputs of length 1 either constant
or identity. But then the problem p-WSat(Circ(C)) is in FPT: for every gate ν
in the C-circuit with `ν > 1 inputs and label C ∈ C we compute the value C[1`ν ]
and replace the gate by the according constant gate. For C-gates with one input
we compute C[1] and C[0], and delete the gate if it is equivalent to identity,
or replace it with an apropriate constant-gate otherwise. The parameterised
weighted satisfiability problem for the resulting circuit clearly is in FPT.

If C on the other hand is not monotone, we know by equivalence (3), that C
is able to simulate negation. Now if there is a C ∈ C and m,n ∈ N, such that
C(m,n+2) 6= C(m+1, n+1) = C(m+2, n) or C(m,n+2) = C(m+1, n+1) 6=
C(m + 2, n), then either C(m,n + 2) = 0 and C is ∨- respectively ∧-closed, or
C(m,n+ 2) = 1 and ¬C is ∧- respectively ∨-closed. Thus substituting the gates
in a boolean circuit by constant size C-subcircuits, we get W [P ] ⊆W [P ](C).

If there are no such m,n as above, then for all ` ∈ N and for all C ∈ C we
have that C �` is constant or C(`− t, t) 6= C(`− (t+1), t+1) for all t < `. In the
non-constant case the values of C �` alternate between 0 and 1. Thus C �`= ⊕ �`
or C �`= (¬⊕) �`. But then we have p-WSat(Circ(C)) ≤fpt p-WSat(Circ(⊕))
via the following reduction: For every gate ν with `ν inputs and label C compute
the values C(0, `ν) and C(1, `ν − 1) and replace the gate by

– a gate labelled with c, if C(0, `ν) = C(1, `ν − 1) = c
– a gate labelled with ⊕, if C(0, `ν) = 0 and C(1, `ν − 1) = 1
– two gates computing ⊕[1 ⊕ [X1 . . . X`ν ]], if C(0, `ν) = 1 and C(1, `ν−1) = 0

Thus with Lemma 1 we have W [P ](C) ⊆ FPT. ut

Corollary 1 (Characterisation). Let C be a finite set of connectives. If C has
at least two of the properties of being ∨-closed, ∧-closed, or not monotone, then
W [P ](C) = W [P ]. Otherwise W [P ](C) = FPT. ut

5 Conclusion

We saw that for every finite set C of connectives the class W [P ](C) is equal
to W [P ] or collapses to FPT. The proof also yielded characterisations of the
connectives for both alternatives. A question left open is whether we get a similar
dichotomy for the classes W [Sat](C), which are defined via the parameterised



Note on a Dichotomy for the Classes W [P ](C) 51

weighted satisfiability problems for C-formulas (C-circuits where all gates except
for the input-gates have fan-out ≤ 1). Although there are results which settle
the issue for connectives with bounded fan-in [2, Theorem 5.2.2], it is unclear
how to handle connectives with unbounded fan-in. It is also not clear, whether
for the dichotomy theorem to hold it is necessary to presuppose the constant
gates 0 and 1.
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Abstract. Despite being around for quite some time, agents have failed
to gain wide acceptance. Their AI heritage has forced them into a niche
from which they cannot seem to escape: being the vehicle of AI exper-
imentation. Even though the premises of Agent Oriented Programming
(AOP) is a revolutionary departure from Object Oriented Programming
(OOP) the vision has not materialized.
In this paper we propose taking a step back and looking at AOP as
an evolution from OOP. Rather than viewing agents as specialized AI
tools, we adopt a view on agents as a generic metaphor for building
complex software systems. The guiding lines of our approach are: (i)
overall conceptual simplicity; and (ii) the use of programming languages
as the main means of expression. We will explore some paradigms and
approaches that we think can greatly benefit the view of agents as an
evolution from OOP.

1 Introduction

When introduced by Shoham almost two decades ago [16], Agent Oriented Pro-
gramming (AOP) was intended as a higher level means of developing complex
software systems – when compared to Object Oriented Programming (OOP).
Soon after its introduction is was regarded by many as a “revolution in soft-
ware” [7]. But the promises of the agent community have failed to materialize
and agents haven’t gained wide acceptance. They are mostly regarded as exper-
imentation tools for the AI community instead of a technology for developing
practical applications. Motivated by the agent paradigm’s lack of success there
are voices that predict its downfall [8]. At the same time some members of the
agent community are trying to raise awareness to the lack of coherence and
perspectives in the community [3,15].

We believe that the very fact of looking at AOP as a revolutionary step from
OOP instead of an evolutionary one has been one of the main reasons that led
to the current state of affairs. Given the AI heritage of the agent community it is
no wonder that most of its efforts went into models of rational agents. While this
has led to a series of interesting results it also meant that other aspects of agent
systems such as the organizational ones or the ones regarding the environment
in which agents operate have not been given the attention they deserve [6]. This

Andrew V. Jones (Ed.): Proceedings of the 1st Imperial College Student Workshop (ICCSW ‘11),
pp. 52–58. September 29th–30th 2011, London UK.
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was most unfortunate as those two aspects are essential to using agents as a
generic metaphor for building complex software systems.

The purpose of this paper is twofold. First, it takes a conceptual step back,
and looks at agents as an evolution of the OOP and the Actors model [1]. Second,
it it tries to distill the core concepts that will go into the making of a new agent
language, which we plan to develop in the near future. We have chosen two
basic concepts which we plan to use as the basis of our language: reactive objects
[11] and dynamic delegation as featured in prototypical languages such as SELF
[17,4,18]. Based on this two concepts we believe that more advanced topics such
as concurrency, autonomy and security can be tackled.

In [6], Dastani identifies the development of programming languages that
combine the three key abstractions of multi-agent system (MAS) – agents, or-
ganizations and environments – as one of the main challenges of the agent com-
munity. After a brief survey of some popular agent languages in sec. 2 we focus
on each of the aforementioned aspects in sec. 3. We conclude in sec. 4.

2 Motivation and Background

As stated above we adopt the view that languages profoundly influence the way
programmers design systems. Thus, we think that a language needs to provide:
i) a uniform model (i.e. everything is an agent); ii) self-sufficiency (i.e. the
capacity to extend the language from within itself); and iii) reified concepts
from the problem domain (e.g. agents, environments, organizations). Given this
requirements, in table 1 we make a succinct overview of three of the most popular
agent languages: JASON, GOAL and MetateM.

JASON GOAL MetateM
Uniformity no yes yes

Self-sufficiency no no no
Reified concepts none none agents

Table 1. Comparing agent languages

Each of the languages considered in our overview fails for one for more of
our requirements. JASON is neither uniform – agents and environments are
separate entities, nor does it feature reified entities. If we consider belief and
knowledge bases as being part of the agent we can consider that GOAL is a
uniform language since it only operates with agents, but this does not prove to
be that useful since agent operations are limited and environments are declared
implicitly. MetateM is the closest language to our desired model. It is uniform in
the sense that agents are used to represent other agent’s environments reifying
the concept of agents in the process. All three languages fail when it comes to
self-sufficiency since they can only be extended in Java.
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3 An evolutionary approach

We will address each of the three concepts identified by Dastani in [6] – agents, or-
ganizations and environments – while trying to provide uniformity, self-sufficiency
and problem domain reification.

3.1 Individual agents

In their simplest definition agents are autonomous and interacting entities [6].
Agents are autonomous in the sense that they can decide which action to per-
form next in order to reach their objective. This is indeed a very lose definition
of agents. Instead, for the rest of this paper, we shall operate with the follow-
ing definition: an agent is a computational entity that (i) has its own thread of
control and can decide autonomously if and when to perform a given action; (ii)
communicates with other agents by asynchronous message passing1. This defi-
nition implies concurrently executing agents with reactive behaviors. This is in
line with the definition of AOP systems provided by Shoham in [16] where AOP
is a specialization of OOP in the sense of the Actor model.

We begin by looking at three possible abstractions for single agent entities:
objects, actors and reactive objects [11]. We have chose the former two since our
purpose is going back to the origins of the agent metaphor, and the latter as an
evolution of objects which borrows from actors.

Objects Actors Reactive Objects
Granularity object actor object

Execution model sequential concurrent concurrent
Communication sync async sync and async
Message ordering strict order no restriction strict order

Table 2. Comparing agent abstractions

It is obvious from table 2 that reactive objects combine the best features
of OOP and the Agent model. They are autonomous units of execution that
are either executing the sequential code of exactly one method, or passively
maintaining their state [11]. While this almost fits our definition of agents, there
is still one aspect that we haven’t fully addressed: autonomy. Reactive objects
are autonomous in the sense of having their own thread of control there is still
the issue of decision making, but in order to be fully autonomous an agent needs
a decision making component [6]. A popular choice in the agent community is
the BDI model which can be easily mapped on the concepts already introduced
above. This view of agents gives us a higher level view which is especially useful
when tackling the inherent concurrency in the execution model that we have
1 We consider asynchronous programming as being characterized by many simultane-
ously pending reactions to internal or external events



Agent Oriented Programming 55

defined for our agents. An interesting approach to dealing with concurrency by
focusing on the execution of plans instead of programs or processes has been
proposed for the E language: communicating event loops [9].

The communicating events loops model can be seen as a refinement of the
reactive object semantics. When a thread of control2 needs to send an asyn-
chronous message send it ads an entry to a queue of pending deliveries. During
a turn a pending delivery is dequeued, the message is sent, and all the resulting
synchronous calls are executed. When a turn finishes, another entry from the
pending queue is dequeued and the process starts all over again.

To address distributed scenarios a further refinement is introduced: objects
running in the same event loops can be invoked both synchronously and asyn-
chronously while objects running in remote event loops can only be invoked
asynchronously. This offers isolation for plans executing in different event loops.

The communicating events loops model offers two key properties for concur-
rent systems:

Asynchrony messages between two event loops are sent asynchronously and
the event loop controls when they are sent the risk of deadlocks is eliminated
because an event loop can never interrupt its currently executing plan to wait
for another event loop to execute its plan; and

Serializability an event loop reacts to incoming events serially the risk of race
conditions is eliminated.

For these reasons this model has also been adopted by AmbientTalk [5] which
deals with ad hoc networks, highly distributed and concurrent systems.

3.2 Organization

In order for a multi-agent system to achieve its purpose the behavior of individ-
ual agents has to be organized. Furthermore, the system needs to maintain some
global invariants. This can be done endogenously, by making the organizational
and regulatory aspects part of the agent. We think that the endogenous approach
is cumbersome and that it obscures the development of individual agents. We
find the exogenous approach much more appealing: agent’s actions are exter-
nally controlled. This leads to a development style that’s more modularized and
decoupled.

Let’s once again look at the OOP community for inspiration: dynamic dele-
gation as featured in prototypical languages, such as SELF, seems to offer the
flexibility we are looking for when it comes to structuring adaptive distributed
systems, and we have chosen it for its elegance and conceptual simplicity. In
[18], the authors introduce the concept of traits for organizing large prototypical
systems. Traits are akin to abstract types: they are used to factor out common
functionality shared multiple objects. Thus, altering the behavior of a trait also
alters the behavior of all the objects that share it.
2 For the purpose of this article we can think of thread of control and event loop as
interchangeable terms.
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Some of the research in agent organization has focused on using coordina-
tion artifacts – from the Agents and Artifacts (A&A) theory [12]. According to
[13] coordination artifacts are entities designed to provide some kind of func-
tionality or service, they have a well-defined interface, providing operations that
can be invoked by agents. Indeed, coordination artifacts have much in common
with traits. Another benefit of traits is that hey naturally handle dynamically
changing behavior either by altering the trait as stated before, or by changing
an object’s traits on the fly.

Another advantage of adopting traits has to do with security. Since traits
act as abstract types defining reusable behavior they are suitable for a system
implementing object capabilities [10,2]. In this model there is no ambient au-
thority. All actions are performed via unforgettable references to objects. The
only component of the system which has full authority is the powerbox which,
based on some security criteria, can hand references to various capabilities to the
requesting objects. This system is extremely flexible since instead handing a ref-
erence to the actual capability, the powerbox can pass a reference to a stripped
down version of the capability (e.g. in the case of a file system access capability
it can pass a version that can only read files, but not delete them). Traits are
especially suitable for this model since new traits can be defined in terms of
existing one by refining their behavior [18].

3.3 Environment

One of the main models proposed for representing environments for MAS is
A&A [14]. As stated in sec. 3.2, there is a close resemblance between coordination
artifacts and traits. But this resemblance is not limited to coordination artifacts.
Artifacts are generic bundles of behavior that provide a usage interface. They can
be co-constructed and co-used by agents and they can be grouped in namespaces.
This view of artifacts maps directly on prototypical objects, which thanks to their
generality can act as traits, regular objects and namespaces. This opens up new
ways of organizing systems.

3.4 A coherent view

By combining the communicating event loops model with the delegation seman-
tics of prototypical languages we gain uniformity. We can define agents, artifacts
and environments as event loops. Furthermore, since we can change delegation
links at runtime, we can also reify agent behavior as traits3. This buys us flexi-
bility and adaptability: an agent can adapt to varying environmental conditions
by delegating to different traits. The advantages span to the distributed aspects
of the system as well. By introducing a distinction between local and remote
event loops we can take advantage of uniformity further: an agent can delegate
to either a local or remote counterpart. In turn this can benefit agent mobility

3 Which are also agents.
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since agents are self contained entities. As long as their delegation links are ap-
propriately adapted, agents can continue to function the same way on the new
host as they did on the original one.

While this features could be implemented as an Domain Specific Language
(DSL) – or even Embedded Domain Specific Language (EDSL) – we think that
the approach would benefit most by being implemented as a full fledged language.
Together, the features from the previous paragraph, make up for a language
that conforms to our initial criteria: uniformity, self-sufficiency and reification
of concepts from the problem domain. It also exposes the three main features
identified by Dastani in [6] to the programmer.

4 Conclusion and Future Work

In this paper we have presented our view on agent languages. We have addressed
the three main abstractions of such languages: agents, organizations and envi-
ronments. In doing so we took a step back and tried to gear agent development
toward a more generic audience while still keeping its high level view on compu-
tation.

We also looked at what hints the agent paradigm can take from OOP, and
especially from the prototype-based model. We showed how the flexibility of pro-
totypical objects can benefit the organization of MAS. We also briefly addressed
how representing environments for agents can use the same model thus leading
to a uniform representation.

In the near future we will closely focus on the ideas proposed in this paper,
especially on implementing an agent language based on communicating event
loops and we will investigate the use of traits in providing security, organization
and the reification of environments. We will also address some open issues that
we glossed over in this paper because of the lack of space: i) the interaction
of the inherent dynamism in prototypical systems like SELF with the object
capability model and event loops; ii) re-introducing some static checks in the
context of such a highly dynamic system; and iii) language extensibility both at
the syntactic and semantic level.

Some additional problems are related to runtime system of such an agent
language. In order to offer concurrency, most of the current agent languages, use
one Operating System (OS) thread per agent. But OS threads are expensive so
such a solution does not scale well for systems with many agents. Using a thread
pool seems like a good solution, but have yet to study the interaction of event
loops and thread pools. To complicate things further, choosing a concurrency
model (e.g. futures, promises) has a deep impact on the design of the language
(e.g. using promises with callbacks for when they are resolved leads to the well
known problem of inversion of control).

These are all serious issues that need to be settled, but we feel that the basic
concepts (reactive objects with dynamic delegation) make for a solid foundation
for an agent language targeted at MAS.
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Abstract. Agents engage in dialogues having as goals to make some
arguments acceptable or unacceptable. To do so they may put forward
arguments, adding them to the argumentation framework. Argumenta-
tion semantics can relate a change in the framework to the resulting
extensions but it is not clear, given an argumentation framework and a
desired acceptance state for a given set of arguments, which further ar-
guments should be added in order to achieve those justification statuses.
Our methodology, called conditional labelling, is based on argument la-
belling and assigns to each argument three propositional formulae. These
formulae describe which arguments should be attacked by the agent in
order to get a particular argument in, out, or undecided, respectively.
Given a conditional labelling, the agents have a full knowledge about the
consequences of their attacks on the acceptability of each arguments,
without having to recompute the overall labelling of the framework for
each possible set of attacks they may raise.

1 Introduction

Agents engage in dialogues having as goals to make some arguments acceptable
or unacceptable: for instance, agent A wins the auction or agent B is proven
guilty. At each turn, an agent owns a set of possible arguments she can add to
the framework: each addition of further arguments to the framework is called
a move. Argumentation semantics allow us to relate the introduction of a new
argument (a move) to the resulting justification status of an argument (the goal):
for instance, if you defeat argument α then argument β will be labeled undec.
What is missing is a mechanism for making inferences from goals to moves: sup-
pose an agent wants to make an argument β undec. How can she compute which
arguments to add in order to achieve this goal? What she can do is to try and
simulate the introduction of every possible argument she owns in the framework
and then compute β’s resulting label, comparing it to her goal. Beside this ex-
haustive approach there is no way, so far, for an agent to know which move to
make in order to achieve her goal. Since reaching a goal may require the insertion
? A longer version of this paper appeared in the proceedings of TAFA11 [2]
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of several arguments, the complexity of the exhaustive approach is exponential
(wrt cardinality of the powerset) over the number of arguments an agent can
add to the framework.

The research questions of the paper are:

1. What kind of information can we associate to each argument concerning
its possible justification statuses depending on the acceptability of other
arguments in the framework?

2. How to compute this information in an efficient way?

We deal with abstract argumentation frameworks [4], where the internal
structure of the arguments is left unspecified. We are inspired by Caminada’s la-
belling [3], which assigns to each argument a label in, out, undec, and we extend
this idea by assigning a triple of propositional formulae, called conditional lables,
to every argument in the framework. These formulae are a guide in the dialogic
process and suggest which move should be made next. Note that these formulae
(and the algorithmic process to compute them) are in no way related to the
number of agents: our approach does not depend on the number of argumenting
agents and we apply it to a two-agent scenario for the sake of explanation. In
this paper we focus on the grounded semantics, since it always allows to com-
pute one single labelling. Our approach can be extended to deal with different
semantics, but semantics with multiple or no extensions must be handled with
care, in particular when investigating about credulous approaches to multiple
extensions semantics.

2 Conditional labels

Our goal is to enrich each argument with some information about his vulner-
ability, i.e., we want to know how this argument could be successfully (even if
indirectly) attacked, defended or made undecided. We purposely restrict our at-
tention to argument defeating, due to two considerations: first of all, attacks are
not resources but consequences of the insertion of the arguments and given a
couple of arguments the existence of attacks between them is determined and not
subject to strategic moves of agents. In second place, the building of an argumen-
tation framework is a monotonic process and arguments can be defeated with
new arguments rather than removed from the framework. Hence our proposal is
to attach three formulae to each argument, meaning respectively

– Which arguments should be attacked in order to have this argument labelled in?

– Which arguments should be attacked in order to have this argument labelled out?

– Which arguments should be attacked in order to have this argument labelled undec?

Given an argumentation framework 〈A,R〉 (as defined in [4]), we associate
to each argument α three formulae: α+, α−, α?. We indicate a generic formula
associated to argument α as α∗. The language of the formulae is the same:
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Definition 1. (Language of conditional labels)

– if β ∈ A, β◦ is a formula.
– > and ⊥ are formulae
– if α∗1 and α∗2 are formulae, also α∗1 ∧ α∗2 and α∗1 ∨ α∗2 are.

The interpretation of the formulae is: a formula α+, if satisfied, guarantees that
the related argument α is accepted (labelled in). The same holds for α− formulae
for out labels and α? formulae for undec labels respectively. The atoms of those
formulae are argument names β◦ or the special values >,⊥.

– β◦ means the agent has to defeat argument β (to reach her goal)
– > means the agent does not need to do anything (to reach her goal)
– ⊥ means the agent can not do anything (to reach her goal)

Due to space constraints, formal definition of the use of conditional labels
is omitted; the main intuition will be just introduced informally. For techincal
details see [2].

Each conditional label is composed by a head and a body; given an argu-
ment α, its three conditional labels are α+ : body+

α , α− : body−α , α? : body?
α.

A targetset for a label is a minimal set of arguments such that the arguments
names are a solution for the label.

When we modify a framework via a move M we can defeat a set of arguments
defeat(M). If this set is one of the allowed target sets for the conditional label
lab of an argument α, then the labelling of α in the resulting framework will be
the one expressed by the head of the label lab: for instance, if defeat(M) is a
target set for body+

α , after M α’s label will be in (same for body−α and out and
body?

α and undec respectively).

From a practical point of view, suppose that an agent wants to defend ar-
gument α: she has to compute the label α+ and the target sets of the formula
(that is, the minimal sets of solutions that satisfy the body of the label) are the
arguments that have to be defeated in order to defend α.

3 Computing conditional labels

Our approach can be decomposed in four phases:

1. associate each argument to three base (or local) labels,
2. compute conditional labels by substitution,
3. find target sets (for instance, by dnf-normalizing the formulae),
4. find a move such that it satisfies a target set of the goal formula.

The local labels correspond to:

a+ =
∧

b s.t. (b,a)∈R

b−
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The meaning of this formula is: in order to ensure a’s acceptance, all of a’s
attackers must be out.

a− = a◦ ∨
∨

b s.t. (b,a)∈R

b+

The meaning of this formula is: in order to ensure a’s rejection, either a is
defeated or one of a’s attackers is accepted.

a? =

 ∨
b s.t. (b,a)∈R

b?

 ∧
 ∧
b s.t. (b,a)∈R

b− ∨ b?


The meaning of this formula is: in order to have an argument a undecided, at
least one of a’s attackers has to be undecided and all of a’s attackers must be out
or undecided.
Note that this definition of grounded semantics mirrors Dung’s original formu-
lation ([4]).
The a◦ in the second formula means a has to be defeated and no substitution is
required; b+, b− and b? refer to other formulae and have to be substituted to the
actual formulae they refer to.

After this initial definition, the substitution process (phase two) takes place.
It consists in substituting the references to other labels to those labels’ actual
values.

Simplifications need to be specified as follows:

– > ∨ α > (you either do nothing or do α: doing nothing is more convenient)

– ⊥ ∨ α α (you can either fail or do α: in order to succeed you have to do α)

– > ∧ α α (you have to both do nothing and α, therefore α)

– ⊥ ∧ α ⊥ (you fail and you have to do α: you still fail)

– α ∧ α α

– α ∨ α α

– α ∨ (α ∧ β) α

– α ∧ (α ∨ β) α

Let i, j ∈ {+,−, ?}. If αi appears in the body of αj :

– if i = j =?, αi  >
– else, αi  ⊥

We express our termination conditions as simplification rules. The meaning is
the following: if, substituting in the body of a conditional formula for an argu-
ment α, a conditional formula over the same argument is reached, the argument
α belongs to a loop. So in this case the a? label is satisfied while a+, a− are not:
if there is no way to give this argument an in-out label navigating the whole
loop, it is pointless to go through the whole loop again.
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4 Example

We now present some examples of conditional labelling.

Consider the example visualized in Figure 1.1. The basic labels are:

– a+ : b−, a− : b+ ∨ a◦, a? : b?

– b+ : a−, b− : a+ ∨ b◦, b? : a?

Solving the labels, for a we get a+ : b◦, a− : a◦, a? : >.

a b a b c

(1) (2)

Fig. 1: Basic frameworks. Plain grey nodes represent in arguments and black nodes
represent out arguments. undec arguments are depicted as dashed grey nodes.

Consider the example visualized in Figure 1.2. The basic labels are:

– a+ : >, a− : a◦, a? : ⊥
– b+ : a− ∧ c−, b− : a+ ∨ c+ ∨ b◦, b? : (a? ∨ c?) ∧ (a− ∨ a?) ∧ (c− ∨ c?)
– c+ : b−, c− : b+ ∨ c◦, c? : b?

Consider argument b: it is out, but can be labelled in if we attack both a and c or
undec if we attack a (thus activating the b−c loop). We compute the conditional
labels in the following way:

b+ : a− ∧ c−
= a ∧ (b+ ∨ c◦)
= a◦ ∧ (⊥ ∨ c◦)
 a◦ ∧ c◦ (b can be labelled in by defeating a and c)

b− : a+ ∨ c+ ∨ b◦
= > ∨ b− ∨ b◦
= > ∨⊥ ∨ b◦
 > (no move is required in order to label b out)

b? : (a? ∨ c?) ∧ (a− ∨ a?) ∧ (c− ∨ c?)
= (⊥ ∨ b?) ∧ (a◦ ∨ ⊥) ∧ ((b+ ∨ c◦) ∨ b?)
 (b?) ∧ (a◦) ∧ ((b+ ∨ c◦) ∨ b?))
= (b?) ∧ (a◦) ∧ ((⊥ ∨ c◦) ∨ >)
 (b?) ∧ (a◦) ∧ (>)
= (>) ∧ (a◦) ∧ (>)
 a◦ (b can be labelled undec by defeating a)

The conditional labels computed mirror the intuitive description of the frame-
work we gave and model it in a formal way.
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5 Related Work

Conditional labelling is closely related to the dialogues games [5, 1]. Among
others, Prakken [5] presents a formal framework for a class of argumentation
dialogues, where each dialogue move either attacks or surrenders to a preceding
move of the other participant. Amgoud and Hameurlain [1] argue that a strategy
is a two steps decision process: i) to select the type of act to utter at a given
step of a dialogue, and ii) to select the content which will accompany the act.
Roth et al. [6] start from two principles: i) the outcome of a dispute depends
on the strategies actually adopted by parties, but ii) this does not mean that
the outcome can never be predicted because by using game theoretical solution
concepts, the actions themselves can often be found. In comparison with this
kind of frameworks, we share the idea that the first step consists in choosing the
next move depending on the strategies of the agents. The differences are that
we are not interested in providing the complete framework for argumentation
dialogues games, we aim at providing a tool which can be used in those systems
and which can be integrated with strategies. We do not restrict our framework
to deal with two agents, and we extend the well-known argumentation labelling
in order to provide a complete information about the argumentation framework
on which it is applied.

6 Summary

In this paper we present a new kind of argument labelling, called conditional
labelling. Conditional labelling allows to associate to each argument the infor-
mation concerning its possible justification statuses, depending on the changes
in the framework. In particular, we express this information by means of propo-
sitional formulae which express which arguments should be attacked in order to
get the desired argument accepted, not accepted, or undecided. While it is quite
straightforward to assign those conditional labels in argumentation frameworks
without cycles and multiple attacks, it is rather complicated in the general case.
When an argumentation framework with cycles is considered, it is possible to
have in the conditional label α∗ of an argument another α∗ because the condi-
tional labelling algorithm, using substitution, looks for all the attackers of the
node until it finds the node itself. The conditional labelling allows the agents
to avoid the exhaustive search of all the possible combinations in adding new
arguments, and decreases the exponential complexity this search requires.

Future work addresses several issues: first of all, a deeper investigation on the
complexity results related to the computation of the new labellings is necessary.
From a purely argumentative perspective, we want to find out how conditional
labels can be useful after a move: that is, if the previous information can be
used to compute new conditional labels after the framework has been modified.
Associating a cost concept to moves, our labelling lets agents link action costs
to goals’ outcomes, and can therefore be used as an underlying mechanism to
develop strategies in a game theoretical context.
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Abstract. In this paper, I propose a formal dialogue framework that enables au-
tonomous agents to engage in a process of practical reasoning, in which they can
propose to form coalitions that perform joint actions, using argumentation. An ar-
gumentation scheme is used to drive this coalition formation process that results
in qualitative payoffs. This paper builds on existing work that uses value-based
argumentation in the context of a dialogue system, which has been empirically
verified. This framework is designed explicitly for closed cooperative systems
where agents hold different preferences.
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1 Introduction

Coalition formation is a major area within multi-agent systems research where agents
form groups to achieve mutually shared goals to receive some payoff, often charac-
terised in quantitative terms. However, not all situations allow for an obvious quantita-
tive payoff and can be defined more explicitly in terms of goals that can be achieved or
not. In qualitative coalition games an agent is satisfied if its goal is achieved or dissatis-
fied otherwise [14]. When forming teams, problems may occur, as it is not guaranteed
all the agents of the system share the same views of the world and so disputes on what
teams to form and why could arise.

Argumentation is a process where agents can reason about different beliefs to come
to some logical conclusions. Recent work in argumentation suggests some agent sys-
tems can be more richly described with the inclusion of social values [2, 12] as opposed
to just describing systems with goals. These values can be used to describe a social in-
terest an agent has (for example, lowering taxes promotes entrepreneurship), which will
be increased/decreased by moving from one state to another. In this work, the values
(matched with an ordering over these values) will be used as the qualitative reasons for
why agents form teams and prefer some teams to others.

Agents can communicate their arguments to each other through the use of dialogue
games. Dialogue games are rule-governed interactions where each player moves by
making utterances [9]. Dialogues frameworks have been previously used to form teams
[7] but not from the approach of using agent argumentation from a persuasive con-
text. Persuasion is one of the 6 main dialogue types defined by Walton and Krabbe in

Andrew V. Jones (Ed.): Proceedings of the 1st Imperial College Student Workshop (ICCSW ‘11),
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their influential model of human dialogues. It is described as one participant seeking to
persuade another about something not currently accepted [13].

This paper shows how an argumentation scheme for practical reasoning (that con-
sists of defeasible premises matched to a defeasible conclusion for a joint action) [2]
paired with its associated critical questions (CQs) will drive the coalition formation pro-
cess. The CQs can challenge the premises or conclusion of the scheme and so become
collaborative learning aids for the agents to find the best coalitions. If a CQ is left unan-
swered then the instantiation of the argumentation scheme it attacks fails to hold [10].
Using argumentation schemes and critical questions has previously been shown to be a
valid extension to dialogue games (e.g. [10, 4, 11]) but no work has been completed on
using this method to form coalitions.

Agents join the coalitions using a pro-active approach. This pro-active approach
requires the agents to volunteer for a coalition by making the appropriate utterance
(See Table 1, Section 3). The overall aim of the dialogue game will be to partition
agents into appropriate coalitions that take into account all the preferences of the agents
in the system.

The paper is structured as follows. Section 2 recapitulates some elements of the di-
alogue system from [4] and gives an overview of the modifications to its argumentation
model and dialogue framework, which were empirically evaluated in [11]. Section 3 de-
tails the dialogue framework proposed. Section 4 gives a dialogue example and shows
how the new system proposed evaluates the arguments to reach a conclusion on the
coalition structure (the collection of coalitions) to recommend. Section 5 concludes the
paper.

Fig. 1: Illustration of an agent’s VATS (See Definition 1). j and j′ are the joint-actions
needed to move to another state, while v and v′ are the values that are associated with
these state changes. In this example v is demoted and v′ is promoted.

2 Argumentation Model Used
For handling reasoning about the effects of actions, the following argumentation scheme
for practical reasoning is used, modified from [4]. It is used to allow the agents to form
arguments for coalitions, termed coalition arguments.

In the current circumstances R, joint action J should be performed, by coalition C,
which will result in the new circumstances S, which will promote/demote the value V.

Circumstances R and S are represented as tuples of propositions, visualised in Figure
1. Joint action J is a tuple of single actions denoted 〈αm, ..., αn〉, Coalition C is a
tuple of agent and single action pairs, where a pair is denoted (x, α), with the intended
interpretation that if this coalition is agreed upon then each agent in C will perform the
single action it is paired to, denoted Cxα. If no agent has yet been assigned the single
action α, this is denoted C?

α.
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An agent may propose a joint-action including its justification, by instantiating this
scheme. Agents can initially only add themselves to the coalition variable, until enough
information is acquired about the other agents of the system so that accurate assump-
tions can be made. Other agents can then challenge instantiations by posing CQs asso-
ciated with the scheme. The questions associated with the above scheme raise potential
issues with: the validity of the elements instantiated in the scheme; the connections
between the elements of the scheme and the side effects of the joint-actions [4]. Ex-
ample CQs here are: does doing the the joint action have a side effect which demotes
another value? and assuming the circumstances does the joint action have the stated
consequences?.

A formally instantiated version of this scheme is denoted A = 〈qx, j, c, qy, v, s〉
where qx is the current state, j is the joint action, c is the coalition of agents paired
to single actions, qy is the new state, v is the value associated with this state transi-
tion and s (where s = {+,−,=}) is the sign indicating whether the value is pro-
moted/demoted/not affected respectively. The coalition variable does not have to be
completely instantiated upon the first utterance. This is to allow agents flexibility in
their arguments, with the semantic meaning coming from the utterance that the instan-
tiation is associated with (see Table 1, Section 3 for the full utterance list). An A will
represent a proposal if |c| < |j| as the coalition does not yet have a sufficient amount of
members to carry out the joint action and so requires others to complete the proposal.A
will represent an assertion if |c| = |j| as the coalition now has enough members to carry
out the joint action and is therefore ready to form.Awill represent an objection if it is in
the form of a CQ. A formalised CQ is instantiated as a modified version of A intended
to reflect the question it represents in a logical form. The complete formalised CQ list
is cut for space, but reflects the work of [11], expanded to incorporated the inclusion of
the coalition and joint action variable.

To represent the agents’ environment and help the agents create instantiations of the
argumentation scheme a Value-Based Alternating Transition System (VATS) is used.
It is a modified version of an Action-Based Transition System (AATS) [15], which is
grounded in Alternating-time Temporal Logic (ATL). An example VATS diagram can
be seen in Figure 1. Every agent in the system is assigned a VATS, which is a modified
version of the one outlined in [4] and is summarised below:

Definition 1: The VATS formalism is as follows: A VATS for an agent x, denoted Sx,
is a 12-tuple
〈Qx, qx0 , Acx, Avx, Jax, Agx, ρx, τx, Φx, πx, δx, ξx〉 s.t.:

– Qx is a finite set of states;
– qx0 ∈ Qx is the designated initial state;
– Acx is a finite set of single actions;
– Avx is a finite set of values;
– Jax is a finite set of joint actions, where each joint action is composed of m single

actions where m ∈ N;
– Agx is a finite set of agents;
– ρx : Jax 7→ 2Q

x

is an action precondition function, which for each joint action
j ∈ Jax defines the set of states ρ(j) from which j may be executed;
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– τx : Qx×Jax 7→ Qx is a partial system transition function, which defines the state
τx(q, j) that would result by the performance of j from state q. As this function is
partial, not all joint actions are possible in all states;

– Φx is a finite set of atomic propositions;
– πx : Qx 7→ 2Φ

x

is an interpretation function, which gives the set of primitive propo-
sitions satisfied in each state: if p ∈ πx(q), then this means that the propositional
variable p is satisfied (equivalently, true) in state q;

– δx : Qx ×Qx ×Avx 7→ {+,−,=} is a valuation function which defines the status
(promoted (+), demoted (−), or neutral (=)) of a value v ∈ Avx ascribed by the
agent to the transition between two states.

– ξx : Agx × Acx 7→ {>,⊥} is a partial agent capability function which defines if
an agent can perform the single action (>) or not (⊥). This function is partial as
not all agents can perform all single actions.

Note, Qx = ∅ ↔ Acx = ∅ ↔ Avx = ∅ ↔ Φx = ∅.
Each agent also has a preference order over its values, of the form v1 � ... � vn

where n = |Avx|, that ranks the values into an order where v1 is the most preferred and
vn the least (termed an ’audience’ in [3]). The set of all arguments that can be created
from Sx is denoted A(Sx). Ψ is a subset of all the possible arguments all the agents
in the system can construct, denoted Ψ ⊆

⋃
∀xi∈{x1,...,xn}A(Sxi) and represents the

arguments x believes to be true for the current state.
The coalition arguments and CQs uttered in the dialogue will be evaluated to deter-

mine their acceptability by placing them in a Value-Based Argumentation Framework
(VAF) [3], which is an extended version of Dung’s abstract Argumentation Framework
(AF) [8]. An AF is defined as follows:
Definition 2: Dung’s Argumentation Framework is a tuple AF = (Args,R) whereArgs

is a set of arguments and R is a binary attack relation R ⊆ Args×Args.
A VAF extends an AF in the following manner:
Definition 3: A VAF is a 5-tuple: 〈Args, R, V , val, P 〉 where Args and R remain the

same as Definition 1, V is a set of non-empty values, val is a function mapping elements
of V to Args and P is a set of possible audiences.

In a VAF an attack arg1Rarg2 only succeeds (arg1 defeats arg2) for an audience
p iff argument arg1 is associated with the same or a higher value than argument arg2
in audience p’s preference order, and arg1 has not been defeated by another argument
in the VAF.

A set of arguments S is acceptable to an audience p iff ∀argx ∈ Args if argx
attacks an argument argy where argy ∈ S there ∃argz ∈ S where argz defeats argx
according to p’s preference order. S is a preferred extension (PE) of a VAF for audi-
ence p if S is the maximal acceptable set of arguments for p.

3 Dialogue Framework
The underlying assumptions of this proposed dialogue framework are that agents in this
system occupy a benevolent environment and are correctly aware of their starting state.
When a dialogue commences, the number of agents in the system must remain fixed,
but in between dialogues this number can change. Dialogues commence when an event
triggers one agent to desire to move to another state. This agent should perform the
open move detailed below and then start the dialogue protocol.
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The protocol is similar to the one in [4] but cut for space. It finds all the legal moves
that an agent can utter for its turn, given the current dialogue and the agent identifier.
All these moves will then be uttered in unison. The moves available to the agents allow
them to object to an argument with a critical question, propose an incomplete coalition,
assert a complete coalition or attempt to close the dialogue.

Agents interact to find the best way to partition themselves into coalitions (which is
a process known as coalition structure generation). Every agent asserts all the arguments
and critical questions it can construct, given the union of their VATS and the other
agents’ utterances. Dialogues consist of a sequence of moves referred to as [mr, ...,mt],
collectively formalised to Dtr where r, t ∈ N [4]. The first move of the dialogue is
always the open move.

All agents’ proposals, assertions and objections are stored in a publicly readable
commitment store that grows monotonically over time until a new dialogue resets the
commitment stores. For a dialogue, Dtr, with participants {x1, . . . , xn}, for all x ∈
{x1, . . . , xn}, the commitment store is denoted CStx.

The moves that the agents in this framework can make are detailed further in Table
1 below, modified from [4] to allow for coalitions to be formed and CQs to be seperated
from coalition arguments:

Move Format Pre-conditions Post-conditions
open 〈x, open, Λ〉 No Dialogue open.

Λ = [x1, ..., xn]
where Λ is the avail-
able system agents.

Dialogue commenced. All agents in
Λ are committed to follow the dia-
logue protocol.

propose 〈x, propose, Ψ〉 ∀A ∈ Ψ, |c| < |j|
where c, j ∈ A.

Commitment store updated.

assert 〈x, assert, Ψ〉 ∀A ∈ Ψ, |c| = |j|
where c, j ∈ A.

Commitment store updated. All
agents in c are committed to per-
form the single action they are
paired to.

object 〈x, object, Ψ〉 Sx conflicts with an-
other argument.

Objection is stored in the commit-
ment store.

close 〈x, close〉 A Dialogue is open. Dialogue closed iff all agents have
performed a close move in a row
(without another move inbetween).

Table 1. The moves available to the agents

4 Dialogue Example and Argument Evaluation

Here is an abstract example for an agent system with 4 agents (x1, ..., x4), 7 arguments
(arg1, ..., arg7), 5 states (q1, ..., q5), 3 joint actions (j1, j2, j3), 2 values (v1 and v2)
and 3 completely formed coalitions (C1, C2, C3). The purpose of the dialogue is to
partition agents into coalitions that achieve the agents social values.
x1 - (proposes an instantiation of the argument scheme) - arg1: As we are in state
q1, joint action j1, where j1 = 〈α1, α2〉, will result in state q2. C1x1

α1
is proposed but

C1?
α2

remains. This transition will promote value v2.
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x2 - (asserts an instantiation of the argument scheme that extends arg1) - arg2: As
we are in state q1, joint action j1, where j1 = 〈α1, α2〉, will result in state q2. C1x1

α1
and

C1x2
α2

are asserted. This transition will promote value v2.
x3 - (proposes an instantiation of the argument scheme) - arg3: As we are in state
q1, joint action j2, where j2 = 〈α1, α3〉, will result in state q4. C2x3

α3
is proposed but

C2?
α1

remains. This transition will promote value v2.
x4 - (asserts an instantiation of the argument scheme that extends arg3) - arg4: As
we are in state q1, joint action j2, where j2 = 〈α1, α3〉, will result in state q4. C2x4

α1
and

C2x3
α3

are asserted. This transition will promote value v2.
x1 - (objects to arg3 and arg4 with a critical question) - arg5: As we are in state q1,
performing joint action j2, where j2 = 〈α1, α3〉, will demote v1.
x1 - (proposes an instantiation of the argument scheme) - arg6: As we are in state
q1, joint action j3, where j3 = 〈α4, α5〉, will result in state q5. C3x1

α5
is proposed but

C3?
α4

remains. This transition will promote value v1.
x2 - (asserts an instantiation of the argument scheme that extends arg6) - arg7: As
we are in state q1, joint action j3, where j3 = 〈α4, α5〉, will result in state q5. C3x1

α5
and

C3x2
α4

are asserted. This transition will promote value v1.

Fig. 2: Illustration of the VAF produced by the example dialogue.

From this dialogue the VAF is created. In the VAF are all the arguments uttered in
an assert or objection move. The arguments uttered in a proposal move are not included
as they hold incomplete coalitions that are not ready to form. The CQ arguments uttered
in objection moves are in the VAF to determine the best coalitions to form. The attacks
in the VAF come from coalition arguments that share an agent, coalition arguments that
finish in conflicting states or conflicts that arise from the CQs.

To find the most preferred coalitions out of the remaining arguments one method
that could be used is based on the borda count. Using this voting method all the agents
of the dialogue have to summit their preference order to a centralised evaluating system
which will then assign these preferences a score. The scoring method for a borda count
is as follows: if there are k total system values, the most preferred in each preference
order will be assigned the score k − 1, the second most preferred assigned the score
k − 2 continuing until the least preferred gets zero. Using these borda count scores the
system will be able to find one overall value order that will be used to find the overall
system’s preferred extension. Once all the attacks have been analysed and the preferred
extension found, the arguments remaining that recommend a coalition will form the
coalition structure.

The VAF created by the example dialogue can be seen in Figure 2. With a value
order v1 � v2 , arg5 and arg7 is the PE of the example VAF and so only C3 will form
(as arg5 doesn’t recommend a coalition). A value order of v2 � v1 will mean the PE
will contain arg2 and arg4 and so C1 and C2 will form. In this instance two coalitions
are recommended as they are not conflicting. They do not conflict as they do not share
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an agent and the shared propositions of q4 and q5 have the same truth value. This can
happen in systems where agents do not share all the same propositions to describe the
system.

5 Conclusions, Related and Future Work

Forming coalitions via argumentation has been proposed previously (e.g. [1, 6, 5]) but
no persuasive dialogue game and protocol has been defined that produces a coalition
structure. The dialogue game outlined here differs from the one of Amgoud [1] as her
dialogue game is only used to find out if a coalition is in the set of acceptable coalitions
and it is not used to form them.

This paper details preliminary work produced to formalise a dialogue game for
coalition structure generation that could be modified for environments that are dynamic
and open. In future work, the dialogue framework will be implemented, different meth-
ods for determining the overall value order will be considered and situations where
agents are not satisfied with the final recommended coalitions will be explored.
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Model-based Self-Adaptive Components: A
Preliminary Approach

Pedro Rodrigues and Emil Lupu
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Abstract. Due to the increasing scale, complexity, dynamicity and het-
erogeneity of modern software systems, it is not feasible to solely rely
upon human management to guarantee a good service level with such
availability demand. Self-managing systems are needed as an effective
approach to deal with those issues by exploiting adaptive techniques
to adjust a system. On top of that, model-based adaptation improves
reliability, hence enhancing trust in self-managing systems. However, a
centralised approach can be too complex to manage thus compromising
system dependability. This paper presents a preliminary decentralised
approach on model-based self-adaptive components.

1 Introduction

Self-management can be decomposed in various functions, as identified by IBM
[1] as the MAPE-K loop: Monitoring, Analysis, Planning and Execution, all
underpinned by system knowledge. The Monitoring service supervises the system
and notifies system changes. The Analysis service receives these notifications
and analyses system consistency as well as optimality, and sends a request to
the Planning service to change the system when the system is not behaving
as expected. The Planning service decides which changes have to be made and
passes them to the Execution service to apply them.

To the best of our knowledge, most proposals in self-adaptive system are
based on centralised management and a centralised model of the system. Cen-
tralised control of the details of all components in a system implies great com-
plexity since adaptation concerning different levels of a system is dealt at the
centralised manager; does not allow components to be completely autonomous
and limits the reusability of management specifications concerning one compo-
nent in other systems. Moreover, adaptation actions mainly focus on structural
modifications, such as replacing components, hence not dealing with behavioural
modifications.

In this paper we present a preliminary approach for the design of self-managing
system composed of autonomous components for pervasive environments. The
assumptions of systems administrators regarding adaptation action effects may
not be verified at runtime. However, little work has been conducted on online
reasoning about adaptation repercussions in terms of its outcome and costs.

This paper is organised as follows. Section 2 presents some of the relevant
proposals regarding the services of the MAPE loop. Section 3 discusses our

Andrew V. Jones (Ed.): Proceedings of the 1st Imperial College Student Workshop (ICCSW ‘11),
pp. 73–79. September 29th–30th 2011, London UK.
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preliminary proposal for the design of composite autonomous components based
on model-based adaptation. Section 4 ends this paper with closing remarks.

2 Background

This section discusses some proposals for the main concepts regarding self-
managing systems. Monitoring is the foundation service of these systems as
it provides online knowledge on system state. Relying upon that knowledge,
decision-making services verify the need for adaptation and decide the most suit-
able adaptation action. Component models provide means for the specification
of component structure and behaviour, which may support the decision-making
service. Finally, self-adaptation frameworks combine those concepts to add self-
managing properties to software systems.

2.1 Monitoring

A self-adaptive monitoring service should control the detail of collected moni-
toring data from sensors in the following manner: supervising main component
metrics while the component fulfils its requirements and switching to more de-
tailed monitoring when the system deviates from its normal behaviour. In this
regard, an automated method for selecting a subset of metrics to be collected
in the context of correlation-based monitoring was proposed in [11], resulting in
detecting on average 66% of faults in case of all metrics were being connecting,
though collecting only 30% of them. Alternatively, in the approach presented
in [12] when an anomaly is detected the monitoring level is progressively in-
creased until a fault root is found or the monitoring level achieved its maximum.
These techniques allow to reduce power consumption while not compromising
fault diagnosis accuracy.

2.2 Decision-Making

The decision-making service is responsible for choosing the most suitable adapta-
tion action to be executed in face of a context or state change. Policies have been
a successful way of expressing automated management of distributed systems and
changes in the system behaviour at runtime [14]. While Event-Condition-Actions
(ECA) policies express reactive actions based on the current system state, Goal
and Utility-function policies express desirable system states.

The Stitch language [5] proposes a modification to ECA policies based on two
constructions: tactics and strategies. Tactics implement the Condition-Action
part and introduce a construct to indicate the expected behaviour of the tactic
actions. Strategies are defined as a tree of Condition-Tactics nodes which define
a condition for the tactic to be applied, an estimation of the time it needs to
adapt the system and a list of conditional branches that define the following
steps in the tree.
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Alternatively, the application of genetic algorithms is proposed in [13] to de-
termine the best configuration of a system in face of state or context change.
However, it takes a considerable amount of time to compute the most fitting
system configuration, as a considerable number of possible configurations is ex-
plored.

2.3 Component Models

The component model in Darwin [10] specifies component structural view in
terms of required and provided services (ports) and component interactions
through bindings between provided and required ports. A composite component
defines bindings among internal components ports as well as binding the compos-
ite component ports to the ones of internal components. Although, a FRACTAL
component [3] is also based on the principle of provided and required interfaces,
each component is involved in a membrane that provides external control inter-
faces to introspect and reconfigure the component internal details, and a content
that consists in a set of sub-components. The membrane control interfaces nor-
mally correspond to several controller and interceptor objects.

The above component models mainly focus on providing means for structural
adaptation. Modes [9] extend the Darwin component model with a representa-
tion of the expected interaction behaviour between required and provided ser-
vices. Each of the identifiable component states is defined as a behaviour type
that is characterised by an interaction process, constrains and properties. The
interaction process is represented by Finite State Processes that define a set of
scenarios in which the component can operate. This representation can be used
to construct a Labelled Transition System, which can then be passed to the
LTSA toolset to detect the presence of deadlocks and other properties analysis.
On the other hand, the MOCAS model [2] only focuses on behavioural adap-
tation. Each component sets a UML state machine at runtime to characterise
and realise its behaviour. This state machine consists in a set of states which are
connected through transitions, each one being designated by an input signal, a
guard (a boolean expression) and effects. A state also includes invariants, that
together with guards designate business properties.

2.4 Self-Adaptation Framework

The Rainbow framework [7] relies upon Acme ADL [8] as a generic architec-
tural model to manage a given system. Each component can be annotated with
functional and non-functional properties, expected interactions with other com-
ponents and specific architectural constraints. Furthermore, the framework uses
the Stitch language [5] to express adaptation policies, which are triggered by rea-
soning over the architectural model. However, the adaptation actions are directly
applied to the underlying software system.

The GRAF framework [6] proposes using a runtime abstract model between
the adaptable software and the adaptation manager, where the adaptation man-
ager does not directly control the adaptable software. The Runtime Model Man-
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ager evaluates the pre-conditions of the adaptation policy before applying adap-
tation actions on the runtime model. Thereafter, the conducted modifications are
validated using the policy post-conditions as well as the model invariants. If they
do not conform with such constraints the Runtime Model Manager rollbacks the
alterations performed on the Runtime Model.

Both frameworks rely upon a centralised representation of the system as
well as centralised management, which can result in significant management
complexity.

2.5 Summary

Centralised representation and management of a software system can become
too complex that may overwhelm the benefits of having a self-managing system,
while restricting the design of autonomous components. Dealing with adaptation
concerning different levels of the software system at a centralised management
may compromise system dependability. On the other hand, minimising the set
of metrics of online monitoring and analysis reduces the complexity of system
management while minimising power consumption. Furthermore, work on online
reasoning on behavioural and runtime changes is insubstantial, limiting the trust
in self-managing systems as well as their autonomy.

3 Model-based Self-Adaptive Component

We propose that each component has self-managing capabilities in order to re-
duce the complexity of specifying the underlying mechanisms for autonomous
system management. A system is structured as a hierarchy of component compo-
sitions, i.e. single components can be used to construct a composite one which
in turn can be used in other composite relationship. The resulting composite
component is responsible for the management of its sub-components, though
their internal details are managed by themselves. Each component defines the
level of management details a parent component is allowed to control. The hi-
erarchical structure provides means to handle adaptation concerns at different
levels. The underlying mechanisms and models of self-adaptive components will
be presented in the next sub-sections.

3.1 Runtime Model

Similar to the GRAF framework [6] we propose that a component comprises a
Runtime Model which incorporates a structural and a behavioural view. The
structural view consists in a ADL specification of its provided and required
services, annotated with some properties, e.g. requirements and capabilities. For
instance, a given service provides an average response time of 500ms; a service
client requires a service provider with 10Mbps of available bandwidth for a file
transfer service, etc. The behavioural view represents the behavioural model of
its provided services and internal details. Moreover, the set of provided services
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can be dynamically evolved in order to accommodate new functionality or replace
existing one in face of a change in system requirements.

Furthermore, each component provides a list of relevant metrics to be mon-
itored along with the dependencies among them. Such information can be ex-
ploited by the aforementioned techniques to reduce monitoring complexity when
the component is behaving properly. In addition, based on the values of those
metrics, utility functions can be specified to evaluate the system. The domain
of each metric can be discretised in order to reduce the complexity of specifying
utility functions, e.g. response time ∈ [0, 100]ms→ low, ]100, 500]ms→ medium,
]500,∞[→ high.

Finally, the Runtime Model includes a set of functional and non-functional
requirements, structural and behavioural invariants and goals, that guide the
decision-making service when choosing a suitable adaptation action.

3.2 Adaptive Monitoring

For each of the relevant metrics specified in the component’s description a con-
figuration determining the type of monitoring, interval or period based, and the
correspondent parameters is specified. For period-based monitoring, the met-
ric’s value is periodically propagated based on a specified interval. When using
interval-based monitoring, the metric value is propagated when it falls outside a
specified numeric interval. Such parameters as well as the set of currently moni-
tored metrics are dynamically adapted using reactive policies based on the moni-
tored values and the dependencies among metrics to reduce power consumption.
For example, when the number of clients exceeds a given threshold, increase the
monitoring rate of system response time; stop monitoring available bandwidth
when the system response time is below 100ms. Moreover, the monitoring com-
ponent is also responsible for updating the aforementioned annotations on the
structural model.

3.3 Decision-Making

Each component applies its adaptation actions relying upon the current view
of its behavioural and structural models. Therefore, the monitoring component
updates those two models instead of directly propagating metrics values to the
decision-making service. Based on the Stitch language [5], we suggest adapta-
tion actions to be specified using ECA policies, each one including an expected
outcome of its adaptation actions in terms of structural and behavioural modi-
fications as well as metric variations and an estimation of the cost of applying
those actions.

By reasoning over the runtime behavioural model, the decision-making ser-
vice verifies which ECA policies need to be activated. If two or more policies
are triggered, the decision-making service applies an utility function to the ex-
pected outcome and the cost estimation; the one with the highest utility value
is selected. However, the adaptation actions are firstly executed in the runtime



78 Pedro Rodrigues, Emil Lupu

behaviour model in order for the decision-making service to verify if their execu-
tion violates components goals, invariants or requirements. If the simulation of
the adaptation actions does not lead the runtime model to an inconsistent state,
the modifications are applied in the component; otherwise the runtime model
is rollbacked to the previous state before simulating the ECA policy execution.
Moreover, after the execution of an ECA policy the expected outcome and cost
estimation are updated using a suitable statistic method based on the metrics
values captured by the monitoring service. Alternatively, statistical models can
be used to predict the outcome of a given adaptation action, using collected
values to improve prediction [4].

When a goal, an invariant, a functional or non-functional requirement is
invalidated and there is not an ECA policy to fix the identified problem, a plan
is generated using the estimation, evaluation or prediction of the outcome of
actions in ECA policies. The Runtime Model is used to validate the generated
plan, i.e. if the plan does not violate the aforesaid components requirements,
goals and invariants. The planning algorithm can be parameterised to generate
a plan as quick as possible or an optimal one using utility functions. Additionally,
utility-functions can also be used to periodically improve system configuration
parameters or structural configuration, i.e. sub-components replacement on a
composite relationship. Since adaptation can imply a significant cost in terms of
system availability, optimisation can be conducted only when the system utility
is below a given threshold.

4 Final Remarks

Self-managing systems should be designed as a hierarchy of self-adaptive com-
posite components to ease their specification and to provide means for manage-
ment at different levels while allowing to reuse components and their managing
features in similar systems. Online reasoning on structural and behavioural adap-
tation repercussions can improve the reliability of self-managing systems, as well
as increase the confidence of systems administrators towards such systems.

In this paper we have presented a preliminary design to approach the afore-
mentioned drawbacks of current self-managing systems. We intend to elaborate
on each one of the presented services and combine them to design systems of
self-managing components for pervasive scenarios. The main goal of deploying
self-managing systems is to decrease managing costs by reducing human inter-
vention. One one hand, such goal cannot be achieved if the underlying mecha-
nisms of self-managing systems do not have the level of reliability so that sys-
tem administrators can truly trust them to perform their job. On the other
hand, self-managing systems do not completely replace the role of system ad-
ministrators, i.e. leading to completely autonomous management, as the actions
performed by self-managing systems are governed by high-level goals specified
by system administrators. Consequently, system administrators still have the
control of software systems, only delegating system management to the self-
managing frameworks.
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Safe, Flexible Recursive Types for Featherweight

Java

Reuben N. S. Rowe
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Abstract. This paper presents a type assignment system with recursive
types for Featherweight Java, inspired by the work of Nakano. Nakano’s
innovation consists in adding a modal type constructor which acts to
control the folding of recursive types, resulting in a head-normalisation
guarantee. We build on this approach by introducing a second modal type
constructor which prevents the unfolding of types in contexts where doing
so results in non-termination. Moreover our system inherits the flexibility
of Nakano’s approach, allowing object-oriented features (such as binary
methods) to be typed in a safe and intuitive way. The work described
in this paper is preliminary, and no formal results are claimed. However,
we conjecture that our type system enjoys strong normalisation and we
motivate this by working through some apposite examples.

1 Introduction

Recursive types can be viewed as finite representations of infinite (but regu-
lar) types [8, Chapter 20]. For example, the recursive type T = µX.(A → X)
represents the infinite type satisfying the (recursive) equation T = A → T .
Alternatively, T can be understood to be the type obtained from ‘unfolding’
µX.(A → X) to A → (µX.(A → X)) an infinite number of times. The folded
and unfolded form, denoting the same (infinite) type, are considered to be equiv-
alent, and it is usual to freely exchange one for another during type assignment.

These types naturally capture the behaviour of entities which are (poten-
tially) infinite, or structures of indeterminate size such as lists or streams. Among
such entities are the objects of object-oriented (OO) programming systems. For
example, consider objects which are instances of the following Java classes:

class C {
C m() { return new C(); }

}

class Suc implements Nat {
Nat pred;

Nat add(Nat x) { return new Suc(this.pred.add(x)); }
}

Andrew V. Jones (Ed.): Proceedings of the 1st Imperial College Student Workshop (ICCSW ‘11),
pp. 80–86. September 29th–30th 2011, London UK.
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In the first example, instances of class C have a method m which returns
another instance of C; thus given a C object, m may be safely invoked any arbitrary
(and indeterminate) number of times. A natural (recursive) type describing this
behaviour could be, for instance, µX.〈m:() → X〉. The second example gives
a class containing a method add, representing addition on (positive) natural
numbers. The add method creates a new Suc object and thus, as in the previous
example, it may be invoked any arbitrary number of times.

Recursive types, then, provide an ideal mechanism for reasoning about object-
oriented programs. Indeed, much work (see e.g. [3, 1, 4, 2]) has already been done
on the type-theoretic relationship between recursive types and OO. The draw-
back to recursive types however is that in their unrestricted form they are log-
ically inconsistent - that is to say, they allow for the typing of non-convergent
(non-terminating) programs. This is not always a problem from a program anal-
ysis point-of-view, provided one is only interested in ensuring the partial correct-
ness of programs, but poses problems when constructing type-based semantics,
and also when reasoning about termination properties.

It is known that placing syntactic restrictions on recursive types – specifi-
cally, disallowing negative occurrences of recursively bound type variables (as
in the type µX.X → A) – restores convergence and logical consistency [6].
However, this approach poses a unique problem within the setting of OO. The
Suc example illustrates another feature of object-oriented programming: binary
methods. These are methods which take an argument of the same kind as the
object containing it - in the case of our example, the add method (belonging
to Suc objects) takes another Suc object as input (besides also returning one
as output). This is exactly the behaviour captured by recursive types contain-
ing negative self references, and one might expect to be able to assign a type
such as µX.〈m:X → X〉 to instances of Suc. Thus, such a restriction on types is
unsatisfactory for object-oriented programming.

Nakano has developed a system of recursive types for the λ-calculus, which
goes some way to addressing these issues [7]. In his system, there is no restric-
tion on the (negative) occurrence of recursively bound type variables, and by
introducing an additional type constructor •, a convergent system (up to head-
normalisation) is obtained. In previous work [9] the author studied semantics for
object-oriented programming based upon intersection types. The current work
is motivated by a failure of that work to provide fully decidable type inference
in the presence of recursively defined classes, such as those given in the example
above.

In this paper, we describe a variation on Nakano’s theme which we believe is
capable of providing a logically consistent and flexible foundation for OO type
theory. We chose to first focus on a system without intersections for simplicity
– such a system is easier to formulate and reason about (both formally and
informally), and since type systems without intersections are simpy special cases
of systems with intersections, the recursive- and intersection-based aspects of
the system can be dealt with orthogonally. We point out that the work is at
a preliminary stage, so we have no formal results to present. Rather, the aim
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is simply to give evidence in support of our thesis in the form of typed (non)
examples. Due to space restrictions, we are unable to provide a comprehensive
explanation of the relevant background material, so we will assume that the
reader is familiar with the basics of type theory and type assignment, and the
author’s previous cited work.

2 FJ◦µ: Safe Recursive Types for OO

In this section we describe how we apply Nakano’s approach [7] to OO. The
system we describe is a variation on our previous work [9], which in turn is
based on Featherweight Java (FJ) [5], a formal model of the core operational
semantics of Java. We refer the reader to those papers for details elided here.

Definition 1 (FJ◦µ Predicates). The predicates (types) of FJ◦µ are formed
according to the following grammar (where X, like ϕ, ranges over predicate vari-
ables):

σ ::= C | ϕ | •σ | ◦ σ | 〈f :σ〉 | µX.〈m:(σn) → σ〉

with the restriction that any bound recursive predicate variables must be within
the scope of either the • or ◦ type constructors (under their respective µ binders).
The notation •r σ (◦r σ) is a shorthand for σ preceded by r occurrences of • (◦),
and •r+ σ (◦r+ σ) denotes the same thing, but indicates a strictly positive number
of occurrences of • or ◦.

The basic idea is that method invocations are allowed by types of the form
•r µX.〈m:(σ) → σ〉, but disallowed at types of the form ◦r+ µX.〈m:(σ) → σ〉.
Thus the ◦ constructor serves to control the unfolding of recursive types, and can
therefore be seen in some respect as the dual1 of the • constructor in Nakano’s
system where it is used to control the folding of recursive types.

We define a coercion relation on predicates which permits • types to turn
into ◦ types, and is used to determine when a method predicate can be safely
assigned to a new object instance.

Definition 2 (Coercion). The coercion relation ⊳ is the smallest preorder on
predicates satisfying:

σ ⊳ σ′ ⇒






•σ ⊳ • σ′

•σ ⊳ ◦ σ′

◦σ ⊳ ◦ σ′

The type assignment system for FJ◦µ is given by the rules in Figure 1. Γ is a
typing environment for variables, and Σ is a typing environment for classes (also
called a self environment), used to type new expressions and the self reference
variable this within the bodies of methods. These class environments contain a

1 Here we use this word in an informal sense, rather than its formal category-theoretic
sense.
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(var) : (x 6= this)
Σ; Γ, x:σ ⊢ x:σ

(•) :
Σ; Γ ⊢ e:σ

Σ; Γ ⊢ e: •σ
(coerce) :

Σ; Γ ⊢ e:σ
(σ ⊳ σ′)

Σ; Γ ⊢ e:σ′

(fld) :
Σ; Γ ⊢ e: •r〈f :σ〉

Σ; Γ ⊢ e.f : •r σ
(invk) :

Σ; Γ ⊢ e0: •
r µX.〈m:(σn) → σ〉 Σ; Γ ⊢ e1: •

r σ′

1 . . . Σ; Γ ⊢ en: •r σ′

n

Σ; Γ ⊢ e0.m(en): •
r(σ[µX.〈m:(σn) → σ〉/X])

(σ′

i = σi[µX.〈m:(σn) → σ〉/X] for each i∈n)

(self-obj) :
Σ, bC:(σn) → σ;Γ ⊢ this:C

(self-fld) : (F(C) = fn, i∈n)
Σ, bC:(σn) → σ; Γ ⊢ this:〈fi:σi〉

(self-meth) :
Σ, bC:(σn) → σ;Γ ⊢ this: ◦σ

(inst-obj) :
Σ; Γ ⊢ e1:σ1 . . . Σ; Γ ⊢ en:σn

(F(C) = fn)
Σ; Γ ⊢ new C(en):C

(inst-fld1) : (inst-fld2) :
. . . Σ; Γ ⊢ ei: •

r σ . . .
(F(C) = fn, i∈n)

Σ; Γ ⊢ new C(en): •
r〈fi:σ〉

. . . Σ; Γ ⊢ ei: ◦
r σ . . .

(F(C) = fn, i∈n)
Σ; Γ ⊢ new C(en): ◦

r〈fi:σ〉

(inst-rec) :
Σ; Γ ⊢ e1: ◦

r+ σ1 . . . Σ; Γ ⊢ en: ◦r+ σn

(C:(σn) → σ ∈Σ)
Σ; Γ ⊢ new C(en): ◦

r+ σ

(inst-meth1) :
Σ, bC:(σn) → µX.〈m:(σ′

n′) → σ′〉; x1:σ
′′

1 , . . . , xn′ :σ′′

n′ ⊢ eb:σ
′′ Σ; Γ ⊢ ei: •

r σi (∀i∈n)
(∗)

Σ; Γ ⊢ new C(en): •
r µX.〈m:(σ′

n′) → σ′〉

(inst-meth2) :
Σ, bC:(σn) → µX.〈m:(σ′

n′) → σ′〉; x1:σ
′′

1 , . . . , xn′ :σ′′

n′ ⊢ eb:σ
′′ Σ; Γ ⊢ ei: ◦

r+ σi (∀i∈n)
(∗)

Σ; Γ ⊢ new C(en): ◦
r+ µX.〈m:(σ′

n′) → σ′〉

∗ (M(C,m) = (xn′ , eb), σ
′[µX.〈m:(σ′

n′) → σ′〉/X] ⊳ σ′′, σ′′

i = σ′

i[µX.〈m:(σ′

n′) → σ′〉/X] for each i∈n′)

Fig. 1. Predicate Assignment for FJ◦µ

unique marked class, indicated by Ĉ and used to keep track of which class the
method body currently being typed appears in. The notation Σ represents the
self environment identical to Σ, except that no class is marked. Valid environ-
ments may only contain a single type statement for each variable or class. The
notation σ1[σ2/X ] stands for the type obtained from σ1 by replacing all (free)
occurrences of X with σ2.

The key inference rules of the type system are the two (inst-meth) rules,
which assign a (recursive) method predicate to a new object (instance). Their
operation can be understood by viewing the new keyword as representing a func-
tion that constructs objects from class definitions. Since classes may themselves
create new objects according to their own definition (i.e. call their own new func-
tion), these functions are recursively defined. Thus the rule takes the familiar
form for typing a recursively defined term, in which the body of the term is typed
using an environment where recursive calls must be typed with the same type as
the body itself. There is a subtle twist however - since the type scheme for fixed
point operators in λ•µ is (•A → A) → A, recursively created objects must now
be typed not with µX.〈m:(σn) → σ〉, but with a bulleted version of this type.
Nakano’s approach would suggest using a • type, however in our system this
would permit recursive method invocations resulting in non-termination, and so
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instead we use the type ◦µX.〈m:(σn) → σ〉, preventing such invocations. This
is enforced by the ◦r+ in the (inst-rec) and (self-meth) rules.

Using this type system, the examples from the introduction can be given
their expected types:

(inst-rec)
bC:() → µX.〈m:() → •X〉 ⊢ new C(): ◦µX.〈m:() → •X〉

(inst-meth1)
⊢ new C():µX.〈m:() → •X〉

(self-fld)
dSuc:(σ) → σ;x: •σ ⊢ this:〈pred:σ〉

(fld)
dSuc:(σ) → S; x: •σ ⊢ this.pred:σ

(var)
dSuc:(σ) → σ; x: •σ ⊢ x: •σ

(invk)
dSuc:(σ) → σ; x: • σ ⊢ this.pred.add(x): •σ

(coerce)
dSuc:(σ) → σ; x: • σ ⊢ this.pred.add(x): ◦σ

(inst-rec)
dSuc:(σ) → σ; x: •σ ⊢ new Suc(this.pred.add(x)): ◦σ

(var)
y:σ ⊢ y:σ

(inst-meth1)
y:σ ⊢ new Suc(y):σ

where σ = µX.〈add:(•X) → •X〉.

It also prevents the typing of non-terminating programs. Consider the fol-
lowing classes (where the App interface declares the method app):

class D { D m() { return new D().m(); } }

class Y implements App {
App app(App x) { return x.app(new Y().app(x)); }

}

The methods in both these classes make recursive calls leading to non-
terminating behaviour: the expression new D().m() is unsolvable, as it reduces
only to itself; and the method invocation new Y().app(z), although it reduces
in one step to a head normal form, has the infinite reduction sequence:

new Y().app(z)→ z.app(new Y().app(z))

→ z.app(z.app(new Y().app(z)))→ . . .

Both of these expressions are untypable in FJ◦µ, since the presence of the ◦ type
constructor prevents the typing of the recursive method invocations which lead
to the non-termination.

(inst-rec)
bD:() → µX.〈m:() → ϕ〉 ⊢ new D(): ◦µX.〈m:() → ϕ〉

(invk)
bD:() → µX.〈m:() → ϕ〉 0 new D().m()

(inst-meth1)
0 new D():µX.〈m:() → ϕ〉

(invk)
0 new D().m()
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(var)
bY:() → σ;x:τ ⊢ x:τ

(inst-rec)
bY:() → σ;x:τ ⊢ new Y(): ◦σ

(invk)
bY:() → σ; x:τ 0 new Y().app(x)

(invk)
bY:() → σ;x:τ 0 x.app(new Y().app(x))

(inst-meth1)
0 new Y():σ

(var)
z:τ ⊢ z:τ

(invk)
z:τ 0 new Y().app(z)

σ = µX.〈app:(µY.〈app:(• •X) → •X〉) → •X〉, τ = µY.〈app:(• •σ) → • σ〉.

3 Conclusions

We have presented a type system for a variant of Featherweight Java which as-
signs recursive types to class-based object-oriented programs. It is inspired by
previous work on head normalising recursive types for Lambda Calculus, and
we give several examples which show that our type system (a) types (persis-
tently) normalising terms with intuitive recursive types; and (b) does not type
non-terminating programs. Our contribution consists in showing how Nakano’s
approach can be applied to OO and, more importantly, in its extension in the
form of the second type constructor ◦. The latter in particular is a novel contribu-
tion of this paper. We conjecture that our system types only strongly normalising
(i.e. terminating) terms, and proving this is an important task of future research.

A principal type for a term is a type from which all other types assignable to
that term can be generated. If a type assignment system has the principal type
property, then a principal type exists for all typeable terms. Such a property
is the key component of any algorithm for deciding type assignment, and thus
typeability. Our motivation in carrying out this research was to obtain a type sys-
tem for Featherweight Java of the same flavour as our previous work, but with fi-
nite (and thus decidable) principal types for objects. We feel the system presented
in this paper is a good candidate. Take our first example from the introduction:
if the set of principal types for this program in FJ◦µ is {C, µX.〈m:() → •X〉},
then by ‘unfolding’ this set in a similar way to that described in the introduction
(i.e. by replacing the recursive components, •X , by other types in the set) we
obtain the infinite set {C, 〈m:() → C〉, 〈m:() → 〈m:() → C〉〉, . . .}, which is the set
of principal types for this example in our system without recursive types.

The next step of future research, after showing normalisation and (finite)
principal typings for this system, will be to add intersections to the type system
as in our previous work in order to build a fully abstract semantics based on our
recursive types. It is our ultimate aim to then construct decidable type inference
systems for this augmented type assignment resulting in expressive, powerful
and practical type based analysis of class-based OO programs.
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Abstract. The field of belief revision studies how information can be
given up in the face of new, conflicting information, while argumentation
provides methods through which conflict can be modelled and the resul-
tant acceptability of arguments evaluated. Prominent theories of belief
revision depend on the notion of minimal change, measured in terms of
epistemic entrenchment, to determine what beliefs to give up. In this
paper, we take an initial look at the effects of removing an argument
from a system of structured argumentation, in terms of both argument
construction and acceptability, and how these can be used in the deter-
mination of minimal change.

1 Introduction

If a software agent is forced to accept information that conflicts with informa-
tion that it currently possesses, it may be forced into giving up the original
information. Conflict is a key area in argumentation, with the highly influential
work of Dung [3] abstracting the nature of arguments and attacks between them.
Dung’s theory has been built on and expanded since the seminal paper; one re-
cent development has been to instantiate the abstract approach by providing
the arguments with structure, through the application of strict and defeasible
inference rules to a knowledge base [7].

The process of removing an argument in a Dung-style framework is relatively
straightforward, due to arguments being represented as single, abstract entities
with no consideration for structure. However, when the arguments are given
structure, a greater degree of flexibility is provided, in that giving up an entire
argument can be done by, for instance, giving up a single premise. But with this
flexibility comes a problem — complex arguments will contain multiple premises:
exactly what premise(s) should be given up in order to remove the argument?

The field of belief revision aims to answer a more general version of this ques-
tion in terms of belief sets — when an agent is required to give up a belief, and
faces a choice as to exactly which belief, how does it make the choice? One of
the most influential theories in belief revision is the AGM theory, which provides
a set of postulates that describe valid revisions, contractions and expansions of
belief sets [1]. These three processes are additionally guided by the concept of

Andrew V. Jones (Ed.): Proceedings of the 1st Imperial College Student Workshop (ICCSW ‘11),
pp. 87–93. September 29th–30th 2011, London UK.
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minimal change, with “minimal” being measured in terms of epistemic entrench-
ment — those beliefs with the lowest degree of entrenchment are more willingly
given up [4, 5].

Connections between argumentation and belief revision have recently found
new momentum. The work of [8, 9, 6] on Argument Theory Change sees belief
revision techniques employed to revise an argumentation system when a new
argument is added, such that the argument becomes warranted. We wish to take
a different approach to connecting argumentation and belief revision, by consid-
ering the application of belief revision techniques to the removal of arguments
from a system of structured argumentation.

In this paper, we take an initial look at effects of removing an argument from
an ASPIC+ argumentation system, in terms of both argument construction and
acceptability, and how these can be used the determination of minimal change.

The paper proceeds as follows: in section 2 we provide a brief introduction
to the system of [7]; in section 3 we identify the effects of a change to argument
premises and show how these can be used to realise an entrenchment ordering; in
section 4 we provide an example to demonstrate the concepts that we presented
and in section 5 we outline our conclusions and areas for possible future work.

2 Preliminaries

The ASPIC+ framework [7] further developed the work of [2] and instantiates
the abstract approach to argumentation in [3]. The basic notion of the framework
is an argumentation system, AS = 〈L,− ,R,≤〉 where L is a logical language,
− is a contrariness function from L to 2L, R = Rs ∪ Rd is a set of strict (Rs)
and defeasible (Rd) inference rules such that Rs ∩ Rd = ∅ and ≤ is a partial
preorder on Rd.

An argumentation system contains a knowledge base, 〈K,≤′〉 where K ⊆ L
and ≤′ is a partial preorder on K/Kn. K = Kn∪Kp∪Ka∪Ki where Kn is a set of
(necessary) axioms, Kp is a set of ordinary premises, Ka is a set of assumptions
and Ki is a set of issues.

From the knowledge base (K) and rules (R) arguments are constructed. For
an argument A, Prem(A) is a function that returns all premises in A; Conc(A)
is a function that returns the conclusion of A; Sub(A) is a function that returns
all sub-arguments of A; DefRules(A) is a function that returns all defeasible
rules in A; and TopRule(A) is a function that returns the last inference rule
used in A.

On the basis of these functions, A is:

1. p if p ∈ K with: Prem(A) = {p}, Conc(A) = p, Sub(A) = p,DefRules(A) =
∅,TopRule(A) = undefined

2. A1, · · · , An → ψ if A1, · · · , An are arguments such that there exists a strict
rule Conc(A1), · · · , Conc(An) → ψ in Rs; Prem(A) = Prem(A1) ∪ · · · ∪
Prem(An), Conc(A) = ψ, Sub(A) = Sub(A1)∪· · ·∪Sub(An)∪{A},DefRules(A) =
DefRules(A1)∪· · ·∪DefRules(An),TopRule(A) = Conc(A1), · · · , Conc(An)→
ψ
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3. A1, · · · , An → ψ if A1, · · · , An are arguments such that there exists a de-
feasible rule Conc(A1), · · · , Conc(An)⇒ ψ in Rs; Prem(A) = Prem(A1) ∪
· · · ∪ Prem(An), Conc(A) = ψ, Sub(A) = Sub(A1) ∪ · · · ∪ Sub(An) ∪ {A},
DefRules(A) = DefRules(A1)∪· · ·∪DefRules(An)∪{Conc(A1), · · · , Conc(An)⇒
ψ}, TopRule(A) = Conc(A1), · · · , Conc(An)⇒ ψ

An argument can be attacked in three ways: on a (non-axiom) premise (un-
dermine), on a defeasible inference rule (undercut) or on a conclusion (rebuttal).

Given an argumentation system AS and a knowledge base KB = 〈K,≤′〉, an
argumentation theory is AT = 〈AS,KB ≤〉, where ≤ is an argument ordering
on the set of all arguments that can be constructed from KB in AS.

In this paper, we will use the following notations: Args(AS) is the set of all
arguments in AS; when considering the acceptability of arguments in an argu-
mentation theory, AT , on the basis of AS (ATAS), we will leave the semantics
unspecified and instead refer to a (possibly empty or unit) set of S-extensions
E(ATAS); K(AS) is the knowledge base in an argumentation system AS and
AS\D is an argumentation system such that K(AS\D) = K(AS)\D.

3 Measuring minimal change

In classic theories of belief revision, the process is guided by minimal change,
which is measured not just in terms of the logical consequences of removing a
belief, but by an entrenchment ordering placed on beliefs — those beliefs with
a lower degree of entrenchment will be more willingly given up [4, 5]. Neverthe-
less, logical consequences play an important part in arriving at this ordering —
intuitively, an agent will be less likely to give up a belief that is fundamental to
a significant number of its other beliefs.

The process of removing an argument from a system of structured argumen-
tation involves making some modification to the system such that the argument
can no longer be constructed. One of these modifications is to remove elements
from the knowledge base, such that at least one of the premises required to con-
struct the argument are no longer present. In the same way that removing beliefs
from a belief set can have an impact on other beliefs, removing elements from
the knowledge base of an argumentation system can have an impact on other
arguments, aside from the one that is actively being removed.

This impact, however, is not solely structural when using the ASPIC+ frame-
work. Being built on Dung’s abstract theory, the framework evaluates the accept-
ability of arguments using various sceptical and credulous semantics. In broad
terms, an argument is acceptable if it is not defeated by other arguments and
an argument is not acceptable if it is. Arguments can defend other arguments
by defeating defeaters (for instance, an argument A defends an argument C if A
defeats B, which in turn defeats C).

Thus, we must consider at least three effects when removing premises from a
knowledge base in order to remove an argument from an argumentation system
— Structural: those previously acceptable arguments that can no longer be
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constructed in the system; acceptability loss: those arguments that remain
in the system, but have become unacceptable; and acceptability gain: those
arguments that remain in the system and have gained acceptability. It is possible
to formally define these effects, and we do so now in the form of three functions.

Our first function, the argument drop function, considers the structural effects
on an argumentation system of removing a set of propositions, D ⊆ K:

Definition 1. The argument drop function ∆A of D ⊆ K:

∆A: 2K → 2Args,
∆A(D) = {A | A ∈

⋃
E(ATAS), A /∈ AS\D}

Our next two possible changes relate to argument acceptability, with cur-
rently acceptable arguments losing their acceptability (but remaining in AS as
defeated arguments) and currently unacceptable arguments gaining acceptabil-
ity.

We define two functions to capture these changes; first, the acceptability drop
function, which identifies all acceptable arguments in AS that, while still capable
of being constructed in AS\D, are no longer acceptable:

Definition 2. The acceptability drop function, ∆S of D ⊆ K:

∆S: 2K → 2Args,
∆S(D) = {A | A ∈

⋃
E(ATAS), A /∈

⋃
E(AS\D), A ∈ AS\D}

Secondly, the acceptability gain function, which identifies those arguments
that are not acceptable in AS, but are acceptable in AS\D:

Definition 3. The acceptability gain function ΛS of D ⊆ K:

ΛS: 2K → 2Args,
ΛS(D) = {A | A /∈

⋃
E(ATAS), A ∈

⋃
E(AS\D)}

There is no “argument gain” function, because we assume an open world,
and thus do not consider it possible for an argumentation system to gain argu-
ments when removing an argument. We are already considering all arguments
(acceptable or otherwise) and thus the removal of an argument cannot cause
new arguments to be constructed (but can influence acceptability, as captured
by the acceptability drop and gain functions).

The outputs of these three functions can now be used in realising an en-
trenchment ordering over 2K. The different functions are measuring different ef-
fects of a change and to simply combine them would be to remove this context.
We therefore keep the components separate by representing them as a vector, Υ ,
with Υ ′ being a numeric vector, with the sizes of the functions as its components:

Υ (D) =

∆A(D)
∆S(D)
ΛS(D)

 Υ ′(D) =

| ∆A(D) |
| ∆S(D) |
| ΛS(D) |
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We arrive at an entrenchment ordering over 2K by considering the size of
Υ ′, computed using the standard formula for the length of a vector (the square
root of the sum of the squares of the components). If for some D1 ⊆ K and
D2 ⊆ K, | Υ ′(D1) |<| Υ ′(D2) |, then we have an entrenchment ordering, <e

where D1 <e D2 (that is, the set D2 is more entrenched than the set D1).

4 Example

Consider an argumentation system AS with knowledge base K = {p, q, t, v, x}
such that t < q and v < s; defeasible rule set Rd = {p, q ⇒ r; p⇒ s; t⇒ u; v ⇒
w}; and contrariness relations q ∈ t, s ∈ v and w ∈ x.

In addition to atomic arguments on the basis of K, the following arguments
can be constructed in AS: 〈{p, q}; p, q ⇒ r; r〉, 〈{p}; p⇒ s; s〉, 〈{t}; t⇒ u;u〉,
〈{v}; v ⇒ w;w〉, and there exists only one complete extension inATAS : {p, q, r, s, x}.

Assume that we must remove the argument for r. This can be done by re-
moving one of two premises: p or q. Consider the outputs of the functions for
each premise:

∆A ∆S ΛS

p {r, s} {x} {v, w}
q {r} {} {t, u}

These yield the following vectors for p and q:

Υ ({p}) =

 {r, s}{x}
{v, w}

 Υ ′({p}) =

2
1
2



Υ ({q}) =

 {r}{}
{t, u}

 Υ ′({q}) =

1
0
2


By using the sizes of Υ ′({p}) and Υ ′({q}), we can determine the entrench-

ment ordering:

| Υ ′({p}) |=
√

22 + 12 + 22 =
√

9

| Υ ′({q}) |=
√

12 + 02 + 22 =
√

5

Since | Υ ′({q}) |<| Υ ′({p}) |, our entrenchment ordering is {q} <e {p}; that
is, the agent, when using structural and semantic considerations, would choose
to remove q instead of p in order to remove the argument for r from AS.
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5 Conclusions & future work

We have in this paper explored the concept of minimal change when removing
an argument from a system of structured argumentation. We identified that an
argument can be removed by removing one or more of its premises, which in
turn will have an effect on other arguments.

Other arguments can be affected in one of three ways: through their removal
from the system (thanks to sharing premises with the originally removed argu-
ment); through losing acceptability (but remaining constructable in the system);
or gaining acceptability (thanks to a defeater either being removed, or losing ac-
ceptability).

The work presented here is an initial step towards appreciating the effects of
removing an argument from an argumentation system, and forms only a small
part of a larger study into the connection between belief revision and argumenta-
tion. In future work, we aim to further refine our notion of “minimal change” by
incorporating preferences between arguments, and exploring the role of accept-
ability semantics. In terms of preferences, we currently consider all arguments
identified by the drop and gain functions to be of equal weight. However, ASPIC+

incorporates a preference ordering over arguments, which intuitively should in-
fluence an agent’s choice when deciding what argument to sacrifice in a revision
process. Acceptability semantics are divided into two broad groups: sceptical
and credulous. An argument that is sceptically accepted has gone through a
more rigorous process in order to determine its acceptability, and thus could be
considered more important to an agent than argument that is only credulously
accepted.

Beyond measures of minimal change, it is also our intention to develop a
set of postulates that describe valid expansions, contractions and revisions of
an argumentation system, similar in principle to the AGM postulates of [1].
We envisage these postulates to capture not only the concepts described by
the AGM postulates, but also features that are unique to systems of structured
argumentation.
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Abstract. Digital Right Management (DRM) Systems have been created to 
meet the need for digital content protection and distribution. In this survey 
paper we present some of the directions of our ongoing research on the 
applications of  the algebraic specification techniques on mobile DRM systems.  

Keywords: DRM, Right Expression Languages, CafeOBJ, Institutions 

1   Introduction 

Digital Rights Management systems (DRMs) control many aspects of the life cycle 
of digital contents including consumption, management and distribution. Key 
component of such a system is the language in which the permissions on contents and 
constraints are expressed. Such languages are called Right Expression Languages 
(RELs). In this survey paper we present some of our ongoing research directions 
aiming to address some of the open problems of the DRM systems [1][2],  by using 
algebraic specifications. Our research has been focused on Open Mobile Alliance [3], 
a well-known DRM standard. 

Our paper is organized as follows: Section 2 gives a brief introduction to the 
concepts needed. Section 3 gives the outline of an abstract syntax and its specification 
for OMA REL [4]. OMA presents an algorithm that deals with multiple licenses 
referring to the same content. In section 4 we refer to the formal specification of this 
algorithm in the algebraic specification language CafeOBJ, and to the formal 
verification of a safety property. This algorithm is not the optimal to use as it 
explained in [2]. In section 5 we suggest a redesign of this algorithm based on Order 
Sorted Algebra [5] and hint at a formal proof that this algorithm is correct using the 
methodology presented in [6]. Finally we present some of our future goals.  
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2   Prerequisites 

2.1   Order Sorted Algebra 

 An Order Sorted Algebra (OSA) is a partial ordering  on a set of sorts [5], where 
by sorts we usually mean a set of names for data types. This subsort relation imposes 
a restriction on an S-sorted algebra A, by s-sorted algebra we mean a mapping 
between the sort names and sub sets from the set A called the carries of sort s,  that if 

 then  where  denotes the elements of sort s in A. Order sorted 
algebra  (OSA) provides a way for several forms of polymorphism and overloading, 
error definition, detection and recovery, multiple inheritance, selectors when there are 
multiple constructors, retracts, partial operations made total on equationally defined 
sub-sorts, an operational semantics that executes equations as left-to-right rewrite 
rules and many more applications [5]. 

2.2   Observation Transition Systems, CafeOBJ, Specification and Verification  

An Observation Transition System (OTS) is a transition system that can be written 
in terms of equations.  We assume there exists a universal state space, say Y. 
Formally, an OTS S is a triplet S = <O, I, T> where I is a subset of Y, the set of 
initial states of the machine and O is a set of observation operators. Each observer in 
O is a function that takes a state of the system and possibly a series of other data type 
values (visible sorts) and returns a value of a data type that is characteristic to that 
state of the system. Finally, T is the set of transition (or action) conditional functions.  
Each transition takes as input a state of the system and again possibly a series of data-
type values and returns a new state of the system.   

CafeOBJ [8] is an executable algebraic specification language, implementing 
equational logic by rewriting. Equations are treated as left to right rewrite rules. It can 
also be used as a powerful interactive theorem prover with the proof scores method 
[11]. With CafeOBJ each module defines a sort. A visible sort is the specification of 
an abstract data type. Hidden sorts are used to specify state machines. Sort ordering is 
simply declared using <.  Concerning hidden sorts there are two kinds of operators; 
action operators, which change the state of a machine, and observation operators, 
which observe (and return) a specific value in a particular state of the machine.  
Equations are denoted using the keyword eq and conditional equations using the 
keyword ceq. Finally modules can be imported to other modules by either protecting 
them or extending them.  An OTS can be specified in CafeOBJ, in a natural way. The 
state space corresponds to the values of a hidden sort. The initial states are denoted by 
a set of constants of the hidden sort. Observation operators are denoted as observers 
and transitions as action operators. 

After creating the specification of a system in the OTS/CafeOBJ approach it is 
possible to verify that it holds several kinds of properties such as invariant and 
liveness. The former consists of properties that hold in any reachable state of the 
system and is the most explored in the bibliography. The latter consists of properties 
expressing that something will eventually happen in the system. There are few 
applications of this methodology in CafeOBJ to our knowledge. Finally we should 



          Nikolaos Triantafyllou, Katerina Ksystra, et al. 96 

mention that it is possible to conduct falsification in this approach, meaning that the 
CafeOBJ system can guide you to find a counter example of the property you desired 
to verify.   

Here we discuss the procedure of verifying invariant properties, liveness properties 
are discussed further in section 5. To verify an invariant property you first need to 
express it as a predicate in CafeOBJ terms. Next, show that this predicate holds in any 
initial state. This is done by asking CafeOBJ to reduce the predicate term in an 
arbitrary initial state. Then show that the property holds for any transition, the 
inductive step. Assuming that the predicate holds for an arbitrary state we ask 
CafeOBJ to reduce whether this implies that it holds for its successor state. The 
successor state is obtained by applying the transition rules to the above arbitrary state. 
CafeOBJ will either return true, false or an expression. If it returns true then the 
predicate holds on that step. When an expression is returned, this means that the 
machine cannot continue with the reductions. We must then assist CafeOBJ by case 
splitting the transition providing additional equations. If false is returned then we 
might need to find a lemma to discard this case, showing that it is not. If however, the 
state is reachable then the property does not hold and we have a counterexample.  

3   Formal Semantics for OMA REL 

OMA REL [4] is an XML based language. The part of the language that is 
responsible for the expression of rights is called the agreement model. Inside this 
model the constraints and permission of the language are defined.  We have given 
algebraic semantics to the OMA REL component dealing with expressing the 
permissions and constraints on the contents. To achieve this, we first created an 
abstract syntax for the language. Then we translated this syntax to the CafeOBJ 
specification language in order to use its rewriting as a tool for validation.  

A longer version of this part of our paper appeared in the proceedings of WiMob 
2009 where we proposed the abstract syntax, its specification and some case studies  
[9]. Here we will just present one example. Assume that Alice has purchased the 
following license: Display content named contentID1 as many times as you like, and 
Display or Print the content named contentID2 as many times as you like. Having 
specified the above abstract syntax as rewriting rules in CafeOBJ we can validate sets 
of licenses. The first step is to specify in a script the license of interest. In our 
specification this is done by declaring the permission set as; eq ps1=add 
(True==>contentID2 print, add(True==> contentID2 display, 
add(True ==> contentID1 display, em-permset))). 
 The add operator adds a permission element to a set of permissions. A 

permission element is a triplet; constraint on content allows action. em-permset is 
a constant denoting an empty permission set. After the permission sets and licenses 
are created, it is easy to perform e-validation by simply asking the CafeOBJ compiler 
if the desired permission belongs to the permissions allowed by this license, using the 
following reduction red Permitted(print,ebook, contentID2) in 
permissionSET . Where red is a CafeOBJ command for term rewriting the given 
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expression and permissionSET is an operator denoting the above license, which 
contains ps1. 

4   Verifying the OMA Rights Choice Algorithm 

We study here the algorithm that comes together with the specification of the 
OMA REL and is responsible for choosing the most appropriate license to use, when 
there exist multiple licenses referring to a specific content. This algorithm has been 
formally specified and in addition, it has been proved to satisfy a minimal safety 
property in [11].  A longer version of this specification and verification appeared in 
the proceedings of WINSYS 2010 [10]. 

The property we proved can be seen in table 1. On the left column L and S are 
variables representing an arbitrary license and an arbitrary state of the system 
respectively. bestLic(S) is an observer that returns the best license to use in S and 
valid(S,L) an operator that checks if licenses L constraints hold in S. The proof of 
such properties follows the methodology presented in section 2.2. It required four 
extra lemmas: two were used to discard unreachable states of the OTS and the other 
two where lemmas on data-types that helped CafeOBJ with the reductions on these 
visible sorts. 

5 Proposing a New Algorithm and its Verification 

There exist some cases where we end up losing execution rights by using the 
algorithm currently in use [2]. Indeed, let us consider the set of licenses seen on table 
2. If the user decides to use his right “listen to song A”, using the above algorithm the 
DRM agent will choose License 1. But by doing so, License 1 will become depleted 
since it contains the count constraint denoted by “once”. This results in the user losing 
the right to ever listen to song B with this set of licenses. This would not occur if the 
agent had decided to use License 2 to execute the right to listen to song A.  

This loss has been characterized by monotonicity of licenses in [2] and is proven 
that any algorithm attempting to solve this problem as is, will be NP-complete. Our 
approach is based on Order Sorted Algebra [5]. We point out that licenses, as data 
types, can be represented by ordered sorts [12]. Next we identified that this loss of 
rights can only occur in some special cases. 

 
 
 

Safety property for OMA Rights Choice Algorithm euationally and informally 
eq inv1(S,L) = ((L=bestLic(S)) and not (L= nil)) 
implies valid(S,L) . 

When a license is chosen, then the 
license is valid at that specific time. 

Table 1. Minimal Safety property to verify in the original OMA Rights Choice Algorithm, in 
natural language and CafeOBJ equational notation 
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Installed Licenses on a DRM agent 
License1: “you may listen to songs A or B 
once before the end of the month”. 

License2: “you may listen to songs A or D ten 
times.” 

Table 2. A set of installed license that can cause a loss of rights 

Liveness Property for the OMA Rights Choice Algorithm 
eq lto(S, P) = ((color(S,P) = white) /\ (P /in 
allowed(S)))  |-->  (color(S, P) = black ) . 

If a right belongs to the installed licenses and is 
colored white leads to it being colored black. 

Table 3. Liveness property describing the no loss of rights in CafeOBJ notation and natural 
language 

To capture this we inserted Labels on licenses that denote the following three 
things; Firstly, if the license contains one or more permissions, secondly the dominant 
constraint based on the original algorithm and finally if the license only allows one 
more execution. These labels allow us to provide an ordering on licenses that is used 
to determine what license to choose so that no loss will occur, while respecting the 
ordering on constraints in the original algorithm. A longer version of this paper, 
which contains the full algorithm together with case studies and Java implementation, 
can be found in [12]. 

5.1 Verification of the New Algorithm 

We have proved that our new algorithm does not cause the same loss of rights as 
the algorithm currently in use. The full proof will be presented elsewhere. In this 
section we will only sketch our proof. The proving procedure has been broken down 
into the following steps. First we created a specification of our algorithm as an OTS 
in CafeOBJ. Next we constructed an OTS, modeling the behavior of installed licenses 
on a DRM agent, meaning how they evolve when the user executes rights. The two 
OTSs where composed behaviorally as described in [13] yielding a new OTS. In to 
order describe and prove the desired property we added to the OTS a coloring on 
rights via an observer. Initially all rights are white (unused). A right is colored black 
(used) in two cases. Firstly, if the right corresponds to user request and the algorithm 
chooses the license containing this right as the optimal. Secondly, a right, say B, 
should be colored black if the user makes a request, say A different then B, but A only 
belongs to the license that contains B and that license becomes depleted after the 
execution of the request A. 

At the property describing the no loss of rights condition (table 3), S,P are 
variables denoting an arbitrary state and a permission respectively. color(S,P) is 
an observer that returns the color of permission P in state S and |--> is an operator 
we used to denotes  leads- to.  The deduction rules for |-->, ensure and 
unless are provided in a separate module called OTSLogic.  This is a Liveness 
property and particularly a leads-to property [6]. The proof followed the methodology 
of [6]. The lead-to predicate was broken down into two ensure predicates of the form 
p ensure q, with p and q predicates. These types of properties require proving the 
“unless case; p unless q” and the “eventually case; p eventually q”. For the first we 
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need to prove that all of the transitions preserve the predicate; (p(s) and �q(s)) � 
(p(s’) or q(s’)). While for the second we need to show that there exists an instance of 
a transition where; (p(s) and �q(s)) � q(s’) holds. Where s a state of the OTS and s’ is 
derived from s by applying a transition rule.  

6   Conclusions 

We have presented some of our ongoing work on the applications of  algebraic 
specifications to  mobile DRM systems. Also, we have shown how various 
techniques, from rewriting to theorem proving, can help solve some of the open 
problems of the field and also provide insights that can lead to the development of 
novel applications to DRMs as already shown with the proposed algorithm. 

One of the main concerns with DRM is interoperability. There exist many different 
REL and DRM systems that cannot work together, so at the moment it is usually not 
possible to transfer licenses from one environment (mobile)  to another (media 
player).We have started to address this problem by defining an Institution for OMA 
REL ([7]). Using the well-known abstract model theory tools of Institutions  we 
intend to create a mechanism for translating licenses from one system to another via 
Institution morphisms in such a way so  the meaning of the license is preserved by 
using semantic techniques.   
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Abstract. We consider an optimisation problem applicable to systems
that can be represented as split–merge queueing networks with a limited
buffer space for processed subtasks. We assume Poisson arrivals and gen-
erally distributed service times. The proposition is to reduce variability
in terms of the difference in the times of arrival of the first and last sub-
tasks in systems where the release times of the subtasks can be controlled.
This stands in contrast to the overwhelming majority of research which
is focused on reduction of mean response time or percentiles of response
time. We formally define our notion of variability in split–merge systems
and construct an associated cost function and optimisation problem. For
two case studies we use simulation to explore the optimisation landscape
and to solve the associated optimisation problem.

1 Introduction

Performance analysis has acquired increased importance due to the growing com-
plexity of automated systems. Performance modelling enables an understanding
of the relationships between system workload, control parameters and key met-
rics such as customer response time, system utilisation and buffer occupancy. For
systems that involve the flow and processing of customers and resources, queue-
ing models are an appropriate formalism. Optimisation of control parameters
allows to minimise, for example, mean response time within given constraints [2].

It has been observed in a recent paper related to the scheduling of Map-
Reduce jobs in clusters that delayed scheduling of jobs can counterintuitively
lead to greater fairness and a higher level of data locality [8]. In another research,
delay scheduling was applied in the context of Quality of Service in networks [6].
Specifically, adding delays to input packets results in shaping the traffic such
that packet interarrival times follow an exponential distribution. This construc-
tion permits the analysis and optimisation of the network with mathematically
tractable Markovian models.

In this paper we show that adding judiciously chosen deterministic delays to
subtask processing in split–merge systems can result in a reduction of variability
in terms of time difference between the completion of the first and last subtasks
in a job. At the same time, corresponding beneficial effects on output buffer
occupancy are observed.

A major application area of our approach is automated warehouse systems
[7], where partially completed subtasks need to be held in a physical buffer

Andrew V. Jones (Ed.): Proceedings of the 1st Imperial College Student Workshop (ICCSW ‘11),
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102 Iryna Tsimashenka, William Knottenbelt

space. Another application field of this technique is parallel computing where it is
sometimes desirable to minimise mean synchronisation time between tasks [5]. In
healthcare systems, we can minimise the time patients wait for results following
treatment [1]. Lastly, in project scheduling we can reduce mean slack time [9].

The remainder of this paper is organised as follows. Section 2 presents back-
ground material relating to split-merge systems. Section 3 presents a formal def-
inition of variability, an associated cost function, and a simple simulation-based
optimisation methodology. Section 4 illustrates the application of the methodol-
ogy in the context of two case studies. Section 5 concludes and considers avenues
for future work.

2 Background

As shown in Fig. 1, a split–merge system consists of a queue of waiting tasks
(assumed to arrive according to a Poisson process with mean rate λ), a split point
at which tasks split into subtasks, several (potentially) heterogeneous servers
(assumed to process subtasks according to a general service time distribution
Fi(t) with mean service time 1/µi), a buffer for completed subtasks (the merge
buffer) and a merge point.

Fig. 1. Split–Merge queueing model.

When all subtask servers are idle and the task queue is not empty, a task is
taken from the head of the task queue. This task splits into N subtasks at the
split point. Each subtask server then processes its allocated subtask. Outgoing
subtasks join the merge buffer. When all subtasks belonging a task are present
in the merge buffer, the task exits the system via the merge point.
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3 Variability in Split–Merge systems

We define the variability of a split–merge system as the mean difference in time
between the arrival of the first and last subtasks (belonging to each task) in the
merge buffer. Our challenge is to control this variability via the introduction of
a vector of delays:

d = (d1, d2, ..., di, ..., dn−1, dn) (1)

Here element di of the vector represents the deterministic delay that will be
applied before a subtask is sent to server i for processing.

We further define the cost function of a split-merge system for a given delay
vector d as:

C(d) = E(X)− E(Y ) (2)

where X is the random variable denoting the maximum completion time across
all subtasks (arising from a particular task), and Y is the random variable de-
noting the minimum completion time across all subtasks.

Assuming that subtasks at server i are served independently with service time
sampled from a distribution function Fi(t), then, taking into account the delay
that is applied before each subtask begins processing, X will have cumulative
distribution function:

FX(t) ∼
n∏

i=1

Fi(t− di) (3)

Here it is assumed, for all i, that Fi(t − di) = 0 for all t < di. Similarly, Y has
cumulative distribution function:

FY (t) ∼
n∏

i=1

Fi(t− di) (4)

For a given split-merge system, our challenge is to find that vector d which
minimises C(d). To constrain the solution space while avoiding unnecessary
delays to overall mean task processing time, we set di = 0 for the subtask
server(s) with the largest mean service time. We will denote the resulting vector
of optimal delays as:

d̃ = (d̃1, d̃2, ..., d̃i−1, 0, d̃i+1, ..., d̃n−1, d̃n) (5)

We note that minimising C results in minimum merge buffer utilisation in
the split–merge system. This property is particularly relevant in physical systems
(e.g. warehouses of major online retailers), which are often constrained in terms
of the amount of physical output buffer space available.

Although it is our ultimate goal to establish an efficient analytical procedure
for determining d̃, in the present paper we apply a simple simulation-based
methodology – based on extensions to the JINQS queueing network simulation
package [3] – to explore the shape of the cost function landscape and hence to
find (near-)optimal solutions for d̃.
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4 Numerical Results

Case Study 1

Consider a split–merge system with 3 service nodes having the following service
time distributions: Uniform(2,3), Pareto(3,1) and Det(5). The latter has the
highest expectation, so its optimal delay is set to 0 in d̃ from Eq. 5. By the
simulation-based algorithm outlined at the end of the previous section, we find
the vector of optimal delays to be:

d̃ = (2.5317, 3.7154, 0.0) (6)

Fig. 2 displays the CDFs of the service times of the servers before and after
application of the optimal delays. Fig. 3 shows how C(d) depends on delay1
added to the Uniform distribution and delay2 added to the Pareto distribution.

Fig. 2. CDFs of server service times before and after adding the optimal delays.

Case Study 2

Similarly, we show results for optimal delays in a split–merge system with service
time distribution functions: Det(5), Erlang(6,1/3), Exp(2). Here the vector of
optimal delays is as follows:

d̃ = (11.9386, 0.0, 16.5880) (7)

Fig. 4 displays the CDFs of the service times of the servers before and after
application of the optimal delays.

Fig. 5 shows how C(d) depends on delay1 added to the Deterministic distri-
bution and delay2 added to the Exponential distribution.
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Fig. 3. Surface plot of cost function against delays.

Fig. 4. CDFs of server service times before and after adding the optimal delays.
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Fig. 5. Surface plot of cost function against delays.

In both cases we note the optimal delays take on different values to those
one might intuitively expect (e.g. by subtracting the mean response time of each
server from the maximum mean service time).

5 Conclusions and Future Work

This paper has considered the problem of introducing delays into the processing
of subtasks in split-merge systems in order to reduce the variability of overall
task processing time (and thereby merge buffer occupancy). We have illustrated
the use of a simple simulation-based methodology for finding optimal delays in
the context of two case studies.

There are several directions in which this work can be extended. Firstly, con-
current parallel generation of the cost function landscape across several comput-
ers – with a good corresponding speedup – should be simple to achieve given the
embarrassingly parallel nature of the problem. Secondly, it would be interesting
to explore if it is possible to find an efficient analytical procedure for determining
the vector of optimal delays. It may be that it is necessary to restrict the form
of service time distribution functions that can be supported (e.g. requiring that
they be continuous). Finally, we intend to investigate the analogous optimisa-
tion of a type of less synchronised parallel processing system, namely fork-join
systems [4]. The latter have ready application to the modelling of RAID and
other computing systems.
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Abstract. Process Mining is the discovery of business processes from
log files. One application is ensuring conformance to prescribed processes
or business rules. Since businesses operate in real time, needing to quickly
react to change, processes change; but how can such changes be detected?
We consider requirements for process mining to support this: a notion
of real time, and methods to compare processes and detect significant
change. We present initial results confirming the validity of the approach.

Keywords: Process mining, machine learning, real time, distributions.

1 Introduction

Business processes describe related activities which are carried out to fulfil a
business function. Fig.1 shows an example process, depicted as a probabilistic
automaton. Each directed arc is labelled with a symbol representing an activity,
and the conditional probability of that activity taking place next. As the process
is executed, the systems involved will record information in log files. Abstracting
from detail, the ‘trace’ of a single enactment of this process might be recorded
as a string of symbols iabdefgo. Process mining [1, 10] algorithms use logs of
such traces to discover and analyse process models.

Business processes are used to manage business operations, which today take
place in real time, under pressures of time, cost and competition. Processes may
also ensure adherence to business rules or regulatory requirements. Divergence
from these processes may therefore indicate a business problem, or have legal
ramifications, and so such changes need to be detected in a timely manner.

To enable detection of process change in real-time, several requirements need
to be addressed. Firstly, a definition of real time and its application to process
mining; secondly, a method to measure accurately the difference between two
processes; thirdly, a method to detect change in a process; and finally a notion
of statistical significance of the change. We briefly address these points in section
4. First we discuss related work, then introduce a probabilistic view of business
processes and process mining, which underpins the subsequent ideas.

2 Related Work

Process Mining [1, 10] has been an active area of research since the early 1990s.
Typically, non-probabilistic representations are used, such as Workflow nets [11]

Andrew V. Jones (Ed.): Proceedings of the 1st Imperial College Student Workshop (ICCSW ‘11),
pp. 108–114. September 29th–30th 2011, London UK.
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Fig. 1. PDFA showing a simplified business process for fulfilling an order.

or BPMN. Probabilistic approaches are the exception, e.g. [6]. There are three
main sub-disciplines: Process discovery is the mining of models; process confor-

mance the evaluation of results; and extension of models, for instance adding
frequencies, mining decision rules, or predicting outcomes. We are concerned with
conformance and discovery. Various algorithms have been proposed for process
discovery, such as the ‘formal’ Alpha Algorithm [11]; others using heuristics, or
various theoretical foundations such as Neural or Genetic [17].

‘Real-time’ is used informally in Business Process research in regard to the
need for flexibility and process change to respond to a changing environment [9].
In [13, 15] process mining is part of a lifecycle of implementing and monitoring
processes, finding discrepancies and resolving them, changing the model, or rec-
ommending a course of action. However, these do not discuss how much data is
needed, nor how to identify when the underlying process has changed.

Other fields of research are partially related to, and may be able to inform,
the work in this paper. Time series analysis [16] deals with changes to series of
individual variables, whereas we are concerned with varying probability distri-
butions over sequences. Stream mining [7] looks for patterns in data streams,
and real-time data mining [5] investigates time constraints. Concept drift is the
detection of change in machine learning. In [2] this is discussed in a process
mining context, but with focus on model structure rather than probability.

3 A Probabilistic View of Business Processes

We model activities as symbols from a finite alphabet Σ, traces as strings x ∈

Σ+, and a process as a probability distribution PM over traces. Probability of
trace x is PM(x) :

∑
x∈Σ+ PM(x) = 1. The task of a process mining algorithm

is to learn a distribution PM′ , to approximate PM, from the finite log W drawn
i.i.d. from PM. This differs from existing views of process mining, which focus
on discovery of a model structure in a specific representation such as Petri nets.

We use probabilistic deterministic finite automata (PDFA) [12] (Fig.1) to
represent the probability distributions generated by process models, as a common
denominator to which processes in other representations can be converted. A
PDFA is a five-tuple A = (QA, Σ, δA, q0, qF ), where QA is a finite set of states;
Σ an alphabet of symbols; q0, qF ∈ QA the single start and end states; and
δA : QA × Σ × QA → [0, 1] is a mapping defining the conditional transition
probability function between states. δ(q1, a, q2) is the probability that given we
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are in state q1, we parse a and arrive in state q2. Given a current state and
symbol, the next state is certain. Probabilities on arcs from a state sum to 1.

PDFA A generates a probability distribution PA on Σ+. The probability of
string x, PA(x), is found by multiplying the probabilities of the arcs followed to
parse x on its unique path from the single start state q0 to unique end state qF .

4 Overview of Approach

4.1 Real-time Process Mining

The term ‘real time’ is used subjectively of systems which appear to process
information ‘fast’. Formally, real-time systems ‘must react within precise time
constraints to events in the environment’ [3]. The key is predictability and results
guaranteed in a specified time, rather than speed. For us this means identifying
process change as soon as possible, but with confidence that change is significant.

We consider two main constraints: accuracy and time. The mining algorithm
must produce a model ‘close’ to the ‘true’ model using some notion of distance
between distributions. We expect accuracy to increase with the amount of data,
but for this to increase mining time. So these two constraints act in tension. We
desire to minimise mining time, but characteristics of the ground truth distribu-
tion will determine the minimum data needed for confidence in mining accuracy.

This lower bound on data ensures we use the correct baseline, against which
to measure change. Although an upper bound can be set on the mining time,
this will be constrained by the overhead of the algorithm, the time taken to
process each trace, and by the desired accuracy. The Alpha algorithm [11] which
we use here is quite efficient (linear in the size of the log, exponential in the
number of tasks, which is typically very restricted), so the upper bound is of less
import. Other algorithms such as the Genetic Miner [17] have much higher time
complexity. Factors such as these must affect the choice of algorithm.

There are other issues which we do not consider, such as from the type or
magnitude of change, predicting the time to detect it; or environmental issues
which may affect the real time behaviour of the system [3].

4.2 Determining the Amount of Data Needed for Mining

One way to determine the amount of data needed is to consider the structures in
a process (highlighted in Fig.1), and the probability of an algorithm discovering
these structures. In [14] we discuss this approach and apply it to the Alpha
algorithm [11], which uses heuristics about the relations seen between pairs of
tasks in the log, to construct a Petri net. To compare this non-probabilistic
model against the ground truth distribution, we convert the net to a PDFA
by labelling its reachability graph (RG) with maximum likelihood probabilities
obtained from the mining log. This allows us to satisfy the accuracy constraint.

We do not address the time constraint, since Alpha has low complexity and
although the time to generate the RG is exponential in the number of states, we
use only simple acyclic models. Business process models are in general relatively
simple, but further work is needed to validate the efficiency of our approach.
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4.3 Methods to Detect Process Change

We mine repeatedly from sublogs, using a ‘sliding window’, and compare the
distribution generated by the mined model with the ground truth distribution.
There are many measures of difference between probability distributions, such
as Euclidean distance, Kullback-Leibler Divergence. Some can be efficiently cal-
culated from PDFA, but it is not clear what distance is statistically significant.
Instead, we use statistical tests for detecting that the mined distribution, or its
PDFA representation, has changed significantly from the ground truth.

The count of each unique trace x in the log can be modelled as a Binomially-
distributed random variable, since any trace in the log will either be x, or not.
The same is true of the number of times each arc in the PDFA is used in gener-
ating the log: each trace will either use that arc, or not (at present we assume
acyclic models). If the number of traces is large enough relative to the trace/arc
probabilities, the Binomial can be approximated by the Normal distribution.

Goodness of Fit Test on the Distribution: The sum of k Normally
distributed random variables follows a Chi2 distribution with k − 1 degrees of
freedom. Thus we can use the Chi2 test to determine whether the difference
between the count of each unique trace found in the sample, and the expected
count, is likely under the assumption that the log was drawn from the ground
truth distribution. The so-called p-value gives the probability that the Chi2

distribution would exceed the measured value, indicating that with probability
1 − p, the process has changed.

Bounds and Hypothesis Tests on the PDFA: We expect the PDFA from
the mining result to have the same state structure as the ground truth PDFA
(making assumptions about the ground truth PDFA and the mining algorithm).
The Hoeffding inequality upper bounds the probability of a sum of random
variables deviating from its expected value. As [4], we use this to compare the
probability of each arc from equivalent states in the models, by comparing the
sum of the Bernouilli variables that each trace involves use of that arc.

Secondly, as [8] we use a hypothesis test to test how likely it is that an arc
would be used the number of times indicated by its probability in the mined
model, to generate the log, assuming the ground truth probability. Here the
count is modelled as Binomial or Normal variable.

Bounds and Hypothesis Tests on Traces: The methods described for
testing PDFA arcs can similarly be applied to process traces, so that we can use
Hoeffding bounds or hypothesis tests to determine whether a process trace is
likely to occur with the observed frequency, under the ground truth distribution.

5 Experimentation and Analysis

We used the example process of Fig.1. Using our method [14] the Alpha algorithm
needs 44 traces to, with 99% probability, correctly mine a (non-probabilistic)
Petri net with the correct structure. We randomly simulated the PDFA to pro-
duce an MXML1 format log file of this size, and regularly updated it by simu-

1 Mining eXtensible Markup Language, see www.processmining.org.
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lating one new trace and removing the oldest. This simulates a ‘sliding window’
onto a log file being updated in real time by a live process. Changes were intro-
duced to the probabilities or structures in this PDFA. At each iteration, we used
the Alpha algorithm2 to mine a Petri Net from the current log and converted to
a PDFA (section 4.2). We recorded distances between the distribution generated
by this PDFA and the ground truth, and results of the tests in section 4.3.

We ran three experiments to test the hypotheses that (i) change is detectable
using a variety of methods, (ii) more significant change is detected in fewer traces,
and (iii) the predicted number of traces for mining the model is the optimum to
use for detecting change, thus allowing detection in real time.

Since the Alpha algorithm mines only a Petri net structure (no probabilities),
it needs a relatively small sample of traces, which exhibits high variance from
the ground truth (Fig.2), resulting in high risk of false positives (incorrectly
detecting change) or false negatives (not detecting true change). We did not
take this into account beyond ensuring no false positives occurred before change
was introduced, but it would affect the detection point. These initial results were
also based on one test only of each sample. The main results seem clear, but are
not statistically valid without averaging over multiple tests.

Varying Probabilities We varied probabilities in the XOR split B, and parallel
split C. Small variations (< 0.1) were not detectable, although the distance
measures increased. For the XOR split, change to p(ab) = 0.7 was discovered in
28 iterations, reducing to 9 for p(ab) = 0.1. Detection was first by X2 (Fig.3),
then by hypothesis test on strings (Fig.4) or arcs, and last by the Hoeffding
tests. The looseness of the Hoeffding bound allows the string/arc frequencies to
be more readily accepted as within confidence bounds given the ground truth.

The variation of AND probabilities was tested with probability of the struc-
ture in the model being 0.9 and then 0.1. The latter change was detected first

2 implemented in the process mining tool ProM (www.processmining.org).
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by arc differences (Fig.5), the string difference methods not detecting it at all.
This is explained by the probability of traces passing through the AND structure
being too low to detect significant changes, but for those that do, changes to arc
usage are local and not affected by the global probability of the structure.

Varying amount of data We varied the amount of data in the ‘sliding window’.
With 44 traces we see high variance in the probability distribution, seen in the
large fluctuations in X2 p-value in the centre graph of Fig.2. The lower graph
shows that the frequency and amplitude of these changes is reduced with 100
traces, with no significant (0.05) p-values. The cost is slower detection of change
(Fig.3 and 4). Conversely, reducing the number of traces to 17, change can be
detected sooner, but with higher risk of false positive or false negative.

6 Conclusion and Future Work

We examined various methods for detecting change in a running process, with
initial results showing that using the optimal amount of data to be confident
that the mined process is correct, various statistical methods can be used to
efficiently detect change in real time. The Chi2 test allows earliest detection of
change, except where the change is in a low probability part of the model, when
hypothesis testing the arc frequencies is a better choice.

Further work is needed to determine how to choose the optimal method to
detect change, to understand the effect of variation in the underlying distribution
and the risk of falsely identifying or missing change, and to predict the time to
detect change. Some distances between distributions can be efficiently calculated
from PDFA, so understanding of the significance of distance measures, would
lead to more efficient methods for detecting change. More work is also needed to
ensure the efficiency of the proposed method. Finally, the question remains, is
process mining a better approach than simply analysing the log distributions?
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