
The Rabin Index of Parity Games

January 17, 2012

Michael Huth and Jim Huan-Pu Kuo
Department of Computing
Imperial College London

London, SW7 2AZ, United Kingdom
{m.huth, jimhkuo}@imperial.ac.uk

Nir Piterman
Department of Computer Science

University of Leicester
Leicester, LE1 7RH, United Kingdom

nir.piterman@leicester.ac.uk

Abstract

We study the descriptive complexity of parity games by taking into
account the coloring of their game graphs whilst ignoring their owner-
ship structure. Different colorings of the same graph are identified if
they determine the same winning regions and strategies, for all ownership
structures of nodes. The Rabin index of a parity game is the minimum of
the maximal color taken over all equivalent coloring functions. We show
that deciding whether the Rabin index is at least k is in P for k = 1
but NP-hard for all fixed k ≥ 2. We present an EXPTIME algorithm
that computes the Rabin index by simplifying its input coloring function.
When replacing simple cycle with cycle detection in that algorithm, its
output over-approximates the Rabin index in polynomial time. Experi-
mental results show that this approximation yields good values in practice.

1 Introduction

Parity games (see e.g. [1]) are infinite, 2-person, 0-sum, graph-based games that
are hard to solve. Their nodes are colored with natural numbers, controlled by
different players, and the winning condition of plays depends on the minimal
color occurring in cycles. The condition for winning a node, therefore, is an
alternation of existential and universal quantification. In practice, this means
that the maximal color of its coloring function is the only exponential source for
the worst-case complexity of most parity game solvers, e.g. for those in [1, 2, 3].

1



One approach taken in analyzing the complexity of parity games, and in so
hopefully improving the complexity of their solution, is through the study of the
descriptive complexity of their underlying game graph. This method therefore
ignores the ownership structure on parity games.

An example of this approach is the notion of DAG-width in [4]. Every
directed graph has a DAG-width, a natural number that specifies how well that
graph can be decomposed into a directed acyclic graph (DAG). The decision
problem for DAG-width, whether the DAG-width of a directed graph is at most
k, is NP-complete in k [4]. But parity games whose DAG-width is below a given
threshold have polynomial-time solutions [4]. The latter is a non-trivial result
since DAG-width also ignores the colors of a parity game.

In this paper we want to develop a similar measure of the descriptive com-
plexity of parity games, their Rabin index, a natural number that ignores the
ownership of nodes, but does take into account the colors of a parity game.
Intuitively, the Rabin index is the number of colors that are required to capture
the complexity of the game structure. By measuring and reducing the number
of colors we hope to improve the complexity of analyzing parity games. 1 The
reductions we propose are related to priority compression and propagation in
[5] but, in contrast, exploit the cyclic structure of game graphs.

The name for the measure developed here is inspired by related work on the
Wagner hierarchy for automata on infinite words [6]: Carton and Maceiras use
similar ideas to compute and minimize the Rabin index of deterministic parity
automata on infinite words [7]. To the best of our knowledge, our work is the
first to study this notion in the realm of infinite, 2-person games.

The idea behind our Rabin index is that one may change the coloring func-
tion of a parity game to another one if that change neither affects the winning
regions nor the choices of winning strategies. This yields an equivalence relation
between coloring functions. For the coloring function of a parity game, we then
seek an equivalent coloring function with the smallest possible maximal color,
and call that minimal maximum the Rabin index of the respective parity game.

The results we report here about this Rabin index are similar in spirit to
those developed for DAG-width in [4] but there are important differences:

• We propose a measure of descriptive complexity that is closer to the struc-
ture of the parity game as it only forgets ownership of nodes and not their
colors.

• We prove that for every fixed k ≥ 2, deciding whether the Rabin index of
a parity game is at least k is NP-hard.

• We can characterize the above equivalence relation in terms of the parities
of minimal colors on simple cycles in the game graph.

1We note that if we also were to account for ownership, we could solve the parity game
and assign color 0 to nodes won by player 0 and color 1 to nodes won by player 1. Thus,
this would reduce the index of all games to at most 2. However, this would prevent a more
fine-grained analysis of the structural complexity of the game.

2



• We use that characterization to design an algorithm that computes the
Rabin index and a witnessing coloring function in exponential time.

• We show how the same algorithm efficiently computes sound approxima-
tions of the Rabin index when simple cycles are abstracted by cycles.

• We derive from that approximation an abstract Rabin index of parity
games such that games with bounded abstract Rabin index are efficiently
solvable.

• We conduct detailed experimental studies that corroborate the utility of
that approximation, also as a preprocessor for solvers.

Outline of paper. Section 2 contains background for our technical develeop-
ments. In Section 3, we define the equivalence between coloring functions, char-
acterize it in terms of simple cycles, and use that characterization to define
the Rabin index of parity games. In Section 4 we develop an algorithm that
runs in exponential time and computes a coloring function which witnesses the
Rabin index of the input coloring function. The complexity of the natural deci-
sion problems for the Rabin index is studied in Section 5. An abstract version
of our algorithm is shown to soundly approximate that coloring function and
Rabin index in Section 6. Section 7 contains our experimental results for this
abstraction. And we conclude the paper in Section 8.

2 Background

We write N for the set {0, 1, . . . } of natural numbers. A parity game G is a tuple
(V, V0, V1, E, c) where V is a non-empty set of nodes partitioned into possibly
empty node sets V0 and V1, with an edge relation E ⊆ V × V (where for all v
in V there is a w in V with (v, w) in E), and a coloring function c : V → N.

Throughout, we write s for one of 0 or 1. In a parity game, player s owns the
nodes in Vs. A play from some node v0 results in an infinite play P = v0v1 . . .
in (V,E) where the player who owns vi chooses the successor vi+1 such that
(vi, vi+1) is in E. Let Inf(P ) be the set of colors that occur in P infinitely often:
Inf(P ) = {k ∈ N | ∀j ∈ N : ∃i ∈ N : i > j and k = c(vi)}. Player 0 wins play P
iff min Inf(P ) is even; otherwise player 1 wins play P .

A strategy for player s is a total function τ : Vs → V such that (v, τ(v))
is in E for all v ∈ Vs. A play P is consistent with τ if each node vi in P
owned by player s satisfies vi+1 = τ(vi). It is well known that each parity game
is determined: node set V is the disjoint union of two sets W0 and W1, the
winning regions of players 0 and 1 (respectively), where one of W0 and W1 may
be empty. Moreover, strategies σ : V0 → V and π : V1 → V can be computed
such that

• all plays beginning in W0 and consistent with σ are won by player 0; and

• all plays beginning in W1 and consistent with π are won by player 1.

3



v0 3

v1 3

v2 2 v31

v42

Figure 1: A parity game with winning regions W0 = {v1, v2} and W1 =
{v0, v3, v4}; winning strategies for players 0 and 1 map v1 to v2, respectively
v0 and v3 to v4

Solving a parity game means computing such data (W0,W1, σ, π). We show
a parity game and one of its possible solutions in Figure 1.

3 Rabin Index

We now formalize the definition of equivalence for coloring functions, and then
use that notion in order to formally define the Rabin index of a parity game.

We want to reduce the complexity of a coloring function c in a parity game
(V, V0, V1, E, c) by transforming c to some coloring function c′. Since we also
want that transformation to ignore ownership of nodes, it needs to be sound for
every possible ownership structure V0∪V1 = V . Therefore, for all such partitions
V0∪V1 = V , the two parity games (V, V0, V1, E, c) and (V, V0, V1, E, c

′) that differ
only in colors need to be equivalent in that they have the same winning regions
and the same sets of winning strategies. We formalize this notion.

Definition 1 Let (V,E) be a directed graph and c, c′ : V → N two coloring
functions. We say that c and c′ are equivalent, written c ≡ c′, iff for all parti-
tions V0∪V1 of V the resulting parity games (V, V0, V1, E, c) and (V, V0, V1, E, c

′)
have the same winning regions and the same sets of winning strategies for both
players.

Intuitively, changing coloring function c to c′ with c ≡ c′ is sound: regardless
of what the actual partition of V is, we know that this change will neither affect
the winning regions nor the choice of their supporting winning strategies. But
the definition of ≡ is not immediately amenable to algorithmic simplification of
c to some c′. This definition quantifies over exponentially many partitions, and
for each such partition it insists that certain sets of strategies be equal.

We need a more compact characterization of ≡ as the basis for designing a
static analysis. To that end, we require some concepts from graph theory first.

Definition 2 1. A path P in a directed graph (V,E) is a sequence v0, v1, . . . , vn
of nodes in V such that (vi, vi+1) is in E for every i in {0, 1, . . . , n− 1}.

4



2. A cycle C in a directed graph (V,E) is a path v0, . . . , vn with (vn, v0) in
E.

3. A simple cycle C in a directed graph (V,E) is a cycle v0, v1, . . . , vn such
that for every i 6= j in {0, 1, . . . n} we have vi 6= vj.

4. For (V,E, c), the c-color of a cycle v0, . . . , vn in (V,E) is min0≤i≤n c(vi).

Simple cycles are paths that loop so that no node has more than one outgoing
edge on that path. A cycle is defined similarly, except that it is allowed that
vi equals vj for some i 6= j, so a node on that path may have more than one
outgoing edge. The color of a cycle is the minimal color that occurs on it.

For example, for the parity game in Figure 1, a simple cycle is v0, v4, v3, v2, v1
and its color is 1, a cycle that is not simple is v0, v1, v2, v1 and its color is 2.

We can now characterize ≡ in terms of colors of simple cycles. Crucially, we
make use of the fact that parity games have pure, positional strategies [8].

Proposition 1 Let (V,E) be a directed graph and c, c′ : V → N two coloring
functions. Then c ≡ c′ iff for all simple cycles C in (V,E), the c-color of C has
the same parity as the c′-color of C.

Proof. Let us write c ∼ c′ iff for all simple cycles C in (V,E), the c-color of C
has the same parity as the c′-color of C. We have to show that ∼ equals ≡.

1. We show that ∼ is contained in ≡. Let c ∼ c′ be given. We want to
show c ≡ c′. So let V0 ⊆ V be given. Consider the two derived parity games
(V, V0, V1, E, c) and (V, V0, V1, E, c

′). Let W0 be the winning region of player 0
in the parity games (V, V0, V1, E, c) and σ a strategy for player 0 winning for
player 0 on W0 in (V, V0, V1, E, c).

Now consider an arbitrary strategy π for player 1. Then π is such a strategy
in both parity games (V, V0, V1, E, c) and (V, V0, V1, E, c

′). Let v ∈W0 and let P
be the play in (V,E) that begins in v and is consistent with σ and π. Since P is
consistent with deterministic strategies of both players, its ultimately periodic
behavior determines a simple cycle C so that P is composed of a finite prefix
and infinitely many repetitions of C. Since v is in W0 and since σ is winning
for player 0 in W0, we infer that the c-color of C has to be even. Since c ∼ c′,
this means that the c′-color of C is even, too. And so that play is also won by
player 0 in (V, V0, V1, E, c

′).
Since π was arbitrary, this shows that σ is also a winning strategy on W0

in the parity game (V, V0, V1, E, c
′). Therefore, W0 is a subset of the winning

region W ′0 of player 0 in (V, V0, V1, E, c
′).

A symmetric argument for winning region W1 in (V, V0, V1, E, c) for player
1 and winning strategy π for player 1 on W1 in that game shows that π is also
a winning strategy on W1 in (V, V0, V1, E, c

′) and that W1 is contained in W ′1,
the winning region of player 1 in (V, V0, V1, E, c

′).
Combining these two insights, and since V equals W0 ∪W1, it follows that

W0 equals W ′0 and that W1 equals W ′1. So the winning regions are equal in
(V, V0, V1, E, c) and (V, V0, V1, E, c

′), and strategies that are winning on these

5



sets in one of the games (V, V0, V1, E, c) and (V, V0, V1, E, c
′) are also winning

on these sets in the other game since c ∼ c′. (We showed this for one player,
but the result follows for the other player by symmetry.)

2. We show that ≡ is contained in ∼. Let c ≡ c′ be given. Let C be a simple
cycle in (V,E). Let the parity of the c-color of C be even. (The case when this
is odd is proved symmetrically and so we omit that proof.) Consider the parity
games (V, V, ∅, E, c) and (V, V, ∅, E, c′) where V0 is defined to be V , and so V1 is
empty. Since V0 equals V , player 0 has some strategy σ such that σ(v) is again
in C for all nodes v from C. Since the c-parity of C is even, it then follows that
C is contained in W0, the winning region of player 0 in (V, V0, V1, E, c).

Since c ≡ c′ is assumed, we therefore know that W0 is also the winning
region of player 0 in (V, V, ∅, E, c′), and that σ is also a winning strategy on
W0 in that game. In particular, every play beginning in some node v from C
and consistent with σ is won by player 0 in (V, V, ∅, E, c′). But every such play
just repeats the simple cycle C infinitely often (it cannot generate a sub-cycle
of C as σ is deterministic and C is simple) and so the outcome of that play is
determined by the c′-color of C. Therefore, the c′-color of C has to be even.
�

Next, we define the relevant measure of descriptive complexity, which will
also serve as a measure of precision for the static analyses we will develop.

Definition 3 1. For colored arena (V,E, c), its index µ(c) is maxv∈V c(v).
2. The Rabin index RI(c) of colored arena (V,E, c) is min{µ(c′) | c ≡ c′}.
3. The Rabin index of parity game (V, V0, V1, E, c) is RI(c) for (V,E, c).

The index µ(c) reflects the maximal color occurring in c. So for a coloring
function c : V → N on (V,E), its Rabin index is the minimal possible maximal
color in a coloring function that is equivalent to c. This definition applies to
colored arenas and parity games alike.

As an aside, is µ(c) a good measure, given that µ(c+ n) = n+µ(c) for c+n
with (c + n)(v) = c(v) + n when n is even? And given that c may have large
color gaps? Fortunately, this is not a concern for the Rabin index of c. This is
so as for all c′ ≡ c with µ(c′) = RI(c) we know that the minimal color of c′ is
at most 1 and that c′ has no color gaps – due to the minimality of the Rabin
index.

Intuitively, in order to prove that RI(c) < k for some k > 0 one has to
produce a coloring c′ and show that all simple cycles in the graph have the
same color under c and c′. As we will see below, deciding for a given colored
arena (V,E, c) whether RI(c) is at least k is NP-hard for fixed k ≥ 2.

Next, we present an algorithm that computes a coloring function which
witnesses the Rabin index of a given c.

6



4 Computing the Rabin Index

We now discuss our algorithm rabin, shown in Figure 2. It takes a coloring
function as input and outputs an equivalent one whose index is the Rabin index
of the input. Formally, rabin computes a coloring function c′ with c ≡ c′ and
where there is no c ≡ c′′ with µ(c′′) < µ(c′). Then, RI(c) = µ(c′) by definition.

Algorithm rabin uses a standard iteration pattern based on a rank function
which sums up all colors of all nodes. In each iteration, two methods are called:

• cycle analyzes the cyclic structure of (V,E) and so reduces colors of nodes

• pop repeatedly lowers all occurrences of maximal colors by 1 until there
is a simple cycle whose color is a maximal color.

These iterations proceed until neither cycle nor pop has an effect on the
coloring function. Method cycle first sorts all nodes of (V,E, c) in ascending
color values for c. It then processes each node vi in that ascending order. For
each node vi it calls getAnchor to find (if possible) a maximal “anchor” for vi.

If getAnchor returns −1, then vi has no anchor as all simple cycles through
vi have color c(vi). Therefore, it is sound to change c(vi) to its parity. Otherwise,
getAnchor returns an index j to an “anchor” node that is maximal in that

• there is a simple cycle C through vi whose color j is smaller and of different
parity than that of vi, and

• for all simple cycles C ′ through vi, either they have a color that has the
same parity as the color of vi or they have a color that is less than or equal
to j.

A node on this simple cycle C with color j is thus a maximal anchor for node
vi. Method cycle therefore resets c(vi) to j + 1.

The idea behind pop is that one can safely lower maximal color m to m− 1
if there is no simple cycle whose color is m. For then all occurrences of m are
dominated by smaller colors on simple cycles.

We now prove the soundness of our algorithm rabin.

Lemma 1 Let (V,E, c) be a given colored arena and let c′ be the coloring func-
tion that is returned by the call rabin(V,E, c). Then c ≡ c′ holds.

Proof. Let c = c0, c1, . . . be the sequence of coloring functions that reflect the
state changes of c in the call rabin(V,E, c). By Proposition 1, it suffices to
show that cn ∼ cn+1 for all such n. So let cn be given.

1. Consider first the case when cn+1 is obtained from cn by an execution
of the for-statement in pop. Then m is the maximal color of cn but there is
no simple cycle in (V,E) that has cn-color m. In other words, color m will
never decide the cn-color of a simple cycle. It is therefore safe to decrease all

7



rabin(V,E, c) {
rank =

P
v∈V c(v);

do {
cache = rank;

cycle(); pop();

rank =
P
v∈V c(v);

} while (cache != rank)

return c;
}

cycle() {
sort V in ascending c-color ordering v1,v2,...,vn;
for (i=1..n) {
j = getAnchor(vi);
if (j == −1) { c(vi) = c(vi) % 2; }
else { c(vi) = j + 1; }

}
}

getAnchor(vi) {
for (γ = c(vi)− 1 down to (c(vi)− 1) % 2; step size 2) {

if (∃ simple cycle C with color γ through vi) { return γ; }
}
return −1;

}

pop() {
m = max{ c(v) | v ∈ V };
while (not ∃ simple cycle C with color m) {

for (v in { w ∈ V | c(w) = m}) { c(v) = m − 1; }
m = m − 1;

}
}

Figure 2: Algorithm rabin which relies on methods cycle, getAnchor, and
pop.

8



occurrences of m to m − 1, as this will change the color of no simple cycle in
(V,E). Since this change defines cn+1, we have ci ∼ cn+1 as desired.

2. Now consider the case when cn+1 is the result of cn through the execution
of the if-branch in cycle. Then we consider a node vi for which getAnchor
returns −1. Therefore, there is no simple cycle C through vi in (V,E) whose
cn-color is lower than cn(vi) and has different parity than cn(vi). But the color
of cycles through vi can be at most cn(vi). Therefore, all simple cycles through
vi have the same parity as cn(vi). It is therefore safe to reduce the color at
vi to that parity, as done in cycle. For the resulting cn+1 we therefore have
cn ∼ cn+1.

3. Now consider the case when cn+1 is the result of cn through the execution
of the else-branch in cycle. If the call to getAnchor returns j ≥ 0 for node
vi, then consider an arbitrary simple cycle C in (V,E) through vi whose color
p has a parity other than that of cn(vi). Then it must be that j ≤ p by the
definition of method getAnchor. So every simple cycle through vi has either a
color that has the parity of cn(vi) or has a color p with j ≤ p. Therefore, it
is safe to change the color at vi to j + 1 (the case j + 1 = cn(vi) will have no
effect), resulting in new coloring function cn+1: this is so since then all simple
cycles through vi have the same parity with respect to cn and cn+1. (And both
coloring functions could only break cn ∼ cn+1 by means of simple cycles through
vi.) �

We show some example runs of rabin, starting with a detailed worked exam-
ple, for the parity game in Figure 1. Let the initial sort of cycle be v3v4v2v0v1.
Then cycle changes no colors at v3 (as the anchor of v3 is −1), at v4 (as the
anchor of v4 is 1 due to simple cycle v4v3), at v2 (as the anchor of v2 is 1 due
to simple cycle v2v1v0v4v3), but changes c(v0) to 1 (as the anchor of v0 is −1).
Also, c(v1) won’t change (as the anchor of v1 is 2 due to simple cycle v1v2).

Then pop changes c(v1) to 2 (as there is no simple cycle with color 3). Let
the sort of the second call to cycle be v0v3v1v2v4. Then the corresponding list
of anchor values is −1,−1, 1, 1, 1 and so cycle changes no colors. Therefore,
the second call to pop changes no colors either. Thus the overall effect of rabin
was to lower the index from 3 to 2 by lowering c(v1) to 2.

As a second example, in Figure 3, we see a colored arena with c(vi) = i
(in red/bottom), the output rabin(V,E, c) (in blue/top), and a table showing
how the coloring function changes through repeated calls to cycle and pop.
Each iteration of rabin reduces the measure µ(c) by 1. This illustrates that the
number of iterations of rabin is unbounded in general.

We note that ≡ cannot be captured by just insisting that the winning regions
of all abstracted parity games be the same. In Figure 4, we see a colored arena
with two coloring functions c (in blue/top) and c′ (in red/bottom).

The player who owns node v will win all nodes as she chooses between z or
o the node that has her parity. So c and c′ are equivalent in that they always
give rise to the same winning regions. But if v is owned by player 1, that player
has a winning strategy for c that moves from v to w, but this is not winning for
c′.

9



v0

4 36 5 2

3 31 2 2

0

0

1

1v6 v5 v4 v3 v2 v1

iteration cycle pop
1 nil c(v6) = 5
2 c(v6) = 1 c(v5) = 4
3 c(v5) = 2 c(v4) = 3

Figure 3: Colored arena (V,E, c) and table showing effects of iterations in
rabin(V,E, c)

1

0

1 1

1

z

o

1 0

wv

0

Figure 4: Two coloring functions c (in blue/top) and c′ (in red/bottom) that
give rise to the same winning regions, but not always to the same winning
strategies. Thus c 6≡ c′

In Figure 5, colored arena (V,E, c) has odd index n and Rabin index 2.
Although there are cycles from all nodes with color n, e.g., to the node with
color n− 1, there are no simple such cycles. So all colors reduce to their parity.
As before, the number of iterations is linear in the size of the graph.

Now we can prove that algorithm rabin is basically as precise as it could
be. First, we state and prove an auxilliary lemma which provides sufficient
conditions for a coloring function c to have its index µ(c) as its Rabin index
RI(c). Then we show that the output of rabin meets these conditions.

Lemma 2 Let (V,E, c) be a colored arena where

0

n

1 1 1

0 1 0 0 1

n n

nn− 121

Figure 5: Coloring function c (red/bottom) has Rabin index 2, witnessed by c′

(blue/top)

10



1. there is a simple cycle in (V,E) whose color is the maximal one of c
2. for all v in V with c(v) > 1, node v is on a simple cycle C with color

c(v)− 1.
Then there is no c′ with c ≡ c′ and µ(c′) < µ(c). And so µ(c) equals RI(c).

Proof. Let k be the maximal color of c and consider an arbitrary c′ with c ≡ c′.
Proof by contradiction: Let the maximal color k′ of c′ satisfy k′ < k.

By the first assumption, there is a simple cycle C0 whose c-color is k. Since
k′ < k and c ≡ c′, we know that the c′-color of C0 can be at most k − 2. Let
v0 be a node on C0 such that c′(v0) is the c′-color of C0. Then c′(v0) ≤ k − 2.
As all nodes on C0 have c-color k, we have also c(v0) ≥ k. For k < 2, then
c′(v0) ≤ k − 2 gives us a contradiction c′(v0) < 0. It thus remains to consider
the case when k ≥ 2.

By the second assumption, there is some simple cycle C1 through v0 such
that the color of C1 is k − 1. In particular, there is some node v′0 in C1 with
color k − 1. But k − 1 cannot be the color of C1 with respect to c′ since v0 is
on C1 and c′(v0) ≤ k − 2. Since c ≡ c′, the c′-color of C1 is therefore at most
k − 3. So there is some v1 on C1 such that c′(v1) ≤ k − 3 < k − 1 ≤ c(v1).

If c(v1) > 1, we repeat the above argument at node v1 to construct a simple
cycle C2 through v1 with color c(v1) − 1. Again, there then have to be nodes
v′1 and v2 on C2 such that the color c′(v′1) is the c′-color of C2, and such that
c′(v2) ≤ k − 4 < k − 2 ≤ c(v2) holds.

We can repeat the above argument to construct simple cycles C0, C1, C2, . . .
and nodes v0, v′0, v1, v

′
1, v2, v

′
2, . . . such that c′(vj) ≤ k − j − 2 < k − j ≤ c(vj)

until k−j ≤ c(vj) ≤ 1. But then c′(vj) ≤ k−j−2 ≤ 1−2 = −1, a contradiction.
�

We now show that the output of rabin satisfies the assumptions of Lemma 2.
Since rabin is sound for ≡, we therefore infer that it computes a coloring func-
tion whose maximal color equals the Rabin index of its input coloring function.

Theorem 1 Let (V,E, c) be a colored arena. And let c∗ be the output of the
call rabin(V,E, c). Then c ≡ c∗ and µ(c∗) is the Rabin index of c.

Proof. By Lemma 1, we have c ≡ c∗. Since ≡ is clearly transitive, it suffices
to show that there is no c′ with c∗ ≡ c′ and µ(c′) < µ(c∗). By Lemma 2, it
therefore suffices to establish the two assumptions of that lemma for c∗. What
we do know is that neither cycle nor pop have an effect on c∗ as it was returned
by rabin.

The first assumption of Lemma 2 is therefore true since pop has no effect
on c∗ and so there must be a simple cycle in (V,E) whose color is the maximal
one in c. (This also applies to the boundary case when c∗ has only one color, as
(V,E) has to contain cycles since it is finite and all nodes have outgoing edges.)

As for the second assumption, let by way of contradiction there be some
node v with c∗(v) > 1 and no simple cycle through v with color c∗(v)−1. Then
cycle would have an effect on c∗(v) and would lower it, a contradiction. �

11



t
00

0
0

0

0

k k−1 k−2 1 0

0

(V,E)

k

k−1

s

Figure 6: Construction for NP-hardness of deciding whether RI(c) ≥ k for k ≥ 2

5 Complexity

We now discuss the complexity of algorithm rabin and of the decision problems
associated with the Rabin index. We turn to the complexity of rabin first.

Let us assume that we have an oracle that checks for the existence of simple
cycles. Then the computation of rabin is efficient modulo polynomially many
calls (in the size of the game) to that oracle. Since deciding whether a simple
cycle exists between two nodes in a directed graph is NP-complete (see e.g.
[9, 10]), we infer that rabin can be implemented to run in exponential time.

Next, we study the complexity of deciding the value of the Rabin index. We
can exploit the NP-hardness of simple cycle detection to show that the natural
decision problem for the Rabin index, whether RI(c) is at least k, is NP-hard
for fixed k ≥ 2. In contrast, for k = 1, we show that this problem is in P.

Theorem 2 Deciding whether the Rabin index of a colored arena (V,E, c) is at
least k is NP-hard for every fixed k ≥ 2, and is in P for k = 1.

Proof. First consider the case when k ≥ 2. We use the fact that deciding
whether there is a simple cycle through nodes s 6= t in a directed graph (V,E)
is NP-complete (see e.g. [10]). Without loss of generality, for all v in V there is
some w in V with (v, w) in E (we can add (v, v) to E otherwise). Our hardness
reduction uses a colored arena (V ′, E′, c), depicted in Figure 6, which we now
describe:

We color s with k− 1 and t with k, and color all remaining nodes of V with
0. Then we add k+ 1 many new nodes (shown in blue/top in the figure) to that
graph that form a “spine” of descending colors from k down to 0, connected by
simple cycles. Crucially, we also add a simple cycle between t and that new k
node, and between s and the new k − 2 node.

We claim that the Rabin index of (V ′, E′, c) is at least k iff there is a simple
cycle through s and t in the original directed graph (V,E).

1. Let there be a simple cycle through s and t in (V,E). Since there is a
simple cycle between s and the new k−2 node, cycle does not change the color
at s. As there is a simple cycle through s and t, method cycle also does not

12



change the color at t. Clearly, no colors on the spine can be changed by cycle.
Since there is a simple cycle between t and the new k node, method pop also
does not change colors. But then the Rabin index of c is k and so at least k.

2. Conversely, assume that there is no simple cycle through s and t in the
original graph (V,E). It follows that the anchor j of t has value 0 or, if k is
even, has value −1. In this case, cycle changes the color at t to the parity of
k. Then, pop reduces the color of the remaining node colored k to k− 1. Thus,
it cannot be the case that the Rabin index of c is at least k.

This therefore proves the claim. Second, consider the case when k = 1.
Deciding whether RI(c) is at least 1 amounts to checking whether c ≡ ~0 where
~0(v) = 0 for all v in V . This is the case iff all simple cycles in (V,E, c) have
even c-parity. But that is the case iff all cycles in (V,E, c) have even c-parity.

To see this, note that the “if” part is true as simple cycles are cycles. As for
the “only if” part, this is true since if there were a cycle C with odd c-parity,
then some node v on that cycle would have to have that minimal c-color, but v
would then be on some simple cycle whose edges all belong to C.

Finally, checking whether all cycles in (V,E, c) have even c-parity is in P.
�

The decision problem of whether RI(c) = 1 cannot be in NP, unless NP
equals coNP. Otherwise, the decision problem of whether RI(c) ≤ 1 would also
be in NP, since we can decide in P whether RI(c) = 0 and since NP is closed
under unions. But then the complement decision problem of whether RI(c) ≥ 2
would be in coNP, and we have shown it to be NP-hard already. Therefore,
all problems in NP would reduce to this problem and so be in coNP as well, a
contradiction.

In the next section we show how to bypass this complexity by using an
abstract version of the equivalence relation.

6 Abstract Rabin index

We now discuss an efficient version of rabin which replaces oracle calls for
simple cycle detection with over-approximating cycle detection. In fact, this
static analysis computes an abstract Rabin index, whose definition is based
on an abstract version of the equivalence relation ≡. We define these notions
formally.

Definition 4 1. Let rabinα be rabin where all existential quantifications
over simple cycles are replaced with existential quantifications over cycles.

2. Let (V,E) be a directed graph and c, c′ : V → N two coloring functions.
Then:
(a) c ≡α c′ iff for all cycles C, the parities of their c- and c′-colors are

equal.
(b) The abstract Rabin index RIα(c) of (V,E, c) is min{µ(c′) | c ≡α c′}.

13



v

01 3

21 3 wu

Figure 7: Coloring functions c (blue/top) and c′ (red/bottom) with c ≡ c′ but
c 6≡α c′

Thus rabinα uses the set of cycles in (V,E) to overapproximate the set of
simple cycles in (V,E). In particular, c ≡α c′ implies c ≡ c′ but not the other
way around, as can be seen in the example in Figure 7.

In that example, we have c ≡ c′ since all simple cycles have the same parity
of color with respect to c and c′. But there is a cycle that reaches all three nodes
and which has odd color for c and even color for c′. Thus, c 6≡α c′ follows.

We now show that the overapproximation rabinα of rabin is sound in that
its output coloring function is equivalent to its input coloring function. Below,
in Theorem 3, we further show that this output yields an abstract Rabin index.

Lemma 3 Let (V,E, c) be a colored arena and let rabinα(V,E, c) return c′.
Then c ≡α c′ and µ(c′) ≥ RI(c).

Proof. Let c = c0, c1, . . . be the sequence of coloring functions that reflect the
state changes of c in the call rabinα(V,E, c). Since ≡α is transitive, it suffices
to show that cn ≡α cn+1 for all such n. So let cn be given.

1. Consider first the case when cn+1 is obtained from cn by an execution
of the for-statement in pop. Then m is the maximal color of cn but there is no
cycle in (V,E) that has cn-color m. In other words, color m will never decide
the cn-color of a cycle. It is therefore safe to decrease all occurrences of m to
m − 1, as this will change the color of no cycle in (V,E). Since this change
defines cn+1, we have ci ≡α cn+1 as desired.

2. Now consider the case when cn+1 is the result of cn through the execution
of the if-branch in cycle. Then we consider a node vi for which getAnchor
returns −1. Therefore, there is no cycle C through vi in (V,E) whose cn-color
is lower than cn(vi) and has different parity than cn(vi). But the color of cycles
through vi can be at most cn(vi). Therefore, all cycles through vi have the same
parity as cn(vi). It is therefore safe to reduce the color at vi to that parity, as
done in cycle. For the resulting cn+1 we therefore have cn ≡α cn+1.

3. Now consider the case when cn+1 is the result of cn through the execution
of the else-branch in cycle. If the call to getAnchor returns j ≥ 0 for node
vi, then consider an arbitrary cycle C in (V,E) through vi whose color p has a
parity other than that of cn(vi). Then it must be that j ≤ p by the definition
of method getAnchor. So every cycle through vi has either a color that has the
parity of cn(vi) or has a color p with j ≤ p. Therefore, it is safe to change the
color at vi to j+ 1 (the case j+ 1 = cn(vi) will have no effect), resulting in new

14



coloring function cn+1: this is so since then all cycles through vi have the same
parity with respect to cn and cn+1. (And both coloring functions could only
break cn ≡α cn+1 by means of cycles through vi.) �

Note that the definition of ≡α is like the characterization of ≡ in Propo-
sition 1, except that the universal quantification over simple cycles is being
replaced by a universal quantification over cycles for ≡α. In proving Lemma 3,
we were thus able to reuse the proof for Lemma 1 where we replace ≡ with ≡α,
rabin with rabinα, and “simple cycle” with “cycle” throughout in that proof.

We can now adapt the results for rabin to this abstract setting.

Lemma 4 Let (V,E, c) be a colored arena where
1. there is a cycle in (V,E) whose color is the maximal one of c
2. for all v in V with c(v) > 1, node v is on a cycle C with color c(v)− 1.

Then there is no c′ with c ≡α c′ and µ(c′) < µ(c), and so µ(c) = RIα(c).

Proof. Let k be the maximal color of c and consider an arbitrary c′ with
c ≡α c′.

Proof by contradiction: Let the maximal color k′ of c′ satisfies k′ < k.
By the first assumption, there is a cycle C0 whose c-color is k. Since k′ < k
and c ≡α c′, we know that the c′-color of C0 can be at most k − 2. Let v0 be a
node on C0 such that c′(v0) is the c′-color of C0. Then c′(v0) ≤ k − 2. As all
nodes on C0 have c-color k, we have also c(v0) ≥ k. Again, if k < 2 we have a
contradiction right away. So let k ≥ 2.

By the second assumption, there is some cycle C1 through v0 such that the
color of C1 is k− 1. In particular, there is some node v′0 in C1 with color k− 1.
But k − 1 cannot be the color of C1 with respect to c′ since v0 is on C1 and
c′(v0) ≤ k − 2. Since c ≡α c′, the c′-color of C1 is therefore at most k − 3. So
there is some v1 on C1 such that c′(v1) ≤ k − 3 < k − 1 ≤ c(v1).

If c(v1) > 1, we repeat this argument at node v1 to construct a cycle C2

through v1 with color c(v1)− 1. Again, there then have to be nodes v′1 and v2
on C2 such that the color c′(v′1) is the c′-color of C2, and such that c′(v2) ≤
k − 4 < k − 2 ≤ c(v2) holds.

In this manner, we can repeat this argument to construct cycles C0, C1, C2, . . .
and nodes v0, v′0, v1, v

′
1, v2, v

′
2, . . . such that c′(vj) ≤ k − j − 2 < k − j ≤ c(vj)

until k − j ≤ c(vj) ≤ 1. But then we obtain c′(vj) ≤ k − j − 2 ≤ 1− 2 = −1, a
contradiction. �

Similary to the case for algorithm rabin, we now show that the output of
rabinα satisfies the assumptions of Lemma 4. Since algorithm rabinα is sound
for ≡α, we therefore infer that it computes coloring functions whose maximal
color equals the abstract Rabin index of their input coloring function.

Theorem 3 Let (V,E, c) be a colored arena. And let c∗ be the output of the call
rabinα(V,E, c). Then c ≡α c∗ and µ(c∗) is the abstract Rabin index RIα(c).

15



Proof. By Lemma 3, we have c ≡α c∗. Since ≡α is transitive, it suffices to
show that there is no c′ with c∗ ≡α c′ and µ(c′) < µ(c∗). By Lemma 4, it
therefore suffices to establish the two assumptions of that lemma for c∗. What
we do know is that neither cycle nor pop have an effect on c∗ as it was returned
by rabinα.

The first assumption is therefore true since pop has no effect on c∗ and so
there must be a cycle in (V,E) whose color is the maximal one in c. (This
also applies to the boundary case when c∗ has only one color, as (V,E) has to
contain cycles since it is finite and all nodes have outgoing edges.)

As for the second assumption, let by way of contradiction be some node v
with c∗(v) > 1 and no cycle through v with color c∗(v)− 1. Then cycle would
have an effect on c∗(v) and would lower it, a contradiction. �

We now study the sets of parity games whose abstract Rabin index is below
a fixed bound. We define these sets formally.

Definition 5 Let Pαk be the set of parity games (V, V0, V1, E, c) with RIα(c) < k.

We can now show that parity games in these sets are efficiently solvable, also
in the sense that membership in such a set is efficiently decidable.

Theorem 4 Let k ≥ 1 be fixed. All parity games in Pαk can be solved in poly-
nomial time. Moreover, membership in Pαk can be decided in polynomial time.

Proof. For each parity game (V, V0, V1, E, c) in Pαk , we first run rabinα on
it, which runs in polynomial time. By definition of Pαk , the output coloring
function c∗ has index < k. Then we solve the parity game (V, V0, V1, E, c

∗),
which we can do in polynomial time as the index is bounded by k. But that
solution is also one for (V, V0, V1, E, c) since c ≡α c∗ by Lemma 3, and so c ≡ c∗
as well.

That the membership test is polynomial in the running time can be seen as
follows: for coloring function c, compute c′ = rabinα(V,E, c) and return true
if µ(c′) < k and return false otherwise; this is correct by Theorem 3. �

We note that algorithm rabinα is precise for colored arenas A = (V,E, c)
with Rabin index 0. These are colored arenas that have only simple cycles with
even color. Since a colored arena has a cycle with odd color iff it has a simple
cycle with odd color, rabinα will correctly reduce all colors to 0 for such arenas.

For Rabin index 1, the situation is more subtle. We cannot expect rabinα to
always be precise, as the decision problem for RI(c) ≥ 2 is NP-hard. Algorithm
rabinα will correctly compute Rabin index 1 for all those arenas that do not
have a simple cycle with even color. But for c from Figure 7, e.g., algorithm
rabinα does not change c with index 3, although the Rabin index of c is 1.

16



Game Type µ(c) µ(s(c)) RIα(c) S R #I Sol Sol.S Sol.R

Ladder[19] 1 1 1 0.06 0.23 0 1.04 1.03 1.05

Jurdziński[5 10] 11 11 2 0.07 44.27 1 82.48 81.89 14.14

Recursive Ladder[6] 20 18 6 0.03 0.52 1 26.67 23.37 3.42

Strategy Impr[7] 210 158 3 0.06 245.39 1 69.36 68.31 15.86

Model Checker Ladder[50] 100 100 0 0.06 42.56 1 1.17 1.13 0.45

Tower of Hanoi[3] 1 1 1 0.05 0.37 0 2.46 2.42 2.40

Figure 8: Indices and average times (inms) for 100 runs for game types named in
first column. Next three columns: original, statically compressed, and rabinα-
compressed index. Next three columns: times of static and rabinα-compression,
and the number of iterations within rabinα. Last three columns: Times of
solving the original, statically compressed, and rabinα-compressed games with
Zielonka’s solver

7 Experimental results

We now provide experimental results for our algorithm rabinα.
The objectives of our experiments are to compare the effectiveness of color

compression of rabinα to a known color compression algorithm (called static
compression), to observe the performance improvement in solving compressed
games using Zielonka’s parity game solver [1], and to get a feel for how much
the abstract Rabin index reduces the index of random and non-random games.

The applications used in the experiments are written in Scala. Since we are
interested in descriptive complexity measures and relative computation time, all
game elements are realized as objects for sake of conceptual simplicity.

We programed algorithm rabin with simple cycle detection reduced to incre-
mental SAT solving. This did not scale to graphs with more than 40 nodes. But
for those games for which we could compute the Rabin index, rabinα(V,E, c)
often computed the Rabin index RI(c) or did get very close to it.

Our implementation of rabinα reduced cycle detection to the decomposi-
tion of the graph into strongly connected components, using Tarjan’s algorithm
(which is linear in the number of edges). The rank function is only needed
for complexity and termination analysis, we replaced it with Booleans that flag
whether cycle or pop had an effect.

The standard static compression algorithm simply removes gaps between
colors, e.g. a set of colors {0, 3, 4, 5, 6, 8} is being compressed to {0, 1, 2, 3, 4}.
Below, we write s(c) for the statically compressed version of coloring function
c.

The experiments are conducted on non-random and random games sepa-
rately. Each run of the experiments generates a parity game G = (V, V0, V1, E, c)
of a selected configuration. Static compression and rabinα are performed on
these games. We report the time taken to execute static compression and
rabinα, as well as the number of iterations that rabinα runs until cycle and
pop have no effect, i.e. the number of iterations needed for µ(c) to reach RIα(c).

17



Game Configs µ(c) µ(s(c)) RIα(c) S R #I Sol Sol.S Sol.R
100/1/20/100 98.40 46.24 37.49 0.12 43.05 1 7.46 5.82 5.94
200/1/40/200 198.27 92.13 82.29 0.07 537.46 1 21.87 19.72 19.79
400/1/80/400 398.51 183.97 171.86 0.15 8443.94 1 100.45 89.48 88.83
800/1/160/400 398.85 304.07 294.95 0.35 102651.25 1 645.43 621.22 623.34
1000/1/200/400 398.88 337.82 330.66 0.45 223560.69 1 1094.31 1062.86 1067.23

Figure 9: Indices and average times (in ms) for 100 runs of random games of
various configurations listed in the first column. Next three columns: average
original, statically compressed, and rabinα-compressed indices. The remaining
columns are as in Figure 8

Finally, we record the wall-clock time required to solve original, statically com-
pressed, and rabinα-compressed games, using Zielonka’s solver [1].

We use PGSolver to generate non-random games, detailed descriptions on
these games can be found in [11]. Each row in Figure 8 shows the average statis-
tics from 100 runs of the experiments on corresponding non-random game. We
see that rabinα has significantly reduced the indices of Jurdziński, Recursive
Ladder, Strategy Impr, and Model Checker Ladder, where RIα(c) is 0% to
33% of the index µ(s(c)) of the statically compressed coloring function.

The benefit of rabinα is reflected by the performance increase in solving
parity games. For all four game types, we observe 60% to 85% in solver time
reduction between solving statically compressed and rabinα-compressed games.

The time required to perform static compression is low compared to the
time needed for rabinα-compression. But rabinα-compression followed by solv-
ing the game is still faster than solving the original game for the game types
Jurdziński, and Recursive Ladder.

For the game types Ladder, and Tower of Hanoi further color compression
is not possible due to their extremely small indices. Method cycle has no effect
on Clique games, but pop manages to reduce its index by 1.

We now discuss our experimental results on random games. The notation
used to describe randomly generated parity games is xx/yy/zz/cc, where xx is
the number of nodes (node ownership is determined by a fair coin flip for each
node independently), with between yy to zz out-going edges for each node, and
with colors at nodes chosen at random from {0, . . . , cc}. Also, the games used
in the experiments have 1 as the minimum number of out-going edges. This
means that the nodes have no dead-ends. We also disallow self-loops (no (v, v)
in E).

Figure 9 shows the average statistics of 100 runs of experiments on five se-
lected game configurations. (Our experiments on larger games are consistent
with the data reported here, and so not reported here.) The results indicate
that static compression is effective in reducing the colors for randomly gener-
ated games, it achieves 24% to 54% index reduction. The rabinα-compression
achieves further 2% to 19% reduction. Due to the relatively small index reduc-

18



tion by rabinα, we do not see much improvement in solving rabinα-compressed
games over solving statically-compressed one. In addition, rabinα reduces µ(c)
to RIα(c) in one iteration for all of the randomly generated games G.

On all random games generated only the first execution of pop had an effect.
Effect in further iterations of pop requires specific game structure, e.g. as for
the game in Figure 3. We would not expect to see such structure on random
games.

The experimental results show that rabinα is able to reduce the indices of
parity games significantly and quickly, for certain structures such as Jurdziński,
and Recursive Ladder. Hence it effectively improves the overall solver perfor-
mance for those games.

However, algorithm rabinα has a negative effect on the overall performance
for other non-random games and experimented random games, when we consider
rabinα-compression time plus solver time.

8 Conclusions

We now summarize the results and insights of this paper, and mention what
questions we mean to pursue in future work.

We have provided a descriptive measure of complexity for parity games that
(essentially) measures the number of colors needed in a parity game if we forget
the ownership structure of the game but if we do not compromise the winning
regions or winning strategies by changing its colors.

We called this measure the Rabin index of a parity game. We then studied
this concept in depth. By analyzing the structure of simple cycles in parity
games, we arrived at an algorithm that computes this Rabin index in exponential
time.

Then we studied the complexity of the decision problem of whether the
Rabin index of a parity game is at least k for some fixed k > 0. For k equal to
1, we saw that this problem is in P, but we showed NP-hardness of this decision
problem for all other values of k. These lower bounds therefore also apply to
games that capture these decision problems in game-theoretic terms.

Next, we asked what happens if our algorithm rabin abstractly interprets
all detection checks for simple cycles through detection checks for cycles. The
resulting algorithm rabinα was then shown to run in polynomial time, and to
compute a corresponding abstract and sound interpretation of the Rabin index.

Our experiments were performed on random and non-random games. We
observed that rabinα-compression plus Zielonka’s solver [1] achieved 29% and
85% time reduction for Jurdziński and Recursive Ladder games, respectively,
over solving the original games. But for other game types and random games,
no such reduction was observed. We also saw that for some structured game
types, the abstract Rabin index is dramatically smaller than the index of the
game.

In future work we mean to investigate properties of the measure RIα(c) −
RI(c). Intuitively, it measures the difference of the Rabin index based on the

19



structure of cycles with that based on the structure of simple cycles. From
the family of examples in Figure 5 we already know that this measure can be
arbitrarily large.

It will also be of interest to study variants of RI(c) that are targeted for
specific solvers. For example, the SPM solver in [2] favors fewer occurrences
of odd colors but also favors lower index. This suggests a measure with a
lexicographical order of the Rabin index followed by an occurrence count of odd
colors.

References

[1] Zielonka, W.: Infinite games on finitely coloured graphs with applications
to automata on infinite trees. Theoretical Computer Science 200(1–2):135–
183 (1998).

[2] Jurdziński, M.: Small progress measures for solving parity games. In Proc.
of STACS, LNCS 1770, 290–301. Springer-Verlag (2000).

[3] Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for
solving parity games. In Proc. of Computer Aided Verification, LNCS 1855,
202–215. Springer-Verlag (2000).

[4] Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S.: DAG-width and parity
games. In Proc. of STACS, LNCS 3884, 524–436. Springer-Verlag (2006).

[5] Friedmann, O., Lange, M.: Solving parity games in practice. In Proc. of
ATVA, LNCS 5799, 182–196. Springer-Verlag (2009).

[6] Wagner, K.: On ω-regular sets. Information and Computation 43:123–177
(1979).

[7] Carton, O., Maceiras, R.: Computing the Rabin Index of a Parity Au-
tomaton. Informatique Théorique et Applications 33(6):495–506 (1999).

[8] Emerson, E., Jutla, C.: Tree automata, µ-calculus and determinacy. In
Proc. of FOCS, 368–377. IEEE (1991).

[9] Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multi-
commodity flow problems. SIAM J. Comput. 5(4):691–703 (1976).

[10] Fortune, S., Hofcroft, J., Wyllie, J.: The directed subgraph homeomor-
phism problem. Theoretical Computer Science 10:111–121 (1980).

[11] Friedmann, O., Lange, M.: The PGSolver Collection of Parity Game
Solvers. Technical report, Institut für Informatik, LMU Munich (Feb 2010).

20


