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Abstract

We study a variant of the pessimistic bi-level optimization problem, which comprises constraints

that must be satisfied for any optimal solution of a subordinate (lower-level) optimization problem. We

present conditions that guarantee the existence of optimal solutions in such a problem, and we charac-

terize the computational complexity of various subclasses of the problem. We then focus on problem

instances that may lack convexity, but that satisfy a certain independence property. We develop conver-

gent approximations for these instances, and we derive an iterative solution scheme that is reminiscent of

the discretization techniques used in semi-infinite programming. We also present a computational study

that illustrates the numerical behavior of our algorithm on standard benchmark instances.
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1 Introduction

We study the pessimistic bi-level problem, which we define as

minimize
x

f(x)

subject to g(x, y) ≤ 0 ∀y ∈ Y(x) = arg min
z
{h(x, z) : z ∈ Y (x)}

x ∈ X,

(PB)

where X ⊆ Rn, Y (x) ⊆ Y ⊆ Rm for all x ∈ X, f : X 7→ R and g, h : X × Y 7→ R. We call y the lower-level

decision and refer to the embedded minimization problem as the lower-level problem, respectively. We refer

to x as the upper-level decision. We stipulate that the decision x ∈ X satisfies the bi-level constraint if the

∗This work was done while the second author was a doctoral student at the Department of Computing, Imperial College.
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lower-level problem associated with x is infeasible. Note that the bi-level problem generalizes to multiple

constraints g1, . . . , gp : X×Y 7→ R if we set g(x, y) = max {gi(x, y) : i = 1, . . . , p}. It also extends to certain

classes of min-max problems with coupled constraints [82].

It is worthwhile to notice that the bi-level problem (PB) deviates slightly from the standard formulation

min
x∈X

sup
y∈M2(x)

f1(x, y), where M2(x) = arg min
y∈Y

f2(x, y), (1)

see e.g. [24, 49]. In fact, the standard formulation (1) can be reformulated as an instance of (PB):

minimize
x,τ

τ

subject to τ ≥ f1(x, y) ∀y ∈ Y(x) = arg min
z
{f2(x, z) : z ∈ Y }

x ∈ X

On the other hand, the bi-level problem (PB) does not reduce to an instance of (1), unless we allow for

extended real-valued functions f1, f2 in (1).

Bi-level problems have a long history that dates back to the investigation of market equilibria by von

Stackelberg in the 1930s [35]. Bi-level problems have first been formalized as optimization problems in the

early 1970s [17]. In recent years, bi-level optimization has been applied to various domains including revenue

management [22], traffic planning [56], security [74], supply chain management [73], production planning [41],

process design [20], market deregulation [13], optimal taxation [8] and parameter estimation [16, 63].

The bi-level problem PB has a natural interpretation as a non-cooperative game between two players.

Player A (the ‘leader’) chooses her decision x first, and afterwards player B (the ‘follower’) observes x and

responds with a decision y. Both the objective function and the feasible region of the follower may depend on

the leader’s decision. Likewise, the leader has to satisfy a constraint that depends on the follower’s decision.

Since the leader cannot anticipate the follower’s decision, the constraint must be satisfied for any rational

decision of the follower, that is, for any decision y ∈ Y(x) that optimizes the follower’s objective function.

The above-stated pessimistic bi-level problem is perceived to be very difficult to solve. As a result, most

theoretical and algorithmic contributions to bi-level programming relate to the optimistic formulation, in

which the universal quantifier ‘∀’ in the bi-level constraint is replaced with an existential quantifier ‘∃’. In

a game-theoretic context, the optimistic problem can be justified in two ways. On one hand, there may

be limited cooperation between the players to the extent that the follower altruistically chooses an optimal

solution that also benefits the leader. On the other hand, the leader may be able to make small side payments

that bias the follower’s objective in her favor. Even though the optimistic and the pessimistic bi-level problem

are very similar, their optimal solutions can differ considerably as the following example shows.
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Example 1. Consider the following instance of the pessimistic bi-level problem.

minimize
x

x

subject to x ≥ y ∀y ∈ arg min
z

{
−z2 : z ∈ [−1, 1]

}
x ∈ R

The lower-level problem is optimized by z ∈ {−1, 1}, independent of the upper-level decision. The pessimistic

bi-level problem therefore requires x to exceed 1, resulting in an optimal objective value of 1. In contrast, the

optimistic bi-level problem requires x to exceed −1, which results in an optimal objective value of −1.

Many algorithms have been proposed for the bi-level problem. In the following, we review some of the

methods that determine globally optimal solutions. For surveys of local optimization approaches and opti-

mality conditions, see [4, 7, 21, 24, 76, 86] and the articles in [33]. We review the literature on the complexity

of the bi-level problem in Section 2.2. The relationship between bi-level problems and min-max problems,

generalized semi-infinite programs, mathematical programs with equilibrium constraints and multicriteria op-

timization is explored in [32, 51, 61, 72, 77]. For more general multi-level optimization problems, see [19, 57].

The most benign class of bi-level problems concerns the optimistic variant and stipulates that the functions

f , g and h are affine, while the feasible regions X and Y (x) are described by polyhedra. Although these

linear optimistic bi-level problems are nonconvex, they are known to be optimized by an extreme point

of the polyhedron Ω = {(x, y) ∈ Rn × Rm : x ∈ X, y ∈ Y (x), g(x, y) ≤ 0}. Several algorithms have been

proposed that enumerate the extreme points of Ω, see [12]. If the lower-level problem of an optimistic bi-

level problem is convex and some mild constraint qualifications are satisfied, then the Karush-Kuhn-Tucker

conditions are necessary and sufficient for the global optimality of the lower-level problem. We can then

replace the bi-level problem with a single-level problem that contains the Karush-Kuhn-Tucker conditions as

constraints. The resulting problem is nonconvex and can be solved with DC (difference of convex functions)

optimization techniques or tailored branch-and-bound algorithms, see [1, 3, 37, 38]. Alternatively, if the

lower-level problem of an optimistic bi-level problem is linear or convex quadratic, then one can use multi-

parametric programming techniques to solve the lower-level problem parametrically for each upper-level

decision x, see [29, 30, 70]. The resulting piecewise affine solution map x 7→ y∗(x) records the optimal

lower-level decision y∗(x) for each upper-level decision x. The optimal upper-level decision is then found by

solving a single-level problem for each affine subregion of the solution map, where the lower-level decision y

is replaced with the affine function y∗(x).

Bi-level problems become much more challenging if the lower-level problem fails to be convex [61]. In

particular, the Karush-Kuhn-Tucker conditions are no longer sufficient for the global optimality of the lower-

level problem. Hence, a single-level formulation that replaces the lower-level problem with the Karush-Kuhn-

Tucker conditions results no longer in an equivalent reformulation, but merely in a conservative approxima-

tion [58]. If an optimistic bi-level problem contains a nonconvex lower-level problem that satisfies certain
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monotonicity requirements, then one can apply algorithms from monotonic optimization [84] to globally

solve the optimistic bi-level problem, see [85]. For optimistic bi-level problems with a generic nonconvex

lower-level problem, a global optimization method is developed in [65]. The algorithm computes paramet-

ric upper bounds on the optimal value function of the lower-level problem as a function of the upper-level

decisions. These parametric upper bounds can be used in an optimal value reformulation to construct a

relaxation of the bi-level problem that can be solved as a single-level problem. Each of these single-level

problems provides a lower bound on the optimal objective value of the bi-level problem. By solving the

lower-level problem for a fixed value of the upper-level decisions and afterwards resolving the upper-level

problem using an optimal value reformulation, one also obtains an upper bound on the optimal objective

value. The authors present a method to iteratively tighten these bounds until the algorithm converges to the

globally optimal solution. They also elaborate several extensions of the algorithm, such as tightened lower

bounds using the Karush-Kuhn-Tucker conditions and a branching scheme for the upper-level decisions. The

method is extended to efficiently deal with continuous and discrete variables in [59], and an extension to

differential equations is proposed in [64]. A global optimization method for generalized semi-infinite, cou-

pled min-max and optimistic bi-level problems without any convexity assumptions is developed in [81]. The

algorithm relies on an ‘oracle’ optimization problem that decides whether a specified target objective value

is achievable. If the target value can be attained, then the oracle problem also determines a feasible solution

that attains the target value. The overall algorithm conducts a binary search over all target objective values

to determine the globally optimal solution. Finally, the paper [62] compiles a test set of linear, convex and

nonconvex bi-level problems with optimal solutions to the optimistic formulation.

Typically, the algorithms for the optimistic bi-level problem do not extend to the pessimistic formulation.

One may try to avoid this issue by solving the optimistic formulation and afterwards—should there be multi-

ple optimal lower-level solutions—perturb the upper-level decision so that a unique optimal lower-level solu-

tion is induced, see [24, §7.1] and [75]. However, Example 1 shows that such a perturbation may not exist.

Although the algorithms for the optimistic bi-level problem do not directly extend to the pessimistic

formulation, several papers suggest to solve the pessimistic bi-level problem indirectly through a sequence of

optimistic bi-level problems [49, 53, 54, 66]. In these papers, the objective function of the lower-level problem

is amended with a penalty term which favors lower-level decisions that lead to higher costs in the upper-level

objective. Under certain assumptions, the optimal solutions to these optimistic bi-level problems converge

to the optimal solutions of the pessimistic formulation if the coefficient of the penalty term is decreased to

zero. However, none of the papers provide numerical results for this scheme, and it remains unclear how well

the penalization method would work as part of a global optimization procedure.

We summarize the contributions of this paper as follows.

1. We analyze the structural properties of the pessimistic bi-level problem, including the existence of
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optimal solutions and the computational complexity. In particular, we identify an ‘independence’

property that facilitates the development of solution procedures.

2. We propose a solvable ε-approximation to the independent pessimistic bi-level problem, and we prove

convergence to the original problem when ε approaches zero. While similar approximations have been

suggested in the past, we provide a new condition that guarantees the convergence of our approximation.

3. We develop a solution procedure for the ε-approximations that does not require any convexity assump-

tions and that accommodates for integer lower-level and/or upper-level decisions. To our knowledge,

we propose the first direct solution scheme for the nonconvex pessimistic bi-level problem. We also

provide a computational study that examines the numerical behavior of our algorithm.

In the related book chapter [82], we provide an introduction to bi-level optimization that illustrates some

of the applications and computational challenges, and that outlines how bi-level problems can be solved. In

this paper, we provide a formal justification for the conjectures made in [82], we examine the computational

complexity of pessimistic bi-level problems, and we develop and analyze a solution scheme for these problems.

The remainder of this paper is structured as follows. In the next section, we study two structural

properties of the pessimistic bi-level problem: the existence of optimal solutions and the computational

complexity of the problem. In Section 3 we develop a sequence of approximate problems that are solvable

and whose optimal solutions converge to the optimal solutions of the pessimistic bi-level problem. We propose

an iterative solution scheme for these approximations in Section 4, and we demonstrate the performance of

our algorithm in Section 5. We conclude in Section 6.

2 Problem Analysis

We start with some terminology. The optimistic bi-level problem results from problem PB if we replace the

universal quantifier ‘∀’ with an existential quantifier ‘∃’. The optimistic bi-level problem can be equivalently

formulated as follows.

minimize
x,y

f(x)

subject to g(x, y) ≤ 0

y ∈ Y(x) = arg min
z
{h(x, z) : z ∈ Y (x)}

x ∈ X

If the set Y (x) in an optimistic or pessimistic bi-level problem does not depend on x, that is, if Y (x) =

Y (x′) for all x, x′ ∈ X, then we call the problem independent. In this case, we denote by Y the set of feasible

lower-level decisions. Note that the lower-level problem of an independent bi-level problem still depends

on the upper-level decision x through the lower-level objective function h. We denote the independent
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pessimistic bi-level problem by IPB. If Y (x) 6= Y (x′) for some x, x′ ∈ X, then we call the bi-level problem

dependent. Throughout this paper, we make the following regularity assumptions.

(A1) The sets X and Y (x), x ∈ X, are compact.

(A2) The functions f , g and h are continuous over their domains.

We allow the sets X and Y (x), x ∈ X, as well as the functions f , g and h, to be nonconvex. This implies

that some or all of the upper-level and/or lower-level decisions may be restricted to integer values.

Some of our results hold under weaker conditions. However, the aim of this paper is to develop a

numerical solution scheme for the pessimistic bi-level problem. Our algorithm requires the solution of global

optimization subproblems, and assumptions (A1) and (A2) are required by virtually all global optimization

procedures. For ease of exposition, we therefore do not present the most general statement of our results.

For our analysis in this section, we also define the linear dependent pessimistic bi-level problem.

minimize
x

c>x

subject to Ax+By ≥ b ∀y ∈ Y(x) = arg min
z∈Rm+

{
f>z : Cx+Dz ≥ g

}
x ∈ Rn+,

(2)

where c ∈ Rn, A ∈ Rp×n, B ∈ Rp×m, b ∈ Rp, f ∈ Rm, C ∈ Rq×n, D ∈ Rq×m and g ∈ Rq. In problem (2), the

lower-level objective could additionally contain a linear term d>x that depends on the upper-level decision

x. Such a term would not change the set of lower-level minimizers, however, and we omit it for ease of

exposition. We obtain the linear dependent optimistic bi-level problem if we replace the universal quantifier

‘∀’ in the bi-level constraint with an existential quantifier ‘∃’. We say that the linear optimistic or pessimistic

bi-level problem is independent if the lower-level problem satisfies C = 0.

Bi-level problems are closely related to (generalized) semi-infinite programs [40, 78]. Under some mild

conditions, a generalized semi-infinite program can be formulated as a dependent (optimistic or pessimistic)

bi-level problem in which the lower-level objective maximizes the violation of the generalized semi-infinite

constraint [77]. Similarly, under some mild conditions, a semi-infinite program can be formulated as an

independent (optimistic or pessimistic) bi-level problem in which the lower-level objective maximizes the

violation of the semi-infinite constraint. On the other hand, an optimistic (dependent or independent) bi-

level problem can be formulated as a generalized semi-infinite program in which the generalized semi-infinite

constraint ensures global optimality of the lower-level decision [77, 81]. Moreover, if the lower-level problem

is convex and satisfies a constraint qualification, then the generalized semi-infinite constraint can be replaced

with the optimality conditions for the lower-level problem, which results in a finite-dimensional single-level

problem [1, 3, 37, 38]. The situation changes significantly when we consider the pessimistic bi-level problem.

If the lower-level problem is convex and satisfies a constraint qualification, then the pessimistic bi-level
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problem can be formulated as a generalized semi-infinite program in which the upper-level constraint has

to hold for all lower-level decisions that satisfy the optimality conditions for the lower-level problem. If the

lower-level problem is strictly convex, then the optimality conditions have a unique solution, and we can

reformulate the pessimistic bi-level problem as a finite-dimensional single-level problem [1, 3, 37, 38]. We are

not aware of any reformulations that allow to reduce nonconvex pessimistic bi-level problems to (generalized)

semi-infinite programs, apart from the trivial case where the lower-level objective is constant.

In the remainder of this section, we first investigate under which conditions bi-level problems have optimal

solutions. Afterwards, we analyze the computational complexity of bi-level problems.

2.1 Existence of Optimal Solutions

Unlike other optimization problems, a bi-level problem may not possess an optimal solution even though it

is feasible and satisfies (A1) and (A2). This happens if the feasible region of the bi-level problem fails to be

closed. In this section, we show under which conditions the existence of optimal solutions is guaranteed.

In the most benign setting, a bi-level problem has at most one optimal lower-level decision associated with

each upper-level decision. In this case, a linear dependent bi-level problem is solvable if its feasible region is

nonempty and bounded [24, Theorem 3.2]. Equally, a nonlinear dependent bi-level problem is solvable if its

feasible region is nonempty and compact, and if the Mangasarian-Fromowitz constraint qualification holds

at all feasible solutions [24, Theorem 5.1].

In general, however, a bi-level problem can have (infinitely) many optimal lower-level decision associated

with some or all of the upper-level decisions. In this case, a linear dependent optimistic bi-level problem

is solvable if its feasible region is nonempty and bounded [24, Theorem 3.3]. This result includes linear

independent optimistic bi-level problems as a special case. On the other hand, the linear independent

pessimistic bi-level problem is not solvable in general, see e.g. the example presented in [24, §3.3]. This

implies that in general, the linear dependent pessimistic bi-level problem is not solvable either.

A nonlinear dependent optimistic bi-level problem is solvable if its feasible region is nonempty and

compact, and if the Mangasarian-Fromowitz constraint qualification holds at all feasible solutions [24, The-

orem 5.2]. On the other hand, a nonlinear dependent pessimistic bi-level problem in the standard formu-

lation (1) is solvable if its feasible region is nonempty and compact, and if the set of lower-level optimal

solutions is lower semicontinuous for all upper-level decisions, see e.g. [24, Theorem 5.3] or [50]. To ensure

lower semicontinuity of the set of lower-level optimal solutions, it is sufficient to assume that the feasible

region of the bi-level problem is polyhedral, the upper-level objective function is continuous and the lower-

level objective function is convex and weakly analytic [50]. Alternative sufficient conditions are presented

in [43, 71, 88] and the references therein. As pointed out in [44], however, these assumptions are very strong,

and they are not even satisfied for linear independent pessimistic bi-level problems.
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We now present a set of alternative existence conditions that focus on the property of independence.

Theorem 1 (Existence of Optimal Solutions). Assume that the assumptions (A1) and (A2) are satisfied

and that the bi-level problem is feasible. Then the following properties hold.

1. The independent optimistic bi-level problem has an optimal solution.

2. The independent pessimistic bi-level problem has an optimal solution if the objective function h of

the lower-level problem is (additively) separable. Otherwise, it does not have an optimal solution in

general [24].

3. The dependent optimistic and pessimistic bi-level problems do not have optimal solutions in general,

even if the objective function h of the lower-level problem is separable.

Proof. We prove the three properties separately.

1. We note that the lower-level problem must be feasible for some upper-level decision x since it is assumed

that the bi-level problem is feasible. Since the bi-level problem is independent, however, this implies that

the lower-level problem must indeed be feasible for all upper-level decisions x ∈ X. The lower-level problem

attains its optimal objective value for all x ∈ X due to the Extreme Value Theorem since h is continuous

and Y is compact. For a fixed x ∈ X, we can therefore denote the optimal objective value of the lower-level

problem by h∗(x) = min {h(x, y) : y ∈ Y }. Using the well-known optimal value reformulation [26, 65, 68],

the independent optimistic bi-level problem can then be expressed as follows.

minimize
x,y

f(x)

subject to g(x, y) ≤ 0

h(x, y) ≤ h∗(x)

x ∈ X, y ∈ Y

(3)

The function h∗ is continuous since it constitutes the minimum of continuous functions. Hence, the feasible

region of problem (3) is compact, and due to the continuity of f we can employ the Extreme Value Theorem

to conclude that the independent optimistic bi-level problem has an optimal solution.

2. Assume that h is separable, that is, h(x, y) = h1(x) + h2(y) for continuous functions h1 : X 7→ R

and h2 : Y 7→ R. The lower-level problem is feasible for all upper-level decisions x ∈ X if and only if it

is feasible for some upper-level decision x. If the lower-level problem is infeasible, then the existence of an

optimal solution to the bi-level problem follows from the Extreme Value Theorem since X is compact and f is

continuous. Assume now that the lower-level problem is feasible. In this case, the lower-level problem attains

its optimal objective value for all x ∈ X due to the Extreme Value Theorem since h2 is continuous and Y is

compact. For a fixed x ∈ X, we can therefore denote the optimal objective value of the lower-level problem
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by h∗(x) = h1(x) + h∗2, where h∗2 = min {h2(y) : y ∈ Y }. Using again an optimal value reformulation, the

set of optimal solutions to the lower-level problem can then be described as

{y ∈ Y : h1(x) + h2(y) ≤ h∗(x)} = {y ∈ Y : h2(y) ≤ h∗2} .

The set on the right-hand side of this identity does not depend on x, and it is compact since h2 is continuous

and Y is compact. If we denote this set by Y, then we can reformulate the bi-level constraint as

max {g(x, y) : y ∈ Y} ≤ 0.

The expression on the left-hand side of this inequality is a continuous function of x since it constitutes the

maximum of continuous functions. Hence, the feasible region of the independent pessimistic bi-level problem

is compact, and due to the continuity of f we can employ the Extreme Value Theorem to conclude that the

independent pessimistic bi-level problem has an optimal solution if h is separable.

Section 3.3 in [24] presents an instance of the independent pessimistic bi-level problem with a non-

separable function h that has no optimal solution. This concludes the second part of the proof.

3. Consider the following dependent pessimistic bi-level problem:

maximize
x

x

subject to x ≤ y ∀y ∈ arg min
z
{z : xz ≤ 0, z ∈ [−1, 1]}

x ∈ [−1, 1]

For x < 0, the unique optimizer of the lower-level problem is y = 0, which implies that the upper-level

constraint is satisfied. For x ≥ 0, on the other hand, the unique optimizer of the lower-level problem

is y = −1, which implies that the upper-level constraint is violated. As a result, the feasible region is

[−1, 0), and the problem has no optimal solution. Moreover, since the lower-level problem always has a

unique optimizer, the pessimistic and the optimistic formulation of this problem are equivalent, that is, the

optimistic formulation has no optimal solution either.

Theorem 1 confirms the conventional wisdom that pessimistic bi-level problems are less well-behaved

than optimistic bi-level problems. It also shows that independent bi-level problems are more well-behaved

than their dependent counterparts. In the next section we will complement these results with an analysis of

the computational complexity of various formulations of the bi-level problem.

2.2 Computational Complexity

Clearly, we expect the bi-level problem to be difficult to solve if the objective function f or the feasible regions

X or Y (x) are nonconvex. Unlike other optimization problems, however, the bi-level problem remains

computationally challenging even in seemingly benign cases. In particular, the linear dependent bi-level
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problem is well-known to be NP-hard. Amongst others, this has been proven in [6, 9, 14]. These results are

strengthened in [27, 39, 42, 55], where it is shown that the linear dependent bi-level problem is indeed strongly

NP-hard. In fact, verifying local optimality of a given candidate solution for the linear dependent bi-level

problem is NP-hard [55, 87], and it has been shown in [18] that linear dependent bi-level problems can

possess exponentially many local optima. Nevertheless, linear bi-level problems can be solved in polynomial

time if the number m of lower-level decision variables is considered constant. This result, which is repeated

below in Theorem 2, is discussed in [27, 28, 45, 46, 47]. The complexity of multi-level problems, which

contain several layers of nested lower-level problems, is studied in [14, 27, 42]. More detailed reviews of the

complexity of bi-level problems can be found in [19, 27, 69].

The following theorem compiles several known as well as some new results about the complexity of

the linear bi-level problem. Our objective is to highlight the differences between the independent and the

dependent formulation of the problem.

Theorem 2 (Linear Bi-Level Problem). Assume that (A1) holds, and consider the linear bi-level problem (2).

1. The independent optimistic and independent pessimistic formulation of problem (2) can be solved in

polynomial time.

2. The dependent optimistic and dependent pessimistic formulation of problem (2) can be solved in poly-

nomial time if m, the number of lower-level decision variables, is constant [27]. Otherwise, both

formulations are strongly NP-hard [42].

Remark 1. The polynomial-time solvability of the independent formulation of problem (2) may seem trivial

since the set of optimal lower-level solutions does not depend on the upper-level decision. However, it is easy

to construct problem instances that possess infinitely many optimal lower-level solutions that are described

by a polyhedron with exponentially many vertices. This is the case, for example, if f = 0, which implies that

all solutions of the inequality system Dz ≥ g are optimizers in the lower-level problem. It is therefore not a

priori clear whether the independent formulation of problem (2) can be solved efficiently.

Proof of Theorem 2. Consider the bi-level constraint of the linear independent optimistic bi-level problem:

∃y ∈ arg min
z∈Rm+

{
f>z : Dz ≥ g

}
: Ax+By ≥ b

Define f? = min
z∈Rm+

{
f>z : Dz ≥ g

}
as the optimal value of the lower-level problem. Then y ∈ Rm+ is an

optimal solution to the lower-level problem if and only if Dy ≥ g and f>y ≤ f?. We therefore conclude that

the constraints of the linear independent optimistic bi-level problem are satisfied if and only if

∃y ∈ Rm+ : Dy ≥ g, f>y ≤ f?, Ax+By ≥ b.
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We can then reformulate the linear independent optimistic bi-level problem as follows.

minimize
x,y

c>x

subject to Ax+By ≥ b

Dy ≥ g, f>y ≤ f?

x ∈ Rn+, y ∈ Rm+

This is a linear program whose size is polynomial in the length of the input data, that is, the vectors b, c, f

and g, as well as the matrices A, B and D. We can use the ellipsoid method or interior point techniques to

solve this problem in polynomial time [67].

Consider now the constraints of the linear independent pessimistic bi-level problem:

Ax+By ≥ b ∀y ∈ arg min
z∈Rm+

{
f>z : Dz ≥ g

}
From the first part of this proof we know that y ∈ Rm+ is an optimal solution to the lower-level problem

if and only if Dy ≥ g and f>y ≤ f?. Hence, the bi-level constraint of the linear independent pessimistic

bi-level problem is equivalent to

Ax+By ≥ b ∀y ∈
{
z ∈ Rm+ : Dz ≥ g, f>z ≤ f?

}
.

Let A>i and B>i denote the ith row of matrix A and B, respectively. We can then reformulate the constraints

of the linear independent pessimistic bi-level problem as follows.

A>i x+ min
y∈Rm+

{
B>i y : Dy ≥ g, f>y ≤ f?

}
≥ bi ∀i = 1, . . . , p

Due to linear programming duality, the embedded minimization problem is equivalent to

max
γ,δ

{
g>γ − f?δ : D>γ ≤ Bi + fδ, γ ∈ Rq+, δ ∈ R+

}
.

We thus conclude that the ith constraint of the linear independent pessimistic bi-level problem is satisfied if

and only if there is γ ∈ Rq+ and δ ∈ R+ such that

A>i x+ g>γ − f?δ ≥ bi, D>γ ≤ Bi + fδ.

This allows us to reformulate the linear independent pessimistic bi-level problem as follows.

minimize
x,Γ,δ

c>x

subject to Ax+ Γg − f?δ ≥ b

ΓD ≤ B + δf>

x ∈ Rn+, Γ ∈ Rp×q+ , δ ∈ Rp+
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Here, all inequalities are understood elementwise. Again, this is a linear program whose size is polynomial

in the length of the input data, that is, the vectors b, c, f and g, as well as the matrices A, B and D. We

thus conclude that the linear independent pessimistic bi-level problem can be solved in polynomial time.

The polynomial-time solvability of the linear dependent optimistic and pessimistic bi-level problem for

constant m follows from [27], and the strong NP-hardness for non-constant m is shown in [42].

The proof of the first part of Theorem 2 deserves further attention as it employs duality theory to

solve variants of the linear bi-level problem. Duality theory has been used previously to construct exact

penalty functions for linear and quadratic bi-level problems, see e.g. [2, 52, 89, 90]. In these methods, the

duality gap of the lower-level problem is included in the upper-level objective function to determine an

optimal upper-level solution that simultaneously optimizes the lower-level objective. In contrast, we use

duality theory to equivalently reformulate the independent bi-level problem as a polynomial-time solvable

single-level optimization problem. To this end, the property of independence turns out to be crucial.

Clearly, Theorem 2 also implies the strong NP-hardness of the nonlinear dependent bi-level problem if

the number m of lower-level variables is non-constant. It turns out, however, that even the most well-behaved

independent formulation of the nonlinear bi-level problem is already strongly NP-hard.

Theorem 3 (Nonlinear Bi-Level Problem). Assume that (A1) holds, and consider the independent bi-level

problem where f and g are affine, X and Y are polyhedral, and the objective function h of the lower-level

problem is quadratic and strictly convex. The optimistic and the pessimistic formulation of this problem are

strongly NP-hard.

Proof. If h is strictly convex, then the lower-level problem has a unique optimal solution for each upper-level

decision x ∈ X, and the optimistic and pessimistic formulation of the bi-level problem are equivalent. We

can therefore restrict ourselves to the pessimistic formulation in the following.

Our proof is based on a polynomial-time reduction to the strongly NP-hard KERNEL problem [36]:

KERNEL Problem.

Instance. An undirected graph G = (V,E) with nodes V = {1, . . . , n} and edges E ⊆ {{j, k} : j, k ∈ V }.

Question. Does G contain a kernel, that is, is there a subset of nodes K ⊆ V such that no nodes in K

are adjacent and all nodes in V \K are adjacent to nodes in K?

We assume that G does not contain any isolated nodes, that is, {k ∈ V : {j, k} ∈ E} 6= ∅ for all j ∈ V .

Indeed, if G only has isolated nodes, that is, if E = ∅, then K = V is a trivial kernel. Otherwise, if some of

the nodes in G are isolated, then the answer to KERNEL does not change if we remove those nodes.
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Consider the following instance of the independent pessimistic bi-level problem.

minimize
x,τ

τ

subject to xj + xk ≤ 1 ∀ {j, k} ∈ E

τ ≥
∑
j∈V

y2j ∀(y1, y2) ∈ arg min
(z1,z2)

{
‖x− z1‖22 +

1

2n
‖e− z2‖22 : (z1, z2) ∈ Y

}
x ∈ Rn+, τ ∈ R+,

(4)

where e denotes the n-dimensional vector of ones and

Y =
{

(z1, z2) ∈ Rn+ × Rn+ : z2j ≤ 1− z1j ∀j ∈ V, z2j ≤ 1− z1k ∀ {j, k} ∈ E
}
.

This problem satisfies the assumptions of the theorem. We claim that the problem attains an optimal

objective value of zero if and only if the graph G has a kernel. Moreover, we show that if G has a kernel,

then there is an optimal solution x with xj = 1 if j ∈ V is part of the kernel and xj = 0 otherwise. Intuitively,

the first upper-level constraint ensures that no two adjacent nodes can be part of the kernel, whereas the

bi-level constraint requires τ to exceed the number of nodes outside the kernel that are not adjacent to some

kernel node. Indeed, we will see that any optimal solution (y1, y2) to the lower-level problem satisfies y1 = x

and y2j = 1 if j ∈ V is a node outside the kernel that is not adjacent to any kernel node. This follows from

the definition of Y : the first constraint requires y2j to be zero if j is a kernel node, and the second constraint

ensures that y2j is zero if j is adjacent to any kernel node. Note that problem (4) is feasible for any graph G

since (x, τ) = (0, n) always constitutes a feasible solution, the associated optimal lower-level solution being

(y1, y2) = (0, e). Also, the optimal objective value of problem (4) is nonnegative by construction.

Our proof consists of three steps. First, we show that for a given upper-level decision x, every optimal

lower-level decision (y1, y2) satisfies y1 = x. Afterwards, we prove that every optimal (y1, y2) satisfies

y2j = min
{

1− y1j , min
{j,k}∈E

{1− y1k}
}

for all j ∈ V. (5)

Finally, we combine (5) with an argument presented in [39] to show that the graph G has a kernel if and

only if the optimal objective value of the bi-level problem (4) is zero.

In view of the first step, assume that (y1, y2) is an optimal lower-level decision that satisfies y1l = xl + δ

for some l ∈ V and δ 6= 0. Consider the lower-level decision (y′1, y
′
2) defined through y′1l = xl, y

′
1j = y1j for

j ∈ V \ {l}, as well as y′2j = max {0, y2j − |δ|} for j ∈ V . This decision satisfies y′2 ≥ 0 by construction, as

well as y′1 ≥ 0 since x ≥ 0 and y1 ≥ 0. One readily verifies that (y′1, y
′
2) also satisfies the other constraints of

Y . Hence, (y′1, y
′
2) ∈ Y , that is, (y′1, y

′
2) is feasible in the lower-level problem. Moreover, we obtain that

h(x; y1, y2)− h(x; y′1, y
′
2) ≥ δ2 − n

2n
δ2 =

1

2
δ2 > 0,

where

h(x; y1, y2) = ‖x− y1‖22 +
1

2n
‖e− y2‖22 for x ∈ X, (y1, y2) ∈ Y

13



denotes the objective function of the lower-level problem. We conclude that (y1, y2) is not optimal, and

hence every optimal lower-level solution indeed satisfies y1 = x.

As for the second step, assume that (y1, y2) is an optimal lower-level decision that does not satisfy (5).

Since (y1, y2) ∈ Y , this implies that there is l ∈ V and δ > 0 such that

y2l ≤ min
{

1− y1l, min
{l,k}∈E

{1− y1k}
}
− δ.

Consider the lower-level decision (y1, y
′
2) defined through y′2l = y2l + δ and y′2j = y2j for j ∈ V \ {l}. By

construction, we have that (y1, y
′
2) ∈ Y . Moreover, since any (z1, z2) ∈ Y satisfies z2 ≤ e due to the first

constraint of Y , the lower-level objective h is strictly decreasing in its last component vector over Y . Hence,

we obtain that h(x; y1, y
′
2) < h(x; y1, y2), which contradicts the optimality of (y1, y2). We therefore conclude

that every optimal lower-level decision (y1, y2) satisfies (5).

In view of the third step, assume that the graph G has a kernel K ⊆ V . In this case, x with xj = 1 if

j ∈ K and xj = 0 for j ∈ V \K satisfies the first upper-level constraint. Moreover, this choice of x ensures

that (y1, y2) = (x, 0) is feasible in the lower-level problem. Indeed, from the previous two steps we conclude

that (y1, y2) is optimal in the lower-level problem. Thus, the optimal value of τ associated with our choice

of x is zero, which implies that problem (4) attains an objective value of zero. Assume now that an optimal

solution (x, τ) to problem (4) attains an objective value of zero. From the bi-level constraint we know that

the optimal lower-level solution satisfies y2 = 0. Employing (5), we see that this entails the existence of a

set K = {j ∈ V : z1j = 1} such that every node in V \K is adjacent to at least one node of K. From the

first part of this proof we furthermore know that x = z1. Thus, the first upper-level constraint ensures that

no nodes in K are adjacent to each other. In this case, however, K must constitute a kernel of G.

Theorems 2 and 3 complement the existing complexity results for bi-level problems by distinguishing

between independent and dependent problems, as well as linear and nonlinear problems. In particular,

Theorem 2 shows that the linear independent bi-level problem can be solved in polynomial time, whereas its

dependent counterparts is strongly NP-hard. However, Theorem 3 shows that the tractability of the linear

independent bi-level problem does not carry over to nonlinear variants.

3 Convergent ε-Approximations

From now on, we will focus on the independent pessimistic bi-level problem IPB. We know from Theorem 1

that the feasible region of this problem may not be closed, which implies that the problem may not be
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solvable. In order to derive a solvable optimization problem, we now consider an ε-approximation of IPB:

minimize
x

f(x)

subject to g(x, y) ≤ 0 ∀y ∈ Yε(x) = {z ∈ Y : h(x, z) < h(x, z′) + ε ∀z′ ∈ Y }

x ∈ X

(IPB(ε))

Here, ε > 0 is a parameter. If Y is empty, then the bi-level constraint is vacuously satisfied for all x ∈ X,

and we can find an optimal solution to both the independent pessimistic bi-level problem IPB and any

ε-approximation IPB(ε) by minimizing f(x) over X. In the following, we assume that Y is nonempty.

From a game-theoretic perspective, the approximation IPB(ε) can be interpreted as a conservative

version of a Stackelberg leader-follower game in which the leader accounts for all ε-optimal decisions of the

follower. Apart from tractability considerations, problem IPB(ε) is of interest in its own right for at least

two reasons. Firstly, the leader in a Stackelberg game may have incomplete information, that is, she may not

know the values of all parameters in the follower’s optimization problem. In this case, the leader may want

to include some safety margin to hedge against deviations from the anticipated follower’s decision. Secondly,

the follower in a Stackelberg game may be constrained by bounded rationality, which implies that she may

not be able to solve the lower-level optimization problem to global optimality. In that case, the leader may

want to implement a decision that performs best in view of all ε-optimal decisions of the follower.

We now show that the ε-approximation IPB(ε) has a closed feasible region for any ε > 0.

Proposition 1 (Closedness of ε-Approximation). Assume that Y is nonempty and that (A1) and (A2) are

satisfied. Then the feasible region of IPB(ε) is closed for any ε > 0.

Proof. The Tietze Extension Theorem allows us to assume that the functions f , g and h are continuous on

the extended domains f : Rn 7→ R and g, h : Rn × Rm 7→ R. To avoid notational clutter, we use the same

symbols f , g and h for the extended functions in this proof. We denote by h∗ : Rn 7→ R the function that

maps an upper-level decision to the value of an optimal lower-level decision, that is,

h∗(x) = min
y∈Y

h(x, y) for x ∈ Rn.

The compactness of Y and the continuity of h guarantee that h∗(x) is well-defined for all x ∈ Rn. The set

Yε(x) of ε-optimal lower-level decisions in problem IPB(ε) can now be reformulated as

Yε(x) = {z ∈ Y : h(x, z) < h∗(x) + ε} .

Since the set X is closed, the feasible region of the ε-approximation IPB(ε) is closed if the set

Xε = {x ∈ Rn : g(x, y) ≤ 0 ∀y ∈ Yε(x)}

is closed. This set is closed if and only if its complement set

X ε = {x ∈ Rn : g(x, y) > 0 for some y ∈ Yε(x)}
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is open. To show that X ε is indeed open, we take an element x̂ of this set and show that x ∈ X ε for all

elements x in the δ-ball Bδ(x̂) around x̂, where δ > 0 is a constant that we will specify shortly.

Since x̂ ∈ X ε, there is ŷ ∈ Yε(x̂) such that g(x̂, ŷ) ≥ λg for some constant λg > 0, as well as h(x̂, ŷ) ≤

h∗(x̂) + ε−λh for some constant λh > 0. We show that g(x, ŷ) > 0 and h(x, ŷ) < h∗(x) + ε for all x ∈ Bδ(x̂).

The continuity of g implies that there is indeed a constant δg > 0 such that g(x, ŷ) > 0 for all x ∈ Bδg (x̂).

Similarly, the composite function (x, y) 7→ h(x, y)− h∗(x) is continuous because h∗ inherits continuity from

h. Hence, there is a constant δh > 0 such that h(x, ŷ) < h∗(x) + ε for all x ∈ Bδh(x̂), that is, ŷ ∈ Yε(x) for

all x ∈ Bδh(x̂). We thus conclude that for δ ≤ min {δg, δh}, we have x ∈ X ε for all x ∈ Bδ(x̂).

It is straightforward to generalize the ε-approximation IPB(ε) to dependent pessimistic bi-level problems.

However, the feasible region of the resulting approximate problems would not be closed in general. The

property of independence therefore turns out to be central to the development of our approximation scheme.

We now investigate whether the ε-approximation IPB(ε) converges in some suitable sense to the inde-

pendent pessimistic bi-level problem IPB. To this end, we define Y0(x) = Y(x) for x ∈ X, and we show that

that mapping ε 7→ Yε(x) is upper semicontinuous at zero, that is, the set of ε-optimal lower-level decisions

in IPB(ε) converges to the set Y(x) of optimal lower-level decisions in IPB as ε goes to zero.

Lemma 1. Assume that Y is nonempty and that (A1) and (A2) are satisfied. Then, for all x ∈ X the

set-valued mapping ε 7→ Yε(x) is Hausdorff upper semicontinuous at zero:

∀κ > 0 ∃ε > 0 such that ∀ε ∈ (0, ε], y ∈ Yε(x) ∃y′ ∈ Y(x) : ‖y − y′‖ ≤ κ

Proof. Fix some x ∈ X, and assume to the contrary that for some κ > 0 we have

∀ε > 0 ∃ε ∈ (0, ε], y ∈ Yε(x) : ‖y − y′‖ > κ ∀y′ ∈ Y(x).

For the sequence εk = 1/k, we can then construct sequences εk ∈ (0, εk] and yk ∈ Yεk(x) such that

‖yk − y′‖ > κ for all y′ ∈ Y(x).

Since Yεk(x) ⊆ Y for all k and Y is bounded, we can apply the Bolzano-Weierstrass Theorem to conclude

that yk has a convergent subsequence. Without loss of generality, we assume that the sequence yk itself

converges to y∗. By construction, the limit y∗ satisfies

‖y∗ − y′‖ ≥ κ for all y′ ∈ Y(x).

However, from the closedness of Y and the continuity of h we conclude that

y∗ ∈ Y and h(x, y∗) ≤ h(x, y) ∀y ∈ Y,

that is, y∗ ∈ Y(x). This contradicts the fact that there is κ > 0 such that ‖y∗ − y′‖ ≥ κ for all y′ ∈ Y(x).

We thus conclude that our assumption was wrong, that is, the assertion of the lemma is indeed valid.
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We now show that the upper semicontinuity of the mapping ε 7→ Yε(x) carries over to the bi-level

constraint function. This is a not a new observation; a similar result can be found in [5, Theorem 4.2.2]. To

keep the paper self-contained, however, we provide an independent proof in the following.

Lemma 2. Assume that Y is nonempty and that (A1) and (A2) are satisfied. Then, for all x ∈ X the

mapping ε 7→ sup{g(x, y) : y ∈ Yε(x)} is upper semicontinuous at zero:

∀κ > 0 ∃ε > 0 such that sup
y∈Yε(x)

g(x, y) ≤ sup
y∈Y(x)

g(x, y) + κ ∀ε ∈ (0, ε]

Proof. Fix some x ∈ X and κ > 0. Since X and Y are compact, we can apply the Heine-Cantor Theorem

to conclude that g is uniformly continuous over its support X × Y . Hence, there is δg > 0 such that

∀y, y′ ∈ Y : ‖y − y′‖ ≤ δg =⇒ |g(x, y)− g(x, y′)| ≤ κ.

For this δg, we can now apply Lemma 1 to ensure that

∃ε > 0 such that ∀ε ∈ (0, ε], y ∈ Yε(x) ∃y′ ∈ Y(x) : ‖y − y′‖ ≤ δg.

Taken together, the last two statements imply that there is ε > 0 such that for all ε ∈ (0, ε], we have

∀y ∈ Yε(x) ∃y′ ∈ Y(x) such that |g(x, y)− g(x, y′)| ≤ κ.

The assertion now follows from the continuity of g.

We now show that under certain conditions, the upper semicontinuity of the mapping ε 7→ sup{g(x, y) :

y ∈ Yε(x)} implies that the optimal value of the ε-approximation IPB(ε) ‘converges’ (in some well-defined

sense) to the optimal value of the independent pessimistic bi-level problem IPB. We intentionally use

quotation marks in this statement because IPB may not have an optimal value, see Theorem 1. We therefore

consider a variant of IPB in which we replace the feasible region of IPB with its closure. By construction, this

problem—which we refer to as cl(IPB)—has an optimal solution whenever its feasible region is nonempty.

The following observation summarizes some basic relationships between IPB and cl(IPB).

Observation 1. Assume that (A1) and (A2) are satisfied. Then the two problems IPB and cl(IPB) satisfy

the following properties.

1. cl(IPB) has a feasible solution if and only if IPB is feasible.

2. If IPB has an optimal solution x∗, then x∗ is also optimal in cl(IPB).

3. If cl(IPB) has an optimal solution x∗, then there exists a sequence of feasible solutions {xk}k∈N for

IPB that converges to x∗.
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By a slight abuse of notation, we denote by cl(IPB) both the closed independent pessimistic bi-level

problem and its optimal value (with the convention that cl(IPB) = +∞ if the problem is infeasible). Like-

wise, we use IPB(ε) to refer to either the ε-approximation of IPB or the optimal value of this approximation.

In both cases, the meaning will be clear from the context.

If the independent pessimistic bi-level problem IPB is infeasible, then both the closed problem cl(IPB)

and all approximate problems {IPB(ε)}ε>0 are infeasible as well. We now show that the approximate

problems IPB(ε) converge to cl(IPB) if the independent pessimistic bi-level problem IPB is feasible.

Theorem 4 (Convergence of ε-Approximation). Assume that Y is nonempty, that (A1) and (A2) are

satisfied, that IPB is feasible and that cl(IPB) has an optimal solution x∗ that is not a local minimizer of

the function x 7→ sup{g(x, y) : y ∈ Y(x)} over X with value zero. Then we have

lim
ε↘0
IPB(ε) = cl(IPB).

Remark 2. The assumption that x∗ is not a local minimizer of the function x 7→ sup{g(x, y) : y ∈ Y(x)}

over X with value zero is reminiscent of a stability condition developed for global optimization problems,

see [83]. It is equivalent to the requirement that x∗ is the limit of a sequence of Slater points.

Proof of Theorem 4. By construction, the feasible region of IPB(ε) is a subset of the feasible region of IPB

and, a fortiori, cl(IPB). Hence, IPB(ε) ≥ cl(IPB) for all ε > 0, and we only have to show that

∀κ > 0 ∃ε > 0 such that IPB(ε) ≤ cl(IPB) + κ ∀ε ∈ (0, ε].

We distinguish between three different cases, depending on the value of the bi-level constraint in cl(IPB) at

x∗. Assume first that sup{g(x∗, y) : y ∈ Y(x)} < 0, and fix some κ > 0. In this case, there is λ > 0 such

that sup{g(x∗, y) : y ∈ Y(x)} ≤ −λ, and we can invoke Lemma 2 to conclude that there is ε > 0 such that

sup
y∈Yε(x∗)

g(x∗, y) ≤ 0 ∀ε ∈ (0, ε],

that is, x∗ is also feasible in IPB(ε) for all ε ∈ (0, ε]. Since the problems {IPB(ε)}ε>0 share the same

objective function f with cl(IPB), we conclude that IPB(ε) = cl(IPB) for all ε ∈ (0, ε] if sup{g(x∗, y) :

y ∈ Y(x)} < 0.

Assume now that sup{g(x∗, y) : y ∈ Y(x)} = 0, and fix some κ > 0. Since the objective function f in

cl(IPB) and {IPB(ε)}ε>0 is continuous, there is δ > 0 such that f(x) ≤ f(x∗) + κ for all x in the δ-ball

Bδ(x∗) around x∗. Moreover, since x∗ is not a local minimizer of the function x 7→ sup{g(x, y) : y ∈ Y(x)}

over X, there is x̂ ∈ Bδ(x∗)∩X such that sup{g(x̂, y) : y ∈ Y(x)} ≤ −λ for some λ > 0. We can again

invoke Lemma 2, this time to conclude that there is ε > 0 such that

sup
y∈Yε(x̂)

g(x̂, y) ≤ 0 ∀ε ∈ (0, ε],
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that is, x̂ is feasible in IPB(ε) for all ε ∈ (0, ε]. We therefore know that IPB(ε) ∈ [cl(IPB), cl(IPB) + κ]

for all ε ∈ (0, ε] if sup{g(x∗, y) : y ∈ Y(x)}=0. Since κ > 0 was chosen arbitrarily, the assertion follows.

Finally, the case sup{g(x∗, y) : y ∈ Y(x)} > 0 cannot arise because x∗ is assumed to be feasible.

Theorem 4 also provides a condition under which the ε-approximations IPB(ε) are feasible.

Corollary 1. Under the assumptions of Theorem 4, there is ε > 0 such that IPB(ε) is feasible for all

ε ∈ (0, ε].

The assumptions in Theorem 4 are both necessary and sufficient. In fact, one can easily construct

counterexamples where IPB(ε) does not converge to cl(IPB) if any of the assumptions is violated.

Example 2. Consider the following instance of the independent pessimistic bi-level problem.

minimize
x

x

subject to max
{
y − x− 2, 4− x2

}
≤ 0 ∀y ∈ arg min

y
{y : y ∈ [0, 1]}

x ∈ R

The function x 7→ sup {g(x, y) : y ∈ Y(x)} is nonpositive for x ≥ 2, positive for x ∈ (−∞, 2) \ {−2} and

zero for x = −2. Hence, the formulation IPB has its unique optimal solution at x = −2, which is a

local minimizer of the function x 7→ sup {g(x, y) : y ∈ Y(x)} with value zero. In contrast, the function

x 7→ sup {g(x, y) : y ∈ Yε(x)} is nonpositive for x ≥ 2 and positive for x ∈ (−∞, 2) for any ε > 0. Hence,

the approximate problems IPB(ε) have their unique optimal solutions at x = 2, and they do not converge to

the independent pessimistic bi-level problem IPB as ε goes to zero.

To sum up, the feasible region of the independent pessimistic bi-level problem IPB may not be closed,

which implies that IPB does not have an optimal solution in general. We considered a variant cl(IPB) of

IPB in which we replaced the feasible region of IPB with its closure. Problem cl(IPB) is feasible whenever

IPB is, but cl(IPB) is guaranteed to have an optimal solution whenever it is feasible. We have also presented

an ε-approximation IPB(ε) of IPB. Similar to cl(IPB), the approximate problems IPB(ε) have optimal

solutions whenever they are feasible, and we have shown that the optimal values of IPB(ε) converge to the

optimal value of cl(IPB) under some technical condition.

The idea of replacing bi-level problems with ε-approximations is not new, see e.g. [23, 25, 31]. A Stack-

elberg game with polyhedral feasible regions for both players, quadratic leader objective function and linear

follower objective function is studied in [53], and the authors present an ε-approximation to the problem.

Approximations to generic nonconvex bi-level problems are developed by Molodtsov [66], as well as Loridan,

Morgan and co-authors, see e.g. [48]. Our main contribution in this section is to provide a new condition

that guarantees the convergence of our ε-approximation.
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4 Iterative Solution Procedure

In this section, we fix a value ε > 0 for the approximate problem IPB(ε) and develop an iterative solution

procedure for IPB(ε) that is reminiscent of the discretization schemes used in the solution of semi-infinite

programs. To this end, we first reformulate IPB(ε) as an infinite-dimensional single-level problem.

Proposition 2. The approximate problem IPB(ε) is equivalent to the infinite-dimensional problem

minimize
x,z,λ

f(x)

subject to λ(y) · [h(x, z)− h(x, y) + ε] + (1− λ(y)) · [g(x, y)] ≤ 0 ∀y ∈ Y

x ∈ X, z ∈ Y, λ : Y 7→ [0, 1] ,

(6)

where the function λ : Y 7→ [0, 1] is a decision variable.

Proof. By definition, the bi-level constraint in IPB(ε) is equivalent to the following semi-infinite constraint:1

[y ∈ Yε(x) ⇒ g(x, y) ≤ 0] ∀y ∈ Y

⇐⇒ [y /∈ Yε(x)] ∨ [g(x, y) ≤ 0] ∀y ∈ Y (7)

From the definition of the set Yε(x), we conclude that y /∈ Yε(x) if and only if

∃z ∈ Y : h(x, y) ≥ h(x, z) + ε.

Satisfaction of the semi-infinite constraint (7) is therefore equivalent to the existence of z ∈ Y such that

[h(x, y) ≥ h(x, z) + ε] ∨ [g(x, y) ≤ 0] ∀y ∈ Y.

For a fixed lower-level decision y ∈ Y , this constraint can be reformulated as

∃λ ∈ [0, 1] : λ [h(x, z)− h(x, y) + ε] + (1− λ) [g(x, y)] ≤ 0.

The assertion now follows if we introduce a different variable λ(y) for each y ∈ Y .

We propose to solve the infinite-dimensional optimization problem (6) with an iterative solution scheme

that is inspired by the discretization techniques used in semi-infinite programming [15, 40]. Our solution

scheme is described in Algorithm 1. At its core, the algorithm solves a sequence of finite-dimensional

approximations (6k) of problem (6) that involve subsets of the constraints parametrized by y ∈ Y , as well

as subsets of the decision variables λ(y), y ∈ Y . Each of these approximations constitutes a relaxation of

problem (6) in the sense that any feasible solution to (6) can be reduced to a feasible solution in (6k), whereas

1The semi-infinite disjunctive constraint (7) bears some similarity to the exposition in [65]. In that paper, however, disjunctive

constraints are used to enforce dependent second-stage constraints, whereas we employ them to enforce the bi-level constraint

for all approximate second-stage solutions y ∈ Yε(x).
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1. Initialization. Set Y0 = ∅ (considered lower-level decisions) and k = 0 (iteration counter).

2. Master Problem. Solve the following finite-dimensional approximation of problem (6):

minimize
x,z,λ

f(x)

subject to λ(yk) · [h(x, z)− h(x, yk) + ε] + (1− λ(yk)) · [g(x, yk)] ≤ 0 ∀yk ∈ Yk
x ∈ X, z ∈ Y, λ : Yk 7→ [0, 1]

(6k)

Let (xk, zk, λk) denote an optimal solution to this problem.

3. Subproblem. Calculate the value hk = min {h(xk, z) : z ∈ Y } of the lower-level problem

associated with xk, and solve the problem

maximize
τ,y

τ

subject to τ ≤ hk − h(xk, y) + ε

τ ≤ g(xk, y)

τ ∈ R, y ∈ Y.

Let (τk, yk) denote an optimal solution to this problem.

4. Termination Criterion. If τk ≤ 0, terminate: xk solves the approximate problem IPB(ε).

Otherwise, set Yk+1 = Yk ∪ {yk}, k → k + 1 and go back to Step 2.

Algorithm 1. Iterative solution scheme for the infinite-dimensional problem (6).

it may not be possible to extend a feasible solution to (6k) to a feasible solution in (6). Step 3 of the algorithm

aims to identify a constraint in problem (6) that cannot be satisfied by any extension of the optimal solution

to the relaxation (6k). If no such constraint exists, then the optimal solution to (6k) can be extended

to an optimal solution in (6), and the algorithm terminates. Otherwise, we refine the finite-dimensional

approximation (6k) and enter the next iteration. We now prove the correctness of the algorithm.

Theorem 5. Assume that (A1) and (A2) are satisfied. If Algorithm 1 terminates in Step 4 of the k-th

iteration, then xk can be extended to an optimal solution of problem (6). If Algorithm 1 does not terminate,

then the sequence {xk}k∈N contains accumulation points, and any accumulation point of {xk}k∈N can be

extended to an optimal solution of (6).

Proof. Assume that Algorithm 1 terminates in Step 4 of the k-th iteration. In that case, we have

τk ≤ 0 ⇐⇒ max
y∈Y

min

{
min
z∈Y

h(xk, z)− h(xk, y) + ε, g(xk, y)

}
≤ 0

⇐⇒ max
y∈Y

min
λ∈[0,1]

λ ·
[
min
z∈Y

h(xk, z)− h(xk, y) + ε

]
+ (1− λ) · [g(xk, y)] ≤ 0.
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By construction, the last inequality is equivalent to

∃λ : Y 7→ [0, 1] : λ(y) ·
[
min
z∈Y

h(xk, z)− h(xk, y) + ε

]
+ (1− λ(y)) · [g(xk, y)] ≤ 0 ∀y ∈ Y,

that is, xk can be extended to a feasible solution (xk, z, λ) to problem (6) if we choose z ∈ arg min{h(xk, y) :

y ∈ Y }. Since problem (6k) constitutes a relaxation of problem (6) and both problems share the same

objective function, this implies that the solution (xk, z, λ) is indeed optimal in problem (6).

Assume now that Algorithm 1 does not terminate. Since the sets X and Y are bounded, we can apply the

Bolzano-Weierstrass Theorem to conclude that the sequence {(xk, yk)}k∈N generated by Algorithm 1 contains

accumulation points. By selecting any accumulation point and possibly going over to subsequences, we can

assume that the sequence {(xk, yk)}k∈N itself converges to (x∗, y∗). The closedness of X and Y guarantees

that x∗ ∈ X and y∗ ∈ Y . We apply a similar reasoning as in Theorem 2.1 in [15] to show that x∗ can be

extended to a feasible solution (x∗, z, λ) to problem (6). Choosing again z ∈ arg min {h(x∗, y) : y ∈ Y }, we

need to show that there is a function λ : Y 7→ [0, 1] such that

λ(y) ·
[
min
z∈Y

h(x∗, z)− h(x∗, y) + ε

]
+ (1− λ(y)) · [g(x∗, y)] ≤ 0 ∀y ∈ Y.

Assume to the contrary that there is ŷ ∈ Y such that

λ ·
[
min
z∈Y

h(x∗, z)− h(x∗, ŷ) + ε

]
+ (1− λ) · [g(x∗, ŷ)] ≥ δ

for all λ ∈ [0, 1] and some δ > 0. The continuity of g and h implies that for k sufficiently large, we have

λ ·
[
min
z∈Y

h(xk, z)− h(xk, ŷ) + ε

]
+ (1− λ) · [g(xk, ŷ)] ≥ δ′

for all λ ∈ [0, 1] and some δ′ > 0. From the subproblem in Step 3 of Algorithm 1, we can see that

min

{
min
z∈Y

h(xk, z)− h(xk, yk) + ε, g(xk, yk)

}
≥ min

{
min
z∈Y

h(xk, z)− h(xk, ŷ) + ε, g(xk, ŷ)

}
,

that is,

λ ·
[
min
z∈Y

h(xk, z)− h(xk, yk) + ε

]
+ (1− λ) · [g(xk, yk)] ≥ δ′

for all λ ∈ [0, 1]. Taking the limit as k goes to infinity, the continuity of g and h implies that

λ ·
[
min
z∈Y

h(x∗, z)− h(x∗, y∗) + ε

]
+ (1− λ) · [g(x∗, y∗)] ≥ δ′

for all λ ∈ [0, 1]. However, by construction of problem (6k), there is λ ∈ [0, 1] such that

λ ·
[
min
z∈Y

h(xk+1, z)− h(xk+1, yk) + ε

]
+ (1− λ) · [g(xk+1, yk)] ≤ 0

in the k + 1-st iteration of the algorithm. Taking again the limit as k goes to infinity, we see that

λ ·
[
min
z∈Y

h(x∗, z)− h(x∗, y∗) + ε

]
+ (1− λ) · [g(x∗, y∗)] ≤ 0
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for some λ ∈ [0, 1] since the sequence {xk+1}k∈N also converges to x∗. This yields a contradiction, and we

conclude that there is a function λ : Y 7→ [0, 1] such that

λ(y) ·
[
min
z∈Y

h(x∗, z)− h(x∗, y) + ε

]
+ (1− λ(y)) · [g(x∗, y)] ≤ 0 ∀y ∈ Y,

that is, x∗ can indeed be extended to a feasible solution (x∗, z, λ) to problem (6). We can now apply the

same reasoning as in the case of finite termination to conclude that (x∗, z, λ) actually solves (6).

Remark 3. Algorithm 1 is an example of an outer approximation scheme since it constructs a sequence

of infeasible solutions to problem IPB(ε) that converges to an optimal solution of IPB(ε). In practice,

Algorithm 1 is stopped as soon as the termination criterion in Step 4 is met approximately ( i.e., up to some

tolerance). Theorem 5 provides a formal justification for this approach in the sense that after sufficiently

many iterations of the algorithm, the resulting solution can be expected to be close to an optimal solution

of IPB(ε). Stronger guarantees can be obtained if problem IPB(ε) is solved with an inner approximation

scheme. Under the assumptions of Theorem 4, IPB(ε) inherits Slater points from IPB if ε is sufficiently

small, see also Remark 2. We can then employ the reasoning in the proof of Proposition 2 to equivalently

reformulate problem IPB(ε) as the following semi-infinite program.

minimize
x,z

f(x)

subject to min {h(x, z)− h(x, y) + ε, g(x, y)} ≤ 0 ∀y ∈ Y

x ∈ X, z ∈ Y, λ : Y 7→ [0, 1]

One could try to solve this semi-infinite program with inner approximation schemes such as the adaptive

convexification algorithm presented in [34], solution approaches using interval analysis [10, 11] or methods

relying on clever restrictions of the constraint right-hand sides [60, 80]. Note, however, that additional

complications may arise due to the non-smoothness of the constraint function. For simplicity, we restrict

ourselves in the following to the outer approximation scheme presented in Algorithm 1.

We close with an extension of Algorithm 1 that will be used in our computational study.

Remark 4 (Tightened Master Problem). If we evaluate the semi-infinite constraint in problem (6) at y = z,

then we obtain

λ(z) · ε+ (1− λ(z)) · [g(x, z)] ≤ 0.

Since ε is strictly positive, any feasible solution to (6) must satisfy λ(z) < 1, that is, g(x, z) ≤ 0. In contrast,

an optimal solution (xk, zk, λk) to the finite-dimensional approximation (6k) may not satisfy g(xk, zk) ≤ 0 if

zk /∈ Yk. We therefore obtain a tighter approximation if we include the constraint g(x, z) ≤ 0 in problem (6k).

Similar constraints are used in Karush-Kuhn-Tucker methods for generalized semi-infinite programs, see [79].
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This seemingly insignificant extension of Algorithm 1 can lead to substantial performance improvements.

To illustrate this, consider the following instance of the independent pessimistic bi-level problem IPB:

minimize
x

x

subject to x ≥ y ∀y ∈ arg min
z
{|z − 2x| : z ∈ [0, 10]}

x ≥ 1

If we solve the approximate problem IPB(ε) for ε = 0.1, then Algorithm 1 terminates in iteration k = 81

with the optimal solution x81 = 10. Up to the penultimate iteration, the algorithm generates the sequence

xk = 1 + 0.05k, zk = 2xk, Yk = {2xl : l = 0, . . . , k − 1} and λk(yk) = 1 for all yk ∈ Yk. In each of these

iterations, xk is increased just enough so that the choice zk = 2xk satisfies h(xk, zk)− h(xk, yk) + ε ≤ 0 for

all lower-level decisions yk ∈ Yk in the master problem (6k). Intuitively, this choice of zk ensures that none

of the elements yk ∈ Yk is identified as an ε-optimal lower-level decision for xk. However, the resulting pairs

(xk, zk) are not feasible in IPB(ε) since they violate the constraint g(xk, zk) ≤ 0. As a result, up to the

penultimate iteration xk violates the bi-level constraint g(xk, yk) ≤ 0 for all considered lower-level decisions

yk ∈ Yk, and the algorithm performs an exhaustive exploration of the set Y of feasible lower-level decisions.

If we include the constraint g(x, z) ≤ 0 in problem (6k), then Algorithm 1 terminates in iteration k = 4

with the same optimal solution x4 = 10. In that case, the algorithm generates the sequence xk = min
{

2k, 10
}

,

zk ∈ [0, xk], Yk = {2xl : l = 0, . . . , k − 1} and λk(yk) = 0 for all yk ∈ Yk. The algorithm now ensures that

the resulting pairs (xk, zk) satisfy g(xk, zk) ≤ 0 in IPB(ε), that is, the choice zk = 2xk is no longer feasible

in (6k). The upper-level decision xk now satisfies g(xk, yk) ≤ 0 for all yk ∈ Yk in the master problem (6k).

Hence, the additional constraint g(x, z) ≤ 0 avoids an exhaustive exploration of the set Y in this case.

5 Computational Study

We applied an implementation of Algorithm 1 to the bi-level programming benchmark instances published

by Mitsos and Barton [62]. The test set comprises 36 problem instances. Out of these, six instances do not

contain upper-level decisions, and the respective lower-level problems have unique global minima. While

our algorithm can be applied to these problems, we do not report the results since all of these instances are

solved in the first iteration. In another 12 instances, the feasible region of the lower-level problem depends

on the upper-level decision, which implies that our solution scheme cannot be used to solve these instances.

In the following, we apply Algorithm 1 to the remaining 18 benchmark instances. The intermediate master

problems and subproblems were solved to global optimality on an 8-core Intel Xeon machine with 2.33GHz

clock speed and 8GB memory using GAMS 23.9 and BARON 11.1.2 We used the standard settings of

BARON, with the exception that we changed the optimality tolerance to 10−5.

2GAMS homepage: http://www.gams.com; BARON homepage: http://archimedes.cheme.cmu.edu/baron/baron.html.
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The numerical results are summarized in Table 1. From left to right, the columns of the table describe

the name of the problem instance, the number of upper-level and lower-level decision variables, the optimal

solution to the optimistic and the pessimistic bi-level problem, the parameter ε that specifies the approx-

imation quality of problem IPB(ε), as well as the number of iterations and the runtime in CPU seconds

required by Algorithm 1. For each problem instance, we report the analytical solutions in the first one or

two rows (italicized), while the numerical results determined by our solution scheme are given in the last

one or two rows (in roman font).

The table shows that the optimal solutions to the optimistic and the pessimistic bi-level formulation

coincide in 7 instances: mb 1 1 02, mb 1 1 03, mb 1 1 05, mb 1 1 08, mb 1 1 10, mb 1 1 14 and gf 4. In the

remaining 11 instances, the optimistic and the pessimistic formulation lead to different solutions. We discuss

these instances in further detail in the Appendix.

To further study the scalability of Algorithm 1, we consider a stylized production planning problem in

which two companies A and B manufacture a set of products indexed by i = 1, . . . , n. Company A is the

market leader, and as such it has to choose its production quantities x ∈ X = [0, 10]
n

first. Company B is a

market follower, which means that it can observe the production quantities x before choosing its production

levels y ∈ Y = [0, 10]
n
. The product prices are given by a function p : X×Y 7→ R+, which is defined through

pi(x, y) = 10− xi + yi
4

−
∑
j 6=i

xj + yj
8(n− 1)

, i = 1, . . . , n.

This expression reflects the assumption that the market clearing price for product i is decreasing in the

cumulative supply xi + yi of product i as well as the cumulative supply
∑
j 6=i

(xj + yj) of the other products,

that is, the goods are weak substitutes. Assuming that the production cost vectors for companies A and B

are given by cA ∈ Rn+ and cB ∈ Rn+, respectively, the problem can then be formulated as follows.

maximize
x,τ

τ

subject to τ ≤ [p(x, y)− cA]
>
x ∀y ∈ Y(x)

x ∈ [0, 10]
n
,

where Y(x) = arg max
z

{
[p(x, z)− cB ]

>
z : z ∈ [0, 10]

n
}
.

In this problem, both companies choose production quantities for the products that maximize the overall

profit. In the following, we want study the impact of the number of upper-level and lower-level decisions

on the tractability of the bi-level problem. To this end, we consider a variant of the production planning

problem where we vary the number of products manufactured by each company independently. The results

over 25 problem instances with uniformly distributed costs cA,i, cB,i ∼ U [3, 5] are shown in Table 2. While

small instances of the problem can be solved with reasonable effort, the table reveals that the runtime of

Algorithm 1 grows very quickly, in particular if the number of upper-level variables is increased.
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optimistic pessimistic

instance n m obj. x y obj. x y ε iter. CPU

mb 0 1 03 0 1
−1 − −1 1 − 1 − − −

− − − 1 − 1 0.001 1 0.12

mb 1 1 01 1 1
0 −0 .567 0 ∞ ∅ ∅ − − −

− − − ∞ ∅ ∅ 0.001 5 1.86

mb 1 1 02 1 1
−1 −1 −1 −1 −1 −1 − − −

− − − −1 −1 −1 0.001 2 0.92

mb 1 1 03 1 1
0 .5 [0 .1 , 1 ] 0 .5 0 .5 [0 .1 , 1 ] 0 .5 − − −

− − − 0.5 0.7256 0.5 0.001 3 1.54

mb 1 1 04 1 1
−0 .8 0 −0 .8 0 .5 (0 , 1 ] 0 .5 − − −

− − − 0.5 1 0.5 0.001 3 0.95

mb 1 1 05 1 1

0 0 0 0 0 0 − − −

− − − 0.0327 −0.0327 0 0.001 8 3.21

− − − 0.0201 −0.0201 0 0.0001 10 4.44

mb 1 1 06 1 1

−1 0 1 0 1 1 − − −

− − − 0 −1 −1 − − −

− − − 0 −1 −1 0.001 8 2.96

mb 1 1 07 1 1
0 .25 0 .25 0 .5 0 .25 + α

2
+ α 0 .25 + α

√
0 .25 + α − − −

− − − 0.2507 0.2507 0.5007 0.001 4 1.87

mb 1 1 08 1 1
0 −1 1 0 −1 1 − − −

− − − 0 −1 1 0.001 2 1.04

mb 1 1 09 1 1

−2 −1 0 −2 −1 0 − − −

−2 −0 .5 −1 − − − − − −

− − − −2 −1 0 0.001 3 1.50

mb 1 1 10 1 1
0 .1875 −0 .25 ±0 .5 0 .1875 −0 .25 ±0 .5 − − −

− − − 0.1875 −0.2481 −0.4980 0.001 3 1.52

mb 1 1 11 1 1
0 .25 0 .5 0 0 .25 + α

2
+ α 0 .5 + α 0 − − −

− − − 0.2510 0.5010 0 0.001 2 1.96

mb 1 1 12 1 1
−0 .258 0 .189 0 .4347 0 [−1 , 0 ] 0 − − −

− − − 0 −0.2214 0 0.001 4 2.67

mb 1 1 13 1 1
0 .3125 0 .5 0 .5 0 .3125 + 2α

2
+ 1 .5α 0 .5 + α 0 .5 + α − − −

− − − 0.3135 0.5007 0.5007 0.001 4 1.90

mb 1 1 14 1 1

0 .2095 −0 .5545 0 .4554 0 .2095 −0 .5545 0 .4554 − − −

− − − 0.2115 −0.5993 0.4599 0.001 4 1.47

− − − 0.2100 −0.5320 0.4532 0.0001 7 2.39

mb 1 1 17 1 1
−1 .7550 0 .2106 1 .7990 −0 .2929 0 0 .2929 − − −

− − − −0.2929 0 0.2929 0.001 10 4.37

mb 2 3 02 2 3
−2 .35 (−1 ,−1) (1 , 1 ,−0 .707) −0 .6838 (−

√
0 .1 ,−1) (−1 ,±1 , 0) − − −

− − − −0.6838 (−0.3162,−1) (−1,−1, 0) 0.001 10 4.26

gf 4 1 1
9 3 5 9 3 5 − − −

− − − 9 3 5 0.001 2 0.94

Table 1. Numerical results for Algorithm 1. From left to right, the columns describe the problem instance, the number

of upper-level and lower-level decisions, the optimal solution to the optimistic and the pessimistic bi-level problem, the

parameter ε of the approximation IPB(ε), as well as the number of iterations and the runtime in CPU seconds required

by Algorithm 1. For each problem instance, the first one or two rows report the analytical solutions (italicized), while

the last one or two rows document the numerical results for different values of ε (in roman font). Variables of value ‘∞’

indicate infeasible problems, and α represents an arbitrarily small positive number.
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# follower prods.

1 2 3 4 5
#

le
a
d

er
p

ro
d

s. 1 2 2 2 3 3

2 3 5 6 5 6

3 7 11 14 14 18

4 6 15 17 19 21

5 7 20 17 22 −

# follower prods.

1 2 3 4 5

#
le

a
d

er
p

ro
d

s. 1 0.13 0.17 0.18 0.23 0.27

2 0.68 0.75 0.71 0.91 0.98

3 1.02 7.66 56.53 178.80 220.91

4 1.19 58.17 709.90 1,423.72 1,602.41

5 1.06 192.08 1,501.79 2,325.03 −

Table 2. Numerical results for the scalability experiment. The tables show the numbers of iterations (left) and the

runtimes in CPU seconds (right) for different numbers of products manufactured by the companies. All results constitute

median values over 25 randomly generated problem instances. For the lower right problem (‘both companies produce

five products’), more than 50% of the generated instances exceeded the per-iteration time limit of 1,000 CPU seconds.

6 Conclusions

We studied the pessimistic bi-level problem without convexity assumptions. We derived conditions that

guarantee the existence of optimal solutions, and we investigated the computational complexity of various

problem formulations. We then examined a sequence of approximate problems that are solvable and that

converge (under some technical condition) to the pessimistic bi-level problem, and we developed an iterative

solution scheme for these approximations. We identified an independence property that is essential for both

the formulation and the solution of the approximate problems. To our best knowledge, we presented the

first direct solution method for the pessimistic bi-level problem.

It would be interesting to see how our approach can be extended to instances of the pessimistic bi-

level problem that do not possess the independence property. A promising starting point for such a study

would be to investigate how our solution scheme can be combined with the algorithm presented in [65] for

the dependent optimistic bi-level problem. Another avenue for future research is the development of local

optimization procedures that avoid a discretization of the bi-level constraint and thus scale more gracefully

with problem size. In particular, it would be instructure to investigate how inner approximation schemes

such as [10, 11, 34, 60, 80] can be applied to our approximations of the pessimistic bi-level problem.
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Appendix: Details of the Computational Study

We study the 11 instances of the test set from Section 5 in which the optimistic and the pessimistic formulation

lead to different solutions. We subdivide these instances into two classes. The first class comprises those

problems in which there are optimal solutions to the optimistic formulation that are close to optimal solutions

of the pessimistic formulation. The second class contains those problems in which there is no optimal solution

to the optimistic bi-level problem that is close to any of the optimal solutions to the pessimistic formulation.

We present the test instances both in a notation that is compatible with [62] and in a pseudo modeling

language. One can readily convert each instance into the form of IPB by introducing auxiliary variables

and constraints. For the sake of brevity, we omit the resulting problem formulations in the following.

6.1 Instance Class 1: Perturbed Optimistic and Pessimistic Solutions Coincide

Instance mb 1 1 04 (Nonconvex lower-level objective function parametrized in x):

minimize
x

max
y∈Y(x)

y

subject to x ∈ [−1, 1] ,

where Y(x) = arg min
z∈[−4/5,1]

{
x(16z4 + 2z3 − 8z2 − 3z/2 + 1/2)

}
Pseudo-Code:

variable x; x.lo = −1; x.up = 1;

variable y; y.lo = −4/5; y.up = 1;

objective up .. y;

objective lo .. x(16y4 + 2y3 − 8y2 − 3y/2 + 1/2);

For a fixed upper-level decision x, the set of optimal lower-level decisions is given by

Y(x) =


1 if −1 ≤ x < 0,

[−4/5, 1] if x = 0,

1/2 if 0 < x ≤ 1.

The optimistic formulation has the unique optimal solution (x, y) = (0,−4/5) with an objective value of

−4/5. However, the upper-level decision x = 0 is not optimal for the pessimistic formulation since y = 1 is

also an admissible lower-level solution for x = 0 that results in an objective value of 1. Instead, the pessimistic

formulation is optimized by any upper-level decision x ∈ (0, 1] with associated lower-level decision y = 1/2,

resulting in an objective value of 1/2.
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Instance mb 1 1 07 (Turning point bifurcation):

minimize
x

max
y∈Y(x)

(x− 1/4)
2

+ y2

subject to x ∈ [−1, 1] ,

where Y(x) = arg min
z∈[−1,1]

{
z3/3− xz

}
Pseudo-Code:

variable x; x.lo = −1; x.up = 1;

variable y; y.lo = −1; y.up = 1;

objective up .. (x− 1/4)
2

+ y2;

objective lo .. y3/3− xy;

For a fixed upper-level decision x, the set of optimal lower-level decisions is given by

Y(x) =


−1 if −1 ≤ x < 1/4,

{−1, 1/2} if x = 1/4,
√
x if 1/4 < x ≤ 1.

The optimistic formulation has the unique optimal solution (x, y) = (1/4, 1/2) with an objective value of

1/4. This solution, however, has an objective value of 1 in the pessimistic formulation since y = −1 is

another admissible lower-level solution for x = 1/4. Instead, the pessimistic formulation is optimized by

(x, y) = (1/4 + α,
√

1/4 + α) for a small positive α, resulting in an objective value of 1/4 + α2 + α.

Instance mb 1 1 11 (Supercritical pitchfork bifurcation with x as parameter):

minimize
x

max
y∈Y(x)

x2 + y2

subject to x ∈ [−1, 1] ,

where Y(x) = arg min
z∈[−1,1]

{
xz2 − z4/2

}
Pseudo-Code:

variable x; x.lo = −1; x.up = 1;

variable y; y.lo = −1; y.up = 1;

objective up .. x2 + y2;

objective lo .. xy2 − y4/2;

For a fixed upper-level decision x, the set of optimal lower-level decisions is given by

Y(x) =


±1 if −1 ≤ x < 1/2,

{0,±1} if x = 1/2,

0 if 1/2 < x ≤ 1.

33



The optimistic formulation has the unique optimal solution (x, y) = (1/2, 0) with an objective value of

1/4. This solution, however, has an objective value of 5/4 in the pessimistic formulation since y = ±1

are also admissible lower-level solutions for x = 1/2. Instead, the pessimistic formulation is optimized by

(x, y) = (1/2 + α, 0) for a small positive α, resulting in an objective value of 1/4 + α2 + α.

Instance mb 1 1 13 (Crossing KKT points):

minimize
x

max
y∈Y(x)

(x− 1/4)2 + y2

subject to x ∈ [−1, 1] ,

where Y(x) = arg min
z∈[−1,1]

{
z3/3− x2z

}
Pseudo-Code:

variable x; x.lo = −1; x.up = 1;

variable y; y.lo = −1; y.up = 1;

objective up .. (x− 1/4)2 + y2;

objective lo .. y3/3− x2y;

For a fixed upper-level decision x, the set of optimal lower-level decisions is given by

Y(x) =



−x if −1 ≤ x < −1/2,

{−1, 1/2} if x = −1/2,

−1 if −1/2 < x < 1/2,

{−1, 1/2} if x = 1/2,

x if 1/2 < x ≤ 1.

The optimistic formulation has the unique optimal solution (x, y) = (1/2, 1/2) with an objective value of

5/16. This solution, however, has an objective value of 17/16 in the pessimistic formulation since y = −1

is another admissible lower-level solution for x = 1/2. Instead, the pessimistic formulation is optimized by

(x, y) = (1/2 + α, 1/2 + α) for a small positive α, resulting in an objective value of 5/16 + 2α2 + 3α/2.

In the instance below, the optimal solutions to the pessimistic formulation form a subset of the set of

optimal solutions to the optimistic bi-level problem. No perturbation is required in this instance.

Instance mb 1 1 09 (Supercritical pitchfork bifurcation):

minimize
x

max
y∈Y(x)

2x+ y

subject to x ∈ [−1, 1] ,

where Y(x) = arg min
z∈[−1,1]

{
−xz2/2− z4/4

}
Pseudo-Code:
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variable x; x.lo = −1; x.up = 1;

variable y; y.lo = −1; y.up = 1;

objective up .. 2x+ y;

objective lo .. −xy2/2− y4/4;

For a fixed upper-level decision x, the set of optimal lower-level decisions is given by

Y(x) =


0 if −1 ≤ x < −1/2,

{0,±1} if x = −1/2,

±1 if −1/2 < x ≤ 1.

The optimistic formulation has two optimal solutions (x, y) ∈ {(−1, 0), (−1/2,−1)}, each of which results

in an objective value of −2. Out of these solutions, (x, y) = (−1, 0) also optimally solves the pessimistic

formulation, again with an objective value of −2. However, the upper-level decision x = −1/2 is not optimal

for the pessimistic formulation since the associated lower-level decision y = 1 results in an objective value of 0.

Contrary to the optimistic formulation, the pessimistic bi-level problem therefore has the unique optimal

solution (x, y) = (−1, 0).

6.2 Instance Class 2: Optimistic and Pessimistic Solutions Deviate

Instance mb 0 1 03 (Concave Inner Constraint):

minimize max
y∈Y

y,

where Y = arg min
z∈[−10,10]

{
z2 : z2 ≥ 1

}
Pseudo-Code:

variable x;

variable y; y.lo = −10; y.up = 10;

objective up .. y;

objective lo .. y2;

constraint lo .. y2 ≥ 1;

The set of optimal lower-level decisions is given by y = ±1. The optimistic formulation has the unique

optimal solution y = −1 with an objective value of −1. The pessimistic formulation, on the other hand, is

optimized by y = 1, which results in an objective value of 1.
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Instance mb 1 1 01 (Linear lower-level problem):

minimize
x

max
y∈Y(x)

y2

subject to −1/10 ≤ y ≤ 1/10 ∀y ∈ Y(x)

x ∈ [−1, 1] ,

where Y(x) = arg min
z∈[−1,1]

{z [x+ exp(x)]}

Pseudo-Code:

variable x; x.lo = −1; x.up = 1;

variable y; y.lo = −1/10; y.up = 1/10;

objective up .. y2;

objective lo .. y [x+ exp(x)];

constraint up .. −1/10 ≤ y ≤ 1/10;

For a fixed upper-level decision x, the set of optimal lower-level decisions is given by

Y(x) =


1 if −1 ≤ x < x̄,

[−1, 1] if x = x̄,

−1 if x̄ < x ≤ 1,

where x̄ ≈ −0.567 denotes the solution of the equation x̄ + exp(x̄) = 0. The optimistic formulation has

the unique optimal solution (x, y) = (x̄, 0) with an objective value of 0. This solution, however, violates

the constraint y ∈ [−1/10, 1/10] in the pessimistic formulation since y = ±1 are also admissible lower-

level solutions for x = x̄. Indeed, the upper-level constraint on y cannot be satisfied for any choice of the

upper-level decision x, which implies that the pessimistic formulation is infeasible.

Instance mb 1 1 06 (Supercritical pitchfork bifurcation with y as parameter):

minimize
x

max
y∈Y(x)

x− y

subject to x ∈ [−1, 1] ,

where Y(x) = arg min
z∈[−1,1]

{
xz2/2− zx3

}
Pseudo-Code:

variable x; x.lo = −1; x.up = 1;

variable y; y.lo = −1; y.up = 1;

objective up .. x− y;

objective lo .. xy2/2− yx3;
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For a fixed upper-level decision x, the set of optimal lower-level decisions is given by

Y(x) =


−1 if −1 ≤ x < 0,

[−1, 1] if x = 0,

x2 if 0 < x ≤ 1.

The optimistic formulation has the unique optimal solution (x, y) = (0, 1) with an objective value of −1. This

solution, however, has an objective value of 1 in the pessimistic formulation since y = −1 is another admissible

lower-level solution for x = 0. Instead, the pessimistic formulation is optimized by (x, y) ∈ {(−1,−1), (1, 1)},

both of which result in an objective value of 0.

Instance mb 1 1 12 (Supercritical pitchfork bifurcation with x as parameter):

minimize
x

max
y∈Y(x)

xy − y + y2/2

subject to x ∈ [−1, 1] ,

where Y(x) = arg min
z∈[−1,1]

{
−xz2 + z4/2

}
Pseudo-Code:

variable x; x.lo = −1; x.up = 1;

variable y; y.lo = −1; y.up = 1;

objective up .. xy − y + y2/2;

objective lo .. −xy2 + y4/2;

For a fixed upper-level decision x, the set of optimal lower-level decisions is given by

Y(x) =

 0 if −1 ≤ x ≤ 0,

±
√
x if 0 < x ≤ 1.

The optimistic formulation has the unique optimal solution (x, y) = (x̄,
√
x̄) with an objective value of ap-

proximately −0.258, where x̄ ≈ 0.189. This solution, however, has an objective value of approximately 0.447

in the pessimistic formulation since y = −
√
x̄ is another admissible lower-level solution for x = x̄. Instead,

the pessimistic formulation is optimized by any (x, y) ∈ [−1, 0]× {0}, resulting in an objective value of 0.

Instance mb 1 1 17 (Multiple global minima in lower-level problem):

minimize
x

max
y∈Y(x)

x2 − y

subject to x ∈ [0, 1] ,

where Y(x) = arg min
z∈[0,3]

{[
(z − 1− x/10)2 − x/2− 1/2

]2}
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Pseudo-Code:

variable x; x.lo = 0; x.up = 1;

variable y; y.lo = 0; y.up = 3;

objective up .. x2 − y;

objective lo ..
[
(y − 1− x/10)2 − x/2− 1/2

]2
;

For a fixed upper-level decision x, the set of optimal lower-level decisions is given by

Y(x) = {1 + x/10±
√

2 + 2x/2} for 0 ≤ x ≤ 1.

The optimistic formulation has the unique optimal solution (x, y) ≈ (0.2106, 1.799) with an objective value

of approximately −1.755. This solution, however, has an objective value of approximately −0.1987 in the

pessimistic formulation since y ≈ 0.243 is another admissible lower-level solution for x ≈ 0.2106. Instead, the

pessimistic formulation is optimized by (x, y) ≈ (0, 0.2929) with an objective value of approximately −0.2929.

Instance mb 2 3 02 (Separable problem):

minimize
x

max
y∈Y(x)

x1y1 + x2y
2
2 + x1x2y

3
3

subject to x ∈ [−1, 1]
2
, x2

1 ≥ 1/10

3/2 ≤ y2
1 + y2

2 + y2
3 ≤ 5/2 ∀y ∈ Y(x),

where Y(x) = arg min
z∈[−1,1]3

{
x1z

2
1 + x2z

2
2 + (x1 − x2)z2

3

}
Pseudo-Code:

variable x1; x1.lo = −1; x1.up = 1;

variable x2; x2.lo = −1; x2.up = 1;

variable y1; y1.lo = −1; y1.up = 1;

variable y2; y2.lo = −1; y2.up = 1;

variable y3; y3.lo = −1; y3.up = 1;

objective up .. x1y1 + x2y
2
2 + x1x2y

3
3 ;

objective lo .. x1y
2
1 + x2y

2
2 + (x1 − x2)y2

3 ;

constraint up .. x2
1 ≥ 1/10;

constraint up .. 3/2 ≤ y2
1 + y2

2 + y2
3 ≤ 5/2
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For a fixed upper-level decision x, the set of optimal lower-level decisions is given by

Y(x) =



(0, 0, 0) if x1 ≥
√

0.1, x1 > x2 > 0,

(0, 0, [−1, 1]) if x1 ≥
√

0.1, x1 = x2 > 0,

(0, 0,±1) if x1 ≥
√

0.1, x1 < x2, x2 > 0,

(0, [−1, 1] , 0) if x1 ≥
√

0.1, x1 > x2 = 0,

(0,±1, 0) if x1 ≥
√

0.1, x1 > x2, x2 < 0,

(±1, 0,±1) if x1 ≤ −
√

0.1, x1 < x2, x2 > 0,

(±1, [−1, 1] ,±1) if x1 ≤ −
√

0.1, x1 < x2 = 0,

(±1,±1, 0) if x1 ≤ −
√

0.1, x1 > x2, x2 < 0,

(±1,±1, [−1, 1]) if x1 ≤ −
√

0.1, x1 = x2 < 0,

(±1,±1,±1) if x1 ≤ −
√

0.1, x1 < x2 < 0.

The optimistic formulation has the unique optimal solution (x, y) =
((
−1,−1

)
,
(
1, 1,−

√
0.5
))

with an objec-

tive value of approximately −2.3534. This solution, however, violates the constraint y2
1 + y2

2 + y2
3 ∈ [1.5, 2.5]

in the pessimistic formulation since the lower-level solutions satisfying y ∈ {±1} × {±1} ×
([
−1,−

√
1/2
)
∪(√

1/2, 1
])

are also admissible for x = (−1,−1). Indeed, the pessimistic formulation is only feasible

for upper-level decisions x ∈
[
−1,−

√
1/10

]
×
(
0, 1
]

that satisfy x1 < x2, as well as upper-level deci-

sions x ∈
[
−1,−

√
1/10

]
×
[
−1, 0

)
that satisfy x1 > x2. The pessimistic formulation is optimized by

(x, y) ∈
{

(−
√

1/10,−1,−1,±1, 0)
}

with an objective value of approximately −0.683772.
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