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Abstract
We study a new form of attractor in parity games and use it to define

solvers that run in PTIME and are partial in that they do not solve all
games completely. Technically, for color c this new attractor determines
whether player c%2 can reach a set of nodes X of color c whilst avoiding
any nodes of color less than c. Such an attractor is fatal if player c%2 can
attract all nodes in X back to X in this manner. Our partial solvers detect
fixed-points of nodes based on fatal attractors and correctly classify such
nodes as won by player c%2. Experimental results show that our partial
solvers completely solve benchmarks that were constructed to challenge
existing full solvers. Our partial solvers also have encouraging run times.
For one partial solver we prove that its runtime is in O(|V |3), that its
output game is independent of the order in which attractors are computed,
and that it solves all Büchi games. 1

1 Introduction
Parity games are an important foundational structure in formal verification (see
e.g. [10]). Mathematically, they can be seen as a representation of the model
checking problem for the modal mu-calculus [4], and its exact computational
complexity has been an open problem for over twenty years now.

1Please cite this technical report as “Michael Huth, Jim Huan-Pu Kuo, and Nir Piterman.
Fatal attractors in parity games. Technical report, Department of Computing, Imperial Col-
lege London, January 2013”. A preliminary version of the results reported in this paper was
presented at the GAMES 2012 workshop in Naples, Italy, on 11 September 2012.
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Parity games are infinite, 2-person, 0-sum, graph-based games that are hard
to solve. Their nodes, controlled by different players, are colored with natu-
ral numbers and the winning condition of plays depends on the minimal color
occurring in cycles. The condition for winning a node, therefore, is an alter-
nation of existential and universal quantification. In practice, this means that
the maximal color of its coloring function is the only exponential source for the
worst-case complexity of most parity game solvers, e.g. for those in [10, 7, 9].

Research on solving parity games may be losely grouped into the following
approaches: design of algorithms that solve all parity games by construction
and that so far all have exponential or subexponential worst-case complexity
(e.g. [10, 7, 9, 8]), restriction of parity games to classes for which polynomial-
time algorithms can be devised as complete solvers (e.g. [1, 3]), and practical
improvements to solvers so that they perform well across benchmarks (e.g. [5]).

We here propose a new approach that relates to, and potentially impacts, all
of these aforementioned activities. We want to design and evaluate a new form
of “partial” parity game solver. These are solvers that are well defined for all
parity games but that may not solve all games completely, i.e. for some parity
games they may not decide the winning status of some nodes. For us, a partial
solver has an arbitrary parity game as input and returns two things: a subgame
of the input game, and a classification of the winning status of all nodes of the
input game that are not in that subgame. In particular, the returned subgame
is empty if, and only if, the partial solver classified the winners for all input
nodes.

The input/output type of our partial solvers clearly relates them to so called
preprocessors that may decide the winner of nodes whose structure makes such
a decision an easy static criterion (e.g. in the elimination of self-loops or dead
ends [5]). But we here search for dynamic criteria that allow partial solvers to
completely solve a range of benchmarks of parity games. This ambition sets our
work apart from research on preprocessors but is consistent with it as one can
always run a partial solver as preprocessor.

The motivation for the study reported in this paper is that we want to
investigate what theoretical building blocks one may create and use for designing
partial solvers that run in polynomial time and work well on many games,
whether partial solvers can be components of more efficient complete solvers,
and whether there are intesting subclasses of parity games for which partial
solvers completely solve all games. In particular, one may study the class of
output games of a PTIME partial solver in lieu of studying the aforementioned
open problem for all parity games.

We summarize the main contributions made in this paper:

• We present a new form of attractor that can be used in fixed-point com-
putations to detect winning nodes for a given player in parity games.

• We propose several designs of partial solvers for parity games by using
this new attractor within fixed-point computations.
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• We analyze these partial solvers and show, e.g., that they work in PTIME
and that one of them is independent of the order of attractor computation.

• And we evaluate these partial solvers against known benchmarks and re-
port that these experiments have very encouraging results.

Outline of paper. Section 2 contains needed formal background and fixes no-
tation. Section 3 introduces the building block of our partial solvers, a new form
of attractor. Some partial solvers based on this attractor are presented in Sec-
tion 4, theoretical results about these partial solvers are proved in Section 5, and
experimental results for these partial solvers run on benchmarks are reported
and discussed in Section 6. We summarize and conclude the paper in Section 7.
This technical report also contains an appendix that contains – amongst other
things – selected proofs, the pseudo-code of our version of Zielonka’s algorithm,
and further details on experimental results and their discussion.

2 Preliminaries
We write N for the set {0, 1, . . . } of natural numbers. A parity game G is a tuple
(V, V0, V1, E, c), where V is a set of nodes partitioned into possibly empty node
sets V0 and V1, with an edge relation E ⊆ V × V (where for all v in V there
is a w in V with (v, w) in E), and a coloring function c : V → N. In figures,
c(v) is written within nodes v, nodes in V0 are depicted as circles and nodes in
V1 as squares. For v in V , we write v.E for node set {w ∈ V | (v, w) ∈ E} of
successors of v. By abuse of language, we call a subset U of V a subgame of G if
the game graph (U,E∩(U×U)) is such that all nodes in U have some successor.
We write PG for the class of all finite parity games G, which includes the parity
game with empty node set for our convenience. We only consider games in PG.

Throughout, we write p for one of 0 or 1 and 1− p for the other player. In a
parity game, player p owns the nodes in Vp. A play from some node v0 results
in an infinite play r = v0v1 . . . in (V,E) where the player who owns vi chooses
the successor vi+1 such that (vi, vi+1) is in E. Let Inf(r) be the set of colors
that occur in r infinitely often: Inf(r) = {k ∈ N | ∀j ∈ N : ∃i ∈ N : i > j and k =
c(vi)}. Player 0 wins play r iff min Inf(P ) is even; otherwise player 1 wins play
r.

A strategy for player p is a total function τ : Vp → V such that (v, τ(v))
is in E for all v ∈ Vp. A play r is consistent with τ if each node vi in r
owned by player p satisfies vi+1 = τ(vi). It is well known that each parity game
is determined: node set V is the disjoint union of two, possibly empty, sets
W0 and W1, the winning regions of players 0 and 1 (respectively). Moreover,
strategies σ : V0 → V and π : V1 → V can be computed such that

• all plays beginning in W0 and consistent with σ are won by player 0; and

• all plays beginning in W1 and consistent with π are won by player 1.

Solving a parity game means computing such data (W0,W1, σ, π).
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Figure 1: A parity game: circles denote nodes in V0, squares denote nodes in
V1.

Example 1 In the parity game G depicted in Figure 1, the winning regions are
W1 = {v3, v5, v7} and W0 = {v0, v1, v2, v4, v6, v8, v9, v10, v11}. Let σ move from
v2 to v4, from v6 to v8, from v9 to v8, and from v10 to v9. Then σ is a winning
strategy for player 0 on W0. And every strategy π is winning for player 1 on
W1.

3 Fatal attractors
In this section we define a special type of attractor that is used for our par-
tial solvers in the next section. We start by recalling the normal definition of
attractor, and that of a trap, and then generalize the former to our purposes.

Definition 1 Let X be a node set in parity game G. For player p in {0, 1}, set

cprep(X) = {v ∈ Vp | v.E ∩X 6= ∅} ∪ {v ∈ V1−p | v.E ⊆ X} (1)
Attrp[G,X] = µZ.(X ∪ cprep(Z)) (2)

where µZ.F (Z) denotes the least fixed point of a monotone function F : 2V →
2V .

The control predecessor of a node set X for p in (1) is the set of nodes from
which player p can force to get to X in exactly one move. The attractor for
player p to a set X in (2) is computed via a least fixed-point as the set of nodes
from which player p can force the game in zero or more moves to get to the set
X. Dually, a trap for player p is a region from which player p cannot escape.

Definition 2 Node set X in parity game G is a trap for player p (p-trap) if for
all v ∈ Vp∩X we have v.E ⊆ X and for all v ∈ V1−p∩X we have v.E ∩X 6= ∅.

It is well known that the complement of an attractor for player p is a p-trap
and that it is a subgame. We state this here formally as a reference:

Theorem 1 Given a node set X in a parity game G, the set V \Attrp[G,X] is
a p-trap and a subgame of G.

We now define a more general type of attractor, which will be a crucial
ingredient in the definition of all our partial solvers.
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Definition 3 Let A and X be node sets in parity game G, let p in {0, 1} be a
player, and c a color in G. We set

mprep(A,X, c) = {v ∈ Vp | c(v) ≥ c ∧ v.E ∩ (A ∪X) 6= ∅} ∪
{v ∈ V1−p | c(v) ≥ c ∧ v.E ⊆ A ∪X}

MAttrp(X, c) = µZ.mprep(Z,X, c) (3)

The monotone control predecessor mprep(A,X, c) of node set A for p with
target X is the set of nodes of color at least c from which player p can force to
get to either A or X in one move. The monotone attractor MAttrp(X, c) for p
with target X is the set of nodes from which player p can force the game in one
or more moves to X by only meeting nodes whose color is at least c. Notice
that the target set X is kept external to the attractor. Thus, if some node x in
X is included in MAttrp(X, c) it is so as it is attracted to X in at least one step.

Our control predecessor and attractor are different from the “normal” ones
in a few ways. First, ours take into account the color c as a formal parameter.
They add only nodes that have color at least c. Second, as discussed above, the
target set X itself is not included in the computation by default. For example,
MAttrp(X, c) includes states from X only if they can be attracted to X.

We now show the main usage of this new operator by studying how specific
instantiations thereof can compute so called fatal attractors.

Definition 4 Let X be a set of nodes of color c, where p = c%2.

1. For such an X we denote p by p(X) and c by c(X). We denote MAttrp(X, c)
by MA(X). If X = {x} is a singleton, we denote MA(X) by MA(x).

2. We say that MA(X) is a fatal attractor if X ⊆ MA(X).

We note that fatal attractors MA(X) are node sets that are won by player
p(X) in G. The winning strategy is the attractor strategy corresponding to
the least fixed-point computation in MAttrp(X, c). First of all, player p(X) can
force, from all nodes in MA(X), to reach some node in X in at least one move.
Then, player p(X) can do this again from this node in X as X is a subset of
MA(X). At the same time, by definition of MAttrp(X, c) and mprep(A,X, c),
the attraction ensures that only colors of value at least c are encountered. So in
plays starting in MA(X) and consistent with that strategy, every visit to a node
of parity 1− p(X) is followed later by a visit to a node of color c(X). It follows
that in an infinite play consistent with this strategy and starting in MA(X), the
minimal color to be visited infinitely often is c – which is of p’s parity.

Theorem 2 Let MA(X) be fatal in parity game G. Then the attractor strategy
for player p(X) on MA(X) is winning for p(X) on MA(X) in G.

Let us consider the case when X is a singleton {k} and MA(k) is not fatal.
Suppose that there is an edge (k,w) in E with w in MA(k). We show that this
edge cannot be part of a winning strategy (of either player) in G. Since MA(k)
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psol(G = (V , V0, V1,E, c)) {
for (k ∈ V in descending color ordering c(k)) {

if (k ∈ MA(k)) { return psol(G \ Attrp(k)[G, MA(k)]) }
if (∃ (k, w) ∈ E : w ∈ MA(k))
{ G = G \ {(k, w) ∈ E | w ∈ MA(k)} }

}
return G

}

Figure 2: Partial solver psol based on detection of fatal attractors MA(k) and
fatal moves.
is not fatal, k must be in V1−p(k) and so is controlled by player 1 − p(k). But
if that player were to move from k to w in a memoryless strategy, player p(k)
could then attract the play from w back to k without visiting colors of parity
1 − p(k) and smaller than c(k), since w is in MA(k). And, by the existence
of memoryless winning strategies [4], this would ensure that the play is won by
player p(k) as the minimal infinitely occurring color would have parity p(k). We
summarize:

Lemma 1 Let MA(k) be not fatal for node k. Then we may remove edge (k,w)
in E if w is in MA(k), without changing winning regions of parity game G.

Example 2 For G in Figure 1, the only colors k for which MA(k) is fatal are 4
and 8: MA(4) equals {v2, v4, v6, v8, v9, v10, v11} and MA(8) equals {v9, v10, v11}.
In particular, MA(8) is contained in MA(4) and nodes v1 and v0 are attracted
to MA(4) in G by player 0. And v11 is in MA(11) (but the node of colour 11,
v10, is not), so edge (v10, v11) may be removed.

4 Partial solvers
We can use the above definitions and results to define partial solvers next. Their
soundness will be shown in Section 5.

4.1 Partial solver psol

Figure 2 shows the pseudocode of a partial solver, named psol, based on MA(X)
for singleton sets X. Solver psol explores the parity game G in descending color
ordering. For each node k, it constructs MA(k), and aims to do one of two things:

• If node k is in MA(k), then MA(k) is fatal for player 1−p(k), thus node set
Attrp(k)[G,MA(k)] is a winning region of player p(k), and removed from
G.

• If node k is not in MA(k), and there is a (k,w) in E where w is in MA(k),
all such edges (k,w) are removed from E and the iteration continues.

If for no k in V attractor MA(k) is fatal, game G is returned as is – empty
if psol solves G completely. The accumulation of winning regions and com-
putation of winning strategies are omitted from the pseudocode for improved
readability.
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psolB(G = (V , V0, V1,E, c)) {
for (colors d in descending ordering) {

X = { v in V | c(v) = d };
cache = {};
while (X 6= {} && X 6= cache) {

cache = X;
if (X ⊆ MA(X)) { return psolB(G \ Attrd%2[G, MA(X)])
} else { X = X ∩ MA(X); }

}
}
return G

}
Figure 3: Partial solver psolB.

Example 3 In a run of psol on G from Figure 1, there is no effect for colors
larger than 11. For c = 11, psol removes edge (v10, v11) as v11 is in MA(11).
The next effect is for c = 8, when the fatal attractor MA(8) = {v9, v10, v11}
is detected and removed from G (the previous edge removal did not cause the
attractor to be fatal). On the remaining game, the next effect occurs when c = 4,
and when the fatal attractor MA(4) is {v2, v4, v6, v8} in that remaining game.
As player 0 can attract v0 and v1 to this as well, all these nodes are removed
and the remaining game has node set {v3, v5, v7}. As there is no more effect of
psol on that remaining game, it is returned as the output of psol’s run.

4.2 Partial solver psolB

Figure 3 shows the pseudocode of another partial solver, named psolB (the “B”
suggests a relationship to “Büchi”), based on MA(X), where X is a set of nodes
of the same color. This time, the operator MA(X) is used within a greatest
fixed-point in order to discover the largest set of nodes of a certain color that
can be (fatally) attracted to itself. Accordingly, the greatest fixed-point starts
from all the nodes of a certain color and gradually removes those that cannot be
attracted to the same color. When the fixed-point stabilizes, it includes the set
of nodes of the given color that can be (fatally) attracted to itself. This node
set can be removed (as a winning region for player d%2) and the residual game
analyzed recursively. As before, the colors are explored in descending order.

We make two observations. First, if we were to replace the recursive calls in
psolB with the removal of the winning region from G and a continuation of the
iteration, we would get an implementation that discovers less fatal attractors.
Second, edge removal in psol relies on the set X being a singleton. A similar
removal could be achieved in psolB when the size of X is reduced by one (in the
operation X = X ∩MA(X)). Indeed, in such a case the removed node would
not be removed and the current value of X be realized as fatal. We have not
tested this edge removal approach experimentally for this variant of psolB.

Example 4 A run of psolB on G from Figure 1 has the same effect as the one
for psol, except that psolB does not remove edge (v10, v11) when c = 11.
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A way of comparing partial solvers P1 and P2 is to say that P1 ≤ P2 if, and
only if, for all parity games G the set of nodes in the output subgame P1(G) is
a subset of the set of nodes of the output subgame P2(G). We note that psol
and psolB are incomparable for this intensional preorder over partial solvers.

4.3 Partial solver psolQ

It seems that psolB is more general than psol in that if there is a singleton X
with X ⊆ MA(X) then psolB will discover this as well. However, the require-
ment to attract to a single node seems too strong. Solver psolB removes this
restriction and allows to attract to more than one node, albeit of the same color.
Now we design a partial solver psolQ that can attract to a set of nodes of more
than one color (the “Q” is our code name for this “Q”uantified layer of colors of
the same parity). Solver psolQ allows to combine attraction to multiple colors
by adding them gradually and taking care to “fix” visits to nodes of opposite
parity.

We extend the definition of mpre and MAttr to allow inclusion of more (safe)
nodes when collecting nodes in the attractor.

Definition 5 Let A and X be node sets in parity game G, let p in {0, 1} be a
player, and c a color in G. We set

pmprep(A,X, c) = {v ∈ Vp | (c(v) ≥ c ∨ v ∈ X) ∧ v.E ∩ (A ∪X) 6= ∅} ∪
{v ∈ V1−p | (c(v) ≥ c ∨ v ∈ X) ∧ v.E ⊆ A ∪X} (4)

PMAttrp(X, c) = µZ.pmprep(Z,X, c) (5)

The permissive monotone predecessor in (4) adds to the monotone prede-
cessor also nodes that are in X itself even if their color is lower than c, i.e.,
they violate the monotonicity requirement. The permissive monotone attractor
in (5) then uses the permissive predecessor instead of the simpler predecessor.
This is used for two purposes. First, when the set X includes nodes of multiple
colors – some of them lower than c. Then, inclusion of nodes from X does not
destroy the properties of fatal attraction. Second, increasing the set X of target
nodes allowes to include the previous target as set of “permissible” nodes. This
creates a layered structure of attractors.

We use the permissive attractor to define psolQ. Figure 4 presents the pseudo
code of operator layeredAttr(G, p,X). It is an attractor that combines attrac-
tion to nodes of multiple color. It takes a set X of colors of the same parity
p. It considers increasing subsets of X with more and more colors and tries
to attract fatally to them. It starts from a set Yp of nodes of parity p with
color p and computes MA(Yp). At this stage, the difference between pmpre and
mpre does not apply as Yp contains nodes of only one color and A is empty.
Then, instead of stopping as before, it continues to accumulate more nodes.
It creates the set Yp+2 of the nodes of parity p with color p or p + 2. Then,
PMAttrp(A ∪ Yp+2, p+ 2) includes all the previous nodes in A (as all nodes in
A are now permissible) and all nodes that can be attracted to them or to Yp+2

8



layeredAttr(G,p,X) { // PRE-CONDITION: all nodes in X have parity p
A = {};
b = max{c(v) | v ∈ X};
for (d = p up to b in increments of 2) {

Y = {v ∈ X | c(v) ≤ d};
A = PMAttrp(A ∪ Y , d);

}
return A;

}

psolQ(G = (V , V0, V1,E, c)) {
for (colors b in ascending order) {

X = { v ∈ V | c(v) ≤ b ∧ c(v)%2 = b};
cache = {};
while (X 6= {} && X 6= cache) {

cache = X;
W = layeredAttr(G,b%2,X);
if (X ⊆ W ) { return psolQ(G \ Attrb%2[G, W ]);
} else { X=X ∩ W ; }

}
}
return G;

}

Figure 4: Operator layeredAttr(G, p,X) and partial solver psolQ.

through nodes of color at least p + 2. This way, even if nodes of a color lower
than p+2 are included they will be ensured to be either in the previous attractor
or of the right parity. Then Y is increased again to include some more nodes of
p’s parity. This process continues until it includes all nodes in X.

This layered attractor may also be fatal:

Definition 6 We say that layeredAttr(G, p,X) is fatal if X is a subset of
layeredAttr(G, p,X).

As before, fatal layered attractors are won by player p in G. The winning
strategy is more complicated as it has to take into account the number of it-
erations in the for loop in which a node was first discovered. Every node in
layeredAttr(G, p,X) belongs to a layer corresponding to a maximal color d.
From a node in layer d, player p can force to reach some node in Yd ⊆ X or
some node in a lower layer d′. As the number of layers is finite, eventually some
node in X is reached. When reaching X, player p can attract to X in the same
layered fashion again as X is a subset of layeredAttr(G, p,X). Along the way,
while attracting through layer d we are ensured that only colors at least d or of
a lower layer are encountered. So in plays starting in layeredAttr(G, p,X) and
consistent with that strategy, every visit to a node of parity 1 − p is followed
later by a visit to a node of parity p of lower color.

Theorem 3 Let layeredAttr(G, p,X) be fatal in parity game G. Then the
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Figure 5: A 1-player parity game modified by neither psol, psolB nor psolQ.

layered attractor strategy for player p on layeredAttr(G, p,X) is winning for
p on layeredAttr(G, p,X) in G.

Pseudo code of solver psolQ is also shown in Figure 4: psolQ prepares
increasing sets of nodes X of the same color and calls layeredAttr within a
greatest fixed-point. For a set X, the greatest fixed-point attempts to discover
the largest set of nodes within X that can be fatally attracted to itself (in a
layered fashion). Accordingly, the greatest fixed-point starts from all the nodes
in X and gradually removes those that cannot be attracted to X. When the
fixed-point stabilizes, it includes a set of nodes of the same parity that can be
attracted to itself. These are removed (along with the normal attractor to them)
and the residual game is analyzed recursively.

We note that the first two iterations of psolQ are equivalent to calling psolB
on colors 0 and 1. Then, every iteration of psolQ extends the number of colors
considered. In particular, in the last two iterations of psolQ the value of b is
the maximal possible value of the appropriate parity. It follows that the sets X
defined in these last two iterations include all nodes of the given parity. These
last two computations of greatest fixed-points are the most general and subsume
all previous greatest fixed-point computations. We discuss in Section 6 why we
increase the bound b gradually and do not consider these two iterations alone.

Example 5 The run of psolQ on G from Figure 1 finds a fatal attractor for
bound b = 4, which removes all nodes except v3, v5, and v7. For b = 19, it
realizes that these nodes are won by player 1, and outputs the empty game.
That psolQ is a partial solver can be seen in Figure 5, which depicts a game
that is not modified at all by psolQ and so is returned as is.

5 Properties of our partial solvers
We now discuss the properties of our partial solvers, looking first at their sound-
ness and computational complexity.

5.1 Soundness and Computational Complexity

Theorem 4 1. The partial solvers psol, psolB, and psolQ are sound.
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2. The running time for psol and psolB is in O(|V |2 · |E |).

3. And psol and psolB can be implemented to run in time O(|V |3).

4. And psolQ runs in time O(|V |2·|E |·|c |) with |c | the number of colors in
G.

If psolQ were to restrict attention to the last two iterations of the for loop,
i.e., those that compute the greatest fixed-point with the maximal even color and
the maximal odd color, the run time of psolQ would be bounded byO(|V |2·|E |).
For such a version of psolQ we also ran experiments on our benchmarks and do
not report these results, except to say that this version performs considerably
worse than psolQ in practice. We believe that this is so since psolQ more
quickly discovers small winning regions that “destabilize” the rest of the games.

5.2 Robustness of psolB

Our pseudo-code for psolB iterates through colors in decending order. A natural
question is whether the computed output game depends on the order in which
these colors are iterated. Below, we formally state that the outcome of psolB is
indeed independent of the iteration order. This suggests that these solvers are
a form of polynomial-time projection of parity games onto subgames.

Let us formalize this. Let π be some sequence of colors in G, that may omit
or repeat some colors from G. Let psolB(π) be a version of psolB that checks
for (and removes) fatal attractors according to the order in π (including any
color repetitions in π). We say that psolB(π) is stable if for every color c1, the
input/output behavior of psolB(π) and psolB(π · c1) are the same. That is, the
sequence π leads psolB to stabilization in the sense that every extension of the
version psolB(π) with one color does not change the input/output behavior.

Theorem 5 Let π1 and π2 be sequences of colors with psolB(π1) and psolB(π2)
stable. Then G1 equals G2 if Gi is the output of psolB(πi) on G, for 1 ≤ i ≤ 2.

Next, we formally define classes of parity games, those that psolB solves
completely and those that psolB does not modify.

Definition 7 We define class S (for “Solved”) to consist of those parity games
G for which psolB(G) outputs the empty game. And we define K (for “Kernel”)
as the class of those parity games G for which psolB(G) outputs G again.

The meaning of psolB is therefore a total, idempotent function of type PG→
K that has S as inverse image of the empty parity game. By virtue of Theorem 5,
classes S and K are semantic in nature.

We now show that S contains the class of Büchi games, which we identify
with parity games G with color 0 and 1 and where nodes with color 0 are those
that player 0 wants to reach infinitely often.
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Theorem 6 Let G be a parity game whose colors are only 0 and 1. Then G is
in S, i.e. psolB completely solves G.

We point out that S does not contain some game types for which polynomial-
time solvers are known. For example, not all 1-player parity games are in S (see
Figure 5). Class S is also not closed under sub-games.

6 Experimental results
6.1 Experimental setup

We wrote Scala implementations of psol, psolB, and psolQ, and of Zielonka’s
solver (zlka) that rely on the same data structures and do not compute winning
strategies – which has routine administrative overhead. The (parity) Game ob-
ject has a map of Nodes (objects) with node identifiers (integers) as the keys.
Apart from colors and owner type (0 or 1), each Node has two lists of iden-
tifiers, one for successors and one for predecessors in the game graph (V,E).
For attractor computation, the predecessor list is used to perform “backward”
attraction.

This uniform use of data types allows for a first informed comparison. We
chose zlka as a reference implementation since it seems to work well in practice
on many games [5]. We then compared the performance of these implementa-
tions on all eight non-random, structured game types produced by the PGSolver
tool [6]. Here is a list of brief descriptions of these game types.

• Clique: fully connected games with alternating colors and no self-loops.

• Ladder: layers of node pairs with connections between adjacent layers.

• Recursive Ladder: layers of 5-node blocks with loops.

• Strategy Impr: worst cases for strategy improvement solvers.

• Model Checker Ladder: layers of 4-node blocks.

• Tower Of Hanoi: captures well-known puzzle.

• Elevator Verification: a verification problem for an elevator model.

• Jurdzinski: worst cases for small progress measure solvers.

The first seven types take as game parameter a natural number n as input,
whereas Jurdzkinski takes a pair of such numbers n,m as game parameter.

For regression testing, we verified for all tested games that the winning
regions of psol, psolB, psolQ and zlka are consistent with those computed
by PGSolver. Runs of these algorithms that took longer than 20 minutes (i.e.
1200K milliseconds) or for which the machine exhausted the available memory
during solver computation are recorded as aborts (“abo”) – the most frequent
reason for abo was that the used machine ran out of memory. All experiments
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were conducted on the same machine with an Intel R© CoreTM i5 (four cores)
CPU at 3.20GHz and 8G of RAM, running on a Ubuntu 11.04 Linux operating
system.

For most game types, we used unbounded binary search starting with 2 and
then iteratively doubling that value, in order to determine the abo boundary
value for parameter n within an accuracy of plus/minus 10. As the game type
Jurdzinski[n,m] has two parameters, we conducted three unbounded binary
searches here: one where n is fixed at 10, another where m is fixed at 10, and
a third one where n equals m. We used a larger parameter configuration (10 ×
power of two) for Jurdzinski games.

We report here only the last two powers of two for which one of the partial
solvers didn’t timeout, as well as the boundary values for each solver. For game
types whose boundary value was less than 10 (Tower Of Hanoi and Elevator
Verification), we didn’t use binary search but incremented n by 1. Finally,
if a partial solver didn’t solve its input game completely, we ran zlka on the
remaining game and added the observed running times for zlka to that of the
partial solver. (This occurred for Elevator Verification for psol and psolB.)

6.2 Experiments on structured games

Our experimental results are depicted in Figures 6 and 7, colored green (respec-
tively red) for the partial solver with best (respectively worst) result. Running
times are reported in milliseconds. The most important outcome is that partial
solvers psol and psolB solved seven of the eight game types completely for all
runs that did not time out, the exception being Elevator Verification; and
that psolQ solved all eight game types completely. This suggests that partial
solvers can actually be used as solvers on a range of structured game types.

We now compare the performance of these partial solvers and of zlka. There
were ten experiments, three for Jurdzinski and one for each of the remain-
ing seven game types. For seven out of these ten experiments, psolB had
the largest boundary value of the parameter and so seems to perform best
overall. The solver zlka was best for Model Checker Ladder and Elevator
Verification, and about as good as psolB for Tower Of Hanoi. And psolQ
was best for Recursive Ladder. Thus psol appears to perform worst across
these benchmarks.

Solvers psolB and zlka seem to do about equally well for game types Clique,
Ladder, Model Checker Ladder, and Tower Of Hanoi. But solver psolB ap-
pears to outperform zlka dramatically for game types Recursive Ladder, and
Strategy Impr and is considerably better than zlka for Jurdzinski.

Some of these improvements can even be seen by comparing running times of
our partial solvers with those of the PGSolver, which we will do below. We stress
that this does compare proof of concept implementations of our partial solvers
running in JVM with a highly optimized PGSolver running in native code –
which is why we omitted the timing information for PGSolver in Figures 6 and 7.
We ran PGSolver version 3.2 in configuration pgsolver -global recursive,
meaning that it is solving parity games using Zielonka’s algorithm and that all
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Clique[n]
n psol psolB psolQ zlka

2**11 6016.68 48691.72 3281.57 12862.92
2**12 abo 164126.06 28122.96 76427.44
20min n = 3680 n = 5232 n = 4608 n = 5104

Ladder[n]
n psol psolB psolQ zlka

2**19 abo 22440.57 26759.85 24406.79
2**20 abo 47139.96 59238.77 75270.74
20min n = 14712 n = 1596624 n = 1415776 n = 1242376

Model Checker Ladder[n]
n psol psolB psolQ zlka

2**12 119291.99 90366.80 117006.17 79284.72
2**13 560002.68 457049.22 644225.37 398592.74
20min n = 11528 n = 12288 n = 10928 n = 13248

Recursive Ladder[n]
n psol psolB psolQ zlka

2**12 abo abo 138956.08 abo
2**13 abo abo 606868.31 abo

20min n = 1560 n = 2064 n = 11352 n = 32

Strategy Impr[n]
n psol psolB psolQ zlka

2**10 174913.85 134795.46 abo abo
2**11 909401.03 631963.68 abo abo

20min n = 2368 n = 2672 n = 40 n = 24

Tower Of Hanoi[n]
n psol psolB psolQ zlka

9 272095.32 54543.31 610264.18 56780.41
10 abo 397728.33 abo 390407.41

20min n = 9 n = 10 n = 9 n = 10

Elevator Verification[n]
n psol psolB psolQ zlka

1 171.63 120.59 147.32 125.41
2 646.18 248.56 385.56 237.51
3 2707.09 584.83 806.28 512.72
4 223829.69 1389.10 2882.14 1116.85
5 abo 11681.02 22532.75 3671.04
6 abo 168217.65 373568.85 41344.03
7 abo abo abo 458938.13

20min n = 4 n = 6 n = 6 n = 7

Figure 6: First experimental results for partial solvers run over benchmarks
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Jurdzinski[10, m]

m psol psolB psolQ zlka

10*2**7 abo 179097.35 abo abo
10*2**8 abo 833509.48 abo abo

20min n = 560 n = 2890 n = 1120 n = 480

Jurdzinski[n, 10]

n psol psolB psolQ zlka

10*2**7 308033.94 106453.86 abo abo
10*2**8 abo 406621.65 abo abo

20min n = 2420 n = 4380 n = 1240 n = 140

Jurdzinski[n, n]
n psol psolB psolQ zlka

10*2**3 215118.70 23045.37 310665.53 abo
10*2**4 abo 403844.56 abo abo

20min n = 110 n = 200 n = 100 n = 50

Figure 7: Second experimental results run over Jurdzinski benchmarks

other features are in default mode.
For each game type we compare the running time of PGSolver for the largest

power of two for which it does not time out to the running time of our best
partial solver for this game type. For Jurdzinski[10, 26], psolB runs about
9 times faster than PGSolver. For Jurdzinski[26, 10], psolB runs about 11
times faster than PGSolver. For Jurdzinski[23, 23], psolB runs about 5 times
faster than PGSolver. For Clique[212], psolB runs about 2 times faster than
PGSolver. And for Recursive Ladder[25], psolQ runs about 1706 times faster
than PGSolver.

For Ladder[220], PGSolver runs about as fast as psolB. For game Tower
Of Hanoi[10], PGSolver runs about 169 times faster than psolB. For Model
Checker Ladder[213], PGSolver runs about 1660 times faster than psolB. For
Strategy Impr[211], PGSolver runs about 47 times faster than psolB. And
for Elevator Verification[6], PGSolver is about 89 times faster than the
composition of psolB and zlka (applied to the output of psolB).

We think these results are encouraging and corroborate that partial solvers
based on fatal attractors may be components of faster solvers for parity games.

6.3 Number of detected fatal attractors

We also recorded the number of fatal attractors that were detected in runs of
our partial solvers. One reason for doing this is to see whether game types
have a typical number of dynamically detected fatal attractors that result in
the complete solving of these games.

We report these findings for psol and psolB first: for Clique, Ladder,
and Strategy Impr these games are solved by detecting two fatal attractors
only; Model Checker Ladder was solved by detecting one fatal attractor. For
the other game types psol and psolB behaved differently. For Recursive
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Ladder[n], psolB requires n = 2k fatal attractors whereas psolQ needs only
2k−2 fatal attractors. For Jurdzinski[n,m], psolB detects mn + 1 many fa-
tal attractors, and psol removes x edges where x is about nm/2 ≤ x ≤ nm,
and detects slightly more than these x fatal attractors. Finally, for Tower Of
Hanoi[n], psol requires the detection of 3n fatal attractors whereas psolB solves
these games with detecting two fatal attractors only.

We also counted the number of recursive calls for psolQ: it equals the num-
ber of fatal attractors detected by psolB for all game types except Recursive
Ladder, where it is 2k−1 when n equals 2k.

6.4 Experiments on variants of partial solvers

We performed additional experiments on variants of these partial solvers. Here,
we report results and insights on two such variants. The first variant is one that
modifies the definition of the monotone control predecessor to

mprep(A,X, c) = {v ∈ Vp | ((c(v)%2 = p) ∨ c(v) ≥ c) ∧ v.E ∩ (A ∪X) 6= ∅} ∪
{v ∈ V1−p | ((c(v)%2 = p) ∨ c(v) ≥ c) ∧ v.E ⊆ A ∪X}

The change is that the constraint c(v) ≥ c is weakened to a disjunction (c(v)%2 =
p)∨ (c(v) ≥ c) so that it suffices if the color at node v has parity p even though
it may be smaller than c. This implicitly changes the definition of the monotone
attractor and so of all partial solvers that make use of this attractor; and it also
impacts the computation of A within psolQ. Yet, this change did not have a
dramatic effect on our partial solvers. On our benchmarks, the change improved
things slightly for psol and made it slightly worse for psolB and psolQ.

A second variant we studied was a version of psol that removes at most one
edge in each iteration (as opposed to all edges as stated in Fig. 2). For games
of type Ladder, e.g., this variant did much worse. But for game types Model
Checker Ladder and Strategy Impr, this variant did much better. The partial
solvers based on such variants and their combination are such that psolB (as
defined in Figure 3) is still better across all benchmarks.

6.5 Experiments on random games

It is our belief that comparing the behavior of parity game solvers on random
games does not give an impression of how these solvers perform on parity games
in practice. However, evaluating our partial solvers over random games gives an
indication of how often partial solvers completely solve random games, and of
whether partial solvers can speed up complete solvers as preprocessors. So we
generated 130, 000 random games with the randomgame command of PGSolver.

Each game had between 10 and 500 nodes (average of 255). Each node v had
outdegree (i.e. the size of v.E) at least 1, and at most 2, 3, 4, or 5 – where this
number was determined at random. These games contained no self-loops and
no bound on the number of different colors. Then psolB solved 82% of these
130, 000 random games completely. The average run-time over these 130, 000
games was 319ms for psolB (which includes run-time of zlka on the residual
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game where applicable), whereas the full solver zlka took 505ms on average.
And only about 22, 000 of these games (less than 17%) were such that zlka
solved them faster than the variant of zlka that used psolB as preprocessor.

7 Conclusions
We proposed a new approach to studying the problem of solving parity games:
partial solvers as polynomial algorithms that correctly decide the winning status
of some nodes and return a subgame of nodes for which such status cannot be
decided. We demonstrated the feasibility of this approach both in theory and
in practice. Theoretically, we developed a new form of attractor that naturally
lends itself to the design of such partial solvers; and we proved results about
the computational complexity and semantic properties of these partial solvers.
Practically, we showed through extensive experiments that these partial solvers
can compete with extant solvers on benchmarks – both in terms of practical
running times and in terms of precision in that our partial solvers completely
solve such benchmark games.

In future work, we mean to study the descriptive complexity of the class of
output games of a partial solver, for example of psolQ. We also want to research
whether such output classes can be solved by algorithms that exploit invariants
satisfied by these output classes. Furthermore, we mean to investigate whether
classes of games characterized by structural properties of their game graphs can
be solved completely by partial solvers. Such insights may connect our work to
that of [3], where it is shown that certain classes of parity games that can be
solved in PTIME are closed under operations such as the join of game graphs.
Finally, we want to investigate whether and how partial solvers can be integrated
into solver design patterns such as the one proposed in [5].
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A Zielonka’s recursive solver
Zielonka’s recursive solver is essentially constructed from the steps taken in the
determinacy proof of parity games [10]. In order to emphasise the design essence
and assist comprehension, the strategy extraction logic has been omitted in our
fatal attractor based partial solvers. Therefore, we implement the simplified
Zielonka’s solver that excludes the logic for winning strategy extraction for
fairer performance comparison. The pseudocode of our Zielonka implementation
(zlka) is shown in Figure 8.

zielonka(G = (V,E, c)) {
n = max{c(v) | v ∈ V }
if (n == 0) { return (V \ Attr1(G, ∅), Attr1(G, ∅)) }
σ = n%2
Wσ = win-opponent(G, σ, n)
Wσ = V \ Wσ

return (W0,W1)
}

win-opponent(G, σ, n) {
W = ∅
repeat {
W ′ = W
X = Attrσ(G,W )
Y = V \ X
N = {v ∈ Y | c(v) == n}
Z = Y \Attrσ(G[Y ], N) // G[Y ] is a subgame of G restricted to edges and nodes in Y
(Z0, Z1) = zielonka(G[Z])
W = X ∪ Zσ

} until (W ′ == W)
return W

}

Figure 8: Pseudocode of Zielonka’s solver without resolution of the winning
strategies

B Analysis of partial solver behaviours on games tested
We discuss the behaviours of our partial solvers on the eight non-random games
tested in our experiments.

B.1 Clique

For Clique[n], psolB performs the best in terms of termination boundary, fol-
lowed by zlka. However, in terms of running time, psolQ does the best amongst
all solvers towards larger game sizes, outperforms zlka by around 3 times
as much for the largest game (Clique[212]) tested before all solvers aborted.
Clique[n] games are fully connected parity games without self-loops. The in-
put parameter n specifies the number of nodes. The node set is divided into
two equal number of V0 and V1 nodes (when |V | is even, otherwise |V0| = |V1|
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+ 1). For p = 0 and 1, Vp nodes are owned entirely by player p, every node has
an unique colour, and for all v ∈ Vp, c(v)%2 = p.

Apart from for n=2, psol and psolB solve all Clique[n] games by finding
two fatal attractors. Let cm be the largest colour in Clique game G, then the
first fatal attractor A1 detected consists of two nodes of the largest colours in
cm%2 parity, followed by computing Attrcm%2(G,A1) which attracts all cm%2
parity nodes. This makes up the winning region of player cm%2. The second
fatal attractor A2 consists of two nodes with the largest 1−cm%2 parity colours,
then the winning region for player 1− cm%2 is Attr1−cm%2(G,A2). Therefore,
the winning regions are divided such that Wp (for p = 0 and 1) consists of all
Vp nodes.

Partial solver psolQ detects two fatal attractors, for colours 0 and 1, to solve
the game.

B.2 Ladder

In Ladder[n] game, all V0 nodes have colour 2, and all V1 nodes have colour 1.
Each node v ∈ V has two successors, one V0 and one V1 node, which form a
node pair. Every node pair is connected to the next pair to form a “ladder” of
node pairs. Finally, the bottom pair is connected to the top to close the loop.
The parameter n configures the number of such node pairs.

In Figure 6, we see that psolB performs better than zlka in terms of running
time and terminating boundary, 37% time reduction and 22% boundary increase
for Ladder[220]. We do not observe significant performance difference between
the partial solvers psolB, and psolQ. Due to its extremely small index (i.e., 2),
regardless the colour exploration ordering, these three partial solvers detect the
two fatal attractors consecutively, each consists of all nodes in V1 and V0, for
colour 1 and 2, respectively.

However, in order to make Ladder compatible with psol, we need to convert
the game to have unique colours, hence, inflating the index from 2 to size of
the game. This process unnecessarily increases the computational complexity
of the game, and the low performance for psolB exhibited in the experimental
results backs up this intuition.

B.3 Model Checker Ladder

A Model Checker Ladder[n] game consists of overlapping blocks of four nodes
where n specifies the number of blocks. All nodes are owned by player 1. How-
ever, the nodes are connected in such a way that every cycle in the game passes
through a single “choke point” node of colour 0. The partial solver iterates
through all colours, and eventually detects a colour with a fatal attractor, in
the case of Model Checker Ladder, this colour is 0. The accumulation process
then goes through iterations to eventually attract all of the nodes in the game.

As a result, all partial solvers detect only one fatal attractor (fatal for player
1) in this game structure. In Figure 6, all partial solvers seem fairly close in
terms of running times and terminating boundary for Model Checker Ladder.
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B.4 Recursive Ladder

The Recursive Ladder[n] game consists of n blocks, each of the blocks consists
of four layers of five nodes in total. The node in the bottom layer has connections
to two nodes in the next block, whereas the top layer node has a connection
back to the top layer node of the previous block, hence forming the “recursive”
structure. Different to Ladder, the last block in Recursive Ladder does not
loop back to the first block.

All our partial solvers outperform the recursive solver zlka for this game
in the experiment (although this is not obvious in Figure 6 as we only show
the last two entries). Partial solver psolQ is the best performer here among all
solvers. It solved Recursive Ladder[213] in around 10 minutes (when all other
solvers timed out after 20 minutes) and reached a terminating boundary 355
times larger than what zlka achieved.

The experiment results also show that psolQ requires fewer fatal attractors
than psol and psolB to solve the game, psolB solves Recursive Ladder[n]
through n (= 2k) fatal attractors; psol through between 2k−1 and 2k fatal
attractors and removes about that many edges; psolQ detects 2k−1 fatal attrac-
tors.

B.5 Strategy Impr

The structure of this game is more complicated than games introduced previ-
ously. A Strategy Impr[n] game has 25n + 10 many nodes. One key property
of Strategy Impr is that it causes the strategy improvement algorithm [9] to
exhibit an exponential running time [6]. In our experiment, the partial solvers
can reach higher termination boundaries than zlka against this game type.
Partial solver psolB is the best performer (followed by psol), and it is able to
solve Strategy Impr[211] in around 10.5 minutes when other solvers, psolQ,
and zlka, timed out after 20 minutes. The termination boundary reached by
psolB is 111 times greater than that for zlka’s.

Although this game has a more complicated structure, it contains a few
properties which psolB and psol exploit. Strategy Impr (min-parity) games
contain a V1 node vs that has the maximum colour, which is odd, and has a
self-loop. As well as a pair of high colour odd parity V0 nodes, from which player
0 can either go to vs (which is bad for player 0), or stay with them (also bad for
player 0). For descending colour ordering, psolB/psol immediately identifies
the fatal attractor MA({vs})/MA(vs), followed by normal attractor computation
for player 1 to it. The next fatal attractor is found after 3 colour iterations,
the normal attractor computed for that fatal attractor includes the whole of the
remaining game. As a result, the entire game is won by player 1.

Partial solver psolQ solves this game in a similar manner. The difference
is that it finds the required fatal attractors at very late stages of the process
due to its colour exploration ordering. The wasted iterations cause significant
inefficiency, this is reflected by the poorer experimental results.

We note that the number of fatal attractors detected by all partial solvers
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to solve Strategy Impr[n] are identical (2) regardless of the size of n.

B.6 Towers Of Hanoi

In Towers Of Hanoi[n] game, all nodes belong to player 0, and have colour 1
or 2. This game has a intertwined tower structure that captures a well-known
puzzle. Each tower in the game consists of four nodes, with outgoing edges to
other towers. Notably, every tower, except one, has an odd colour (i.e., 1) node
with self-loop. The node with self-loop in the exception tower has even colour.
Regardless of the value of n in a Towers Of Hanoi[n] game, the number of such
exceptions is 1.

The result for this game in Figure 6 accounts for the worse performance of
psolQ whereas psolB performs similarly as zlka. Let G be a Towers Of Hanoi
game of any size, psolB solves G in two steps. From the maximum colour
(i.e., 2), it first detects fatal attractor A0, consisting of that even parity node
with self-loop (denoted as v) and the node that has outgoing edge to v. The
attractor Attr0(G,A0) makes up all of W0, and is removed from the game. The
remaining game G′ after the previous step, only has nodes of colour 1. The
next step simply identifies all nodes with self-loops as the fatal attractor A1.
The normal attractor Attr1(G′, A1) is the W1 region. Due to the unique colour
conversion, psol needs many more steps to solve Towers Of Hanoi.

Partial solver psolQ solves this game in this manner. Starting from the
minimum colour (i.e., 1), it detects and removes fatal attractor A1 and its
normal attractor, Attr1(G,A1) (which does not contain all nodes with colour 1).
Removal of a region causes a recursive call to psolQ which resets the boundary
colour b to 1. In the next step, psolQ tries to find a fatal attractor for colour 1
again, but fails. Then for colour 2, it detects fatal attractor A0.

The above descriptions of solver steps show that Towers Of Hanoi is solved
with exactly two fatal attractors by psolB, and psolQ, regardless of the game
size. While psol requires 3n fatal attractors, due to the inflated number of
colours caused by the unique colour conversion process.

B.7 Elevator Verification

Elevator Verification represents a fairness verification problem for an eleva-
tor model [6]. An Elevator Verification[n] game represents a model with n
floors, and has roughly 5n−1×37 number of nodes. This game has three colours
(0, 1, and 2) regardless of the size of n.

All games we have seen previously can be solved completely by all partial
solvers. Partial solver psol does not solve this type of game completely, and
psolB does not do so for n > 1. We therefore add to their running time that of
zlka on the game that remains unsolved by these partial solvers. Partial solver
psolQ does solve this type of games completely.

In Figure 6, we see that zlka alone performs better then first running any of
these partial solver and then zlka for Elevator Verification. Again, psolB
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performs much better than psol. We note that for larger games the vast pro-
portion of time for the compositions psol;zlka and psolB;zlka is spent in the
partial solvers. Although psolQ is able to solve this game completely, it does
not seem to perform better than zlka.

Partial solver psolQ solves this game in this manner. For games with n
= 1, Elevator Verification[n] is solved by two fatal attractors (and their
corresponding normal attractors). For n > 1, it finds three fatal attractors this
way. Given a Elevator Verification game G, psolQ first attempts to find a
fatal attractor for colour variable d = 0, but fails to do so. Followed by detection
of fatal attractor A1, and removal of Attr1(G,A1) for d = 1. The removal of
a region causes a recursive call which resets d to 0. In this iteration, psolQ
attempts and fails to accumulate a fatal attractor for d = 0, and 1, then it
succeeds in finding fatal attractor A2 for d = 2. Eventually, psolQ finds fatal
attractor A0 for d = 0 in the next iteration when d is reset.

Amongst the three partial solvers, psolB appears to have the best/least
running time in the experimental results for Elevator Verification. However,
the truth of this observation is polluted by the fact that psolB is unable to
solve Elevator Verification completely and its results include the running
time of zlka (which performs favourably) on the remaining game. We note that
psol has poor performance here and is unable to solve Elevator Verification
completely.

B.8 Jurdzinski

The Jurdzinski[n,m] game is designed to cause the worst-case behaviour for
the SPM solver [7]. This game consists of n number of layers, while each layer
consists of m number of repeating blocks of three nodes. The layers and blocks
are inter-connected in the manner described in [7].

As this game has two input parameters n and m, we ran three binary search
experiments: one where n is fixed to 10 and binary search is done over k, where
m = 10 × k, one in which these roles of n and m are swapped, and a third
one where n equals m – and so we treat this third experiment like the other
experiments with one parameter only.

The initial configuration is (n,m) = (10, 10) in all three experiments. The
results in Figure 7 show that in runs of all three forms, psolB clearly outper-
forms zlka and does better throughout than other partial solvers. It reaches
4 to 31 times larger terminating boundary than zlka. Additonally, psolB
solves (the three largest games) Jurdzinski[10, 10× 28] in around 14 minutes,
Jurdzinski[10× 28, 10], and Jurdzinski[10× 24, 10× 24] in around 7 minutes
when all other solvers timed out.

The results also show that greater number of fatal attractors are detected
for Jurdzinski. Partial solvers psolB and psolQ detect nm + 1 many fatal
attractors. Partial solver psol detects slightly more than it removes edges,
nm/2 ≤ x ≤ n ·m many edges are removed for Jurdzinski[n,m].

Although psolB finds the same fatal attractors as psolQ (but in different
ordering), their performances differ significantly. In psolB solving, the first
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few fatal attractors detected consist of all nodes of some colours. Hence, the
steps taken rapidly reduce the indices, and the computational complexity of the
remaining games. However, in psolQ solving, a prefix of fatal attractors found
consist of only a subset of nodes of some colours. After removing the normal
attractors to these fatal attractors, the indices of the remaining games remain
the same. This means psolQ is required to attempt many “unfruitful” fatal
attractor detections on some colours before “real” progress can be made.

The process of psol solving is the same as psolB in spirit. However, due to
the unique colour conversion process, the inflated colour space means that psol
has to process these “artificial” colours which yield no fatal attractor.

C Proof of Theorem 3
Consider the computation of layeredAttr(G, p,X). Let Ad be an enumera-
tion of the sets A computed by the for loop. Here d is the index of the for
loop ranging over b%2, . . . , b, where b is the bound on the priorities in X. It
follows that Ai+2 = PMAttrp(Ai ∪ Yi+2, i+ 2), where Yi+2 is the subset of X
of nodes of priority at most i + 2. By definition of PMAttrp(Ai ∪ Yi+2, i+ 2)
it follows that Ai ⊆ Ai+2. Indeed, if Ai is attracted to Yi then the same at-
tractor computation includes all the nodes in Ai in the computation of Ai+2
as they are now permissible. Let A denote Ab, i.e., the result returned by
layeredAttr(G, p,X). For every node v ∈ A, let r(v) = (d, i) where d is the
minimal such that v ∈ Ad and i is the distance to attract to Ad−2 ∪ Yd in the
computation of PMAttrp(Ad−2 ∪ Yd, d). Consider the strategy for player b%2
that from v minimizes the rank r(v′) according to the lexicographic order on
the rank.

We show that every infinite play conforming to this strategy remains forever
in layeredAttr(G, p,X). Indeed, if r(v) = (d, i), then all successors of v (if v
∈ V1−b%2) or some successor of v (if v ∈ Vb%2) are/is either in X, which is a
subset of A, or in Ad′,i′ for some (d′, i′) < r(v) (successors of v are in Yd ⊆ X,
Ad−2, or closer to Yd ∪ Ad−2). When reaching X, the same strategy can be
applied again as X ⊆ layeredAttr(G, p,X).

Second, we show that the play is winning for player b%2. Consider node
v0 whose color has parity 1 − b%2 appearing in the play. Let v0, v1, . . . be an
enumeration of the nodes in the play starting from v0. By definition, r(v0) =
(d0, i0) for some (d0, i0), and clearly, c(v0) > d0. We show that this play visits
color of parity b%2 that is at most d0. By construction, v1 is either in {v ∈ X |
c(v) ≤ d0}, which implies that its color is of parity b%2 and smaller than c(v0),
or r(v1) = (d1, i1) for (d1, i1) < (d0, i0). In this case, we change the obligation
to visit a b%2-parity color that is at most d0 to visit a b%2-parity color at most
d1 and pass it to v1. Continuing this way, the play must reach X with a lower
color than that of v0 by well-founded induction.
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D Proof of Item 1 of Theorem 4, psol Soundness
In Figure 2, psol only returns (not explicitly shown) Attrp(k)[G,MA(k)] as a
node set classified to be won by player p(k) whenever MA(k) is fatal. Theorem 2
shows that these regions are winning for player p(k). Lemma 1 shows edge
removal does not alter the winning strategies. Since these are the only two code
locations where G is modified, the winning regions detected in psol are correct.
�

E Proof of Item 1 of Theorem 4, psolB Soundness
In Theorem 2, we have proved that MA(X) is winning for player p(X) if X is
a subset of MA(X). For every color d in G, the for-loop in psolB constructs
MA(X) where all nodes in X have color d. If X is a subset of MA(X), then
MA(X) is identified as a winning region (for player d%2) and its normal d%2
attractor in G is therefore removed from G, and this is the only code location
where G is modified. �

F Proof of Item 1 of Theorem 4, psolQ Soundness
By Theorem 3, we have proved that layeredAttr(G, p,X) is winning for player
p(X) if X is a subset of layeredAttr(G, p,X). For every color b in G, the for
loop in psolQ constructs layeredAttr(G, p,X), where X is the set of nodes of
parity b%2 with color at most b. If X is a subset of layeredAttr(G, p,X), then
layeredAttr(G, p,X) is identified as a winning region (for player b%2) and its
normal b%2 attractor in G is therefore removed from G, and this is the only
code location where G is modified. �

G Proof of Items 2, 3, and 4 of Theorem 4
2. To see that the running time for psol is in O(|V |2 · |E |), note that all

nodes have at least one successor in G and so |V | ≤ |E |. The computation
of the attractor MA(k) in linear in the number of edges and so in O(|E |).
Each call of psol will compute at most |V | many such attractors. In the
worst case, there are |V | many recursive calls. In summary, the running
time is bound by O(|E | · |V | · |V |) as claimed.
To see that psolB also has running time in O(|V |2 · |E |), recall that
we may compute MA(X) in time linear in |E |. Second, node set V is
partitioned into sets of nodes of a specific color, and so psolB can do at
most |V | many computations within the body of psolB before and if a
recursive call happens.

3. The claim that psol and psolB can be implemented to run in O(|V |3)
essentially reduces to showing that we can, in linear time, transform and
reduce each computation of MA(X) to the solution of a Buchi game. This
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is so since such games can be solved in time O(|V |2) [2]. Indeed, let c
denote c(X), p denote p(X), and let G[≥c] denote the game obtained from
G by doing the following in the prescribed order.

(a) Remove from G all nodes of color less than c, as well as all of their
incoming and outgoing edges.

(b) Add to G a sink node that has a self loop.
(c) Every node in Vp not removed in the first step but where all of its

successors were removed gets an edge to the new sink node.
(d) Every node in V1−p not removed in the first step but that had one of

its successors removed gets an edge to the new sink node as well.
(e) If p = 1, then we swap ownership of all remaining nodes: player 0

nodes become player 1 nodes, and vice versa.
(f) Finally, we color every node in X by p and all other nodes (including

the new sink state) by 1− p.

It is possible to show that the winning region in G[≥c] is MA(X). Indeed,
every node in the winning region of G[≥c] can be attracted to X without
passing through colors smaller than c infinitely often. In the other direc-
tion, the attractor strategy to X induced by MA(X) can be converted to
a winning strategy in G[≥c]. The size of G[≥c] is bounded by the size of
G: there is at most one more node (the sink state), and each edge added
to G[≥c] has a corresponding edge that is removed from G.

4. As before, the computation of layeredAttr(G, p, b) can be completed in
O(|V | · |E |). Denote Ab%2−2 = ∅ and Ad = PMAttrp(Ad−2 ∪ Yd, d) for
d = b%2, . . . , b. As noted previously, Ad−2 ⊆ Ad. Hence, the entire run
of the for loop can be implemented so that each edge is crossed at most
once in all the permissive monotone control predecessor computations.
Then, the loop on X in psolQ can run at most |V | times. And the extenal
for loop runs at most |c | times. It follows that layeredAttr is called at
most |V | · |c |. �

H Proof of robustness of psolB
In order to prove Theorem 5 we first prove a few auxiliary lemmas. Below, we
write G[U ] for the subgame identified by node set U .

Lemma 2 For every game G, for every set of nodes K and for every trap U
for player p, the following holds: Attrp[G,K] ∩ U ⊆ Attrp[G[U ],K ∩ U ]

Proof: The proof proceeds by induction on the distance fromK in Attrp[G,K].
For every node v of G let d(v) denote the distance of v from K in the attraction
to K in G.
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• Suppose that K ∩ U = ∅. Then, Attrp[G[U ],K ∩ U ] = ∅ and we have to
show that Attrp[G,K] ∩ U = ∅.
Assume otherwise, then v ∈ Attrp[G,K] ∩ U 6= ∅. Let v be the node
of minimal distance to K in Attrp[G,K] ∩ U . If v ∈ Vp, then there is
some successor w of v such that d(v) = d(w) + 1. However, w cannot
be in Attrp[G,K] ∩ U by minimality of v. Thus, there is an edge from v
that leads to a node not in U contradicting that U is a trap for player p.
Similarly, if v ∈ V1−p, then for all successors w of v we have d(v) > d(w)
and it follows that all succssors w of v are not in Attrp[G,K] ∩ U . So all
successors of v are not in U and U cannot be a trap for player p.
It follows that Attrp[G,K] ∩ U = ∅ as required.

• Suppose that K∩U 6= ∅. We prove that for every node v ∈ Attrp[G,K]∩U
we have dG(v,K) ≥ dG[U ](v,K ∩U), where dG(v,K) and dG[U ](v,K ∩U)
are the distances of v from K (respectively K ∩U) in the computation of
the corresponding attractor.
Again, the proof proceeds by induction on dG(v,K). Consider a node v in
Attrp[G,K] ∩ U such that dG(v,K) = 0. Then v is in K and from v ∈ U
we conclude that v is in K ∩ U and dG[U ](v,K ∩ U) = 0.
Consider a node v in Attrp[G,K] ∩ U such that dG(v,K) > 0. If v is in
Vp, then there is a node w such that dG(v,K) = dG(w,K) + 1. Since U
is a trap, it must be the case that w is in U as well and hence w is in
Attrp[G,K] ∩ U . By induction dG(w,K) ≥ dG[U ](w,K ∩ U).
If v is in V1−p, then for all successors w of v we have dG(v,K) ≥ dG(w,K)+
1. Furthermore by U being a trap, there is some successor w of v such
that w is in U . It follows that w is in Attrp[G,K] ∩ U .
As U is a subset of the nodes of G we have succ(v,G) ⊇ succ(v,G[U ]),
where succ(v,G) is the set of successors of v in G and succ(v,G[U ]) is the
set of successors of v in G[U ]. But then, for every w in succ(v,G[U ]) we
have dG[U ](w,K ∩ U) ≤ dG(w,K). Hence, dG[U ](v,K ∩ U) ≤ dG(v,K).
�

We now specialize the above to the case of monotone attractors. We narrow
the scope in this context to match its usage in psolB. A more general claim
talking about general sets in the spirit of Lemma 2 requires quite cumbersome
notations and we skip it here (as it is not needed below).

Lemma 3 Consider a game G and a set of nodes K of color c such that p =
c%2. For every trap U for player p, the following holds: MAttrp(K, c) ∩ U
computed in G is a subset of MAttrp(K ∩ U, c) computed in G[U ].

The proof is very similar to the proof of Lemma 2.
Proof: The proof proceeds by induction on the distance fromK in MAttrp(K, c).

For every node v of G let d(v) denote the distance of v from K in the monotone
attraction to target K in G.
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• Suppose that K ∩ U = ∅. Then, MAttrp(K ∩ U, c) in G[U ] is empty and
we have to show that MAttrp(K, c) in G has empty intersection with U .
Assume otherwise, then there is some v such that v is in MAttrp(K, c)
in G and v ∈ U . Let v in U be the node of minimal distance to K in
MAttrp(K, c) computed in G. If d(v) = 1 and v ∈ Vp, then v has some
node in K as successor. But K ∩ U = ∅ and v has a successor outside
U contradicting that U is a trap. If d(v) = 1 and v is in V1−p, then all
successors of v are in K. As K ∩ U = ∅ all successors of v are outside U
contradicting that U is a trap. If d(v) > 1, the case is similar. If v is in Vp,
then there is some successor w of v such that d(v) = d(w) + 1. However,
w cannot be in MAttrp(K, c) ∩ U computed in G, by the minimality of v.
Thus, there is an edge from v that leads to a node not in U contradicting
that U is a trap for player p. Similarly, if v is in V1−p, then for all successors
w of v we have d(v) > d(w) and it follows that all succssors w of v are
not in MAttrp(K, c) ∩ U in G. So all successors of v are not in U and U
cannot be a trap for player p.
It follows that MAttrp(K, c) computed inG does not intesect U as required.

• Suppose that K∩U 6= ∅. We prove that for every node v in MAttrp(K, c)∩
U computed in G we have dG(v,K) ≥ dG[U ](v,K ∩ U), where dG(v,K)
and dG[U ](v,K ∩ U) are the distances of v from K (respectively K ∩ U)
in the computation of the corresponding monotone attractors.
Again, the proof proceeds by induction on dG(v,K). Consider a node v in
MAttrp(K, c) computed in G such that v is in U and dG(v,K) = 1. Then,
if v is in Vp, then v has a successor in K. As U is a trap, it must be the
case that this successor is also in U showing that dG[U ](v,K ∩ U) = 1. If
v is in V1−p, then all of v’s successors are in K. As U is a trap, v must
have some successors in G[U ]. It follows that dG[U ](v,K ∩ U) = 1.
Consider a node in MAttrp(K, c) such that v is in U and dG(v,K) > 1. If
v is in Vp then there is a node w such that dG(v,K) = dG(w,K) + 1. By
U being a trap, it must be the case that w is in U as well and hence w is in
MAttrp(K, c)∩U computed in G. By induction dG(w,K) ≥ dG[U ](w,K ∩
U).
If v is in V1−p, then for all successors w of v we have dG(v,K) ≥ dG(w,K)+
1. Furthermore by U being a trap, there is some w successor of v such
that w is in U . It follows that all such w are in MAttrp(K, c)∩U computed
in G.
As U is a subset of the nodes of G, we have succ(v,G) ⊇ succ(v,G[U ]),
where succ(v,G) is the set of successors of v in G and succ(v,G[U ]) is the
set of successors of v in G[U ]. But then, for every w in succ(v,G[U ]) we
have dG[U ](w,K ∩ U) ≤ dG(w,K). Hence, dG[U ](v,K ∩ U) ≤ dG(v,K).
�

We now show that the order of removal of attractors for even and odd colors
are interchangeable.
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Lemma 4 Removal of fatal attractors for even colors and for odd colors are
interchangeable.

Proof: Let c1 be some odd color and c0 be some even color. Let X1 be the
set of nodes of color c1 such that X1 ⊆ MAttr1(X1, c1) and X1 is the maximal
node set with this property. (That is to say, X1 is the set computed by a call
to psolB with the color c1.) Similarly, let X0 be the set of nodes of color c0
such that X0 ⊆ MAttr0(X0, c0) and X0 is the maximal with this property. We
assume that both MAttr1(X1, c1) and MAttr0(X1, c1) are not empty.

By soundness, MAttr1(X1, c1) is part of the winning region for player 1. Let
U be the residual game G\Attr1[G,MAttr1(X1, c1)]. We note that Lemma 2 does
not help us directly. Indeed, node set Attr1[G,MAttr1(X1, c1)] is an attractor
for player 1. Hence, U is a trap for player 1 but not necessarily for player 0.

By soundness, MAttr0(X0, c0) is a subset of U . Indeed, all the nodes that
are removed from G are winning for player 1 but MAttr0(X0, c0) is part of the
winning region for player 0. It follows that X0 is a subset of U .

Furthermore, MAttr0(X0 ∩ U, c0) is a superset of MAttr0(X0, c0), where this
follows from an argument similar to the one made in the proof of Lemma 2
above.

But from the construction of MAttr0(X0 ∩ U, c0) it follows that node set
MAttr0(X0 ∩ U, c0) is also a subset of MAttr0(X0, c0). Indeed, if we consider
the entire doubly nested fixpoint, then the computation of MAttr0(X0 ∩ U, c0)
starts from a subset of the nodes of color c0 and MAttr0(X0, c0) starts from the
entire set of nodes of color c0. �

It follows that we may think about the removal of (attractors of) fatal at-
tractors separately for all the even colors and all the odd colors. We now restate
and then prove Theorem 5:

Theorem 7 Let π1 and π2 be sequences of colors with psolB(π1) and psolB(π2)
stable. Then G1 equals G2 if Gi is the output of psolB(πi) on G, for 1 ≤ i ≤ 2.

Proof: By Lemma 4, we may assume that in both π1 and π2 all even colors
occur before odd colors. We show that the node set of the output of version
psolB(π1 · π2) is a subset of the node set of the output of version psolB(π2).
As π1 is stable, it follows that actually psolB(π1) ⊆ psolB(π2). The same
argument works in the other direction and it follows that the two residul games
are actually equivalent.

Let π1 = c1
1 · · · c1

n, where c1
1, . . . , c

1
m are even and c1

m+1, . . . , c
1
n are odd. Let

G1
0, G1

1, . . ., G1
n be the sequence of games after the different applications of the

colors in π1. That is, G1
0 = G, and G1

i is the result of applying psolB with
color c1

i on G1
i−1. It follows that G1

n = G1. Similarly, let π2 = c2
1 · · · c2

p, where
c2

1, . . . , c
2
q are even and c2

q+1, . . . , c
2
p are odd. Let G2

0 = G and let G2
i be the

result of applying psolB with color c2
i on G2

i−1. Let G1,2
0 = G1

n and G1,2
i is the

result of applying psolB with color c2
i on G1,2

i−1. We show that G1,2
j is a subset

of G2
j .
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By Lemma 4 it is clear that we can consider the application of c2
1, . . . , c

2
q

right after the application of c1
1, . . . , c

1
m. Indeed, in the sequence c1

m+1, . . . , c
1
n is

interchangeable with c2
1, . . . , c

2
q.

Consider the application of c2
j to G1,2

j−1 and to G2
j−1. By induction G1,2

j−1 is a
subset of G2

j−1. Furthermore, G1,2
j−1 is obtained from G by removing a sequence

of attractors for player 0. It follows that G1,2
j−1 is G2

j−1 restricted to a trap for
player 0.

It follows from Lemmas 3 and 2 that the computation of the attractor re-
moves a larger part of G1,2

j−1 than that of G2
j−1. Hence G1,2

j is a subset of G2
j .

�

I Proof of Theorem 6
We recall one way of solving a Büchi game will take the perspective of player 0.
First we inductively define, for n ≥ 0, and X = {v ∈ V | c(v) = 0} the sets

Z0 = V (6)
Un = Attr0[G,Zn]
Y n = cpre0(Un)

Zn+1 = Y n ∩X

Let n0 be minimal such that Zn0 = Zn0+1. The winning region for W0 for
player 0 in game G with colors 0 and 1 only is then equal to

W0 = Attr0[G,Zn0 ] (7)

Since the order of processing colors in psolB does not impact its output
game (by Theorem 5), we may assume that color d = 0 gets processed first (this
is just for convenience of presentation).

When the first iteration of psolB does process d = 0, the computation essen-
tially captures the process defined in the equations (6): the interplay of Un and
Y n achieves the effect that player 0 can move from Y n into Un, which models
that player 0 can reach the target set again from any node in the target set.
The computation of Zn corresponds to the else branch of the iteration within
psolB. The constraint of our monotone attractor, that c(v) ≥ d, is vacuously
true here as d equals 0. So the first iteration will effectively compute set Zn0 as
fixed-point. Then psolB will be called recursively on G \W0 by the definition
of W0 in (7).

In that remaining game, player 1 can secure that all plays visit nodes of color
0 only finitely often. This follows from the fact that W0 was removed from game
G and that Büchi games are determined. In particular, psolB will not detect a
fatal attractor for d = 0 in that remaining game. But when its iteration runs
with d = 1 we argue as follows.
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The following algorithm computes the winning region for player 1 in a Büchi
game. Let X = {v ∈ V | c(v) = 1}.

Z0 = ∅ (8)
Y n,0 = X

Y n,m = X ∩ cpre1(Zn−1 ∪ Y n,m−1)
Zn = Attr1[G, Y n,mn

0 ]

where mn
0 is the minimal natural number such that Y n,mn

0 equals Y n,mn
0 +1.

Let n0 be the minimal natural number such that Zn0 equals Zn0+1. Let Xi,j

denote the sequence of values computed for the variable X in psolB, where i is
the number of recursive invocations of psolB, and j is the value of X computed
after running in the loop j times.

It is simple to see that Xn,m is a superset of Y n,m restricted to the resid-
ual game in the nth call to psolB. Indeed, both start from the set X and
the computation of X ∩ cpre1(Zn−1 ∪ Y n,m−1) is contained in the computation
of MA(Xn,m−1). The intersection with X in the algorithm above is included
in the definition of MA(X). Furthermore, every recursive call to psolB com-
putes the exact attractor Attr1[G,MA(X)] just as above. And the removal of
nodes in psolB is equivalent to the inclusion of Zn−1 in the computation of
cpre1(Zn−1 ∪ Y n,m−1). �
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