
Multiparty Compatibility in Communicating Automata:
Characterisation and Synthesis of Global Session Types

Pierre-Malo Deniélou and Nobuko Yoshida

1 Royal Holloway, University of London
2 Imperial College London

Abstract. Multiparty session types are a type system that can ensure the safety
and liveness of distributed peers via the global specification of their interac-
tions. To construct a global specification from a set of distributed uncontrolled
behaviours, this paper explores the problem of fully characterising multiparty
session types in terms of communicating automata. We equip global and local
session types with labelled transition systems (LTSs) that faithfully represent
asynchronous communications through unbounded buffered channels. Using the
equivalence between the two LTSs, we identify a class of communicating au-
tomata that exactly correspond to the projected local types. We exhibit an algo-
rithm to synthesise a global type from a collection of communicating automata.
The key property of our findings is the notion of multiparty compatibility which
non-trivially extends the duality condition for binary session types.

1 Introduction

Over the last decade, session types [13, 20] have been studied as data types or functional
types for communications and distributed systems. A recent discovery by [4, 22], which
establishes a Curry-Howard isomorphism between binary session types and linear log-
ics, confirms that session types and the notion of duality between type constructs have
canonical meanings. Multiparty session types [2, 14] were proposed as a major general-
isation of binary session types. They can enforce communication safety and deadlock-
freedom for more than two peers thanks to a choreographic specification (called global
type) of the interaction. Global types are projected to end-point types (local types),
against which processes can be statically type-checked and verified to behave correctly.

The motivation of this paper comes from our practical experiences that, in many
situations, even where we start from the end-point projections of a choreography, we
need to reconstruct a global type from distributed specifications. End-point specifica-
tions are usually available, either through inference from the control flow, or through
existing service interfaces, and always in forms akin to individual communicating finite
state machines. If one knows the precise conditions under which a global type can be
constructed (i.e. the conditions of synthesis), not only the global safety property which
multiparty session types ensure is guaranteed, but also the generated global type can
be used as a refinement and be integrated within the distributed system development
life-cycle (see § 5 for applications. [18, 19]).This paper attempts to give the synthesis
condition as a sound and complete characterisation of multiparty session types with re-
spect to Communicating Finite State Machines (CFSMs) [3]. CFSMs have been a well-
studied formalism for analysing distributed safety properties and are widely present in

1

industry tools. They can been seen as generalised end-point specifications, therefore,
an excellent target for a common comparison ground and for synthesis. As explained
below, to identify a complete set of CFSMs for synthesis, we first need to answer a
question – what is the canonical duality notion in multiparty session types?
Characterisation of binary session types as communicating automata The subclass
which fully characterises binary session types was actually proposed by Gouda, Man-
ning and Yu in 1984 [12] in a pure communicating automata context. Consider a simple
business protocol between a Buyer and a Seller from the Buyer’s viewpoint: Buyer
sends the title of a book, Seller answers with a quote. If Buyer is satisfied by the quote,
then he sends his address and Seller sends back the delivery date; otherwise it retries
the same conversation. This can be described by the following session type:

µt.! title; ?quote; !{ ok :!addrs; ?date;end, retry : t } (1.1)

where the operator ! title denotes an output of the title, whereas ?quote denotes an in-
put of a quote. The output choice features the two options ok and retry and ; denotes
sequencing. end represents the termination of the session, and µt is recursion.

The simplicity and tractability of binary sessions come from the notion of duality
in interactions [11]. The interaction pattern of the Seller is fully given as the dual of the
type in (1.1) (exchanging input ! and output ? in the original type). When composing
two parties, we only have to check they have mutually dual types, and the resulting
communication is guaranteed to be deadlock-free. Essentially the same characterisation
is given in communicating automata. Buyer and Seller’s session types are represented
by the following two machines.

→ /.-,()*+
!title

///.-,()*+
?quote

///.-,()*+
?retry

ww
?ok

///.-,()*+
!addrs

///.-,()*+
?date

///.-,()*+�������� → /.-,()*+
?title

///.-,()*+
!quote

///.-,()*+
!retry

ww
!ok

///.-,()*+
?addrs

///.-,()*+
!date

///.-,()*+��������
We can observe that these CFSMs satisfy three conditions. First, the communications
are deterministic: messages that are part of the same choice, ok and retry here, are
distinct. Secondly, there is no mixed state (each state has either only sending actions or
only receiving actions). Third, these two machines have compatible traces (i.e. dual):
the Seller machine can be defined by exchanging sending to receiving actions and vice
versa. Breaking one of these conditions allows deadlock situations and breaking one of
the first two conditions makes the compatibility checking undecidable [12, 21].
Multiparty compatibility This notion of duality is no longer effective in multiparty
communications, where the whole conversation cannot be reconstructed from only a
single behaviour. To bypass the gap between binary and multiparty, we take the synthe-
sis approach, that is to find conditions which allow a global choreography to be built
from the local machine behaviour. Instead of directly trying to decide whether the com-
munications of a system will satisfy safety (which is undecidable in the general case),
inferring a global type guarantees the safety as a direct consequence.
We give a simple example to illustrate the problem. The Commit protocol in Figure 1
involves three machines: Alice A, Bob B and Carol C. A orders B to act or quit. If act is
sent, B sends a signal to C, and A sends a commitment to C and continues. Otherwise B
informs C to save the data and A gives the final notification to C to terminate the protocol.

This paper presents a decidable notion of multiparty compatibility as a generalisa-
tion of duality of binary sessions, which in turns characterises a synthesis condition.

2

A→/.-,()*+ AB!quit //

AB!act ��

/.-,()*+ AC!finish ///.-,()*+��������
/.-,()*+ AC!commit

ZZ B→/.-,()*+ AB?quit //

AB?act ��

/.-,()*+ BC!save ///.-,()*+��������
/.-,()*+ BC!sig

ZZ C→/.-,()*+ BC?save //

BC?sig ��

/.-,()*+AC?finish ///.-,()*+��������
/.-,()*+ AC?commit

ZZ

Fig. 1. Commit example: CFSMs

The idea is to check the duality between each automaton and the rest, up to the internal
communications (1-bounded executions in the terminology of CFSMs, see § 2) that the
other machines will independently perform. For example, in Figure 1, to check the com-
patibility of trace BC?sig AC?commit in C, we execute the internal communications be-
tween A and B such that AB!act ·AB?act and observes the dual trace BC!sig ·AC!commit
from B and A. If this extended duality is valid for all the machines from any 1-bounded
reachable state, then they satisfy multiparty compatibility and can build a well-formed
global choreography.
Contributions and Outline Section 3 defines new labelled transition systems for
global and local types that represent the abstract observable behaviour of typed pro-
cesses. We prove that a global type behaves exactly as its projected local types, and
the same result between a single local type and its CFSMs interpretation. These corre-
spondences are the key to prove the main theorems. Section 4 defines multiparty com-
patibility, studies its safety and liveness properties, gives an algorithm for the synthesis
of global types from CFSMs, and proves the soundness and completeness results be-
tween global types and CFSMs. Section 5 discusses related work and concludes. The
full proofs and applications of this work can be found in Appendix.

2 Communicating Finite State Machines

This section starts from some preliminary notations (following [7]). ε is the empty
word. A is a finite alphabet and A∗ is the set of all finite words over A. |x| is the length
of a word x and x.y or xy the concatenation of two words x and y. Let P be a set of
participants fixed throughout the paper:P⊆ {A,B,C, . . . ,p,q, . . .}.

Definition 2.1 (CFSM). A communicating finite state machine is a finite transition
system given by a 5-tuple M = (Q,C,q0,A,δ) where (1) Q is a finite set of states; (2)
C = {pq ∈P2 | p 6= q} is a set of channels; (3) q0 ∈ Q is an initial state; (4) A is a finite
alphabet of messages, and (5) δ ⊆ Q×(C×{!,?}×A)×Q is a finite set of transitions.

In transitions, pq!a denotes the sending action of a from process p to process q, and
pq?a denotes the receiving action of a from p by q. `,`′ range over actions and we define
the subject of an action ` as the principal in charge of it: subj(pq!a) = subj(qp?a) = p.

A state q ∈Q whose outgoing transitions are all labelled with sending (resp. receiv-
ing) actions is called a sending (resp. receiving) state. A state q ∈ Q which does not
have any outgoing transition is called final. If q has both sending and receiving outgo-
ing transitions, q is called mixed. We say q is directed if it contains only sending (resp.

3

receiving) actions to (resp. from) the same (identical) participant. A path in M is a finite
sequence of q0, . . . ,qn (n ≥ 1) such that (qi, `,qi+1) ∈ δ (0 ≤ i ≤ n− 1), and we write
q `−→q′ if (q, `,q′) ∈ δ . M is connected if for every state q 6= q0, there is a path from q0
to q. Hereafter we assume each CFSM is connected.

A CFSM M = (Q,C,q0,A,δ) is deterministic if for all states q ∈ Q and all actions
`, (q, `,q′),(q, `,q′′) ∈ δ imply q′ = q′′.3

Definition 2.2 (CS). A (communicating) system S is a tuple S = (Mp)p∈P of CFSMs
such that Mp = (Qp,C,q0p,A,δp).

For Mp = (Qp,C,q0p,A,δp), we define a configuration of S = (Mp)p∈P to be a tuple
s = (~q;~w) where ~q = (qp)p∈P with qp ∈ Qp and where ~w = (wpq)p6=q∈P with wpq ∈ A∗.
The element~q is called a control state and q ∈ Qi is the local state of machine Mi.

Definition 2.3 (reachable state). Let S be a communicating system. A configuration
s′ = (~q′;~w′) is reachable from another configuration s = (~q;~w) by the firing of the
transition t, written s −→ s′ or s t−→s′, if there exists a ∈ A such that either: (1) t =
(qp,pq!a,q′p) ∈ δp and (a) q′

p′ = qp′ for all p′ 6= p; and (b) w′pq = wpq.a and w′
p′q′ = wp′q′

for all p′q′ 6= pq; or (2) t = (qq,pq?a,q′q) ∈ δq and (a) q′
p′ = qp′ for all p′ 6= q; and (b)

wpq = a.w′pq and w′
p′q′ = wp′q′ for all p′q′ 6= pq.

The condition (1-b) puts the content a to a channel pq, while (2-b) gets the content
a from a channel pq. The reflexive and transitive closure of→ is→∗. For a transition
t =(s, `,s′), we refer to ` by act(t). We write s1

t1 · · · tm−−−→sm+1 for s1
t1−→s2 · · · tm−→sm+1 and use

ϕ to denote t1 · · · tm. We extend act to these sequences: act(t1 · · · tn) = act(t1) · · ·act(tn).
The initial configuration of a system is s0 = (~q0;~ε) with ~q0 = (q0p)p∈P. A final

configuration of the system is s f = (~q;~ε) with all qp ∈ ~q final. A configuration s is
reachable if s0→∗ s and we define the reachable set of S as RS(S) = {s | s0→∗ s}. We
define the traces of a system S to be Tr(S) = {act(ϕ) | ∃s ∈ RS(S),s0

ϕ−→s}.
We now define several properties about communicating systems and their configu-

rations. These properties will be used in § 4 to characterise the systems that correspond
to multiparty session types. Let S be a communicating system, t one of its transitions
and s= (~q;~w) one of its configurations. The following definitions of configuration prop-
erties follow [7, Definition 12].

1. s is stable if all its buffers are empty, i.e., ~w =~ε .
2. s is a deadlock configuration if s is not final, and ~w =~ε and each qp is a receiving

state, i.e. all machines are blocked, waiting for messages.
3. s is an orphan message configuration if all qp ∈~q are final but ~w 6= /0, i.e. there is at

least an orphan message in a buffer.
4. s is an unspecified reception configuration if there exists q ∈P such that qq is a

receiving state and (qq,pq?a,q′q) ∈ δ implies that |wpq| > 0 and wpq 6∈ aA∗, i.e qq
is prevented from receiving any message from buffer pq.

3 “Deterministic” often means the same channel should carry a unique value, i.e. if (q,c!a,q′) ∈
δ and (q,c!a′,q′′) ∈ δ then a = a′ and q′ = q′′. Here we follow a different definition [7] in
order to represent branching type constructs.

4

A sequence of transitions is said to be k-bounded if no channel of any intermediate
configuration si contains more than k messages. We define the k-reachability set of
S to be the largest subset RSk(S) of RS(S) within which each configuration s can be
reached by a k-bounded execution from s0. Note that, given a communicating system
S, for every integer k, the set RSk(S) is finite and computable. We say that a trace ϕ is
n-bound, written bound(ϕ) = n, if the number of send actions in ϕ never exceeds the
number of receive actions by n. We then define the equivalences: (1) S≈ S′ is ∀ϕ, ϕ ∈
Tr(S)⇔ ϕ ∈ Tr(S′); and (2) S≈n S′ is ∀ϕ, bound(ϕ)≤ n⇒ (ϕ ∈ Tr(S)⇔ ϕ ∈ Tr(S′)).

The following key properties will be examined throughout the paper as properties
that multiparty session type can enforce. They are undecidable in general CFSMs.

Definition 2.4 (safety and liveness). (1) A communicating system S is deadlock-free
(resp. orphan message-free, reception error-free) if for all s∈ RS(S), s is not a deadlock
(resp. orphan message, unspecified reception) configuration. (2) S satisfies the liveness
property 4if for all s ∈ RS(S), there exists s−→∗ s′ such that s′ is final.

3 Global and local types: the LTSs and translations

This section presents the multiparty session types, our main object of study. For the
syntax of types, we follow [2] which is the most widely used syntax in the literature.
We introduce two labelled transition systems, for local types and for global types, and
show the equivalence between local types and communicating automata.
Syntax A global type, written G,G′, .., describes the whole conversation scenario of a
multiparty session as a type signature, and a local type, written by T,T ′, .., type-abstract
sessions from each end-point’s view. p,q, · · · ∈P denote participants (see § 2 for con-
ventions). The syntax of types is given as:

G ::= p→ p′ : {a j.G j} j∈J | µt.G | t | end
T ::= p?{ai.Ti}i∈I | p!{ai.Ti}i∈I | µt.T | t | end

a j ∈A corresponds to the usual message label in session type theory. We omit the men-
tion of the carried types from the syntax in this paper, as we are not directly concerned
by typing processes. Global branching type p→ p′ : {a j.G j} j∈J states that participant
p can send a message with one of the ai labels to participant p′ and that interactions de-
scribed in G j follow. We require p 6= p′ to prevent self-sent messages and ai 6= ak for all
i 6= k ∈ J. Recursive type µt.G is for recursive protocols, assuming that type variables
(t, t′, . . .) are guarded in the standard way, i.e. they only occur under branchings. Type
end represents session termination (often omitted). p ∈ G means that p appears in G.

Concerning local types, the branching type p?{ai.Ti}i∈I specifies the reception of a
message from p with a label among the ai. The selection type p!{ai.Ti}i∈I is its dual.
The remaining type constructors are the same as global types. When branching is a
singleton, we write p→ p′ : a.G′ for global, and p!a.T or p?a.T for local.
Projection The relation between global and local types is formalised by projection.
Instead of the restricted original projection [2], we use the extension with the merging

4 The terminology follows [5].

5

operator ./ from [8]: it allows each branch of the global type to actually contain different
interaction patterns.

Definition 3.1 (projection). The projection of G onto p (written G�p) is defined as:

p→ p′ : {a j.G j} j∈J � q=

p!{a j.G j � q} j∈J q= p

p?{a j.G j � q} j∈J q= p′

t j∈JG j � q otherwise

(µt.G) � p=

{
µt.G � p G � p 6= t

end otherwise

t � p = t end � p = end

The mergeability relation ./ is the smallest congruence relation over local types such
that: ∀i ∈ (K∩ J).Ti ./ T ′i ∀k ∈ (K \ J),∀ j ∈ (J \K).ak 6= a j

p?{ak.Tk}k∈K ./ p?{a j.T ′j} j∈J

When T1 ./ T2 holds, we define the operation t as a partial commutative operator over
two types such that T tT = T for all types and that:
p?{ak.Tk}k∈K tp?{a j.T ′j} j∈J = p?({ak.(Tk tT ′k)}k∈K∩J ∪{ak.Tk}k∈K\J ∪{a j.T ′j} j∈J\K)

and homomorphic for other types (i.e. C [T1]tC [T2] = C [T1tT2] where C is a context
for local types). We say that G is well-formed if for all p ∈P, G � p is defined.

Example 3.1 (Commit). The global type for the commit protocol in Figure 1is:
µt.A→ B :{act.B→ C :{sig.A→ C :commit.t}, quit.B→ C :{save.A→ C :finish.end}}
Then C’s local type is: µt.B?{sig.A?{commit.t}, save.A?{finish.end}}.

LTS over global types We next present labelled transition relations (LTS) for global
and local types and their sound and complete correspondence.

The first step for giving a LTS semantics to global types (and then to local types) is
to designate the observables (`,`′, ...). We choose here to follow the definition of actions
for CFSMs where a label ` denotes the sending or the reception of a message of label a
from p to p′: ` ::= pp′!a | pp′?a

In order to define an LTS for global types, we need to represent intermediate states
in the execution. For this reason, we introduce in the grammar of G the construct p
p′ : j {ai.Gi}i∈I to represent the fact that a j has been sent but not yet received.

Definition 3.2 (LTS over global types). The relation G `−→ G′ is defined as (subj(`) is
defined in § 2):

[GR1] p→ p′ : {ai.Gi}i∈I
pp′!a j−−−→ p p′ : j {ai.Gi}i∈I (j ∈ I)

[GR2] p p′ : j {ai.Gi}i∈I
pp′?a j−−−−→ G j [GR3] G[µt.G/t]

`−→ G′

µt.G `−→ G′

[GR4]
∀ j ∈ I G j

`−→ G′j p,q 6∈ subj(`)

p→ q : {ai.Gi}i∈I
`−→ p→ q : {ai.G′i}i∈I

[GR5]
G j

`−→ G′j q 6∈ subj(`) ∀i ∈ I \ j,G′i = Gi

p q : j {ai.Gi}i∈I
`−→ p q : j {ai.G′i}i∈I

[GR1] represents the emission of a message while [GR2] describes the reception of
a message. [GR3] governs recursive types. [GR4,5] define the asynchronous seman-
tics of global types, where the syntactic order of messages is enforced only for the
participants that are involved. For example, when the participants of two consecutive

6

communications are disjoint, as in: G1 = A→ B : a.C→ D : b.end, we can observe the
emission (and possibly the reception) of b before the interactions of a (by [GR4]).

A more interesting example is: G2 = A→ B : a.A→ C : b.end. We write `1 = AB!a,
`2 = AB?a, `3 = AC!b and `4 = AC?b. The LTS allows the following three sequences:

G2
`1−→ A B : a.A→ C : b.end

`2−→ A→ C : b.end
`3−→ A C : b.end

`4−→ end

G2
`1−→ A B : a.A→ C : b.end

`3−→ A B : a.A C : b.end
`2−→ A C : b.end

`4−→ end

G2
`1−→ A B : a.A→ C : b.end

`3−→ A B : a.A C : b.end
`4−→ A B : a.end

`2−→ end

The last sequence is the most interesting: the sender A has to follow the syntactic order
but the receiver C can get the message b before B receives a. The respect of these con-
straints is enforced by the conditions p,q 6∈ subj(`) and q 6∈ subj(`) in rules [GR4,5].
LTS over local types We define the LTS over local types. This is done in two steps,
following the model of CFSMs, where the semantics is given first for individual au-
tomata and then extended to communicating systems. We use the same labels (`,`′, ...)
as the ones for CFSMs.

Definition 3.3 (LTS over local types). The relation T `−→ T ′, for the local type of role
p, is defined as:

[LR1] q!{ai.Ti}i∈I
pq!ai−−−→ Ti [LR2] q?{ai.Ti}i∈I

qp?a j−−−→ Tj [LR3] T [µt.T/t] `−→ T ′

µt.T `−→ T ′

The semantics of a local type follows the intuition that every action of the local type
should obey the syntactic order. We define the LTS for collections of local types.

Definition 3.4 (LTS over collections of local types). A configuration s = (~T ;~w) of
a system of local types {Tp}p∈P is a pair with ~T = (Tp)p∈P and ~w = (wpq)p6=q∈P with
wpq ∈ A∗. We then define the transition system for configurations. For a configuration

sT = (~T ;~w), the visible transitions of sT
`−→ s′T = (~T ′;~w′) are defined as:

1. Tp
pq!a−−→ T ′p and (a) T ′

p′ = Tp′ for all p′ 6= p; and (b) w′pq = wpq · a and w′
p′q′ = wp′q′

for all p′q′ 6= pq; or
2. Tq

pq?a−−→ T ′q and (a) T ′
p′ = Tp′ for all p′ 6= q; and (b) wpq = a ·w′pq and w′

p′q′ = wp′q′

for all p′q′ 6= pq.

The semantics of local types is therefore defined over configurations, following the
definition of the semantics of CFSMs. wpq represents the FIFO queue at channel pq.
We write Tr(G) to denote the set of the visible traces that can be obtained by reducing
G. Similarly for Tr(T) and Tr(S). We extend the trace equivalences ≈ and ≈n in § 2 to
global types and configurations of local types.

We now state the soundness and completeness of projection w.r.t. the LTSs. The
proof is given in Appendix A.1.

Theorem 3.1 (soundness and completeness). 5 Let G be a global type with partici-
pantsPand let ~T = {G � p}p∈P be the local types projected from G. Then G≈ (~T ;~ε).

5 The local type abstracts the behaviour of multiparty typed processes as proved in the subject
reduction theorem in [14]. Hence this theorem implies that processes typed by global type G
by the typing system in [2, 14] follow the LTS of G.

7

Local types and CFSMs Next we show how to algorithmically go from local types
to CFSMs and back while preserving the trace semantics. We start by translating local
types into CFSMs.

Definition 3.5 (translation from local types to CFSMs). Write T ′ ∈ T if T ′ occurs in
T . Let T0 be the local type of participant p projected from G. The automaton correspond-
ing to T0 is A(T0) = (Q,C,q0,A,δ) where: (1) Q= {T ′ | T ′ ∈ T0, T ′ 6= t,T ′ 6= µt.T};(2)
q0 = T ′0 with T0 = µ~t.T ′0 and T ′0 ∈Q; (3) C = {pq | p,q∈G}; (4) A is the set of {a∈G};
and (5) δ is defined as:

If T = p′!{a j.Tj} j∈J ∈ Q, then

{
(T,(pp′!a j),Tj) ∈ δ Tj 6= t

(T,(pp′!a j),T ′) ∈ δ Tj = t, µt~t.T ′ ∈ T0,T ′ ∈ Q

If T = p′?{a j.Tj} j∈J ∈ Q, then

{
(T,(p′p?a j),Tj) ∈ δ Tj 6= t

(T,(p′p?a j),T ′) ∈ δ Tj = t, µt~t.T ′ ∈ T0,T ′ ∈ Q

The definition says that the set of states Q are the suboccurrences of branching or se-
lection or end in the local type; the initial state q0 is the occurrence of (the recursion
body of) T0; the channels and alphabets correspond to those in T0; and the transition is
defined from the state T to its body Tj with the action pp′!a j for the output and pp′?a j
for the input. If Tj is a recursive type variable t, it points the state of the body of the
corresponding recursive type. As an example, see C’s local type in Example 3.1 and its
corresponding automaton in Figure 1.

Proposition 3.1 (local types to CFSMs). Assume Tp is a local type. Then A(Tp) is
deterministic, directed and has no mixed states.

We say that a CFSM is basic if it is deterministic, directed and has no mixed states. Any
basic CFSM can be translated into a local type.

Definition 3.6 (translation from a basic CFSM to a local type). From a basic Mp =
(Q,C,q0,A,δ), we define the translation T(Mp) such that T(Mp) = Tε(q0) where Tq̃(q)
is defined as:
(1) Tq̃(q) = µtq.p

′!{a j.T
◦
q̃·q(q j)} j∈J if (q,pp′!a j,q j) ∈ δ ;

(2) Tq̃(q) = µtq.p
′?{a j.T

◦
q̃·q(q j)} j∈J if (q,p′p?a j,q j) ∈ δ ;

(3) T◦q̃(q) = Tε(q) = end if q is final; (4) T◦q̃(q) = tqk if (q, `,qk) ∈ δ and qk ∈ q̃; and
(5) T◦q̃(q) = Tq̃(q) otherwise.

Finally, we replace µt.T by T if t is not in T .

In Tq̃, q̃ records visited states; (1,2) translate the receiving and sending states to branch-
ing and selection types, respectively; (3) translates the final state to end; and (4) is the
case of a recursion: since qk was visited, ` is dropped and replaced by the type variable.

The following states that the translations preserve the semantics.

Proposition 3.2 (translations between CFSMs and local types). If a CFSM M is
basic, then M ≈ T(M). If T is a local type, then T ≈A(T).

8

4 Completeness and synthesis

This section studies the synthesis and sound and complete characterisation of the mul-
tiparty session types as communicating automata. We first note that basic CFSMs cor-
respond to the natural generalisation of half-duplex systems [7, § 4.1.1], in which each
pair of machines linked by two channels, one in each direction, communicates in a
half-duplex way. In this class, the safety properties of Definition 2.4 are however unde-
cidable [7, Theorem 36]. We therefore need a stronger (and decidable) property to force
basic CFSMs to behave as if they were the result of a projection from global types.
Multiparty compatibility In the two machines case, there exists a sound and com-
plete condition called compatible [12]. Let us define the isomorphism Φ : (C×{!,?}×
A)∗−→ (C×{!,?}×A)∗ such that Φ(j?a)= j!a, Φ(j!a)= j?a, Φ(ε)= ε , Φ(t1 · · · tn)=
Φ(t1) · · ·Φ(tn). Φ exchanges a sending action with the corresponding receiving one
and vice versa. The compatibility of two machines can be immediately defined as
Tr(M1) = Φ(Tr(M2)) (i.e. the traces of M1 are exactly the set of dual traces of M2).
The idea of the extension to the multiparty case comes from the observation that from
the viewpoint of the participant p, the rest of all the machines (Mq)q∈P\p should behave
as if they were one CFSM which offers compatible traces Φ(Tr(Mp)), up to internal
synchronisations (i.e. 1-bounded executions). Below we define a way to group CFSMs.

Definition 4.1 (Definition 37, [7]). Let Mi = (Qi,Ci,q0i,Ai,δi). The associated CFSM
of S = (M1, ..,Mn) is M = (Q,C,q0,Σ ,δ) such that: Q = Q1 ×Q2 × ·· · ×Qn, q0 =
(q01, . . . ,q0n) and δ is the least relation verifying: ((q1, ...,qi, ...,qn), `,(q1, ...,q′i, ...,qn))∈
δ if (qi, `,q′i) ∈ δi (1≤ i≤ n).

Below we define a notion of compatibility extended to more than two CFSMs. We
say that ϕ is an alternation if ϕ is an alternation of sending and corresponding receive
actions (i.e. the action pq!a is immediately followed by pq?a).

Definition 4.2 (multiparty compatible system). A system S = (M1, ..,Mn) (n ≥ 2) is
multiparty compatible if for any 1-bounded reachable stable state s ∈ RS1(S), for any
sequence of actions `1 · · ·`k from s in Mi, there is a sequence of transitions ϕ1 ·t1 ·ϕ2 ·t2 ·
ϕ3 · · ·ϕk · tk from s in a CFSM corresponding to S−i = (M1, ..,Mi−1,Mi+1, ..,Mn) where
ϕ j is either empty or an alternation, ` j =Φ(act(t j)) and i 6∈ act(ϕ j) for 1≤ j≤ k (i.e. ϕ j
does not contain actions to or from channel i).

The above definition states that for each Mi, the rest of machines S−i can produce the
compatible (dual) actions by executing alternations in S−i. From Mi, these intermediate
alternations can be seen as non-observable internal actions.

Example 4.1 (multiparty compatibility). As an example, we can test the multiparty
compatibility property on the commit example of Figure 1. We only detail here how to
check the compatibility from the point of view of C. To check the compatibility for the
actions act(t1 · t2) = BC?sig ·AC!commit, the only possible 1-bound (i.e. alternating)
execution is AB!act ·AB?act, and Φ(act(t1)) = BC!sig sent from B and Φ(act(t2)) =
AC!commit sent from A. To check the compatibility for the actions act(t3 ·t4)=BC?save ·
AC?finish, the 1-bound execution is AB!quit ·AB?quit, and Φ(act(t3)) = BC!save from
B and Φ(act(t4)) = AC!finish from A.

9

Remark 4.1. In Definition 4.2, we require to check the compatibility from any 1-bounded
reachable stable state in the case one branch is selected by different senders. Consider
the following machines:

A→/.-,()*+ BA?a //
BA?b ��

/.-,()*+ CA?c ///.-,()*+��������
/.-,()*+ CA?d ///.-,()*+��������

B→/.-,()*+ BA!a //
BA!b ��

/.-,()*+��������
/.-,()*+��������

C→/.-,()*+ CA!c //
CA!d ��

/.-,()*+��������
/.-,()*+��������

A′→/.-,()*+ BA?a
((

BA?b
77/.-,()*+ CA?c //

CA?d %%JJJ
JJJ

/.-,()*+��������
/.-,()*+��������

In A, B and C, each action in each machine has its dual but they do not satisfy multiparty
compatibility. For example, if BA!a ·BA?a is executed, CA!d does not have a dual action
(hence they do not satisfy the safety properties). On the other hand, the machines A′, B
and C satisfy the multiparty compatibility.

Theorem 4.1. Assume S=(Mp)p∈P is basic and multiparty compatible. Then S satisfies
the three safety properties in Definition 2.4. Further, if there exists at least one Mq which
includes a final state, then S satisfies the liveness property.

Proof. We first prove that any basic S which satisfies multiparty compatible is stable
(S is stable, if, for all s ∈ RS(S), there exists an execution ϕ ′−→ such that s ϕ ′−→s′ and s′ is
stable, and there is a 1-bounded execution s0

ϕ ′′−→s′, i.e. any trace can be translated into a
1-bounded execution after some appropriate executions). The proof is non-trivial using
a detailed analysis of causal relations to translate into a 1-bounded executions. Then
the orphan message- and the reception error-freedom are its corollary. The deadlock-
freedom is proved by the stable property and multiparty compatibility. Liveness is a
consequence of the orphan message- and deadlock-freedom. See Appendix B. �

Proposition 4.1. If all the CFSMs Mp (p ∈P) are basic, there is an algorithm to check
whether (Mp)p∈P is multiparty compatible.

Proof. The algorithm to check Mp’s compatibility with S−p is defined using the set
RS1(S) of reachable states using 1-bounded executions. Note that the set RS1(S) is
decidable in the polynomial time for half-duplex systems [6, 7]. We start from q = q0
and the initial configuration s = s0. Suppose that, from q, we have the transitions ti =
(q,qp!ai,q′i) ∈ δp. We then construct RS1(S) (without executing p) until it includes s′

such that {s′ ti−→ t ′j−→s j} j∈J where act(t ′i) = qp?ai and I ⊆ J. If there exists no such s′,
it returns false and terminates. The case where, from q, we have receiving transitions
t = (q,qp?ai,q′i) is dual. If it does not fail, we continue to check from state q′i and
configuration si for each i ∈ I. We repeat this procedure until we visit all q ∈ Qp. Then
repeat for the other machines p′ such that p′ ∈P\p. Then we repeat this procedure for
all stable s ∈ RS1(S). �

The proof of Theorem 4.1 is non-trivial using a detailed analysis of causal relations.
Synthesis Below we state the lemma which will be crucial for the proof of the synthesis
and completeness. The lemma comes from the intuition that the transitions of multiparty
compatible systems are always permutations of one-bounded executions as it is the case
in multiparty session types. See Appendix B.2 for the proof.

Lemma 4.1 (1-buffer equivalence). Suppose S1 and S2 are two basic and multiparty
compatible communicating systems such that S1 ≈1 S2, then S1 ≈ S2.

10

Theorem 4.2 (synthesis). Suppose S is a basic system and multiparty compatible. Then
there is an algorithm which successfully builds well-formed G such that S ≈ G if such
G exists, and otherwise terminates.

Proof. We assume S = (Mp)p∈P. The algorithm starts from the initial states of all ma-
chines (qp1 0, ...,qpn 0). We take a pair of the initial states which is a sending state qp0 and
a receiving state qq0 from p to q. We note that by directness, if there are more than two
pairs, the participants in two pairs are disjoint, and by [G4] in Definition 3.2, the order
does not matter. We apply the algorithm with the invariant that all buffers are empty and
that we repeatedly pick up one pair such that qp (sending state) and qq (receiving state).
We define G(q1, ...,qn) where (qp,qq ∈ {q1, ...,qn}) as follows:

– if (q1, ...,qn) has already been examined and if all participants have been involved
since then (or the ones that have not are in their final state), we set G(q1, ...,qn) to
be tq1,...,qn . Otherwise, we select a pair sender/receiver from two participants that
have not been involved (and are not final) and go to the next step;

– otherwise, in qp, from machine p, we know that all the transitions are sending ac-
tions towards p′ (by directedness), i.e. of the form (qp,pq!ai,qi) ∈ δp for i ∈ I.
• we check that machine q is in a receiving state qq such that (qq,pq?a j,q′j)∈ δp′

with j ∈ J and I ⊆ J.
• we set µtq1,...,qn .p→ q : {ai.G(q1, ...,qp ← qi, ...,qq ← q′i, ...,qn)}i∈I (we re-

place qp and qq by qi and q′i, respectively) and continue by recursive calls.
• if all sending states in q1, ...,qn become final, then we set G(q1, ...,qn) = end.

– we erase unnecessary µt if t 6∈ G.

Since the algorithm only explores 1-bounded executions, the reconstructed G satisfies
G≈1 S. By Theorem 3.1, we know that G≈ ({G � p}p∈P;~ε). Hence, by Proposition 3.2,
we have G ≈ S′ where S′ is the communicating system translated from the projected
local types {G � p}p∈P of G. By Lemma 4.1, S≈ S′ and therefore S≈ G. �

The algorithm can generate the global type in Example 3.1 from CFSMs in Figure 1 and
the global type B→ A{a : C→ A : {c : end,d : end},b : C→ A : {c : end,d : end}} from
A′, B and C in Remark 4.1. Note that B→ A{a : C→ A : {c : end},b : C→ A : {d : end}}
generated by A, B and C in Remark 4.1 is not projectableby Definition 3.1, hence not
well-formed.

By Theorems 3.1 and 4.1, and Proposition 3.2, we can now conclude:

Theorem 4.3 (soundness and completeness). Suppose S is basic and multiparty com-
patible. Then there exists G such that S≈G. Conversely, if G is well-formed, then there
exists basic and multiparty compatible S such that S≈ G.

5 Conclusion and related work

This paper investigated the sound and complete characterisation of multiparty session
types into CFSMs and developed a decidable synthesis algorithm from basic CFSMs.
The main tool we used is a new extension to multiparty interactions of the duality
condition for binary session types, called multiparty compatibility. The basic condition

11

(coming from the binary session types) and the multiparty compatibility property are
a necessary and sufficient condition to obtain safe global types. Our aim is to offer a
duality notion which would be applicable to extend other theoretical foundations such
as the Curry-Howard correspondence with linear logics [4, 22] to multiparty commu-
nications. Basic multiparty compatible CFSMs also define one of the few non-trivial
decidable subclass of CFSMs which satisfy deadlock-freedom. The methods proposed
here are palatable to a wide range of applications based on choreography protocol mod-
els and more widely, finite state machines. Multiparty compatibility is applicable for
extending the synthesis algorithm to build more expressive graph-based global types
(general global types [9]) which feature fork and join primitives [10]. We are currently
working on two applications based on the theory developed in this paper: the Testable
Architecture [19] which enables the communication structure of the implementation
to be inferred and to be tested against the choreography; and dynamic monitoring for
a large scale cyberinfrastructure in [18] where a central controller can check that dis-
tributed update paths for monitor specifications (which form FSMs projected from a
global specification) are safe by synthesis.

Our previous work [9] presented the first translation from global and local types into
CFSMs. It only analysed the properties of the automata resulting from such a transla-
tion. The complete characterisation of global types independently from the projected
local types was left open, as was synthesis. This present paper closes this open prob-
lem. There are a large number of paper that can be found in the literature about the
synthesis of CFSMs. See [17] for a summary of recent results. The main distinction
with CFSM synthesis is, apart from the formal setting (i.e. types), about the kind of the
target specifications to be generated (global types in our case). Not only our synthesis
is concerned about trace properties (languages) like the standard synthesis of CFSMs
(the problem of the closed synthesis of CFSMs is usually defined as the construction
from a regular language L of a machine satisfying certain conditions related to buffer
boundedness, deadlock-freedom and words swapping), but we also generate concrete
syntax or choreography descriptions as types of programs or software. Hence they are
directly applicable to programming languages and can be straightforwardly integrated
into the existing frameworks that are based on session types.

Within the context of multiparty session types, [16] first studied the reconstruction
of a global type from its projected local types up to asynchronous subtyping and [15] re-
cently offers a typing system to synthesise global types from local types. Our synthesis
based on CFSMs is more general since CFSMs do not depend on the syntax. For exam-
ple, [15, 16] cannot treat the synthesis for A′, B and C in Remark 4.1. These works also
do not study the completeness (i.e. they build a global type from a set of projected lo-
cal types (up to subtyping), and do not investigate necessary and sufficient conditions to
build a well-formed global type). A difficulty of the completeness result is that it is gen-
erally unknown if the global type constructed by the synthesis can simulate executions
with arbitrary buffer bounds since the synthesis only directly looks at 1-bounded exe-
cutions. In this paper, we proved Lemma 4.1 and bridged this gap towards the complete
characterisation. Recent work by [1, 5] focus on proving the semantic correspondence
between global and local descriptions (see [9] for more detailed comparison), but no
synthesis algorithm is studied.

12

Acknowledgement. The work has been partially sponsored by Ocean Observatories Initiative
and EPSRC EP/K011715/1,EP/K034413/1 and EP/G015635/1.

References

1. S. Basu, T. Bultan, and M. Ouederni. Deciding choreography realizability. In POPL’12,
pages 191–202. ACM, 2012.

2. L. Bettini et al. Global progress in dynamically interleaved multiparty sessions. In CONCUR,
volume 5201 of LNCS, pages 418–433, 2008.

3. D. Brand and P. Zafiropulo. On communicating finite-state machines. J. ACM, 30:323–342,
April 1983.

4. L. Caires and F. Pfenning. Session types as intuitionistic linear propositions. In CONCUR,
volume 6269 of LNCS, pages 222–236. Springer, 2010.

5. G. Castagna, M. Dezani-Ciancaglini, and L. Padovani. On global types and multi-party
session. LMCS, 8(1), 2012.

6. G. Cécé and A. Finkel. Programs with quasi-stable channels are effectively recognizable. In
CAV, volume 1254 of LNCS, pages 304–315. Springer, 1997.

7. G. Cécé and A. Finkel. Verification of programs with half-duplex communication. Inf.
Comput., 202(2):166–190, 2005.

8. P.-M. Deniélou and N. Yoshida. Dynamic multirole session types. In POPL, pages 435–446.
ACM, 2011. Full version, Prototype at http://www.doc.ic.ac.uk/˜pmalo/dynamic.

9. P.-M. Deniélou and N. Yoshida. Multiparty session types meet communicating automata. In
ESOP, volume 7211 of LNCS, pages 194–213. Springer, 2012.

10. http://arxiv.org/abs/1304.1902.
11. J.-Y. Girard. Linear logic. TCS, 50, 1987.
12. M. Gouda, E. Manning, and Y. Yu. On the progress of communication between two finite

state machines. Information and Control., 63:200–216, 1984.
13. K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type disciplines for

structured communication-based programming. In ESOP’98, volume 1381 of LNCS, pages
22–138. Springer, 1998.

14. K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types. In
POPL’08, pages 273–284. ACM, 2008.

15. J. Lange and E. Tuosto. Synthesising choreographies from local session types. In CONCUR,
volume 7454 of LNCS, pages 225–239. Springer, 2012.

16. D. Mostrous, N. Yoshida, and K. Honda. Global principal typing in partially commutative
asynchronous sessions. In ESOP’09, volume 5502 of LNCS, pages 316–332. Springer, 2009.

17. A. Muscholl. Analysis of communicating automata. In LATA, volume 6031 of LNCS, pages
50–57. Springer, 2010.

18. Ocean Observatories Initiative (OOI). http://www.oceanobservatories.org/.
19. Savara JBoss Project. http://www.jboss.org/savara.
20. K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its typing system.

In PARLE’94, volume 817 of LNCS, pages 398–413. Springer, 1994.
21. J. Villard. Heaps and Hops. PhD thesis, ENS Cachan, 2011.
22. P. Wadler. Proposition as Sessions. In ICFP’12, pages 273–286, 2012.

13

A Appendix for Section 3

A.1 Proof of Theorem 3.1

Local Types Subtyping In order to relate global and local types, we define in Figure 2
a subtyping relation ≺ on local types. Local type T ′ is a super type of local type T ,
written T ≺ T ′, if it offers more receive transitions. We note that Ti ≺ ti∈ITi.

∀i∈I,Ti≺T ′i
p!{ai.Ti}i∈I≺p!{ai.T ′i }i∈I

I⊆J ∀i∈I,Ti≺T ′i
p?{ai.Ti}i∈I≺p?{a j.T ′j} j∈J t≺t

T≺T ′
µt.T≺µt.T ′

Fig. 2. Subtyping between local types

This subtyping relation can be extended to configurations in the following way:
(~T ;~w)≺ (~T ′;~w′) if ~w = ~w′ and ∀p ∈P,Tp ≺ T ′p .

The main properties of subtyping is that it preserves traces, i.e. if s≺ s′, then s≈ s′.

Extension of projection In order to prove Theorem 3.1, we extend the definition of
projection to global intermediate states.

We represent the projected configuration [[G]] of a global type G as a configuration
{G � p}p∈P, [[G]]{ε}qq′∈P where the content of the buffers [[G]]{ε}qq′∈P is given by:

[[p p′ : a j.G j]]{wqq′}qq′∈P = [[G j]]{wqq′}qq′∈P[wpp′=wpp′ ·a j]

[[p→ p′ : a j.G j]]{wqq′}qq′∈P = [[G j]]{wqq′}qq′∈P
[[p→ p′ : {a j.G j} j∈J]]{wqq′}qq′∈P = [[G1]]{wqq′}qq′∈P

[[µt.G]]{wqq′}qq′∈P = {wqq′}qq′∈P
[[end]]{wqq′}qq′∈P = {wqq′}qq′∈P

and where the projection algorithm � q is extended by:

p p′ : j {ai.Gi}i∈I � q=

{
p?{ai.Gi � q}i∈I q= p′

G j � q otherwise

This extended projection allows us to match global type and projected local type
transitions step by step.

Theorem 3.1 We prove Theorem 3.1 by combining the local type subtyping and ex-
tended projection into a step equivalence lemma. Theorem 3.1 is a simple consequence
of Lemma A.1.

Lemma A.1 (Step equivalence). For all global type G and local configuration s, if
[[G]]≺ s, then we have G `−→G′⇔ s `−→s′ and [[G′]]≺ s′.

Proof. The proof is by induction on the possible global and local transitions.

14

Correctness By induction on the structure of each reduction G `−→ G′, we prove that
[[G]] `−→ s with [[G′]] ≺ s. We use the fact that if s ≺ s′, then s ≈ s′, to consider only
matching transition for [[G]].

[GR1] where G= p→ p′ : {ai.Gi}i∈I
pp′!a j−−−→G′= p p′ : j {ai.Gi}i∈I . The projection of G

is [[G]]= sT = {Tq}q∈P,{wqq′}qq′∈P. The local types are: Tp=G � p= p′!{ai.Gi � p}i∈I
and Tp′ = G � p′ = p?{ai.Gi � p′}i∈I and (for q /∈ {p,p′}) Tq = ti∈IGi � q. Rule

[LR1] allows p′!{ai.Gi � p}i∈I
pp′!a j−−−→G j � p. We therefore have sT

pp′!a j−−−→{T ′q}q∈P,{w′qq′}qq′∈P,
with T ′q = Tq if q 6= p, and T ′p = G j � p, and with w′

qq′ = wqq′ if qq′ 6= pp′, and
w′
pp′ = wpp′ ·a j.

Since G j � q≺ ti∈IGi � q, we have {T ′q}q∈P,{w′qq′}qq′∈P≺ [[G]].
This corresponds exactly to the projection [[G′]] of G′.

[GR2] where G = p p′ : j {ai.Gi}i∈I
pp′?a j−−−→ G′ = G j. The projection of G is [[G]] = sT =

{Tq}q∈P,{wqq′}qq′∈P. The local types are: Tp = G � p = G j � p and Tp′ = G � p′ =
p?{a j.G j � p′} and (for q /∈ {p,p′}) Tq = G j � q. We also know that wpp′ is of the
form w′

pp′ ·a j.
Using [LR2], {Tq}q∈P,{wqq′}qq′∈P pp′?a j−−−→ {G j � q}q∈P,{w′qq′}qq′∈P with w′

qq′ =wqq′

if qq′ 6= pp′. The result of the transition is the same as the projection [[G′]] of G′.
[GR3] where G = µt.G′ `−→G′′.

By hypothesis, we know that G′[t/µt.G′] `−→G′′. By induction, we know that [[G′[t/µt.G′]]]=
sT = {Tq}q∈P,{wqq′}qq′∈P can do a reduction `−→ to [[G′′]]= sT = {T ′q}q∈P,{w′qq′}qq′∈P.
Projection is homomorphic for recursion, hence G′[µt.G′/t] � q=G′ � q[µt.G′ � q/t].
We use [LR4] to conclude.

[GR4] where p→ q : {ai.Gi}i∈I
`−→ p→ q : {ai.G′i}i∈I and p,q /∈ subj(`). By induction,

we know that, ∀i ∈ I, [[Gi]] `−→[[G′i]]. We need to prove that [[p→ q : {ai.Gi}i∈I]]
`−→

[[p→ q : {ai.G′i}i∈I]]. The projections for all participants are identical, except for
q′ = subj(`), whose projection is (computed by merging) ti∈IGi � q′. Since ∀i ∈
I, [[Gi]] `−→[[G′i]], we know that all the Gi � q′ have at least the prefix corresponding to
`, and that, using either [LR1] or [LR2], the continuations are the G′i � q

′. We can
then conclude that the ti∈IGi � q′

`−→ti∈I G′i � q
′.

[GR5] where p q : j {ai.Gi}i∈I
`−→ p q : j {ai.G′i}i∈I and q /∈ subj(`) with G′i = Gi

for i 6= j. By induction, we know that, [[G j]] `−→[[G′j]]. We need to prove that [[p

q : j {ai.Gi}i∈I]]
`−→ [[p→ q : { j.Ui}G′i

i ∈ I]]. The projections for all participants are
identical, except for q′ = subj(`), whose projection is G j � q′. By induction, G j �

q′
`−→ G′j � q

′, which allows us to conclude.

Completeness We prove by induction on [[G]] =
{Tp}p∈P,{wqq′}qq′∈P

`−→{T ′p}p∈P,{w′qq′}qq′∈P that G `−→G′ with [[G′]]≺{T ′p}p∈P,{w′qq′}qq′∈P.

[LR1] There is Tp = G � p = p′!{ai.Gi � p}i∈I . By definition of projection, G has p→
q : {ai.Gi}i∈I as subterm, possibly several times (by mergeability). By definition of
projection, we note that no action in G can involve p before any of the occurrences
of p→ q : {ai.Gi}i∈I . Therefore we can apply as many times as needed [GR4] and

15

[GR5], and use [GR1] to reduce to p q : a j.G j. The projection of the resulting
global type corresponds to a subtype to the result of [LR1].

[LR2] There is Tp = G � p= q?{a j.G j � p} j∈J . To activate [LR2], there should be a value
a j in the buffer wpq. By definition of projection, G has therefore p q : j {ai.Gi}i∈I
as subterm, possibly several times (by mergeability). By definition of projection, no
action in G can involve p before any of the occurrences of p q : j {ai.Gi}i∈I . We
can apply as many times as needed [GR4] and [GR5] and use [GR2] to reduce to
G j. The projection of the resulting global type corresponds to the result of [LR2].

[LR3] where T = µt.T ′. Projection is homomorphic with respect to recursion. Therefore
G is of the same form. We can use [GR3] and induction to conclude.

A.2 Local types and CFSMs

Proposition 3.1 For the determinism, we note that all ai in p?{ai.Ti}i∈I and p!{ai.Ti}i∈I
are distinct. Directdness is by the syntax of branching and selection types. Finally, for
non-mixed states, we can check a state is either sending or receiving state as one state
represents either branching and selection type.

Proposition 3.2 The first clause is by the induction of M using the translation of T. The
second clause is by the induction of T using the translation of A. Both are mechanical.

B Appendix for Section 4

We say that a configuration s with t1 and t2 satisfies the one-step diamond property if,
assuming s t1−→s1 and s t2−→s2 with t1 6= t2, there exists s′ such that s1

t ′1−→s′ and s2
t ′2−→s′ where

act(t1) = act(t ′2) and act(t2) = act(t ′1). We use the following lemma to permute the two
actions.

Lemma B.1 (diamond property in basic machines). Suppose S = (Mp)p∈P and S is
basic. Assume s ∈ RS(S) and s t1−→s1 and s t2−→s2.

1. If t1 and t2 are both sending actions such that act(t1) = p1q1!a1 and act(t2) =
p2q2!a2, we have either:
(a) p1 = p2 and q1 = q2 and a1 = a2 with s1 = s2;
(b) p1 = p2 and q1 = q2 and a1 6= a2;
(c) p1 6= p2 and q1 6= q2 with a1 6= a2, and s with t1 and t2 satisfies the diamond

property.
2. If t1 and t2 are both receiving actions such that act(t1) = p1q1?a1 and act(t2) =

p2q2?a2, we have either:
(a) p1 = p2 and q1 = q2 and a1 = a2 with s1 = s2;
(b) p1 6= p2 and q1 6= q2 with s1 6= s2, and s with t1 and t2 satisfies the diamond

property.
3. If t1 is a receiving action and t2 is a sending action such that act(t1) = p1q1?a1 and

act(t2) = p2q2!a2, we have either:
(a) q1 = q2 and p1 6= p2; or
(b) p1 = p2 and q1 6= q2; or

16

(c) p1 6= p2 and q1 6= q2
with s1 6= s2, and s with t1 and t2 satisfies the diamond property.

Proof. For (1), there is no case such that p1 6= p2 and q1 = q2 since S is directed. Then
if p1 = p2 and q1 = q2 and a1 = a2, then s1 = s2 by the determinism. For (2), there is no
case such that p1 6= p2 and q1 = q2 since S is directed. Also there is no case such that
p1 = p2 and q1 = q2 and a1 6= a2 since the communication between the same peer is
done via an FIFO queue. For (3), there is no case such that q1 = q2 and p1 = p2 because
of no-mixed state. �

The following definition aims to explicitly describe the causality relation between
the actions. These are useful to identify the permutable actions.

Definition B.1 (causality).

1. Suppose s0
ϕ−→s and ϕ = ϕ0 · t1 ·ϕ1 · t2 ·ϕ2. We write t1 / t2 (t2 depends on t1) if either

(1) t1 = pq!a and t1 = pq?a for some p and q or (2) subj(t1) = subj(t2).
2. We say ϕ = t0 · t1 · t2 · · · tn is the causal chain if s0

ϕ ′−→s′ and ϕ ⊆ ϕ ′ with, for all
0 ≤ k ≤ n− 1, there exists i such that i > k and tk / ti. We call ϕ the maximum
causal chain if there is no causal chain ϕ ′′ such that ϕ (ϕ ′′ ⊆ ϕ ′.

3. Suppose s0
ϕ−→s and ϕ = ϕ0 · t1 ·ϕ1 · t2 ·ϕ2. We write ti]t j if there is no causal chain

from ti to t j with i < j.

By Lemma B.1, we have:

Lemma B.2 (maximum causality). Suppose S is basic and s ∈ RS(S). Then for all
s ϕ−→s′, we have s ϕm ·ϕ ′′−−−→s′ and s ϕ ′′ ·ϕ ′m−−−→s′ where ϕm,ϕ

′
m are the maximum causal chain.

Lemma B.3 (output-input dependency). Suppose S is basic. Then there is no causal
chain t0 ·t1 ·t2 · · · tn such that act(t0) = pq!a and act(tn) = pq′?b with a 6= b and act(ti) 6=
pq?c for any c (1≤ i≤ n−1).

Proof. We use the following definition. The causal chain ϕ = t0 · t1 · · · tn is called

1. O-causal chain if for all 1≤ i≤ n, ti = pqi!ai with some qi and ai.
2. I-causal chain if for all 1≤ i≤ n, ti = qip?ai with some qi and ai.

Then any single causal chain ϕ = t̃0 · t̃1 · · · t̃n can be decomposed into alternating O and I
causal chains where ti = ·ti0 · · · tini with either (1) act(tini)= pq!a and act(ti+10)= q′p?b;
(2) act(tini) = pq?a and act(ti+10) = qp′!b; or (3) act(tini) = pq!a and act(ti+10) = pq?a.
In the case of (1,2), we note subj(tih) = subj(ti+1k) for all 0≤ h≤ ni and 0≤ k ≤ ni+1.

Now assume S is basic and there is a sequence ϕ = t0 · t1 · · · tn such that act(t0) =
p0q0!a0 and act(tn) = pnqn?an with p0 = qn, a0 6= an and act(ti) 6= p0q0?a for any a
(1≤ i≤ n−1). We prove ϕ is not a causal chain by the induction of the length of ϕ .
Case n = 1. By definition, t0]tn.
Case n > 1. If ϕ is a causal chain, there is a decomposition into O and I causal chains
such that ϕ = t̃0 · t̃1 · · · t̃m where ti = ti0 · · · tini . By the condition ti 6= p0q0?a for any a
(1 ≤ i ≤ n− 1), the case (3) above is excluded. Hence we have subj(tih) = subj(ti+1k)
for all 0≤ h≤ ni and 0≤ k ≤ ni+1. This implies

17

1. p0 = pi j with i even (in the O causal chains)
2. qi j = q0 with i odd (in the I causal chains); and
3. pini = qi+10 with i even.

This implies p0 = q0 which contradicts the definition of the channels of CFSMs (i.e.
p0 6= q0 if p0q0 is a channel). Hence there is no causal chain from act(t0) = p0q0!a0 to
act(tn) = p0q0?an if act(ti) 6= p0q0?a and a0 6= an.

Lemma B.4 (input availablity). Assume S = (Mp)p∈P is basic and multiparty compat-
ible. Then for all s ∈ RS(S), if s pp′!a−−→s′, then s′ ϕ−→s2

pp′?a−−−→s3.

Proof. We use Lemma B.1 and Lemma B.2. Suppose s ∈ RS(S) and s t−→s′ such that
act(t) = pp′!a. By contradiction, assume there is no ϕ ′ such that s′ ϕ ′−→ t ′−→s′′ with act(t) =
pp′?a. Then there should be some input state (q,qp′?b,q′)∈ δp′ where q qp′?b′−−−→q′′ p1−→ pp′?a−−−→q′′′

where b 6= b′ (hence q′ 6= q′′ by determinism), i.e. qp′?b leads to an incompatible path
with one which leads to the action qp′?a.

Suppose s′ ϕ0−→ tbi−→s′′ with tbi = (q,qp′?b,q′). Then ϕ0 should include the correspond-
ing output action act(tbo) = qp′!b. By Lemma B.2, without loss of generality, we as-
sume ϕ0 · tbi is the maximum causal chain to tbi. Let us write ϕ0 = t0 / t1 / · · · / tn. By
Lemma B.1, we can set tbo = tn. Note that for all i, act(ti) 6= pp′?a′ by the assumption:
since if act(ti) 6= pp′?a, then it contradicts the assumption such that t does not have a
corresponding input; and if act(ti) = pp′?a′ with a 6= a′ then, by directedness of S, it
contradicts to the assumption that tbi is the first input which leads to the incompatible
path. Then there are three cases.

1. there is a chain from t to tn = tbo, i.e. there exists 0≤ i≤ n such that t / ti / · · ·/ tn.
2. there is no direct chain from t to tn but there is a chain to tbi, i.e. there exists 0≤ i≤ n

such that t / ti / · · ·/ tbi.
3. there is no chain from t to either tn or tbi.

Case 1: By the assumption, there is no t j such that act(t j) = pp′?a′. Hence ti = pp′′!a′

for some a′ and p′′.
Case 1-1: there is no input in t j in t / ti / · · · / tn−1. Then p = q, i.e. qp′!b = pp′!b.
Then by the definition of s t−→ s′ (i.e. by FIFO semantics at each channel), pp′?b cannot
perform before pp′?a. This case contradicts to the assumption pp′?a is not available.
Case 1-2: there is an input t j in t / ti / · · · / tn−1. By t / ti, subj(act(ti)) = p. Hence we
have either act(ti) = pqi!ai with q 6= qi or act(ti) = qip?ai.

Case 1-2-1: act(ti) = pqi!ai. Then there is a path q
pq!a−−→ pqi!ai−−−→ q′ in Mp. Hence by the

multiparty compatibility, there should be the traces pq?a ·ϕ ·pqi?ai with ϕ alternation
from the machine with respect to {Mr}r∈P\p. This contradicts to the assumption that
pp′?a is not available.
Case 1-2-2: act(ti) = qip?ai. Similarly with the case Case 1-2-1, by the multiparty
compatibility, there should be the traces pq?a ·ϕ · pqi?ai with ϕ alternation from the
machine with respect to {Mr}r∈P\p. Hence it contradicts to the assumption.
Case 2: Assume the chain such that t / ti / · · · / tbi and t]tn. As the same reasoning as

18

Case 1, p 6= q and ti is either pqi!ai or qip?ai. Then we use the multiparty compatibility.
Case 3: Suppose there exists s04 ∈ RS(S) such that s04

t4−→ ϕ4−→ ϕ0−→ tbi−→ and s04
t ′4−→ ϕ ′4−→ t−→

where t4 leads to tbi and t ′4 leads to t.
Case 3-1: Suppose t4 and t ′4 are both sending actions. By Lemma B.1, there are three
cases.
(a) This case which corresponds to Lemma B.1(a) does not satisfy the assumption since
s1 = s2.
(b) We set act(t4) = p4q4!d and act(t ′4) = p4q4!d′ with d 6= d′. In this case, we cannot
execute both t and tbi. Hence there is no possible way to execute tbi. This contradicts to
the assumption.
(c) Since this case satisfy the diamond property, we apply the same routine from s′ such
that s04

t4−→ t41−→s′ and s04
t ′4−→ t42−→s′ and act(t4) = t42 and act(t ′4) = t41 where the length of

the sequences to t and tbi is reduced (hence this case is eventually matched with other
cases).
Case 3-2: Suppose t4 and t ′4 are both receiving actions. By Lemma B.1, there are two
cases. The case (a) is as the same as the case 3-1-(b) and the case (b) is as the same as
the case 3-1-(c).
Case 3-3: Suppose t4 is a sending action and t ′4 is receiving action. This case is as the
same as the case 3-1-(c). This concludes the proof. �

We can extend the above lemma.

Lemma B.5 (general input availablity). Assume S = (Mp)p∈P is basic and multiparty
compatible. Then for all s ∈ RS(S), if s pp′!a−−→s1

ϕ−→s′ with pp′?a 6∈ ϕ , then s′ ϕ ′−→s2
pp′?a−−−→s3.

Proof. We use Lemma B.4. The proof proceeds by the induction of the length of ϕ .
Case |ϕ| = 0. By Lemma B.4. Case |ϕ| = n+1. Let ϕ = ϕ0 · t and s pp′!a−−→s1

ϕ0−→s′0
t−→s′.

By the inductive hypothesis, there exists ϕ ′0 such that s′0
ϕ ′0−→s20

pp′?a−−−→s30. By the same
reasoning as Lemma B.4, act(t) = qp′?b′ which leads to the incompatible path with
one which leads to pp′?a. Then the rest is the same as the proof in Lemma B.4. �

B.1 Proofs of Theorem 4.1

We first prove the following stable property.

Proposition B.1 (stable property). Assume S = (Mp)p∈P is basic and multiparty com-
patible. Then S satisfies the stable property, i.e. if, for all s ∈ RS(S), there exists an exe-
cution ϕ ′−→ such that s ϕ ′−→s′ and s′ is stable, and there is a 1-bounded execution s0

ϕ ′′−→s′.

Proof. We proceed by the induction of the total number of messages (sending actions)
which should be closed by the corresponding received actions. Once all messages are
closed, we can obtain 1-bound execution.

Suppose s1,s2 are the states such that s0
ϕ1−→s1

t1−→s2
ϕ ′1−→s′ where ϕ1 is a 1-bounded

execution and s1
t1−→s2 is the first transition which is not followed by the corresponding

received action. Since ϕ1 is a 1-bounded execution, there is s3 such that s2
t2−→s3 where t1

19

and t2 are both sending actions. Then by the definition of the compatibility and Lemma
B.4, we have

s1
t1−→s2

ϕ2−→ t1−→s′3 (B.1)

where ϕ2 is an alternation execution and t1 = pq?a. Assume ϕ2 is a minimum execution
which leads to t1. We need to show

s1
ϕ2−→ t1−→ t1−→s′3

t2−→s4

Then we can apply the same routine for t2 to close it by the corresponding receiving
action t2. Applying this to the next sending state one by one, we can reach an 1-bounded
execution. Let ϕ2 = t4 ·ϕ ′2. Then by the definition of multiparty compatibility, act(t4) =
p′q′!c and p′ 6= p and q′ 6= q. Hence by Lemma B.1(1), there exists the execution such
that

s1
t4−→ t1−→

ϕ ′2−→ t1−→ s′3
t2−→ s4

Let ϕ ′2 = t4 ·ϕ ′′2 where t1 = p′q′?c. Then this time, by Lemma B.1(2), we have:

s1
t4−→ t4−→ t1−→

ϕ ′′2−→ t1−→ s′3
t2−→ s4

where ϕ1 · t4 · t4 is a 1-bounded execution. Applying this permutation repeatedly, we
have

s1
ϕ3−→ t1−→ t1−→ s′3

t2−→ s4

where ϕ3 is an 1-bounded execution. We apply the same routine for t2 and conclude

s1
ϕ ′−→ s′ for some stable s′. �

From the stable property, the orphan message- and the reception error-freedom
are immediate. Also the liveness is a corollary by the orphan message- and deadlock-
freedom. Hence we only prove the deadlock-freedom assuming the stable property.

Deadlock-freedom Assume S is basic and satisfy the multiparty session compatibility.
By the above lemma, S satisfies the stable property. Hence we only have to check for
all s∈ RS1(S), s is not dead-lock. Suppose by the contradiction, s contains the receiving
states t1, ..., tn. Then by the multiparty compatibility, there exists 1-bounded execution

ϕ such that s
ϕ−→ t1−→ s′. Hence s′

t1−→ s′′ and s′′ is stable. Applying this routine to the rest
of receiving states t2, ..., tn, we conclude the proof. �

B.2 Proof for Lemma 4.1

Proof. We prove by induction that ∀n,S1 ≈n S2 =⇒ S1 ≈n+1 S2. Then the lemma
follows.

We assume S1 ≈n S2 and then prove, by induction on the length of any execution ϕ

that uses less than n buffer space in S1, that ϕ is accepted by S2. If the length |ϕ|< n+1,
then the buffer usage of ϕ for S1 cannot exceed n, therefore S2 can realise ϕ since
S1 ≈n S2.

20

Assume that a trace ϕ in S1 has length |ϕ|= k+1, that ϕ is (n+1)-bound, and that
any trace strictly shorter than ϕ or using less buffer space is accepted by S2.

We denote the last action of ϕ as `. We name `0 the last unmatched send transition
pq!a of ϕ that is not `. We can therefore write ϕ as ϕ0`0ϕ1`, with ϕ1 minimal. I.e. there
is no permutation such that ϕ0`ϕ

′
0`0. In S1, we have

S1 : s0
ϕ0−→ `0−→ ϕ1−→ s1

`−→ s (B.2)

By Lemma B.5, we have a trace ϕ2 such that:

S1 : s0
ϕ0−→ `0−→ ϕ1−→ s1

ϕ2−→ `0−→ s′1 (B.3)

Case ϕ2 = ε . Hence

S1 : s0
ϕ0−→ `0−→ ϕ1−→ s1

`0−→ s′1 and s1
`−→ s (B.4)

Let `= p1q1!b. Then by Lemma B.1 (3), s1
`0−→ `−→ s′′ as required.

Case ϕ2 = `1 ·ϕ ′2.

1. If `= p1q1!b and `1 = p2q2?c, then by Lemma B.1 (3), s1
`1−→ `−→ s′′. Hence we apply

the induction on ϕ ′2.
2. If `= p1q1!b and `1 = p2q2!c, then by directedness, we have three cases:

(a) p1 6= p2 and q1 6= q2. By Lemma B.1 (1), we have

s1
`2−→ s `−→ s′2

ϕ ′2−→ s′1 (B.5)

Hence we conclude by the induction on ϕ ′2.
(b) p1 = p2 and q1 = q2 and b 6= c.

In this case, by Lemma B.5, there exists ϕ3 such that s1
`−→ ϕ3−→ `0−→. Hence this

case is subsumed into (a) or (c) below.
(c) p1 = p2 and q1 = q2 and b = c.

Since `0 and ` is not permutable, there is the causality such that t0 / t1 / · · ·/ tn /
· · ·/ tn+m with act(t0) = `0, act(tn) = ` and act(tn+m) = `0. We note that since
l0 is the first outstanding output, by multiparty compatibility, ti (1≤ i≤ n−1)
does not include p1q1?a. Then by Lemma B.3, this case does not exist.

Applying Case (a), we can build in S1 a sequence of transitions that allows ` using
strictly less buffer space as:

S1 : s0
ϕ0−→

ϕ ′0−→ `0−→ ϕ3−→ `0−→ `−→ (B.6)

where ϕ3 is the result of the combination of ϕ1 and ϕ2 using commutation.
By the assumption (S1 ≈n S2), S2 can simulate this sequence as:

S2 : s0
ϕ0−→

ϕ ′0−→ `0−→ ϕ3−→ `0−→ `−→ (B.7)

21

All the commutation steps used in S1 are also valid in S2 since they are solely based on
causalities of the transition sequences. We therefore can permute (B.7) back to:

S2 : s0
ϕ0−→ `0−→ ϕ3−→ `−→ (B.8)

It concludes this proof.

22

