
Policy-Based Access Control from Numerical Evidence 1

Jason Crampton
Information Security Group, Royal Holloway, University of London

Egham, Surrey, TW20 0EX, United Kingdom
jason.crampton@rhul.ac.uk

Michael Huth
Department of Computing, Imperial College London

London, SW7 2AZ, United Kingdom
{m.huth, jimhkuo}@imperial.ac.uk

Charles Morisset
Centre for Cybercrime and Computer Security, Newcastle University

Claremont Tower, Newcastle, NE1 7RU, UK
Charles.Morisset@newcastle.ac.uk

4 October 2013

Abstract

Increasingly, access to resources needs to be regulated or informed by considerations such
as risk, cost, and reputation. We therefore propose a framework for policy languages, based
on semi-rings, that aggregate quantitative evidence to support decision-making in access
control systems. As aggregation operators “addition”, “worst case”, and “best case” over non-
negative reals are both relevant in practice and amenable to analysis, we study an instance,
Peal, of our framework in that setting. Peal is a stand-alone policy language but can also be
integrated with existing policy languages.

Peal policies can be synthesized into logical formulae that no longer make reference to
quantities but capture all policy behavior. Satisfiability checking of such formulae can be
used to validate and analyze policies in this new evidence-based approach. We discuss a
number of applications, including vacuity, redundancy, change-impact and safety analysis.
The synthesis algorithm requires a form of subset enumeration, for which we develop bespoke
algorithms and demonstrate experimentally that our algorithms work better than generic
state exploration methods. We also sketch how our approach extends from non-negative reals
to other semi-rings and even to rings such as the real numbers.

Keywords: access control, policy languages, formal verification, logical synthesis, trust, reputa-
tion, risk.

1 Introduction

Many security-related systems maintain “policies” that are responsible for mapping requests to
decisions, where “system”, “request” and “decision” are interpreted in a broad sense. Typically
such policies include rules of the form “if a request satisfies certain conditions, then return decision

1Please cite this research note as Jason Crampton, Michael Huth, and Charles Morisset. Policy-Based Access
Control from Numerical Evidence. Technical Report 2013/6, Department of Computing, Imperial College London,
ISSN 1469-4174, 2013.

1

d”. A rule set may be evaluated as a list or as a tree, using operators that define how decisions
from individual rules are to be combined. Access control systems are a good example of this,
where a set of rules of the above form define which users are authorized for which resources. Other
examples include, but are by no means limited to:

• firewalls, where incoming “requests” are packets with external source and internal destination
addresses, and outgoing “requests” are packets with internal source and external destination
addresses;

• credit rating systems, where the requests model clients seeking approval for financial services
and the rules determine creditworthiness;

• trust or reputation management systems, where “requests” model the evaluation of an entity’s
trustworthiness (e.g. with respect to a particular activity).

In many of these systems – notably trust management systems and credit rating systems –
numerical scores play an important part in the computation of the decision. Moreover, it is widely
recognized that it is becoming difficult to define policies that can anticipate and provide appropriate
responses for all possible requests in increasingly open, dynamic, ubiquitous and interconnected
computing milieux. This has led to increased interest in risk- and trust-based access control [6, 9,
10, 11], where access control decisions are determined using numerical values.

There has been considerable research into questions of how to combine trust scores in order to
compute a single trust decision (see the survey paper by Jøsang et al. [17], for example). However,
there has been little work on defining a policy language that explicitly incorporates such scores
and that allows for a formal analysis of the impact of both the combination and the change of
scores. In this paper, we introduce a framework for defining such policy languages, which can be
used in a variety of contexts, not least to enhance existing languages for access control policies.

The policy languages of our framework are rule-based, where rules have as meaning a value in
some semi-ring. If a rule is applicable to a request, it provides quantitative evidence (for example
of user trustworthiness). Our policy languages then use operators to aggregate such evidence: the
composition of rules into policies, and of policies into policy sets is done using the operators of
one or several semi-rings. This compositional design allows us to aggregate evidence to support
an access-control decision in an expressive but uniform manner.

For the sake of concreteness and illustrative purposes, we will mainly use the semi-ring oper-
ations min, max , and + over the non-negative reals, but our framework does not preclude the
use of other operations. In typical use cases, we would use a policy to express a particular aspect
of a wider policy – such as those characteristics and their associated scores that have a negative
effect on the overall score – and values returned by these policies would themselves be combined,
as discussed above.

We believe that the development of such languages is timely, but we also recognize that these
language should be amenable to analysis, so that we can verify that policies are a faithful encoding
of the (security) requirements, and intuitive, so that policy authors are able to use the language
effectively. To this end, we study here a specific instance of our framework – the language Peal –
and consider the extent to which we can translate Peal policies into logical formulae (containing the
same predicate symbols but no arithmetic values or semi-ring operations) with identical semantics.
This synthesis of logical formulae from policies allows us to analyze the original policies and answer
questions of the form: (a) Does the policy always return the same decision? (b) Does the policy
never return a particular decision? (c) Does the decision returned by a policy change if we modify

2

the scores associated with predicates? These questions and their answers allow a policy author
to determine whether a policy meets the intended requirements and to perform change-impact
analysis for policies that may express aspects of risk, cost, security, etc. in numerical form.

In the next section we introduce our framework for designing policy languages that aggregate
evidence over semi-rings. Peal, the specific language that we study in this paper, is described
in Section 3. In Section 4, we define the process for synthesizing logical formulae from Peal
policies, describe a synthesis algorithm and introduce a novel algorithm to minimize its performance
bottleneck. In Section 5, we describe basic analyses of Peal policies and how we can perform them
on synthesized formulas. Related and future work are discussed in Section 6, and the paper
concludes in Section 7.

2 General framework for aggregation

In this section, we introduce a framework for developing policy languages that process and aggre-
gate values, where those values are typically quantitative in nature and provide “evidence” for or
against requests being granted. The evaluation of a policy yields a quantitative value that is used
to inform a decision-making process. The design of the framework is influenced by attribute-based
languages and policy algebras [7, 8, 12, 23, 26].

Each policy language is parameterized by a non-empty set of decisions D, a set of binary
operators on D, a set of predicates Π, and an evaluation mechanism that is used to associate a
truth value with predicates in Π. The set of decisions D is typically a set of numerical values – such
as N (natural numbers), Z (integers), Q (rationals) or R (reals) – augmented by a not-applicable
symbol ⊥, although our framework only requires that the values and operators define a semi-
ring [5].

We assume that all policy operators ⊕ are binary and commutative, and can thus be extended
unambiguously to k-ary operators for any integer k > 2. We further assume that ⊥ is a unit for
all these operators (that is ⊕(⊥, d) = ⊕(d,⊥) = d) and that ⊕ may act as a unary operator (with
⊕(d) = d for all d in D). Operators ⊕ will usually be familiar ones, such as addition, multiplication,
maximum and minimum, for which the above assumptions are reasonable. To some extent, our
definition for the decision set is close to that of the D-algebra [21], since we also consider non
restricted sets of decisions with a unit value, however we do not limit ourselves to a particular set
of operators.

The decision returned by a policy (its semantics) is an element of the decision set. The
semantics of a policy are determined by an evaluation context, which associates a (binary) truth
value with each predicate appearing in the policy. In an access control system, for example, every
authorization request provides an evaluation context. We write Jπ, γK, which belongs to {0, 1}, to
denote the truth value of predicate π in evaluation context γ; and we write Jp, γK, which belongs
to D, to denote the value of policy p in evaluation context γ.

Definition 1 Let D be a set of decisions, Ops a set of operators, and Π be a set of predicates.

1. An atomic policy has form (π, s), where π is a predicate and s is a decision;

J(π, s), γK =

{
s if Jπ, γK = 1,

⊥ otherwise.

3

2. If p1, . . . , pn are policies and ⊕ ∈ Ops, then (⊕, {p1, . . . , pn}) is a policy;.

J(⊕, {p1, . . . , pn}), γK =
n⊕
i=1

Jpi, γK .

We anticipate that our aggregation languages will be used to support access control decision-
making and that policy decisions will provide the link between aggregation policies and authoriza-
tion policies. In this respect, an aggregation language is similar to the (sub)languages that are
used to define “targets” in attribute-based access control languages such as XACML and PTaCL.
With this in mind, we introduce the following definition.

Definition 2 Let L = (D,Ops,Π) be a policy language. Then a policy integration rule (for L) is
a predicate ρ taking elements of D or L as input.

A policy integration rule (PIR) is also evaluated with respect to a context γ and returns a value
in {0, 1}. If t ∈ D and p is a policy, then the PIR isLessThan(t, p), for example, returns true in
context γ iff t < Jp, γK. Henceforth, we will only consider PIRs of the form isLessThan(t, p), which
we will write as t < p for brevity, and ¬isLessThan(t, p), which we will write as p ≤ t. PIRs may
be “plugged” into all sorts of languages that are used to make decisions, be these decisions about
IT systems and their resources, about steps in an off-line workflow such as a mortgage application,
etc. A chosen application domain may further constrain our language. For example, if scores
model probabilities or likelihoods, we could expect decisions range over the unit interval [0, 1].

In certain situations, we may wish to provide a default decision d ∈ D for a policy p in the
event that all p’s sub-policies evaluate to ⊥ in some context γ, whence Jp, γK = ⊥. We can achieve
this by including the subpolicy (1, d) in p, where 1 denotes the predicate that always evaluates to
true; now Jp, γK = d.

3 Aggregation language

In the remainder of this paper, we focus on a language we have called Peal (Pluggable Evidence
Aggregation Language), as a particular instantiation of our policy framework for aggregation. In
Peal, the set of decisions is the non-negative real numbers and the operators are +, min and
max (although most of our results generalize to more abstract settings). The latter limitation is
motivated by pragmatism: we aim to have composition patterns that are at the same time intuitive
enough to a policy author, reasonably expressive, yet also amenable to analysis so that we can
verify that a policy reflects the intent of its authors.

We use a BNF representation for Peal’s syntax, as depicted in Figure 1. Given a predicate q
ranging over Π and a non-negative number score, a rule (q, s) is written if (q) score. A policy
p = (op, {r1, . . . , rn} , score), where each ri is a rule, op is either the addition, max or min and
score is a non-negative number, is written as op(rule+) default score. For each policy, we assume
that a predicate is listed at most once, i.e., it cannot have two different scores associated within a
given policy. However, the same predicate may occur in different policies and be associated with
different scores. As 0 is the unit for +, we assume that no predicate score in a + policy is 0.

The evidence aggregated in policies can then be combined in expressions pSet through appli-
cations of min and max . A pSet expression corresponds to a policy set. Peal does not allow the
use of the + operator in pSet expressions. This deliberate design decision provides a stratification
of evidence aggregation into two layers: the lower layer of policies allows each policy to take its

4

rule ::= if (q) score

op ::= + | min | max

pol ::= op(rule+) default score

pSet ::= pol | max (pSet, pSet) | min(pSet, pSet)

cond ::= th < pSet | pSet ≤ th

Figure 1: Language Peal for evidence aggregation

b1 = +((if (lowCostTransaction 0.3) (if enoughMutualFriends 0.1)

(if enoughMutualFriendsNormalized 0.2)) default 0

b2 = min((if (highCostTransaction 0.1) (if aFriendOfAliceUnfriendedBob 0.2)

(if aFriendOfAliceVouchesForBob 0.6)) default 1

cond = 0.5 < min(b1, b2)

Figure 2: Expression cond models whether Alice is willing to risk paying Bob, based on the amount
of payment and on attributes taken from Alice’s and Bob’s social network.

own “posture” on evidence (e.g. accumulative for +, pessimistic for min, etc.); whereas the upper
layer combines evidence computed by policies through min and max only.

A condition expression cond is a policy integration rule. Figure 2 shows an example of a PIR
in Peal, which models how Alice might want to evaluate the risk of paying Bob, say via PayPal,
on a social network such as Facebook. Alice is willing to take that risk if the policy set min(b1, b2)
has value larger than the threshold 0.5. As min is used to compose policies b1 and b2, both policies
require such a larger value.

Policy b1 accumulates evidence in support of taking that risk. If the cost of the transaction is
sufficiently low, the first rule contributes 0.3 to the value of b1. Somewhat smaller contributions are
made if there are enough mutual friends between Alice and Bob given in two variants discussed
further below.

Policy b2 takes a pessimistic stance and assigns low trust scores when the cost of the transaction
is high and when some friend of Alice unfriended Bob. However, if a friend of Alice vouches for
the trustworthiness of Bob, a higher trust score is assigned. Since the default score is 1, that last
rule is actually redundant for b2 – something that policy analysis should be able to detect.

In general, scores of rules may be determined in a variety of ways. For example, if predicates
are features discovered in machine learning, then scores might be computed probabilities. In our
PayPal example, scores could be determined by ranking the importance of rules, as familiar from
algorithmic game theory. In policy b1, Alice gives most support to low-cost transactions, then to
a normalized friends-based metric, and then to its unnormalized equivalent. In policy b2, Alice’s
biggest risk is represented by a high-cost transaction, followed by a signal in a social network that
Alice would interpret as grounds for distrust.

This example also illustrates that predicates in Π may be structured and capture logical de-
pendencies. Figure 3 shows possible definitions for the predicates in cond above. Note that
lowCostTransaction and highCostTransaction are mutually exclusive but neither logically im-

5

lostCostTransaction = (amountAlicePays < 100)

highCostTransaction = (1000 < amountAlicePays)

enoughMutualFriends = (4 < numberOfMutualFriends)

enoughMutualFriendsNormalized = (numberOfBobsFriends <

100 ∗ numberOfMutualFriends)

Figure 3: Possible definitions of predicates used on the expression cond from Figure 2.

plies the negation of the other. So for a transaction amount of 500, say, rules with these predicates
have no effect.

Predicate enoughMutualFriends here requires at least five mutual friends, this definition
may be subjective and might even include particular friends in a refinement. The predicate
enoughMutualFriendsNormalized is a refinement of enoughMutualFriends that shields against
scenarios in which Bob has many, many friends (e.g. as for a celebrity).

We note that we could, in principle, encode Peal policies in an attribute-based access control
language such as XACML or a Datalog-like authorization language such as SecPal [3]. The first
four lines of the policy in Fig. 2 could, for example, be decomposed into many different cases and
then encoded as an XACML target. However, this decomposition is likely to be time-consuming
and complex (and, therefore, error-prone). Moreover, the entire decomposition may have to be
performed whenever an administrator wishes to change one or more of the values in the policy. In
the next section, we describe how Peal policies can be automatically transformed into equivalent,
purely logical formulae. The resulting formulae could be encoded directly in XACML, say. How-
ever, a dedicated engine for evaluating Peal policies will be more efficient in practice. Rather, the
value of the transformation is to use off-the-shelf SAT solvers and SMT solvers to analyze Peal
policies (as we will discuss in Sec. 5).

4 Logical synthesis

Evidence may stem from a variety of sources and ontologies. For example, the evidence that
some software is running on a specific platform is very different in character from the information
that the software is ten years old or that the machine on which it is running is in a particular
legal territory. The aggregation of such evidence in pSet, in combination with its comparison in
cond therefore poses a risk (no pun intended). The choice of scores, comparison operators, and
composition operators may result in values for cond that are un-anticipated or undesired when
cond is seen as a basis for making access-control decisions.

Ideally, we would want a tool that allows us to confirm that expressions cond meet the expec-
tations of their authors. For example, we may want to assess whether a change to some scores (be
it for the thresholds in cond, default scores of pol or scores of predicates q) will have any or an
expected change impact on the truth of conditions cond; or we may want to ensure that cond is
not vacuously true, etc.

6

4.1 Inductive synthesis process

We show how to synthesize formulae of propositional logic over Π from cond expressions, thereby
allowing us to apply satisfiability solving to the questions described above. We write φ[pSet ≤ th]
for the formula that captures the meaning of expression pSet ≤ th. Assignments ρ that map
predicates qi to truth values true or false operate at a higher level of abstraction than evaluation
contexts γ.

Definition 3 Two evaluation contexts γ and γ′ are equivalent if Jπ, γK = Jπ, γ′K for each predicate
π in Π. If γ and γ′ are equivalent, we say they induce the same truth assignment on Π, and write
ργ for the assignment induced by the equivalence class containing γ.

The aim of our synthesis is that JpSet ≤ th, γK equals 1 if, and only if, φ[pSet ≤ th] is true
under assignment ργ. Expression pSet ≤ th is the logical negation of th < pSet as ≤ is a total
order over non-negative reals. The synthesis for the latter expression thus reduces to that of the
former by defining

φ[th < pSet] = ¬φ[pSet ≤ th] (1)

The synthesis of aggregation of policy evidence is defined inductively:

φ[min(pS1, pS2) ≤ th] = φ[pS1 ≤ th] ∨ φ[pS2 ≤ th]

φ[max (pS1, pS2) ≤ th] = φ[pS1 ≤ th] ∧ φ[pS2 ≤ th]

Assuming that φ[pSi ≤ th] correctly captures the operational truth of pSi ≤ th under all truth
assignments, these inductive definitions encode the correct meaning of min and max over the reals:
min(pS1, pS2) ≤ th holds if, and only if, pSi ≤ th holds for some i in {1, 2} (a disjunction); and
max (pS1, pS2) ≤ th holds if, and only if, pSi ≤ th holds for all i in {1, 2} (a conjunction).

It remains to show how to synthesize φ[pol ≤ th] for policies pol, which have form
op(rule+) default s. The top-level structure of formulae for op policies is always a disjunction:
either we consider the default score “df” (when no predicates hold) or we consider the aggregate
score (“ndf”):

φ[pol ≤ th]
def
= φdf [pol ≤ th] ∨ φndfop [pol ≤ th] (2)

Clearly, φdf [pol ≤ th] is the same for all operators op:

φdf [pol ≤ th]
def
= (s ≤ th) ∧

n∧
i=1

¬qi (3)

We interpret (s ≤ th) as true (a redundant conjunct) when constant s is less than or equal to
constant th; otherwise, we interpret φdf [pol ≤ th] as false (a redundant disjunct in (2)).

It remains to define the formula φndfop [pol ≤ th] for each operator op in our language. In doing
so, we interpret empty disjunctions as false and empty conjunctions as true. We model pol as a list
of predicate-score pairs [(q1, s1), . . . , (qn, sn)] and write [n] to denote the set of indices {1, . . . , n}.

Let T ⊆ [n] be the non-empty set of indices of predicates that hold in pol in context γ. Then
Jpol, γK equals op({si | i ∈ T}) and φndfop [pol ≤ th] should hold if, and only if, op({si | i ∈ T}) ≤ th.
We define the set of all such T as

Ord[th, op]
def
= {T ⊆ [n] | T 6= ∅, op({si | i ∈ T}) ≤ th} (4)

7

Thus, φndfop [pol ≤ th] should hold if, and only if, there is some T in Ord[th, op] where T equals the
set of predicates that are true in pol. In other words, the formula for the synthesis of pol ≤ th
with operator op may be defined as:

φndfop [pol ≤ th]
def
=

∨
T∈Ord[th,op]

(
∧
j 6∈T

¬qj ∧
∧
j∈T

qj) (5)

We can make this formula more compact when op is monotone with respect to the partial order
≤ of the semi-ring, i.e. when T ⊆ T ′ implies op(T) ≤ op(T ′) in the underlying semi-ring. This is
the case for + over non-negative reals, for example. Thus, for each T ′ in Ord[th, op] we can capture
the scenario that only predicates with index in T ⊆ T ′ are true by stipulating that all predicates
qj, where j is not in T ′, be false, giving rise to the conjunct

∧
j 6∈T ′ ¬qj. Since all scores in Peal

are non-negative, T ⊆ T ′ and T ′ in Ord[th, op] imply T in Ord[th, op]. We order Ord[score, op] by
subset inclusion and write M[th, op] for the set of maximal elements of (Ord[th, op],⊆). Since every
element of Ord[th, op] is a subset of some element in M[th, op], we need only consider formulae of
form

∧
j 6∈T ′ ¬qj for elements of M[th, op]. Thus, for monotone operators op we have

φndfop [pol ≤ th] =
∨

T∈M[th,op]

∧
j 6∈T

¬qj (6)

and note that this formula is then logically equivalent to the formula in (5), limits disjunctions to
maximal elements, and removes the second conjunct from each such disjunct.

We may also simplify the formula in (5) for some concrete operators such as min and max . For
the former, we need that at least one qi with si ≤ th be true. For the latter, we need that at least
one qi be true (to force the non-default case) and to have no qi with th < si be true:

φndfmin [pol ≤ th] =
∨
{qi | si ≤ th} (7)

φndfmax [pol ≤ th] =
n∨
i=1

qi ∧
∧
{¬qi | th < si}

We state the formal correctness of this synthesis process; the proof of Theorem 1 can be found
in Appendix B.

Theorem 1 Let pSet be an arbitrary expression of Peal and γ be an evaluation context. Then:

1. Expression JpSet ≤ th, γK equals 1 iff formula φ[pSet ≤ th] evaluates to true under ργ.

2. Expression Jth < pSet, γK returns 1 for ρ iff formula φ[th < pSet] evaluates to true under
ργ.

4.2 Expressive power of synthesis

We have seen that it is possible to transform statements in Peal into a logical form; namely,
propositional logic over Π. A natural question is then what formulae of propositional logic over Π
can be obtained from Peal. It turns out that the answer is all of propositional logic. We state the
result formally, the proof of which can be found in the appendix.

Theorem 2 For each expression cond of our language, φ[cond] is a formula of propositional logic
over Π. Conversely, there are scores x, y, and z with x < y < z such that every propositional logic
formula over Π is logically equivalent to some φ[pSet ≤ y] that uses only min policies and only the
scores x, y, and z.

8

4.3 Synthesis algorithm

The definitions of φ[pSet ≤ th] and φ[th < pSet] make it clear that their implementation is linear
in the size of the expression pSet and constant in the size of th, except for the computation of
φ[pol ≤ th] (and so of φ[th < pol] as well) for operators such as + that rely on the computation of
M[th, op], as in (6). For such operators, our synthesis is linear in the size of pol and M[th, op].

The computation of an element of M[th,+] can be seen as a special (and simple) instance of
the 0-1 knapsack problem, which seeks to maximize

∑n
i=1 tipi subject to

∑n
i=1 sipi ≤ th where

predicates pi have value in {0, 1} and si and ti are non-negative. This optimization problem is
NP-hard. But in our setting, all ti equal 1 and so we can optimize this efficiently. However,
computing set M[th,+] amounts to enumerating all solutions to this easier optimization problem.

In that context, we note that the size of M[th, op] can be exponential in the number n of
predicates of an op policy: let op be +, n be even, and each of the n predicates qi have score 1/n.
Let th be 0.5. When cond is 0.5 < pol this models majority voting, which can be evaluated in
linear time. We can synthesize φ[0.5 < pol] as the logical negation of φ[pol ≤ 0.5]. Here, M[0.5,+]
contains all and only those subsets of [n] with exactly n/2 elements.

We now present and evaluate an algorithm that seeks to minimize the number of elements of
Ord[th,+] that are explored in that computation. We assume that we have a list of n predicate-
score pairs [(q1, s1), . . . , (qn, sn)] such that 0 < s1 and si ≤ si+1 for all i. Our algorithm is designed
with the following observations in mind. Let I be some subset of [n] and suppose j and k are in I
with j < k (hence si ≤ sj). Then∑

i∈I

si >
∑

i∈I\{j}

si ≥
∑

i∈I\{k}

si >
∑

i∈I\{j,k}

si.

Now suppose that
∑

i∈I si 6≤ t.

• If
∑

i∈I\{j} si ≤ t, then
∑

i∈I\{k} ≤ t also.

• If
∑

i∈I\{j} si 6≤ t and
∑

i∈I\{k} ≤ t, then we do not need to consider
∑

i∈I\{j,k} si.

• If
∑

i∈I\{j} si 6≤ t and
∑

i∈I\{k} 6≤ t, we need to consider
∑

i∈I\{j,k} si only once (when we

omit k first).

The algorithm enum sring for the computation of M[th,+] is depicted in Figure 4. The algo-
rithm terminates a search branch as soon as a score under the threshold is found; otherwise, it
recursively starts new branches implementing the strategy determined by the observations above.

enum sring (S, th, i)
if
∑
S ≤ th then

output indices of S with non-zero scores

else

for j = i down to 1
enum sring (S{j 7→ 0}, th, j − 1)

Figure 4: Recursive algorithm enum sring for enumerating all elements of M[th,+] where the array
S{j 7→ 0} is S except at position j, which stores 0

For the array of scores [0.1, 0.2, 0.2, 0.3], and a threshold th = 0.5, the call
enum sring([0.1, 0.2, 0.2, 0.3], 0.5, 4) results in the following trace (indentation indicating recur-
sive calls).

9

enum sring ([0.1,0.2,0.2,0.3],0.5,4)

enum sring ([0.1,0.2,0.2,0],0.5,3) -> output [1,2,3]

enum sring ([0.1,0.2,0,0.3],0.5,2)

enum sring ([0.1,0,0,0.3],0.5,1) -> output [1,4]

enum sring ([0,0.2,0,0.3],0.5,0) -> output [2,4]

enum sring ([0.1,0,0.2,0.3],0.5,1)

enum sring ([0,0,0.2,0.3],0.5,0) -> output [3,4]

enum sring ([0,0.2,0.2,0.3],0.5,0)

Figure 5 shows average execution times of enum sring to compute M[th,+] for policies contain-
ing up to 30 rules. For each n, 1 ≤ n ≤ 30, we generate 20 policies, each containing n predicates
with scores s1 ≤ · · · ≤ sn, with s1 = 1 and, for all i > 1, si+1 is chosen at random from the range
[si, si + 4]. We define th to be a random value in the interval [0,

∑n
i=1 si]. These results confirm

an exponential growth in the running time with respect to the number of rules and have been
obtained with the iterative implementation of the enum algorithm in Ocaml [19], using native-code
compilation (ocamlopt), on a 2 GHz Intel core i7 with 8GB of RAM.

0 5 10 15 20 25 30

10−6

10−4

10−2

100

102

Number of rules

T
im

e
in

se
c

Figure 5: Time taken to compute M[th,+] using enum sring

Figure 6 shows the number of elements visited by enum sring as a function of the number of
predicates, using the randomly generated policies described above. This value cannot be larger
than 2n for policies with n rules. For a few policies, all or almost all elements were visited. But
since the y-axis uses a logarithmic scale, enum sring performs considerably better than exhaustive
search on most of these problem instances.

Finally, Figure 7 presents the time required to compute M[th,+] for a policy of 25 rules where
each rule score is 1 and th varies from 1 to 25, thus implementing majority-voting policies. We can
clearly see that thresholds close to half the number of rules have worst performance (as expected).
The graph is asymmetric since enum sring starts by considering the set of all scores and removes
elements. (The asymmetry would be reversed if it were to start with empty score set.)

4.4 From semi-rings to rings

Thus far, we have advocated the use of semi-rings for the aggregation of evidence, where differ-
ent semi-rings may be used in different policies. But there are settings where the interaction of

10

0 10 20 30
2−4

25

214

223

232 y = 2x

Number of rules

N
u
m
b
er

o
f
el
em

en
ts

v
is
it
ed

Figure 6: Number of elements visited by enum sring

0 5 10 15 20 25

0

1

2

3

4

value of threshold th

T
im

e
in

se
c

Figure 7: Computation time for enum sring on a 25-rule majority-voting policy

positive and negative evidence is important, for example when considering arguments and counter
arguments. We therefore want to discuss how our approach adapts to the setting of rings, where
the monoid (A,+, 0) is actually a group with inverse a 7→ −a : A→ A.

Language Peal is unaffected by such a change. The logical synthesis process described above is
unaffected as well, with the exception of the formula in (6). We now illustrate how this formula
would change for the ring of reals and op being +. Set Ord[th,+] is as in (4). For X in Ord[th,+],
define

Xp = {i ∈ X | si > 0} Xn = {i ∈ X | si < 0}

The intuition is that since
∑

i∈X si ≤ th, we may remove indices from Xp or add indices with
negative score to Xn as long as this results in a non-empty set. Therefore, we order Ord[th,+]
now as X v Y iff Xp ⊆ Yp and Yn ⊆ Xn. Under this ordering, summation is monotone: X v Y

11

implies
∑

i∈X si ≤
∑

i∈Y si. The formula in (6) becomes

φndf+ [rule ≤ th] =
∨

X∈M[th,+]

∧
i∈Xn

qi ∧
∧

i 6∈Xp,si>0

¬qi, (8)

where M[th,+] is now the set of maximal elements in (Ord[th,+],v). The other change concerns
the shape of the disjunct for X: it is still a conjunction, but now lists predicates with negative
score whose index is in Xn, and negated predicates with positive score whose index is not in Xp.
We now describe how enum sring needs to be modified to accommodate negative scores as well.

Given a list [(q1, s1), . . . , (qn, sn)] and an index set I ⊆ [n], we may reduce
∑

i∈I si by removing a
positive score or by including a negative score. We assume an array of scores S sorted in ascending
order of the absolute values of scores. That is, |S[1]| ≤ |S[2]| ≤ . . . ≤ |S[n]|. We define an array
B, where B[i] encodes the index set I: that is B[i] = 1 if and only if i ∈ I. Then

∑
i∈I

si =
n∑
i=1

B[i] ∗ S[i]

We may now use a similar backtracking algorithm to the one specified in Figure 4, as shown in
Figure 8. The algorithm is called with i = n and B[j] = 1 if and only if sj > 0. (In other words,
we start by computing the sum of all positive scores.) An example run of the program is given in
Appendix A.

enum ring (S,B, t, i)
if
∑n

i=1 S[i] ∗ B[i] ≤ t then

output indices with non-zero scores

else

for j = i down to 1
B[j] + 1 mod 2 ← B[j] /* flip bits */

enum ring (S,B, t, j − 1)

Figure 8: Enumerating all elements of M[th,+] when scores may be positive or negative

5 Analyzing Policies

We show how to reduce the analysis of cond expressions to reasoning about the synthesis of such
conditions, thereby reducing questions of policy analysis to logical reasoning. Our discussion
focuses on conditions of the form pSet ≤ th for the sake of concreteness. The discussion for
th < pSet is very similar.

5.1 Vacuity and redundancy analysis

The first problem we discuss is vacuity analysis, which is valuable in the specification and verifica-
tion of hardware design (see [1, 18], for example). In our context, it serves to identify expressions
that always evaluate to the same truth value and is useful because it is unlikely that we would want
to base a decision on a condition whose evaluation is true in all contexts (or always false, for that
matter). By appeal to Theorem 1, we can establish that pSet ≤ th is always true by checking that

12

formula φ[pSet ≤ th] is logically valid; and establishing the satisfiability of φ[pSet ≤ th] means
that pSet ≤ th is not always false. But vacuity of certain logical statements may also be a good
thing in our setting: we may want to ensure that the evidence computed in a policy is always
positive, for example. This we can do by verifying that pol ≤ 0 is always false.

Given a policy or policy set written in Peal, there is the possibility that some predicate within
a policy does not really contribute anything and its inclusion therefore introduces unnecessary
computation during policy evaluation. Thus, redundancy analysis is important and could be
interpreted in two ways: no contribution in the evaluation of the policy, or no contribution in the
evaluation of an expression cond that refers to this policy. We consider the second case and write
cond \ q to denote the expression obtained from cond be removing all rules that involve q from all
policies in cond. This assumes that no policy contains a single rule with predicate q. We can then
check whether φ[cond]↔ φ[cond \ q] is logically valid. If so, the presence of q makes no difference
to the policy and this might suggest a specification error.

5.2 Sensitivity analysis

An important analysis is that of the sensitivity of the value of th in the evaluation of conditions
pSet ≤ th. Given th < th′, a satisfiability witness of the formula

φ[pSet ≤ th′] ∧ ¬φ[pSet ≤ th], (9)

may explain why an increase from a score of th to th′ flips the truth value of φ[pSet ≤ th] from
false to true in the same evaluation context.

We may take this kind of analysis further. Suppose, for example, that we are using the unit
interval [0, 1] for the set of decisions. We may wish to establish the “tipping points” for the
threshold score, at which truth values change. If we wanted to set thresholds at intervals of 0.2,
for example, we could then verify (or otherwise) that the increase from 0 to, say, 0.19 does not
change any meaning.

In a more complex application, we may have an interval [l, u] of possible values for th and use
satisfiability solving in combination with binary search to find closed subintervals in [l, u] in which
the evaluation of pSet ≤ th is fixed for any choice of th from a given subinterval. Initially, we set
th and th′ to l and u, respectively and evaluate equation (9). We then repeat for the intervals
[l, l + (u − l)/2] and [l + (u − l)/2, u], and so on, until the desired level of granularity has been
achieved. This would certainly further our understanding of the relevance of threshold values and
would strengthen our confidence in using them. In fact, it may be used to certify that a policy
does implement the right postures for a fixed set of discrete threat levels th.

We may also investigate the effect of including a particular policy pol in a cond expression. For
the policies pSet and min(pol, pSet), e.g., the formulae

φ[pSet ≤ th] ∧ ¬φ[min(pol, pSet) ≤ th] (10)

φ[min(pol, pSet) ≤ th] ∧ ¬φ[pSet ≤ th] (11)

have as satisfiability witnesses all those scenarios in which the inclusion of policy pol turns false
into true (for the first formula above) or true into false (for the latter formula). An application
of this might be to ensure that the inclusion of a best policy pol (which takes an optimistic view
on things with low risk aversion) does not undermine important concerns expressed in pSet.

It is potentially attractive to do sensitivity analysis without using satisfiability solvers. For
example, if a change from th to th′ in (9) meant that the synthesized formulae φ[pSet ≤ th] and

13

φ[pSet ≤ th′] have the same concrete syntax, then it is clear that this change of score results
in equivalent conditions pSet ≤ th and pSet ≤ th′. We illustrate this on the shape of formula
φ[pol ≤ th] for a min policy. For formula (2), we just require that the truth value of s ≤ th remains
unchanged when we want to change either s or th. But we also need to make sure that the formula
in (7) won’t change syntactically. This means we can manipulate th and the set of predicate scores
si in any way we choose, as long as it still returns the same set of predicates for which si ≤ th is
true. This syntactic method seems less suited for + policies, though, as one would have to ensure
that the set of maximal elements M[th] remains the same.

5.3 Certifying that policies are safe

Attribute-based access control is particularly useful in open and distributed systems, where man-
agement of security information might need to be decentralized. Attribute values are then collected
from different sources, including the user herself, which raises the question of policy behavior when
information is withheld, intentionally or not [12].

According to Tschantz and Krishnamurthi, a policy is safe if “incomplete requests should only
result in a grant of access if the complete one would have” [25]. In the context of attribute-based
access control, a predicate may evaluate to true if a given attribute value is present in the request,
and to false otherwise. In other words, an incomplete request can be seen as a request that satisfies
a subset of the predicates satisfied by the complete request.

An attacker can choose different partial requests to attack different sets of predicates, including
the empty set of predicates [15]. We therefore need the ability to model that choice of an attacker.
Given a policy set pSet, let us write q′i for a fresh copy of predicate qi occurring in pSet. The
intuition is that q′i either equals qi (when this predicate is not affected by withholding attribute
information) or that q′i equals false (when certain information is withheld that makes qi false).
Therefore, we would expect that each q′i logically implies qi whenever the condition pSet ≤ th is
true within a policy of form grant if (pSet ≤ th) from a language that includes Peal conditions.

Let us write φ{q′i/qi} for the formula φ obtained by syntactically substituting each qi with q′i.
We claim that this policy is safe if:(

φ[pSet ≤ th]{q′i/qi} ∧
∧

(q′i → qi)
)
→ φ[pSet ≤ th] (12)

is logically valid. Therefore, the safety problem for a policy can be reduced to a satisfiability
problem over a formula build out of the synthesis of the policy.

Under some assumptions, we can argue formulae in (12) are always valid, meaning that
we do not have to check for their validity with any tools. For example, let pSet =
(op, {(q1, s1), . . . , (qn, sn))} , s) such that op is monotonically decreasing (in that X ⊆ Y implies
op(Y) ≤ op(X)), and let us assume that φ[pSet ≤ th]{q′i/qi} ∧

∧
(q′i → qi) holds. We need to

show that φ[pSet ≤ th] holds under the same assignment of truth values. We first need to assume
that the default value s is consistent with op, that is, si ≤ s, for any i. Hence, since op is mono-
tonically decreasing, if the default value satisfies the threshold, then so does any aggregation of
scores. Furthermore, by (5), if φndfop [pSet ≤ th]{q′i/qi} holds, then there exists X in Ord[th, op] such
that

∧
i∈X q

′
i holds. It follows then that

∧
i∈X qi also holds. Since op is monotonically decreasing,

any superset of X belongs to Ord[th, op], and therefore we can conclude that φndfop [pSet ≤ th] also
holds. In other words, a policy of the form grant if (op, {(q1, s1), . . . , (qn, sn))} , s) ≤ th is safe
if op is monotonically decreasing and s is consistent with op. For instance, min is monotonically
decreasing (removing values in X increases the value of min(X)), and the policy grant if b2 ≤ 0.5,
where b2 is defined as in Figure 2, is safe.

14

Dually, a policy of the form deny if pSet ≤ th is safe if:(
φ[pSet ≤ th] ∧

∧
(qi → q′i)

)
→ φ[pSet ≤ th]{q′i/qi} (13)

is logically valid. Note that this definition keeps the meaning of q′i and qi used in (12) but now
swaps the order of primed and un-primed policies and predicates in the shape of the formula.
Indeed, the notion of safe means that a grant cannot be obtained by removing information, and
a deny cannot be erased by adding information. In that case, we can similarly show that if pSet
is built only with monotonically increasing operators, the formula in (13) is always logically valid
and so the policy is then safe.

6 Related and future work

There has been considerable interest in access control languages and policy algebras that, concep-
tually, represent policies as trees [7, 8, 12, 23, 26]. The evaluation of a policy with respect to an
authorization request uses a post-order traversal of the tree, assigns decisions to the leaf nodes,
and then computes decisions for non-leaf nodes using decision-combining operators. In Section 3,
we showed how to represent the common decision-combining operators using semi-ring operators
over carrier set {0, 1}. Thus, we believe our approach subsumes such languages and algebras, at
least with regard to basic policy specification and evaluation.

Recent work has considered more complex decision-combining operators, the complexity arising
either from the choice of decision set or from the operators themselves. Li et al. [20], for example,
define new operators using linear constraints, which, informally, can compute a decision for a
policy based on the number of instances of particular decisions that arise in the evaluation of its
sub-policies. A typical example, cited by Li et al., is to return a decision d if more than half the
sub-policies evaluate to d. We have seen how the + operator and cond expressions can be used to
achieve a similar effect. However, our work only considers two possible outcomes for the evaluation
of expressions pSet ≤ th and th < pSet – whereas Li et al. work with a more complex decision
set. We hope to extend our cond expressions to such decision sets in the future.

There is also a large body of work on risk, trust and reputation, and combining scores that
represent these concepts. The survey of Jøsang et al. [17] provides a comprehensive introduction
to this topic. The focus of such work has tended to be on finding ways of combining scores
“transitively”: if A trusts B and B trusts C, how much should A trust C? Our focus is on using
numerical values (that may represent risk, trust, reputation or any other form of evidence that
might inform access control decision-making) to construct policies. There is some work on risk-
or trust-aware access control, but its focus has not been on evidence-based policy languages. The
work of Chen and Crampton [10], for example, considers an extended decision set and simply
describes how a given risk value leads to a particular decision; how risk is computed or aggregated
from evidence is not considered. The work of Chakraborty and Ray on trust-aware role-based
access control [9] focuses on how to compute a trust value for each user, with those trust values
being associated with roles in a role-based access control framework. Our work provides a more
structured and flexible framework for aggregating and incorporating trust (or similar concepts that
map to some numerical domain) in access control policies. The work of Ni et al. [22] considers
fuzzy values for security levels, and uses t-norms to aggregate fuzzy values.

The notion of semi-ring has been used to model different aspects of security systems, for instance
by providing a trust metric in order to extend the RT language [6]. Semi-rings are also used by

15

Schwoon et al. [24] to compute the weight of a chain of credentials. Non-numerical semi-rings
are considered by Bharadwaj and Baras [4], where the authors address the problem of policy
negotiation by defining semi-rings for roles. We do not know any prior work that uses semi-rings
to aggregate evidence within structured policies.

Resource infrastructures and the demands put on them may be subject to frequent change.
Policies that regulate access to such resources may therefore be inconsistent or may not capture
important access scenarios (so called “policy gaps”). The work of Fisler et al. [13] developed tech-
niques for the verification of RBAC policies and for the detection of semantic differences between
two RBAC policies. Inconsistency, gap, and policy refinement analyses were proposed by Bruns
and Huth [8] for a policy composition language with explicit decisions for inconsistencies and gaps.
Finally, Basile et al. [2] provide methods for the detection of inconsistencies and other anomalies
in network policies, and policies are translated into rule-based form for efficient processing.

We have shown that it is possible to analyze Peal policies and to identify important properties
of such policies in doing so. However, Peal policies have a particular structure and cond expressions
only return binary decisions. In particular, Peal policies do not give rise to gaps or inconsistencies
in their current form. In future work, we want to better understand what types of inconsistencies
and gaps may occur in Peal when we make use of richer decision types, and to develop static
and dynamic techniques for their detection and resolution. It would also be of interest to derive
normalform results for policies in Peal that can facilitate static analysis or minimize run-time
overheads. The logical synthesis developed in this paper reduces analyses to satisfiability checks
for propositional logic over Π. Since predicates in Π may have logical dependencies and be subject
to axioms, SMT solvers seem an obvious choice for implementing such satisfiability checks. In [16],
a tool is developed and evaluated that compiles cond expressions into analyzable input code of
the SMT solver Z3, with partial support for non-constant scores. Optimizations for synthesis of +
policies (such as binary decision diagrams and exploitations of symmetry) is subject of future work.
Peal will benefit from the analyzable administration of edit permissions on scores and thresholds.
Such tool support exists, for example, for administrative RBAC [14]. Finally, we want to investigate
how our analysis techniques could be applied to real-world languages such as XACML.

7 Conclusions

In this paper we proposed a new framework for developing authorization policy languages that
aggregate evidence for access-control decisions and where this evidence may be quantitative in na-
ture. The novel feature of our framework is that it explicitly incorporates values taken from some
semi-ring used to represent security-relevant information such as risk, trust or reputation – and
supplies operators for combining those values. We then introduced an instance of our framework,
Peal where evidence ranges over non-negative reals, its aggregation happens in two layers (first,
security postures aggregate sub-values that are then composed to consider worst-case outcomes),
and composition operators model accumulative, pessimistic, and optimistic evidence aggregation
respectively. We then demonstrated that the meaning of these numerical policies can be precisely
captured in synthesized formulae of a suitable propositional logic, and we developed and evalu-
ated algorithms that support that synthesis process. Applications of that synthesis process were
specified by showing how important analysis tasks, such as the sensitivity analysis of scores used
in numerical policies, reduce to satisfiability checking of the synthesized formulae.

16

References

[1] R. Armoni, L. Fix, A. Flaisher, O. Grumberg, N. Piterman, A. Tiemeyer, and M. Y. Vardi.
Enhanced vacuity detection in linear temporal logic. In W. A. H. Jr. and F. Somenzi, editors,
CAV, volume 2725 of Lecture Notes in Computer Science, pages 368–380. Springer, 2003.

[2] C. Basile, A. Cappadonia, and A. Lioy. Network-level access control policy analysis and
transformation. IEEE/ACM Trans. Netw., 20(4):985–998, 2012.

[3] M. Y. Becker, C. Fournet, and A. D. Gordon. SecPAL: Design and semantics of a decentralized
authorization language. Journal of Computer Security, 18(4):619–665, 2010.

[4] V. G. Bharadwaj and J. S. Baras. Towards automated negotiation of access control policies.
In POLICY, pages 111–119. IEEE Computer Society, 2003.

[5] S. Bistarelli. Semirings for Soft Constraint Solving and Programming, volume 2962 of LNCS.
SpringerVerlag, 2004.

[6] S. Bistarelli, F. Martinelli, and F. Santini. A semantic foundation for trust management
languages with weights: An application to the RT family. In C. Rong, M. G. Jaatun, F. E.
Sandnes, L. T. Yang, and J. Ma, editors, ATC, volume 5060 of Lecture Notes in Computer
Science, pages 481–495. Springer, 2008.

[7] P. Bonatti, S. De Capitani Di Vimercati, and P. Samarati. An algebra for composing access
control policies. ACM Transactions on Information and System Security, 5(1):1–35, 2002.

[8] G. Bruns and M. Huth. Access control via Belnap logic: Intuitive, expressive, and analyzable
policy composition. ACM Transactions on Information and System Security, 14(1):9, 2011.

[9] S. Chakraborty and I. Ray. TrustBAC: integrating trust relationships into the RBAC model
for access control in open systems. In D. F. Ferraiolo and I. Ray, editors, SACMAT, pages
49–58. ACM, 2006.

[10] L. Chen and J. Crampton. Risk-aware role-based access control. In C. Meadows and M. C. F.
Gago, editors, STM, volume 7170 of Lecture Notes in Computer Science, pages 140–156.
Springer, 2011.

[11] P.-C. Cheng, P. Rohatgi, C. Keser, P. A. Karger, G. M. Wagner, and A. S. Reninger. Fuzzy
multi-level security: An experiment on quantified risk-adaptive access control. In IEEE Symp.
on Security and Privacy, pages 222–230. IEEE Computer Society, 2007.

[12] J. Crampton and C. Morisset. PTaCL: A language for attribute-based access control in open
systems. In P. Degano and J. D. Guttman, editors, POST, volume 7215 of Lecture Notes in
Computer Science, pages 390–409. Springer, 2012.

[13] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz. Verification and change-
impact analysis of access-control policies. In G.-C. Roman, W. G. Griswold, and B. Nuseibeh,
editors, ICSE, pages 196–205. ACM, 2005.

[14] M. I. Gofman, R. Luo, A. C. Solomon, Y. Zhang, P. Yang, and S. D. Stoller. RBAC-PAT: A
policy analysis tool for role based access control. In TACAS, pages 46–49, 2009.

17

[15] A. Griesmayer and C. Morisset. Automated certification of authorisation policy resistance.
In J. Crampton, S. Jajodia, and K. Mayes, editors, ESORICS, volume 8134 of Lecture Notes
in Computer Science, pages 574–591. Springer, 2013.

[16] M. Huth and J. Kuo. PEALT: A reasoning tool for numerical aggregation of trust evidence.
Technical Report 2013/7, Imperial College London, Department of Computing, October 2013.
ISSN 1469-4166 (Print), ISSN 1469-4174 (Online).

[17] A. Jøsang, R. Ismail, and C. Boyd. A survey of trust and reputation systems for online service
provision. Decision support systems, 43(2):618–644, 2007.

[18] O. Kupferman and M. Y. Vardi. Vacuity detection in temporal model checking. In L. Pierre
and T. Kropf, editors, CHARME, volume 1703 of Lecture Notes in Computer Science, pages
82–96. Springer, 1999.

[19] X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and J. Vouillon. The OCaml system
4.00, 2012. available at http://caml.inria.fr/.

[20] N. Li, Q. Wang, W. H. Qardaji, E. Bertino, P. Rao, J. Lobo, and D. Lin. Access control
policy combining: theory meets practice. In B. Carminati and J. Joshi, editors, SACMAT,
pages 135–144. ACM, 2009.

[21] Q. Ni, E. Bertino, and J. Lobo. D-algebra for composing access control policy decisions. In
Proc. of 4th Int’l Symp. on Information, Computer, and Communications Security, ASIACCS
’09, pages 298–309, New York, NY, USA, 2009. ACM.

[22] Q. Ni, E. Bertino, and J. Lobo. Risk-based access control systems built on fuzzy inferences. In
Proc. of 5th ACM Symp. on Information, Computer and Communications Security, ASIACCS
’10, pages 250–260, New York, NY, USA, 2010. ACM.

[23] OASIS. eXtensible Access Control Markup Language (XACML) Version 3.0, 2010. Committee
Specification 01.

[24] S. Schwoon, S. Jha, T. W. Reps, and S. G. Stubblebine. On generalized authorization prob-
lems. In CSFW, pages 202–218. IEEE Computer Society, 2003.

[25] M. Tschantz and S. Krishnamurthi. Towards reasonability properties for access-control policy
languages. In D. Ferraiolo and I. Ray, editors, SACMAT 2006,11th ACM Symposium on
Access Control Models and Technologies, Proceedings, pages 160–169. ACM, 2006.

[26] D. Wijesekera and S. Jajodia. A propositional policy algebra for access control. ACM Trans-
actions on Information and System Security, 6(2):286–235, 2003.

18

A Examples

We provide an illustrative run of the algorithm shown in Figure 8, which computes maximal index
sets in the presence of positive and negative scores. Let S = [−0.1,−0.1, 0.2,−0.3, 0.3], so B is
initialized to [0, 0, 1, 0, 1]. The call to enum ring has the following “trace” (S and t are omitted as
they do not change), where, for the sake of compactness, we abbreviate enum ring as enum.

enum([0,0,1,0,1],5) (score = 0.5)

enum([0,0,1,0,0],4) (score = 0.2)

enum([0,0,1,1,0],3) (score = -0.1, output [3,4])

enum([0,0,0,0,0],2) (empty set, ignore)

enum([0,1,1,0,0],1) (score = 0.1, output [2,3])

enum([1,0,1,0,0],0) (score = 0.1, output [1,3])

enum([0,0,1,1,1],3) (score = 0.2)

enum([0,0,0,1,1],2) (score = 0, output [4,5])

enum([0,1,1,1,1],1) (score = 0.1, output [2,3,4,5])

enum([1,0,1,1,1],0) (score = 0.1, output [1,3,4,5])

enum([0,0,0,0,1],2) (score = 0.3)

enum([0,1,0,0,1],1) (score = 0.2)

enum([1,1,0,0,1],0) (score = 0.1, output [1,2,5])

enum([1,0,0,0,1],0) (score = 0.2)

enum([0,1,1,0,1],1) (score = 0.4)

enum([1,1,1,0,1],0) (score = 0.3)

enum([1,0,1,0,1],0) (score = 0.4)

Note, for example, that [2, 3] 6≤ [2, 3, 4, 5], because the negative index sets are N = {2} and
N ′ = {2, 4} respectively, while the positive index sets are P = {3} and P ′ = {3, 5}. Thus
(P,N) 6≤ (P ′, N ′). Note also that, for either set, the inclusion of an index for any positive score
would increase the total to something greater than 0.1, as would the exclusion of an index for any
negative score. Thus, both sets are maximal.

B Proofs

Proof of Theorem 1:

We proceed by induction over the structure of pSet.

1(⇒) Let us assume that JpSet ≤ th, γK equals 1, and let us show that φ[pSet ≤ th] evaluates to
true under ργ. First of all, from JpSet ≤ th, γK = 1, we can deduce that JpSet, γK ≤ th.
Three cases are then possible:

– pSet = max (pSet1, pSet2); In that case, both max (JpSet1, γK , JpSet2, γK) ≤ th and
φ[pSet ≤ th] = φ[pSet1 ≤ th] ∧ φ[pSet2 ≤ th] hold; From the former, it follows that
JpSet1, γK ≤ th and JpSet2, γK ≤ th, and by induction hypothesis, we have that both
φ[pSet1 ≤ th] and φ[pSet2 ≤ th] evaluate to true, thus allowing us to conclude.

– pSet = min(pSet1, pSet2); In that case, both min(JpSet1, γK , JpSet2, γK) ≤ th and
φ[pSet ≤ th] = φ[pSet1 ≤ th] ∨ φ[pSet2 ≤ th] hold; From the former, it follows that
either JpSet1, γK ≤ th or JpSet2, γK ≤ th, and by induction hypothesis, we have that
either φ[pSet1 ≤ th] or φ[pSet2 ≤ th] evaluates to true, thus allowing us to conclude.

19

– pSet = (op, {(q1, s1), . . . , (qn, sn)} , s); In that case, it is enough to show that either
φdf [pSet ≤ th] or φndfop [pSet ≤ th] holds. Two sub-cases are possible:
∗ Either ργ(qi) = false for all 1 ≤ i ≤ n, in that case, JpSet, γK = s ≤ th, and it

follows that φdf [pSet ≤ th] holds, and we can conclude.
∗ Or there exists at least one i such that ργ(qi) = true, in which case let T be the set of

all i such that ργ(qi) = true. By definition, we have JpSet, γK = op {si | i ∈ T} ≤ th,
since Jqj, γK = ⊥ when ργ(qj) = false. It follows that T ∈ Ord[th, op], and since by
construction of T , ργ(qj) = false for j 6∈ T , and ργ(qj) = true for j ∈ T , we can
conclude that φndfop [pSet ≤ th], as given in Equation (5), holds.

1(⇐) Let us assume that φ[pSet ≤ th] evaluates to true under ργ, and let us show that
JpSet ≤ th, γK equals 1, i.e., that JpSet, γK ≤ th. Here again, three cases are possible:

– pSet = max (pSet1, pSet2); In that case, we have that both φ[pSet1 ≤ th] and
φ[pSet2 ≤ th] hold. By induction, it follows that both JpSet1, γK ≤ th and JpSet2, γK ≤
th, and therefore that max (JpSet1, γK , JpSet2, γK) ≤ th, which allows us to conclude.

– pSet = min(pSet1, pSet2); In that case, we have that either φ[pSet1 ≤ th] or
φ[pSet2 ≤ th] holds. By induction, it follows that either JpSet1, γK ≤ th or JpSet2, γK ≤
th holds, and therefore that min(JpSet1, γK , JpSet2, γK) ≤ th, which allows us to con-
clude.

– pSet = (op, {(q1, s1), . . . , (qn, sn)} , s); In that case, we know that either φdf [pSet ≤ th]
or φndfop [pSet ≤ th] holds.
∗ If φdf [pSet ≤ th] holds, then all ργ(qi) = false for all 1 ≤ i ≤ n, and s ≤ th. From

the former, we can deduce that JpSet, γK = s, and therefore we can conclude.
∗ If φndfop [pSet ≤ th] holds, then there exists at least one T ∈ Ord[th, op] such that any
ργ(qj) = false for j 6∈ T , and ργ(qj) = true for j ∈ T . Since T 6= ∅, it is easy to see
that JpSet, γK = op {si | i ∈ T}, and by definition of Ord[th, op], we can conclude
that JpSet, γK ≤ th.

2 Peal’s order relation is the standard comparison over real numbers, and is therefore a
total order. Hence, Jth < pSet, γK = 1 is equivalent to th < JpSet, γK which is equivalent
to ¬(JpSet, γK ≤ th). Moreover, by definition, φ[th < pSet] = ¬φ[pSet ≤ th], and we
can conclude from step 1. �

Proof of Theorem 2:

We only have to prove the second claim. We use structural induction to prove that all formulas
of propositional logic over Π are logically equivalent to some φ[pSet ≤ 0.1]. Without loss of gen-
erality, we may assume that the propositional formulas over Π are in negation normal form. For
sake of concreteness, we choose x = 0.05, y = 0.1, and z = 1 below.

1. We first show that claim for all literals over Π.

Let q be in Π. Consider the expressions

(min(if (q) 1) default 0.05) ≤ 0.1 (14)

(min(if (q) 0.05) default 1) ≤ 0.1 (15)

of form pol ≤ 0.1. The corresponding synthesized formula for (14) equals the disjunction of
¬q (as 0 ≤ 0.1 is true) with

∨
∅ = false (as 1 6≤ 0.1). But ¬q ∨ false is logically equivalent

to ¬q. The synthesized formula for (15) equals the disjunction of false (as 1 ≤ 0.1 is false)
with

∨
q = q; that disjunction is logically equivalent with q.

20

2. Next, we show that claim for disjunction and conjunction. So let ψ1 and ψ2 be formulas of
propositional logic in negation normal form over Π. By induction hypothesis, there are policy
sets pSet1 and pSet2 such that ψi is logically equivalent to φ[pSeti ≤ 0.1] for i = 1, 2. But
then φ[max (pSet1, pSet2) ≤ 0.1] is logically equivalent to the conjunction ψ1 ∧ ψ2 whereas
φ[min(pSet1, pSet2) ≤ 0.1] is logically equivalent to the disjunction ψ1 ∨ ψ2. �

21

