PEALT: A Reasoning Tool for

Numerical Aggregation of Trust Evidence !
Michael Huth and Jim Huan-Pu Kuo
Department of Computing, Imperial College London
London, SW7 2AZ, United Kingdom
{m.huth, jimhkuo}@imperial.ac.uk

4 October 2013

Abstract

We present a tool that supports the understanding and validation of mechanisms that
numerically aggregate trust evidence — which may stem from heterogenous sources such as
geographical information, reputation, and threat levels. The tool is based on a policy com-
position language Peal [3] and can declare Peal expressions and intended analyses of such
expressions as input. The analyses include vacuity checking, sensitivity analysis of thresh-
olds, and policy refinement. We develop and implement two methods for generating verifi-
cation conditions for analyses, using the SMT solver Z3 as backend. One method is explicit
and space intense, the other one is symbolic and so linear in the analysis expressions. We
experimentally investigate this space-time tradeoff by observing the Z3 code generation and
its running time on randomly generated analyses and on a non-random benchmark modeling
majority voting. Our findings suggest both methods have complementary value and may
scale up sufficiently for the analysis of most realistic case studies.

1 Introduction

Trust is a fundamental factor that influences decisions pertaining to human interactions, be they
social or economic in nature. Mayer et al. [7] offer a definition of trust as “.. the willingness to be
vulnerable, based on positive expectation about the behavior of others.” These expectations of the
trustor would be informed by trust signals exchanged with the trustee of a planned interaction.
Trust has an economic incentive, it avoids the use of costly measures that guarantee assurance
in the absence of trust-enabled interaction. We note that assurance is the established means of
realizing “IT security”. Traditionally, trust signals (e.g. body language) could be observed both
in spatial and temporal proximity to a planned interaction. Modern IT infrastructures, however,
disembed agents in space and in time from such signals and interaction resources, making is hard
to use existing trust mechanics such as those proposed in [11] in this setting [6].

This identifies a need for a calculus in which trust and distrust signals can be expressed and
aggregated to support decision making in a variety of applications (e.g. financial transactions,
software installations, and run-time monitoring of hardware). Thus a language of such a calculus
needs plugs for domain-specific expressions of signals, and means of calculating trust from observed
signals. In [3], we proposed such a language where signals are abstract predicates that — when true —
trigger a score, and where the aggregation of such scores captures reasoning about levels of trust.
That paper also introduced several analyses that assess whether used trust calculations do indeed

' Please cite this research note as Michael Huth, Jim Kuo, and Jason Crampton. PEALT: A Reasoning Tool for
Numerical Aggregation of Trust Evidence. Technical Report 2013/7, Department of Computing, Imperial College
London, ISSN 1469-4174, 2013.

op == min | maz | + | *

rule = if (q) score

pol = op(rule’) default score
pSet = pol | max(pSet,pSet) | min(pSet,pSet)
cond = th < pSet|pSet <th

Figure 1: Syntax of Peal where ¢ ranges over some language of predicates, and th and score range
over real numbers (potentially restricted by domains or analysis methods)

capture desired intent (e.g. as represented in an organizational risk posture say). Verification of
trust calculations is thus a key ingredient of such an approach, and the focus of this paper.

To realize this, we combine methods such as logical synthesis, enumeration algorithms, and
SMT solving for the generation and analysis of verification conditions in this setting of numerically
aggregated evidence. Specifically, the contributions of this paper are as follows: (i) we refine and
extend the language of [3] (Peal) to support a richer calculus, (ii) we implement analyses proposed
in [3] in the SMT solver Z3 on this richer language and so capture dependencies in trust signals,
(iii) we validate our tool (called PEALT) through detailed experiments, and (iv) we provide two
different means of Z3 code generation in PEALT — one of which significantly extends the scope of
analyses to aggregations that allow for weighted sums as used, e.g., in information security metrics.

Outline of paper. In Section 2, we provide background on the target language and the SMT
solver Z3. Design and implementation of PEALT are outlined in Section 3. In Section 4, we
describe two methods for converting conditions used in analyses into Z3 input. The compilation
of Z3 code for analyses and the reporting and validation of witness information is discussed in
Section 5. The validation of PEALT via experiments and other activities is reported in Section 6.
Section 7 contains related work, and Section 8 concludes the paper.

2 Background

Peal: a Pluggable Evidence Aggregation Language. The syntax of Peal is defined in
Figure 1. Rules rule are essentially pairs of predicates ¢; and their associated scores s;. The
meaning of a rule (g;, s;) is that is has no effect if its predicate ¢; is false (no signal), and has score
s; (signal present) as effect otherwise. Policies (pol) p; have form as in (1) and contain zero or
more rules, a default score s, and an aggregation operator op. Policy p; returns the default score
if all its rules have false predicates. Otherwise, it returns the result of applying op to all scores s;
of true predicates g;.

pi=o0p ((¢1 $1)-..(qn sn)) default s (1)

The design of Peal is layered. The supported aggregation operators are min (for pessimistic
views), mazx (for optimistic views), + (for accumulative views), and * (e.g. for aggregating inde-
pendent probabilistic evidence). Policies are composed into policy sets (pSet) using maz and min
with the same optimistic and pessimistic views as for rule composition. Finally, policy sets are
compared to thresholds th using inequalities in conditions cond. The intuition is that scores and
thresholds are real numbers but that some analysis methods may constrain the ranges of said val-
ues. The latter is one reason why the PEALT input language under-specifies such design choices.

(declare-const ql Bool) sat

(declare-const x Real) (model

(declare-const y Real) (define-fun y () Real 0.0)
(assert (= q1 (< x (+y 1)))) (define-fun q1 () Bool true)
(assert q1) (define-fun x () Real 0.0
(check-sat))

(get-model)

Figure 2: Left: sample Z3 input code with a directive to find and to generate a model. Right:
raw Z3 output for the left input code (edited to save space), saying that the conjunction of all
assertions is satisfiable, and supporting this claim with a model.

We note that conditions cond may well act as arguments in upstream languages, e.g. in order to
inform access-control decisions in IT systems.

SMT solver Z3. Satisfiability modulo theories [4] is supported with robust and powerful tools,
that combine the state-of-the-art of deductive theorem proving with that of SAT solving for propo-
sitional logic. If we want to know, e.g., whether a Peal condition cond is always true (a form of
vacuity checking), our tool allows us to declare and name such an analysis and to generate Z3 input
code that, when run, will try to answer this whilst reflecting logical dependencies of predicates.

Z3 has a declarative input language for defining constants, functions, and assertions about
them [8]. Figure 2 shows Z3 input code to illustrate that language and its key analysis directives.
On the left, constants of Z3 type Bool and Real are declared. Then an assertion defines that the
Boolean constant q1 means that x is less than y+ 1, and the next assertion insists that q1 be true.
The directives check-sat and get-model instruct Z3 to find a witness of the satisfiability of the
conjunction of all visible assertions, and to report such a witness (called a model). On the right,
we see what Z3 reports for the input on the left: sat states that there is a model; other possible
replies are unsat (there cannot be a model), and unknown (Z3 does not know whether or not a
model exists).

3 The tool PEALT: its input language based on Peal

The tool is rendered as a web application which accepts analysis declarations. The declared
analyses can be converted to Z3 input code, followed by calling Z3 and getting feedback on running
such code. The tool also allows generation of random declarations or creation of majority-voting
condition instances — the latter stress test the explicit method for Z3 code generation described
below. A typical workflow of using PEALT would be to generate/write/edit conditions and their
analyses, to run these analyses on the Z3 code the tool compiles, and to study the Z3 output to
decide whether further such actions are needed.

The format for declarations is indicated in Figure 3. This example may model risk when
downloading a software installation and where a non-matching hash of the download, e.g., is
mitigated by the fact that the download was done in the browser Chrome (which non-maliciously
changes files in that process). In the example, both analyses have negative outcome.

Keywords POLICIES etc. divide declarations into sorts: policies, policy sets, conditions, domain-
specific declarations, and analyses. Note that the keyword if is omitted from rules in PEALT for
sake of succinctness. A simple naming construct name = expr is used to bind policies, policy sets,
conditions, and analyses to names which we can refer to without any scope restrictions. The syntax

POLICIES

bl = min ((companyMachine 0.1) (uncertifiedOrigin 0.2) (nonMatchingHash 0.2)) default 1
b2 = + ((usedChromeForDownload 0.1) (useIOS 0.2) (useLinux 0.1) (recentPatch 0.1)) default O
POLICY_SETS

pSet = min(bl, b2)

CONDITIONS

condl = 0.2 < pSet

cond2 = 0.1 < pSet

DOMAIN_SPECIFICS

(declare-const numberOfDaysSincelLastPatch Real)

(assert (= recentPatch (< numberOfDaysSinceLastPatch 30)))

ANALYSES

anal = always_true? condl

ana2 = different? condl cond2

Figure 3: Sample input to PEALT with two analyses.

for policies, policy sets, and conditions is hoped to be intuitive enough given the definition of Peal.
Domain-specific declarations are written directly in Z3 and assume that all predicates within rules
of declared policies are declared in Z3 input as Z3 type Bool already.

Analyses such as different? c1 c2 have keywords ending in ? and list conditions as arguments.
Users may specify any number of analyses and our generated Z3 input code will investigate each
declared analysis in turn, as detailed below.

We implemented two different ways of generating Z3 input code for declarations entered into the
tool: explicit synthesis and symbolic synthesis, whose details we will provide below. Intuitively,
explicit synthesis compiles away any references to numerical values to capture — without loss
of precision — the logical essence of the declared analyses; whereas symbolic synthesis statically
encodes the operational semantics of Peal through use of numerical declarations in order for Z3
to be able to reason about all possible dynamic settings. Z3 code generation may produce an
exponential blow-up in explicit synthesis but we will see below that this method also has its
advantages.

Users can specify which synthesis method (explicit or symbolic) to use and whether to just
compile Z3 input code or whether to also run it and display results. For explicit synthesis, users
also have the option of downloading the generated Z3 code (as it may be large) or to just generate
results of all analyses in pretty-printed, minimal form. For symbolic synthesis, we don’t offer
pretty printing as here models specify truth values of all predicates and so we cannot, at present,
compute minimal diagnostic information.

PEALT is written in Scala 2.10.2 using the Lift web framework. After converting Peal declara-
tions into Z3 input code, it interfaces with the SMT solver by launching Z3 (version 4.3.1) as an
external process via Scala’s ProcessBuilder.

4 Synthesis of verification conditions

Our tool will only synthesize code for conditions that are used: i.e. that are declared in the input
panel and occur in at least one declared analysis as argument. Let c1 be the declared name of such
a condition for declaration c1 = cond. We generate Z3 code that declares c1 as Z3 type Bool and
adds an assert statement that binds the name c1 to ¢[cond] via (assert (= c1 ¢[cond])) where
¢lcond] is Z3 code for the logical formula synthesized for condition cond. We now describe two

¢[min(pSi,pS2) <th] = ¢[pSi < th]V ¢[pSs < th] (2)
d[maz(pSy,pSs) < th] < ¢[pSy < th] A ¢[pSy < th] (3)
olth < min(pS1,pSa)] < ¢lth < pSi] A ¢lth < pSa] (4)
olth < maz(pS1,pS2)] < ¢lth < pSi] V ¢lth < pSa] (5)
Q1(pol, cond) o (s < th,cond = pol < th)V (th < s,cond = th < pol)
Q2(pol, cond) def (th < s,cond = pol < th) V (s < th,cond = th < pol)
Q3 (op, cond) def (op € {+, maz}, cond = pol < th)V (op € {*, min}, cond = th < pol)
Q4(op, cond) def (op = %, cond = pol < th)V (op = +, cond = th < pol)
¢[cond] def (5q1 A+ Agp) V qﬁodf [cond] (Q1(pol, cond) true) (6)
leond] = (q1 V-V gn) A G2Y [cond] (Q2(pol, cond) true) (7)
f [cond] def wpggf [dual(cond)] (Q3(op, cond) true) (8)
”df [cond] def \/ /\ qi (Q4(op, cond) true) 9)
XeMopieX
ondl [th <pol] < \/ a ondl lpol < th) = \/ g (10)
ilth<s; ilsi<th

Figure 4: Recursive definition of explicit synthesis: pol has form as in (1); predicates ¢ to Q4
drive the compilation logic; the computation of sets M, is detailed in Figure 5.

methods for generating Z3 code for ¢[cond], starting with the explicit one.

Explicit synthesis. For sake of succinctness, we state ¢[cond] here as a formula of propositional
logic over predicates and not as Z3 input. The definition of ¢[cond] is by structural induction
over the policy set argument in cond, as shown in Figure 4. In the first four equations, min and
maz compositions of policy sets create disjunctions or conjunctions of simpler synthesis problems,
depending on the type of inequality in cond. The next four equations define predicates)1 to
(), that drive the compilation logic of the remaining induction. In (6-7), synthesis for conditions
that contain a sole policy is reduced to the synthesis of its non-default case ¢”df [cond] (when at
least one predicate of a rule is meant to be true). In (6), the default score is compatible with
the inequality so this reduction creates a disjunction whose first disjunct captures the default case
when all predicates of all rules are false. In (7), the default score is incompatible with the inequality
of cond and so only the non-default case may apply; we wrap that case into a conjunction that
forces that at least one predicate be true (that conjunct is needed as our validation testing of this
implementation confirmed).

In (8), synthesis of ¢7¥ [cond] adds a top-level negation and reverts the condition type (where
dual(pol < th) = th < pol) and dual(th < pol) = pol < th)); that way we can use the same
(potentially exponential) enumeration process in (9) for + and *. The enumeration process for
maz and min in (10) is different and linear in the number of rules, e.g. ¢"¥ [th < pol] is a disjunction
of all predicates in pol whose scores are strictly larger than th.

The synthesis in (9) generates a disjunction of monomials that can be represented as an index

enumMon(X, ace,index, op) { enumAnt(X, acc,index, op) {

if (th < acc) { output X; } if (acc <th) { output X; }
else { else {
J =1index — 1; | = index — 1;
while ((0 < j) A (th < op(acc, t;)) { while ((0 < j) A (op(ace, t;) < th) {
enumMon(X U {j}, op(acc, s;), j, op); enumAnt(X U {j}, op(ace, s;), 3, op);
i=j-1L}}} j=ji-L}}}

Figure 5: Left: pseudo-code for algorithm enumM on computing M,, for monotone op where scores
s; are sorted in ascending order. Right: pseudo-code for enumAnt computing M,, for anti-tone
op where s; are sorted in descending order. In both cases, initial call context is ({}, unit, n, op),
unit is the unit of op, and ¢; is op({s1, ..., Si}).

set of their predicates. Since + is monotone and the inequality is th < pol, we only need to
generate minimal index sets X such that the sum of all s; with 7 in X is above th. These X
are the elements of set M which is computed by enumMon in Figure 5. The Boolean guard
in the while-loop of enumMon makes use of the partial sums ¢; to ensure that recursive calls to
enumMon are only made when they will still enumerate at least one new element of M. The
correctness proof for enumMon is straightforward: all such minimal index sets X are generated in
some recursive execution path (completeness), and all enumerated index sets are indeed minimal
(soundness, which requires the scores to be sorted in ascending order).

Algorithm enumAnt is dual to enumMon: it reverts all inequalities for th, lists scores in
descending order, but retains the requirement to compute minimal index sets. The correctness
proof for enumAnt is that for enumMon modulo that duality. We stress that both algorithms
remain to be correct for more general operators: enumM on for monotone operators (where X CY
implies op{s; | t € X} < op{s; | j € Y}); and enumAnt for anti-tone operators (where X C Y
implies op{s; | i € X} > op{s; | j € Y'}). Thus we may implement additional such operators in
the same manner in PEALT with little overhead.

Let us discuss what restrictions use of this explicit synthesis imposes on the input language.
Explicit synthesis requires that (i) all scores within * policies be within [0, 1] so that * is anti-tone;
(ii) all scores within + policies be non-negative to get a correct interpretation of minimal index
set in enumMon; but (iii) scores within maxz and min policies may be any real numbers, since the
inequalities in (10) have the intended meaning for all sign combinations. The above restrictions
do not apply to symbolic synthesis, to which we turn next.

Symbolic synthesis. This method also binds the name c1 of declaration c1 = cond to its condi-
tion via (assert (= c1 ¢[cond])). But the definition of ¢[cond] changes: for each policy p; occurring
in cond, we declare a constant cond_p; of Z3 type Bool and then generate ¢[cond] as a positive
Boolean formula over the constants cond_p;. This generation process is depicted in Figure 6 where
cond is of form th cop pSet or pSet cop th with comparison operator cop. For example, if pSet is
just a policy p;, then ¢[cond] is just cond_p;; and if cond is th < max(pSi, pSs), then ¢[cond] is a
disjunction of ¢[th < pSi] and ¢[th < pSy].

For each declared constant cond p_i of Z3 type Bool, we then add an assert statement
(assert (= cond p_i ¢[cond_p;])) that defines the meaning of cond_p;. It therefore remains to
describe how the formula ¢[cond_p;] is being synthesized symbolically. For p; of form as in (1) we
depict one case of code generated for ¢[cond_p;] when op equals maz or min in Figure 7. This is
a variant of the explicit synthesis for these operators, but it makes explicit how empty conjunc-
tions and disjunctions cause code optimizations, and it shows that we now explicitly code up the

¢[cond] = genSym(cop, pSet) % cond of form th cop pSet or of form pSet cop th
genSym(cop, pS) {
if (pS == p;) { output 'cond p_i’;}
if (((pS is max(pS1,pS2)) A (cop is <))V (pS is min(pSi,pS2)) A (cop is <)) {
output '(or 'genSym(cop,pS1) genSym(cop,pS2)’); }
if (((pS is min(pS1,pS2)) A (cop is <))V (pS is max(pSi,pS2)) A (cop is <)) {
output '(and 'genSym(cop, pS1) genSym(cop,pS2)')';

}

Figure 6: Generation of positive Boolean Z3 formula (in red in ’ /) that defines the synthesis of
cond in terms of the syntheses of cond_p; for policies p; occurring in cond.

Let op be maz and let cond be th < p;. Then we set

(assert (= cond_p_i
(or (and (< th s) (not (or ql 92 ... gn)))
(or qil qi2 ... gik))))

where ¢;; are those precidates in p; whose scores s;; satisfy th < s;,. If there are no such
predicates in p_i, then the above is replaced with

(assert (= cond_p_i
(and (< th s) (not (or q1 g2 ... gn)))))

Figure 7: One case of synthesized Z3 input code for cond_p; for policies p; as in (1)

inequalities for the default score, e.g. as in (< th s).

We now specify how to generate ¢[cond_p;] if op equals * or + and policy p; occurs in at
least one condition within some declared analysis (see Figure 8). This is where we trade off the
space complexity of enumerating elements in M and M, with the time complexity of solving
real-valued inequalities in the Z3 SMT solver.

For each predicate ¢;, we declare a constant p;_score_q; of Z3 type Real, and add two assertions
that, combined, model that the value of p;_score_g; is s; iff ¢; is true, and that this value equals the
unit of + (respectively, x) iff ¢; is false. This means that we can precisely model the effect of the
non-default case (when at least one g; is true) by aggregating all values p;_score_q; with op, and
by comparing that aggregated result to the threshold in the specified manner (< or >). Crucially,
the values of p;_score_g; for predicates that happen to be false won’t contaminate this aggregated
value as they are units for operator op.

The encoding for symbolic synthesis is therefore linear in the size of cond. Using this encoding,
we can now express ¢[cond_p;] in Z3 by directly encoding the “operational” semantics of cond_p;:
either the default score satisfies the inequality and all policy predicates are false, or at least one
policy predicate is true and the aggregation of all values p;_score_q; with op satisfies the inequality.
These Z3 declarations and expressions are stated in Figure 8.

The symbolic synthesis specified above imposes no restrictions on the ranges of scores s;, they
may be any machine representable real numbers that Z3 can handle. For ezplicit synthesis of +
policies, PEALT allows us to replace s_i with an arithmetic expression such as any real numbers
¢, real variables x, or products thereof (¢-z). For + policies, we can in this manner express metrics
such as th < 3" | ¢;-x;, where the semantics of Peal policies gives us the additional ability to “turn

(declare-const p_i_score_q_i Real)
(assert (implies g_i (= s_i p_i_score_q_1i)))
(assert (implies (not (= <unit> p_i_score_q_i)) q_1i))

(or (and (cop th s) (nmot (or gq_1 ... gq_n)))
(and (or g_1 ... gq_n)
(cop th (op p_i_score_q_1 ... p_i_score_q_n))))

Figure 8: Top: declarations for p;_score_q; where s_i is s;, and <unit> is 0.0 for 4 policies p; and
1.0 for * policies p;. Bottom: Z3 code for ¢[cond_p;] for such policies; the comparison operator cop
is < for th < p; or > for th > p;, and th denotes th.

ANALYSES

al = always_true? cl (push)

a2 = always_false? cl (declare-const <analysisType>_<declaredName> Bool)
a3 = satisfiable? cl .

a4 = equivalent? cl c2 (check-sat)

ab = different? cl c2 (get-model)

a6 = implies? cl c2 (pop)

Figure 9: Left: types of analyses currently supported in PEALT. Right: common Z3 input frame
generated for each line of code on the left.

off” some of these summands by making their predicates be false. We note that we did not make
the definition of ¢[cond_p;] in Figure 8 the basis for all policy operators op in explicit synthesis
since Z3 does not seem to support maxr and min in an n-ary version, and doing so may incur a
performance penalty over explicit synthesis.

5 Analyses

We have seen how the two methods of synthesis above generate declarations of constants and assert
statements in Z3. Now, we describe how we generate code that implements declared analyses.
Figure 9 lists examples of the analyses currently supported. For example, the analysis implies?
checks whether the first condition logically implies the second one, which is a form of policy
refinement. Names al etc. will be used to refer to these analyses in code generation. Analyses
always_false? and satisfiable? are “equivalent” but capture different intent of the user, ditto
for equivalent? versus different?.

We explain the code generation for analyses for the first declaration on the left in Figure 9,
this is shown in Figure 10; this generation is the same for both synthesis methods, as generated
code only refers to the condition names and so is independent of how these conditions are con-
strained or generated. Therefore PEALT can and does enrich condition expressions of Figure 1
with propositional operators on names of conditions, as in !c1 && c2, to be used in analyses.

Each analysis generates the same code frame as shown on the right of Figure 9, where
<analysisType> is the string of the analysis without the question mark (e.g. always_true),
and declaredName is the name to which that instance of the analysis was bound (e.g. al). This
creates a unique internal name for a constant of Z3 type Bool that can then be instrumented with

(push)

(declare-const always_true_al Bool)
(assert (= always_true_al cl1))
(assert (not always_true_al))
(check-sat)

(get-model)

(pop)

Figure 10: Z3 input code for the first declaration made on the left in Figure 9.

Result of analysis [name2 = always_false? condl]
condl is NOT always false
For example, when g2 is true, ql is false, y is (- 1.0), and x is 0.0

Figure 11: Sample of pretty printed evidence for satisfiability witness generated by explicit syn-
thesis for an instance of always_false? (hand edited to save space).

[13

assertions in “...” to ask the intended satisfiability question to the SMT solver. The push and pop
make these instrumentation assertions only visible in the scope of this analysis, declarations and
assertions made prior to analysis code are visible in all analyses.

A typical use of different? is to check whether conditions differ for 0.5 < pSet and 0.6 < pSet,
i.e. whether this increase in threshold value from 0.5 to 0.6 matters — suggesting that these are
different trust levels.

Specification of domain specifics. Users may add domain-specific constraints or knowledge
as 73 code within zone DOMAIN_SPECIFICS: e.g. to declare variables with which one can then
define the exact meaning of predicates used in rules, to encode requires properties of the modeling
domain, and to perhaps add assertions that guide the search of a model of some analysis. The use
of raw Z3 code means that any synthesis method will simply copy and paste this code into the
generated Z3 input code. We realize that our decision to automatically generate Z3 declarations of
all variables occurring in rules might confuse initial users, though, when they try to declare these
as Z3 types explicitly.

Witness generation. For each declared analysis, Z3 will try to decide it when running PEALT. If
the Z3 ouput is unsat, then we know that there is no witness to the query — e.g. for always_true?
this would mean that Z3 decides that the condition cannot be false, and so the answer is “yes,
always true”. If the Z3 output is sat, then we report the correct answer (e.g. for always_true?
we say “no, not always true”) and generate supporting evidence for this answer. For explicit
synthesis, the generated models tend to be very short (few crucial truth values of predicates ¢; and
supporting values of variables used to define these ¢; if applicable). PEALT can post-processes
this raw Z3 output to extract this information in pretty-printed form, an example thereof is seen
in Figure 11.

For symbolic synthesis, the model lists truth values for all declared predicates ¢; that occur in
at least one * or 4+ policy. The reason for this seems to stem from the assertions we declare for
variables p_i_score_q_i in Figure 8. We mean to investigate how we can shorten such evidence
in future work.

Execution constraints. Both synthesis methods need to constrain their input. For explicit

synthesis of policies within analyzed conditions, we need that no * policy has scores outside [0, 1]
and that no policy has negative or non-constant scores. For explicit synthesis, we only have to
ensure that min and maz policies have constant scores, and we mean to lift the latter restriction
in future work.

6 Validation

We here report experimental results for both synthesis methods on random and non-random anal-
yses, and discuss other tool validation activities we conducted.

Non-random benchmark. We use condition 0.5 < py,n) With + policy pp.en), default score 0,
and n many rules each with score 1/n. The condition is true when more than half of the predicates
are true (“majority voting”). There are no logical dependencies of predicates in py,,n) and the
size of M is exponential in n. Explicit synthesis generates Z3 input code for values of n up to
27 (when code takes up half a gigabyte), and code generation takes more than five minutes for
n being 23. Symbolic synthesis could generate such code and verify that this condition is true,
within five minutes each, for n up to 49408.

Randomly generated analyses. We also implemented a feature
randPeal n, Mpin, Mmaz, M4, My, P, th, 0

that randomly generates a policy set pSet, two conditions th < pSet and th+4d < pSet and analyses
the first one with always_true?, the second with always_false?, and then applies different? to
both conditions. Predicates are randomly selected from a pool of p many predicates (with n < p).
Scores are chosen from [0, 1] uniformly at random. In pSet, there are n policies for each operator
op of Peal (i.e. 4n policies in total) and each op policy has m,, many rules. For the maximal k
with 2¥ < 4n, we combine 2* policies using alternating maz and min compositions on their full
binary tree; the result is further composed with the remaining 4n — 2* policies (if applicable) by
grouping these in min pairs, and by adding these pairs in alternating min and max compositions
to the binary policy tree. This stress tests policy composition above and beyond what one would
expect in practical specifications.

On these randomly generated analyses, we conducted three experiments that share an execution
and termination logic: an input to randPeal has only one degree of freedom and we use unbounded
binary search to see (within granularity of 10 and for five randomly generated condition pairs)
whether both synthesis methods can generate Z3 code within five minutes, and whether Z3 can
perform each analysis within that same time frame. If this fails for one of these condition pairs,
we stop binary expansion and go to a bisection mode to find the boundary.

Experiment 1 picks for operator min input headers 1,x,1,1,1,3x,0.5,0.1 so it explores how
many (x) rules a sole min policy can handle within five minutes. The same evaluation is done for the
other three operators. We also investigated a variant of this experiment — Exp 1 (DS) — for which we
also add as many assertions as there are declared predicates in the conditions. Figure 12 illustrates
this. We use a function calledBy that models method call graphs with at most one incoming edge
(the forall axiom) and declare a third of these predicates to mean that a specific method called.
The other two thirds define predicates as linear inequalities between real, respectively integer,
variables (which may stem from method input headers) as shown in the figure.

Experiment 2 picks for operator min the input headers n,c,1,1,1,3¢,0.5,0.1 where ¢ equals
x/10 for the boundary value of x found in Experiment 1. We here explore how many min policies

10

(declare-fun calledBy (MethodName) Bool)
(assert (forall ((n MethodName) (m MethodName))
(or (= m n) (implies (calledBy m) (not (calledBy n))))))
(assert (= q0 (calledBy n0)))
(assert (= g4 (< x0 (* x1 0.99679510))))

Figure 12: Some of the domain specific declarations and constraints generated by the call
randPeal 3,2,1,3,2,7,0.5,0.1 and used in experiment Exp 1 (DS)

we can handle for a sizeable number of rules. The same evaluation is done for the other three
operators. Experiment 3 picks for operator min input headers n,n,1,1,1,3n,0.5,0.1 so that we
explore how many (the n) min policies with the same number of rules we can handle within five
minutes. The same evaluation is done for the other three operators.

Results of these experiments are displayed in Figure 13. In their discussion we need to recognize
that random analyses can have very different analysis times for the same configuration type. So a
termination “boundary” does not mean that we cannot verify larger instances within five minutes,
it just means that we encountered an instance at the reported boundary that took longer than
that.

In the first experiment, Z3 code generation seems faster than execution of that Z3 code. We
also see that up to two million rules can be handled for min and max for both synthesis methods
within two minutes. For x*, explicit synthesis seems to be one order of magnitude better than
symbolic synthesis, although the Z3 execution in the latter case appears to be faster. For 4+, on
the other hand, symbolic synthesis now seems to be an order of magnitude better than the explicit
one — handling thousands of rules in just over two minutes. When we add the domain-specific
constraints in Exp 1 (DS), we notice that min and maz can only handle about seven-thousand
rules in a similar amount of time (compared to two million beforehand). The results for * for
both methods and for + for explicit synthesis seem about the same as without domain-specific
constraints. But 4+ now only can handle less than two-thousand rules for symbolic synthesis.

In the second experiment, the number of rules used for maz and min is about two-hundred
thousand. We can deal with about fifty policies with that many rules within five minutes, noting
that code generation now takes more time. It is noteworthy that explicit synthesis can handle over
sixty-thousand * policies with 12 rules each, but that this drops to less than twenty-thousand +
policies. The symbolic approach does not scale that well in comparison.

In the third experiment, we see that both methods can handle between two to three thousand
policies with that many rules for maz and min. For % and +, explicit synthesis spends its bulk
time in code generation whereas symbolic synthesis spends its bulk time in Z3 execution. For x,
explicit synthesis is still about an order of magnitude better. For +, symbolic synthesis seems
better than the explicit one but not significantly so.

Ideally, we would like to extend these experiments to larger data points. But such an attempt
quickly reaches the memory boundary of our powerful server in the code generation for explicit
synthesis. We also believe that practical case studies would not use more than a few dozen or
hundreds of rules for each + and * policy declared, and so both approaches may actually work
well then.

Software validation and future work. We have not yet encountered a Z3 output unknown for
our analyses, although this is easy to achieve by adding complex constraints as domain specifics.
We validated both synthesis methods by running them side by side on randomly generated anal-

11

’ Exp 1 H ex min ‘ sy min ‘ ex max ‘ Sy max ‘ ex * ‘ sy * ‘ ex + ‘ sy + ‘
rules 1867904 1802240 2101248 2162688 120 16 144 | 5784
code 26s 20s 328 22s 5s 0.1s 14s 0.6s
73 110s 181s 74s 132s 48s 3s 728 133s
’ Exp 1 (DS) H ex min ‘ Sy min ‘ ex max ‘ Sy max ‘ ex * ‘ sy * ‘ ex + ‘ sy + ‘
rules 8064 6280 6544 7240 136 16 128 1848
code 0.9 0.8 0.8s 0.8 8s 0.1s 1s 1s
73 133s 88s 136s 150s 60s 14s 40s 91s
| Exp2 | exmin | symin | exmax | symax | ex* [sy* | ex+ | sy+ |
pol,rul || 48,186790 | 56,180224 | 40,210124 | 56,216268 | 65888,12 | 4192,2 | 17488,14 | 24,578
code 264s 768 169s 87s 279s 84s 277s 0.8s
73 time 438s 205s 44s 249s 4s 108s 2s 160s
’ Exp 3 H ex min \ Sy min \ ex max \ Sy max \ ex * \ sy * \ ex + \ sy + ‘
pol=rul 2128 2552 2136 2936 88 16 96 160
code 271s 71s 293s 99s 85s | 0.2s | 160s 1s
73 8s 63s 8s 120s 17s | 144s | 26s 23s

Figure 13: Experimental results: columns show used synthesis (“ex”plicit or “sy”mbolic) and
choice of operator; rows show number of rules for policies of chosen operator in analyses, time

(rounded to seconds) to generate Z3 code, and time to execute Z3 code.

12

yses and checking whether they would produce conflicting answers (unsat and sat). During the
development of PEALT, we encountered a few of these conflicts which helped to identify imple-
mentation bugs. Of course, this does not mean what we proved the correctness of our Z3 code
generator (written in Scala), and doing so would be unwise as this generator will evolve with the
tool language. Therefore, we want to independently verify the evidence computed by Z3, in future
work. This will also verify that no double rounding errors in Z3 corrupted analysis outcomes. In
future work, we also want to understand whether we can construct proofs for outputs unsat such
that these proofs are meaningful for the analyses in question.

7 Related work

The language in Figure 1 differs from the one in [3]: it supports * policies, negative and non-
constant scores for symbolic synthesis, and the capture of logical dependencies of predicates ¢;
within PEALT. The symbolic synthesis for PEALT uses the same enumeration process for + and
% on minimal (and not maximal as in [3]) index sets. PEALT implements most of the analyses
suggested in [3], more complex ones are subject of future work.

The determination of scores is a fundamental concern in our approach, and where PEALT
is meant to provide confidence in such scorings and their implications. The process of arriving
at scores depends on the application domain, we offer two examples thereof from the literature.
TrustBAC [2] extends role-based access control with levels of trust, scores in [—1, 1], that are bound
to roles in RBAC sessions. These levels are derived from a trust vector that reflects user behavior,
user recommendations, and other sources. No analysis of these levels and their implications is
offered. In [10], we see an example of how a sole score may reflect the integrity of an information
infrastructure, as a formula that accounts for known vulnerabilities, threats that can exploit such
vulnerabilities, and the likelihood for each vulnerability to exist in the given infrastructure. We
should keep in mind that any such metrics are heuristics, and so it is important to analyze their
impact on decision making, especially if other factors also influence such decisions. PEALT allows
us, in principle, to conduct such analyses.

Extant work enriches security elements with quantities, e.g. credential chains [12], security
levels [9], and trust-management languages [1]. But we are not aware of substantial tool support
for analyzing the effect of such enrichments.

Shinren [5] offers the ability to reason about both trust and distrust explicitly and in a declar-
ative manner, with the support of priority composition operators for layers of trust and distrust.
Although Peal is in principle expressive enough to encode most of this functionality, doing so would
not constitute good engineering practice: this is a good example for when conditions of Peal would
be expressions to be composed in upstream languages such as Shinren.

8 Conclusions

We have written a tool in which one can study different mechanisms of aggregating numerical trust
evidence. This is achieved by implementing the condition expressions of a policy composition
language as verification conditions that can be discharged with an SMT solver. We proposed
two different means of generating such verification conditions and discussed both conceptual and
experimental advantages and disadvantages of such methods. The explicit method compiles away
any references to numerical values and so arrives at a purely logical formulation. The price for
this may be an explosion in the length of that formula and in the restriction of score ranges for

13

certain policy composition operators (e.g. multiplication). The symbolic method creates formulas
with only linear size in the conditions but shifts the computational burden to Z3 and its reasoning
about linear arithmetic. Our current tool prototype is available for experimentation on a machine
with a dual-core CPU and 8G of RAM. The URL is http://delight.doc.ic.ac.uk:55555/. It is
expected to be available until the first half of December 2013. Please contact Jim Kuo for support
issues. We plan to make a first public alpha release of PEALT in early 2014; it presently supports
verification of policy refinement, vacuity checking, sensitivity analysis of thresholds in conditions,
and non-constant scores (for symbolic synthesis) to express metrics.

References

1]

2]

[10]

[11]

Bistarelli, S., Martinelli, F., Santini, F.: A semantic foundation for trust management lan-
guages with weights: An application to the RT family. In: ATC. pp. 481-495 (2008)

Chakraborty, S., Ray, I.: TrustBAC: integrating trust relationships into the RBAC model for
access control in open systems. In: Proceedings of the eleventh ACM symposium on Access
control models and technologies. pp. 49-58. SACMAT ’06, ACM, New York, NY, USA (2006)

Crampton, J., Huth, M., Morisset, C.: Policy-based access control from numerical evidence.
Tech. Rep. 2013/6, Imperial College London, Department of Computing (October 2013), ISSN
1469-4166 (Print), ISSN 1469-4174 (Online)

De Moura, L., Bjgrner, N.: Satisfiability modulo theories: introduction and applications.
Commun. ACM 54(9), 69-77 (Sep 2011)

Dong, C., Dulay, N.: Shinren: Non-monotonic trust management for distributed systems. In:
[FIPTM. pp. 125-140 (2010)

Kirlappos, 1., Sasse, M.A., Harvey, N.: Why trust seals don’t work: A study of user perceptions
and behavior. In: TRUST. pp. 308-324 (2012)

Mayer, R., Davis, J., Schoorman, F.D.: An integrative model of organizational trust. Academy
of Management Review 20(3), 709-734 (1995)

de Moura, .M., Bjgrner, N.: Z3: An efficient SMT solver. In: TACAS. pp. 337-340 (2008)

Ni, Q., Bertino, E., Lobo, J.: Risk-based access control systems built on fuzzy infer-
ences. In: Proceedings of the 5th ACM Symposium on Information, Computer and Com-
munications Security. pp. 250-260. ASIACCS 10, ACM, New York, NY, USA (2010),
http://doi.acm.org/10.1145/1755688.1755719

Nurse, J.R.C., Creese, S., Goldsmith, M., Rahman, S.S.: Supporting human decision-making
online using information-trustworthiness metrics. In: HCI (27). pp. 316-325 (2013)

Riegelsberger, J., Sasse, M.A., McCarthy, J.D.: The mechanics of trust: A framework for
research and design. Int. J. Hum.-Comput. Stud. 62(3), 381-422 (2005)

Schwoon, S., Jha, S., Reps, T.W., Stubblebine, S.G.: On generalized authorization problems.
In: CSFW. pp. 202-218 (2003)

14

