
Group Synthesis for
Alternating-Time Temporal Logic

A. V. Jones1?, M. Knapik2, A. Lomuscio3, and W. Penczek2,4

1 Thales, Manor Royal, Crawley, UK
andrewj@fmethods.com

2 Institute of Computer Science, PAS, Warsaw, Poland
{mknapik,penczek}@ipipan.waw.pl

3 Department of Computing, Imperial College London, UK
A.Lomuscio@imperial.ac.uk

4 University of Natural Sciences and Humanities, ICS,
Siedlce, Poland

Abstract We present an extension of Alternating-time Temporal Logic
ATL, called ATLP (Parametric ATL), where parameters are allowed in
place of concrete groups of agents. We devise a procedure to find all in-
stantiations for the parameters in a given formula φ of ATLP so that
φ is true in a given model. We propose a formalisation of the problem
and symbolic algorithms for its solution. We discuss an experimental im-
plementation of the approach on top of the open-source model checker
mcmas and demonstrate the benefits of the technique through experi-
mental results.

1 Introduction

Multi-agent systems (MAS) consist of multiple entities called agents, often as-
sumed to be intelligent, and able to interact with each other and with the envi-
ronment. More and more practical problems are being modeled and solved under
paradigms related to multi-agent systems. The examples of their industrial ap-
plications include space mission planning and air control [6,19,20], defense and
security projects [8,18], logistics and production planning [9,10] and many others.
According to the 2008 review [17], companies like Rockwell Automation, Volk-
swagen, SkodaAuto, Daimler AG, Magenta, NASA and JPL either routinely use
or are actively developing multi-agent based solutions.

Given the proliferation of MAS in the modern world, the need of their au-
tomated verification, i.e., ensuring of the compliance with their specification,
becomes an important task. Model checking is a technique in which the system
in question is described by using a formal model and its specification is expressed
by a formula of modal logic. More formally, for a model M, its state g and a
property φ we wish to automatically check whether φ holds in g, denoted by
M, g |=φ. In this paper we are interested in group synthesis for MAS.

? This work was conducted while the first author was a Ph.D. student in the Depart-
ment of Computing at Imperial College London.

1.1 Rationale for Group Synthesis

While the approach of model checking has proven to be very successful, it suffers
from some limitations. Consider a game in which two arbitrarily chosen groups
compete to capture a given position, and consider Alternating-time Temporal
Logic as the intended specification language. Naturally, the members of each
team are allowed to cooperate with their teammates. The goal of each team is to
reach the target location, stay there, and prevent the opponent from entering. If
we have the prior knowledge that Team1 consists of the agents numbered with
1, 3, 5 and Team2 consists of the remaining agents 2, 4, 6, then the situation can
be modeled using an appropriate model M and the following ATL formula:

φ = 〈〈Team1〉〉F (〈〈Team1〉〉G target ∧ ¬〈〈Team2〉〉F target),

This can be automatically verified using a model checker such as mocha [2]
or mcmas [13]. The question we pose here, however, is who can participate in
Team1 and Team2 so that the φ property is true? To deal with this, we allow
for the presence of free variables (called parameters) in the formulae of ATL. In
this way we are able to consider the formulae of type:

ψ = 〈〈Y1〉〉F (〈〈Y1〉〉G target ∧ ¬〈〈Y2〉〉F target),

where Y1, Y2 are parameters.
Let υ denote an assignment of the parameters with groups of agents, and de-

note byM, g |=υ ψ that ψ holds in the state g of modelM after the substitution
of the parameters consistent with υ. Our aim is to characterise all the substitu-
tions under which ψ is true inM. To this end, we propose a formalism in which
fψ is defined as a characteristic function assigning to each state g the set of all
assignments under which ψ becomes true in g, i.e., υ ∈ fψ(g) ⇐⇒ M, g |=υ ψ.

To illustrate the concept, consider the case of the ψ formula above. Our main
concern is how to synthesise the fψ function efficiently. A brute-force approach
would consist in substituting Y1 and Y2 with all the possible pairs of subsets
of the set of Agents, which requires 22|Agents| separate calls to model checking
routines for non-parametric formulas. To alleviate this, we introduce symbolic
algorithms operating on functions instead of sets of states. Let

ψinn = 〈〈Y1〉〉G target ∧ ¬〈〈Y2〉〉F target

denote the inner formula of ψ. Firstly, we can compute by means of the brute-
force approach the fψinn function associated with the inner formula. Then, we
build the characteristic function fψ by computing f〈〈Γ 〉〉Fψinn

for each Γ ⊆ Agents.
We define symbolic parametric algorithms for calculating the f〈〈Γ 〉〉Fψinn

function

in a single step, therefore in order to build fψ we need the total of 2|Agents|+1 calls
(the inner formula) to the non-parametric and 2|Agents| calls to parametric rou-
tines. Combined with Reduced Ordered Binary Decision Diagrams (ROBDDs)
used to represent models in a compact way, this method allows for an automatic
synthesis of groups for properties with several group parameters.

2

1.2 Related Work and Paper Outline

The problem of synthesis of the set of group assignments under which a given
formula becomes true in a selected model was first introduced in [3] in the context
of a parametric extension of LTL. A similar question concerning parametric
version of (resource-bounded) ATL formulae was posed in [15], but the authors
proposed a brute-force solution only. In [5] a related question, namely the size
of a minimal coalition able to reach a winning objective, was investigated. The
results presented in this paper are related to our earlier approach [11], where a
parameter synthesis was explored in the context of a temporal-epistemic logic.
We are not aware of other approaches to this problem different from the brute-
force one.

The rest of the paper is organised as follows. In the next section we present
ATLP, a parametric extension of ATL defined on Interpreted Systems. Section 3
formally defines the task of group synthesis in the setting of ATLP and presents
our approach to solving this problem in a form of symbolic, fixed-point algo-
rithms. An experimental evaluation of proposed approach is presented in Section
4. The paper concludes with a brief summary and future work directions.

2 Interpreted Systems and ATLP Logic

In this section we introduce Parametric Alternating-time Temporal Logic (ATLP).
We give semantics of ATLP over models based on Interpreted Systems. Most of
the formal definitions are borrowed directly from [14], with some natural exten-
sions to deal with parameters and their assignments.

2.1 Interpreted Systems

Interpreted systems (IS, for short) are an established and convenient formalism
for specifying multi-agent systems and for dealing with their strategic, temporal,
and epistemic properties. Below, we define all the components of IS.

Let Agents = {1, . . . , k}, where k ∈ N, be a set of agents, and Acti be a
finite set of the actions of agent i. Each agent i ∈ Agents is characterised by a
finite set Li of local states and a protocol function Pi : Li → 2Acti . The protocol
function assigns a set of allowed actions to each local state. We also introduce
one special agent E, which is used to model the environment of the system; its
actions, local states, and a protocol function are denoted by ActE , LE , and PE ,
respectively. By GS = L1× . . .×Ln×LE we denote the set of global states and
by ACT = Act1 × . . . × Actk × ActE we mean the set of joint actions. For a
given global state g = (g1, . . . , gk, gE) and agent i ∈ Agents, let li(g) = gi. We
define an evolution function ti : Li × LE × Act1 × . . . × Actk × ActE → Li for
each i ∈ Agents. This function depends on a current local state of the agent and
of the environment, and actions selected by all the agents in the system. For a
group of agents Γ ⊆ Agents let us define a group protocol function PΓ : GS →
Πi∈Γ 2Acti such that PΓ (g) = Πi∈ΓPi(li(g)) for each global state g ∈ GS. If

3

Γ = Agents∪{E}, then PΓ is denoted simply by P and called the global protocol
function. Notice that P (g) consists of all the joint actions allowed in g.

The function t describing the evolution of the whole system is defined using
the ti functions. Namely, for each global state g and a joint action a ∈ P (g)
we have that t(g, a) = g′ iff ti(li(g), lE(g), a) = li(g

′) for each g′ ∈ GS and i ∈
Agents. In what follows, we also use the notation g

a→ g′ in place of t(g, a) = g′.
By I ⊆ L1× . . .×Ln×LE we denote the set of initial states. The set of reachable
states G is defined as the subset of the global states GS that can be obtained via
a consecutive application of the t function starting from any initial state in I.
Moreover, let PV be a finite set of propositional variables. A valuation function
L : G→ 2PV labels each reachable state with a subset of PV.

Formally, a tuple IS =
〈
(Li, Acti, Pi, ti)i∈Agents∪{E}, I,L

〉
is called an inter-

preted system. The labeled transition system MIS = (G, t,L) associated with IS
is called its model.

Example 1 (Interpreted System). Consider the two-agent (we have omitted the
Environment) model presented in Figure 1. In this case PV = {p} and the
labeling is as follows: L(w0) = ∅ and L(w1) = L(w2) = {p}. Moreover, Act1 =
{a, b}, Act2 = {x, y}, and the local protocols allow any local move in each state,
i.e., P (wi) = {a, b} × {x, y} for each i ∈ {0, 1, 2}. The labels on each edge
correspond to the joint actions under which the transition can be performed,

e.g., we have w1
ax→ w2 and w1

bx→ w2.

w0start

w1

p

w2

p

{ax, ay}

{ay, by}

{ax, bx}

{ax, ay, bx, by}{bx, by}

Figure 1: The interpreted system used in Examples 1–4.

By a run we mean an infinite sequence of states λ = g0, g1, . . . such that
λ ∈ Gω and for each i ∈ N there exists a joint action a satisfying gi+1

a→ gi. Let
λi = gi, λ

i
0 = g0, g1, . . . , gi and λ∞i = gi, gi+1, . . . for any i ∈ N. A finite prefix of

some run is called a finite run.

2.2 Parametric Alternating-time Temporal Logic

In this section we introduce an extension of Alternating-time Temporal Logic
ATL with parameters allowed in the place of concrete groups of agents.

Definition 1 (ATLP syntax). Let GVars be a finite set of parameters. The
BNF-grammar of Parametric Alternating-time Temporal Logic ATLP is given

4

as follows.

φ ::= p | ¬φ | φ ∨ φ | 〈〈χ〉〉Xφ | 〈〈χ〉〉Gφ | 〈〈χ〉〉φUφ
χ ::= Γ | Y

where p ∈ PV, Γ ⊆ Agents, Γ 6= ∅, and Y ∈ GVars.

The set of the ATLP formulae without the parameters reduces to the standard
logic ATL. The double brackets serve as a path quantifier, i.e., 〈〈Γ 〉〉ψ is read as
“group Γ has a strategy to enforce ψ”. The temporal modalities X,G,U stand
for next, globally, and until, respectively.

The formulae of ATLP are interpreted with respect to the assignments of the
parameters and strategies for groups of agents.

For an agent i ∈ Agents we define a strategy as a function fi : Li → Acti
such that fi(li(g)) ∈ Pi(li(g)) for each g ∈ G. Intuitively, fi assigns to each local
state of the agent i an action allowed by its protocol. Note that this choice of
the definitions of model and strategy is compatible with the concept of imperfect
information and memoryless semantics of ATL [14]. Let Γ ⊆ Agents be a non-
empty group of agents and g ∈ G. Note that if a ∈ PΓ (g) and b ∈ PAgents\Γ (g),
then a and b can be uniquely combined into one joint action c ∈ P (g), denoted
by (a, b), such that c|Γ = a and c|Agents\Γ = b. Let FΓ = {fi | i ∈ Γ} be a set of
strategies, called a strategy for Γ . For each g ∈ G we can define a unique joint
action a ∈ PΓ (g) for Γ such that fi(g) for each i ∈ Γ is the i–th component of a.
We denote this action as FΓ (g). The set out(g, FΓ) of the outcomes of FΓ from
the state g ∈ G is defined as follows. A run λ is in out(g, FΓ) iff λ0 = g and for

each i ∈ N there is a joint action b ∈ PAgents\Γ (g) such that λi
(FΓ (g),b)−→ λi+1.

Intuitively, out(q, FΓ) consists of all the possible runs such that at each step the
agents from Γ behave according to the set of strategies FΓ while the remaining
agents have the full choice of moves.

In the semantics of ATLP we use the notion of an assignment of the param-
eters (called group assignment) υ : GVars → 2Agents \ {∅}. The set of all group
assignments is denoted by GroupVals.

Definition 2 (ATLP semantics). Let IS =
〈
(Li, Acti, Pi, ti)i∈Agents∪{E}, I,L

〉
be an interpreted system, MIS = (G, t,L) be its model, g ∈ G be a state, and υ
be a group assignment. The relation |=υ is recursively defined as follows:

• MIS, g |=υ p iff p ∈ L(g) for p ∈ PV,
• MIS, g |=υ ¬φ iff MIS, g 6|=υ φ,
• MIS, g |=υ φ ∨ ψ iff MIS, g |=υ φ or MIS, g |=υ ψ,
• MIS, g |=υ 〈〈Γ 〉〉Xφ iff for some set FΓ of strategies for the agents from Γ we

have that MIS, λ1 |=υ φ for each computation λ ∈ out(g, FΓ),
• MIS, g |=υ 〈〈Γ 〉〉Gφ iff for some set FΓ of strategies for the agents from Γ for

each computation λ ∈ out(g, FΓ) we have MIS, λi |=υ φ for all i ∈ N,
• MIS, g |=υ 〈〈Γ 〉〉φUψ iff there exists a set FΓ of strategies for the agents from
Γ such that for each computation λ ∈ out(g, FΓ) there exists a position i ∈ N
such that MIS, λi |=υ ψ and MIS, λj |=υ φ for each 0 ≤ j < i,

5

• MIS, g |=υ 〈〈Y 〉〉ξ iff MIS, g |=υ 〈〈υ(Y)〉〉ξ, for ξ ∈ {Xφ,Gφ, φUψ}.

where φ, ψ are ATLP formulae, Y ∈ GVars, and Γ ⊆ Agents.

We omit the model symbol, writing g |=υ φ, if the model over which we inter-
pret the formula φ is clear from the context. If the formula φ does not contain
parameters (i.e., belongs to ATL), then its validity does not depend on a group
assignment. In this case we can simply write g |= φ.

3 Symbolic Model Checking for ATLP

Throughout this section assume that IS =
〈
(Li, Acti, Pi, ti)i∈Agents∪{E}, I,L

〉
is

an interpreted system, MIS = (G, t,L) is its model, and GVars is a fixed set of
parameters. We aim at characterizing automatically the set of group assignments
that make the given ATLP formula true in a given state of the model. Let
φ ∈ ATLP and define the characteristic function fφ : G → 2GroupVals such that
g |=υ φ iff υ ∈ fφ(g). In what follows we present how to compute fφ efficiently.

3.1 Boolean Connectives and Non-parametric Modalities

We begin with the Boolean connectives, then discuss the non-parametric modal-
ities and finally present our approach for the parametric modalities.

In the examples presented in this section, we consider only formulae contain-
ing a single parameter Y . We write {Y {A1, . . . , Am}} to represent the set of
assignments {υ1, . . . , υm} s.t. υi(Y) = Ai, for all 1 ≤ i ≤ m.

Propositional Variables
If p ∈ PV is a propositional variable, then:

fp(g) =

{
GroupVals if p ∈ L(g),

∅ otherwise.

In this case g |=υ p does not depend upon the group assignment v. Thus, p holds
for any υ in the marked states and only there.

Negation
Let f : G → 2GroupVals, then f : G → 2GroupVals is such a function that f(g) =
GroupVals \ f(g) for each g ∈ G. It is easy to see that f¬φ = fφ.

Example 2 (Negation). In the model from Example 1 we have:

fp(g) =

{
{Y {{1} , {2} , {1, 2}}} if g = w0,

∅ for g ∈ {w1, w2}.

Disjunction
Let φ, ψ be formulae of ATLP. Then, we have fφ∨ψ(g) = fφ(g) ∪ fψ(g) for each
state g ∈ G. This follows easily from the fact that g |=υ φ ∨ ψ iff g |=υ φ or
g |=υ ψ.

6

Non-parametric Modalities
We tackle the following problem: given fφ (and fψ in the case of until) and
Γ ⊆ Agents, compute f〈〈Γ 〉〉Xφ, f〈〈Γ 〉〉Gφ, and f〈〈Γ 〉〉φUψ.

Before we proceed, we need to introduce some auxiliary notions. Let g, g′ ∈ G
and Γ ⊆ Agents. The set of such joint actions for the agents in Γ that can be
extended to some joint action resulting in a transition from g to g′ is defined as
follows:

linkactΓ (g, g′) = {a ∈ PΓ (g) | ∃b∈PAgents\Γ (g) g
(a,b)→ g′}.

Example 3. Let us consider the interpreted system presented in Figure 1 and
consider the state w1. We have linkact{1}(w1, w1) = linkact{2}(w1, w1) = ∅ and
linkact{1}(w1, w2) = linkact{1}(w1, w0) = {a, b} and linkact{2}(w1, w2) = {x}
and linkact{2}(w1, w0) = {y}.

The next algorithm is the foundation of our approach to group synthesis for
ATLP formulae. As we show in Lemma 1, f〈〈Γ 〉〉Xφ = SynthX(fφ, Γ).

Algorithm 1 SynthX (f, Γ)

Input: f ∈
(
2GroupVals

)G
, Γ ⊆ Agents

Output: h ∈
(
2GroupVals

)G
1: negpairs := ∅, pairs := ∅, result := ∅
2: for all g ∈ G do
3: negpairs(g) :=

⋃
g′∈G linkactΓ (g, g′)× f(g′)

4: pairs(g) := (PΓ (g)×GroupVals) \ negpairs(g)
5: result(g) := {υ | ∃a(a, υ) ∈ pairs(g)}
6: end for
7: return result

We apply Algorithm 1 to the model in Figure 1.

Example 4 (Parametric Preimage). In Example 2 we calculated fp (i.e., f¬p).
Let us focus on the case of SynthX(fp, {2}) and perform a single run of the loop
2–6 of Algorithm 1 for g = w1. From Example 3 we have:

negpairs(w1) = linkact{2}(w1, w1)× fp(w1) ∪ linkact{2}(w1, w0)× fp(w0)

∪ linkact{2}(w1, w2)× fp(w2)

= ∅ × {Y {{1} , {2} , {1, 2}} ∪ {y} × {Y {{1} , {2} , {1, 2}}
∪ {a, b} × ∅

= {y} ×GroupVals.

It is easy to verify that negpairs(w1) consists of all pairs (ξ, υ) ∈ P{2}(w1) ×

GroupVals such that for some η ∈ P{1}(w1) and some state w′ we have w1
(η,ξ)→ w′

and w′ 6|=υ p. This means that for each group assignment, if the agent 2 selects

7

the action y in state w1, then agent 1 can ensure that in the next step p does
not hold. With this in mind, notice that (Line 4):

pairs(w1) = (P{2}(w1)×GroupVals) \ negpairs(w1)

= {x, y} ×GroupVals \ {y} ×GroupVals

= {x} ×GroupVals.

The pairs(w1) set is therefore the complement of negpairs(w1), i.e., a set of
such pairs (ξ′, υ′) that if agent 2 selects action ξ′ then agent 1 cannot avoid that
in the next step p holds. Now it suffices to forfeit the action symbol to obtain
(Line 5) that result(w1) = GroupVals. Indeed, notice that w1 |=υ 〈〈2〉〉Xp for all
υ ∈ GroupVals.

Lemma 1. For all φ ∈ ATLP , Γ ⊆ Agents, g ∈ G, and υ ∈ GroupVals:

MIS, g |=υ 〈〈Γ 〉〉Xφ iff υ ∈ SynthX(fφ, Γ)(g).

Proof. Let us fix g ∈ G and recall that fφ = f¬φ. For a given g′ ∈ G we have:

linkactΓ (g, g′)× f¬φ(g′) = {(a, υ) | ∃b∈PAgents\Γ (g) (g
(a,b)−→ g′ ∧ g′ 6|=υ φ)}.

Combined with the union over all g′ ∈ G we obtain (Line 3):

negpairs(g) = {(a, υ) | ∃g′∈G∃b∈PAgents\Γ (g) (g
(a,b)−→ g′ ∧ g′ 6|=υ φ)}.

It follows that (Line 4):

(PΓ (g)×GroupVals)\negpairs(g)={(a, υ) | ∀b∈PAgents\Γ (g)(g
(a,b)−→ g′=⇒g′ |=υ φ)}

therefore it suffices (Line 5) to forfeit the explicit action to obtain the correct
result. ut

Let us move to the case of the globally modality. As presented in the following
lemma, we have that f〈〈Γ 〉〉Gφ = SynthG(fφ, Γ).

Algorithm 2 SynthG (fφ, Γ)

Input: fφ ∈
(
2GroupVals

)G
, Γ ⊆ Agents

Output: f〈〈Y 〉〉Gφ ∈
(
2GroupVals

)G
1: f := ∅, h := fφ
2: while f 6= h do
3: f := h
4: h := SynthX(f, Γ) ∩ fφ
5: end while
6: return h

8

Lemma 2. For all φ ∈ ATLP , Γ ⊆ Agents, g ∈ G, and υ ∈ GroupVals:

MIS, g |=υ 〈〈Γ 〉〉Gφ iff υ ∈ SynthG(fφ, Γ)(g).

Proof. (Sketch) Let us fix a state g ∈ G and for each i ∈ N denote by hi the value
of the variable h after the i–th run of the loop between lines 2 and 5 (assume
h0 = fφ). Firstly, by straightforward induction, with the assumption on locally
defined strategies employed during an inductive step, we prove that:

hi(g) = {υ | ∃FΓ ∀λ∈out(g,FΓ)∀0≤j≤i λj |=υ φ}

for each i ≥ 0. Intuitively, hi(g) consists of such group assignments that φ can
be enforced by Γ up to the depth i. To conclude, it suffices to notice that for
each g ∈ G the sets {hi(g)}i∈N form a descending chain, thus the while loop 2 –
5 terminates on the fixpoint h, satisfying h(g) =

⋂∞
i=0 hi(g). ut

The next algorithm is also similar to its non-parametric counterpart. As
shown in Lemma 3 we have f〈〈Γ 〉〉φUψ = SynthU(fφ, fψ, Γ).

Algorithm 3 SynthU (fφ, fψ, Γ)

Input: fφ ∈
(
2GroupVals

)G
, fψ ∈

(
2GroupVals

)G
, Γ ⊆ Agents

Output: f〈〈Y 〉〉φUψ ∈
(
2GroupVals

)G
1: f := G×GroupVals, h := fψ
2: while f 6= h do
3: f := h
4: h := fψ ∪ (SynthX(f, Γ) ∩ fφ)
5: end while
6: return h

Lemma 3. For all φ, ψ ∈ ATLP , Γ ⊆ Agents, g ∈ G and υ ∈ GroupVals:

MIS, g |=υ 〈〈Γ 〉〉φUψ iff υ ∈ SynthG(fφ, fψ, Γ)(g).

Proof. (Sketch) Similarly as in the case of Lemma 2 we fix a state g ∈ G and for
each i ∈ N denote by hi the value of the variable h after the i–th run of the 2 –
5 loop, assuming h0 = fφ. By induction we prove that:

hi(g) = {υ | ∃FΓ ∀λ∈out(g,FΓ)(∃j≤i λj |=υ ψ ∧ ∀0≤k<j λk |=υ φ)}

for all i ∈ N. Intuitively, this means that hi(g) consists of all such group assign-
ments υ that Γ can enforce that along each outcome, a state in which ψ holds
under υ will be present, in not later than the i–th position from the beginning,
while φ holds under υ in all earlier positions. Notice that the algorithm stops as
for each g ∈ G the sets {hi(g)}i∈N form an ascending chain in the finite domain,
thus the 2 – 5 loop stops on the fixpoint h such that h(g) =

⋃∞
i=0 hi(g). ut

9

3.2 Parametric Modalities

To compute f〈〈Y 〉〉ξ, where ξ ∈ {Xφ,Gφ, φUψ} we employ an explicit enumera-
tion over the subsets of Agents.

Let f : G→ 2GroupVals be a function; we define a restriction of f with respect
to Y = Γ as the function f|Y=Γ : G → 2GroupVals such that f|Y=Γ (g) = {υ ∈
f(g) | υ(Y) = Γ} for g ∈ G.

Algorithm 4 pSynth (fφ, fψ, Y,modality)

Input: fφ ∈
(
2GroupVals

)G
, fψ ∈

(
2GroupVals

)G
, Y ∈ GVars, modality ∈ {X,G,U}

Output: h ∈
(
2GroupVals

)G
1: h := ∅
2: for all Γ ⊆ Agents, Γ 6= ∅ do
3: switch (modality)
4: case modality = X:
5: h := h ∪ SynthX(fφ, Γ)|Y=Γ

6: case modality = G:
7: h := h ∪ SynthG(fφ, Γ)|Y=Γ

8: case modality = U :
9: h := h ∪ SynthU(fφ, fψ, Γ)|Y=Γ

10: end switch
11: end for
12: return h

From Lemma 1, 2, and 3 it follows that f〈〈Y 〉〉Xφ = pSynth(fφ, ∗, Y,X),
f〈〈Y 〉〉Gφ = pSynth(fφ, ∗, Y,G), and f〈〈Y 〉〉φUψ = pSynth(fφ, fψ, Y, U), i.e., the
following lemma holds.

Lemma 4. Let Y ∈ GVars be a parameter. For all φ ∈ ATLP , Γ ⊆ Agents,
g ∈ G, and υ ∈ GroupVals:

• MIS, g |=υ 〈〈Y 〉〉Xφ iff υ ∈ pSynth(fφ, ∗, Y,X)(g),

• MIS, g |=υ 〈〈Y 〉〉Gφ iff υ ∈ pSynth(fφ, ∗, Y,G)(g),

• MIS, g |=υ 〈〈Y 〉〉φUψ iff υ ∈ pSynth(fφ, fψ, Y, U)(g),

for all g ∈ G and all group assignments υ.

Overall Algorithm
The following algorithm summarises the cases presented earlier, providing the
overall algorithm for the group synthesis for ATLP formulae.

10

Algorithm 5 SynthATLP (φ)

Input: φ ∈ ATLP

Output: fφ ∈
(
2GroupVals

)G
1: if φ = 〈〈Y 〉〉Zψ then
2: return pSynth(SynthATLP(ψ), ∗, Y,Z)
3: else if φ = 〈〈Y 〉〉ψUξ then
4: return pSynth(SynthATLP(ψ), SynthATLP(ξ), Y, U)
5: else {propositional and non-parametric modalities omitted for simplicity}
6: return fφ
7: end if

The validity of the next theorem follows directly from our previous analysis
of propositions, boolean and non-parametric operations, and Lemma 4.

Theorem 1 (Group Synthesis for ATLP).
For all φ ∈ ATLP , Γ ⊆ Agents, g ∈ G, and υ ∈ GroupVals:

MIS, g |=υ φ iff υ ∈ SynthATLP(φ)(g).

In Algorithm 5 the procedures SynthX, SynthG and SynthU are indirectly
called as subroutines by Algorithm 4. As these operate on functions (standard
ATL verification algorithms work with sets of states) the application of pSynth
to formulae with k nested parametric modalities requires 2|Agents|+k−1 calls. The
brute-force approach performs in this case 2k|Agents| calls to non-parametric ATL
verification procedures. Note that while both the approaches are exponential
with respect to the number of calls of fixed-point subroutines, the parametric
approach admits exponentially less calls than the brute-force one. The practi-
cal benefits of this are very substantial, as demonstrated by the preliminary
experimental results presented in the next section.

4 Experimental Evaluation

We have implemented the presented theory as an experimental extension to
the open-source multi-agent systems model checker mcmas [13]. A GNU-GPL
licenced release of the toolkit is available from [1]. As mcmas is a symbolic
model checker based on BDDs, we encode sets of groups and perform synthesis
symbolically.

In the experimental evaluation X ,Y,Z ∈ GVars are parameters; we also use
the following standard abbreviations:

– 〈〈X 〉〉Fφ , 〈〈X 〉〉[trueUφ]
– [[X]]Fφ , ¬〈〈X〉〉G¬φ
– [[X]]Gφ , ¬〈〈X〉〉F¬φ

To exemplify, 〈〈X 〉〉Fφ is read “the group X can enforce a future where φ holds”,
and [[X]]Gφ is read “the group X cannot avoid φ holding globally”.

11

To evaluate the efficiency of the proposed solution to the group synthesis
problem, we compare the parametric approach to the brute-force one that itera-
tively checks all possible substitutions for all groups variables. For the brute-force
approach, checking a formula with m group variables over a model with n agents
requires checking (2n − 1)

m
possible assignments.

The values presented are the average over three runs, with a timeout of one
hour per run (set using `timeout 1h`). The machine employed for these bench-
marks was an Intel Core i5 processor 3.20 GHz, with a 4,096 KiB cache running
32-bit Fedora 16, kernel 3.6.11-4. The presented values were obtained using the
tstime tool; time represents the ‘real’ CPU time while memory represents the
“high-water mark” of allocated memory as reported by the Linux kernel.

We evaluate the proposed technique on two benchmarks. The first (Sec-
tion 4.1) is an industrial benchmark, which we use to demonstrate a real-world
applicability. The second (Section 4.2) is an academic benchmark, but is scalable
to allow us to effectively benchmark the parametric approach over various sized
models and show the possible gains.

4.1 IEEE Token Ring Network with Faults

We first compare the parametric and brute-force approaches using the indus-
try standard IEEE token ring bus network. In the comparison that follows, we
automated the injection of faults into the model, following the approach of [7].
We briefly summarise the scenario below; for a complete description we refer the
reader to [7].

The IEEE token ring protocol connects k nodes in a ring topology; data
moves among nodes on the network in a clockwise fashion. Access is granted to
nodes on the network in the form of a token; this is passed from node to node.
Tokens are issued onto the network from an “active monitor”. To detect faults,
tokens contain a“time to live”field, initialised to the maximum time that a token
would take to circulate the whole network and counting down to zero. Should a
token fail to circulate back to the active monitor within the given time-frame, it
is deduced that a fault has occurred on the network.

We consider instantiations of the network where the first node wishes to
transmit a data token to the final node. Consequently, data needs to pass through
every single intermediate node on the system.

Using a modified version of the fault injector from [7], we inserted non-
deterministic “state replace” faults into each node, which causes the node to
switch from a send state to a disconnected state. Each fault inserted into the
system has a corresponding “fault injector” agent that can trigger the fault.

For a token ring network with k nodes, we synthesise the groups for the
following specifications:

– φtr1 = 〈〈X 〉〉F
(∧

i∈1...k disconnected i
)

– φtr2 = 〈〈X 〉〉
[(

[[Y]]F
(∧

i∈1...k disconnected i
))
U
(∧

i∈1...k disconnected i
)]

– φtr3 = 〈〈X 〉〉F
(
[[Y]]G

(
〈〈Z〉〉X

(∧
i∈1...k disconnected i

)))
12

where the proposition disconnected i holds in a state if the i-th node is in a
disconnected state.

Under a ground interpretation (i.e., reading the parametric modalities as
their non-parametric equivalents), the formulae are read as follows: (i) φtr1 states
“the group X can enforce a future state where all the nodes are disconnected”;
(ii) φtr2 expresses“the group X can enforce a future state where all the nodes are
disconnected and, until that point, the group Y cannot avoid that eventuality”;
and (iii) φtr3 denotes“the group X can enforce a future where the group Y cannot
avoid globally that the group Z can enforce that all the nodes are disconnected
at the next state”.

Table 1: Comparison for the Token Ring Network

Model
Formula

Group Valuations Time (s) Memory (KiB)

Nodes States Possible # SAT parametric brute-force parametric brute-force

2 9,260
ϕtr1 15 4 3.818 3.728 24,072 24,464
ϕtr2 225 12 6.369 49.635 24,096 24,856
ϕtr3 3,375 900 8.836 425.677 24,172 24,132

3 260,797
ϕtr1 63 8 1573.030 1597.111 65,452 65,092
ϕtr2 3,969 – – – – –
ϕtr3 250,047 – – – – –

Discussion of Results. Table 1 shows the comparison between the parametric
and brute-force approach. These results demonstrate the speed benefits of using
parametric verification.

Unsurprisingly, for ϕtr1 the smallest synthesised substitution for X is the
group consisting of all of the fault injectors, as only in collaboration can the
fault injectors cause every node on the ring to become disconnected. Similarly,
for ϕtr2 we obtain the fault injectors for X and all the nodes for Y, as they
are powerless to stop themselves becoming disconnected once the fault injectors
form a coalition.

For a model with 3 nodes (and, therefore, 3 fault injectors) and a formula
with more than one parameter, neither tool was able to synthesise a result within
the one hour timeout.

4.2 Generic Pipeline

We now consider a scalable, multi-agent systems version of the generic pipeline
paradigm [16]. The model contains a producer, a consumer, and a chain of k
intermediate processing nodes.

The producer can be in one of two states: idle and ready-to-feed. When it is
in the ready-to-feed state, it can pass a product to the first intermediate node in
the chain. The producer stays in the ready-to-feed state for up to two transitions,

13

unless the first node accepts the product and so the producer changes to idle.
The producer can idle at most two turns; then it returns to being ready-to-feed.

Unlike the producer, each intermediate node can alternate between the ready-
to-eat and ready-to-feed states. There is no time limit for a node to stay ready-to-
eat, but it has to accept a product offered by its predecessor. Upon accepting, the
node changes to ready-to-feed and stays there for two turns, unless its successor
accepts the passed product.

The consumer constitutes the end of the pipeline; it can stay in any of its
states, idle or ready-to-eat, for at most two transitions. When in ready-to-eat,
the consumer is ready to accept a product from the last node of the chain.

For a pipeline with k intermediate nodes, we synthesise groups for the fol-
lowing properties:

– φgp1 = 〈〈X 〉〉F (idleconsumer ∧ idleproducer)

– φgp2 = 〈〈X 〉〉[([[Y]]F (rtf1 ∧ rtfk))U (rtf1 ∧ rtfk)]

– φgp3 = 〈〈X 〉〉F
(
[[Y]]G

(
〈〈Z〉〉X

(
rtfproducer ∧ rte1

)
∨ (rtfk ∧ rteconsumer)

))
where the propositions idlei holds in a global state if the i-th node (similarly
producer for the producer and consumer for the consumer) is idle; rtfi holds in
a global state if the i-th node is ready-to-feed; and rtei holds in a global state
if the i-th node is ready-to-eat. The properties have similar interpretations to
those in the token ring network of Section 4.1.

10−210−1 100 101 102 103 104
10−2

100

102

104

Time

104 104.2 104.4 104.6 104.8

104

104.5

Memory

|GVars| = 1; |GVars| = 2; |GVars| = 3

Figure 2: Comparison between parametric and brute-force (x-axis parametric,
y-axis brute-force).

Discussion of Results. The results of parametric synthesis for various sizes of
pipeline is shown in Figure 2.

14

The time graph shows a comparison between parametric and brute-force; the
horizontal solid black line represents the timeout period of 3,600 seconds. This
graph clearly shows that as we increase the number of parameters in the formula,
the approach presented out-performs the brute-force approach.

The memory graph demonstrates the speed-up is not without cost: the para-
metric approach requires a higher memory overhead to store the results of the
intermediate checks. This is to be expected.

5 Conclusions and Future Work

There has been considerable interest recently in verifying agent-based specifica-
tions by means of model checking. ATL is a key formalism to represent strategic
abilities of agents in a system; several approaches have been put forward to verify
ATL specifications [2,4,12]. In this paper we introduced a parametric variant to
ATL and introduced the problem of synthesising the groups of agents satisfying
a parametric specification.

We put forward parameter synthesis algorithms to synthesise the groups and
proved their correctness. We showed they are amenable to be implemented in
combinations with BDDs and introduced a model checker that implements the
procedures. The experimental results obtained show that the technique can,
in general, speed up considerably the group synthesis problem, compared to
checking all possible groups for the specification in question. As expected the
experiments showed no improvement on the memory footprint of the procedure
against the brute-force approach.

While we already demonstrated the technique on an industrial use case from
the networking literature in the future we plan to use the technique in the context
of strategically controlling the actions of robots in a team to achieve a given set
of objectives.

References

1. MCMAS-ATLP. http://vas.doc.ic.ac.uk/software/tools/ (2013)
2. Alur, R., de Alfaro, L., Grosu, R., Henzinger, T.A., Kang, M., Kirsch, C.M., Ma-

jumdar, R., Mang, F.Y.C., Wang, B.Y.: JMOCHA: A Model Checking Tool that
Exploits Design Structure. In: Proc. of ICSE’01. pp. 835–836 (2001)

3. Alur, R., Etessami, K., Torre, S.L., Peled, D.: Parametric Temporal Logic for
“Model Measuring”. ACM Trans. Comput. Log. 2(3), 388–407 (2001)

4. Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic. Journal
of the ACM 49(5), 672–713 (2002)

5. Brihaye, T., Markey, N., Ghannem, M., Rieg, L.: Good Friends are Hard to Find!
In: Proc. of TIME’08. pp. 32–40 (2008)

6. Clancey, W.J., Sierhuis, M., Seah, C., Buckley, C., Reynolds, F., Hall, T., Scott, M.:
Multi-Agent Simulation to Implementation: A Practical Engineering Methodology
for Designing Space Flight Operations. In: Proc. of ESAW’07. pp. 108–123 (2007)

7. Ezekiel, J., Lomuscio, A.: A Methodology for Automatic Diagnosability Analysis.
In: Proc. of ICFEM’10. pp. 549–564 (2010)

15

8. Gascueña, J.M., Fernández-Caballero, A.: Review: on the Use of Agent Technology
in Intelligent, Multisensory and Distributed Surveillance. Knowl. Eng. Rev. 26(2),
191–208 (2011)

9. Himoff, J., Skobelev, P., Wooldridge, M.: MAGENTA Technology: Multi-Agent
Systems for Industrial Logistics. In: Proc. of AAMAS’05. pp. 60–66 (2005)

10. Jacobi, S., Madrigal-Mora, C., León-Soto, E., Fischer, K.: AgentSteel: An Agent-
based Online System for the Planning and Observation of Steel Sroduction. In:
Proc. of AAMAS’05. pp. 114–119 (2005)

11. Jones, A.V., Knapik, M., Lomuscio, A., Penczek, W.: Group Synthesis for Para-
metric Temporal-Epistemic Logic. In: Proc. of AAMAS’12. pp. 1107–1114 (2012)

12. Kacprzak, M., Penczek, W.: Fully Symbolic Unbounded Model Checking for
Alternating-time Temporal Logic. AAMAS 11(1), 69–89 (2005)

13. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A Model Checker for the Verification
of Multi-Agent Systems. In: Proc. of CAV’09. pp. 682–688 (2009)

14. Lomuscio, A., Raimondi, F.: Model Checking Knowledge, Strategies, and Games
in Multi-Agent Systems. In: Proc. of AAMAS’06. pp. 161–168 (2006)

15. Monica, D.D., Napoli, M., Parente, M.: On a Logic for Coalitional Games with
Priced-Resource Agents. Electron. Notes Theor. Comput. Sci. 278, 215–228 (2011)

16. Peled, D.: All From One, One For All: On Model Checking Using Representatives.
In: Proc. of CAV’93. pp. 409–423 (1993)

17. Pĕchouček, M., Mař́ık, V.: Industrial Deployment of Multi-Agent Technologies:
Review and Selected Case Studies. AAMAS 17(3), 397–431 (2008)

18. Pĕchouček, M., Thompson, S.G., Voos, H.: Defense Industry Applications of Au-
tonomous Agents and Multi-Agent Systems. Birkhauser Basel (2008)

19. Rouff, C.: Autonomous and Autonomic Systems: With Applications to NASA In-
telligent Spacecraft Operations and Exploration Systems. Springer-Verlag (2007)

20. Tumer, K., Agogino, A.: Distributed Agent-based Air Traffic Flow Management.
In: Proc. of AAMAS’07. pp. 342–349 (2007)

16

