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Abstract. This paper presents a type-preserving translation from the call-by-value
λµ-calculus (λµv-calculus) into a typed π-calculus, and shows full abstraction up to
maximally consistent observational congruences in both calculi. The λµ-calculus
has a particularly simple representation as typed mobile processes where a unique
stateless replicated input is associated to each name. The corresponding π-calculus
is a proper subset of the linear π-calculus, the latter being able to embed the simply-
typed λ-calculus fully abstractly. Strong normalisability of the λµv-calculus is an
immediate consequence of this correspondence and the strong normalisability of the
linear π-calculus, using the standard argument based on simulation between the
λµv-calculus and its translation. Full abstraction, our main result, is proved via an
inverse transformation from the typed π-terms which inhabit the encoded λµv-types
into the λµv-calculus (the so-called definability argument), using proof techniques
from games semantics and process calculi. A tight operational correspondence as-
sisted by the definability result opens a possibility to use typed π-calculi as a tool
to investigate and analyse behaviours of various control operators and associated
calculi in a uniform setting, possibly integrated with other language primitives and
operational structures.
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1. Introduction

This paper presents a type-preserving translation from the call-by-value
λµ-calculus (λµv-calculus) [27] into a typed π-calculus, and shows it
is fully abstract up to maximally consistent observational congruences
in respective calculi. Full abstraction is proved via an inverse trans-
formation from the typed π-terms which inhabit the λµv-types into
the λµv-calculus [27] (the so-called definability argument), using proof
techniques coming from games semantics and process calculi.

While there are different notions of control which would be repre-
sented as distinct forms of typed interactions in the π-calculus, surpris-
ingly, full control, the λµ-calculus originally introduced by Parigot [28],
the call-by-value version of which was later studied by Ong and Stewart
[27], has a particularly simple representation as typed name passing
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2 K. Honda, N. Yoshida and M. Berger

processes; processes used for the embedding are exactly characterised
as a proper subset of the linear π-calculus introduced in [39], with a
clean characterisation in types and behaviour. The linear π-calculus
can embed, among others, the simply typed λ-calculus full abstractly.
The subset of the linear π-calculus which corresponds to full control,
here called the πC-calculus (“c” indicates control), is restricted in that
each channel is used only for a unique stateless replicated input and for
zero or more dual outputs, as well as precluding circular dependency
between channels. In spite of its simplicity, both, call-by-value and call-
by-name full control, are precisely embeddable into this πC-calculus by
changing translation of types. Because the πC-calculus is a proper subset
of the linear π-calculus, many of the known results about the linear π-
calculus, as studied in [39], can be carried over to the πC-calculus. This
can be used for establishing properties of the λµv-calculus. For example,
strong normalisability of the πC-calculus is an immediate consequence
of the same property of the linear π-calculus, and that can be used
for showing strong normalisability of the λµv-calculus by a standard
argument [24] based on a simulation in reduction. We believe a tight
operational and equational correspondence assisted by formal embed-
ding results including definability, as will be explored in the present
paper, opens a possibility to use typed π-calculi as a tool to investigate
and analyse behaviours of various control operators and calculi in a
uniform setting, possibly integrated with other language primitives and
operational structures. After studying the call-by-value λµ-calculus, we
also demonstrate applicability of our framework by an embedding of
the call-by-name λµ-calculus into the same πC-calculus by changing
translation of types.

In the rest of the paper, Section 2 introduces the π-calculus for
control. Section 3 presents the embedding of the call-by-value λµ-
calculus (the λµv-calculus), shows it is type- and dynamics-preserving,
and illustrates how the process embedding elucidates the behaviour
of λµv-terms using typical control operators. Section 4 presents the
decoding of processes typed with the encoded λµv-types, establishes
definability using the decoding, and establishes the equational full ab-
straction of the process encoding of λµv-terms. The paper concludes
with discussions, where we outline the call-by-name encoding, related
work, and open issues. Some proofs are delegated to the Appendix.

main.tex; 24/04/2014; 17:20; p.2



Control in the π-Calculus 3

2. Processes and Types

2.1. Processes

The π-calculus used in this paper is a subset of the standard asyn-
chronous π-calculus [14, 24, 25]. The following is the key reduction rule
of this calculus.

x(~y).P | x〈~v〉 −→ P{~v/~y} (1)

Here ~y = y1...yn denotes a potentially empty vector, | denotes par-
allel composition, x(~y).P is an input (or a receptor), and x〈~v〉 is an
asynchronous output (or a message). Operationally, this reduction rep-
resents the consumption of an asynchronous message by a receptor.
The idea extends to a replicated receptor, !x(~y).P :

!x(~y).P | x〈~v〉 −→ !x(~y).P | P{~v/~y}, (2)

where the replicated process remains in the configuration after reduc-
tion, unlike in (1). The π-calculus used in this paper is the above
π-calculus but without linear input prefixes: hence we only have (2)
as the communication rule.

Types for processes prescribe usage of names. To be able to do this
with precision, it is important to control dynamic sharing of names.
For this purpose, it is useful to restrict name passing to bound (private)
name passing, where only bound names are passed in interaction. This
allows tighter control of sharing without losing essential expressiveness,
making it easier to administer name usage in more stringent ways. The
resulting calculus is an asynchronous version of the πI-calculus [32] and
has expressive power equivalent to the calculus with free name passing
(for the result in the typed setting, see [39]). In the present study,
the restriction to bound name passing leads to, among others, a clean
inverse transformation from the π-calculus into the λµ-calculus.

Syntactically we restrict an output to the form (ν ~y)(x〈~y〉|P ) (where
names in ~y are pairwise distinct), which we henceforth write x(~y)P .
For dynamics, we need several straightforward communication rules,
only one of which is relevant later for the typed calculus. It is the
rule corresponding to (2) which now has the following form by the
restriction to bound output1:

!x(~y).P |x(~y)Q −→ !x(~y).P | (ν ~y)(P |Q) (3)

1 To be precise, we also need:

x(~y)(P |!x(~v).Q) −→ (ν~y)(P |!x(~v).Q|Q{~y/~v}).
to simulate the whole of the untyped reduction of the free name passing calculus
(cf. [39, Proof of Proposition 4.2]). However, as we shall see soon, this rule does not
apply to typable processes, hence can be ignored in the typed setting.
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Note “x(~y)Q” indicates that x(~y) is an asynchronous output exporting
~y which are originally local to Q. After communication, ~y are shared be-
tween P and Q. To ensure asynchrony of outputs, we add the following
rule to the standard closure rules for | and (ν x).

P −→ P ′ ⇒ x(~y)P −→ x(~y)P ′

Further, for the generation of the structural congruence used for defin-
ing the reduction, the following structural rules are added to the stan-
dard rules, allowing inference of interaction under an output prefix.

x(~z) (P |Q) ≡ (x(~z)P )|Q if fn(Q) ∩ {~z} = ∅, (4)

x(~z) (ν y)P ≡ (ν y)x(~z)P if y 6∈ {x, ~z}. (5)

where fn(Q) means the set of free names in Q. By these rules, we
maintain the same dynamics as in the original asynchronous calculus,
projected onto the restricted and typed syntax. We show a simple
example of reductions with bound output.

!x(y).(y | y) | x(y)!y.0 −→ !x(y).(y | y) | (ν y)(y | y | !y.0)
−→2 !x(y).(y | y) | (ν y)!y.0

Above (ν y)!y.0 is garbage in the sense that no further interaction
is possible, so that process has the same meaning as 0 up to the
standard observational congruences [14, 24, 25], for example untyped
strong bisimilarity. Thus the final configuration above is behaviourally
the same thing as having only a single replicated process !x(y).(y | y).

Let us present the formal grammar of the calculus below.

P ::= !x(~y).P | x(~y)P | P |Q | (ν x)P | 0

The initial x in !x(~y).P and x(~y)P is often called subject. We write !x.P
for !x(ε).P and xP for x(ε)P , where ε denotes the empty vector. (ν x)P
is name hiding and 0 denotes nil. The full definition of the reduction
rules and the structure rules is found in Figure 2.1 (−→ is generated
from the given rules; ≡ is generated from the given rules together with
the closure under all contexts). We denote →→ as −→∗ ∪ ≡.

2.2. Types and Typing (1): Basic Idea

A central idea for precisely embedding functional computation in the
π-calculus used in the present paper is to restrict process behaviour to
a deterministic, sequential one. To realise this idea, the following three
simple conditions are ensured by a type discipline.

− For each name there is a unique stateless replicated input with
zero or more dual outputs.
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(Structural Rules)

(S0) P ≡ Q if P ≡α Q
(S1) P |0 ≡ P (S2) P |Q ≡ Q|P
(S3) P |(Q|R) ≡ (P |Q)|R
(S4) (ν x)0 ≡ 0 (S5) (ν x)(ν y)P ≡ (ν y)(ν x)P

(S6) (ν x)(P |Q) ≡ ((ν x)P )|Q (x 6∈ fn(Q))

(S7) x(~y)z(~w)P ≡ z(~w)x(~y)P (x, z 6∈ {~w~y})
(S8) (ν z)x(~y)P ≡ x(~y)(ν z)P (z 6∈ {x~y})
(S9) x(~y)(P |Q) ≡ (x(~y)P )|Q ({~y} ∩ fn(Q) = ∅)

(Reduction)

(Com!) !x(~y).P | x(~y)Q −→!x(~y).P |(ν ~y)(P |Q)

(Res) P −→ Q =⇒ (ν x)P −→ (ν x)Q

(Par) P −→ P ′ =⇒ P |Q −→ P ′|Q
(Out) P −→ Q =⇒ x(~y)P −→ x(~y)Q

(Cong) P ≡ P ′ −→ Q′ ≡ Q =⇒ P −→ Q

Figure 1. Reduction and Structural Rules .

− Channels have no circular dependency.

− Only one single thread (output) can be active at one time, at
present and potentially.

For example, by the first condition,

P1
def
= ! b.a | ! b.c (6)

should be untypable because b is associated to two replicators, but

P2
def
= ! b.a | b | ! c.b (7)

is typable since, while output at b appears twice, replicated input at b
appears only once. Also by the second condition,

P3
def
= ! b.a | ! a.b (8)

is untypable: we can easily observe if we compose message a to the
above process, then the computation does not terminate. Finally by

main.tex; 24/04/2014; 17:20; p.5



6 K. Honda, N. Yoshida and M. Berger

the third condition, the following two processes

P4
def
= a | a and P5

def
= !b.(a | c) (9)

are both untypable since two threads (outputs) are/would be running
in parallel. But

P6
def
= !a.b | !b.c | !e.c | a (10)

is typable though c appears twice. The resulting typed processes may
look too restricted: however it is sufficient to embed the full control fully
abstractly. The three conditions informally specified above are formally
guaranteed by a simple typing system, which we shall introduce in the
next two paragraphs.

2.3. Types and Typing (2): Types

First we introduce the syntax of channel types. They indicate possible
usage of channels.

τ ::= (~τ)p p ::= ! | ?

τ, τ ′, .. (resp. p, p′, ..) range over types (resp. modes). ! and ? are called
server mode and client mode, respectively, and they are dual to each
other. Here, by server we mean that the process is waiting with an
input to be invoked. Conversely, a process is a client, if its next action
is sending a message to a server. We write md(τ) for the outermost
mode of τ . For example, md((τ1 τ2)!) = !. We write ()p for (ε)p, which
stands for a channel that carries no names. We further demand the
following condition to hold for channel types.

DEFINITION 2.1. A channel type τ is IO-alternating if, for each of
its subexpression (τ1..τn)p, if p = ! (resp. p = ?) then each md(τi) = ?
(resp. md(τi) = !). Hereafter we assume all channel types we use are
IO-alternating.

For example, (()?)! is IO-alternating but (()!)! is not. The channel
types combined with the IO-alternation in Definition 2.1 is a subset of
channel types in [39], given by taking off the linear modes.

As a simple example, a type

(τ1τ2)!

indicates that a channel with this type should be used as a replicated
input through which a process would input two channels typed as τ1

and τ2, respectively.
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The dual of τ , written τ , is defined as the result of dualising all
modes in τi. For example, (τ1 τ2)? is the dual of the above type.

To guarantee the uniqueness of a server (replicated) process, we
introduce the partial operation � on types, which is generated from:

τ � τ = τ � τ = τ and τ � τ = τ with (md(τ) = ?)

Note � is indeed partial since it is not defined in other cases. This op-
eration means that a server should be unique, but an arbitrary number
of clients can request interactions. For example,

(()?)! � (()!)? = (()!)? � (()?)! = (()?)! (()!)? � (()!)? = (()!)?

This law can be used for prohibiting the process such as P1 in (6)
since the process becomes untypable due to the undefinedness of the
operation ()! � ()!.

To guarantee the second condition, we introduce an action type
ranged over by A,B,C.... The syntax is given as follows:

A ::= ∅ | x :τ | x : (~τ1)! → y : (~τ2)? | A,B

The idea behind this definition is that action types are graphs where
nodes are of the form x : τ , provided names like x occur at most
once. We write |A| for the set of A’s nodes. Edges, which are always
from input-moded nodes to output-moded nodes, denote dependency
between channels and are used to prevent vicious cycles between names.
If A is such a graph and x : τ is one of its nodes, we also write A(x) = τ .
By fn(A) we denote the set of all names x such that A(x) = τ for some
τ . Sometimes we also write x : τ ∈ A to indicate that A(x) = τ . We
write md(A) = p to indicate that md(A(x)) = p for all x ∈ fn(A). We
write x→ y if x :τ → y :τ ′ for some τ and τ ′, in a given action type. We
compose two processes typed by A and B iff: (1) A(a)�B(a) is defined
for all a ∈ fn(A)∩ fn(B); and (2) the composition creates no circularity
between names. For example, the following two compositions satisfy
these two clauses.

(x :τ1 → y :τ2)� (y :τ2 → z :τ3) = (x :τ1 → z :τ3), (y :τ2 → z :τ3); and

(x :τ1 → y :τ2)� x :τ1 � x :τ1 = x :τ1 → y :τ2

However the composition of x :τ1 → y :τ2 and y :τ2 → x :τ1 is undefined
as it induces circularity between names x and y. Formally, let us write
A � B iff:

− whenever x :τ ∈ A and x :τ ′ ∈ B, τ � τ ′ is defined; and

− whenever x1→x2, x2→x3, . . . , xn−1→xn alternately in A and B
(n ≥ 2), we have x1 6= xn.

main.tex; 24/04/2014; 17:20; p.7



8 K. Honda, N. Yoshida and M. Berger

Then A�B, defined iff A � B, is the following action type.

− x : τ ∈ |A � B| iff either (1) x : τ occurs in either A or B, but not
both ; or (2) x :τ ′ ∈ A and x :τ ′′ ∈ B and τ = τ ′ � τ ′′.

− x → y in A � B iff x : τ, y : τ ′ ∈ |A � B| and x = z1→ z2, z2→
z3, . . . , zn−1→zn = y (n ≥ 2) alternately in A and B.

We can easily check that � is a symmetric and associative partial op-
eration on action types with unit ∅. The restriction to A/B-alternation
is because paths in an action type cannot have length exceeding 1.

Using this partial operation, P3 in (8) becomes untypable since !b.a
has a type b : ()! → a : ()?, which is uncomposable with the type of
!a.b, a : ()! → b : ()?.

Finally the third condition discussed at the outset of §2.2, the restric-
tion to a single thread, is guaranteed by using IO-modes, φ ∈ {I, O}, in
the typing judgement. These IO-modes are given the following partial
algebra, using the overloaded notation �:

I� I = I and I� O = O� I = O.

Among the two IO-modes, O indicates a unique active output: thus O�O

is undefined, which means that we do not want more than one active
thread at the same time. We write φ1 � φ2 if φ1 � φ2 is defined. IO-
modes sequentialise the computation in our typed calculus. This makes
reductions deterministic which in turn simplifies reasoning. But other
than for simplicity, this restriction is not needed. Using this partial
algebra, the type discipline which we formally introduce below says the
process P4 in (9) is untypable since each a should have mode O, and
we know O 6� O. Similarly P5 is untypable because its body, b | c, is
untypable.

2.4. Types and Typing (3): Typing

The typing judgement takes the following form:

`φ P . A

which is read: P has type A with mode φ. We present the typing system
in Figure 2. The rules are obtained just by restricting the typing system
in [39] to the replicated fragment of the syntax we are now using.
The resulting typed calculus is called πC. Appendix C briefly discusses
the key differences between πC and the typed calculus of [39]. In the
following, we briefly illustrate each typing rule.

− In (Zero), we start in I-mode with empty type since there is no
active output.
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(Zero)

−

`I 0 . ∅

(Par)

`φi Pi . Ai (i =1, 2)

A1 � A2 φ1 � φ2

`φ1�φ2 P1|P2 . A1�A2

(Res)

`φ P . A

md(A(x)) = !

`φ (ν x)P . A/x

(Weak) x 6∈ fn(A)

`φ P . A

md(τ) = ?

`φ P . A, x :τ

(Weak-io)

`I P . A

`O P . A

(In!) x 6∈ fn(A), md(A) = ?

`O P . ~y :~τ , A

`I!x(~y).P . x : (~τ)!→A

(Out?) yi :τi ∈ A
`I P . A � x : (~τ)?

`O x(~y)P . A/~y � x : (~τ)?

Figure 2. Typing for the πC-Calculus.

− In (Par), “�” controls composability, ensuring that at most one
thread is active in a given term (by φ1 � φ2) and uniqueness of
replicated inputs and non-circularity (by A1 � A2). The resulting
type is given by merging two types.

For example, if P has type x : ()? with mode O and Q has type
x : ()! with mode I, then P |Q is typable with type ()? � ()! = ()!

and O� I = O. The restriction to composable types also guarantees
that there’s at most one server at each !-moded type. For example
!x().P |!x().Q cannot be typable.

− In (Res), we do not allow ? to be restricted since this action expects
its dual server always exists in the environment. Hence (ν x)x is
untypable. A/~y means the result of deleting the nodes ~x : ~τ in
A (and edges from/to deleted nodes). For example, (ν x)!x.0 is
always typable with action type x :τ/x = ∅.

− In (Weak), we weaken a ?-moded channel since this mode means
zero or more output actions at a given channel. In (Weak-io), we
turn the input mode into the output mode. This is intuitively
because an output mode means there is at most one active thread,
which includes the case when there is no thread. More technically,
we need this weakening for subject reduction: even if we start from
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an active thread, a process can reach a configuration without any
active thread, after a series of reductions.

− (In!) ensures non-circularity at x (by x 6∈ fn(A)) and no free in-
put occurrence under input (by md(A) = ?). Then it records the
causality from input to free outputs. If A is empty, x : (~τ)! → A
simply stands for x : (~τ)! .

− (Out?) essentially the rule composes the output prefix and the
body in parallel. In the condition, yi : τi ∈ A means each yi : τi
appears in A. This ensures bound input channels ~y become always
active after the message received. It also changes the mode to
output, to indicate an active thread or server. Note that this rule
does not suppress the body by prefix since output is asynchronous.
We can also now see why we don’t need a rule like that mentioned
in Footnote 1 on Page 3 to deal with processes like x(~y)(P |!x(~v).Q).
Because if {~y} ∩ fn(!x(~v).Q) = ∅, we can simply use the structural
rule (S9)

x(~y)(P |!x(~v).Q) ≡ x(~y)P | !x(~v).Q

and use (Com!). This covers all the cases because by typing a ∈
{~y} ∩ fn(!x(~v).Q) is impossible, as any such a would have to be
input moded (so it can be carried by x) and output moded (to be
suppressed freely under !x) at the same time.

EXAMPLE 2.2. (copy-cat) As an example of the type inference, we

take a copy-cat agent. Let [x→ y]
def
=!x(c).y(c′)!c′.c. This is a copy-cat

agent, linking two locations x and y: when asked at x, it asks back at y.
Then, on receiving the answer c′ from y, forwards it back as an answer
c to the initial question at x. Having this agent between two locations
does not change the whole behaviour. For example:

!y(z).z | [x→ y] | x(e)!e.e′

−→ !y(z).z | [x→ y] | y(c)(ν e)(!c.e | !e.e′)
−→ !y(z).z | [x→ y] | (ν ce)(c | !c.e | !e.e′)
−→2∼ !y(z).z | [x→ y] | e′

where ∼ is the standard strong bisimulation (note (ν y)!y(~z).P ∼ 0).
The above agent is the same as !y(z).z|y(e)!e.e′ −→−→∼ !y(z).z|e′,
except for some internal reductions. Below we show a step by step

derivation for the typing of [x→ y] with τ
def
= (()?)!.
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1: `I 0 . ∅
2: `O c . c : ()?

3: `I !c′.c . c′ : ()! → c : ()?

4: `O y(c′)!c′.c . y :τ , c : ()? (by (c′ : ()! → c : ()?)/c′ = c : ()?)

5: `I !x(c).y(c′)!c′.c . x :τ → y :τ (by (y :τ , c : ()?)/c = y :τ)

In this derivation, the length of paths in action types does not exceed
1 even when the term gets bigger and bigger in size.

In the same way, the reader can also check P2 in (7) and P6 in (10) are
typed as follows.

`O P2 . b : ()! → a : ()?, c : ()! → a : ()?

`O P6 . a : ()! → c : ()?, b : ()! → c : ()?, e : ()! → c : ()?

2.5. Properties of πC

The following substitution lemma, whose second clause shows ?-names
can be coalesced together, is a basic observation needed to prove the
correctness of the encoding.

LEMMA 2.3. (substitution lemma)

1. If `φ P . A and y 6∈ fn(A), then `φ P{y/x} . A{y/x}.

2. If `φ P . A such that A(x) = A(y) and, moreover, md(A(x)) = ?,
then `φ P{z/xy} . A{z/xy} for fresh z.

Proof: By an easy induction on the rules in Figure 1.

The subject reduction of πC is an immediate consequence of that in [39],
since both the action types and the reduction of the present calculus
are projection of those of the sequential linear π-calculus in [39, §5.3].

PROPOSITION 2.4. (Subject Reduction) If `φ P . A and P −→ Q
then `φ Q . A.

In addition to the standard reduction, we define an extended notion
of reduction, called the extended reduction, written ↘, again precisely
following [39]. We shall use this reduction extensively in the present
study. While −→ gives a natural notion of dynamics which makes sense
in both sequential and concurrent computation, ↘ extends −→ by
exploiting the stateless nature of πC-processes. It offers a close corre-
spondence with the reduction in the λµv-calculus through the encoding.
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For that reason ↘ is useful for studying the correspondence between
two calculi. Formally ↘ is the least compatible relation, i.e. closed
under typed context, over typed processes, taken modulo ≡, that
includes:

C[x(~y)P ]|!x(~y).Q ↘r C[(ν ~y)(P |Q)] | !x(~y).Q

(ν x)!x(~y).Q ↘g 0

where C[ · ] is an arbitrary (typed) context. We can immediately see
−→⊂↘. Note ↘ calculates under prefixes, which is unusual in process
calculi. For example, we have

P2 −→ ! b.a | a | ! c.b ↘ ! b.a | a | ! c.a

Another observation is that a given typed process in the πC-calculus
can have at most one redex for the standard reduction −→ while it
may have more than one redex for ↘.

The extended reduction↘ is the exact image of extended reduction
in [39] onto the present subcalculus, so that we immediately conclude,
from the results in [39]:

PROPOSITION 2.5.

1. (Subject Reduction) If `φ P . A and P ↘ Q then `φ Q . A.

2. (CR) If P is typable and P ↘ Qi (i = 1, 2) with Q1 6≡ Q2, we
have Qi ↘+ R (i = 1, 2) for some R.

3. (SN) If P is typable then P does not have infinite ↘-reductions.

Proof: By Proposition 5.5 in [39].

It may be useful to state at this point that, possibly contrary to what
is suggested by the asymmetric notation, ↘ does not introduce a new
form of computation step, a new form of interaction. Instead, P ↘ Q
says that P and Q cannot be distinguished by well-typed observers.
This indistinguishability is an artifact of our restrictive typing discipline
and does not hold in the untyped calculus. The asymmetric notation
was chosen to emphasise that Q in P ↘ Q is smaller, in the sense of
having fewer process constructors, than P . There are three further
observations on the extended reduction. First, while we do not use
the property directly in the present work, the convertibility induced
by ↘ (i.e. the typed congruent closure of ↘) coincides with the weak
bisimilarity ≈ [39, Theorem 4.1], because the transition relation is the
faithful image of that of the pure sequential linear π-calculus in [39].
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Second, Proposition 2.5 (3) indicates all πC-processes are represented
by their ↘-normal forms, i.e. those πC-processes which do not have a
↘-redex, which own a very simple syntactic structure characterised
inductively.

Finally, in the definition of ↘ it is not necessary to cater for repli-
cated inputs occurring freely under other input prefixes as that is
impossible by typing. Similarly, any replicated input with free subject
under an output can be put into parallel with that output by the
structural rules in the typed setting.

DEFINITION 2.6. Let the set NFe of πC-processes be generated by the
following induction, assuming typability in each clause.

1. 0 ∈ NFe

2. if P,Q ∈ NFe and P and Q do not share a common free name of
different polarities, then P |Q ∈ NFe

3. P ∈ NFe then !x(~y).P ∈ NFe

4. x(~y)P ∈ NFe if P ∈ NFe and x(~y)P is a prime output, where we
call x(~y)P prime if the initial x is its only free name not under
input prefix.

5. If P ∈ NFe and P ≡ Q then Q ∈ NFe.

PROPOSITION 2.7. Let P be typable and P 6↘. Then P ∈ NFe.

Proof: By Proposition 3.3 in [39].

2.6. Contextual Congruence for πC

The Church-Rosser property of typed processes, as stated in Propo-
sition 2.5, suggests that non-deterministic state change (which plays
a basic role in e.g. bisimilarity and testing/failure equivalence) may
safely be ignored in typed equality, so that a Morris-like contextual
equivalence suffices as a basic equality over processes. Let us define:

P ⇓x iff P →→ x(~y)Q for some Q

Here →→ is the transitive and reflexive closure of −→. We can now
define a basic typed congruence. Below, a relation over typed processes
is typed if it relates only processes with identical action type and IO-
mode. If R is a typed relation and `φ P1,2 . A are related by R then
we write `φ P1 R P2 . A or, when no confusion arises, P1 R P2. A
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14 K. Honda, N. Yoshida and M. Berger

relation is a typed congruence when (1) R ⊇≡, and (2) R is a typed
equivalence relation closed under typed contexts (note we are taking
≡ as if it were the α-equality: this is essentially because the notion of
reduction depends on this relation, just as reduction in the λ-calculus
depends on the α-equality).

DEFINITION 2.8. ∼=π is the maximum typed congruence satisfying:
if `O P ∼=π Q . x : ()?, then P ⇓x iff Q ⇓x.

Below a typed congruence is maximally consistent (cf. [3, 15]) if adding
any additional equation to it leads to inconsistency, i.e. equations on
all processes with identical typing.

PROPOSITION 2.9.

1. ↘⊂∼=π.

2. ∼=π is a maximally consistent typed congruence.

3. ∼=π is the unique maximally consistent congruence containing ↘.

Proof: See Appendix A.1.

REMARK 2.10. (observables in πC) This choice, which also corre-
sponds to the usual output-barbed congruence one considers in the
untyped calculus, is the canonical choice for the calculus fragment under
discussion, for the following reasons. ?-actions are not considered as
observables in linear/affine π-calculi [4, 39] since, intuitively, invoking
replicated processes do not affect them. Proposition 2.9 suggests that
the existence/non-existence of ?-actions may be the only sensible way
to obtain a non-trivial large equality in πC, equationally justifying the
use of ?-actions as observables. The reader familiar with observational
congruences in languages/calculi with full control may observe that this
choice does conform to the fact that, in these languages/calculi, obser-
vational congruences do care about, albeit a posteriori, calls/jumps to
procedures/names in the environment, cf. Section 5.

We list a basic characterisation of ∼=π. Below |A| stands for the map

from names to channel types underlying A; ( · ) dualises such a map.

PROPOSITION 2.11. (context lemma) `O P1
∼=π P2 . A if and only

if the following condition holds: for each `I R . B such that |B| =

|A| ∪ {x : ()?} for some fresh x, we have P1|R ⇓x iff P2|R ⇓x.

Proof: Standard (cf. [29]), listed in Appendix A.2 for reference.
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REMARK 2.12. (context lemma) The context lemma such as Propo-
sition 2.11 is a major tool for reasoning about process equivalences in
many known typed and untyped π-calculi. It is also a natural coun-
terpart of the standard context lemma for functions, where the main
composition operator for functions, the application, is generalised to the
main composition operator for communicating processes, concurrent
composition. From a different viewpoint, the characterisation may be
considered as a healthiness condition for contextual congruences since
we may as well demand the sole source of distinguishability among
processes should come from how they interact with other processes
and, as a result, contributes to a basic notion of observables.

3. Encoding

3.1. Call-by-value λµ-calculus

In this section we present a type-preserving embedding of the call-by-
value λµ-calculus by Ong and Stewart [27] in πC. Apart from tractable
syntactic properties of the calculus in comparison with its call-by-name
counterpart, Ong and Stewart showed how various control primitives of
call-by-value languages (such as call-cc in ML) can be encoded cleanly
in this calculus and its extension with recursion [27]. The calculus rep-
resents full control in a call-by-value setting, just like the call-by-value
λ-calculus with Felleisen’s C operator.

We have decided to embed the full call-by-value λµ-calculus, rather
than some simpler calculi, for example the λµ-calculus without ⊥, for
the following reasons.

− The use of⊥ is a good “stress test” to the embedding and the typed
π-calculus (for example we want no closed processes to inhabit the
⊥-type).

− Deriving⊥ is central to classical proofs (contraposition): the present
paper shows that an appropriate embedding does offer a clean
understanding of ⊥-types (as lack of information).

− Subcalculi of λµ-calculus, such as the ⊥-free fragment, and exten-
sion with constants and fixed-points can be embedded straightfor-
wardly starting with the λµ-calculus.

Types (α, β, . . .) are those of simply typed λ-calculus with the atomic
type ⊥ (we can add other atomic types with appropriate values and
operations on them). We use variables (x, y, . . .) and control variables
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16 K. Honda, N. Yoshida and M. Berger

(Id)

−

Γ · x :α ` x :α ; ∆

(C-var)

Γ · x :α · y :α `M :β ; ∆

Γ · z :α `M{z/xy} :β ; ∆

(C-name)

Γ `M :β ; ∆ · a :α · b :α

Γ `M{c/ab} :β ; ∆ · c :α

(⇒-I)
Γ · x :α `M :β ; ∆

Γ ` λxα.M :α⇒β ; ∆

(⇒-E)
Γ `M :α⇒β ; ∆

Γ ` N :α ; ∆

Γ `MN :β ; ∆

(⊥-I)
Γ `M :α ; ∆ α 6= ⊥

Γ ` [a]M :⊥ ; ∆ · a :α

(⊥-E)
Γ `M :⊥ ; ∆ · a :α

Γ ` µaα.M : α ; ∆

Figure 3. Typing rules for the λµ-calculus.

(or names) (a, b, . . .). Preterms (M,N, . . .) and values (V,W, . . .) are
generated from the grammar:

M,N ::= x | λxα.N | MN | µaα.M | [a]M

V,W ::= x | λxα.N

Apart from the standard variables, abstraction and application, we
have a named term [a]M and a µ-abstraction µa.M , both of which use
names. The typing judgement has the form:

Γ `M : α; ∆

where Γ is a finite map from variables to types, M is a preterm given
above, and ∆ is a finite map from names to non-⊥-types.

The typing rules are given in Figure 3. In the rules, we assume
newly introduced names/variables in the conclusion are always fresh.
The notation Γ · x : τ indicates x is not in the domain of Γ. M{z/xy}
denotes the result of substituting z in M for both x and y, similarly
for M{c/ab}. A typable preterm is called a λµv-term.

main.tex; 24/04/2014; 17:20; p.16



Control in the π-Calculus 17

We let β 6= ⊥. In the last four rules, M{C[ · ] / [a][ · ] } is the result of
substituting C[Li] for each subterm of the shape [a]Li occurring in M
assuming the bound name convention, see Appendix B.

(βv) (λx.M)V −→M{V/x}
(ηv) λx.(V x) −→ V (if x 6∈ fv(V ))

(µ-β) [b]µa.M −→M{b/a}
(µ-η) µa.[a]M −→M (if a 6∈ fn(M))

(ζfun) (µaα⇒β.M)N −→ µb.M{ [b]([ · ]N) / [a][ · ] }

(ζfun,⊥) (µaα⇒⊥.M)N −→M{ [ · ]N / [a][ · ] }

(ζarg) V α⇒β(µaα.M) −→ µb.(M{ [b](V [ · ]) / [a][ · ] } α 6= ⊥

(ζarg,⊥) V α⇒⊥(µaα.M) −→M{V [ · ] / [a][ · ] } α 6= ⊥

(⊥) V ⊥⇒βM −→ µbβ.M (b fresh)

(⊥⊥) V ⊥⇒⊥M −→M

Figure 4. Reduction rules for the λµv-calculus. We have omitted the rules ensuring
compatibility of −→.

The reduction rules for the λµv-calculus is given in Figure 4. In the
rules we include ηv-reduction, unlike [27]. Inclusion or non-inclusion
does not affect the subsequent technical development.

REMARK 3.1. The sequent for the λµv-calculus in [27] has the form
Γ; ∆ ` M : α, which is natural from a logical viewpoint (one way to
read this sequent is to regard Γ as positively assumed formulae and
∆ as negatively assumed formulae, the latter to be discharged by the
contraposition rule, cf. [28, 35]). We choose the present notation because
it is close to its process representation, as we shall see soon.

3.2. Encoding (1): Types

The general idea of the encoding is simple, and closely follows the
standard call-by-value encoding of the λ-calculus, due to Milner [24].
The reading is strongly operational, elucidating the dynamics of λµ-
terms up to a certain level of abstraction. In brief, given a λµ-term:

Γ `M : α; ∆, (11)
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18 K. Honda, N. Yoshida and M. Berger

its encoding considers Γ as the interaction points of the program/process
where it queries the environment and gets information; while either at
its main port, typed as α, or at one of the control variables given as ∆,
the program/process would return a value: at which port it would re-
turn depends on how its sequential thread of control will proceed during
execution. If ∆ is empty, this reading precisely coincides with Milner’s
original one [24]. One of the distinguishing features of the π-calculus
encodings of programming languages in general (including those for
untyped calculi) and that of the present encoding in particular, is that
the operational interpretation of this sort in fact obeys a clean and
rigid type structure.

We start with the encoding of types, which we present using two
maps, α• and α◦. Intuitively α◦ maps α as a type for values; while α•

maps α as a type for threads which may converge to values of type α
or which may diverge, or “computation” in Moggi’s terminology [26].

α•
def
=

{
ε (α = ⊥)

(α◦)? (α 6= ⊥)
(α⇒β)◦

def
=

{
(β•)! (α = ⊥)

(α◦β•)! (α 6= ⊥)

Note a type for computation is the lifting of a type for values. The
encoding of ⊥ indicates that we assume there is no (closed) value, or a
proof without assumptions, inhabiting ⊥. This leads to the degenerate
treatment of (⊥ ⇒ α)• since “asking at the assumed absurdity” does
not make sense. By “degenerate” we mean that the argument in (⊥ ⇒
α) is simply ignored.

EXAMPLE 3.2. As simple examples:

(⊥ ⇒ ⊥)◦
def
= ()!

((⊥ ⇒ ⊥)⇒ ⊥)◦
def
= (()?)!

Note if α 6= ⊥ we always have (α⇒ ⊥)◦ = (α◦)! which corresponds to

the standard translation, ¬A def
= A ⊃ ⊥. As further examples:

(⊥ ⇒ (⊥ ⇒ ⊥))◦
def
= ((()!)?)!

((⊥ ⇒ ⊥)⇒ (⊥ ⇒ ⊥))◦
def
= (()?(()!)?)!

Following the mappings of types, the environments for variables and

names are mapped as follows, starting from ∅• def
= ∅ and ∅◦ def

= ∅.

(a :α·∆)•
def
=

{
a :α• ·∆• (α 6= ⊥)
∆• (α = ⊥)

(x :α·Γ)◦
def
=

{
x :α◦ · Γ◦ (α 6= ⊥)
Γ◦ (α = ⊥)
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The special treatment of ⊥ follows the encoding of types above and
reflects its special role in classical natural deduction. Simply put, if we
have a proof whose conclusion is the falsity ⊥, then it is given there, for
its all usefulness, for the purpose of having a contradiction and negating
a stipulated assumption. Operationally this suggests the proof whose
(conclusion’s) type is ⊥ has nothing positive to communicate to the
outside, which explains why the map for computation ( · )• ignores
the control channel of type ⊥. Dually you get no information from the
proof of type ⊥, so querying at that environment port is insignificant,
hence we ignore ⊥-types in the negative positions.

3.3. Encoding (2): Terms

For the encoding of terms, we introduce the following notations, which
we shall use throughout the paper. Below in (3) we use the notation
from [12, Remark 15] in the context of CPS calculus (cf. Section 5).

NOTATION 3.3.

1. (copycat, cf. Ex. 2.2) Let τ be an input type. Then [x → y]τ ,
copy-cat of type τ , is inductively defined by the following clause.

[x→ x′](τ1..τn)! def
=!x(~y).x′(~y′)Π1≤i≤n[y′i → yi]

τi .

where
∏

1≤i≤n Pi, which we often write
∏
i Pi, stands for the n-fold

parallel composition P1| · · · |Pn.

2. (free output) We let x〈~y ~τ 〉 def
= x(~z)Π[zi → yi]

τi with each τi having
an output mode.

3. (substitution environment) P{x(~y)=R} def
= (ν x)(P | !x(~y).R).

Figure 5 presents the encoding of terms. The encoding closely follows
that of types, mapping a typing judgement Γ ` M : α ; ∆ and a fresh
name (called anchor) to a process. For brevity, we omit the type envi-
ronment from the source term in Figure 5 (it suffices to assume, w.l.o.g.,
that all the free variables in a term are annotated with types). In each
rule, we assume newly introduced names (among others an anchor) are
always fresh.

The anchor u in [[M :α]]u represents the point of interaction which
M may have as a process [24] or, more concretely, the channel through
which the process returns the resulting value to the environment. The
process [[M : α]]u may also have interactions at its free variables (for
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[[x : α]]u
def
=

{
u〈xα◦〉 (α 6= ⊥)
0 (α = ⊥)

[[λxα.M : α⇒β]]u
def
=


u(c)!c(xz).[[M :β]]z (α 6= ⊥, β 6= ⊥)

u(c)!c(z).[[M :β]]z (α = ⊥, β 6= ⊥)

u(c)!c(x).[[M :⊥]]z (α 6= ⊥, β = ⊥)

u(c)!c.[[M :⊥]]z (α = ⊥, β = ⊥)

[[MN : β]]u

def
=

 [[M :α⇒β]]m{m(c)=([[N :α]]n{n(e)=c〈euα◦β◦〉})} (α 6=⊥, β 6=⊥)

[[M :α⇒β]]m{m(c)=c〈uβ◦〉} (α=⊥, β 6=⊥)

[[M :α⇒β]]m{m(c)=[[N : α]]u} (α=⊥)

[[[a]M : ⊥]]u
def
= [[M : α]]m{a/m}

[[µaα.M : α]]u
def
= [[M : ⊥]]m{u/a}

Figure 5. Encoding of λµ-terms.

querying information) and at its free control variables (for returning
values). Note both of them are now channel names.

The clauses in Figure 5 follows Milner’s standard encoding [24]
except for the treatment of:

(1) ⊥-typed programs;

(2) ⊥-typed types in abstraction and applications;

(3) Named terms and µ-abstraction.

For (1), we can check the encoding of a ⊥-typed program never contains
an anchor as its free name, so that the resulting process does not
communicate at its principal port (anchor), but only interacts at its
environments, possibly returning at one of its control variables.

(2) follows the treatment of ⊥ in types: since ⊥ is translated into
an empty type which is inhabited by no processes except 0, there is
no communication at ⊥-typed channels (we can make the encoding
more uniform by having an additional indirection: however the present
treatment may be faithful to the intuitive understanding of ⊥ as an
empty type, apart from leading to a more terse encoding).

For (3), intuitively we interpret [a]M as a process which jumps to a
instead of to its anchor, still carrying the same value. Thus using the
substitution makes sense. Note that M may already contain named
terms of the form [a]Ni as its subterm: in this case, the substitution
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leads to the collapse of names. Symmetrically, µa.M redirects all jumps
towards a to the anchor of the program, again using the substitution.
As u is not used in [[[a]M ]]u we often write [[[a]M ]] instead.

The following result comes from the precise correspondence between
derivations of a typed λµv-term and those of its encoding.

PROPOSITION 3.4. (type-preservation) Γ `M :α ; ∆ implies
`O [[M :α]]u . (u :α ·∆)•, Γ◦.

Proof: By rule induction of the typing rules in Figure 3. Variables are
direct from the following standard results, cf. [39, Proposition 5.4].

1. With md(τ) = !, we have `I [x→ y]τ . x :τ → y :τ .

2. With md(τ) = ?, we have `O u〈xτ 〉 . u : (τ)?, x :τ .

Each case of the λ-abstraction is direct from the induction hypothesis.
For application, we first observe `O P .x :τ ,Γ and `I!x(~y).R.x :τ → Γ
implies `O P{x(~y) = R} . Γ. Using this observation repeatedly, each
clause of the encoding of the application is direct from the induction
hypothesis. For illustration, we give a detailed example of the typing
inference for [[Mα⇒βN : β]], where α, β 6= ⊥.

`O c〈eu〉 . c : (α◦β•)? , e : α◦, u : β•

`I!n(e).c〈eu〉 . n : (α◦)! → (c : (α◦β•)? , u : β•)

`O [[N : α]]n|!n(e).c〈eu〉 . n : (α◦)! → (c : (α◦β•)? , u : β•),∆•,Γ◦

`O (νn)([[N ]]n|!n(e).c〈eu〉) . c : (α◦β•)? , u : β•,∆•,Γ◦

`I!m(c).(νn)([[N ]]n|!n(e).c〈eu〉) . m : ((α◦β•)?)! → (u : β•,∆•,Γ◦)

`O [[M ]]m|!m(c).(νn)([[N ]]n|!n(e).c〈eu〉) . m : ((α◦β•)?)! → (u : β•,∆•,Γ◦)

`O [[MN ]]u . u : β•,∆•,Γ◦

For a named term, suppose Γ ` [a]M : ⊥ · ∆, a : α is inferred from
Γ `M : α·∆. Note that, in this case, a 6∈ fn(M) (later some names in M
can be coalesced into a). By induction hypothesis we have `O [[M ]]u .u :

α•,Γ◦,∆•. By Lemma 2.3 (1) and noting we always have [[[a]M ]]u
def
=

[[M ]]a whenever a 6∈ fn(M), we have `O [[[a]M ]]u . a : α•,Γ◦,∆•. For
name abstraction, suppose Γ ` µaα.M : α,∆ is inferred from Γ ` M :

⊥,∆, a : α. By Lemma 2.3 (2) and noting [[µa.M ]]u
def
= [[M ]]{u/a} we

have `O [[µaα.M ]]u.u :α•,Γ◦,∆•. Finally if a term is typed with (C-var)
or (C-name) as the last rule of a type derivation, we can directly apply
Lemma 2.3 (2).
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REMARK 3.5. In Proposition 3.4, the type of the term and the types
of control names are both mapped with ( )•, conforming to the shape
of the sequent Γ ` M : α; ∆. In particular, there is no causality arrow
in the types for translations of λµ-terms. This is because all types
(including environments and types for names) are mapped to output
types, and causality can only from ! to ?.

3.4. Examples of Encodings

A few examples of the encoded λµv-terms follow, including represen-
tative control operators.

EXAMPLE 3.6. (variable) As a simplest example, consider

[[x : ⊥]]u
def
= 0.

Since (x : ⊥)◦ = (u : ⊥)• = ∅, we have

`O [[x : ⊥]]u . (u : ⊥)•, (x : ⊥)◦

This encoding intuitively represents a trivial proof which assumes ⊥
and concludes ⊥, or, in the terminology of Linear Logic, the axiom link
of the empty type.

EXAMPLE 3.7. (identity, 1) By closing x of the preceding example,
we get:

[[λx⊥.x : ⊥ ⇒ ⊥]]u
def
= u(c)!c.0.

Since (⊥ ⇒ ⊥)• = (()!)?, we have

`O [[λx⊥.x : ⊥ ⇒ ⊥]]u . u : (⊥ ⇒ ⊥)•

At the end of this subsection, we explore inhabitants of this simple
process type.

EXAMPLE 3.8. (identity, 2) If α 6= ⊥, then

[[λxα.x : α⇒ α]]u
def
= u(c)!c(xz).z〈xα◦〉

EXAMPLE 3.9. (control operator, 1) The following term essentially
corresponds to C in λCv introduced by Felleisen and his colleagues
[10, 11]. Logically it is a shortest proof of ¬¬A ⊃ A. Below we let

¬α def
= α⇒ ⊥.

ℵ def
= λz¬¬α.µaα.z(λxα.[a]x)
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Its direct encoding is, assuming α 6= ⊥:

[[ℵ]]u
def
= u(c)!c(za).(νm)(m〈z〉 | !m(z).(ν n)(n(f)!f(x).a〈x〉 | !n(f).z〈f〉))

which, through a couple of ↘ uses, can be simplified into:

u(c)!c(za).z(f)!f(x).a〈x〉

This agent first signals itself: then it is invoked with a function in the
environment (of type ¬¬α) as an argument and a continuation a (of
type α), invokes the former with the identity agent (whose continuation
is a) and a continuation a. Then if that function asks back at the
identity with an argument, say x, then this x is returned to a as the
answer to the initial invocation. Note how the πC-translation makes
explicit the operational content of the agent, especially when simplified
using ↘.

EXAMPLE 3.10. (control operator, 2) The origin of the following
operator is also from the work by Felleisen and others [10, 11].

Aa def
= λxα.µbβ.[a]x

The direct encoding gives a ↘-normal form, as follows (assuming α
and β are non-trivial).

[[Aa]]u
def
= u(c)!c(xz).a〈xα◦〉

After signalling itself, the process receives an argument x and a con-
tinuation, but discarding that continuation and just sends out x to
a.

EXAMPLE 3.11. (control operator, 3) The following is the well-known
witness of Peirce’s law, ((A ⊃ B) ⊃ A) ⊃ A, and corresponds to callcc

in Scheme.

κ
def
= λy(α⇒β)⇒α.µaα.[a](y(λxα.µbβ.[a]x)).

The direct encoding becomes:

[[κ]]u
def
= u(c)!c(za).(νm)(m〈z〉|!m(z).(ν n)(n(f)!f(xb).a〈x〉|!n(f).z〈fa〉))

which can be simplified with some uses of ↘ into:

u(c)!c(ya).y(fa′)(!f(xb).a〈x〉 | [a′ → a])

The process first signals itself at u, then, when invoked with an argu-
ment y and a return point a, asks at y with an argument f and a new
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return point a′. Then whichever is invoked, it would return with the
received value to the initial return point a. Note that the only difference
from the encoding of ℵ is whether, in addition to the invocation of the
identity function at f , there is the possibility that the direct return
comes from the environment: the difference, thus, is, in the standard
execution, whether it preserves a current stack to forward the value
from the environment or not.

EXAMPLE 3.12. (reasoning on inhabitants through encoding) The
encoding offers a precise representation of the behaviour of λµv-terms
which not only is semantically faithful to the source language but also
offers a tractable reasoning tool on properties of types and terms, such
as type inhabitation. In the following we show an example reasoning
which determines the inhabitants of (⊥ ⇒ ⊥)• up to ∼=π. Through
the definability result we shall discuss later, this in fact gives complete
information about inhabitants in ⊥ ⇒ ⊥ in the λµv up to a contextual
congruence. The following statement intuitively says (⊥ ⇒ ⊥)• has a
unique non-trivial inhabitant semantically.

REMARK 3.13. If `O P.u : (()!)? then either P ∼=π u(c)!c.0 or P ∼=π 0.

We prove this in two steps.

LEMMA 3.14. Let P ∈ NFe. Then

1. If `I P . ∅ then P ∼=π 0.

2. If `O P . x : ()? then P ∼=π x or P ∼=π 0.

3. If `I P .u : (()?)! , x : ()? or `I P .u : (()?)! → x : ()?, then, up to
∼=π, P is one of the following: !u(c).0, !u(c).c, !u(c).x.

Proof: Straightforward from the typing.

Now we are ready to establish the remark. First assume that P is in
NFe, for if not, by Proposition 2.7 and strong normalisation of the
calculus and Lemma 2.5 we can always find a contextually congruent
Q that is in NFe. By Proposition 2.9, this does not change the relevant
behaviour.

Now we proceed by induction of the derivation of P ∈ NFe. If P = 0
we are done. If P = P1|P2 with Pi ∈ NFe then assume w.l.o.g. that
P2 = 0. We can make this assumption, because by IO-modes, only one
of the Pi can be O-moded, the other, here assumed to be P2, must be I.
But this input cannot have a free name because of P ’s type. By Lemma
3.14 this means that P2

∼=π 0. Now the desired result follows by the
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(IH). The case that P ≡ Q ∈ NFe is also immediate by the (IH) and
the fact that ≡⊆∼=π. This leaves the case that

P ≡ x(c).P ′ P ′ ∈ NFe, x is the only free name not under an input.

Considering the typing judgement `O x(c).P ′ . u : (()!)? , there are
clearly only two non-trivial possibilities.

1. `I P ′ . c : ()! → u : (()!)? . In this case P ′ ≡!c.P ′′ with `O P ′′ . ∅.
Hence by Lemma 3.14: P ′ ≡ !c.0.

2. `I P ′ . c : ()! . In this case P ≡ u(c)!c.P ′′ with `O P ′′ . u : (()!)? .
By (IH) now P ′′ ∼=π 0 or P ′′ ∼=π u(c)!c.0.

In summary we know that the P with `O P . u : (()!)? are given by

P0
∼=π 0 Pn+1

∼=π u(c)!c.Pn.

It is notable that {Pi}i>0 correspond to the series of closed λµv-terms

{Mi : ⊥ ⇒ ⊥}i∈ω where Mi
def
= µa.[a]Vi−1 and Vi is defined by the

following induction: V0
def
= λx⊥.x and Vn+1

def
= λx⊥.[a]Vn. We now show

Pi ∼=π Pj for arbitrary i, j > 0 by mathematical induction, using:

− (base case) P1
∼=π P2; and

− (inductive case) If Pn ∼=π Pn+1 then Pn+1
∼=π Pn+2 for each n.

For the base case, by Proposition 2.11 (context lemma), it suffices to
consider composition with processes typed as:

`I R . u : (()?)!, x : ()? `I R . u : (()?)! → x : ()?

and check the behaviour of a composite process at x. By Proposition
2.9 (1) again, we only have to consider such R in ↘-normal forms. By
typing and by the lack of↘-redex, R is one of {!u(c).0, !u(c).c, !u(c).x}
up to ≡, cf. Lemma 3.14. By inspecting reduction, we obtain:

P1,2|!u(c).0 6⇓x, P1,2|!u(c).c 6⇓x, P1,2|!u(c).x ⇓x,

which shows P1
∼=π P2, as required. The inductive case is direct from

congruency of ∼=π.

3.5. Correspondence in Dynamics

The dynamics of λµ-calculi, including its call-by-name and call-by-
value versions, has additional complexity due to the involvement of
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µ-abstraction. Among others it becomes necessary to use a nested con-
text substitution M{C[·] / [a][·] } when µ-abstraction and application
interact. In stark contrast, the dynamics of πC is quite simple, both in
its standard reduction and in its extended reduction: even in the latter
(which includes the former), its two reduction rules, reproduced below,
are quite simple.

C[x(~y)P ]|!x(~y).Q ↘r C[(ν ~y)(P |Q)] | !x(~y).Q

(ν x)!x(~y).Q ↘g 0

Since ↘g is solely for removing unnecessary garbage processes, the
true dynamics is born by ↘r, where we simply let two processes with
shared channels and different polarities interact. In the following we
analyse the dynamics of the λµv-calculus through the embedding, using
the interaction-oriented dynamics of πC. The strong normalisability of
λµv-reduction is an immediate consequence of this analysis.

We need some preparations. First, for a λµv-term which is also a
value, the following construction is useful.

DEFINITION 3.15. (value mapping) Let Γ ` V : α; ∆. Then we set

[[V ]]valm
def
= P iff [[V ]]u

def
= u(m)P .

Note u(m)[[V ]]valm is identical with [[V ]]u up to alpha-equality. Note fur-
ther, by typing, [[V ]]valm always has the form !m(~y).P . These observations
are useful when we think about the encodings, especially when we apply
extended reduction on them.

Second, we shall use the following specific instances of extended
reduction in the following development. We write C-x[Pi]i to stand for
C[P1]...[Pn] (n > 0) where none of the holes binds s and x does not
occur freely in C[·].

PROPOSITION 3.16. Below we assume typability of processes and
programs. In (12f), we assume Γ ` V : α; ∆ such that x 6∈ dom(Γ,∆).
In (12g), we assume Γ, x : α `M : β; ∆ and Γ ` V : α; ∆.

(m(~y)P ){m(~y) = Q} ↘+ (ν ~y)(P |Q). (12a)

(m(c)!c(~y).P ){m(c) = c(~y)Q} ↘+ (ν ~y)(P |Q). (12b)

(ν y)([x→ y]τ | !y(~z).P ) ↘+ !x(~z).P. (12c)

!x(~y).P |x〈~v~τ 〉 ↘+ !x(~y).P |P{~v/~y}. (12d)

(νa)(C[x〈aτ 〉]|!a(~v).P ) ↘+ (νa)(C[x(a)!a(~v).P ]|!a(~v).P ) (12e)

(ν x)([[x : α]]u|[[V ]]valx ) ↘∗ [[V ]]u (12f)

(ν x)([[M : β]]u | [[V ]]valx ) ↘∗ [[M{V/x} : β]]u. (12g)

C-x[[[Mi]]x]i{x(v) = P} ↘+ C[[[Mi]]x{x(v) = P}]i (12h)
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Proof: (12a) and (12b) are immediate. (12c) is by mechanical induc-
tion on τ , see [39, Proposition 5.4]. (12d) uses a form of substitution
lemma, see Lemma 3.17 below. (12f) is direct from (12c) (the case
α = ⊥ is also admissible, since in this case [[x : α]]u simply becomes
the inaction). (12e) is by easy inductions on C[·] and τ . Finally, for
(12g), we show by induction on M that [[M ]]u = C-x[ai〈x〉]i∈I and
[[M{V/x}]]u = C-x[ai(x)[[V ]]x]i∈I where the i ∈ I enumerate all occur-
rences of x. Then we apply (12g) and ↘g. The proof of (12h) is by
induction on the structure of C[·].

For the proof of (12d) we need the following result about the interplay
between copy-cat processes and substitution (this is already known
from [24] and, in the typed setting, [4]).

LEMMA 3.17. Assuming typability, we have

(ν~x)(P | Πi[xi → yi])↘∗ P{~y/~x}.

Proof: By induction on P . By typing, x can occur in P only as
outputs. Observing this, rather than showing induction, we present a
key reasoning, using the process of the following shape:

P ≡ C[x(a)Q]

where x does not occur in C (either bound or free) but can occur in Q.
We reason:

(νx)(P | [x→ y]) ≡ (νx)(C[x(a)Q] | !x(a).y〈a〉)
↘ (νx)(C[(νa)(y〈a〉 | Q)] | !x(a).y〈a〉)
≡ C[(νa)(y〈a〉 | Q)] | (νx)(!x(a).y〈a〉)
≡ C[(νa)(y〈a〉 | Q)]
def
= C[(νa)(y(b)[b→ a] | Q)]

≡ C[y(b)(νa)([b→ a] | Q)]

↘∗ C[y(b)(νa)(Q{b/a})] (IH)

≡ C[y(b)Q{b/a})]
≡ P{y/x}

Noting P consists of parallel composition of (possibly nested) messages
to x and other processes, this shows all occurrences of x can be replaced
by y.
We are now ready to embark on the analysis of λµv-reduction through
its encoding into πC. Suppose we have reduction M −→M ′ for a λµv-
term M . By Figure 4, Page 17, the generation of reduction can be
attributed to one of the following cases.
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− (βv)-rule or (ηv)-rule;

− one of the µ-reduction rules; or

− one of the ζ-reduction rules.

Of those, ζ-reductions require the most attention. Instead of consider-
ing the general case (which we shall treat later), let us first take a look
at the following concrete λµv-reduction. Below f and g are typed as
α⇒ γ and α.

M
def
= (µaα⇒β.[a]λyα.µeβ.[a]f)g −→µbβ.[b](λy.µe.[b](fg))g

def
= M ′ (13)

The encoding into πC-process elucidates ζ-reductions on the uniform
basis of name passing interaction. Let us first encode M , writing c〈〈xu〉〉
for (ν n)(!n(y).c〈yu〉|n〈x〉) for brevity.

[[M : α⇒ β]]u
def
= (ν a)(a(c)!c(ye).a〈f〉 | !a(c).c〈〈gu〉〉) (14)

On the right of (14), we find two↘r-redexes (apart from in c〈〈gu〉〉), two
outputs and a shared input at a, which are ready to interact. Redexes
for the ζ-reduction now arise explicitly as redexes for interactions. Note
also these redexes does not depend on whether the argument (g above)
is a value or not, directly explaining the shape of (ζfun) in Figure 4.

To see how M ′ in (13) results from M in the encoding, we “copy”
replications to make these two redexes contiguous, obtaining:

(ν a)(a(c)!c(ye).(ν a)(a〈f〉 | !a(c).c〈〈gu〉〉) | !a(c).c〈〈gu〉〉) (15)

This term is an intermediate form before reducing the mentioned two
redexes in (14) and is behaviourally equivalent to (14) (even in the
untyped weak bisimilarity). We observe:

[[M ′ :α⇒β]]u
def
= (ν a)(a(c)!c(ye).(ν a′)(a′〈f〉 | !a′(c).c〈〈gu〉〉) | !a(c).c〈〈gu〉〉)

so the intermediate form (15) is nothing but the encoding of M ′. This
also shows if we really reduce the two ↘-redexes from (14), the result
goes past (15). In general, M −→M ′ does not imply [[M ]]u ↘+ [[M ′]]u
since [[M ]]u reduces a little further than [[M ′]]u. However [[M ′]]u can
catch up with the result by reducing the mentioned two redexes in
(15).2 Based on this observation, we formally state the main result.

2 This observation suggests we may as well decompose ↘r into two steps, one
for copying the input to a position contiguous with an output and another for
performing the reduction at that site, in order to obtain exact simulation. Since this
is not necessary for obtaining the main technical results of the present paper, we
use ↘ (which is arguably a natural notion of reduction).
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Below size(M) is the size of M , which is inductively defined as:

size(x) = 1 size([a]M) = 1 + size(M)
size(λx.M) = size(M) + 1 size(µa.M) = 1 + size(M)
size(MN) = size(M) + size(N)

We use this index for maintaining the well-ordering on reduction. Below
→λµv is the reduction relation on λµ-terms presented in [27].

PROPOSITION 3.18. Let M and M ′ be well-typed. Then M →λµv M
′

implies either [[M : α]] ≡ [[M ′ : α]] such that size(M)  size(M ′), or
[[M :α]]u↘+P such that [[M ′ :α]]u ↘∗ P .

Proof: We begin as follows: (βv)/(ηv)-reductions are directly simu-
lated by ↘. For (βv), if α, β 6= ⊥:

[[(λxα.M)V :β]]u ↘+ (m(c)!c(xz).[[M ]]z){m(c)=([[V ]]v{v(x)=c〈xu〉})}
↘+ (ν x)([[M : β]]u | [[V : α]]valx )

↘+ [[M{V/x} : β]]u

The second and third reductions are respectively by (12c) and (12g).
If α = ⊥ but β 6= ⊥, then we can set V = y. Noting occurrences of
⊥-typed variables are all eliminated in the encoding:

[[(λxα.M)y :β]]u
def
= (m(c)!c(z).[[M ]]z){m(c)=c〈u〉}
↘+ [[M : β]]u ≡ [[M{y/x} : β]]u.

The case for α = β = ⊥ is the degenerate case of the above reduction.

For (ηv), assume x 6∈ fv(V ) and [[V ]]m
def
= m(c)!c(x′z′).P .

[[λxα.(V x) :α⇒β]]u↘+ u(c)!c(xz).((m(c)!c(x′z′).P ){m(c)=c〈xz〉})
↘+ u(c)!c(xz).P{xz/x′z′} ≡ [[V : α⇒ β]]u

Above we used Proposition 3.16. The µ-reductions become the struc-
tural equality:

(µ-β) [[[b]µa.M :⊥]]u ≡ ([[M :⊥]]{m/a}){b/m}
≡ [[M :⊥]]{b/a}
def
= [[M{b/a} :⊥]].

(µ-η) [[µa.[a]M :α]]u ≡ ([[M :α]]m{a/m}){u/a}
def
= [[M :α]]u.

In this way the encoding shows the µ-reductions are “obviously right”.
The only remaining cases are the general cases of ζ-reductions. Let

M
def
= C[[a]Li]i∈I where I enumerates all a-named subterms (with
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possible nesting) and let [[M : ⊥]]
def
= C ′[[[Li]]a]i accordingly. Note all

free occurrences of a in [[M :⊥]] are exhaustively mentioned in this way.
Given C[[a]Li]i, we write C[[b]LiN ]i (say) to indicate the result of filling
each hole with a new subterm similarly we write C ′[[[Li]]a{a(x)=R′}].
Here R′ is just a placeholder. We show one case of (ζfun). Below we

assume β 6= ⊥ and we let either R
def
= [[N ]]n{n(e)=c〈eu〉} (if α 6= ⊥) or

R
def
= c〈u〉 (if α = ⊥).

(ζfun) [[(µaα⇒β.M)N ]]u
def
= [[M :⊥]]{m/a}{m(c)=R}
≡ [[M :⊥]]{a(c)=R}
≡ C ′-a[[[Li]]a]i {a(c)=R}
↘+ C ′-a[[[Li]]a{a(c)=R}]i (16)
def
= C ′-a[[[LiN ]]u]i

≡ C ′-a[[[LiN ]]n{b/n}]i{u/b}
def
= C ′-a[[[[b](LiN)]]]i{u/b}
def
= [[C[[b](LiN)]i]]{u/b}
def
= [[µb.C[[b](LiN)]]]u

Here (16) is an application of Proposition 3.16 (12h).
The case when the target type is ⊥ is similarly reasoned as follows,

again relying on Proposition 3.16 (12h). Below let R
def
= [[N ]]n{n(e) =

c〈e〉} if β 6= ⊥, or R
def
= c if β = ⊥. Further let P1 ↘+↙ P2 denote

Pi ↘+ P ′ (i = 1, 2) for some P ′.

(ζfun,⊥) [[(µaα⇒⊥.M)N ]]u
def
= [[M :⊥]]{m/a}{m(c)=R}
≡ C ′[[[Li]]a]i {a(c)=R}
↘+↙ C ′[[[Li]]li{li(c)=R}]i

def
= [[C[(LiN)]]]u.

Next we consider the case for (⊥). Let b, c /∈ fv(N) and β 6= ⊥. Then
we have:

[[(λx⊥⇒β.M)N ]]u
def
= (νm)(m(c)!c(r).[[M ]]r | !m(c).[[N ]]u)

↘ (νmc)(!c(r).[[M ]]r | [[N ]]n | !m(c).[[N ]]u)

↘+ [[N ]]n
def
= [[µbβ.N ]]n,

noting b is fresh in the last line. The case for (⊥⊥) is similar.

main.tex; 24/04/2014; 17:20; p.30



Control in the π-Calculus 31

(ζarg) rules are treated in Appendix A.3, again clarifying the notion
of redexes in these rules.

Proposition 3.18 implies an infinite λµv-reduction sequence means ei-
ther an infinite term-size (which is impossible) or an infinite↘-reduction
sequence (which is again impossible). Thus we conclude:

COROLLARY 3.19. →λµv on λµ-terms is strongly normalising.

4. Decoding and Full Abstraction

4.1. Canonical Normal Forms

In the previous section we have shown that types and dynamics of
λµv-terms are faithfully embeddable into πC. In this section we show
this embedding is as faithful as possible — if a process lives in the
encoding of a λµv-type, then it is indeed the image of a λµv-term of
that type. This result corresponds to the standard definability result in
denotational semantics, and immediately leads to full abstraction for a
suitably defined observational congruence for λµv.

A key observation towards definability is that we can algorithmi-
cally translate back processes having the encoded λµv-types into the
original λµv-terms. To study the decoding, it is convenient to introduce
canonical normal forms (CNFs) [1, 4, 18], which are essentially a subset
of λµv-terms whose syntactic structures precisely correspond to their
process representation.

First, CNF preterms (N, . . .), together with its subset CNF value
preterms (U, . . .), are given by the following grammar.

N ::= c | λxα.N | let x = yU in N | let = yU | [a]U | µaα.N
U ::= c | λxα.N | µaα.[a]U

Some observations on the grammar above:

− c is a constant with type ⊥, giving a pseudo inhabitant of this type.
While we can always eliminate its occurrences from a typable CNF
using variables of ⊥-type, it allows us to have a direct correspon-
dence between CNFs and λµv-processes, as will be clarified in the
proof of correctness of decoding (Lemma 4.6) later.

− Following [1, 4, 18], the let construct, let x = yU in N, is used for
directly representing interactive behaviour of πC-processes in the
universe of λµv. Intuitively, let x = yU in N corresponds to the
process which:
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(⊥-const)
−

Γ·x :⊥ ` c :⊥ ; ∆

(let)

Γ·x :β ` N :γ ; ∆

Γ ` yU :β ; ∆ (β 6= ⊥)

Γ ` let xβ = yU in N :γ ; ∆

(let-⊥)
Γ ` y :α⇒⊥ ; ∅
Γ ` U :α ; ∆

Γ ` let = yU :⊥ ; ∆

Figure 6. Typing rules for CNFs.

• outputs with a ?-action at y carrying a name which is a
subject of a “value” process U and a continuation; then

• inputs at that continuation with a formal parameter x, and
behaves as N.

− let = yU is the degenerate case of let x = yU in N when x is of
type ⊥.

We further assume the following conditions on CNF preterms.

1. In [a]N, N does not have form µbβ.N′.

2. In µaα.N,

a) if N is [a]U then a ∈ fn(U); and

b) if N is let x = yU′ in N′ then a ∈ fn(U′).

3. In µaα.[a]U, a ∈ fn(U).

The conditions 1, 2-a and 3 are to avoid a µ-redex. The condition 2-b is
to determine the shape of a normal form, since without this condition
µa.let x = yU′ in N′ can be written let x = yU′ in µa.N′.

Using the CNF-preterms under these conditions, the set of CNFs
are those which are typable by the typing rules in Figure 6 combined
with those in Figure 3 except the rule for application. In (⊥-const)
in Figure 6, c, which witnesses absurdity, is introduced only when ⊥
is assumed in the environment (logically this says that we can say an
absurd thing only when the environment is absurd). CNFs which are
also CNF value preterms are called CNF values. Note a CNF value is
either c (which is the sole case when it has a type ⊥), a λ-abstraction,
or a µ-abstraction followed by a λ-abstraction.
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〈c :⊥〉u
def
= 0

〈let x = yU in N :γ〉u
def
=


y(wz)(P |!z(x).〈N :γ〉u) (U 6= c,

〈U〉c
def
= c(w)P )

y(z)!z(x).〈N :γ〉u (U = c)

〈let = yU :⊥〉u
def
=

{
〈U〉y (U 6= c)
y (U = c)

Figure 7. Encoding of CNFs.

CNFs correspond to λµv-terms as follows. In the first rule we assume
x is chosen arbitrarily from variables assigned to ⊥. Below in the first
line, it is semantically (and logically) irrelevant which ⊥-typed variable
we choose: for example, we may assume there is a total order on names
and choose the least one from the given environment.

(Γ·x :⊥ ` c :⊥ ; ∆)∗
def
= Γ·x :⊥ ` x :⊥ ; ∆

(Γ ` let xβ = yU in N :γ ; ∆)∗
def
= Γ ` (λx.N∗)(yU∗) :γ ; ∆

(Γ ` let = yU :⊥ ; ∆)∗
def
= Γ ` yU∗ :⊥ ; ∆

For CNFs which are λ-abstraction, µ-abstraction and named terms,
the mapping uses the same clauses as in Figure 5, replacing [[ · ]] in the
defining clauses with ( · )∗.

Via ( )∗ we can encode CNFs to processes:

Γ ` N : α; ∆ 7→ Γ ` N∗ : α; ∆ 7→ `O [[(N : α)∗]]u . (u :α,∆)•,∆◦

CNFs can also be directly encoded into πC-processes, using the rules in
Figure 7 combined with those for abstraction, naming and µ-abstraction
given in Figure 5 (replacing [[ · ]] with 〈 · 〉 in each clause).

PROPOSITION 4.1. Let Γ ` N :α ; ∆. Then `O 〈N〉u . (u :α,∆)•,Γ◦.

Proof: By induction on the typing rules for CNFs. The only inter-

esting case is when N
def
= let = yU, where we use the translation of

negation by implication. By induction hypothesis, we assume:

`O 〈U〉u . (u :α,∆)•,Γ◦. (17)

If α = ⊥, we have U = c, in which case, observing (⊥ ⇒ ⊥)◦ = ()?:

`O y . (∆)•, (Γ, y :⊥ ⇒ ⊥)◦.
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If α 6= ⊥, using the induction hypothesis (17) and noting α• = (α◦)? =
(α⇒ ⊥)◦, we obtain:

`O 〈U〉y . (∆)•, (Γ, y :α⇒ ⊥)◦.

For other cases, λ-abstraction, µ-abstraction and named terms are as
in Proposition 3.4. The case N = c is immediate. The case 〈let x =
yU in N :γ〉u is direct from the induction hypothesis.

Two process encodings of CNFs coincide up to ↘.

PROPOSITION 4.2. Let Γ ` N :α ; ∆. Then [[N∗ : α]]u ↘∗ 〈N〉u 6↘.

Proof: Let N be a CNF. We first show 〈N〉u 6↘, that is 〈N〉u ∈ NFe,
by induction on N. We use the inductive characterisation of ↘-normal
forms in Proposition 2.7.

1. 〈c〉 def
= 0 ∈ NFe.

2. 〈let x = yU in N : γ〉u
def
= y(wz)(P |!z(x).〈N〉u) ∈ NFe where U 6= c,

〈U〉c
def
= c(w)P ∈ NFe (hence P ∈ NFe) and 〈N〉u ∈ NFe. We must

show that y(wz)... is a prime output. For this we need to establish
that every free name, distinct from wz, in P is under an input
prefix. But as c(w)P ∈ NFe we know c(w)P to be a prime output.
Hence P is of the form !w(~a).P ′. This guarantees that y(wz)... is
prime. This also means that free names in P ′ as well as in 〈N〉u
are output-moded, hence of the same polarity. By construction w
and z are freshly chosen, so cannot occur as outputs in the relevant
terms. Hence P and !z(x).〈N〉u have no names of different polarities
in common and their parallel composition is indeed in NFe.

3. 〈let x = yU in N : γ〉u
def
= u(z)!z(x).〈N〉u ∈ NFe if U = c and

〈N〉u ∈ NFe.

4. 〈let = yα⇒⊥U : ⊥〉u
def
= 〈U〉y ∈ NFe with α 6= ⊥ directly from

induction hypothesis.

5. 〈let = y⊥⇒⊥U :⊥〉u
def
= y ∈ NFe.

Next we show [[N∗ : α]]u ↘∗ 〈N〉u, remembering ↘ is compatible.

1. [[c∗]]u
def
= 0

def
= 〈c〉.
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2. Let α 6= ⊥. By induction hypothesis we set [[U∗]]n ⇓e 〈U〉n
def
= n(w)P

and [[N∗]]u ⇓e 〈N〉u. Using Proposition 3.16 the second step we obtain
the following derivation.

[[(let x = yU in N)∗]]u
def
= [[(λx.N∗)(yU∗)]]u

def
= (ν f)( f(z)!z(xv).[[N∗]]v |

!f(z).(ν g) ( (ν l)(l〈y〉 | !l(c).(ν n)([[U∗]]n|!n(w).c〈wg〉)) |
!g(x).z〈xu〉))

↘+ y(wz)(P |!z(x).〈N〉u)

3. The reduction when U = c is very similar to the last.

4. If U 6= c, then [[(let = yα⇒⊥U)∗]]u
def
= (νm)(m〈y〉|!m(c).[[U∗]]c)

which, combined with induction hypothesis, reduces to 〈U〉y.

5. if U = c, then [[(let = y⊥⇒⊥U)∗]]u
def
= (νm)(m〈y〉|!m(c).c)↘+ y.

The cases for λ-abstraction, µ-abstraction and the named terms are
direct from the induction hypothesis, noting ↘ is closed under type-
correct name substitution.

We present CNFs corresponding to the λµv-terms discussed in Ex-
amples 3.6-3.11. We also list the corresponding πC-process in each case,
adumbrating the definability arguments in the next subsection.

EXAMPLE 4.3. (CNFs)

1. A variable x⊥ is 0 as a process; which becomes c in CNF.

2. For x⊥⇒⊥, its process representation is u(c)!c.0, which becomes
λy⊥.let = xc in CNF (which is just the η-expansion of x).

3. In general, the CNF corresponding to a variable xα, written η-ex(xα),
is inductively given as: η-ex(x⊥) is given in 1 above; η-ex(xα⇒β) is
given in 2 above if α = β = ⊥; and if else

a) λyα.let z = xy in η-ex(zβ), if α, β 6= ⊥;

b) λy⊥.let z = xc in η-ex(zβ), if α = ⊥ and β 6= ⊥; and

c) λyα.let = xy, if α 6= ⊥ and β = ⊥.

4. A CNF corresponding to the identity λxα.x is λxα.η-ex(xα).
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5. Recall, from Example 3.9. ℵ def
= λz¬¬α.µaα.z(λxα.[a]x). Its process

representation is

u(c)!c(za).z(f)!f(x).a〈xα◦〉

while its corresponding CNF becomes, using η-ex(x) above:

λz¬¬α.µaα.let = z(λxα.[a]η-ex(xα))

Note there is a close correspondence in syntactic structures.

6. Recall, from Example 3.10. Aa def
= λxα.µbβ.[a]x. Its process encod-

ing is u(c)!c(xz).a〈xα◦〉 while its CNF becomes λxα.µbβ.[a]η-ex(xα).

7. Recall, from Example 3.11,

κ
def
= λy(α⇒β)⇒α.µaα.[a](y(λxα.µbβ.[a]x)).

Its process representation is

u(c)!c(ya).y(fc′)(!f(xb).a〈xα◦〉 | !c′(z).a〈zα◦〉)

while its CNF is

λy(α⇒β)⇒α.µaα.let zβ = y(λxα.µbβ.[a]η-ex(xα)) in [a]η-ex(zα).

There is a close syntactic correspondence again.

4.2. Definability

The decoding of πC-processes (of encoded λµv-types) to λµv-preterms

is written [P ]Γ ; ∆
u , which translates P ∈ NFe such that `O P . Γ◦,∆•

with u 6∈ dom(Γ) to a λµv-preterm M . Without loss of generality, we
assume P does not contain redundant 0 or hiding. The mapping is
defined inductively by the rules given in Figure 8. In the second last
line, P〈a〉 indicates P is a prime output with subject a, whereas P〈m/a〉
is the result of replacing the subject a in P〈a〉 with m.

PROPOSITION 4.4. The map is well-defined and total on NFe-processes
`O P . Γ◦,∆•.

Proof: The map is well-defined since each rule decreases the size of
processes. This is indirect in the last two rules, for which we observe:

1. If the second last rule is applicable then one of the second to the
fifth rules becomes applicable to the result of the mapping.
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[0]Γ; ∆
u

def
= c :⊥ u 6∈ dom(∆)

[u(c)!c(xz).R]
Γ; ∆·u:(α⇒β)
u

def
= λxα.[R]Γ·x:α; ∆·z:β

z u 6∈ fn(R)

[u(c)!c(z).R]
Γ; ∆·u:(⊥⇒β)
u

def
= λx⊥.[R]Γ; ∆·z:β

z u 6∈ fn(R)

[u(c)!c(x).R]
Γ; ∆·u:(α⇒⊥)
u

def
= λxα.[R]Γ·x:α; ∆

m u 6∈ fn(R)

[u(c)!c.R]
Γ; ∆·u:(⊥⇒⊥)
u

def
= λx⊥.[R]Γ; ∆

m u 6∈ fn(R)

[y(wz)(R | !z(x).Q)]Γ·y:α⇒β;∆
u

def
=

let xβ= y[c(w)R]Γ·y:α⇒β;∆
c in [Q]

(Γ·x:β);∆
u u 6∈ fn(R)

[y(z)!z(x).Q]Γ·y:α⇒β;∆
u

def
= let xβ= yc in [Q]Γ·y:α⇒β·x:β;∆

u

[y(w)R]Γ·y:α⇒β;∆
u

def
= let = y[c(w)P ]Γ;∆

c u 6∈ fn(R)

[y]Γ·y:α⇒β;∆
u

def
= let = yc

[P〈a〉]
Γ; ∆·a:α
u

def
= [a][P〈m/a〉]

Γ;∆·a:α·m:α
m u 6∈ dom(∆)

[P ]Γ; ∆·u:α
u

def
= µuα.[P ]Γ; ∆·u:α

m other cases

We assume α, β 6= ⊥ and m fresh.

Figure 8. Decoding of λµ-typed processes.

2. If the last rule is applicable, then the map translates:

a) [0]Γ;∆·u:α
u such that u ∈ dom(∆) into µu.[0]Γ;∆·u:α

m , to which the
first rule is applicable.

b) [u(c)S]Γ;∆
u such that u ∈ fn(R) into µu.[u(c)S]Γ;∆

m , to which the
second last rule becomes applicable.

c) [y(wz)(R|!z(x).Q)]Γ;∆
u (resp. [y(w)R]Γ;∆

u ) such that u ∈ fn(R)

into µu.[y(wz)(R|!z(x).Q)]Γ;∆
m (resp. µu.[y(w)R]Γ;∆

m ), to which
the sixth or the eighth rule becomes applicable.

Totality on NFe is immediate from the rules except for parallel com-
position. But if P ∈ NFe and, by typing, P is output-moded, up to
redundant Os and hiding, P must be a prime output. Hence NFe
processes of translated λµ-type do not contain non-trivial outermost
parallel composition.

For typability, write im(Γ) for the image of Γ:

PROPOSITION 4.5. Let ⊥ 6∈ im(Γ), u 6∈ dom(Γ) and P ∈ NFe. Then
` P . Γ◦ ·∆• implies, with x fresh:
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1. if ∆ = ∆0 · u :α then Γ · x :⊥ ` [P ]Γ
◦; ∆•
u :α ; ∆0 and

2. if u 6∈ dom(∆) then Γ · x :⊥ ` [P ]Γ
◦; ∆•
u :⊥ ; ∆0.

Proof: Immediate by inspecting each rule (the additional x :⊥ be-
comes necessary only for c : ⊥, which can be eliminated whenever the
occurrence(s) of c are placed under the scope of a λ-abstraction of a
⊥-typed variable).

We now prove the decoding of πC-processes is the inverse of the encoding
of CNFs.

LEMMA 4.6. If ` P . Γ◦ ·∆• ∈ NFe s.t. u 6∈ dom(Γ) then

〈[P ]Γ
◦; ∆•
u 〉u ≡ P . Conversely, if Γ ` N : β ; ∆ s.t. u 6∈ dom(Γ) then

[〈N〉u]Γ
◦; ∆•
u ≡α N.

Proof: Let ` P . Γ◦ · ∆• ∈ NFe with u 6∈ dom(Γ). We first show

〈[P ]Γ
◦; ∆•
u 〉u ≡ P by rule induction on rules in Figure 8. All rules except

the last two rules are immediate by comparing the defining clauses of
Figure 8, on the one hand, and those of Figure 7 and Figure 5 (the
latter excepting the application). We now reason for the last two rules.

In the following, P
[ ]u7−→ Q means an application of [ ]u to P results to

Q. Similarly for
〈 〉u7−→.

For the second last rule, assuming ` P . Γ◦ ·∆• · a : β•:

P〈a〉
[ ]u7−→ [a][P〈m/a〉]m

〈 〉u7−→ 〈[P〈m/a〉]m〉m{a/m}
def
= (P〈m/a〉){a/m} ≡ P

For the last rule, we have:

P
[ ]u7−→ µuβ.[P ]m

〈 〉u7−→ 〈µuβ.[P ]m〉u
def
= 〈[P ]m〉m ≡ P,

as required.
For the other direction, assume Γ ` M : β ; ∆ and u 6∈ dom(Γ). We

show [〈N〉u]Γ
◦; ∆•
u ≡α N by induction on the rules in Figures 7 and 5.

Again all cases are easy except named terms and µ-abstraction. For the
former, assuming Γ ` [a]U : ⊥ ; ∆:

[a]U :⊥ 〈 〉u7−→ 〈U :β〉m{a/m}
[ ]u7−→ [a]([〈U :β〉m{a/m}〈m/a〉]m)

≡α [a]U :⊥

For µ-abstraction, let Γ ` µaβ.N′ : β ; ∆. Note N’ has type ⊥. Hence N′

has the shape of either c, let x = yU in N′ with N′′ of ⊥ type, let = yU

or [a]U. If N′
def
= c, then we have:

Γ ` µaβ.c : β; ∆
〈 〉u7−→ `O 0{u/a} . Γ◦,∆•

[ ]Γ;∆
u7−→ µaβ.c
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In the second transformation above, we map [0]Γ;∆·u:β
u such that u /∈

dom(∆) into µu.[0]Γ;∆·u:β
m to which the first rule in Figure 8 is applica-

ble.
If N′

def
= [a]U with a ∈ fn(U) (for example U would be λx.N′′), by

definition we assume a ∈ fn(U). Then we have:

µaβ.[a]U :β
〈 〉u7−→ 〈[a]U :⊥〉{u/a}
[ ]u7−→ µuβ.[〈[a]U :⊥〉{u/a}]m ≡α µaβ.[a]U :β

If N′
def
= let x = yU in N′ and a ∈ fn(U), we have, noting a ∈ fn(U),

(µaβ.let x = yU in N) :β
〈 〉u7−→ 〈(let x = yU in N) :⊥〉{u/a}
[ ]u7−→ µuβ.[〈(let x = yU in N) :⊥〉{u/a}]m
≡α (µaβ.let x = yU in N) :β.

The case when N′
def
= let = yU with a ∈ fn(U) is the same.

Let us say Γ ` M :β ; ∆ with u 6∈ dom(Γ) defines ` P . Γ◦ ·∆• ∈ NFe
at u iff [[M :β]]u ↘∗ P . A λµv-term is closed if it contains neither free
names nor free variables. We can now establish the definability.

THEOREM 4.7. (definability) Let ` P . Γ◦ · ∆• · u : α• ∈ NFe
such that ⊥ 6∈ im(Γ). Then Γ · x :⊥ ` [P ]u :α ; ∆ defines P . Further if
Γ = ∆ = ∅ and P 6≡ 0, then there is a closed λµv-term which defines
P .

Proof: The first half is immediate from Proposition 4.2 and Lemma
4.6. The latter half is by inspecting by induction that the given con-
dition implies all occurrences of control constants can be replaced by
(bound) variables.

4.3. Full Abstraction

To prove full abstraction, our first task is to define a suitable observa-
tional congruence in the λµv-calculus. There can be different notions
of observational congruences for the calculus; here we choose a large,
but consistent congruence. This equality is defined solely using the
terms and dynamics of the calculus; yet, as we shall illustrate later, its
construction comes from an analysis of λµv-terms’ behaviour through
their encoding into πC-processes and the process equivalence ∼=π. The
analysis is useful since the notion of observation in pure λµv-calculus
may not be too obvious, while ∼=π is based on a clear and simple idea
of observables. Two further observations on the induced congruence:
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− The congruence is closely related with (and possibly coincide with
some of) the notions of equality over full controls, as studied by
Laird [19, 20], Selinger [34] and others.

− If we extend λµv with sums or non-trivial atomic types, and de-
fine the congruence based on the convergence to distinct normal
forms of these types, then the resulting congruence restricted to
the pure λµv-calculus is precisely what we obtain by the present
congruence,

DEFINITION 4.8. ≡⊥ is the smallest typed congruence on λµv-terms
which includes:

1. Γ `M ≡⊥ N : β; ∆ when M ≡α N .

2. Γ `M ≡⊥ N : β; ∆ when N
def
= M{y/x} where Γ(x) = Γ(y) = ⊥.

For example, we have, under the environment x :⊥, y :⊥:

x ≡⊥ y

We also have:
λx⊥.λy⊥x ≡⊥ λx⊥.λy⊥y

We can easily check that, in the encoding, ≡⊥-related terms are always
mapped to an identical process.

CONVENTION 1. Henceforth we always consider λµv-terms and CNFs
up to ≡⊥.

We can now define observables, which is an infinite series of closed
terms of the type ⊥ ⇒ ⊥ ⇒ ⊥.

DEFINITION 4.9. Define {Wi}i∈ω by the following induction.

W0
def
= λz⊥.µu⊥⇒⊥.z

W1
def
= λz⊥.µu⊥⇒⊥.[w]λz⊥.µu⊥⇒⊥.z

W2
def
= λz⊥.µu⊥⇒⊥.[w]λz⊥.µu⊥⇒⊥.[w]λz⊥.µu⊥⇒⊥.z

...

Wn+1
def
= λz⊥.µu⊥⇒⊥.[w]Wn .

Let γ = ⊥ ⇒ ⊥ ⇒ ⊥. We then define:

Obs
def
= {W0} ∪ {µwγ .[w]Wn+1, n ∈ N}

where we take terms up ≡⊥.
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All terms in Obs are closed →λµv-normal forms of type γ (W0 can also
be written as µw.[w]W0, but is treated separately since µw.[w]W0 is
not a normal form).

To illustrate the choice of Obs, we show below the π-calculus repre-
sentation of W0, µw.[w]W1, µw.[w]W2, . . . through [[ · ]]u, which is in
fact the origin of Obs.

DEFINITION 4.10. Define {Pi}i∈ω as follows (below we use the same
names for bound names for simplicity).

P0
def
= w(c)!c(u).0

P1
def
= w(c)!c(u).w(c)!c(u).0

P2
def
= w(c)!c(u).w(c)!c(u).w(c)!c(u).0

...

Pn+1
def
= w(c)!c(u).Pn.

We set Obsπ
def
= { `O Pi . w : γ• }i∈ω, taking processes modulo ≡.

Note each Pi only outputs at w (if ever) at any subsequent invocation,
even though an output at any one of the bound names (u above) is

well-typed. For example, P ′1
def
= w(c)!c(u).u(c)!c(u).0 has type w : γ•

but differs from P1 by outputting at the bound u when it is invoked
the second time. One can check P0 is the smallest (w.r.t. process size,
i.e. number of constructors) non-trivial inhabitant of this type: in

particular it is smaller than [[λz⊥.λx⊥.x]]w
def
= P ′1.

LEMMA 4.11. Let `I R . w : γ• → v : ()? and R ∈ NFe. Then either
R ≡!w(c).0, R ≡!w(c).c or R ≡!w(c).v.

Proof: By R ∈ NFe it should start from the input at w, hence it has
shape !w(c).R′. By R′ ∈ NFe and by its typing it can only be either
0, an output at c (in which case there is no subsequent action), or an
output at v (ditto). This concludes the proof.

Processes in Obsπ have uniform behaviours: indeed they are closed
under ∼=π.

PROPOSITION 4.12.

1. `O Pi ∼=π Pj . w : γ• for arbitrary i and j.

2. If `O Q . w : γ•, Q ∈ NFe and Q ∼=π Pi then Q ∈ Obsπ.
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Proof: For (1), it suffices to show P0
∼=π P1 (cf. Example 3.12).

By Proposition 2.11 (context lemma), we restrict the differentiating
contexts for these processes to the shape of (ν w)(R | [ · ]) such that
` R . w : γ• → a : ()?. By Lemma 4.11 we only have to check three
cases for R. No output is observed from either C[P0] or C[P1] when we

take R
def
=!w(c).0, similarly when R

def
=!w(c).c, while if R

def
=!w(c).v then

both C[P0] ⇓v and C[P1] ⇓v. For (2), we show any Q which is outside
of Obsπ is observationally different from each Pi. Let each ui and ci be

distinct names and u0
def
= w. Then we generate the set G′π of processes

as follows.

1. 0 ∈ G′π.

2. ui ∈ G′π.

3. If S ∈ G′π then w(ci)!ci(ui).S ∈ G′π.

Here u0, ui, . . . are pairwise distinct and are different from w. Then we

set Gπ
def
= {S | S ∈ G′π, `O S . w : γ•}. Note Obsπ ⊂ Gπ. Further, by

typing, Gπ exhausts all typable ENFs under w : γ•, because it can only
start at w or if not it is 0; and if it starts from w it can only have the
form w(ci)!ci(ui).P . Then P can only be 0, or if not it has an output
at w or ui, and if it has an output at ui then it ends there by typing,
if it has an output at w then we repeat the argument, hence done.

Now assume Q ∈ Gπ\Obsπ. Then Q has at some height output at
a name other than w. If it is the n-th input of Q, let:

R
def
=!w(c).c(u1)!u1.c(u2)....c(un)!un(c).v

and construct C[ · ] def
= (ν w)(R | [ · ]), which differentiates Q from each

process in Obsπ, since C[Q] ⇓v while C[P ] 6⇓v for each P ∈ Obsπ (as a

concrete example, take Q
def
= w(c)!c(u)u(e)!e.0, then, setting C[ · ] to be

the above mentioned context with R
def
=!w(c).c(u)!u.a, we can observe

C[Q] outputs at a, but C[Pi] does not for any i).

These observations motivate the following definition. Below C[ · ]βΓ;α;∆
is a typed context whose hole takes a term typed as α; ∆ under the
base Γ and which returns a closed term of type β.

DEFINITION 4.13. We write Γ ` M ∼=λµ N : α ; ∆ when, for each
typed context C[ ]⊥⇒⊥⇒⊥Γ;α;∆ , we have:

∃L.(C[M ] ⇓ L ∈ Obs) iff ∃L′.(C[N ] ⇓ L′ ∈ Obs).
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Note that we treat all values in Obs as an identical observable. Imme-
diately →λµv⊂∼=λµ. The following result is crucial for full abstraction.

LEMMA 4.14. Recall P0 = w(c)!c(u).0 from Definition 4.10. Let `
L : ⊥ ⇒ ⊥ ⇒ ⊥ be a normal form w.r.t. λµν-reduction such that
`O [[L]]w ∼=π P0 . w :γ•. Then L ∈ Obs.

Proof: We generate the set G′ of typed λµv-terms as follows. Be-
low Γ⊥ indicates the codomain of Γ is restricted to ⊥, similarly for
∆γ,gamma′ where γ′ = ⊥ ⇒ ⊥.

1. Γ⊥, x : ⊥ ` x : ⊥; ∆γ,γ′ ∈ G′.

2. If Γ⊥, x : ⊥ ` M : α; ∆γ,γ′ ∈ G′, then Γ ` λx⊥.M : ⊥ ⇒ α; ∆ ∈
G′.

3. If Γ⊥ `M : γ; ∆γ,γ′ · a : γ ∈ G′, then Γ ` [a]M : ⊥; ∆ ∈ G′.

4. If Γ⊥ `M : γ′; ∆γ,γ′ · a : γ′ ∈ G′, then Γ ` [a]M : ⊥; ∆ ∈ G′.

5. If Γ⊥ `M : γ; ∆γ,γ′ · a : ⊥ ⇒ ⊥ ∈ G′, then Γ ` [a]M : ⊥; ∆ ∈ G′.

6. If Γ⊥ ` M : ⊥; ∆γ,γ′ · a : γ′ ∈ G′, and, moreover, it is not the case
that M has form [a]M ′ such that a 6∈ fn(M ′), then Γ ` µaγ′ .M :
⊥ ⇒ ⊥; ∆ ∈ G′.

7. If Γ⊥ ` M : ⊥; ∆γ,γ′ · a : γ ∈ G′, and, moreover, it is not the case
that M has form [a]M ′ such that a 6∈ fn(M ′), then Γ ` µaγ .M :
⊥ ⇒ ⊥; ∆ ∈ G′.

Then we set
G

def
= {`M : γ | M ∈ G′}.

That is, G is the set of closed terms of type γ in G′. By induction on the
restricted syntactic shape of normal forms, we can show G enumerates
all closed normal forms of type γ. Clearly all members of G are either
of the form λx⊥.M or µwγ [w]M . We now show that [[λx⊥.M ]]w 6∼=π P0.
This is because

[[λx⊥.M ]]w = w(c)!c(z).z(d).R for some R.

But P0 does not have an output after doing the first input while
[[λx⊥.M ]]w has. Hence there is a context C[·] such that

C[P0] 6⇓a, but C[[[λx⊥.M ]]w] ⇓a .

for some fresh a. The remaining elements of G are of the form

µwγ .[w]Wn+1 (n ≥ 0)
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where theWn+1 are as in Definition 4.9. This means that the translation
of the terms µwγ .[w]Wn+1 gives the Pn+1 from Definition 4.10. Now
the result follows from Proposition 4.12.

We can now establish the full abstraction, following the standard rou-
tine. We start with the computational adequacy. Below and henceforth
we write M ⇓ L when M →∗λµv L 6→λµv.

PROPOSITION 4.15. (computational adequacy) Let M :⊥⇒⊥⇒⊥
be closed. Then ∃L.(M ⇓ L ∈ Obs) iff ∃P.([[M ]]u ↘∗ P ∈ Obsπ).

Proof: By our enumeration of normal forms of type γ as G in the
previous proof, we know M ⇓ L implies [[L]]u is a ↘-normal form.
Now assume M ⇓ L ∈ Obs. Then by Proposition 3.18 and because
[[L]]u ∈ NFe we conclude [[M ]]u ↘∗ [[L]]u ∈ Obsπ. On the other hand,
suppose [[M ]]u ↘∗ P ∈ Obsπ and, by Corollary 3.19, M ⇓ L. Then
[[M ]]u ∼=π P ∈ Obsπ by Proposition 2.9 (1) while [[M ]]u ↘∗ [[L]]u by
Proposition 3.18 and [[L]] 6↘. Hence L ∈ Obs by Lemma 4.14.

COROLLARY 4.16. (soundness) [[M ]]u ∼=π [[N ]]u implies M ∼=λµ N .

Proof: Assume [[M ]]u ∼=π [[N ]]u. We show, for each well-typed C[ · ],
∃L.(C[M ] ⇓ L ∈ Obs) iff ∃L′.(C[M ] ⇓ L′ ∈ Obs). Let C[ · ] be well-
typed. By assumption and congruency of ∼=π:

[[C[M ]]]v ∼=π [[C[N ]]]v (∗)

Now we reason:

C[M ] ⇓ L ∈ Obs ⇒ [[C[M ]]]v ⇓ [[L]]v ∈ Obsπ (Proposition 4.15)
⇒ ∃O.[[C[N ]]]v ↘∗ O ∈ Obsπ (∗)
⇒ C[N ]v ↘∗ L′ ∈ Obs (Proposition 4.15) .

THEOREM 4.17. (full abstraction) Let Γ ` Mi : α; ∆ (i = 1, 2).
Then M1

∼=λµ M2 if and only if [[M1]]u ∼=π [[M2]]u.

Proof: Suppose
∅ `M1

∼=λµ M2 : α; ∅ (18a)

but
`O [[M1]]u 6∼=π [[M2]]u . u :α•. (18b)

By (18b) and by Proposition 2.11 (context lemma for ∼=π), converting
the observable ()? to the convergence to Obsπ in γ• with γ = ⊥ ⇒
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⊥ ⇒ ⊥ in the obvious way, there exists `I R . u : α•, v : γ• such that
R ∈ NFe and (say)

∃P. (ν u)([[M1]]|R)↘∗ P ∈ Obsπ (18c)

and
¬∃P. (ν u)([[M2]]|R)↘∗ P ∈ Obsπ. (18d)

Since R ∈ NFe, we can safely set R
def
=!u(c).R′. Now take

`I!u(cv).R′ . u : (α⇒ γ)•. (18e)

By Theorem 4.7 (definability), we can find L such that ` L : α ⇒ γ
where [[L]]u ∼=π!u(cv).R′. Since [[LMi]]u ↘+ (ν u)([[Mi]]|R), we conclude

∃L′. LM1 ⇓ L′ ∈ Obs ∧ ¬∃L′. LM2 ⇓ L′ ∈ Obs, (18f)

which contradicts (18a). Since precisely the same argument holds when
Γ and ∆ are possibly non-empty in Γ `M1,2 : α; ∆ by closing them by
λ/µ-abstractions, we have now established the full abstraction.

5. Discussion

5.1. Control and Name Passing (1)

This paper presents the typed π-calculus for full control, which arises
as a typed π-calculus, i.e. as a subcalculus of the linear π-calculus [39],
namely one that only uses replicated inputs. The connection between
control and the π-calculus is first pointed out by Thielecke in his thesis
[36], where he has shown that the target of CPS-transform can be
written down as name passing processes. The main contribution of the
present work in this context is the use of a duality-based type structure
in the π-calculus, by which the embedding of control constructs in
processes becomes semantically exact. Hoping the present work can
serve as a starting point of a fruitful dialogue between the studies on
control operators and those on theories of typed processes, this section
concludes the paper with discussions on related work and further topics.

The notion of full control arises in several related contexts. Historical
survey of studies of controls and continuations can be found in [30, 37].
Here we pick up three strands of research to position the present work
in a historical context. In one strand, notions of control operators have
been formulated and studied as a way to represent jumps and other non-
trivial manipulation of control flows as an extension of the λ-calculus
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and related languages. Among many works, Felleisen and others [10, 11]
studied syntactic and equational properties of control operators in the
context of the call-by-value λ-calculus, clarifying their status. Griffin
[13] shows a correspondence between the λ-calculus with control op-
erators, classical proofs and the CPS transform. Finally Parigot [28]
introduced the λµ-calculus, the calculus without control operators but
which manipulates names, as term-representation of classical natural
deduction proofs. The control-operator-based presentation and name-
based presentation, which are shown to be equivalent by de Groote
[9], elucidate statics and dynamics of full control in different ways: the
latter gives a more fine-grained picture while the former often offers
a more condensed representation. In this context, the present work
shows a further decomposition (and arguably simpler presentation)
of the dynamics of full control on the uniform basis of name passing
interaction.

5.2. Control and Name Passing (2)

Another closely related context is the CPS transform [8, 12, 31]. In
this line of studies, the main idea is to represent the dynamics of
the λ-calculus, or procedural calls, in a way close to implementations.
Consider for example the following reduction:

(λx.x)1 −→β 1

To model implemented execution of this reduction, we elaborate each
term with a continuation to which the resulting value should be re-
turned. We write this transformation 〈〈M〉〉. In the above example,

〈〈λx.x〉〉 def
= λh.h(λx.〈〈x〉〉) (which receives a next continuation and “sends

out” its resulting value to that continuation, with 〈〈x〉〉 = λk.kx);

whereas 〈〈1〉〉 def
= λh′.h′1. The term (λx.x)1 as a whole is transformed

as follows:
λk.(λh.hλx.〈〈x〉〉)(λm.〈〈1〉〉(λn.mnk)) (19a)

This transformation may need some illustration. Assume first we apply
to the above abstraction the ultimate continuation k (to which the
result of evaluating the whole term should jump), marking the start of
computation. Write M for λx.x and N for 1. After the continuation
k is fed to the left-hand side, we first give 〈〈M〉〉 its next continuation
(λm.〈〈N〉〉(λn.mnk)), to which the result of evaluating M , say V , is
fed, replacing m, then we send 〈〈N〉〉 its continuation λn.V nk, to which
the result of evaluating 〈〈N〉〉 is fed, replacing n, so that finally the
“real” computation VW can be performed, to whose result the ultimate
continuation k is applied.
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As may be seen from the example above, the CPS transform can be
seen as a way to mimic the operational idea of “jumping to an address
with a value” solely using function application and abstraction. This
representation is useful to connect the procedural calls in high-level
languages to their representation at an execution level (the textbook
by Appel [2] gives a lucid account on this topic). The representation
is somewhat shy about the use of “names” by abstracting them im-
mediately after their introduction, partly because this is the only way
to use the notion in the world of pure functions (note in (λh.hM)V ,
the bound h in fact names V ). This however does not prevent us from
observing (19a) is isomorphic to its standard process encoding via [[ · ]]
of Section 3, given as follows.

(ν h)([[λx.x]]h | !h(n).(ν h′)([[1]]h′ | !h′(m).n〈mk〉)) (19b)

In (19b), k, h, h′ are all channel names at which processes interact: the
input/output polarities make it clear what is named (used as replicated
inputs) and to which it is jumping (used as outputs, i.e. subscripts of
the encoding). The “book-keeping” abstractions of h and h′ in (19a) are
replaced by hiding. Setting [[1]]h′ to be h′〈1〉 (regarding 1 as a specific
name), we can see how (19b) reduces precisely as (19a) reduces modulo
the book-keeping reductions. Sangiorgi [33] observed that we can regard
(19a) as terms in the applicative part of the higher-order π-calculus
(a variant of π-calculus which processes communicate not only names
but also terms) and that the translation from a λ-term to its process
representation can be factored into the former’s CPS transformation
and its encoding into the π-calculus.

In the context of these studies, where the control is studied purely
in the context of the standard λ-calculi, the main contribution of the
present work may lie in identifying the precise realm of typed processes
which, when it is used for the encoding of λ-terms, gives exactly the
same equational effect as the standard CPS transform embedded in the
λ-calculus. As we have shown in [4, 39], the encoding of the λ-calculi
into the linear/affine-π-calculi [4] results in full abstraction. πC offers
a refined understanding on CPS-transform, with precisely the same
induced equivalence. As related points, we have suggested possible re-
lationship between existing CPS transformations/inversions [8, 12, 31],
on the one hand, and the encoding/decoding in Sections 3 and 4 in this
paper on the other.

5.3. Control and Name Passing (3)

There are many studies of semantics and equalities in calculi with full
control, notably those which aim to investigate appropriate algebraic
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structures of suitable categories (for example those by Thielecke [36],
Laird [21] and Selinger [34]). The present work may have two interests
in this context.

First, the basis of the observational equivalence for λµv-terms, the
behavioural equivalence over πC-processes, has very simple operational
content, while inducing the equality closely related with those studied
in the past. Among others we believe that ∼=λµ coincides with the call-
by-value, total and extensional version of Laird’s games for control
[16, 20] (it is easy to check all terms in Obs are equated in such a
universe). We also suspect it is very close to the equality induced
by the call-by-value part of Selinger’s dualised universe [34] (for the
same reason), though details are to be checked. The combination of
clear observational scenario and correspondence with good denotational
universes is one of the notable aspects of the use of the π-calculus.

Second and relatedly, as a tool for representation, typed π-calculi
such as πC may have a distinct merit which may complement other
tools, such as categorical and logical. The process representation eluci-
dates behaviours of programs with control, as shown in Sections 3.4 and
3.5. Here two aspects of typed processes are of paramount importance:
In one view, πC as a syntax offers a direct way to understand the
observational/compositional behaviour of a program with control. We
have already discussed this aspect in Section 6.1, with many examples
and formal results attesting the use of πC as a syntactic tool.

In another and related view, we may consider processes in πC as
name passing transition systems (or name passing synchronisation
trees). As such, a process identifies meaning of a denoted program as
an abstract entity. The rich repertoire of powerful reasoning techniques
developed for π-calculi is now freely available; further this representa-
tion has enriching connection with studies on game-based semantics,
most notably games for control studied by Laird [21]. Indeed, Laird’s
work may be regarded as a characterisation of dynamic interaction
structure of πC (or, to be precise, its affine extensions), where the lack
of well-bracketing corresponds to the coalescing of linear actions into
replicated actions. Another intensional structure in close connection is
Abstract Böhm Trees studied by Curien and Herbelin [5, 6]. We expect
the variant of these structures for full control to have a close connection
to name passing transition of πC.

It is also notable that representation of programs and other algorith-
mic entities as name passing transition, together with basic operators
such as parallel composition, hiding and prefixing, is not limited to the
control nor to sequential computation.

In summary, the interest in the use of πC in the present enquiry
is in the powerful analytical apparatus name passing processes offer
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for understanding contextual behaviour of processes, especially when
combined with a strong notion of types, in the setting when the notion
of observables itself is not clear in the source calculus. It is an inter-
esting subject of study how the similar enterprise may be applicable
in different kinds of typed calculi, for example those programming lan-
guages which include both purely functional behaviours and imperative
features, as originally studied by Felleisen and others [10]. The use of
typed name passing processes for analysing control may allow us to
position various findings on syntax and semantics of diverse notions
of control in a broad universe of typed name passing processes. This
leads to further development and applications of these findings in both
theoretical and practical settings.

5.4. Control as Proofs and Control as Processes

The present work has a close connection with recent studies on control
from a proof-theoretic viewpoint, notably Polarised Linear Logic by
Laurent [22, 23] and λµµ̃-calculus by Curien and Herbelin [7]. The type
structures for the linear/affine π-calculi are based on duality, here aris-
ing in a simplest possible way, as mutually dual input and output modes
of channel types. This duality has a direct applicability for analysis of
processes and programs, as may be seen in the new flow analysis we
have recently developed for typed π-calculi [17]. This duality allows
a clean decomposition of behaviours in programming languages into
name passing interaction, and is in close correspondence with polarity
in Polarised Linear Logic by Laurent [22, 23]. Laurent and the first
author recently obtained a basic result on the relationship between πC

and Polarised Linear Logic, which will be discussed elsewhere.
In a different context, Curien and Herbelin [7] presents λµµ̃, a cal-

culus for control, based on Gentzen’s LK, in which a strong notion of
duality elucidates the distinction between the call-by-name and call-by-
value evaluations in the setting of full control. The formal relationship
between their calculus on the one hand and πC on the other is currently
under study. One interesting aspect is the way nondeterminism arises
in their calculus, which suggests an intriguing connection between the
dynamics of their calculus and name passing processes. From the same
viewpoint, the connection with a recent work by Wadler [38] on duality
and λ-calculi is an interesting subject for further studies.

The present study concentrates on the call-by-value encoding of the
λµ-calculus. As in the λ-calculus [4], we can similarly embed the call-
by-name λµ-calculus into πC by changing the encoding of types (hence
terms). The following is the standard Hyland-Ong encoding of call-by-
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name types [4] assuming the only atomic type is ⊥.

[α1, ..., αn,⊥]◦
def
= (α◦1, ..., α

◦
n)!

In the presence of control, we can simply augment this map with:

α•
def
= (α◦)?

which says: “a program may jump to a continuation” (this corresponds
to the “player first” in Laurent’s games [22]). This determines, together
with the one given in [4], the encoding of programs. We strongly believe
the embedding is fully abstract, though details are to be checked.

There are a few studies (for example [34]) on conjunction and dis-
junction in the λµ-calculus. By moving to classical logics, not only
negation but also these connectives (especially disjunction) bear a new
significance. The encoding can be extended to these connectives keeping
the syntax of πC as in Section 2 (i.e. without introducing branching and
selections constructs [39]). One interesting observation is that a natural
encoding of the disjunction type gives rise to an encoding of terms in
processes which is directly based on the standard idiom for representing
the choice in unary communication.

Appendix

A. Proofs

A.1. Proof of Proposition 2.9

(1) is by precisely the same argument as in [39], establishing the con-
vertibility from ↘ coincides with the untyped weak bisimilarity ≈ and
that ≈ is a congruence which respects the observability condition in
Definition 2.8, hence is a subcongruence of ∼=π. For (2), let ∼=′π be
a typed congruence which is strictly greater than ∼=π. By the defin-
ing condition of ∼=π, we have P1 ⇓x but P2 6⇓x for some P1

∼=′π P2.
This implies Q ∼=′π 0 for an arbitrary typed process Q of O [because:

take a typed context Ci[ · ]
def
= (ν x)(!x.[ · ] |Pi) with i = 1, 2, then

Q ∼=′π C2[Q] ∼=′π C1[Q] ∼=′π 0]. This also means an arbitrary input
process !x(~y).Q is equated with !x(~y).0. Let `φ P1,2 .A which we safely
assume to be without ↘-redexes by (1) above, nor output processes
by the above argument. Since input processes in P1 and P2 are pre-
cisely paired by their subjects which are equated by ∼=′π, we conclude
P1
∼=′π P2. These arguments also establish (3).
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A.2. Proof of Proposition 2.11 (context lemma)

The “only if” direction is immediate by the defining condition of ∼=π.
For the “if” direction, assume `O P1,2 .A and P1 6∼=π P2. Then for some
typed context C[ · ] of type x : ()?, we have (say) C[P1] ⇓x but not
C[P2] ⇓x. Note this means P1 contributes to the output at x, since if
not we should also have had C[P2] ⇓x. This is only possible if P1 (or
its residual) is not under a prefix. Thus we know:

C[P1] −→∗ C ′r[P1] −→∗ x|S

where C ′r[ · ] is of the form (ν fn(A)~z)([ · ] |R). Note we have

C[P2] −→∗ C ′r[P2] 6⇓x .

Thus we know P1|(ν ~z)R ⇓x while P2|(ν ~z)R 6⇓x, as required.

A.3. The remaining cases for Proposition 3.18

We prove the cases for (ζarg) rules in [27]. The shape of these rules
(in particular why we have values on the right-hand side) is clearly
explained by the encoding. In the following proof we often omit prin-
cipal ports of ⊥-typed terms, observing u 6∈ [[M : ⊥]]u for each Γ `
M :⊥ ; ∆. Throughout we assume newly introduced names are fresh.

Let α 6= ⊥. First let β 6= ⊥ and [[V : α⇒ β]]m
def
= m(c)!c(e′u′).R and

R′
def
= R{eu/e′u′}. The reason why V (µaα.M) should be a redex, comes

from the following initial reduction from [[V (µaα.M)]]u. Below we use
m 6∈ fn(R) since V is a value.

[[V :α⇒β]]m{m(c) = ([[µa.M ]]n{n(e) = c〈eu〉})}
def
= (νm)([[V ]]m | !m(c).([[µa.M ]]{n(e) = c〈eu〉}))
↘+ (ν c)(!c(e′u′).R | (ν a)([[µa.M ]]n{n(e) = c〈eu〉}))
def
= (ν a)([[M ]]a | !a(e).c〈eu〉){c(e′u′) = R}

Note we moved the argument to the “body” of the configuration, plac-
ing R in the “environment” part of the whole configuration. In ret-
rospect, the reason why V (µaα.M) is regarded as a redex is because,
when the left-hand side is a value, this transformation is possible. We
now give the formal simulation, writing +↙ for the inverse of ↘+.

(ζarg) [[V (µaα.M)]]u ↘+ [[M :⊥]]{a(e)=R′}
↘+↙ C ′[[[Li]]a{a(e)=R′})]i
+↙ [[C[[b](V Li)]i :⊥]]{u/b}
def
= [[µb.C[[b](V Li)]]]u.
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This derivation is very similar to that of ζfun on Page 30 in that it uses
an appropriate context C ′[[[Li]]a]i that enumerates all (possibly nested)
occurrences of [a]· and then applies Proposition 3.16 (12h). Finally with

[[V :α⇒⊥]]m
def
= m(c)!c(e′).R and R′

def
= R{e/e′},

(ζarg,⊥) [[V (µaα.M)]] ↘+↙ C ′[[[Li]]a{a(e)=R′})]i
+↙ [[C[(V Li)]i :⊥]].

B. Auxiliary Definitions

Below we define the λµ-substitution M{C[ · ] / [a][ · ] }, assuming the
bound name convention.

x{C[ · ] / [a][ · ] } def
= x

(λx.M){C[ · ] / [a][ · ] } def
= λx.(M{C[ · ] / [a][ · ] })

MN{C[ · ] / [a][ · ] } def
= (M{C[ · ] / [a][ · ] })(N{C[ · ] / [a][ · ] })

(µbα.M){C[ · ] / [a][ · ] } def
= µbα.(M{C[ · ] / [a][ · ] })

([a′]M){C[ · ] / [a][ · ] } def
=

{
[a′](M{C[ · ] / [a][ · ] }) (a 6= a′)
[a′](C[M{C[ · ] / [a][ · ] }]) (a = a′)

Observe the substitution is applied in a nested fashion in the last line.

C. A Brief Comparison between πCand πL

The typing system presented in this paper is derived from, and very
similar to that of [39]’s linear π-calculus πL. We shall now briefly de-
scribe the differences between the two systems. For this purpose it may
be instructive two consider two servers:

`I!x(v1...vmw).P . x : (τ?1 ...τ
?
mτ
↑)!

typable in πL, and a second one

`I!x(u1...un).Q . x : (τ?1 ...τ
?
n )!

which would be typed in πC. Here ↑ indicates a linear output. For sim-
plicity we assume that x is the only free name in both cases. Whenever
we invoke the linear server !x(v1...vmw).P , we pass m+ 1 channels, the
first m of which are used by P as “arguments” in the standard sense.
They can be used for recursively querying other processes – which are
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servers again – about the data. The last, m+ 1-th name is the unique
return channel, used linearly. The typing system in πL guarantees that
P will eventually return its result on this channel and will do so exactly
once. Hence the invoker can force the server to return the result on a
given channel. The call-return sequences in πL are highly structured:
if P invokes another server, that other server will return to P first,
and only then can P return to its caller. In other words, πL enforces a
stack-like calling discipline.

This is quite different in πC. The invoker passes n arguments and
all that the typing system guarantees is that processes will terminate.
However, we have no distinction between “returning” and “invoking an
argument”, these two concepts are fused in πC: the arguments passed to
the server are points where the computation may continue; the invoked
server P will invoke at one of its arguments, or it will invoke many of
them, or none at all (but it will not diverge). This is the key difference:
πL guarantees a unique return channel, while πC only allows the invoker
to supply a set of possible argument channels where the computation
proceeds.
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