
Simplified Reduct for Choice Rules in ASP

Mark Law, Alessandra Russo and Krysia Broda

April 25, 2015

Abstract

The accepted definitions of the semantics of choice rules in Answer Set Programming (ASP) involve a translation
by inventing new atoms which do not occur in the original program. In this report, we put forward a new
definition of the reduct for programs containing choice rules which does not invent new predicates and prove that
the semantics are the same for the subset of ASP which we consider.

1 Background

1.1 Syntax

In this paper, we consider only a subset of the ASP language; specifically, we only consider aggregates when they
occur in the head, and only when they are counting aggregates. We also do not consider conditionals or disjunction.
The full class of programs we consider is formalised by the following definition.

Definition 1. We denote the class of ASP rules we consider as L

For any ground atoms h1, . . . , hm, b1, . . . , bn, c1, . . . , co and integers l and u.

1. h1 :- b1, . . . , bn, not c1, . . . , not co ∈ L

2. :- b1, . . . , bn, not c1, . . . , not co ∈ L

3. l{h1; . . . ; hm}u :- b1, . . . , bn, not c1, . . . , not co ∈ L

No other rule is in L.

Note that as is conventional, we define our semantics over ground programs; we assume that non-ground programs
are “grounded” as described in [1]. We consider any ASP program whose relevant grounding is a finite subset of L.

We must also define rules with disjunction in the head, as they are used in the conventional semantics for choice
rules.

Definition 2. For any ground atoms h1, . . . , hm, b1, . . . , bn, c1, . . . , co and integers l and u.

h1 ∨ . . . ∨ hm :- b1, . . . , bn, not c1, . . . , not co 6∈ L, but is a rule which we consider in the report.

1.2 Semantics

In this section we give the standard, accepted definitions of the semantics of ASP programs. In this report, we do
not consider all ASP constructs; we only consider programs with normal rules, choice rules and constraints.

Definition 3. Given a program P :

1. The Herbrand base (written HBP) is the set of all atoms which can be constructed from the predicate names,
function symbols and constant symbols in P .

1

Simplified Semantics for Choice Rules in ASP M. Law, A. Russo, K. Broda

2. An Herbrand interpretation assigns each element of HBP to be either true or false. We denote an interpretation
I as the subset of HBP which I assigns to true.

3. An atom a is satisfied by an interpretation I if a ∈ I

4. An aggregate l{h1; . . . ; hm}u is satisfied by an interpretation I if l ≤ |{h1, . . . hm} ∩ I| ≤ u.

5. For any rule R of the form h1 ∨ . . . ∨ hm :- b1, . . . , bn, not c1, . . . , not co:
body(R) is satisfied by an interpretation I if ∀i ∈ {1, . . . , n}, bi is satisfied by I and ∀i ∈ {1, . . . , o}, ci is
not satisfied by I.

head(R) is satisfied by an interpretation I is ∃i ∈ {1, . . .m} st hi ∈ I.

6. If P has no aggregates in the heads of rules then an Herbrand interpretation is an Herbrand model of P if for
every rule R ∈ P such that body(R) is satisfied, head(R) is also satisfied. We will write models(P) to denote
the set of all Herbrand models of P .

7. An Herbrand interpretation I is a minimal Herbrand model if it is an Herbrand model and no strict subset of
I is also an Herbrand model.

We write M(P) to denote the set of minimal Herbrand models of P .

8. For a program P with no aggregates in the heads of rules, the reduct of P with respect to an Herbrand
interpretation I is the program consisting of all rules in P whose bodies are satisfied.

9. For a program P with no aggregates in the heads of rules, an Herbrand interpretation I is an answer set of a
program P if it is a minimal herbrand model of the reduct of P with respect to I.

In [1], the semantics of choice rules is defined by a translation to normal rules. The application of their translation
to our subset of ASP is formalised by the following definition.

Definition 4. We define translate to be a mapping from any subset of L to an ASP program.

• Given a choice rule R:

l{h1; . . . ; hm}u :- b1, . . . , bn, not c1, . . . , not co.

translate(R) =


h1 ∨ ĥ1 :- b1, . . . , bn, not c1, . . . , not co.

. . .

hm ∨ ĥm :- b1, . . . , bn, not c1, . . . , not co.
:- b1, . . . , bn, not c1, . . . , co, not{h1, . . . , hm}u.
:- b1, . . . , bn, not c1, . . . , co, not l{h1, . . . , hm}.


where ĥi are new atoms which occur nowhere else in the program. They essentially represent the complement
of the atom.

• Given any other (non-choice) rule R, translate(R) = R.

To cut down on excessive notation we define the reduct of the translation of a program P with respect to an
interpretation I. To avoid confusion with our own later definition of the reduct, we denote this P I

old.

Definition 5. Given an ASP program P and an interpretation I, the old reduct of P with respect to I, written
P I
old, is constructed in two steps:

1. Replace all rules R ∈ P with translate(R)

2. Remove any rule whose body is not satisfied by R

Although this is the accepted definition of a reduct for a program including choice rules, it has, in our opinion,
some undesirable properties: firstly, it involves inventing new atoms which are not in HBP ; secondly, it does not
guarantee that the reduct has a unique minimal model. This is because the reduct is not, as was originally the case
in [2], a definite logic program. This means that it can be unintuitive to those who are comfortable with the original
definition of a reduct.

An answer set of P does not include the extra ĥi predicates. The following definition extends the concept of answer
set to programs including choice rules. We write ASold to denote the set of answer sets, under this semantics, of a
program P .

2

Simplified Semantics for Choice Rules in ASP M. Law, A. Russo, K. Broda

Definition 6. Given a program P and an interpretation I of P , I ′ is an extension of I if and only if I = (I ′∩HBP).

Given a program P and an interpretation I, I ∈ ASold(P) if and only if ∃I ′ ∈ M(P I
old) such that I ′ is an extension

of I.

Example 1.1. Consider the program P =

 1{p; q}1 :- r.
r.
:- not p, r.



The reduct wrt the interpretation I = {p, r} is


p ∨ p̂ :- r.
q ∨ q̂ :- r.
:- r, not{p; q}1.
:- r, not 1{p; q}.
r.


The minimal models of the reduct are {p, q̂, r} and {p̂, q, r}. Hence, as {p, q̂, r} ∩HBP = I, I is an answer set of P .

Consider now the alternative interpretation I ′ = {q, r}.

The reduct wrt I ′ is



p ∨ p̂ :- r.
q ∨ q̂ :- r.
:- r, not{p; q}1.
:- r, not 1{p; q}.
r.
:- not p, r.


There is now only one minimal model of the reduct (as {p̂, q, r} violates the constraint). This model is: {p, q̂, r}.
Hence, as {p, q̂, r} ∩HBP 6= I ′, I ′ is not an answer set of P .

Consider a third interpretation I ′′ = {p, q, r}.

The reduct wrt I ′ is


p ∨ p̂ :- r.
q ∨ q̂ :- r.
:- r, not{p; q}1.
:- r, not 1{p; q}.
r.


The minimal models of the reduct are {p, q̂, r} and {p̂, q, r}. Hence, as neither contains both p and q, I ′′ is not an
answer set of P .

2 Simplified Semantics

In this section, we present our simplified semantics for programs in L. This does not involve a translation before
solving; instead it uses an extended definition of reduct. The motivation for this is not to change the semantics,
improve solving or even to change the standard intuition of these rules; it is to provide alternative definitions which
can simplify proofs of properties about an ASP program. This is achieved by removing the need to “invent” extra
helper predicates which do not appear in the answer sets of a program.

Definition 7. The reduct of a program P with respect to an interpretation I, is constructed in the following 4 steps.

1. Remove any rule whose body contains not a for some a ∈ I and remove any negative literals from the remaining
rules.

2. For any constraint R, :-body(R), replace R with ⊥ :-body+(R) (⊥ is a new atom which cannot appear in any
answer set of P).

3. For any choice rule R, l{h1; . . . ; hn}u :-body(R) such that l ≤ |I ∩ {h1, . . . , hn}| ≤ u, replace R with the set of
rules {hi :-body+(R) | hi ∈ I ∩ {h1 . . . hn}}.

4. For any remaining choice rule R, l{h1; . . . ; hn}u :-body(R), replace R with the constraint ⊥ :-body+(R).

3

Simplified Semantics for Choice Rules in ASP M. Law, A. Russo, K. Broda

Example 2.1. Consider the program P from example 1.1,

 1{p; q}1 :- r.
r.
:- not p, r.


The reduct wrt the interpretation I = {p, r} is

{
p :- r.
r.

}
The minimal modelsof the reduct is I, and hence, I is an answer set of P .

Consider now the alternative interpretation I ′ = {q, r}.

The reduct wrt I ′ is

 q :- r.
r.
⊥ :- r.


The minimal model of the reduct is: {q, r,⊥}. Hence, as ⊥ 6∈ I ′, I ′ 6∈ AS(P).

Consider the third interpretation I ′′ = {p, q, r}.

The reduct wrt I ′ is

{
⊥ :- r.
r.

}
The minimal model is {r,⊥}, and hence, as ⊥ 6∈ I ′′, I ′′ 6∈ AS(P).

3 Proof of Equivalence

In this section we show that for any program P ⊂ L, AS(P) = ASold(P); hence, our new simplified definitions of
the semantics of ASP are equivalent over the language of L.

Before proving this result, we prove some results about the reducts of single rules in a program. The intuition is that
as for any interpretation I and program P , P I = {RI | R ∈ P} and hence models(P I) =

⋂
R∈P

models(RI) (similarly

for P I
old), we can use these results to reason about the models of the whole reduct.

Lemmas 3.1 and 3.2 state that when R is a normal rule (respectively a constraint) and I is any interpretation, any
subset of I is a model of RI if and only if it is a model of RI

old. This property is useful when reasoning about whether
I is a model of the reduct and then whether it is a minimal model.

Lemma 3.1. Given any program P and interpretation I, for any I ′ ⊆ I:

Let R be any normal rule; then I ′ ∈ models(RI
old) if and only if I ′ ∈ models(RI)

Proof. We prove this result by showing instead the equivalent result: I ′ /∈ models(RI
old)⇔ I ′ /∈ models(RI).

(Proof of ⇐):

Let R be any normal rule, I ′ ⊆ I and assume that I ′ 6∈ models(RI)

Assume for contradiction that I does not satisfy the body of R.

Case 1: I does not satisfy body−(R)

⇒ RI = ∅

⇒ I ′ ∈ models(RI). Contradiction!

Case 2: I satisfies body−(R) and I does not satisfy body+(R)

⇒ I ′ does not satisfy body+(R) (as I ′ ⊂ I)

But RI = {head(R)← body+(R)}

So I ′ ∈ models(RI). Contradiction!

4

Simplified Semantics for Choice Rules in ASP M. Law, A. Russo, K. Broda

Hence as both cases resulted in contradictions, I must satisfy the body of R.

⇒ RI = {head(R) ← body+(R)} and RI
old = R (as I satisfies the body of R) and I ′ satisfies body−(R) (as

I ′ ⊆ I).

⇒ I ′ satisfies body+(R) but not head(R) (as I ′ is not a model of RI).

⇒ I ′ does not satisfy R (as it satisfies the body but not the head).

⇒ I ′ 6∈ models(RI
old).

(Proof of ⇒):

Let R be any normal rule, I ′ ⊆ I and assume that I ′ 6∈ RI
old

Assume for contradiction that I does not satisfy the body of R.

⇒ RI
old = ∅

⇒ I ′ ∈ models(RI
old). Contradiction!

Hence I satisfies the body of R.

⇒ RI
old = {R} and RI = {head(R)← body+(R)}

⇒ I ′ satisfies body(R) but not head(R).

⇒ I ′ 6∈ models(RI) (as I ′ does not satisfy the single rule in RI)

Lemma 3.2 states the same result as Lemma 3.1 but for constraints. The proof is similar.

Lemma 3.2. Given any program P and interpretation I, for any I ′ ⊆ I:

Let R be any constraint; then I ′ ∈ models(RI
old) if and only if I ′ ∈ models(RI)

Proof. Again, we instead prove the equivalent result: I ′ /∈ models(RI
old)⇔ I ′ /∈ models(RI).

(Proof of ⇐):

Let R be any constraint, I ′ ⊆ I and assume that I ′ 6∈ models(RI)

Assume for contradiction that I does not satisfy the body of R.

Case 1: I does not satisfy body−(R)

⇒ RI = ∅

⇒ I ′ ∈ models(RI). Contradiction!

Case 2: I satisfies body−(R) and I does not satisfy body+(R)

⇒ I ′ does not satisfy body+(R) (as I ′ ⊂ I)

But RI = {⊥ ← body+(R)}

So I ′ must satisfy RI . Contradiction!

Hence, as both cases resulted in contradictions, I must satisfy the body of R.

⇒ RI
old = R and RI = {⊥ :- body+(R)} (as I satisfies the body of R)

⇒ I ′ satisfies body+(R) (as I ′ 6∈ models(RI)

⇒ I ′ 6∈ models(RI
old) (as I ′ satisfies the body of a constraint in RI

old).

(Proof of ⇒):

Let R be any constraint rule, I ′ ⊆ I and assume that I ′ 6∈ RI
old

Assume for contradiction that I does not satisfy the body of R.

⇒ RI
old = ∅

5

Simplified Semantics for Choice Rules in ASP M. Law, A. Russo, K. Broda

⇒ I ′ ∈ models(RI
old). Contradiction!

Hence I satisfies the body of R.

⇒ RI
old = R and RI = {⊥ :- body+(R)} (as I satisfies the body of R)

⇒ I ′ satisfies body+(R) (as I ′ 6∈ models(RI
old)

⇒ I ′ 6∈ models(RI) (as ⊥ 6∈ I ′)

Lemma 3.3. Given any program P and interpretation I:

Let R be any choice rule in P ; then I ∈ models(RI) if and only if there is an extension of I, Iext st Iext ∈ models(RI
old)

Proof.

Let R be the choice rule lower{h1; . . . ; hm}upper :- b1, . . . , bn, not c1, . . . , not co.

Case 1: I satisfies b1, . . . , bn, not c1, . . . , not co

We prove the equivalent result that I /∈ models(RI)⇔ there is no extension Iext of I st Iext ∈ RI
old.

RI
old =


h1 ∨ ĥ1 :- b1, . . . , bn, not c1, . . . , not co.

. . .

hm ∨ ĥm :- b1, . . . , bn, not c1, . . . , not co.
:- b1, . . . , bn, not c1, . . . , not co, not{h1; . . . ; hm}upper.
:- b1, . . . , bn, not c1, . . . , not co, not lower{h1; . . . ; hm}.


Assume I 6∈ models(RI)

Assume for contradiction that I satisfies lower{h1; . . . ; hm}upper

⇒ RI = {hi ← b1, . . . , bn. | hi ∈ {h1, . . . , hm} ∩ I}

⇒ the head of every rule in RI is satisfied by I.

⇒ I ∈ models(RI). Contradiction!

So I 6∈ models(RI)⇒ I does not satisfy lower{h1; . . . ; hm}upper.

But I does not satisfy lower{h1; . . . ; hm}upper⇒ RI = {⊥ :- b1, . . . , bn} which is not satisfied by I.

So I 6∈ models(RI)⇔ I does not satisfy lower{h1; . . . ; hm}upper.

⇔ I ∩ {h1, . . . , hm} > upper or I ∩ {h1, . . . , hm} < lower

⇔ I satisfies not{h1; . . . ; hm}upper or not lower{h1; . . . ; hm}

⇔ ∀Iext st I = (Iext ∩HBP), Iext /∈ models(RI
old)

(The ⇐ holds because of the ∀; if the constraints were satisfied by an Iext then

Iext ∪ {ĥ1, . . . , ĥm} would be a model of RI
old).

⇔ no extension of I is in models(RI
old)

∴ I 6∈ models(RI)⇔ no extension of I is in models(RI
old).

Hence in this case, I ∈ models(RI)⇔ there is an extension of I, Iext st I ∈ models(RI
old).

Case 2: I does not satisfy b1, . . . , bn, not c1, . . . , not co

Case 2a: I does not satisfy b1, . . . , bn but does satisfy not c1, . . . , not co

I ∈ models(RI) as the body of each rule in RI is false. Similarly (as RI
old = ∅), I ∈ models(RI

old).

So as both I ∈ models(RI) and ∃Iext st I = (Iext ∩ HBP) and I ∈ models(RI
old) share the same truth

value in this case, I ∈ models(RI)⇔ there is an extension of I, Iext st Iext ∈ models(RI
old).

Case 2b: I does not satisfy not c1, . . . , not co

6

Simplified Semantics for Choice Rules in ASP M. Law, A. Russo, K. Broda

RI = RI
old = ∅.

So both I ∈ models(RI) and I ∈ models(RI
old) are true.

Hence, in this case, I ∈ models(RI)⇔ there is an extension of I, Iext st Iext ∈ models(RI
old)

Hence, as the cases are exhaustive, I ∈ models(RI)⇔ there is an extension of I, Iext st Iext ∈ models(RI
old)

Lemma 3.4. Given any program P , interpretation I of P and choice rule R, l{h1; . . . ; hm} :- b1, . . . , bn, not c1, . . . , not co,
such that I ∈ models(RI).

Let Iext be an extension of I such that Iext ∩ {âtom | atom ∈ I} = ∅ and Iext ∈ models(RI
old).

∀I ′ ⊂ I, I ′ ∈ models(RI) if and only if there is an extension I ′ext of I ′ such that I ′ext ∈ models(RI
old) and I ′ext ⊂ Iext.

Proof.

First we show (⇐):

Let I ′ ⊂ I and assume there is an extension of I ′, I ′ext, in models(RI
old)

Case 1: body(R) is satisfied by I

RI
old =


h1 ∨ ĥ1 :- b1, . . . , bn, not c1, . . . , not co.

. . .

hm ∨ ĥm :- b1, . . . , bn, not c1, . . . , not co.
:- b1, . . . , bn, not c1, . . . , not co, not{h1; . . . ; hm}upper.
:- b1, . . . , bn, not c1, . . . , not co, not lower{h1; . . . ; hm}.


Case 1a: {h1, . . . , hm} ∩ I ′ ⊂ {h1, . . . , hm} ∩ I

Assume for contradiction that body(R) is satisfied by I ′ext.

⇒ ∀hi ∈ {h1, . . . , hm}, hi ∈ I ′ext ∨ ĥi ∈ I ′ext as I ′ext is a model of RI
old.

⇒ ∃ĥi ∈ I ′ext st ĥi 6∈ Iext (as ∃hi ∈ I st hi 6∈ I ′ because I ′ ∩ {h1, . . . , hm} ⊂ I ∩ {h1, . . . , hm} and hi

and ĥi cannot both be in Iext).

Contradiction as I ′ext ⊂ Iext.

Hence body(R) is not satisfied by I ′ext

⇒ I ′ does not satisfy body(R) (as (I ′ext ∩HBP) = I ′).

⇒ I ′ ∈ models(RI)

Case 1b: {h1, . . . , hm} ∩ I ′ = {h1, . . . , hm} ∩ I

Case 1bi: body(R) is satisfied by I ′

⇒ body(R) is satisfied by I ′ext

⇒ (by the two constraints in RI
old) head(R) is satisfied by I ′ext and hence Iext (as they share the

same hi’s).

⇒ RI = {hi :-body(R) | hi ∈ {h1, . . . , hm} ∩ I}

⇒ I ′ ∈ models(RI) as I ′ shares all the hi’s in I and therefore satisfies the head of every rule in RI .

Case 1bii: I ′ does not satisfy body(R)

⇒ I ′ does not satisfy body+(R) (as I ′ ⊂ I and I satisfies body−(R), I ′ must satisfy body−(R)).

⇒ I ′ satisfies the body of every rule in RI

⇒ I ′ ∈ models(RI)

Case 2: body−(R) is not satisfied by I

⇒ RI = ∅ and hence I ′ ∈ models(RI).

7

Simplified Semantics for Choice Rules in ASP M. Law, A. Russo, K. Broda

Case 3: body−(R) is satisfied by I but body+(R) is not.

⇒ body+(R) not satisfied by I ′ as (I ′ ⊆ I)

⇒ I ′ ∈ models(RI) as body+(R) is the body of every rule in RI .

Next we show (⇒):

Let I ′ be any interpretation such that I ′ ⊂ I

Assume I ′ ∈ models(RI)

Case 1: body(R) is satisfied by I

⇒ body−(R) is satisfied by I ′ (as I ′ ⊂ I).

Case 1a: body+(R) is satisfied by I ′

Assume for contradiction that head(R) is not satisfied by I.

⇒ RI = {⊥ :-body+(R).}
⇒ I ′ 6∈ models(RI)

Contradiction!

∴ head(R) is satisfied by I

⇒ RI = {hi :-body(R) | hi ∈ {h1, . . . hm} ∩ I}
⇒ I ∩ {h1, . . . , hm} = I ′ ∩ {h1, . . . , hm}
⇒ I ′ext = (I ′ ∪ (Iext\HBP)) satisfies RI

old (as Iext ∩HBRI
old

= I ′ext ∩HBRI
old

).

⇒ there is an extension I ′ext of I ′ such that I ′ext ∈ models(RI
old)

Case 1b: body+(R) is not satisfied by I ′

⇒ I ′ ∈ models(RI
old (as the body of each rule in RI

old is false).

⇒ there is an extension I ′ext of I ′ such that I ′ext ∈ models(RI
old)

Case 2: body(R) is not satisfied by I

⇒ RI
old = ∅

⇒ I ′ ∈ models(RI
old)

⇒ there is an extension I ′ext of I ′ such that I ′ext ∈ models(RI
old)

Hence, as the cases were exhaustive, ∃I ′ext such that I ′ = (I ′ext ∩HBP) and I ′ext ∈ models(RI
old)

The next two lemmas use the previous results on the different types of rules (normal rules, choice rules and constraints)
to give general results about any rule in L. Lemma 3.5 states that an interpretation I is a model of the new reduct
of a rule with respect to I if and only if there is an extension of I which is a model of RI

old.

Lemma 3.5. Given any program P , interpretation I and a rule R ∈ P

I ∈ models(RI) if and only if there is an extension of I which is in models(RI
old).

Proof.

Case 1: R is a normal rule.

Follows from lemma 3.1.

Case 2: R is a constraint.

Follows from lemma 3.2.

Case 3: R is a choice rule.

Follows from lemma 3.3.

8

Simplified Semantics for Choice Rules in ASP M. Law, A. Russo, K. Broda

Lemma 3.6 will be useful for proving whether interpretations are minimal models of their reduct. It states that for
any rule R, given an interpretation I which is a model of RI and an extension Iext of I such that I doesn’t contain
any atom a and its complement â, any subset I ′ of I is also a model of RI if and only if there is a subset of Iext
which is an extension of I ′ which is a model of RI

old. Lemma 3.4 states this explicitly when R is a choice rule, and
the other two cases follow from lemmas 3.1 and 3.2.

Lemma 3.6. Given any program P , a rule R ∈ P an interpretation I ∈ models(RI) and an extension of I, Iext,

such that Iext ∈ models(RI
old) and Iext ∩ {âtom | atom ∈ I} = ∅,

∀I ′ ⊂ I, I ′ ∈ models(RI) if and only if there is an extension of I ′, I ′ext st I ′ext ⊂ I ′ext and I ′ext ∈ models(RI
old)

Proof. Case 1: R is a normal rule.

As RI
old only contains atoms from the Herbrand Base of P :

∃ an extension of I ′, I ′ext such that and I ′ext ∈ models(RI
old) and I ′ext ⊂ Iext ⇔ I ′ ∈ models(RI

old)

⇔ I ′ ∈ models(RI) (by lemma 3.1).

Case 2: R is a constraint.

As RI
old only contains atoms from the Herbrand Base of P :

∃ an extension of I ′, I ′ext such that and I ′ext ∈ models(RI
old) and I ′ext ⊂ Iext ⇔ I ′ ∈ models(RI

old)

⇔ I ′ ∈ models(RI) (by lemma 3.2).

Case 3: R is a choice rule.

Follows from lemma 3.4.

Theorem 1. Given any ASP program P , an interpretation A is in ASold(P) if and only if A ∈ AS(P).

Proof.

1. Proof of ⇒:

Assume I ∈ ASold(P)

⇒ There is an extension Iext of I which is in M(P I
old)

Note that there cannot be any atom a ∈ I such that â ∈ Iext (as without â this would still be a model,
breaking minimality).

⇒ There is an extension Iext of I st Iext ∈ models(P I
old) and ∀I ′ext ⊂ Iext, I ′ext /∈ models(P I

old) and
Iext ∩ {â | a ∈ I} = ∅.
⇒ There is an extension Iext of I st (∀R ∈ P, Iext ∈ models(RI

old)) and ∀I ′ext ⊂ Iext, I
′
ext /∈ models(P I

old)
and Iext ∩ {â | a ∈ I} = ∅.
⇒ (∀R ∈ P, I ∈ models(RI)) and there is an extension Iext of I st ∀I ′ext ⊂ Iext, I

′
ext /∈ models(P I

old) and
Iext ∩ {â | a ∈ I} = ∅ by lemma 3.5.

Assume for contradiction that ∃I ′ ⊂ I such that ∀R ∈ P , I ′ ∈ models(RI)

⇒ ∀R ∈ P there is an extension IRext of I ′ such that IRext ⊂ Iext and IRext ∈ models(RI
old) (by

lemma 3.6)

⇒ there is an extension I∗ext of I ′ such that ∀R ∈ P, I∗ext ∈ models(RI
old) and I∗ext ⊂ Iext (the union

of the previous IRext’s is a model as it makes no bodies true which weren’t true in all the IRext’s as the
bodies only contain atoms from the Herbrand Base).

Contradiction as ∀I ′ext ⊂ Iext, I
′
ext /∈ models(P I).

∴ (∀R ∈ P, I ∈ models(RI)) and Iext of I st ∀I ′ ⊂ I, ∃R ∈ P st I ′ 6∈ models(RI).

⇒ (∀R ∈ P, I ∈ models(RI)) and ∀I ′ ⊂ I, I ′ 6∈ models(P I)

⇒ I ∈ models(P I) and ∀I ′ ⊂ I, I ′ 6∈ models(P I)

⇒ I ∈M(P I)

⇒ I ∈ AS(P)

9

Simplified Semantics for Choice Rules in ASP M. Law, A. Russo, K. Broda

2. Proof of ⇐:

Assume I ∈ AS(P)

⇒ I ∈M(P I)

⇒ I ∈ models(P I)

⇒ ∀R ∈ P : I ∈ models(RI)

⇒ ∀R ∈ P, there is an extension of I, IRext st IRext ∈ models(RI
old) (by lemma 3.5).

As for each IRext, I
R
ext ∩HBP = I, the only elements which differ in these extended interpretations do not

occur in the bodies of any rule in RI
old. Hence, the union of all Iext’s does not satisfy the body of any rule

which was not satisfied by I.

Hence, for each rule R in the reduct P I
old whose body is satisfied by I, there is at least one IRext which

satisfies head(R). Hence the union of all IRext’s must satisfy head(R).

Hence this union is a model of P I
old which is an extension of I.

So there is an extension of I which is a model of P I
old. Let I∗ext be the smallest such extension (this means

that I∗ext ∩ {â | I} = ∅).
Assume for contradiction that ∃I ′ext st I ′ext ⊂ I∗ext and I ′ext ∈ models(P I

old).

Let I ′ = (I ′ext ∩HBP) (So I ′ext is an extension of I ′)

⇒ I ′ ⊂ I (as I∗ext was the smallest extension of I in models(P I
old and I ′ext ∈ models(P I

old))

As I ′ext ∈ models(P I
old), ∀R ∈ P , I ′ext ∈ models(RI

old).

⇒ ∀R ∈ P , I ′ ∈ models(RI) (by lemma 3.6).

⇒ I ′ ∈ models(P I)

Contradiction! As I was a minimal model of P I .

⇒ there is an extension Iext of I st Iext ∈ models(P I
old) and ∀I ′ext ⊂ Iext, I

′
ext 6∈ models(P I

old)

⇒ there is an extension Iext of I in M(P I
old)

⇒ I ∈ ASold(P)

4 Conclusion and Future Work

In this report we presented a new simplified definition for the reduct of ASP programs consisting of normal rules,
choice rules and constraints. We have shown that the semantics of these programs with this new definition of the
reduct is equivalent to the accepted semantics of ASP.

We have not considered other types of ASP rules; for example, aggregates in the body, other types of aggregates and
atoms with conditions. Future work could address extending our new definitions to incorporate the entire language
of ASP.

References

[1] F. Calimeri, W. Faber, M. Gebser, G. Ianni, R. Kaminski, T. Krennwallner, N. Leone, F. Ricca, T. Schaub,
Asp-core-2 input language format (2013).

[2] M. Gelfond, V. Lifschitz, The stable model semantics for logic programming., in: ICLP/SLP, Vol. 88, 1988, pp.
1070–1080.

10

	Background
	Syntax
	Semantics

	Simplified Semantics
	Proof of Equivalence
	Conclusion and Future Work

