
High Quality SimRank-Based Similarity Search

Weiren Yu†, Julie A. McCann†

†Imperial College London, United Kingdom

{weiren.yu, j.mccann}@imperial.ac.uk

ABSTRACT
SimRank is an influential link-based similarity measure that
has been used in many fields of Web search and sociometry.
The best-of-breed method by Kusumoto et al. [7], however,
does not always deliver high-quality results, since it fails to
accurately obtain its diagonal correction matrix D. Besides,
SimRank is also limited by an unwanted“connectivity trait”:
increasing the number of paths between nodes a and b often
incurs a decrease in score s(a, b). The best-known solution,
SimRank++ [1], cannot resolve this problem, since a revised
score will be zero if a and b have no common in-neighbors.

In this paper, we consider high-quality similarity search.
Our scheme, SR#, is efficient and semantically meaningful:
(1) We first formulate the exact D, and devise a “varied-D”
method to accurately compute SimRank in linear memory.
Moreover, by grouping computation, we also reduce the time
of [7] from quadratic to linear in the number of iterations.
(2) We design a “kernel-based”model to improve the quality
of SimRank, and circumvent the “connectivity trait” issue.
(3) We give mathematical insights to the semantic difference
between SimRank and its variant, and correct an argument
in [7]: “if D is replaced by a scaled identity matrix (1− γ)I ,
top-K rankings will not be affected much”. The experiments
confirm that SR# can accurately extract high-quality scores,
and is much faster than the state-of-the-art competitors.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Storage and Retrieval

Keywords
Link Analysis; Graph-Based Similarity; High Quality Search

1. INTRODUCTION
The Web today is a huge, self-organized, and hyperlinked

network. These salient features bring striking challenges to
data management, and call for new search abilities to extract
meaningful knowledge automatically from the gigantic Web.
Link-based similarity search is a modern means to quantify

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this workowned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SIGIR’15,August 09 - 13, 2015, Santiago, Chile.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

node-to-node relationships based on graph topologies, with
a wide range of successful applications, e.g., link prediction,
collaborative filtering, and co-citation analysis.

SimRank, conceived by Jeh and Widom [5], is one of the
most influential similarity measures. The central idea under-
pinning SimRank is a simple recursion that “two nodes are
assessed as similar if they are in-linked from similar nodes”.
For a digraph G = (V,E) with |V | nodes and |E| edges, let
Na = {x ∈ V |(x, a) ∈ E} be the in-neighbor set of node a.
Then, SimRank score between nodes a and b is defined by1

s(a, b) =

{
1 (a = b)

γ ·
∑

(i,j)∈Na×Nb
s(i,j)

|Na||Nb|
(a 6= b)

(1)

where γ ∈ (0, 1) is a decay factor. Generally, γ = 0.6 [12] or
0.8 [5], which penalizes long paths relative to short ones.

In contrast with other similarity measures, SimRank has
the following prominent features: (a) It takes a concise form
that captures both direct and indirect neighbors recursively,
unlike Bibliographic Coupling and Co-citation that focus only
on direct neighbors. (b) It considers structural equivalence
of two nodes, whereas Personalized PageRank focuses on reach-
ability from every node to a query. Therefore, SimRank has
attracted increasing attention in recent years [3,4,12].

1.1 The Quality of SimRank Search
Despite much effort devoted to fast SimRank computation

(e.g., [2, 7, 8, 12, 13]), the quality of SimRank search is still
less desirable, due to the following two reasons:

(1) Superfluous Diagonal Correction Error ǫdiag. The
best-of-breed SimRank method by Kusumoto et al. [7] is
based on the following “linearized SimRank formula”:

s(a, b) = e⊤a Deb + γ(Pea)
⊤D(Peb) + γ2(P 2ea)

⊤
D(P 2eb) + · · · (2)

where D is a precomputed diagonal correction matrix, ea is
a unit vector with a 1 in the a-th entry, and P is the column

normalized adjacency matrix, with Pa,b =
{

1/|Nb|, if (a,b)∈E;
0, if (a,b)/∈E.

According to [7], before Eq.(2) is computed, D requires
to be determined in advance. However, it is too difficult to
compute the exact D (not to mention within linear memory)
since SimRank results have a recursive impact on D. Note
that even Kusumoto et al. [7] have not obtained the exact D,

but simply approximatedD by D̃ := (1−γ)I . Consequently,
the diagonal correction error is produced:

ǫdiag := |s(a, b)− sD̃(a, b)|, (3)

1To avoid division by 0 in Eq.(1), s(a, b) = 0 if |Na||Nb| = 0.

1 2

34 56

7

8

9

10

11 12 s(1, 2) s(4, 5) s(2, 8) s(8, 10) s(3, 9)
SR 0.24 0.30 0.12 0.18 0.30
SR++ 0.20 0.23 0 0 0.15
RS 0.34 0.24 0.05 0.07 0.12
SR# 0.38 0.24 0.14 0.10 0.17

SR SR++ RS SR#

s(1, 2) > s(4, 5) ✗ ✗ ✓ ✓
s(2, 8) > s(8, 10) ✗ ✗ ✗ ✓
s(4, 5) > s(3, 9) ✗ ✓ ✓ ✓

Figure 1: SimRank++ (SR++) and RoleSim (RS) may not
resolve the “connectivity trait” problem of SimRank (SR)

where sD̃(a, b) is the estimated similarity when D is replaced

by D̃ in Eq.(2). After D is estimated, [7] uses an iterative
method that sums up only the first k terms of series sD̃(a, b),

denoted as s
(k)

D̃
(a, b). This yields the iterative error :

ǫiter := |sD̃(a, b)− s
(k)

D̃
(a, b)| ≤ γk+1

1−γ
.

Hence, the total error for approximating s(a, b) by s
(k)

D̃
(a, b),

in a nutshell, consists of two ingredients: ǫdiag and ǫiter.
We argue ǫdiag is far more serious than ǫiter, because ǫiter

is guaranteed to converge by [7], and can be minimized by
increasing the number of iterations. This increase, however,
cannot minimize ǫdiag. Worse still, there is no bound on
ǫdiag for Eq.(3). The only argument about ǫdiag in [7] is that

“estimating D as D̃ := (1 − γ)I does not much affect the
top-K rankings of sD̃(∗, ∗) and s(∗, ∗)”, but this, as will be
shown in Section 4.1, bears a blemish.

This motivates us to design an accurate and fast approach
that has no ǫdiag and can avoid computing the exact D.

(2) “Connectivity Trait” Problem. Another factor that
plagues the quality of SimRank is the “connectivity trait”:
increasing the number of paths between nodes a and b of-
ten incurs a contrary decrease in s(a, b). However, a paucity
of existing works [1, 2, 11] only noticed a special case (1-
hop neighbor) of the above phenomenon: “increasing the
number of common in-neighbors between nodes a and b will
decrease s(a, b).” The best-known treatment is due to An-
tonellis et al. who proposed SimRank++ [1] that replaces γ
in Eq.(1) with the following “evidence factor”:

γ̃ := γ(1− e−|Na∩Nb|) or γ̃ := γ
∑|Na∩Nb|

i=1
1
2i

(4)

These revised “evidence factors” have a good property: γ̃ is
increasing with respect to |Na∩Nb|. Hence, a larger γ̃ means
that there are more common direct in-neighbors (i.e., more
paths of length 2) between a and b.

However, we observe a weakness of SimRank++ [1]: Sim-
Rank++ score s̃(a, b) is always zero if nodes a and b have no
common (direct) in-neighbors. This is because, by the defini-
tion in Eq.(4), if Na∩Nb = ∅, then γ̃ = 0. Thus, s̃(a, b) = 0,
regardless of how many common l-hop in-neighbors (l > 2)
exist between a and b.

Other pioneering works (e.g., RoleSim [6], PSimRank [2],
and MatchSim [11]) to quantify s(a, b) also resort to common
direct in-neighbors between a and b, all of which can resolve
the special case (1-hop) of the SimRank “connectivity trait”
problem (see related work in Section 1.3.2 for more details).
However, increasing the number of paths with length > 2
between a and b may still lead to a decrease in s(a, b).

Example 1. Consider a real Web graph G in Figure 1.
We evaluate the similarity of each node-pair by 4 measures:
(a) SR (Jeh and Widom’s SimRank [5]); (b) SR

++ (Sim-
Rank++ [1]); (c) RS (RoleSim [6]); (d) SR

(our method).

The results are partly depicted in the table. We notice that
SR

++ and RS do not well resolve the SR “connectivity trait”.
For example, most people may agree s(1, 2) > s(4, 5) since

node-pair (1, 2) has 3 common in-neighbors {4, 6, 3} whereas
(4, 5) has only 2 in common {11, 12}. However, although
SR

++ narrows the gap between s(1, 2) and s(4, 5), it gives
the same counter-intuitive answer s(1, 2) < s(4, 5) as SR.

Another example is the comparison of s(2, 8) and s(8, 10).
For SR

++, s(2, 8) = s(8, 10) = 0. This is because (2, 8) has
no common direct in-neighbors, N2 ∩ N8 = ∅; neither has
(8, 10). Thereby, their “evidence factors” γ̃ = 0. However,
there are 4 indirect path-pairs in-linked from (2, 8):

2← 4← 11 → 5→ 8, 2← 3← 11 → 5→ 8

2← 4← 12 → 5→ 8, 2← 3← 12 → 5→ 8

as opposed to only 1 from (8, 10): 8← 5← 12 → 9→ 10.
Thus, node-pair (2, 8) has a higher connectivity than (8, 10),
but this connectivity trait is ignored by SR

++. Regarding RS,
since it is a “role” similarity measure, it emphasizes more on
similar node degrees than high connectivities. Thus, RS can
only partially resolve the SR “connectivity trait” problem.

Example 1 suggests that the state-of-the-art methods (e.g.,
SimRank++ [1] and RoleSim [6]) cannot solidly circumvent
the“connectivity trait”problem of SimRank. Unfortunately,
as illustrated by our statistical experiments in Section 5.2,
there are many node-pairs suffering from this problem (e.g.,
62.3% in social networks, 82.7% in Web graphs, and 56.4% in
citation graphs), which has adversely affected the quality of
similarity search. This highlights our need for a high-quality
model to resolve the “connectivity trait” problem.

1.2 Our Contributions
Our main contributions are summarized as follows:

• We formulate the exact diagonal correction matrix D,
and propose a “varied-D”method to accurately compute
SimRank with no ǫdiag and in linear memory. Moreover,
by grouping computation, we also optimize the algorithm
[7] from quadratic to linear time w.r.t. k. (Section 2)

• We observe a “connectivity trait” problem for SimRank,
which SimRank++ [1] cannot resolve in a recursive style.
To circumvent this problem, we design a “kernel-based”
model and improve the search quality. (Section 3)

• We give mathematical insights to the semantic difference
between Jeh and Widom’s model [5] and its variant [9],
and correct an argument [7]: if D is replaced by (1−γ)I ,
top-K rankings will not be affected much. (Section 4)

The comprehensive experiments verify that our methods
(1) improve an accuracy of average NDCG200 by ∼30% over
SimRank on various real networks, and (2) are ∼10x faster
than the state-of-the-art competitors on large datasets with
65.8M links for 1000 queries.

1.3 Related Work

1.3.1 SimRank Computation
Recent years have witnessed a surge of efficient methods

to compute SimRank. They can be categorized as follows:

• Single-source SimRank [3, 7,8]. Compute all s(i, ∗).
• All-pairs SimRank [9, 12,13,16]. Compute all s(∗, ∗).
• Single-pair SimRank [2, 7,10]. Compute s(i, j).

Type Algorithm Error Time Memory

single
source

Proposed γk+1 O(k|E|) O(|E|+ k|V |)
Kusumoto et al. [7]

(
γk+1

1−γ

)
+ ǫdiag O(k2|E|) O(|E|+ |V |)

Fujiwara et al. [3] ǫrank-r + ǫdiag O(r|V |2) O(r|V |2)
Lee et al. [8] γk+1 O(d2k) O(d2k + |V |)

all
pairs

Proposed γk+1 O(k|V ||E|) O(|E|+ k|V |)
Kusumoto et al. [7]

(
γk+1

1−γ

)
+ ǫdiag O(k2|V ||E|) O(|E|+ |V |)

Yu et al. [13] γk+1 O(kd′|V |2) O(|V |2)
Lizorkin et al. [12] γk+1 O(k|V ||E|) O(|V |2)
Yu et al. [16] ǫrank-r + ǫdiag O(r|V |2) O(|V |2)
Li et al. [9] ǫrank-r + ǫdiag O(r4|V |2) O(r2|V |2)
Jeh et al. [5] γk+1 O(k|E|2) O(|V |2)

Table 1: A comparison with previous deterministic methods

(with low-rank r ≤ |V |, degree d = |E|
|V |

, and d′ ≤ d)

In Table 1, we briefly summarize the accuracy, time, and
memory of previous works for each type of SimRank search.

Compared with the best-known method [7], our techniques
not only well preserve the scalability of [7], but also achieve
high accuracy and fast computational time. Furthermore,
for high accuracy, our methods not only remove superfluous
error ǫdiag but also attain a better bound on ǫiter than [7].

1.3.2 SimRank “Connectivity Trait”
Fogaras et al. [2] is the first to notice one special case of the

SimRank “connectivity trait” problem: “if two nodes a and
b have β common (direct) in-neighbors, then s(a, b) ≤ 1/β.”
To address this problem, they employed an unwieldy method
that divides the entire search space into three probabilities:
|Na∩Nb|
|Na∪Nb|

, |Na−Nb|
|Na∪Nb|

, and |Nb−Na|
|Na∪Nb|

. However, this complicates

the revised SimRank equation, which is rather tedious.
Recently, Antonellis et al. [1] gave an excellent revision,

called SimRank++, by introducing the “evidence factor” γ̃.
Unfortunately, γ̃ can only, in part, alleviate a special case
of the “connectivity trait” problem, since, if |Na ∩Nb| = 0,
then γ̃ = 0 has no recursive impact on SimRank any more.

Jin et al. [6] also gave an excellent exposition on “role
similarity”. Their proposed model, namely RoleSim, has the
advantage of utilizing “automorphic equivalence” to improve
the quality of similarity search in “role” based applications.
Their initial intention, however, was not to deal with the
SimRank “connectivity trait” problem.

There is also a SimRank-like “connectivity trait” prob-
lem in other SimRank variant models, such as MatchSim,
SimRank*, SimFusion+ [15]. Our proposed methods for
SimRank are also extensible to SimRank*. Due to space
limitation, we omit it in this paper.

1.3.3 Semantics between SimRank and Its Variant
There are some interesting works (e.g., [3, 4, 9, 14, 17]),

based on the following model, to evaluate similarity S̃:

S̃ = γP⊤S̃P + (1− γ)I. (5)

[7] argued that “the top-K rankings of S̃ in Eq.(5) and S
in Eq.(1) are not affected much”. However, we correct this
argument, and provide new mathematical insights into the
subtle difference of S̃ and S from a semantic perspective.

2. ACCURATE AND FAST SIMRANK
We first show the sensitivity of diagonal correction matrix

D to SimRank matrix S, and formulate the exact D. Then,
we devise an accurate fast “varied-D” model to compute S.

2.1 Sensitivity of Diagonal Correction Matrix
In matrix forms, SimRank in Eq.(1) can be rewritten as

S = max{γP⊤SP, I}, (6)

where max{∗} denotes the matrix entry-wise maximum, i.e.,
(max{A,B})i,j = max{Ai,j , Bi,j}.

Kusumoto et al. [7] have showed that there exists a unique
diagonal matrix D such that Eq.(6) can be converted to

S = γP⊤SP +D, (7)

whereD is called the diagonal correction matrix, which needs
to be determined beforehand.

However, [7] did not mention how to accurately compute

the exact D, but simply approximated D by D̃ = (1− γ)I .
In fact, D is very sensitive to the resulting S. Even small

errors in D may lead to large changes in SimRank scores S
by a factor of up to 1

1−γ
, as shown in Lemma 1.

Lemma 1. Let S be the solution to Eq.(7), and SD̃ be the
solution to the equation:

SD̃ = γP⊤SD̃P + D̃, (8)

and let ∆D := D − D̃ and ∆S := S − SD̃. Then,

‖∆S‖max ≤ 1
1−γ
‖∆D‖max.

2 (9)

Proof. The recursion of SD̃ in Eq.(8) naturally leads to
the following series:

SD̃ = D̃ + γP⊤D̃P + γ2(P⊤)
2
D̃P 2 + · · · , (10)

We subtract Eq.(10) from Eq.(2), and then take ‖ ∗ ‖max
norms on both sides:

‖∆S‖max ≤ ‖∆D‖max +
∑∞

i=1 γ
i

≤‖∆D‖max
︷ ︸︸ ︷

‖(P⊤)
i
∆D(P i)‖max

≤ (1 + γ + γ2 + · · ·)‖∆D‖max = 1
1−γ
‖∆D‖max.

2.2 Formulating Diagonal Correction Matrix
We next derive an exact explicit formulation ofD in Eq.(7).

For ease of exposition, the following notations are adopted.

Definition 1 (Entry-Wise Product). For matrices
X and Y , their entry-wise product X ◦ Y is defined as

(X ◦ Y)i,j = Xi,jYi,j .

Let diag(Z) be a diagonal matrix whose diagonal entries
are those of Z, i.e., (diag(Z))i,i = Zi,i.

Using this notation, Eq.(6) can be represented as

S = γP⊤SP + I − γdiag(P⊤SP). (11)

Due to D uniqueness, Eqs.(7) and (11) imply that

D = I − γdiag(P⊤SP). (12)

To formulate the exact D in Eq.(12) only in terms of P ,
we introduce the following lemma.

Lemma 2. Let
−−→
diag(Z) be a column vector of the diagonal

entries of Z, i.e., (
−−→
diag(Z))i = Zi,i. For two n×n matrices

X and Y , and an n× n diagonal matrix Z, we have

−−→
diag(X⊤ZY) = (X ◦ Y)⊤

−−→
diag(Z).

2‖ ∗ ‖max returns the maximum element of a matrix.

Combining Lemma 2 with Eq.(12), we next formulate D.

Theorem 1. The diagonal correction matrix D in Eq.(7)
can be explicitly formulated as

−−→
diag(D) =

(∑+∞
k=0 γ

k(P k ◦ P k)
)−⊤~1, (13)

where ~1 is a |V |×1 vector of all 1s, and (∗)−⊤ := ((∗)⊤)−1.

Proof. Taking
−−→
diag(∗) on both sides of Eq.(2) produces

−−→
diag(S) =

−−→
diag(D) + γ

−−→
diag(P⊤DP) + γ2−−→diag((P⊤)

2
DP 2) + · · · (14)

By SimRank definition Eq.(6), we have Si,i = 1 (∀i ∈ V),

which implies that
−−→
diag(S) = ~1.

Applying Lemma 2 to the right-hand side of Eq.(14) yields

~1 =
(

I + γ(P ◦ P) + γ2(P 2 ◦ P 2) + · · ·
)⊤−−→

diag(D), (15)

Since 0 ≤ (P ◦P)i,j ≤ Pi,j ≤ 1, one can readily show that

(I + γ(P ◦ P) + γ2(P 2 ◦ P 2) + · · ·)⊤ is diagonally dominant.
Multiplying both sides by its inverse produces Eq.(13).

Theorem 1 characterizes the exact D as an infinite series.
Hence, prior to computing S, it is too difficult to obtain the
exact D in only a finite number of iterations. This tells us
that using the method of [7] will innately produce ǫdiag.

Theorem 1 also implies that the estimation D ≈ (1−γ)I in
[7] is not appropriate for accurately computing S in Eq.(7).
This is because replacing (P k ◦ P k) by P k in Eq.(13) yields

−−→
diag(D) ≈

(∑+∞
k=0 γ

kP k
)−⊤~1 = (I − γP)⊤~1 = (1− γ)~1,

which suggests that the approximation D ≈ (1−γ)I in [7] is
equivalent to the approximation P k◦P k ≈ P k. Clearly, most

people will not agree that ((P k)i,j)
2 ≈ (P k)i,j is reasonable.

In Section 4.2, we will further discuss D ≈ (1−γ)I from the
viewpoint of semantics.

One benefit of Theorem 1 is that it narrows the boundaries
for the range of D in [7], based on the following corollary.

Corollary 1. (1− γ)I ≤ D ≤ I − γdiag(P⊤P) 3

Proof. Since 0 ≤ Pi,j ≤ 1, we can readily show that

(P ◦ P)k ≤ (P k ◦ P k) ≤ P k.

Applying this to Eq.(13) yields

(∑+∞
k=0 γ

kP k
)−⊤~1 ≤ −−→diag(D) ≤

(∑+∞
k=0 γ

k(P ◦ P)k
)−⊤~1.

Since
∑+∞

k=0 X
k = (I −X)−1, it follows that

(
I − γP

)⊤~1 ≤
−−→
diag(D) ≤

(
I − γ(P ◦ P)

)⊤~1. Then, applying Lemma 2 on
both sides, we obtain the results.

In comparison, the best-known bounds for the range of D
in Proposition 2 of [7] (i.e., (1−γ)I ≤ D ≤ I) are loose, and
independent of P , which is isolated from graph structures.

2.3 A “Varied-D” Iterative Model
Another important consequence of Theorem 1 is to derive

an accurate SimRank algorithm without ǫdiag.
Instead of determining the exactD in advance, our method

is to iteratively update D and S at the same time. Precisely,
we leverage the “varied-D” SimRank model as follows:

S(k) := Dk + γP⊤Dk−1P + · · ·+ γk(P⊤)
k
D0P

k, (16)

3For matrices A and B, A ≤ B refers to Ai,j ≤ Bi,j , ∀i, j.

where {Dk} is a diagonal matrix sequence (convergent toD),
which can be iteratively obtained while S is being iterated.

Different from the model Eq.(2) by Kusumoto et al. [7],
our“varied-D”model Eq.(16) replaces all Ds by a convergent
sequence {Dk}. The main advantage of our replacement is
that Eq.(16) can avoid determining the exact D beforehand,
and thereby, will not produce the superfluous error ǫdiag.

The correctness of our“varied-D”model can be verified by
taking limits k → ∞ on both sides of Eq.(16). As k → ∞,

Dk → D and S(k) → S.4 Thus, Eq.(16) converges to Eq.(2).

2.3.1 FindingDk in “Varied-D” Model
The challenging problem in our “varied-D” Eq.(16) is to

determine the diagonal matrix Dk. Our main idea is based
on two observations: (a) S(k) in Eq.(16) can be iterated as

S(l) = γP⊤S(l−1)P +Dl with S(0) = D0. (17)

(b) To ensure diag(S(l)) = I , Dl in Eq.(17) must satisfy

Dl = I − γdiag(P⊤S(l−1)P). (18)

Coupling these observations, we can compute Dk in Eq.(16).

Theorem 2. The diagonal correction matrices in Eq.(16)
can be iteratively obtained as follows:

(Dk)i,i = 1−∑k
l=1 (hl ◦ hl)

⊤−−→diag(Dk−l) with D0 = I, (19)

where the auxiliary vectors h1, · · · , hk are derived from
{

h0 = ei
hl =

√
γPhl−1 (l = 1, 2, · · · , k) (20)

Proof. First, we derive a complete matrix formula ofDk.
By Lemma 2, Eq.(19) can be converted to

(Dk)i,i = 1−∑k
l=1 hl

⊤Dk−lhl (21)

Successive substitution applied to Eq.(20) yields hl =
√

γlP lei.
Then, substituting this back into Eq.(21) produces

Dk = I −∑k
l=1 γ

ldiag
(
(P l)

⊤
Dk−l(P

l)
)

(22)

Next, we show that Dk in Eq.(22) satisfies Eqs.(16)–(18).
It follows from Eq.(16) that

diag(γP⊤S(k−1)P) = diag(
∑k−1

l=0 γl+1(P l+1)
⊤
Dk−1−lP

l+1)

= diag(
∑k

l=1 γ
l(P l)

⊤
Dk−lP

l).

Thus, the above equation implies that

I − diag(γP⊤S(k−1)P) = I −∑k
l=1 γ

ldiag
(
(P l)

⊤
Dk−l(P

l)
)

Applying Eq.(22) to the right-hand side yields Eq.(18).

Theorem 2 provides a simple efficient way to compute Dk.

Algorithm 1: Compute Diagonal Matrix Dk

1 initialize t := 0, h0 := ei, D0 := I ;
2 for l := 1, 2, · · · , k do
3 compute hl :=

√
γPhl−1 ;

4 update t := t+ (hl ◦ hl)
⊤−−→diag(Dk−l) ;

5 return (Dk)i,i := 1− t ;

The correctness of Algorithm 1 is verified by Theorem 2.
Regarding complexity, we have the following result.

4The convergence of S(k) will be proved in Section 2.3.2.

Theorem 3. Given the total iteration number k = 1, 2, · · · ,
Algorithm 1 is in O(k|V |) memory and O(k(|E|+|V |)) time.

In contrast to the linear-memory SimRank method in [7],
Theorem 3 implies that our “varied-D” method to compute
Dk will not compromise the scalability of [7] for high quality
search, since Dk can be computed in linear memory as well.

2.3.2 Fast Convergence of “Varied-D” Model
Besides no ǫdiag and no need to precompute the exact D,

our “varied-D”model Eq.(16) also converges faster than [7].

Theorem 4. Let S(k) and S be the k-th iterative and the
exact SimRank in Eqs.(16) and (7), respectively. Then,

‖S(k) − S‖max ≤ γk+1. (23)

Proof. We subtract Eq.(7) from Eq.(17) to obtain, ∀k,

S(k) − S = γP⊤(S(k−1) − S)P + (D(k) −D). (24)

We notice from Eq.(18) that (S(k))i,i = Si,i = 1, ∀i ∈ V .
Thus, when i 6= j, it follows from Eq.(24) that, ∀i, j ∈ V ,

(S(k) − S)i,j = γ(P⊤)i,∗(S
(k−1) − S)P∗,j .

≤ γ‖S(k−1) − S‖max ≤ · · · ≤ γk‖I − S‖max

(25)

By Eq.(1), ‖I − S‖max ≤ γ. Thus, Eq.(23) holds.

In comparison to the bound
(
γk+1

1−γ

)
(see Eq.(10) of [7]),

Theorem 4 shows that our “varied-D” model not only elim-
inates ǫdiag, but also has a better bound on ǫiter than [7].
Thus, our “varied-D” model achieves both high-quality and
fast convergence rate at the same time.

2.4 Efficiently Computing S(k)

Having determined Dk in our “varied-D” model Eq.(16),

we next propose our method to efficiently compute S(k).
The method [7] requires O(k2|E|) and O(k2|V ||E|) time,

respectively, to compute single-source and all-pairs SimRank.
If we merely apply the method [7] and replace D with Dk,

then our “varied-D” Eq.(16) to compute S(k) will retain the
same complexity as [7] except with no ǫdiag, as follows:

Procedure 2: Single-Source “Varied-D” SimRank(i)

1 initialize h := ~0, x := ei ;
2 for l := 0, 1, · · · , k do

3 update h := h+ γl(P⊤)
l
(Dk−l)x, x := Px ;

4 return (S(k))i,∗ := h ;

However, we observe that there exist many duplicate prod-
ucts in [7]. Precisely, to obtain the result of the sums

(S(k))i,∗ = Dkx0 + γP⊤Dk−1x1 + · · ·+ γk(P⊤)
k
D0xk, (26)

the method [7] separately computes every
(
γl(P⊤)l(Dk−l)xl

)

and then adds them together. Its main limitation is that,
to compute any power of (P⊤), [7] has to go through all of
the previous powers from scratch. As a result, there are l
matrix-vector products to compute each h in Line 3, leading
to

∑k
l=1 l = O(k2) products for k iterations in total.

We now propose an efficient method for Procedure 2, which
reduces O(k2|E|) to O(k|E|) time, with no loss of accuracy.
Our key observation is that “doing each matrix-vector mul-
tiplication separately is equivalent to multiplying a matrix

a b

...
... ...

x1 xn

Figure 2: SimRank “Connectivity Trait” Problem

by a group of the resulting vectors added together”. Hence,
we rearrange the computation of Eq.(26) as follows:

(S(k))i,∗ = Dkx0 + γP⊤(Dk−1x1 + γP⊤(Dk−2x2 + · · ·
· · ·+ γP⊤(D1xk−1 + γP⊤(D0xk)))) (27)

and obtain the result by starting with the innermost brackets
and working outwards. In contrast with the method [7],
Eq.(27) has only O(k) matrix-vector products in k brackets,
as opposed to O(k2) products in Procedure 2.

Based on Eq.(27), we give an efficient way of Procedure 2.

Algorithm 3: Optimized Single-Source SimRank(i)

1 initialize x0 := ei ;
2 for l := 1, 2, · · · , k do
3 update xl := Pxl−1 ;

4 initialize y0 :=
−−→
diag(D0) ◦ xk ;

5 for l := 1, 2, · · · , k do

6 update yl :=
−−→
diag(Dl) ◦ xk−l + γP⊤yl−1 ;

7 return (S(k))i,∗ := yk ;

Algorithm 3 can reduce not only the time of single-source
SimRank from O(k2|E|) [7] to O(k|E|), but also the time of
all-pairs SimRank from O(k2|V ||E|) [7] to O(k|V ||E|), since
all-pairs SimRank runs |V | times of single-source SimRank.

3. ENHANCING SIMRANK QUALITY
After the superfluous ǫdiag is avoided, we next focus on

the “connectivity trait” problem of SimRank.

3.1 The “Connectivity Trait” Problem
We observe that the root cause of the “connectivity trait”

problem is that the order of the normalized factor 1
|Na||Nb|

in the SimRank definition Eq.(1) is too high. To clarify this,
let us consider the following situation in Figure 2:

Let δ be the number of paths {a← x→ b} to be inserted
between nodes a and b. By SimRank definition Eq.(1), after
insertions, s(a, b) will become a function of δ:

sδ(a, b) = γ · |Na∩Nb|+δ
(|Na|+δ)(|Nb|+δ)

∼ γ · δ
δ2
→ 0. (δ →∞) (28)

This suggests that, for large δ, sδ(a, b) behaves like (γ · 1
δ
),

which is eventually decreasing w.r.t. δ.

3.2 Our Kernel-Based SimRank Model
To avoid the order inconsistency between denominator

and numerator in Eq.(28), our goal is to judiciously adjust
the order of 1

|Na||Nb|
while normalizing s(a, b) correctly.

Definition 2. Let A be an adjacency matrix. The“cosine-
based” SimRank Ŝa,b between a and b is defined by 5

Ŝa,b = (1− γ)

∞∑

k=0

γk e⊤a (A
k)

⊤
Akeb

‖Akea‖2‖Akeb‖2
, (29)

5To prevent division by zero in Eq.(29), we define the k-th

term of the sums to be 0 if (Ak)∗,a or (Ak)∗,b =
~0.

where ‖x‖2 :=
√∑

i |xi|2 denotes the L2-norm of vector x.

Our cosine-based SimRank Ŝa,b integrates weighted cosine
similarities between a’s and b’s multi-hop in-neighbor sets.
This can be seen more clearly when we rewrite Eq.(29) as

Ŝa,b = (1− γ)
∞∑

k=0

γkφ(Akea, A
keb) with φ(x, y) := x⊤y

‖x‖2‖y‖2
. (30)

We call φ(x, y) a kernel similarity function. In Definition 2,
we take φ(x, y) as the well-known cosine similarity function.
The vectorAkea (resp. Akeb) in Eq.(30) collects the informa-
tion about k-hop in-neighbors of node a (resp. b). Hence, the
term φ(Akea, A

keb) in Eq.(30) evaluates how similar node
a’s and b’s k-hop in-neighbor sets are likely to be in terms of
the number of length-k paths in-linked from both a and b.
The factor γk penalizes connections made with distant k-hop
in-neighbors, and (1 − γ) normalizes Ŝa,b into [0, 1]. Thus,

Ŝa,b not only distills the self-referentiality of SimRank, but
also extends a one-step cosine similarity to a multi-step one.

Theorem 5. The cosine-based SimRank model in Eq.(29)
can circumvent the SimRank “connectivity trait” problem.

Proof. Let hopk(x) = {i ∈ V |(Akex)i > 0} be the k-hop
in-neighbor set of node x. Then, we have

e⊤a (A
k)⊤Akeb = |hopk(a) ∩ hopk(b)|,
‖Akea‖2 =

√

e⊤a (Ak)⊤Akea =
√

|hopk(a)|.
Plugging these into Eq.(29) produces

Ŝa,b = (1− γ)

∞∑

k=0

γk |hopk(a) ∩ hopk(b)|
√
|hopk(a)| · |hopk(b)|

. (31)

When inserting the following δ paths between a and b:

a← ◦ ← · · · ← ◦ ←
︸ ︷︷ ︸

k1 edges

◦ → ◦ → · · · → ◦ →
︸ ︷︷ ︸

k2 edges

b (32)

we notice that, only for k1 = k2, the k1-th term of the series
Eq.(31) will be changed to a function of δ:

f(δ) = γk1
|hopk1

(a)∩hopk1
(b)|+δ√

(|hopk1
(a)|+δ)·(|hopk1

(b)|+δ)
. (δ > 0)

To show f(δ) increases w.r.t. δ, we take log(∗) on both sides,
and then use implicit differentiation w.r.t. δ on both sides:

f ′(δ) = f(δ)
(

1
|hopk1

(a)∩hopk1
(b)|+δ

− 1
2(|hopk1

(a)|+δ)
− 1

2(|hopk1
(b)|+δ)

)
.

Since f(δ) > 0 and |hopk1
(a)| ≥ |hopk1

(a)∩ hopk1
(b)| and

|hopk1
(b)| ≥ |hopk1

(a) ∩ hopk1
(b)|, we can obtain f ′(δ) > 0.

Thus, f(δ) increases w.r.t. δ, which implies that paths (32)

insertion will not decrease Ŝa,b.

Indeed, by using Peb = Aeb/‖Aeb‖1 6 to the original Sim-
Rank Eq.(2), we notice that both Eqs.(2) and (29) tally the
same paths in-linked from a and b. The difference is norms
‖ ∗ ‖2 and ‖ ∗ ‖1 used by Eq.(29) and Eq.(2)7, respectively.
Since the SimRank “connectivity trait” problem is due to
the high order of 1

|Na||Nb|
in Eq.(1), it is reasonable for us

to prevent its high order by replacing ‖ ∗ ‖1 with ‖ ∗ ‖2 since

‖x‖2 ≤ ‖x‖1. Moreover, by using ‖∗‖2, Ŝa,b can be correctly
normalized into [0, 1]. This is because φ(∗, ∗) ∈ [0, 1], which

indicates that 0 ≤ Ŝa,b ≤ (1− γ)
∑∞

k=0 γ
k ≤ 1 in Eq.(30).

6‖x‖1 :=
∑

i |xi| denotes the L1-norm of vector x.
7P is associated with 1

|Na||Nb|
(= 1

‖Pea‖1‖Peb‖1
) in Eq.(1).

Example 2. Recall the δ paths {a← x→ b} to be added

into G in Figure 2. After insertion, Ŝa,b(δ) in Eq.(29) can
circumvent the “connectivity trait” problem. This is because

Aea = (1, 1, · · · , 1
︸ ︷︷ ︸

|Na|

, 0, 0, · · · 0
︸ ︷︷ ︸

|Nb−Na|

, 1, 1, · · · , 1
︸ ︷︷ ︸

δ

)⊤

Aeb = (0, 0, · · · 0
︸ ︷︷ ︸

|Na−Nb|

, 1, 1, · · · , 1
︸ ︷︷ ︸

|Nb|

, 1, 1, · · · , 1
︸ ︷︷ ︸

δ

)⊤

Then, we have (Aea)
⊤Aeb = |Na ∩Nb|+ δ and

‖Aea‖2 =
√

12 + · · ·+ 12
︸ ︷︷ ︸

|Na|

+ 12 + · · ·+ 12
︸ ︷︷ ︸

δ

=
√
|Na|+ δ, ‖Aeb‖2 =

√
|Nb|+ δ

Therefore, it follows from Eq.(29) that

Ŝa,b(δ) = (1− γ)γ · |Na∩Nb|+δ√
|Na|+δ

√
|Nb|+δ

→ (1− γ)γ (δ →∞) (33)

Comparing this with Eq.(28), Ŝa,b(δ) is not eventually de-
creasing w.r.t. δ, which is due to norm ‖∗‖2 used in Eq.(29).

In contrast to SimRank++ [1] and PSimRank [2] whose
revised weight factors rely only on common Na and Nb, our
method Eq.(29), even if Na ∩ Nb = ∅, can evaluate s(a, b)
from common multi-hops neighbors hopk(a) ∩ hopk(b).

To compute the cosine-based SimRank score Ŝa,b, if a = b,

Eq.(29) implies Ŝa,b = 1. If a 6= b, we compute Ŝa,b as

Ŝ
(k)
a,b = Ŝ

(k−1)
a,b + (1− γ)γk(u(k))⊤v(k) with Ŝ

(0)
a,b = 0 (34)

where the auxiliary vectors u(k) and v(k) are obtained by
{

u(0) = ea

u(k) = Au(k−1)

‖Au(k−1)‖2

{
v(0) = eb

v(k) = Av(k−1)

‖Av(k−1)‖2

(35)

Eqs.(34)–(35) provide an algorithm to compute Ŝ
(k)
a,b , which

is in O(k|E|) time andO(|E|+k|V |) memory for k iterations.

4. SEMANTIC DIFFERENCE
Apart from Jeh and Widom’s SimRank model [5]:

S = max{γP⊤SP, I}, (36)

recent years have witnessed many studies (e.g., [3, 4, 9, 14])
to compute similarity, based on Li et al.’s model [9]:

S̃ = γP⊤S̃P + (1− γ)I. (37)

In this section, we explore their relationship from a seman-
tic perspective, and correct two arguments in [9] and [7].

4.1 A Fly in the Ointment of [7,9]
There are only two works [7, 9] that have mentioned the

relationship between S̃ and S. (a) Li et al. [9] argued that

“S̃ affects only the absolute similarity value of S, but not the
relative similarity ranking of S.” (b) The recent work by

Kusumoto et al. [7] states that “S̃ does not much affect the
top-K ranking of S. 8” However, either of them implies a
limitation, as disproved by the following counterexample.

Example 3. Consider graph G in Figure 3, for γ = 0.6,
the top-10 similarity rankings by S and S̃ are shown in part:

node pairs (3, 3) (6, 6) . . . (1, 2) (7, 8)
rank by S 1 1 . . . 9 9

rank by S̃ 4 3 . . . 10 9

8In essence, S ≈ S̃ is equivalent to D ≈ (1− γ)I .

1

2

3

4

5

6

7

8

Figure 3: A Citation Graph (A Counterexample)

From the table, we can discern the following:
(a) S̃ does not preserve the relative similarity rankings of S;

(b) At least 4 out of top-10 rankings of S are affected by S̃.
Thus, neither of the statements by [7, 9] is correct.

4.2 Semantic Relationship BetweenS and S̃

To “rekindle” the semantic relationship between S and S̃,
let us first introduce the following notation:

Definition 3 (Off-diagonal Operator). For square
matrix X, let (∗)off be a matrix operator defined by

(X)
off

:= X − diag(X).

This notation is introduced to bring new insights into S.

Theorem 6. The similarity S in Jeh and Widom’s model
Eq.(36) can be characterized as follows:

S =I + γ(P⊤P)off + γ2(P⊤(P⊤P)offP)off + · · ·+
+ γk (P⊤ · · · (P⊤(P⊤P)offP)off · · ·P)off

︸ ︷︷ ︸

k nested (∗)off

+ · · · (38)

Proof. Applying (∗)off, Eq.(36) can be iterated as

Sk = γ(P⊤Sk−1P)off + I. (39)

We now construct the iterations: starting with R0 = I ,

Rk = γk (P⊤ · · · (P⊤(P⊤P)offP)off · · ·P)off
︸ ︷︷ ︸

k nested (∗)off

+Rk−1. (40)

Using induction on k, we next show that Sk = Rk (∀k).
Clearly, S0 = I = R0. Assume Sk = Rk holds, we consider

Sk+1 = γ(P⊤SkP)off + I (using the hypothsis Sk = Rk)

= γk+1
(
P⊤(P⊤ · · · (P⊤P)off · · ·P)off

︸ ︷︷ ︸

k nested (∗)off

P
)

off
+ γ(P⊤Rk−1P)off + I

︸ ︷︷ ︸

={using Eq.(39)}

= γk+1
(
P⊤(P⊤ · · · (P⊤P)off · · ·P)offP

)

off
︸ ︷︷ ︸

(k+1) nested (∗)off

+Rk = Rk+1.

By Theorem 6, S in Eq.(36) is the weighted sums of

(P⊤ · · · (P⊤(P⊤P)offP)off · · ·P)off
︸ ︷︷ ︸

k nested (∗)off

∀k = 1, 2, · · · (41)

In contrast, S̃ in Eq.(37) is the weighted sums of the terms

(P⊤ · · · (P⊤(P⊤P)P) · · ·P)
︸ ︷︷ ︸

k nested brackets

∀k = 1, 2, · · · (42)

To find out the semantic difference between S and S̃, we
merely need to compare the paths tallied by (41) and (42):

Theorem 7. Given a graph G, the terms in Eq.(41) tally
the following paths in G:

x0← x1 ← · · · ← xk−1 ←
︸ ︷︷ ︸

k edges

xk → xk+1 → · · · → x2k−1 →
︸ ︷︷ ︸

k edges

x2k (43)

k = 1 k = 2

i j i (j) i j i j i (j) i (j)

k = 0

i (j)

Li et al.’s

Variation

Jeh and

SimRank
i (j) i j i j

...

...

...

➁ ➂➀ ➃ ➄ ➅

SimRank

S̃k

Widom’s

Sk

Figure 4: Different Paths Tallied by S and S̃

where x0, · · · , x2k can be any nodes, but with no repetition
of nodes xi and x2k−i allowed, ∀i ∈ {0, 1, · · · , 2k} − {k}.

In comparison, the terms in Eq.(42) tally the paths of (43)
in G without having such a constraint on nodes xi and x2k−i.

Proof. By the power property of the adjacency matrix,
(
(P k)

⊤
P k

)

i,j
tallies the paths of (43) between i and j.

To show the terms in Eq.(41) tally the paths of (43) with
the additional constraint, we use induction on k as follows.

When k = 1, ((P⊤P)off)i,j = (P⊤P)i,j for i 6= j, and 0
for i = j. Thus, ((P⊤P)off)i,j tallies i← x→ j with i 6= j.

Assume that, for the fixed k, the term

Ek := (P⊤ · · · (P⊤(P⊤P)offP)off · · ·P)off
︸ ︷︷ ︸

k nested (∗)off

tallies the length-2k paths (43) with no repetition of nodes
xl and x2k−l (∀l). We now consider the term Ek+1 for k+1.
Due to (Ek+1)i,j = (P⊤)i,∗Ek(P)∗,j if i 6= j, and 0 if i = j,
(Ek+1)i,j tallies the length-(2k + 2) paths concatenated by
i← x0, paths (43), and x2k → j, which is

i← x0← x1 ← · · · ← xk−1 ←
︸ ︷︷ ︸

k edges

xk → xk+1 → · · · → x2k−1 →
︸ ︷︷ ︸

k edges

x2k → j

with no repetition of nodes xi and x2k−i and i 6= j.

Example 4. Recall the graph in Figure 3. By Theorem 7,

the path 7 ← 6 ← 5 ← 3 → 4 → 6 → 8 is tallied by the

term
(
(P 3)

⊤
P 3

)
, but not by (P⊤(P⊤(P⊤P)offP)offP)off.

Indeed, regarding the term (P⊤(P⊤(P⊤P)offP)offP)off, the
innermost (∗)off disallows paths with repetition of nodes 5
and 4; the second nested (∗)off disallows the repetition of
nodes 6 and 6 (which the considered path violates); the out-
ermost (∗)off disallows the repetition of nodes 7 and 8.

In light of Theorem 7, the semantic relationship between S
and S̃ is evident: S̃ often aggregates more paths than S, and
S excludes the paths with self-intersecting nodes that are
considered by S̃. Figure 4 depicts an illustrative comparison
of the paths tallied by (Sk)i,j and (S̃k)i,j for k = 0, 1, 2.

For verification, let us apply (∗)off definition to expand,
e.g., the term (P⊤(P⊤P)offP)off as follows:
(
(P⊤(P⊤P)offP)off

)

i,j

➂

=
(
(P 2)⊤P 2

)

i,j

➂ ➃ ➄ ➅

−
(
P⊤diag(P⊤P)P

)

i,j

➃ ➅

−

−
(
diag((P 2)⊤P 2)

)

i,j

➄ ➅

+
(
diag(P⊤diag(P⊤P)P)

)

i,j

➅
where a circled number beneath each term is associated with
a path numbered in the upper-left corner of Figure 4.

i j

➂

i j i j i (j) i (j)

➂ ➃ ➄ ➅

i j

➃

i (j)

➅

i (j) i (j)

➄ ➅

i (j)

➅

= − − +

The following result shows the specific types of paths that
are tallied by S̃ but not by S.

Corollary 2. Let P(S) and P(S̃) be the sets of paths

tallied by S and S̃, respectively. Then, P(S̃) ⊇ P(S), and
P(S̃) − P(S) is the set of “special” cycles of length 2k (k =
1, 2, · · ·), with first k contiguous edges oriented in one direc-
tion, and next k contiguous edges in the opposite direction.

5. EXPERIMENTAL STUDIES

5.1 Experimental Setting
(1) Real Data. The details are described below:

Dataset |V | |E| |E|/|V | Type
WikiV 7,115 103,689 14.57 Directed
CaD 15,683 55,064 5.31 Undirected
CitH 34,546 421,578 12.20 Directed

WebN 325,729 1,497,134 4.59 Directed
ComY 1,134,890 2,987,624 2.63 Undirected
SocL 4,847,571 68,993,773 14.23 Directed

(a) WikiV, a Wikipedia who-votes-on-whom graph9, where

nodes are users, and an edge i→ j means user i voted on j.
(b) CaD, a collaboration graph, where each node is an

author, and edges co-authorships. The graph is derived from
6-year publications (2006–2011) in seven major conferences.

(c) CitH, a citation graph from arXiv high energy physics

theory, where each node is a paper labeled with meta infor-
mation (e.g., title, authors, abstract) and an edge a citation.

(d) WebN, a web graph from University of Notre Dame,

where a node is a page (from nd.edu) and an edge a link.
(e) ComY, an undirected Youtube social graph, where a

node is a user and an edge a friendship.
(f) SocL, a friendship graph of a LiveJournal community,

where i→ j is a recommendation of user j from user i.
(2) Synthetic Data. To produce SYN, we adopt a scale-
free graph generator based on the Barabasi-Albert model10.
This generator takes as input two parameters: (|V |, |E|).
(3) Query Generator. (i) To evaluate all-pairs s(∗, ∗), we
generate the query-pair set (A,B), by using two criteria:

(a) Importance coverage is to ensure the selected (A,B) to
comprehensively contain a broad range of any possible pairs.
To this end, we first sort all nodes in V in descending order
by PageRank (PR), and split them into 10 buckets: nodes
with PR ∈ [0.9, 1] are in the first bucket; nodes with PR ∈
[0.8, 0.9) the second, etc. We next randomly select ⌈ 1

10
|A|⌉

(resp. ⌈ 1
10
|B|⌉) nodes from each bucket toA (resp. B). Thus,

(A,B) has both important and non-important pairs.
(b) Overlapping coverage is to ensure that (A,B) contains

node-pairs with many multi-hop in-neighbors overlapped.
To achieve this, we first sort node-pair (a, b) in descending

order via a scoring function:11 fa,b :=
∑5

k=1
|hopk(a)∩hopk(b)|

|hopk(a)∪hopk(b)|
.

We then split all pairs into 5 buckets: pairs with fa,b ∈ [4, 5]
are in the first bucket; pairs with fa,b ∈ [3, 4) the second, etc.
For each bucket, we next sort node-pair (a, b) in descending

order based on the value of ga,b :=
∑5

k=1 |hopk(a) ∩ hopk(b)|,
and select top ⌈ 1

5
|A||B|⌉ node-pairs from each bucket. Hence,

(A,B) covers node-pairs with many multi-hop in-neighbors
in common. (ii) Similarly, to evaluate single-source s(⋆, q),
the query set for q can be sampled as “importance coverage”.
9http://snap.stanford.edu/data/index.html

10http://graphstream-project.org/doc/Generators/
11All paths of length up to 10 between a and b can be tallied
by our queries, ensuring results accurate to 2 decimal places.

(4) Algorithms. We implement the following, all in VC++.
Name Description
SR# our scheme (“cosine” kernel + computation sharing)
MSR the state-of-the-art SimRank [7]
OIP all-pairs SimRank (fine-grained clustering) [13]
PSUM all-pairs SimRank (partial sums memoization) [12]
SMAT single-source SimRank (matrix decomposition) [3]
JSR Jeh and Widom’s SimRank [5]
LSR Li et al.’s SimRank [9]
SR++ SimRank++ (revised “evidence factor”) [1]
RS RoleSim (automorphism equivalence) [6]
RWR Random Walk with Restart
COS classic cosine similarity

(5) Parameters. We set (a) γ = 0.6, as suggested in [12].

(b) k = 10, guaranteeing S(k) accurate to 2 decimal places.

(6) Evaluation Metrics. To evaluate the semantic quality
of the similarity search, we consider four metrics:

(a) Normalized Discounted Cumulative Gain at position p:

NDCGp := 1
IDCGp

∑p
i=1

2reli−1
log2 (1+i)

, where reli is the graded

relevance at position i, and IDCGp is the ideal DCG ranking.

(b) Spearman’s ρ:= 1− 6
∑n

i=1 d2i
n(n2−1)

, where di is the difference

of two ranks at position i, and n is the number of elements.

(c) Kendall’s τ : = (# of concordant pairs)−(# of discordant pairs)
0.5n(n−1)

.

(d) Query coverage is the queries from our query sample.
(7) Ground Truth. (a) To label ground truth for similar
users on WikiV, a manual evaluation is carried out by 50
professional members who have accumulated a long history
of activity on Wikipedia. Each pair of users is considered by
an evaluator, and is assigned a score on a scale from 1 to 4,
with 1 meaning irrelevant, 4 meaning completely relevant,
and 2 and 3 meaning “somewhere in between”. The judge-
ment is based on evaluator’s knowledge and public votes on
promotion of individuals to adminship. (b) To mark ground
truth labels for similar authors on CaD, 30 members from 5
database groups are invited. Each pair of authors is given a
score based on the collaboration distance between authors.
The judgement relies on evaluator’s knowledge and “sepa-
rations” of Co-Author Path in Microsoft Academic Search.12

(c) To establish the ground truth of similar articles on CitH,
28 research associates from the School of Physics are hired.
Each pair of articles is assigned a score based on evaluator’s
knowledge on paper abstracts and citation relations.

All experiments are run with an Intel Core(TM) i7-4700MQ
CPU @ 2.40GHz CPU and 32GB RAM, on Windows 7.

5.2 Experimental Results

5.2.1 Semantic Quality
We first evaluate the high semantic quality of SR# against

SR++, JSR, LSR13, RS, COS, RWR on real WikiV, CitH, CaD.
For each dataset, we randomly issue 300 queries for s(∗, q)
and s(∗, ∗) via importance coverage criterion, and use 3 met-
rics (NDCG, Kendall, Spearman) to evaluate each method,
respectively. Fig. 5a shows the average quantitative results.
(1) In all cases, SR# exhibits higher semantic quality than
the other methods. This is because SR# can avoid “connec-
tivity trait” issue by utilizing a “cosine” kernel recursively
in a SimRank-like style, whereas COS considers only direct
overlapped in-neighbors, and JSR and LSR both have a“con-
nectivity trait” problem. (2) In several cases, the NDCG200

of SR++ (on CitH) and RS (on CaD) may even worse than
that of JSR and LSR. This is because, for SR++, its evi-

12http://academic.research.microsoft.com/VisualExplorer
13For semantics evaluation, MSR produces the same similar-
ity values as LSR, since [7] approximates D by (1− γ)I .

SR# LSR (MSR) JSR SR++ RS COS RWR

WikiV CitH CaD
0.5

0.6

0.7

0.8

0.9

1
A
ve
.
N
D
C
G

20
0

WikiV CitH CaD
0.2

0.4

0.6

0.8

1

A
ve
.
Sp

ea
rm

an
’s
ρ

WikiV CitH CaD
0.2

0.4

0.6

0.8

1

A
ve
.
K
en
da

ll’
s
τ

(a) Semantics on Real Data (Measured by NDCG, Spearman’s ρ, Kendall’s τ)

SR# LSR JSR SR++ RS COS RWR

0.4

0.6

0.8

1
300 Sample Queries

Q
u
er
y
C
ov
er
ag

e
(%

)

WikiV

CitH

CaD

(b) Query Coverage

SR# LSR (MSR) JSR SR++ RS COS RWR

%
o
f
C
o
m
m
o
n
M
u
lt
i-
h
o
p
s

%
o
f
C
o
m
m
o
n
M
u
lt
i-
h
o
p
s

SR# MSR PSUM OIP SR∗ SMAT

WikiV CitH CaD
0

0.2

0.4

0.6

0.8

1

300 Sample

Queries

%
of

C
om

m
on

M
u
lt
i-
h
op

s
In
-n
ei
gh

b
or
s
C
ov
er
ag

e

(c) Overlapping Coverage

4-5 3-5 2-5 1-5
0

0.2

0.4

0.6

0.8

1

300 Sample Queries

of Hops of In-neighbors (Depths)

%
of

Sa
m
pl
e
Q
ue
ri
es

(d) Depth Coverage

WebN SocL ComY WikiV CaD CitH
0.01

101

104
of Iterations

k = 10

× × × ×E
la
p
se
d
T
im

e
(S
ec
)

(e) Time for Single Source

WebN

(50000

cols)

SocL

(1000

cols)

ComY

(10000

cols)

WikiV CaD CitH

101

103

105 # of Iterations

k = 10

× × ×

E
la
p
se
d
T
im

e
(S
ec
)

(f) Time for All Pairs

5 10 15 20 25 30
0

1K

2K

3K

4K

of Iterations k

E
la
ps
ed

T
im

e
(s
ec
)

SR#

MSR

(g) Time vs. k on SocL

2 5 10 15 20 25
0

100

200

300

|V | = 1M

k = 10

Graph Density (|E|/|V |)

E
la
ps
ed

T
im

e
(s
ec
)

SR#

MSR

(h) Time vs. |E|
|V |

on SYN

SR# MSR PSUM OIP SR∗

WebN

(50000

cols)

SocL

(1000

cols)

ComY

(10000

cols)

WikiV CaD CitH

100

102

104
k = 10

× × ×M
em

or
y
(M

B
)

(i) Memory for Single Source/All Pairs

5 10 15 20 25

0.5

1

1.5

of Iterations k

M
em

or
y
(G

B
) SR#

MSR

(j) Memory vs. k on SocL

WebN SocL ComY WikiV CaD CitH
0.6

0.7

0.8

0.9

1

K
en
d
al
l’
s
τ

top 50
top 200
top 500

(k) LSR and JSR Relative Ordering (l) Ranking on WikiV

1 3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

of Iterations k

E
rr
o
r

MSR

SR#

Est. Bound γk+1

(m) (ǫdiag + ǫiter) vs. k

WebN SocL ComYWikiV CaD CitH
0

0.2

0.4

0.6

0.8

1
82.7%

62.3%

78.1%

44.4% 41.5%

56.4%

%
of

N
o
d
e
P
ai
rs

w
it
h

“C
on

n
ec
ti
v
it
y
T
ra
it
”

P
ro
b
le
m

(n) % of “Connectivity Trait” Issues

Figure 5: Performance Evaluations on Real and Synthetic Datasets

dence factor will be 0 whenever there are no common direct
in-neighbors; for RS, automorphism equivalence has priority
over connectivity in similarity assessment. Thereby, SR++

and RS may not resolve the “connectivity trait” problem.
Fig. 5b compares the percentage of queries from the 300

queries sample (based on importance coverage criterion) that
SR#, SR++, JSR, LSR, RS, COS, RWR provide similarities
for on real WikiV, CitH, CaD, respectively. For each dataset,
SR# substantially improves the coverage of JSR/LSR (∼0.73)
and SR++/RS (∼0.81) to ∼0.95. This can be considered as
expected, since (a) the “connectivity trait” problem of JSR
and LSR will downgrade similarities of node-pairs with high
connectivity, and (b) SR++ can only partially fix the “con-
nectivity trait” issue within 1-hop in-neighborhood.

Fig. 5c depicts the percentage of queries with overlapped
multi-hop in-neighbors from the 300 queries sample (via
overlapping coverage criterion) that SR#, SR++, JSR, LSR,
RS, COS, RWR are able to identify on real WikiV, CitH, CaD,
respectively. (1) For each dataset, SR# significantly achieves
∼0.95 coverage of common multi-hop in-neighbors, much su-
perior to JSR/LSR (∼0.20), SR++(∼0.51) and COS(∼0.41).
The reason is that our “cosine” kernel provides an appropri-
ate normalization factor ‖ ∗ ‖2 that can recursively fix the
“connectivity trait” problem. In contrast, the ‖ ∗ ‖1 nor-
malization factor of JSR/LSR excessively squeezes the range
of similarity [0, 1]. (2) Under overlapping coverage criterion,
COS (∼0.41) outperforms JSR/LSR (∼0.20) since COS is not
limited by the “connectivity trait” problem.

To further evaluate the search depth of SR#, SR++, JSR,
LSR, RS, COS, RWR, we first apply overlapping coverage
criterion to generate 2,000 queries, and then generate 300
queries via importance coverage criterion, and classify them
into 4 groups, e.g., “4-5” collects queries (a, b) whose path
length between a and b is 8–10. Fig. 5d depicts the search
depth of all the methods onWikiV. (1) For each group, SR++

and COS have the lowest quality of depth search among all
the methods, since they cannot capture the paths of length
> 2 between nodes. (2) SR# achieves the highest quality,
and its superiority is more pronounced in the groups that
have longer paths. This tells us that the “connectivity trait”
issue has a large influence on node-pairs with long paths.

5.2.2 Time Efficiency
Fig. 5e illustrates the running time of SR#, MSR, PSUM,

OIP, SR∗, SMAT for single-source s(∗, q) on 6 real datasets.
(1) In all cases, SR# always substantially outperforms the
other methods. This is because SR# can eliminate duplicate
computations for maximal sharing, whereas MSR computes
each term separately. (2) PSUM, OIP, SR∗, SMAT will crash
on large WebN, SocL, ComY, due to the memory allocation.
On WikiV and CaD, they are 3-4 orders of magnitude slower
than SR#, since their iterative models to compute s(∗, q)
rely on all-pairs outputs of the previous iteration.

Fig. 5f shows the time of SR#, MSR, PSUM, OIP, SR∗

for all-pairs s(∗, ∗) on 6 real datasets. (1) Only SR#, MSR
survive on all datasets, whereas PSUM,OIP, SR∗ fail on large

WebN, SocL, ComY, due to the memory allocation. (2) MSR
is slower than others as it sacrifices speed for scalability. In
contrast, SR# not only scales well on large graphs, but also
has comparable speed to those of PSUM, OIP, SR∗.

Fig. 5g presents the impact of the iteration number k on
the time of SR# and MSR. When k grows from 5 to 30, the
time of SR# does not increase significantly (just from 42s
to 301s), as opposed to the time of MSR growing from 152s
to 3744s. The reason is that MSR contains many duplicate
computations among different iterations, whereas SR# can
merge these results after rearranging the computation order.
It is consistent with our analysis in Subsection 2.4.

Fig. 5h demonstrates the impact of network density on
the computational time of SR# and MSR on synthetic data.
Fixing |V | = 1, 000, 000 and k = 10, we generate a synthetic
dataset by increasing the graph density from 2 to 25. (1)
When the density increases, the time of both algorithms will
increase. (2) For dense graphs, the speedup for SR# is sig-
nificantly higher than MSR, due to the number of iterations
with a huge influence on MSR compared with SR#. This is
in agreement with the complexity of SR# and MSR.

5.2.3 Memory Efficiency
Fig. 5i shows the memory of SR#, MSR, PSUM, OIP, SR∗

on six real datasets. (1) For large WebN, SocL and ComY,
only SR# and MSR survive, highlighting their scalability.
(2) For each dataset, SR# requires slightly more memory
than MSR because it requires to store Dk.

Fig. 5j reports the impact of the iteration number k on the
memory of SR# and MSR on SocL. (1) When k varies from
5 to 25, the memory requirements of SR# and MSR increase,
since they need to memorize the k intermediate vectors from
previous iterations, as expected. (2) The disparity in the
memory between SR# and MSR is due to storing Dk.

5.2.4 Relative Order
Fig. 5k compares the relative order between LSR and JSR

for the top K results on 6 real datasets (K = 50, 200, 500).
The order gap is measured by Kendall’s τ . (1) For different
graphs, the quality of the relative order is irrelevant to topK
size. For instance, on SocL, top 500 (0.94) is better preserved
than top 200 (0.91) and top 50 (0.9), whereas on CaD, top
500 (0.84) is worse than both top 200 (0.9) and top 50 (0.92).
(2) On each dataset, the average Kendall’s τ for top 50 is
0.77–0.92, which indicates that LSR does not maintain the
relative rank of JSR, even for top 50. Thus, approximating
D by (1− γ)I would adversely affect the top K ranking.

Further, a qualitative result onWikiV is depicted in Fig. 5l,
where x (y) axis is the ranking by JSR (LSR). Other datasets
also statistically exhibit similar phenomena. (1) Many points
below the diagonal imply that low-ranked node-pairs by JSR
have greater likelihood to get promoted to a high rank of
LSR. This association does not imply a (near) linear rela-
tionship between the rankings of JSR and LSR. (2) For high
top-K ranking (e.g., K = 15), the top 15 of JSR may be
inconsistent with those of LSR. Hence, the relative order
preservation of JSR and LSR hinges on network structure.

Fig. 5m tests (ǫdiag + ǫiter) of MSR and SR# w.r.t. k. (1)
When k increases from 1 to 15, the error of each algorithm
decreases. While the error of SR# approaches 0, MSR levels
off at 0.28. The large disparity between their convergent
solutions is due to the approximation of D by (1 − γ)I in
MSR; our “varied-D” iterative model can guarantee the error

to be 0 when k increases. (2) The SR# curve is always below
the Est. Bound curve, showing the correctness of Theorem 4.

Fig. 5n statistically shows the percentage of node-pairs
with the “connectivity trait” problem over all real datasets.
From the results, we see that the percentages are all high
(e.g., 82.7% on WebN, 62.3% on SocL, 78.1% on ComY),
showing the seriousness of this problem in real scenarios.

6. CONCLUSIONS
We consider the problem of high-quality similarity search.

Observing that (1) the best-of-breed SimRank [7] produces
diagonal correction error ǫdiag and (2) SimRank++ [1] does
not well resolve the “connectivity trait” problem, we pro-
posed our scheme, SR#. First, we characterize the exact D,
and devise a “varied-D” model to compute SimRank with
no ǫdiag in linear memory. We also speed up the computa-
tional time from quadric [7] to linear in terms of k. Next,
we devise a “kernel-based” model to circumvent the “con-
nectivity trait” problem. Finally, we give new insights into
the semantic difference between Jeh and Widom’s SimRank
and its variant, and correct an argument in [7]. We empir-
ically show that SR# (1) improves an accuracy of average
NDCG200 by ∼30% on real graphs, and (2) is ∼10x faster
than [7] on SocL with 65.8M links for 1000 queries.

Acknowledgment. This work forms part of the Big Data
Technology for Smart Water Network research project funded
by NEC Corporation, Japan.

7. REFERENCES
[1] I. Antonellis, H. G. Molina, and C. Chang. SimRank++:

Query rewriting through link analysis of the click graph.
PVLDB, 1(1), 2008.

[2] D. Fogaras and B. Rácz. Scaling link-based similarity
search. In WWW, 2005.

[3] Y. Fujiwara, M. Nakatsuji, H. Shiokawa, and M. Onizuka.
Efficient search algorithm for SimRank. In ICDE, 2013.

[4] G. He, H. Feng, C. Li, and H. Chen. Parallel SimRank
computation on large graphs with iterative aggregation. In
KDD, 2010.

[5] G. Jeh and J. Widom. SimRank: A measure of
structural-context similarity. In KDD, 2002.

[6] R. Jin, V. E. Lee, and H. Hong. Axiomatic ranking of
network role similarity. In KDD, 2011.

[7] M. Kusumoto, T. Maehara, and K. Kawarabayashi.
Scalable similarity search for SimRank. In SIGMOD, 2014.

[8] P. Lee, L. V. S. Lakshmanan, and J. X. Yu. On top-k
structural similarity search. In ICDE, 2012.

[9] C. Li, J. Han, G. He, X. Jin, Y. Sun, Y. Yu, and T. Wu.
Fast computation of SimRank for static and dynamic
information networks. In EDBT, 2010.

[10] P. Li, H. Liu, J. X. Yu, J. He, and X. Du. Fast single-pair
SimRank computation. In SDM, 2010.

[11] Z. Lin, M. R. Lyu, and I. King. MatchSim: A novel
similarity measure based on maximum neighborhood
matching. Knowl. Inf. Syst., 32(1), 2012.

[12] D. Lizorkin, P. Velikhov, M. N. Grinev, and D. Turdakov.
Accuracy estimate and optimization techniques for
SimRank computation. VLDB J., 19(1), 2010.

[13] W. Yu, X. Lin, and W. Zhang. Towards efficient SimRank
computation on large networks. In ICDE, 2013.

[14] W. Yu, X. Lin, and W. Zhang. Fast incremental simrank
on link-evolving graphs. In ICDE, pages 304–315, 2014.

[15] W. Yu, X. Lin, W. Zhang, Y. Zhang, and J. Le.
SimFusion+: Extending SimFusion towards efficient
estimation on large and dynamic networks. In SIGIR, 2012.

[16] W. Yu and J. A. McCann. Sig-SR: SimRank search over
singular graphs. In SIGIR, 2014.

[17] W. Yu and J. A. McCann. Efficient partial-pairs SimRank
search for large networks. PVLDB, 8(5):569–580, 2015.

