
Effective partial solvers for parity games1

Patrick Ah-Fat and Michael Huth
Department of Computing, Imperial College London

London, SW7 2AZ, United Kingdom
{patrick.ah-fat14 , m.huth}@imperial.ac.uk

Abstract

Partial methods play an important role in formal methods and beyond. Recently such
methods were developed for parity games, where polynomial-time partial solvers decide the
winners of a subset of nodes. We investigate here how effective polynomial-time partial solvers
can be in principle by studying polynomial-time interactions of partial solvers. Concretely,
we propose simple, generic composition patterns for partial solvers that preserve polynomial-
time computability. We show that an implementation of this semantic framework manually
discovers new partial solvers – including those that merge node sets that have the same but
unknown winner – by studying games that composed partial solvers can neither solve nor
simplify. We experimentally validate that this data-driven approach to refinement leads to
polynomial-time partial solvers that can solve all standard benchmarks of structured games.
For one of these polynomial-time partial solvers, we were unable to find even a sole random
game that it won’t solve completely, although we generated a few billion random games of
varying configurations to that end. However, the work presented here does not yet offer any
deeper characterisations of which games are completely solved by such partial solvers.

1 Introduction
Parity games are two-player games on directed graphs that are determined [18, 3, 21]. Parity games
have several applications, including as back-ends in formal methods: Let us mention here the
controller synthesis of reactive systems as well as satisfiability checking of the modal mu-calculus
and the temporal logic CTL*, where parity games serve as a technical aid in determinising non-
deterministic Büchi automata (see e.g. the discussion in [6]). There is therefore a clear benefit in
having effective means of solving parity games.

The exact computational complexity for finite parity games has been on open problem for over
20 years: deciding which player wins a node in a parity game is known to be in UP∩coUP [16] and
the fastest known algorithms run in sub-exponential time in the size of games (see e.g. [15, 19]).
Some types of parity games have polynomial-time solutions. We may bound the index of games
(i.e. the largest color of a game) by a fixed natural number; then, e.g., Zielonka’s algorithm based
on the whole-set rule [8] becomes polynomial time. Or we may bound a descriptive complexity
measure: parity games with bounded DAG-width [1], tree-width [1, 5] or entanglement [2] can be
solved in polynomial time.

Algorithms that solve parity games do so using specific mechanisms, for example strategy
improvement [20] or progress measures [14]. But it seems not feasible to let such mechanisms
interact in iterative computations, even though this might speed up solving. The difficulty is that
such mechanisms operate over very different views of games and their complexity; for example,
how might one use a strategy-improvement step (which updates one player’s strategy) to increase
a progress measure (an element in a specific complete lattice)?

1Please cite this technical report as “Patrick Ah-Fat and Michael Huth. Effective partial solvers for parity games
. Technical Report 2016/1, Department of Computing, Imperial College London, ISSN 1469-4174, January 2016.

1

Partial solvers [10, 11] have been proposed as algorithms that can solve parts of a parity game
but not necessarily all of such a game. Such algorithms are designed to run in polynomial time, and
this is relatively easy to obtain. The harder part is to understand which parity games are solved
completely by a given partial solver. Partial solvers are related to known static analyses such as
priority propagation (see e.g. [7]), that may decrease colours of nodes. Extant work has shown
the feasibility of using partial solvers [10, 11], yet they don’t completely solve some benchmarks
of structured games and they don’t solve many randomly generated games. Moreover, we don’t
have a good understanding of whether partial solvers could improve their effectiveness through
interaction.

But furthering such an understanding seems feasible as all these methods share a common view
of the complexity of a finite game – say the number of nodes plus the number of edges plus the sum
of all colours of all nodes. This common view allows us to think of static analyses, let us mention
color reductions based on abstract Rabin index computations [9], as partial solvers as well and to
then compose partial solvers to improve their effectiveness. This discussion leads us to consider
the following hypothesis, which we split into three parts:

H1 There are simple, generic, yet effective composition patterns for partial solvers that preserve
polynomial-time computability.

H2 These patterns can be used to manually discover new partial solvers, by studying games that
these compositions patterns can neither solve nor simplify.

H3 The approach of H1-H2 leads to polynomial-time partial solvers that can solve all stan-
dard benchmarks of structured games, and that only very rarely do not completely solve a
randomly generated game.

The main contribution of this paper is to present compelling evidence for the hypothesis H1-
H3. In particular, our work will show that this approach can discover refined views of a game’s
complexity by discovering novel ways of simplifying games; for example, by merging a set of nodes
that a partial solver determines as having the same winner into a sole node – even though the
winner of that node is not known at merge time. We believe that the approach we here advocate
can discover more such novel simplification mechanisms for solving parity games, that it can shed
more light on what types of parity games can be solved in polynomial time, and that it can foster
new perspectives on the descriptive complexity of this open problem.

Outline of paper: We review background in Section 2, develop our composition framework for
partial solvers in Section 3, and show how its use leads to data-driven refinement of partial solvers
in Section 4. In Section 5, we report our experimental and validation work for this framework and
for our newly discovered partial solvers. Related work is discussed in Section 6, further insights
are discussed in Section 7, and Section 8 concludes the paper. An appendix contains proofs and
details on experimental data.

2 Background
We define key concepts of parity games, review some partial solvers and static analyses for such
games, and fix technical notation used in this paper.

2

Parity games. We write N for the set {0, 1, . . . } of natural numbers. A parity game G is a
tuple (V, V0, V1, E, c), where V is a set of nodes partitioned into possibly empty node sets V0 and
V1, with an edge relation E ⊆ V × V that contains no dead-ends (i.e. for all v in V there is a w in
V with (v, w) in E), and a colouring function c : V → N. Throughout, we write p (or sometimes
p′) for one of 0 or 1 and 1 − p for the other player. Nodes in V0 are owned by player 0, nodes in
V1 are owned by player 1. We write owner(v) to denote the p for which v is in Vp. In figures, c(v)
is written within nodes v, nodes in V0 are depicted as circles and nodes in V1 as squares. For a
relation ρ ⊆ A× B and X ⊆ A we write X•ρ for set {b ∈ B | ∃a ∈ X : (a, b) ∈ ρ}, whereas ρ•Y
denotes set {a ∈ A | ∃b ∈ Y : (a, b) ∈ ρ} for Y ⊆ B; we will abuse this notation for singleton X
and Y as in v•E or E•v in a parity game. Below we write C(G) for the set of colours in game
G, i.e. C(G) = {c(v) | v ∈ V }. For each p in {0, 1}, the preference ordering �p on C(G) is given
by c1�p c2 iff (c1%2 = p and c2%2 = 1− p) or (c1 and c2 have parity p and c1 ≤ c2) or (c1 and c2
have parity 1− p and c2 ≤ c1).

A play from some node v0 results in an infinite play π = v0v1 . . . in (V,E) where the player
who owns vi chooses the successor vi+1 such that (vi, vi+1) is in E. Let Inf(π) be the set of colours
that occur in π infinitely often: Inf(π) = {k ∈ N | ∀j ∈ N : ∃i ∈ N : i > j and k = c(vi)}. Player 0
wins play π iff min Inf(π) is even; otherwise player 1 wins play r.

A strategy for player p is a total function σp : V ∗ · Vp → V where the pair (v, σp(w · v)) is in E
for all v in Vp and w in V ∗. A play π conforms with σp if for every finite prefix v0 . . . vi of π with
vi in Vp we have vi+1 = σp(v0 . . . vi). A strategy σp is memoryless if for all w,w′ in V ∗ and v in Vp
we have σp(w · v) = σp(w′ · v) and such a σp can be seen to have type Vp → V .

It is well known that each parity game is determined [18, 3, 21]: (i) node set V is the disjoint
union of two, possibly empty, sets Win0[G] and Win1[G], the winning regions of players 0 and 1
(respectively) in G; and (ii) there are memoryless strategies σ0 and σ1 such that all plays beginning
in Win0[G] and conforming with σ0 are won by player 0, and all plays beginning in Win1[G] and
conforming with σ1 are won by player 1. Solving a parity game means computing such data
(Win0[G],Win1[G], σ0, σ1). By abuse of language, we view ∅ also as a parity game with empty node
set.

Throughout this paper, we write G for a parity game (V, V0, V1, E, c), and let X be a non-empty
set of nodes of G. We define the rank of parity game G as r(G) = |V |+ |E |+∑

v∈V c(v). We write
x%2 for x modulo 2 for an integer x, and Attrp[G,X] to denote the attractor of node set X for
player p, which computes the alternating reachability of X for that player in the game graph of G
(see e.g. Definition 1 in [10]). It is well known that Attrp[G,X] is contained in the winning region
Winp[G] whenever X ⊆ Winp[G]. A node set X ⊆ V is a p-trap in G, if player 1− p can play such
that all plays beginning in X also stay in X in G. Winning regions Winp[G] are (1− p)-traps. The
color of a finite path or cycle P in the directed graph (V,E) is defined to be min{c(v) | v is on P}.
A subset C ⊆ V of a directed graph is called a (maximal) strongly connected component, denoted
by SCC, if for all v, w in C there is a path in (V,E) from v to w; and if there is no strict superset
of C in (V,E) with that property.

Example 1 For parity game G on the right in Figure 2, we have Win1[G] = ∅ and Win0[G] = V .
The memoryless strategy σ0, already completely determined by σ0(v4) = v19, is a winning strategy
for player 0 on Win0[G].

Partial solvers and static analyses. We present partial solvers and static analyses for parity
games, some of them already in a form suitable for the composition patterns developed in this
paper. All these partial solvers and static analyses preserve the winning regions of the (remaining)

3

game, and can be computed in polynomial time in the size of their input games [10, 12, 9].
Static color compression scc is agnostic to the game graph and makes C(G) convex in N, e.g.

C(G) = {0, 2, 3, 6, 7} becomes {0, 1, 2, 3} where nodes coloured with 2 now have color 0, nodes
coloured 3 now have color 1 and so forth.

Priority propagation pp is informed by the game graph. At node v, let p(v) denote min(max c(v•
E),max c(E•v)) where c(Y) = {c(y) | y ∈ Y }; if there is a node v with p(v) < c(v), one such node
is selected by pp and the color at v is changed to p(v); otherwise pp has no effect on G.

The monotone attractor for a node set X of color d in C(G) [10] is defined as follows: it is the
greatest set of nodes YX in G from which player d%2 can force to reach nodes in X whilst only
encountering nodes of color ≥ d en route. A node set X is a fatal attractor [10] if it is contained
in its monotone attractor YX , and then all nodes in X are won by player d%2 in parity game G
[10]. We write fa for the static analysis that returns a fatal attractor (say by exploring colours in
descending order) if G has one, and returns nothing otherwise.

Another static analysis ari is based on the abstract Rabin index of parity games [9]: for node
v with c(v) > 1, let c′v be the maximal color of all cycles that go through node v in G; if there is a
node v with c′v < c(v), then ari chooses one such node and changes the color at v to c′v; otherwise
ari has no effect on G.

Finally, let gfa be a more general form of partial solver fa, based on the partial solver in [12].
Now, X is a set of nodes of color parity p (not necessarily of the same color), and YX is the
greatest set of nodes from which player p can ensure that X is reached such that the minimal color
encountered en route has parity p [12]. Partial solver gfa returns a set X that is contained in the
corresponding YX , if there is such a pair (X, YX), and returns nothing otherwise.

3 Semantics for composition
We now present a semantic framework in which our partial solvers can be expressed and composed
with ease. Fundamental to this is the notion of state, as the semantics of a partial solver will be
a state transformer. This notion of state is a result of our data-driven discovery of partial solvers,
and so it may also be refined in the future for novel types of partial solvers.

Definition 1 1. A state s is a tuple (W0,W1, ρ, G
′, G) where G = (V, . . .) and G′ = (V ′, . . .)

are parity games, r(G′) ≤ r(G), ρ ⊆ V ′× V , and Winp[G] = Wp ∪Winp[G′]•ρ for p in {0, 1}.

2. Let Σ be the set of all such states. We write s.Wp, s.ρ and so forth to refer to these respective
components of such a state s.

3. The rank r(s) of a state is defined as r(s.G′).

4. Let ≤ ⊆ Σ× Σ be given by s′ ≤ s iff (s = s′ or r(s′) < r(s)).

State s models an intermediate state of computation within an implicit composition context:
the original input game is s.G and parity game s.G′ is the continuation game that still needs
to be solved; node sets s.Wp for p in {0, 1} model those nodes in s.G for which the winner is
already decided as player p; for v in V ′, node set v •ρ represents those nodes in V that have
the same (not yet known) winner in s.G as v has in s′.G′; and the winning regions Winp[s.G]
of s.G are the union of s.Wp and the image of the winning region Winp[s.G′] under relation ρ.
A state models configurations of partial solver computations, where (∅, ∅,∆VG

, G,G) is a natural
initial configuration with ∆VG

= {(v, v) | v ∈ VG}, and the more general configurations model

4

composition contexts. Note that (Σ,≤) is a partial order with the descending chain condition,
where the length of any descending chain starting in s is polynomial in r(s.G′). We can now define
partial solvers formally.

Definition 2 1. A partial solver is a terminating algorithm A whose semantics f is a state
transformer of type Σ→ Σ and satisfies, for all s in Σ:

P1 s.G = f(s).G P2 r(f(s)) ≤ r(s)
P3 r(f(s)) = r(s) implies f(s) = s P4 s.Wp ⊆ f(s).Wp for all p ∈ {0, 1}

2. We write Σf = {s ∈ Σ | f(s) = s} for the set of fixed points of f .

3. We assume that all A run in two stages: first, A evaluates s.G′; second, A updates state s
to f(s) where f(s).G′ is the result of the first stage.

4. Let P be the set of partial solvers A that run in polynomial time in r(s.G′) in the first stage
and in r(s.G) in the second stage.

By abuse of language, we may sometimes refer to functions f as partial solvers, but it will be
clear from context what a corresponding algorithm will be. Condition P1 means that s.G records
the input game which thus won’t change under f ; P2 says that the partial solver cannot increase
the rank of the continuation game s.G′; P3 says that failure to decrease the rank means that f
won’t change state; and P4 models that decisions of winners of nodes in s.G are inherited by state
transformations. Note that P2 and P3 together are equivalent to the simpler f(s) ≤ s but we
appeal to P2 and P3 in proofs.

Refinement for state transformers f ≤ g is defined as f ≤ g if, and only if ∀s ∈ Σ: f(s) ≤ g(s).
We say then that f refines g, and so any partial solver with semantics f refines any partial solver
with semantics g. Note that P2 and P3 imply that the strict version f < g of f ≤ g satisfies that
the rank of f(s) is less than that of g(s) for at least one state s. The set Σf denotes the set of
residual games of partial solver G, which f cannot simplify.

We now formally present the five analyses from Section 2 in this setting: Static color compres-
sion scc maps a state s = (W0,W1, ρ, G

′, G) to s′ which is s except that s.G′ may change to reflect
the compressed, convex color set. Priority propagation pp also may only change s.G′ such that the
color of at most one node in s.G′ is decreased and all other aspects of s.G′ remain the same in s′.
For fatal attractor detection fa, suppose it detects a fatal attractor X won by player p in G. We
set Z = Attrp[s.G′, X]. Partial solver fa then transforms state s into (assuming p = 0 without loss
of generality): s′ = (W0 ∪ Z•ρ,W1, ρ

′, G′ \ Z,G). where ρ′ is the restriction of ρ from domain V ′

to V ′ \Z, and G′ \Z is parity game G′ restricted to node set V ′ \Z (which eliminates all incoming
and outgoing edges of Z as well). Next, consider static analysis ari. If there is no node v in s.G′

with c′v < c(v), then ari(s) = s. Otherwise, some such node is chosen and s′ equals s except that
s′.G′ reduces the color at node v to c′v in s.G′. The behaviour of gfa is the same as for fa above
except that the manner in which such a node set X is computed differs [12], e.g. colours of nodes
in X may vary. We summarise:

Lemma 1 The partial solvers scc, pp, fa, ari, and gfa have state transformer semantics Σ → Σ
and are in P.

We are interested in sequential iterations of partial solvers that revert control to the first solver
in the sequence as soon as state rank decreases: Let f1, . . . , fk be elements of P with k ≥ 1. Let,

5

for each s in Σ, set Ms be {i | 1 ≤ i ≤ k, r(fi(s)) < r(s)}. Then while(f1, . . . , fk)(s) is defined as s
if Ms = ∅ and as while(f1, . . . , fk)(fjm(s)) otherwise where jm = min(Ms). It is not hard to show
that this defines a family of operators on P :

Lemma 2 For k ≥ 1, operator λ(f1, . . . , fk) while(f1, . . . , fk) has type Pk → P.

For a partial solver g = while(f1, . . . , fk), we have Σg = ⋂k
i=1 Σfi

. In particular, Σg is invariant
under permuting the order of the fi in g. Operator while(·) supports our data-driven approach to
refinement as follows: given g0 = while(f1, . . . , fk) we study games s.G′ with while(f1, . . . , fk)(s) = s
to learn a new static analysis fk+1 with while(f1, . . . , fk, fk+1)(s) 6= s, and then similarly consider
g1 = while(f1, . . . , fk, fk+1) on the set of states Σg0 for further refinement. These are refinements
since while(f1, . . . , fk) ≥ while(f1, . . . , fk, fk+1) for all k ≥ 1 and all partial solvers f1, . . . , fk+1. The
partial solvers in [10, 11, 12] could not completely solve all 1-player games. We show that such
completeness is achievable by the interaction of such partial solvers with ari and scc′ – a variant
of scc that statically compresses the color set of each SCC in a parity game separately: if C is such
a SCC with set of colours C, then scc′ makes C convex in N and recolours the SCC C accordingly.
This also illustrates how we may reason about states in Σg:

Theorem 1 Let g = while(f1, . . . , fk) be in P with {scc′, ari, fa} contained in {f1, . . . , fk}. Then
there is no s in Σg for which s.G′ is a 1-player game.

The next operator transforms a partial solver f into a second-order version that tests conse-
quences of edge removals on residual games of f . For game G with edge relation E, we define two
derived games: G(v,w) = G except where v•E is now {(v, w)}; and G \ (v, w) = G except where
(v, w) is removed from E. By abuse of notation, we write s \ (v, w) for a state that equals state s
except that (s\ (v, w)).G′ equals G′ \ (v, w). That is to say, G(v,w) removes from E all edges (v, w′)
with w 6= w′, whereas G \ (v, w) removes from G the edge (v, w). The game G \ (v, w) will not
introduce deadlocks as it will only be called on nodes v with |v•E | > 1. We also require nota-
tion for initial calling contexts of partial solvers: call(f)(G) = (f(s).W0, f(s).W1) where s equals
(∅, ∅,∆VG

, G,G). Expression call(f)(G) extracts the respective set of nodes that f can decide to
be won by each player, when run in an initial configuration for G. We can now test whether the
commitment to edge (v, w) in G(v,w) turns a residual state of f into one that it not residual, and
this will allow us to simplify G to either G(v,w) or G\(v, w), as shown in Figure 1. Function lifted(·)
either leaves a state unchanged or decreases the rank of s.G′ by removing at least one edge.

We use lifted(·) as an auxiliary function for defining, for all f in P , function lift(f) : Σ → Σ
through lift(f) = while(f, lifted(f)). Note that lift(f) now has domain Σ as the semantics of while(·)
enforces that lifted(f) is only reached with input from Σf . Let algorithm A have semantics f ; we
write lifted(A) for the algorithm obtained from the pseudo-code for lifted(f) in Figure 1 when all
applications of f are implemented by A. Then lift(A) denotes while(A, lifted(A)).

Lemma 3 For each A in P with semantics f , the algorithm lift(A) is in P as well and has
semantics lift(f).

Of course, we may appeal to Lemma 3 repeatedly to define higher-order versions lift(lift(A)) and
so forth for algorithms A in P with semantics f , which are all in P by virtue of this lemma. Next,
we use these operators for data-driven refinement.

6

lifted(f)(s) {
let H = (V ∗, V ∗0 , V ∗1 , E∗, c∗) be s.G′;
for (v in V ∗ such that |v•E∗ | > 1) {
p = owner(v);
for (w in v•E∗) {
let (U0, U1) = call(f)(H(v,w));
if (v in Up) {
return (s.W0, s.W1, s.ρ,H(v,w), s.G);

elseif (v in U1−p) {
return (s.W0, s.W1, s.ρ,H \ (v, w), s.G);
}
}
}
return s;
}

Figure 1: Pseudo-code for function lifted(·) with dependent type ∏
f : P (Σf → Σ): for partial solver

A in P with semantics f , it renders a partial solver lifted(A) in P with semantics lifted(f) : Σf → Σ
by testing effects of edge removals on running A

4 Data-driven refinement
We begin our illustration of data-driven refinement with partial solver ps1 = while(scc, pp, fa, ari, gfa).
Based on the semantics of while(f1, . . . , fk), we may assume that the input domain of each fj with
j > 1 equals ⋂j−1

i=1 Σfi
. In particular, if some partial solver fj requires that its input games have

no fatal attractors, this is guaranteed by having fl = fa for some l < j. We will also exploit
that a new analysis fk+1 (which may be more expensive, say) is only ever called in the refinement
while(f1, . . . , fk+1) on states that are residual for while(f1, . . . , fk).

Some static analyses below will merge a set of nodes X to a sole node owned by player p and
of color d. This merge operation can be defined generically:

Definition 3 Let s be a state, X ⊆ s.V ′ with |X | ≥ 2 and X•E ′ \X 6= ∅. Let p be a player, d a
color, and z 6∈ s.V ′. Then tuple merge(s,X, p, d, z) denotes

(s.W0, s.W1,merge(ρ,X, z),merge(s.G′, X, p, d, z), G) (1)

where the parity game merge(s.G′, X, p, d, z) is defined as (V ∗, V ∗0 , V ∗1 , E∗, c∗) with V ∗1−p = V ′1−p\X,
V ∗p = (V ′p\X)∪{z}, E∗ = (E ′\X×X)∪((E ′.X\X)×{z})∪({z}×(X•E ′\X)), and c∗(v) = c′(v) for
all v 6= z whereas c∗(z) = d. Relation merge(ρ,X, z) is defined as (ρ\X×s.V ′)∪{(z, w) | w ∈ X•ρ}.

Whenever we invoke the above merge method, we need to ensure that the resulting tuple is an
actual state. The parity game merge(s.G′, X, p, d, z) has no dead-ends: this is so since z has at
least one outgoing edge, which is guaranteed by the fact that (x, v) is in s.E ′ for some x in X and
some v in s.V ′ \X.

Next, we present two static analyses that use the above merging method.

Sole successor node merging: mss. An inspection of residual games for ps1 identifies a method
mss for merging two nodes which leads to a refined partial solver ps2 = while(scc, pp, fa, ari, gfa,mss).

7

v3

v4

v13

v14

v19

v25

2

1

2

2
2

0

v26

v4

v13

v19

v25

2

1

2
2

0

Figure 2: Left: Residual game s.G′ for ps1. Right: game mss(s).G′ obtained from the call
merge(s, {v14, v3}, owner(v3), c(v3), v26)

To see how mss works, let s be a state in Σ. Suppose that there are two nodes v and w in s.G′

such that v•E ′ = {w}, w•E ′ 6⊆ {v, w}, and the color of v in s.G′ is not smaller than that of w.
Choose some z not in the node set of s.G′. Then

mss(s) = merge(s, {v, w}, owner(w), c(w), z) (2)

We note that (2) is well defined as w•E ′ contains a node not in the merge set {v, w}. If there are
no such nodes v and w, then we set mss(s) = s. Figure 2 shows a residual game for ps1 and the
effect of mss on it: node v14 is v, node v3 is w, the owner of w is player 1, the color of w is 2, and
z is v26.

Theorem 2 The static analysis mss is in P.

Merging SCCs: mscc. The study of residual games for ps2 introduces more complex methods
for merging nodes. We will only describe one of these next, static analysis mscc which operates
on states residual for fa and attempts to merge an SCC in a sub-game of the residual game.
For state s, this analysis checks whether there is some color d such that the following can be
realised: Let H = (V ′[Z], E ′ ∩ Z × Z) be the game graph that restricts the game graph of s.G′ to
Z = {w ∈ V ′1−p | c(w) ≥ d}, the set of all nodes w owned by player 1− p and of color ≥ d in s.G′

where p = d%2. Suppose there is an SCC C in H and a subset X ⊆ C with |X | > 1 such that all
elements in X have color d and where X•E ′∩ (V ′ \X) is non-empty in G′. The latter implies that

mscc(s) = merge(s,X, 1− p, d, z) (3)

is well defined: from X •E ′ ∩ (V ′ \ X) 6= ∅ we infer that the parity game mscc(s).G′ contains no
dead-ends. If there is no such color d with corresponding H and X, then we set mscc(s) equal to
s. This defines a refined partial solver ps3 = while(scc, pp, fa, ari, gfa,mss,mscc). Figure 3 shows a
residual game for ps2 and the effect of mscc on it: d is 2, p is 0, node set X is {v5, v33}, and z is
v34.

The soundness proof for this analysis is pretty straightforward: first we show that the same
player indeed wins all nodes in X,and then we show that the merged version of the continuation
game has the same winning region modulo ρ.

Theorem 3 The static analysis mscc is in P with domain Σfa.

8

v32
v33

v5 v10

v13

v30

0
2

12
2

2

v32 v34

v10

v13

v30
0 2

1

2

2

Figure 3: Left: Residual game s.G′ for ps2. Right: game mscc(s).G′ obtained from the call
merge(s, {v5, v33}, 1− 0, 2, v34)

v0

v16

v20

v25

v26
v27

v28

1 2 2

2

2 1

0

v0

v16

v20

v25

v26
v27

v28

1 2 2

2

2 1

0

Figure 4: Left: Residual game s.G′ for ps3. Right: game erfa(s).G′ which removes edge (v25, v16)
since s.G′(v25,v16) contains {v25, v16} as a fatal attractor for color 0

Edge removal based on conditional fatal attractors: erfa. The residual games of ps3 led us
to studying edge removal methods for states in Σfa. We discovered static analysis erfa which works
as follows for any s in Σfa: If there is an edge (v, w) in s.G′ such that s.G′(v,w) has a fatal attractor,
then erfa choses one such edge and sets erfa(s) = s \ (v, w), i.e. removes edge (v, w) from s.G′. The
intuition is that we may remove the edge anyway if v is won by player 1− owner(v), and we may
remove it if v is won by player owner(v) as then (v, w) cannot be part of any winning strategy
for that player since s is in Σfa. Otherwise, if no such edge exists, erfa(s) equals s. For refined
partial solver ps4 being while(scc, pp, fa, ari, gfa,mss,mscc, erfa), Figure 4 shows s.G′ for some s in
Σps3 and the effect of erfa on it: d is 2, p is 0, set X is {v5, v33}, and z is v34.

Theorem 4 The static analysis erfa is in P with domain Σfa.

Edge removal based on shared descendant: ersd. Residual games for partial solver ps4 sug-
gested to us the following static analysis ersd, which removes an edge based on a shared descendant.
This checks, for s in Σ, whether there are three different nodes v, w, z in s.G′, an edge (v, w) in
s.G′, p in {0, 1}, and two colours cv and cw in C(s.G′) (not necessarily at v or w) with cv�p cw
such that:

• there is a path Pvz of color cv from node v to z in s.G′ such that all nodes on Pvz are in Vp
or have only one outgoing edge in s.G′, and

• there is a path Pwz of color cw from node w to z in s.G′ such that all nodes on Pwz are in
V1−p or have only one outgoing edge in s.G′.

9

v0

v4

v8

v9v10

v11

v12

v13

v16

v19

v20
v21

2

1

3

3
2

3

3

00

0

0

0

Figure 5: Left: Residual game s.G′ for ps4. Right: game ersd(s).G′ which removes edge (v0, v20)
since it has two control paths that meet the criteria for ersd

If there are such data, ersd chooses one such edge (v, w) and sets ersd(s) = s \ (v, w), i.e. edge
(v, w) is removed from s.G′. The intuition is that this only requires an argument when player p
wins v in s.G′ with a winning strategy that moves from v to w: then we can employ a dominance
argument based on �p as indicated below and detailed in Section A of the appendix. Otherwise,
if no such edge exists, ersd(s) equals s. Figure 5 shows the effect of ersd on a residual game for
ps4: v is v0, w is v20, p is 1, z is v8, the path Pvz (blue, via v16 and v21) has color cv = 0,
and the path Pwz (green, via v19) has color cw = 0. This yields a refined partial solver ps5 =
while(scc, pp, fa, ari, gfa,mss,mscc, erfa, ersd).

The proof of the correctness of ersd exploits that removing an edge (v, w) where v is in Vp
cannot increase the winning region of player p. Therefore, it will suffice to show that this does not
decrease the winning region of player p. Only the case when v is won by player p with a strategy
that moves from v to w is of real interest. We then use this strategy τ and the path Pvz to define
a new strategy γ with finite memory for that player on the new game G′′ = s.G′ \ (v, w). We then
show that this new strategy γ is winning in game G′′ on the old winning region of s.G′, by showing
that each infinite play in game G′′ conformant with the new strategy γ determines an infinite play
in game s.G′ that is conformant with the (winning) strategy τ , such that the outcome for player p
of the infinite play in game G′′ is better or equal with respect to �p to the outcome of the infinite
play in game s.G′. This ensures that player p wins the infinite play in the new game G′′, as he
does win the infinite play in game s.G′.

Theorem 5 The static analysis ersd is in P.

5 Experimental results
https://www.dropbox.com/s/g10y1plcc4io9tk/code_partial_solvers.zip?dl=0 has all the rele-
vant source code of our tool for realising experiments reported below. Our framework and its
implementation in Python do not compute winning strategies since soundness proofs for some
partial solvers require finite memory (shown in the appendix); related to that, in [12] it was noted

10

that the partial solver psolC, to which while(gfa) is similar, may require finite memory. We use
PGSolver [6, 7] as a test oracle to validate that our implementations of partial solvers are sound,
i.e. that they never misclassify the winner of a node of an input game.

Experiments on structured benchmarks. We ran ps1 on Keiren’s comprehensive benchmark
suite [17] on a HP EliteDesk 800 G1 TWR with RAM 16GB and an Intel Core i7-4770 3.40GHz.
For efficiency reasons, we ran ps1 over all games in that suite whose textual representation was less
than 200KB. This suite contains the PGSolver benchmarks as well; however, for some of the latter
types Keiren’s suite only contains games whose textual representation is larger than 200KB; for
these types we thus used PGSolver itself to generate such test games, the full list of these games in
contained in Section B in the appendix. In this manner, we tested 481 games – some of which with
more than 10,000 nodes. Both ps1 and our implementation of Zielonka’s algorithm solved 464 of
these games completely and agreed on those solutions. For the remaining 17 games, an exception
was raised (stack overflow or a timeout of 60 seconds) for at least one of ps1 or our implementation
of Zielonka’s algorithm. Our version of Zielonka’s algorithm was also extensively tested against
the PGSolver command pgsolver − global recursive, justifying its use in validation testing. That
use allowed us to unit test more efficiently, as our pipe from Python to PGSolver input was rather
slow.

Random games used. We used a standard type of random game [7] with configuration xx-yy-
aa-bb, which has xx nodes whose ownership is determined uniformly at random, yy colours where
colours of nodes are independently and uniformly drawn from set {0, 1, . . . , yy}, and where for each
node v the set v•E has at least aa and at most bb elements; the cardinality of v•E is determined
for each node independently and uniformly at random.

Unit testing for our implementation of solvers. For each of the four new analyses of
Section 4, we generated a stream of random games and applied the analysis to each game as often
as it would result in state changes. For each state change, we tested whether the winning regions
(modulo potential node merging via ρ) won’t change. Specifically, we generated 100,000 such tests
for each analysis. For erfa, we used configuration 60-30-2-3 and 100,395 games in Σfa to generate
that many tests. For ersd, we used configuration 60-30-2-3 with 24,081 games, for mss we took
configuration 60-30-1-3 and 100,140 games in Σfa, and for mscc we had configuration 60-30-1-3 with
1,885,423 games. Note that such tests may generate fewer games than test cases, if the analysis
can be applied repeatedly on continuation games. But we may have to generate more games than
tests, which was the case for analyses that require states from Σfa.

In addition, we did unit testing of partial solvers ps1 through to ps5: we generated 10 million
games of type 50-25-2-4 as a test harness; these partial solvers never misclassified a node for all
of these games, based on the regression test with PGSolver as described above. Here we also unit
tested that these are refinements: ps1 ≥ ps2 ≥ ps3 ≥ ps4 ≥ ps5. This gave us high confidence
that these implementations are correct. So we turned unit tests off in further experiments that
explored billions of random games in search for residual games.

Finally, we unit tested lifted(·); first, we looked at 974 residual games that we found for ps5
and ran lifted(ps5) on those. For each of these 974 games, this call removed at least one edge
(i.e. it reached the if or elseif branch) and we successfully tested that this did not change the
winning regions. We did the same unit tests on 24,132 residual games for ps4 that we generated.
For each of these games, the if or elseif branch was reached and the resulting game did not

11

change winning regions.

Comparing effectiveness of new analyses. We wanted to understand how often these four
analyses can simplify games. For this, we considered states in Σfa to create an input common to
all these analyses. We generated 100,000 states s in Σfa where s.G′ is the result of eliminating
all fatal attractors from a random game of configuration type 60-30-2-3. The analyses simplified
99,596 such games for erfa, 84,126 games for ersd, 80,327 for mss, and 7,946 for mscc. Then we did
a similar experiment for 25,360 residual games of a partial solver similar to ps3, whose residual
games are all in Σfa ∩Σerfa

∩Σmss : as expected, we confirmed that neither erfa nor mss simplified
any of these games - whereas ersd simplified 25,355 of these and mscc simplified 20,119 of these.

Experiments for data-driven refinement. We conducted experiments to determine which
random game configurations xx-yy-aa-bb are more prone to generating residual games for our
partial solvers above: when bb equals aa + 2 and xx and yy are fixed, we noticed that bb = 2
was most effective at generating residual games whereas aa ≥ 5 was very ineffective. Fixing aa
and bb and letting yy be xx or xx/2, we noted that residual games occur more frequently as xx
increases from 30 to about 90 but then occur less frequently again. Fixing only yy, we noted that
an increase beyond 15 did not have much effect.

These insights informed a large experiment in which we generated 10, 422, 420 random games
of type 50-25-2-3 in total – more than 10 million games – and recorded how many residual games
each of the five partial solvers had for these: 32, 716 for ps1, 30, 631 for ps2, 19, 230 for ps3, 958 for
ps4, and only 136 for ps5. This illustrates that each of the newly discovered partial solvers leads to
more effective refinements of existing ones. Moreover, the partial solver lift(ps5) completely solves
the 136 residual games this experiment discovered for ps5.

Experiments for lift(·). We ran lift(ps5) on a range of random game configurations to see
whether we could find any non-empty residual games. We tested this on games of varying config-
urations with node sizes ranging from 40 to 1000. All of these games, totalling to 9,353,516,890
(over nine billion games), were solved completely by lift(ps5); specifically, we first ran ps5 on these
games and invoked lift(ps5) on all the non-empty residual games, which were only in the order of
thousands. This staging is justified as ps5 is part of the interaction within lift(ps5). More details
are shown in Section C in the appendix.

6 Related work
In [6], a pattern is proposed, implemented, and evaluated for how to solve parity games. This
generic solver can be seen as a composition context of partial solvers (in our setting and terminol-
ogy) in which all but one partial solver run in polynomial time, and where the latter is a complete
solver that is only called when the partial solvers cannot progress on any terminal SCC of the
parity game. The aim of this is to gain efficiency, and this was successfully demonstrated in [6].
But our aim here is to gain effectiveness so that a composition context of partial solvers would
never or very rarely have to call a complete solver.

In [8], it is shown that a variant of Zielonka’s algorithm solves some classes of parity games
in polynomial time, and an improved lower (exponential) bound is derived for solving all parity
games with such recursive algorithms.

12

In [13], a function related to lift(f) is studied; using our terminology, it operates as follows: for
w 6= w′ in v•E, if there is some node z in G such that f detects a different winner for node z
in the two games G(v,w) and G(v,w′), then node v is won by player owner(v) in parity game G. It
would be of interest to integrate this method into our framework for experimental evaluation.

In [11], another function similar to lift(f) is investigated: apart from presentational differences
(our work here uses states), the function in [11] essentially omits the if part of code in Figure 1
and its soundness proof had severe restrictions on the types of partial solvers that it may use as
arguments.

In [12], experiments compared the effectiveness of partial solver psolB of [10] (which is similar
to while(fa)) and psolC (which is similar to while(gfa): on random games, psolC was more effective
than psolB on games with higher edge density, but not at all more effective on games with lower
edge density.

In [4], the concept of a snare is defined for mean-payoff games, a generalisation of parity games
(see e.g. [2]). A snare is a subset of nodes for which player Max has a partial strategy that is
winning on the sub-game restricted to that node set. Sole opponent Min may have escape nodes
out of the snare; if there is only one such escape node, then edges that are not escape edges may
be removed without changing the winning regions of the mean-payoff game.

7 Discussion
We also ran detailed experiments on residual games of some of the partial solvers ps1 to ps5.
Specifically, we studied structural features of their terminal SCCs. It appears that such SCCs
have statistically significant structure. For example, we were unable to find a terminal SCC of a
residual game that has two winners; however, we could then manually combine two such games to
construct a residual terminal SCC in which both players win nodes.

We implemented the partial solver ersd in a weaker version than that presented above: control
paths only have nodes owned by the controlling player. It may be possible to generalise the ersd
specified in the paper such that node z is reached in the alternating sense by the controlling player
(on a tree rather than on a path), and always reached with the specified color.

Our approach to data-driven refinement of partial solvers worked well since residual games were
found within a reasonable amount of time. But this method led to powerful partial solvers for
which we now genuinely struggle to find any residual games by relying on standard random and
non-random benchmarks. This may make it harder to evaluate and improve such a partial solver.
Theorem 1, however, suggests one form of evaluation: to prove mathematical properties of residual
games that may also imply that well known types of games are never residual for a given partial
solver. We can, e.g., show that ps1 completely solves all Büchi games, as psolB in [10] does that.

Our paper focussed on effectiveness: the ability of a partial solver to completely solve a game
in polynomial time. Our framework can also facilitate the study of the efficiency of composed
partial solvers,e.g. by choosing the order of arguments in while(·) to increase empirically observed
running times.

8 Conclusions
There are many heuristics for solving or preprocessing parity games, potentially decreasing the
complexity of a parity game by reducing some of its colours, by removing some of its edges, or by
removing some of its nodes (whose winners would then be known). Such methods are sound as

13

they do not alter the winning regions of the resulting parity game. We developed here a semantic
composition framework that allows such methods to interact and to share information so that
their power of inference could be amplified. Concretely, we developed the notion of state that
captures computational state within a composition context and defined partial solvers as certain
state transformers. Two composition operators for partial solvers were developed and shown to
preserve polynomial-time computability: a sequential iteration of a list of partial solvers that tracks
progress, and a lift operator testing soundness of edge removals by exploring consequences of edge
commitments for a partial solver.

We instantiated these composition operators with partial solvers from the literature and applied
them experimentally to study games that such composed partial solvers cannot simplify. These
games, seen as data, led to the incremental design of new partial solvers, even to a new method
that merges nodes known to have the same but unknown winner. We proved the soundness of
these new solvers. Our focus was on computing winning regions, not winning strategies. It would
be of interest to understand whether we could also compute memoryless winning strategies within
this framework, in which winning strategies with finite memory are computable in principle.

We unit tested the implementation of our framework to validate experimental results. The
latter demonstrated the effectiveness of such a sequence of refined partial solvers: after only a few
refinement steps we arrived at a partial solver that not only solved all structured games from the
state-of-the-art benchmark suite for parity games, but whose lifted version also solved all random
games generated within a month of calendar time. We think this is compelling evidence that there
are very effective polynomial-time partial solvers for parity games.

The strength of this work is that is yields effective partial solvers that are guaranteed to run
in polynomial time. But this is also its weakness in that we do not, at present, have a good
understanding of what types of parity games are solved completely for certain partial solvers.
More powerful versions of Theorem 1, which extend to classes of 2-playergames, would be a first
step in addressing that weakness.

Acknowledgements: We thank Nir Piterman very much for his comments on drafts of this
technical report.

References
[1] Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S.: DAG-width and parity

games. In: STACS 2006, Proceedings of the 23rd Symposium on Theoretical As-
pects of Computer Science. LNCS, vol. 3884, pp. 524–436. Springer-Verlag (2006),
http://mtc.epfl.ch/ dwb/pub/dagwidth.pdf

[2] Berwanger, D., Grädel, E., Kaiser, L., Rabinovich, R.: Entanglement and
the complexity of directed graphs. Theor. Comput. Sci. 463, 2–25 (2012),
http://dx.doi.org/10.1016/j.tcs.2012.07.010

[3] Emerson, E., Jutla, C.: Tree automata, µ-calculus and determinacy. In: Proc. 32nd IEEE
Symp. on Foundations of Computer Science. pp. 368–377 (1991)

[4] Fearnley, J.: Non-oblivious strategy improvement. In: Logic for Programming, Artificial In-
telligence, and Reasoning - 16th International Conference, LPAR-16, Dakar, Senegal, April
25-May 1, 2010, Revised Selected Papers. pp. 212–230 (2010)

14

[5] Fearnley, J., Schewe, S.: Time and space results for parity games with
bounded treewidth. Logical Methods in Computer Science 9(2) (2013),
http://dx.doi.org/10.2168/LMCS-9(2:6)2013

[6] Friedmann, O., Lange, M.: Solving parity games in practice. In: Liu, Z., Ravn, A. (eds.) Proc.
of Automated Technology for Verification and Analysis. Lecture Notes in Computer Science,
vol. 5799, pp. 182–196. Springer (2009)

[7] Friedmann, O., Lange, M.: The PGSolver Collection of Parity Game Solvers. Tech. rep.,
Institut für Informatik, LMU Munich (Feb 2010), version 3

[8] Friedmann, O.: Recursive algorithm for parity games requires exponential time. In: RAIRO
- Theor. Inf. and Applic. 45(4): 449–457, 2011.

[9] Huth, M., Kuo, J., Piterman, N.: The Rabin index of parity games: Its complexity and
approximation. Information and Computation (2015), to appear

[10] Huth, M., Kuo, J.H., Piterman, N.: Fatal attractors in parity games. In: Pfenning,
F. (ed.) Foundations of Software Science and Computation Structures - 16th Interna-
tional Conference, FOSSACS 2013, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Pro-
ceedings. Lecture Notes in Computer Science, vol. 7794, pp. 34–49. Springer (2013),
http://dx.doi.org/10.1007/978-3-642-37075-5

[11] Huth, M., Kuo, J.H., Piterman, N.: Fatal attractors in parity games: Building blocks for
partial solvers. CoRR abs/1405.0386 (2014)

[12] Huth, M., Kuo, J.H., Piterman, N.: Static analysis of parity games: alternating reachability
under parity. In: Christian W. Probst, Chris Hankin, René Rydhof Hansen (ed.) Semantics,
Logics, and Calculi – Essays Dedicated to Hanne Riis Nielson and Flemming Nielson on the
Occasion of Their 60th Birthday, January 2016, Copenhagen, Denmark. Lecture Notes in
Computer Science, vol. 9560, pp. 159-177. Springer (2016).

[13] Huth, M., Piterman, N., Wang, H.: A workbench for preprocessor design
and evaluation: toward benchmarks for parity games. ECEASST 23 (2009),
http://eceasst.cs.tu-berlin.de/index.php/eceasst/article/view/324

[14] Jurdziński, M.: Small progress measures for solving parity games. In: Proc. 17th Symp. on
Theoretical Aspects of Computer Science. Lecture Notes in Computer Science, vol. 1770, pp.
290–301. Springer-Verlag (2000)

[15] Jurdziński, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm for solving
parity games. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms. pp. 117–
123. ACM/SIAM (2006)

[16] Jurdziński, M.: Deciding the winner in parity games is in UP∩ co-UP. Inf. Process. Lett. 68,
119–124 (November 1998)

[17] Keiren, J.J.: Benchmarks for parity games. In: Proc. of Int’l Conf. on Fundamentals of
Software Engineering (FSEN). Springer (2015)

15

[18] Mostowski, A.W.: Games with forbidden positions. Tech. Rep. 78, University of Gdańsk
(1991)

[19] Schewe, S.: An optimal strategy improvement algorithm for solving parity and payoff games.
In: Kaminski, M., Martini, S. (eds.) Computer Science Logic, 22nd International Workshop,
CSL 2008, 17th Annual Conference of the EACSL, Bertinoro, Italy, September 16-19, 2008.
Proceedings. Lecture Notes in Computer Science, vol. 5213, pp. 369–384. Springer (2008).

[20] Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving parity games.
In: Proc 12th Int. Conf. on Computer Aided Verification. Lecture Notes in Computer Science,
vol. 1855, pp. 202–215. Springer (2000)

[21] Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on
infinite trees. Theoretical Computer Science 200(1–2), 135–183 (1998)

A Proofs
This section contains proofs of lemmas and theorems in this paper.

Proof of Lemma 1: All five state transformations can be computed in polynomial time; this is
clear for scc and pp. It follows for fa from [10], for ari from [9], and for gfa from [12]. It is clear
that all these analyses satisfy properties P1-P4. The analyses scc, pp, and ari either return the
same state s or decrease the color of exactly one node in s.G′. Therefore, it suffices to show that
these decreases do not change the winning region of s.G′. For scc and pp this is well known, and for
ari this is shown in [9]. The analyses fa and gfa both change state in the same manner and so the
argument for s′ being a state is the same: the rank of s′.G′ is less than that of s.G′, which is less than
or equal to the rank of s.G; thus, r(s′.G′) ≤ r(s′.G) follows as s′.G equals s.G. Relation ρ′ has the
right type (as all pairs (u, v) from ρ with u in Z have been moved to W0, without loss of generality).
Since W1 won’t change in s′, and since Z is won by player 0 in s.G′, we infer that also Win1[G′ \ Z]
equals Win1[G′]. Therefore, the union of W1 and Win1[G′ \ Z]•ρ′ is Win1[G] since s is a state and ρ′
equals ρ on domain V ′\Z. But we also have W0∪Win0[G′]•ρ = Win0[G], where we may decompose
the former to W0∪((Z•ρ)∪(Win0[G′]\Z)•ρ) = (W0∪Z•ρ)∪(Win0[G′ \ Z])•ρ = s′.W0∪Win0[s′.G′].
QED.

Proof of Lemma 2: Let f1, . . . , fk be all in P . Let g = while(f1, . . . , fk). We need to show
that g is in P . Let s be in Σ. Let Ai be a polynomial-time algorithm for computing fi. Then an
algorithm A for the execution of g at s will apply A1 to s and return A1(s) if its rank is smaller
than that of s. Otherwise, it will apply A2 and so forth. Either one of these Ai decreases the rank
and then A1 starts again, or A terminates. Either way, the number of times that each Ai is called
is bounded by r(s.G′), and each Ai is polynomial-time in the size of the respective games in s.
Therefore, A itself is polynomial-time as well.

It remains to show that g is a partial solver. Since each fi maps states to states, it follows
from the definition of g that it also maps states to states. So it remains to prove that g satisfies
properties P1-P4. Since all fi satisfy P1-P3, it immediately follows that g also satisfies P1-P3.
But no fi removes nodes from the sets that classify winners by P4. By definition of g, this implies
that g satisfies P4 as well. QED.

Proof of Theorem 1: Let s be in Σg. Since scc′, ari, and fa are contained in {f1, . . . , fk}
and g equals while(f1, . . . , fk), we have that Σg is contained in Σscc′ ∩ Σari ∩ Σfa. Proof by

16

contradiction: Assume that s.G′ is a 1-player game. Without loss of generality, all nodes in s.G′
are owned by player p. In particular, any cycle in s.G′ whose color has parity p would give rise to
a fatal attractor for player p in s.G′, but s.G′ is residual for g and so residual for fa as well. But
then the parity of the color of all cycles in the game s.G′ must equal 1− p. Consider a node z of
a terminal SCC C in s.G′. Then c′z, the maximal color of all cycles in s.G′ through z, must have
parity 1 − p as we showed that this is the case for all cycles in s.G′. Since c(z) ≥ c′z and since
s.G′ is in Σari, this implies that c(z) = c′z and so c(z) has parity 1 − p. Since s is in Σscc′ , this
implies that all nodes in the SCC C have the same color, and of parity 1 − p. But then player p
cannot escape from reaching such nodes, and so player 1− p would have a fatal attractor in s.G′,
a contradiction to s being in Σfa. Therefore, s.G′ cannot be a 1-player game. QED.

Proof of Lemma 3: Let A be in P with semantics f . We first consider lifted(f) and show that it
is of type Σf → Σ and can be computed by lifted(A) in polynomial time. Let s be in Σf . We first
want to show that lifted(f)(s) is in Σ. Either lifted(f)(s) returns s, which is contained in Σ or it
returns something that equals s except that s.G′ is simplified by removing one or more outgoing
edges of v in s.G′, without introducing deadlocks. Since this decreases the rank of s.G′ and leaves
sets s.Wp unchanged, it suffices to show that s.G′ and the simpler game have the same winning
regions. We have two cases.

Case 1: Let the simpler game lifted(f)(s).G′ be H(v,w). Then v has at least one more outgoing
edge in s.G′ other than (v, w), is owned by player p, and the partial solver f when run on the
initial configuration for game H(v,w) decides that player p wins node v in H(v,w). But then we know
that H(v,w) and s.G′ have the same winning strategies: Win1−p[s.G′] is contained in Win1−p[H(v,w)]
since the latter game removes some edge for player p only. Since parity games are determined, it
suffices to show that Winp[s.G′] is contained in Winp[H(v,w)]. Let τ be a memoryless strategy for
player p that is winning in node set Winp[s.G′] in s.G′. We define a strategy γ : V ∗ · Vp → V for
player p in H(v,w) as follows: as long as node v has not been reached in a play, γ plays like τ ; if
and when node v is reached, γ plays a strategy that witnesses that node v is won by player p in
H(v,w). Then γ is a winning strategy for player p in Winp[s.G′] in H(v,w).

Case 2: Otherwise, the simpler game lifted(f)(s).G′ must be H \ (v, w). Then we know that
player 1− p wins node v in s.G′. Then removing the edge (v, w) from that game won’t change any
winning regions as v is owned by player p who loses that node in H(v,w), and that resulting game
is H \ (v, w).

As for computational complexity, we note that state changes in the computation of lifted(A)
only ever change the component s.G′ and leave all other components the same. Since lifted(f)
does not increase rank, it follows that there are at most r(s) many calls to A in lifted(A) which
computes lifted(f)(s). This computation therefore takes time polynomial in the respective sizes of
games in s, as this is the case for A as well.

Finally, let s be in Σ. Then the algorithm while(A, lifted(A)) has semantics while(f, lifted(f))
and, by virtue of Lemma 2, is running in polynomial time in the sizes of the games in s since this
is true for A and lifted(A). Since f has type Σ→ Σ and lifted(f) has type Σf → Σ, the semantics
of while(f, lifted(f)) ensures that it has then type Σ → Σ and so while(A, lifted(A)) is a partial
solver. QED.

Proof of Theorem 2: Clearly, mss is computing in polynomial time in the size of states. Prop-
erties P1-P4 are obviously satisfied for mss(s), so it remains to show that mss(s) as in (2) defines
a state. By definition of merge(ρ,X, z) and since s is a state, we know that mss(s).Wp unioned
with the image of the winning region for player p in mss(s).G′ under relation merge(ρ,X, z) will

17

equal Winp[s.G]. Therefore, it suffices to that end to show that v and w have the same winner in
s.G′: For p with v ∈ Vp we use that s.G′ is determined. Let player p win node w in s.G′. Then
player p also wins node v since w is in Winp[s.G′] and the latter is closed under p-attractors in s.G′.
Otherwise, player 1 − p wins node w and so v is in the (1 − p)-attractor of Win1−p[s.G′] (which
equals Win1−p[s.G′]) since w is in Win1−p[s.G′] and w is the only successor of v in s.G′. QED.

Proof of Theorem 3: Let us first understand that mscc can be computed in time polynomial in
the sizes of games in s. We need to find such H and X for at most |C(s.G′) | many colours, which
is bounded by r(s.G′). For each such color d, the game graph H can be computed in time linear
in |s.G′ |. The SCC decomposition of H uses Tarjan’s algorithm, which is polynomial time in H.
Then we need to inspect at worst all SCCs C of H, whose number is bounded by |s.V ′ |, to see
whether C contains such a desired X. Let Z be the set of all nodes in such an SCC C of color d:
• Let Z contain less than 2 elements. Then we ignore this SCC.

• Let Z contain at least two elements. Proof by Contradiction: Suppose there is no edge
from Z in s.G′ to a node not in Z. Then Z is a fatal attractor for player p in s.G′ for color d:
even though all nodes in Z are owned by player 1−p, that player cannot escape this set with
opposing color. But by assumption, s.G′ has no fatal attractors, a contradiction. Therefore,
there is some edge (v, w) in s.E ′ with v in Z and w 6∈ Z. Thus, we may set X to be that Z.

In other words, the analysis mscc only does not change the state s if for all colours d, all SCCs of
H (which depends on d) have at most one element of color d. And the analysis mscc(s) can be
computed in polynomial time in the sizes of games in s. It is routine to show that mscc(s) satisfies
properties P1-P4, assuming that mscc(s) is a state. Therefore, we focus on showing the latter.
Clearly, the rank of mscc(s) is less than or equal to r(s), either the state does not change or the
new state has at least one less node and no more edges or total color sum than before.

For d, p, and X meeting the assumptions of mscc(s) we argue that all nodes in X are won by
the same player in parity game s.G′: Let us assume that player 1 − p wins some node x in X in
game s.G′. Player 1− p can reach all nodes in X from x in s.G′, since X is an SCC in the game
graph H whose nodes are all owned by player 1−p, and since H is a sub-graph of s.G′. Therefore,
player 1 − p can attract all of X to x and so win all of X in s.G′. Therefore, either player 1 − p
wins all nodes of X in s.G′, or player 1− p wins none of the nodes of X in s.G′. But this means,
by determinacy, that X is won by the same player in parity game s.G′.

Next, let G′′ be the parity game mscc(s).G′. Since s is a state, we know that s.Wp∪Winp[s.G′]•ρ
equals Winp[s.G]. By the definition of merge(ρ,X, z) applied to mscc, we learn from that that
mscc(s).Wp unioned with the image of the winning region of player p in mscc(s).G′ under relation
merge(ρ,X, z) equals Winp[s.G] as well. Therefore, it remains to show two things: all nodes v 6= z
in G′′ have the same winner in G′′ and in s.G′; and node z in G′′ has the same winner in G′′ as
node set X has in s.G′.

Let v 6= z be a node in G′′. We do a case analysis over who wins that node in G′′:
• Let v be won by player p in G′′. Then player p has a memoryless winning strategy τ in G′′

for his winning region in G′′. Note that z and all nodes in X are owned by player 1 − p.
Therefore, τ is also a strategy of player p in game s.G′. We claim that τ is winning for player
p for node v in s.G′ as well. Let π be any infinite play conformant with τ and starting at v
in s.G′.

– Let an infinite suffix of π be in node set X. Then the set Inf(π) equals {d} as d is the
only color infinitely occurring in π. Since d has parity p, player p wins π in s.G′.

18

– Otherwise, there is at least one node w not in X that occurs in π infinitely often. But
then π eventually leaves X each time it enters X, and so π corresponds to an infinite
play π′ in G′′ that is conformant with τ and such that all maximal finite sub-plays in π
that are in node set X are replaced with the play consisting of the sole move z. Since
z and all nodes in X have color d, the outcome of the plays π and π′ is the same. But
π′ is won by player p in G′′ as it is conformant with τ . So π is won by player p in s.G′.

• Let v be won by player 1 − p in G′′ and let γ be a memoryless winning strategy for player
1 − p on his winning region in G′′. We construct a strategy for player 1 − p in s.G′ that
contains finite memory as follows: By definition of G′′, we know that τ(z) is neither z nor
in X. By the definition of the edge relation in G′′, there must exist some x∗ in X such that
(x∗, τ(z)) is in s.E ′. Strategy γ behaves the same as τ as long as, and until, a play reaches a
node x in X. If x equals x∗, then γ moves to τ(z) – noting that (x∗, τ(z)) is an edge in s.G′.
Otherwise, γ moves on a finite path from x to x∗ (in some deterministic manner, without
leaving X). So let π′ be the resulting infinite play in s.G′ that is conformant with γ, begins
in v, and where player p makes the same moves as in π (if we abstract any maximal sub-play
of nodes from X in π′ to z in π). Since player 1− p wins π, there is some node u on π that
occurs infinitely often and whose color decides that play. In particular, u 6= z and the parity
of c(u) is 1 − p. But then the path π′ contains u infinitely often as well: only z is replaced
by a finite path in X (of color d) and the predecessors and successors of z on π (which are
not in X by construction) are also predecessors, respectively, successors of nodes from X in
π. Since π′ does not change the set of colours occurring on π (infinitely or not), this means
that c(u) also decides the winner of play π′, and that is player 1− p.

The above case analysis also applies to plays that begin in node z; in this case, there is just one
occurrence of z on π that does not have a predecessor but this is immaterial to the above argument.
QED.

Proof of Theorem 4: Let s be in Σfa. Properties P1-P4 are clearly satisfied of erfa(s). The
algorithm A that computes erfa(s) makes at most |s.E ′ | many calls to partial solver fa on states
whose rank is smaller than r(s). Since fa is in P , algorithm A computes erfa(s) in polynomial time
in the sizes of games in s.

Thus it suffices to show that s \ (v, w) is a state. Since no nodes are removed and ρ remains
the same, it suffices to show that removing the edge (v, w) won’t change the winning regions in
s.G′. Let p be such that v ∈ Vp.

Case 1: If v is in Win1−p[s.G′], then removing that edge won’t change winning regions as
Win1−p[s.G′] is a p-trap in s.G′.

Case 2: Otherwise, v must be in Winp[s.G′]. There are no fatal attractors in s.G′ but there
is a fatal attractor X in s.G′(v,w) for some color d. Then the winning strategy for player p′ = d%2
for this fatal attractor, which reaches from all nodes in X again nodes in X such that only nodes
of color ≥ d are encountered en route, would also be winning in s.G′ if p′ where to be p, as then
player p could choose move (v, w) at node v to conclude that X is a fatal attractor in s.G′. This
contradiction shows that p′ = 1− p. But then the move (v, w) cannot be a part of any memoryless
strategy that is winning on Winp[s.G′] in game s.G′ for player p: otherwise, the winning strategy
for the fatal attractor X in s.G′(v,w) would also realise X as a fatal attractor in s.G′ – contradicting
the soundness of the partial solvers.

To summarise, it is safe to remove that edge without changing the winning regions of s.G′ and
erfa(s).G′. QED.

19

Proof of Theorem 5: First, we show that ersd can be computed in polynomial time. For each
edge (v, w) in s/G′ with v 6= w, we explore any z in s.V ′ different from v and w, and do suitable
SCC decompositions to determine whether there are desired paths from v to z and from w to z.
For p = c(v)%2, we may determine paths Pvz by restricting nodes of s.G′ to those owned by player
p or being deterministic. Then we can do an SCC decomposition of the resulting game graph.
Using that decomposition, we can decide whether such a path exists and, if so, determine the most
preferred color cv of such paths for player p, with respect to �p . Similarly, we may restrict the game
graph of s.G′ to nodes owned by player 1−p or being deterministic and do an SCC decomposition
on the resulting game graph. If a path Pwz exists, we may use that SCC decomposition to find a
path with the least preferred color cw of such a path for player p, with respect to �p . If cv�p ccw,
then we have found an instance of ersd where we may remove edge (v, w) from s.G′. Otherwise,
we explore the next element z. If all candidates z have been explored unsuccessfully, we move to
the next edge of s.G′. The first phase of this algorithm is clearly polynomial time in r(s.G′); the
state update (as second phase) is clearly polynomial time in r(s.G).

Second, let p, v, w, z, cv, cw be as above. Let H = (V ′, V ′0 , V ′1 , E ′ \ {(v, w)}, c′) be the game
s.G′(v,w). We claim that Winp′ [H] = Winp′ [s.G′] for all p′ in {0, 1}. Note that H is obtained
by removing an edge from a node in s.G′ that is owned by player p. Therefore, we have that
Win1−p[s.G′] is contained in Win1−p[H]. Since parity games are determined, it therefore suffices to
show that Winp[s.G′] is contained in Winp[H]. Let τ be a strategy that is winning on Winp[s.G′] in
game s.G′ for player p. We will use τ and finite memory to construct a strategy γ that is winning
for player p on Winp[s.G′] in the parity game H – which has the same node set as s.G′.

Case 1: Assume that τ(v) 6= w. Then we set γ = τ . Consider any play that begins in
Winp[s.G′] and is conformant with τ . By our assumption, this play is also one in s.G′ and is
conformant with τ . Since τ is winning on Winp[s.G′] in s.G′, we infer that this play is won by
player p in H as well. Therefore, strategy γ is winning for player p on Winp[s.G′] in H.

Case 2: Assume that τ(v) = w. We define γ with finite memory as follows: Consider any
finite play δ = v0v1 . . . vn in H with vn ∈ Vp such that v is not in δ. Then γ(δ) = τ(vn). In other
words, if v has not been encountered yet in a play, γ plays as τ does. Otherwise, let δ be such that
vn equals v and v 6= vj for all 0 ≤ j < n. Then γ(δ) will be the next node on the control path Pvz.
In fact, γ will keep playing path Pvz as the next moves, extending δ to δ′ = δvc1 . . . vcn where Pvz
equals vc0 , . . . , vcn with ccn = z. Note that player 1 − p cannot avoid this extension from δ to δ′,
since all nodes that she may own on that path are deterministic. Next, the behaviour of γ on δ′,
expression γ(δ′), is defined as described above: it will play like τ until and if it reaches v again,
where it will play the control path Pvz again.

Let x be an arbitrary element in Winp[s.G′] and let π be now any infinite play in H beginning in
x and conformant with γ. We need to show that π is won by player p. Without loss of generality,
we may assume that π is also conformant with a strategy σ for player 1 − p in H. Note that π
does not necessarily define such a σ uniquely; π determines the output of σ for all finite prefixes
of π that require moves of player 1 − p, and we can extend σ for other input in any which way.
Since node v is not owned by player 1− p, it is clear that the set of such strategies σ is the same
for player 1 − p in s.G′ and in H. Also note that σ may require finite memory, as the play π is
any play conformant with γ. It remains to show that play π is won by player p.

We now define a strategy σ′ : (V ′)∗ ·V ′1−p → V ′ for player 1−p in game s.G′ out of σ as follows:
for all y in V1−p with y 6= w and all α in (V ′)∗, we set σ′(αy) = σ(αy). For y = w, we distinguish
two cases, for α in (V ′)∗: If α is of form α′v, then we set σ′(α′vw) = wc1 , where wc1 is the first
next node on the control path Pwz; and then σ′ will follow that control path Pwz until it has
reached z. Otherwise (when α does not end in v, including the case in which α is empty), we set

20

σ′(αw) = σ(w). Let π′ be the play that starts in the above x and is conformant with τ and with
σ′ (this play is uniquely determined).

To summarize, we have an infinite play π in H conformant with γ and σ, and an infinite play
π′ in s.G′ conformant with τ and σ′, where both plays start at an element x in Winp[s.G′]. Since
τ is winning for player p on Winp[s.G′] in s.G′, this means that

cπ′ = min(Inf(π′)) has parity p (4)

Let us now define
cπ = min(Inf(π)) (5)

If we can show that cπ�p cπ′ , then (4) and the definition of �p imply that cπ has parity p. This
will conclude the proof that γ is winning on Winp[s.G′] in H, since π was an arbitrary play in that
game starting at an arbitrary element of Winp[s.G′] and conformant with γ.

We note that whenever the plays π and π′ reach the node v, then both continue with the
respective path Pvz (without its first element that has been already reached) and Pwz, respectively.
For example, in Figure 5 path Pvz equals v0, v16, v21, v8 and path Pwz equals v20, v19, v8.

Case 2.1: Let v occur in π′ infinitely often. Then v must occur also in π infinitely often. Since
τ(v) = w, this means that all nodes on Pwz occur in π′ infinitely often as well. By the definition
of γ, all nodes on Pvz occur in π infinitely often as node v occurs there infinitely often.

The smallest color of Pvz is cv, whereas the smallest color of Pwz is cw. Now, we know that
cv�p cw. Let c∗ be the minimal color of the path v, Pwz. Note that c∗ equals min(c′(v), cw) as the
path is v, Pwz and cw is the color of path Pwz. We claim that cv�p c∗:

• Let cw ≤ c′(v). Then c∗ equals cw and so cv�p c∗ follows from cv�p cw.

• Otherwise, let cw > c′(v). Then c∗ equals c′(v) and so it remains to show that cv�p c′(v).
Since v is on path Pvz, we infer that c′(v) ≥ cv. By transitivity, we get cw > cv from
cw > c′(v) ≥ cv. But then cv�p cw implies that cv has parity p by definition of �p . To show
cv�p c′(v) (= c∗), we note that

– if c′(v) has parity p, then cv�p c′(v) follows since c′(v) ≥ cv and cv has parity p, and
– if c′(v) has parity 1− p, then cv�p c′(v) follows since cv has parity p.

It remains to consider nodes that occur infinitely often in either π or π′ but neither on Pvz nor
on Pwz. By the definition of π and π′, it is clear that such a node occur on π infinitely often if
and only if it occur in π′ infinitely often. To summarise, we have shown that for each c′ in Inf(π′)
there is some c in Inf(π) such that c�p c′. And this implies cπ�p cπ′ as desired.

Case 2.2: Let v not occur in π infinitely often. Then the plays π and π′ are indistinguishable
in s.G′ and H and so cπ�p cπ′ is clearly the case. QED.

B Keiren’s benchmarks
Keiren [17] proposed a comprehensive benchmark suite of parity games that come from four cate-
gories of problems. We downloaded the archive for these benchmarks containing the games under
the bz2 format. We kept only those files under 200KB. We decompressed them and kept only the
txt files under 200KB. This gave us a total of 481 games – respectively 93, 146, 169, 73 games in
each category equivchecking, mlsolver, modelchecking, and pgsolver.

21

B.1 List of solved games
Here are log entries of the games that were solved completely (all of them correctly as well) by
ps1:

B.1.1 equivchecking

ABP_ABP(BW)_(datasize=2_capacity=1_windowsize=1)eq=branching-bisim.gm
ABP_ABP(BW)_(datasize=2_capacity=1_windowsize=1)eq=branching-sim.gm
ABP_ABP(BW)_(datasize=2_capacity=1_windowsize=1)eq=strong-bisim.gm
ABP_ABP(BW)_(datasize=2_capacity=1_windowsize=1)eq=weak-bisim.gm
ABP_ABP(BW)_(datasize=4_capacity=1_windowsize=1)eq=strong-bisim.gm
ABP_ABP_(datasize=2_capacity=1_windowsize=1)eq=branching-bisim.gm
ABP_ABP_(datasize=2_capacity=1_windowsize=1)eq=branching-sim.gm
ABP_ABP_(datasize=2_capacity=1_windowsize=1)eq=strong-bisim.gm
ABP_ABP_(datasize=2_capacity=1_windowsize=1)eq=weak-bisim.gm
ABP_ABP_(datasize=4_capacity=1_windowsize=1)eq=strong-bisim.gm
ABP(BW)_ABP(BW)_(datasize=2_capacity=1_windowsize=1)eq=strong-bisim.gm
ABP(BW)_ABP(BW)_(datasize=4_capacity=1_windowsize=1)eq=strong-bisim.gm
ABP(BW)_CABP_(datasize=2_capacity=1_windowsize=1)eq=strong-bisim.gm
ABP(BW)_CABP_(datasize=4_capacity=1_windowsize=1)eq=strong-bisim.gm
ABP(BW)_Onebit_(datasize=2_capacity=1_windowsize=1)eq=strong-bisim.gm
ABP(BW)_Onebit_(datasize=3_capacity=1_windowsize=1)eq=strong-bisim.gm
ABP(BW)_Par_(datasize=2_capacity=1_windowsize=1)eq=strong-bisim.gm
ABP(BW)_Par_(datasize=2_capacity=1_windowsize=1)eq=weak-bisim.gm
ABP(BW)_Par_(datasize=4_capacity=1_windowsize=1)eq=strong-bisim.gm
ABP(BW)_SWP_(datasize=2_capacity=1_windowsize=1)eq=strong-bisim.gm
ABP(BW)_SWP_(datasize=4_capacity=1_windowsize=1)eq=strong-bisim.gm
ABP_CABP_(datasize=2_capacity=1_windowsize=1)eq=strong-bisim.gm
ABP_CABP_(datasize=4_capacity=1_windowsize=1)eq=strong-bisim.gm
ABP_Onebit_(datasize=2_capacity=1_windowsize=1)eq=strong-bisim.gm
ABP_Onebit_(datasize=3_capacity=1_windowsize=1)eq=strong-bisim.gm
ABP_Par_(datasize=2_capacity=1_windowsize=1)eq=branching-bisim.gm
ABP_Par_(datasize=2_capacity=1_windowsize=1)eq=branching-sim.gm
ABP_Par_(datasize=2_capacity=1_windowsize=1)eq=strong-bisim.gm
ABP_Par_(datasize=2_capacity=1_windowsize=1)eq=weak-bisim.gm
ABP_Par_(datasize=4_capacity=1_windowsize=1)eq=strong-bisim.gm
ABP_SWP_(datasize=2_capacity=1_windowsize=1)eq=strong-bisim.gm
ABP_SWP_(datasize=4_capacity=1_windowsize=1)eq=strong-bisim.gm
Buffer_ABP(BW)_(datasize=2_capacity=1_windowsize=1)eq=branching-bisim.gm
Buffer_ABP(BW)_(datasize=2_capacity=1_windowsize=1)eq=branching-sim.gm
Buffer_ABP(BW)_(datasize=2_capacity=1_windowsize=1)eq=strong-bisim.gm
Buffer_ABP(BW)_(datasize=2_capacity=1_windowsize=1)eq=weak-bisim.gm
Buffer_ABP(BW)_(datasize=4_capacity=1_windowsize=1)eq=branching-bisim.gm
Buffer_ABP(BW)_(datasize=4_capacity=1_windowsize=1)eq=branching-sim.gm
Buffer_ABP(BW)_(datasize=4_capacity=1_windowsize=1)eq=strong-bisim.gm
Buffer_ABP(BW)_(datasize=4_capacity=1_windowsize=1)eq=weak-bisim.gm
Buffer_ABP_(datasize=2_capacity=1_windowsize=1)eq=branching-bisim.gm
Buffer_ABP_(datasize=2_capacity=1_windowsize=1)eq=branching-sim.gm
Buffer_ABP_(datasize=2_capacity=1_windowsize=1)eq=strong-bisim.gm

22

Buffer_ABP_(datasize=2_capacity=1_windowsize=1)eq=weak-bisim.gm
Buffer_ABP_(datasize=4_capacity=1_windowsize=1)eq=branching-bisim.gm
Buffer_ABP_(datasize=4_capacity=1_windowsize=1)eq=branching-sim.gm
Buffer_ABP_(datasize=4_capacity=1_windowsize=1)eq=strong-bisim.gm
Buffer_ABP_(datasize=4_capacity=1_windowsize=1)eq=weak-bisim.gm
Buffer_CABP_(datasize=2_capacity=1_windowsize=1)eq=branching-bisim.gm
Buffer_CABP_(datasize=2_capacity=1_windowsize=1)eq=branching-sim.gm
Buffer_CABP_(datasize=2_capacity=1_windowsize=1)eq=strong-bisim.gm
Buffer_CABP_(datasize=2_capacity=1_windowsize=1)eq=weak-bisim.gm
Buffer_CABP_(datasize=4_capacity=1_windowsize=1)eq=strong-bisim.gm
Buffer_Onebit_(datasize=2_capacity=1_windowsize=1)eq=strong-bisim.gm
Buffer_Onebit_(datasize=2_capacity=2_windowsize=1)eq=strong-bisim.gm
Buffer_Onebit_(datasize=3_capacity=1_windowsize=1)eq=strong-bisim.gm
Buffer_Onebit_(datasize=3_capacity=2_windowsize=1)eq=strong-bisim.gm
Buffer_Par_(datasize=2_capacity=1_windowsize=1)eq=branching-bisim.gm
Buffer_Par_(datasize=2_capacity=1_windowsize=1)eq=branching-sim.gm
Buffer_Par_(datasize=2_capacity=1_windowsize=1)eq=strong-bisim.gm
Buffer_Par_(datasize=2_capacity=1_windowsize=1)eq=weak-bisim.gm
Buffer_Par_(datasize=4_capacity=1_windowsize=1)eq=branching-bisim.gm
Buffer_Par_(datasize=4_capacity=1_windowsize=1)eq=branching-sim.gm
Buffer_Par_(datasize=4_capacity=1_windowsize=1)eq=strong-bisim.gm
Buffer_Par_(datasize=4_capacity=1_windowsize=1)eq=weak-bisim.gm
Buffer_SWP_(datasize=2_capacity=1_windowsize=1)eq=branching-bisim.gm
Buffer_SWP_(datasize=2_capacity=1_windowsize=1)eq=branching-sim.gm
Buffer_SWP_(datasize=2_capacity=1_windowsize=1)eq=strong-bisim.gm
Buffer_SWP_(datasize=2_capacity=1_windowsize=1)eq=weak-bisim.gm
Buffer_SWP_(datasize=2_capacity=2_windowsize=1)eq=branching-bisim.gm
Buffer_SWP_(datasize=2_capacity=2_windowsize=1)eq=branching-sim.gm
Buffer_SWP_(datasize=2_capacity=2_windowsize=1)eq=strong-bisim.gm
Buffer_SWP_(datasize=2_capacity=2_windowsize=1)eq=weak-bisim.gm
Buffer_SWP_(datasize=4_capacity=1_windowsize=1)eq=branching-bisim.gm
Buffer_SWP_(datasize=4_capacity=1_windowsize=1)eq=branching-sim.gm
Buffer_SWP_(datasize=4_capacity=1_windowsize=1)eq=strong-bisim.gm
Buffer_SWP_(datasize=4_capacity=1_windowsize=1)eq=weak-bisim.gm
Buffer_SWP_(datasize=4_capacity=2_windowsize=1)eq=strong-bisim.gm
CABP_Par_(datasize=2_capacity=1_windowsize=1)eq=strong-bisim.gm
CABP_Par_(datasize=4_capacity=1_windowsize=1)eq=strong-bisim.gm
Hesselink_(Implementation)_Hesselink_(Specification)_(datasize=2)eq=strong-bisim.gm
Hesselink_(Implementation)_Hesselink_(Specification)_(datasize=3)eq=strong-bisim.gm
Hesselink_(Specification)_Hesselink_(Implementation)_(datasize=2)eq=strong-bisim.gm
Hesselink_(Specification)_Hesselink_(Implementation)_(datasize=3)eq=strong-bisim.gm
Par_Onebit_(datasize=2_capacity=1_windowsize=1)eq=strong-bisim.gm
Par_Onebit_(datasize=4_capacity=1_windowsize=1)eq=strong-bisim.gm
Par_Par_(datasize=2_capacity=1_windowsize=1)eq=branching-bisim.gm
Par_Par_(datasize=2_capacity=1_windowsize=1)eq=branching-sim.gm
Par_Par_(datasize=2_capacity=1_windowsize=1)eq=strong-bisim.gm
Par_Par_(datasize=2_capacity=1_windowsize=1)eq=weak-bisim.gm
Par_Par_(datasize=4_capacity=1_windowsize=1)eq=strong-bisim.gm
Par_SWP_(datasize=2_capacity=1_windowsize=1)eq=strong-bisim.gm
Par_SWP_(datasize=4_capacity=1_windowsize=1)eq=strong-bisim.gm

23

B.1.2 mlsolver

CTLStarBinaryCountern=1_compact.gm
CTLStarBinaryCountern=1.gm
CTLStarBinaryCountern=2_compact.gm
CTLStarBinaryCountern=2.gm
CTLStarBinaryCountern=3_compact.gm
CTLStarBinaryCountern=3.gm
CTLStarBinaryCountern=4_compact.gm
CTLStarBinaryCountern=4.gm
CTLStarBinaryCountern=5_compact.gm
CTLStarBinaryCountern=5.gm
CTLStarBinaryCountern=6_compact.gm
CTLStarBinaryCountern=7_compact.gm
CTLStarBinaryCountern=8_compact.gm
DemriKillerFormulan=1_compact.gm
DemriKillerFormulan=1.gm
DemriKillerFormulan=2_compact.gm
FairSchedulern=1_compact.gm
FairSchedulern=1.gm
FLCTLLimitClosuren=1_compact.gm
FLCTLLimitClosuren=1.gm
FLCTLLimitClosuren=2_compact.gm
FLCTLLimitClosuren=2.gm
FLCTLLimitClosuren=3_compact.gm
FLCTLLimitClosuren=3.gm
FLCTLLimitClosuren=4_compact.gm
FLCTLLimitClosuren=5_compact.gm
Includen=1_compact.gm
Includen=1.gm
Includen=2_compact.gm
Includen=2.gm
Includen=3_compact.gm
Includen=3.gm
Includen=4_compact.gm
Includen=4.gm
Includen=5_compact.gm
Includen=5.gm
Includen=6_compact.gm
Includen=6.gm
Includen=7_compact.gm
Includen=7.gm
Includen=8_compact.gm
Includen=8.gm
LTMucalcBinaryCountern=1_compact.gm
LTMucalcBinaryCountern=1.gm
LTMucalcBinaryCountern=2_compact.gm
LTMucalcBinaryCountern=2.gm
LTMucalcBinaryCountern=3_compact.gm
LTMucalcBinaryCountern=3.gm

24

LTMucalcBinaryCountern=4_compact.gm
LTMucalcBinaryCountern=4.gm
LTMucalcBinaryCountern=5_compact.gm
LTMucalcBinaryCountern=5.gm
LTMucalcBinaryCountern=6_compact.gm
LTMucalcBinaryCountern=6.gm
LTMucalcBinaryCountern=7_compact.gm
LTMucalcBinaryCountern=8_compact.gm
MuCalcLimitClosurephi=p_n=0_compact.gm
MuCalcLimitClosurephi=p_n=0.gm
Nestern=1_compact.gm
Nestern=1.gm
Nestern=2_compact.gm
Nestern=2.gm
ParityAndBuechin=1_compact.gm
ParityAndBuechin=1.gm
ParityAndBuechin=2_compact.gm
ParityAndBuechin=2.gm
PDLBinaryCountern=1_compact.gm
PDLBinaryCountern=1.gm
PDLBinaryCountern=2_compact.gm
PDLBinaryCountern=2.gm
PDLBinaryCountern=3_compact.gm
PDLBinaryCountern=3.gm
PDLBinaryCountern=4_compact.gm
PDLBinaryCountern=4.gm
PDLBinaryCountern=5_compact.gm
PDLBinaryCountern=6_compact.gm
Petrin=1_compact.gm
Petrin=1.gm
Petrin=2_compact.gm
Petrin=2.gm
Petrin=3_compact.gm
Petrin=3.gm
Petrin=4_compact.gm
Petrin=4.gm
Petrin=5_compact.gm
Petrin=5.gm
Petrin=6_compact.gm
Petrin=6.gm
Petrin=7_compact.gm
Petrin=7.gm
Petrin=8_compact.gm
Petrin=8.gm
StarNesterk=1_n=1_compact.gm
StarNesterk=1_n=1.gm
StarNesterk=1_n=2_compact.gm
StarNesterk=1_n=2.gm
StarNesterk=1_n=3_compact.gm
StarNesterk=1_n=3.gm

25

StarNesterk=1_n=4_compact.gm
StarNesterk=1_n=4.gm
StarNesterk=1_n=5_compact.gm
StarNesterk=1_n=5.gm
StarNesterk=1_n=6_compact.gm
StarNesterk=1_n=6.gm
StarNesterk=1_n=7_compact.gm
StarNesterk=1_n=7.gm
StarNesterk=1_n=8_compact.gm
StarNesterk=1_n=8.gm
StarNesterk=2_n=1_compact.gm
StarNesterk=2_n=1.gm
StarNesterk=2_n=2_compact.gm
StarNesterk=2_n=2.gm
StarNesterk=2_n=3_compact.gm
StarNesterk=2_n=3.gm
StarNesterk=2_n=4_compact.gm
StarNesterk=2_n=4.gm
StarNesterk=2_n=5_compact.gm
StarNesterk=2_n=5.gm
StarNesterk=2_n=6_compact.gm
StarNesterk=2_n=6.gm
StarNesterk=2_n=7_compact.gm
StarNesterk=2_n=7.gm
StarNesterk=2_n=8_compact.gm
StarNesterk=2_n=8.gm
StarNesterk=3_n=1_compact.gm
StarNesterk=3_n=1.gm
StarNesterk=3_n=2_compact.gm
StarNesterk=3_n=2.gm
StarNesterk=3_n=3_compact.gm
StarNesterk=3_n=3.gm
StarNesterk=3_n=4_compact.gm
StarNesterk=3_n=4.gm
StarNesterk=3_n=5_compact.gm
StarNesterk=3_n=5.gm
StarNesterk=3_n=6_compact.gm
StarNesterk=3_n=6.gm
StarNesterk=3_n=7_compact.gm
StarNesterk=3_n=7.gm
StarNesterk=3_n=8_compact.gm
StarNesterk=3_n=8.gm

B.1.3 modelchecking

ABP(BW)datasize=2_infinitely_often_enabled_then_infinitely_often_taken.gm
ABP(BW)datasize=2_infinitely_often_read_write.gm
ABP(BW)datasize=2_infinitely_often_receive_d1.gm
ABP(BW)datasize=2_infinitely_often_receive_for_all_d.gm
ABP(BW)datasize=2_invariantly_infinitely_many_reachable_taus.gm

26

ABP(BW)datasize=2_nodeadlock.gm
ABP(BW)datasize=2_no_duplication_of_messages.gm
ABP(BW)datasize=2_no_generation_of_messages.gm
ABP(BW)datasize=2_read_then_eventually_send.gm
ABP(BW)datasize=4_infinitely_often_enabled_then_infinitely_often_taken.gm
ABP(BW)datasize=4_infinitely_often_read_write.gm
ABP(BW)datasize=4_infinitely_often_receive_d1.gm
ABP(BW)datasize=4_infinitely_often_receive_for_all_d.gm
ABP(BW)datasize=4_invariantly_infinitely_many_reachable_taus.gm
ABP(BW)datasize=4_nodeadlock.gm
ABP(BW)datasize=4_no_duplication_of_messages.gm
ABP(BW)datasize=4_no_generation_of_messages.gm
ABP(BW)datasize=4_read_then_eventually_send.gm
ABP(BW)datasize=8_infinitely_often_read_write.gm
ABP(BW)datasize=8_infinitely_often_receive_d1.gm
ABP(BW)datasize=8_infinitely_often_receive_for_all_d.gm
ABP(BW)datasize=8_invariantly_infinitely_many_reachable_taus.gm
ABP(BW)datasize=8_nodeadlock.gm
ABP(BW)datasize=8_no_duplication_of_messages.gm
ABP(BW)datasize=8_no_generation_of_messages.gm
ABP(BW)datasize=8_read_then_eventually_send.gm
ABPdatasize=2_infinitely_often_enabled_then_infinitely_often_taken.gm
ABPdatasize=2_infinitely_often_lost.gm
ABPdatasize=2_infinitely_often_read_write.gm
ABPdatasize=2_infinitely_often_receive_d1.gm
ABPdatasize=2_infinitely_often_receive_for_all_d.gm
ABPdatasize=2_invariantly_infinitely_many_reachable_taus.gm
ABPdatasize=2_nodeadlock.gm
ABPdatasize=2_no_duplication_of_messages.gm
ABPdatasize=2_no_generation_of_messages.gm
ABPdatasize=2_read_then_eventually_send.gm
ABPdatasize=2_read_then_eventually_send_if_fair.gm
ABPdatasize=4_infinitely_often_enabled_then_infinitely_often_taken.gm
ABPdatasize=4_infinitely_often_lost.gm
ABPdatasize=4_infinitely_often_read_write.gm
ABPdatasize=4_infinitely_often_receive_d1.gm
ABPdatasize=4_infinitely_often_receive_for_all_d.gm
ABPdatasize=4_invariantly_infinitely_many_reachable_taus.gm
ABPdatasize=4_nodeadlock.gm
ABPdatasize=4_no_duplication_of_messages.gm
ABPdatasize=4_no_generation_of_messages.gm
ABPdatasize=4_read_then_eventually_send.gm
ABPdatasize=4_read_then_eventually_send_if_fair.gm
ABPdatasize=8_infinitely_often_enabled_then_infinitely_often_taken.gm
ABPdatasize=8_infinitely_often_lost.gm
ABPdatasize=8_infinitely_often_read_write.gm
ABPdatasize=8_infinitely_often_receive_d1.gm
ABPdatasize=8_infinitely_often_receive_for_all_d.gm
ABPdatasize=8_invariantly_infinitely_many_reachable_taus.gm
ABPdatasize=8_nodeadlock.gm

27

ABPdatasize=8_no_duplication_of_messages.gm
ABPdatasize=8_no_generation_of_messages.gm
ABPdatasize=8_read_then_eventually_send.gm
ABPdatasize=8_read_then_eventually_send_if_fair.gm
BRPdatasize=2_nodeadlock.gm
CABPdatasize=2_infinitely_often_enabled_then_infinitely_often_taken.gm
CABPdatasize=2_infinitely_often_read_write.gm
CABPdatasize=2_infinitely_often_receive_d1.gm
CABPdatasize=2_infinitely_often_receive_for_all_d.gm
CABPdatasize=2_invariantly_infinitely_many_reachable_taus.gm
CABPdatasize=2_nodeadlock.gm
CABPdatasize=2_no_duplication_of_messages.gm
CABPdatasize=2_no_generation_of_messages.gm
CABPdatasize=2_read_then_eventually_send.gm
CABPdatasize=4_infinitely_often_receive_d1.gm
CABPdatasize=4_infinitely_often_receive_for_all_d.gm
CABPdatasize=4_invariantly_infinitely_many_reachable_taus.gm
CABPdatasize=4_nodeadlock.gm
CABPdatasize=4_no_duplication_of_messages.gm
CABPdatasize=4_no_generation_of_messages.gm
CABPdatasize=4_read_then_eventually_send.gm
CABPdatasize=8_infinitely_often_receive_d1.gm
CABPdatasize=8_nodeadlock.gm
CCP_3.2._max_copies_per_region.gm
Debug_spec_nodeadlock.gm
Domineeringwidth=4_height=4_player1_has_winning_strategy.gm
Domineeringwidth=4_height=4_player2_has_winning_strategy.gm
Elevatorpolicy=FIFO_storeys=2_always_if_max_floor_requested_eventually_at_max_floor.gm
Elevatorpolicy=FIFO_storeys=3_always_if_max_floor_requested_eventually_at_max_floor.gm
Elevatorpolicy=FIFO_storeys=4_always_if_max_floor_requested_eventually_at_max_floor.gm
Elevatorpolicy=FIFO_storeys=5_always_if_max_floor_requested_eventually_at_max_floor.gm
Elevatorpolicy=FIFO_storeys=6_always_if_max_floor_requested_eventually_at_max_floor.gm
Elevatorpolicy=FIFO_storeys=7_always_if_max_floor_requested_eventually_at_max_floor.gm
Elevatorpolicy=FIFO_storeys=8_always_if_max_floor_requested_eventually_at_max_floor.gm
Elevatorpolicy=LIFO_storeys=2_always_if_max_floor_requested_eventually_at_max_floor.gm
Elevatorpolicy=LIFO_storeys=3_always_if_max_floor_requested_eventually_at_max_floor.gm
Elevatorpolicy=LIFO_storeys=4_always_if_max_floor_requested_eventually_at_max_floor.gm
Elevatorpolicy=LIFO_storeys=5_always_if_max_floor_requested_eventually_at_max_floor.gm
Hanoindisks=8_eventually_done.gm
Leadernparticipants=3_eventually-stable.gm
Lift_(Correct)nlifts=2_liveness_1_1.gm
Lift_(Correct)nlifts=2_liveness_1_2.gm
Lift_(Correct)nlifts=2_liveness_2_1.gm
Lift_(Correct)nlifts=2_liveness_2_2.gm
Lift_(Correct)nlifts=2_nodeadlock.gm
Lift_(Correct)nlifts=2_safety_1.gm
Lift_(Correct)nlifts=2_safety_2_1.gm
Lift_(Correct)nlifts=2_safety_2_2.gm
Lift_(Correct)nlifts=3_liveness_2_1.gm
Lift_(Correct)nlifts=3_liveness_2_2.gm

28

Lift_(Correct)nlifts=3_nodeadlock.gm
Lift_(Correct)nlifts=3_safety_1.gm
Lift_(Correct)nlifts=3_safety_2_1.gm
Lift_(Correct)nlifts=3_safety_2_2.gm
Lift_(Incorrect)nlifts=2_liveness_1_1.gm
Lift_(Incorrect)nlifts=2_liveness_1_2.gm
Lift_(Incorrect)nlifts=2_liveness_2_1.gm
Lift_(Incorrect)nlifts=2_liveness_2_2.gm
Lift_(Incorrect)nlifts=2_nodeadlock.gm
Lift_(Incorrect)nlifts=2_safety_1.gm
Lift_(Incorrect)nlifts=2_safety_2_1.gm
Lift_(Incorrect)nlifts=2_safety_2_2.gm
Pardatasize=2_infinitely_often_enabled_then_infinitely_often_taken.gm
Pardatasize=2_infinitely_often_read_write.gm
Pardatasize=2_infinitely_often_receive_d1.gm
Pardatasize=2_infinitely_often_receive_for_all_d.gm
Pardatasize=2_invariantly_infinitely_many_reachable_taus.gm
Pardatasize=2_nodeadlock.gm
Pardatasize=2_no_duplication_of_messages.gm
Pardatasize=2_no_generation_of_messages.gm
Pardatasize=2_read_then_eventually_send.gm
Pardatasize=4_infinitely_often_enabled_then_infinitely_often_taken.gm
Pardatasize=4_infinitely_often_read_write.gm
Pardatasize=4_infinitely_often_receive_d1.gm
Pardatasize=4_infinitely_often_receive_for_all_d.gm
Pardatasize=4_invariantly_infinitely_many_reachable_taus.gm
Pardatasize=4_nodeadlock.gm
Pardatasize=4_no_duplication_of_messages.gm
Pardatasize=4_no_generation_of_messages.gm
Pardatasize=4_read_then_eventually_send.gm
Pardatasize=8_infinitely_often_read_write.gm
Pardatasize=8_infinitely_often_receive_d1.gm
Pardatasize=8_infinitely_often_receive_for_all_d.gm
Pardatasize=8_invariantly_infinitely_many_reachable_taus.gm
Pardatasize=8_nodeadlock.gm
Pardatasize=8_no_duplication_of_messages.gm
Pardatasize=8_no_generation_of_messages.gm
Pardatasize=8_read_then_eventually_send.gm
Snakewidth=4_height=4_black_has_winning_strategy.gm
Snakewidth=4_height=4_white_has_winning_strategy.gm
SWPdatasize=2_windowsize=1_infinitely_often_enabled_then_infinitely_often_taken.gm
SWPdatasize=2_windowsize=1_infinitely_often_lost.gm
SWPdatasize=2_windowsize=1_infinitely_often_read_write.gm
SWPdatasize=2_windowsize=1_infinitely_often_receive_d1.gm
SWPdatasize=2_windowsize=1_infinitely_often_receive_for_all_d.gm
SWPdatasize=2_windowsize=1_invariantly_infinitely_many_reachable_taus.gm
SWPdatasize=2_windowsize=1_nodeadlock.gm
SWPdatasize=2_windowsize=1_no_duplication_of_messages.gm
SWPdatasize=2_windowsize=1_no_generation_of_messages.gm
SWPdatasize=2_windowsize=1_read_then_eventually_send.gm

29

SWPdatasize=2_windowsize=1_read_then_eventually_send_if_fair.gm
SWPdatasize=2_windowsize=2_no_generation_of_messages.gm
SWPdatasize=4_windowsize=1_infinitely_often_lost.gm
SWPdatasize=4_windowsize=1_infinitely_often_receive_d1.gm
SWPdatasize=4_windowsize=1_infinitely_often_receive_for_all_d.gm
SWPdatasize=4_windowsize=1_invariantly_infinitely_many_reachable_taus.gm
SWPdatasize=4_windowsize=1_nodeadlock.gm
SWPdatasize=4_windowsize=1_no_generation_of_messages.gm
SWPdatasize=4_windowsize=1_read_then_eventually_send_if_fair.gm
SWPdatasize=8_windowsize=1_infinitely_often_receive_d1.gm
SWPdatasize=8_windowsize=1_nodeadlock.gm

B.1.4 pgsolver

cliquegame(100).gm
cliquegame(200).gm
elevatorverification(3).gm
elevatorverification(4).gm
elevatorverification(-u,_3).gm
elevatorverification(-u,_4).gm
laddergame(1000).gm
laddergame(100).gm
laddergame(2000).gm
laddergame(200).gm
laddergame(500).gm
modelcheckerladder(100).gm
modelcheckerladder(200).gm
randomgame(1000,_10,_1,_20)id=0.gm
randomgame(1000,_10,_1,_20)id=10.gm
randomgame(1000,_10,_1,_20)id=11.gm
randomgame(1000,_10,_1,_20)id=12.gm
randomgame(1000,_10,_1,_20)id=13.gm
randomgame(1000,_10,_1,_20)id=14.gm
randomgame(1000,_10,_1,_20)id=15.gm
randomgame(1000,_10,_1,_20)id=16.gm
randomgame(1000,_10,_1,_20)id=17.gm
randomgame(1000,_10,_1,_20)id=18.gm
randomgame(1000,_10,_1,_20)id=19.gm
randomgame(1000,_10,_1,_20)id=1.gm
randomgame(1000,_10,_1,_20)id=20.gm
randomgame(1000,_10,_1,_20)id=21.gm
randomgame(1000,_10,_1,_20)id=22.gm
randomgame(1000,_10,_1,_20)id=23.gm
randomgame(1000,_10,_1,_20)id=24.gm
randomgame(1000,_10,_1,_20)id=2.gm
randomgame(1000,_10,_1,_20)id=3.gm
randomgame(1000,_10,_1,_20)id=4.gm
randomgame(1000,_10,_1,_20)id=5.gm
randomgame(1000,_10,_1,_20)id=6.gm
randomgame(1000,_10,_1,_20)id=7.gm

30

randomgame(1000,_10,_1,_20)id=8.gm
randomgame(1000,_10,_1,_20)id=9.gm
steadygame(1000,_1,_20,_1,_20)id=0.gm
steadygame(1000,_1,_20,_1,_20)id=10.gm
steadygame(1000,_1,_20,_1,_20)id=11.gm
steadygame(1000,_1,_20,_1,_20)id=12.gm
steadygame(1000,_1,_20,_1,_20)id=13.gm
steadygame(1000,_1,_20,_1,_20)id=14.gm
steadygame(1000,_1,_20,_1,_20)id=15.gm
steadygame(1000,_1,_20,_1,_20)id=16.gm
steadygame(1000,_1,_20,_1,_20)id=17.gm
steadygame(1000,_1,_20,_1,_20)id=18.gm
steadygame(1000,_1,_20,_1,_20)id=19.gm
steadygame(1000,_1,_20,_1,_20)id=1.gm
steadygame(1000,_1,_20,_1,_20)id=20.gm
steadygame(1000,_1,_20,_1,_20)id=21.gm
steadygame(1000,_1,_20,_1,_20)id=22.gm
steadygame(1000,_1,_20,_1,_20)id=23.gm
steadygame(1000,_1,_20,_1,_20)id=24.gm
steadygame(1000,_1,_20,_1,_20)id=2.gm
steadygame(1000,_1,_20,_1,_20)id=3.gm
steadygame(1000,_1,_20,_1,_20)id=4.gm
steadygame(1000,_1,_20,_1,_20)id=5.gm
steadygame(1000,_1,_20,_1,_20)id=6.gm
steadygame(1000,_1,_20,_1,_20)id=7.gm
steadygame(1000,_1,_20,_1,_20)id=8.gm
steadygame(1000,_1,_20,_1,_20)id=9.gm
towersofhanoi(5).gm
towersofhanoi(6).gm

There were PGSolver games within Keiren’s benchmark suite where the latter only contained
instances whose textual description was over 200KB. Therefore, we generated smaller such games
with PGSolver directly. Here is the list of such games that ps1 could solve completely within 60
seconds:

clustered1000_200_2_5_3_4_6_11_22.gm
clustered100_200_2_5_3_4_6_11_22.gm
clustered200_200_2_5_3_4_6_11_22.gm
clustered300_200_2_5_3_4_6_11_22.gm
clustered400_200_2_5_3_4_6_11_22.gm
clustered500_200_2_5_3_4_6_11_22.gm
jurd10_40.gm
jurd10_50.gm
jurd20_40.gm
recursiveladder100.gm
recursiveladder110.gm
recursiveladder120.gm
recursiveladder80.gm
recursiveladder90.gm

31

B.2 Games that raised an exception
For sake of completeness, we also report the games for which either ps1 or our implementation
of Zielonka’s algorithm raised an exception (stack overflow or 60 second timeout). The names of
games are followed by expressions that indicate whether ps1 raised a timeout (pt), Zielonka’s algo-
rithm raised a timeout (zt), ps1 had a stack overflow of recursive calls (pr) or whether Zielonka’s
algorithm had a stack overflow of recursive calls (zr):

B.2.1 mlsolver

FLCTLStarSimpleLimitClosuren=1_compact.gm pt
FLCTLStarSimpleLimitClosuren=2_compact.gm pt
Nestern=3_compact.gm pt
Nestern=3.gm pt
Nestern=4_compact.gm pt
ParityAndBuechin=3_compact.gm pt

B.2.2 modelchecking

ABPdatasize=4_infinitely_often_read_write.gm pt
CABPdatasize=8_infinitely_often_read_write.gm pt
SWPdatasize=4_windowsize=1_infinitely_often_read_write.gm pt

B.2.3 pgsolver

jurdzinskigame(50,_50).gm zt pr
modelcheckerladder(1000).gm pr
modelcheckerladder(2000).gm pr
modelcheckerladder(500).gm pr
recursiveladder(1000).gm zr pr
recursiveladder(100).gm zt
recursiveladder(200).gm zt
recursiveladder(500).gm zr pr

C Experimental data for lift(ps5)
The results for our experiments with lift(ps5) are shown in Figure 6. The left of each row in that
figure shows the configuration type, Time shows how long the tests were running in seconds2, Total
lists how many games were run, Res shows the number of residual games for ps5, and Lift shows
the number of residual games for lift(ps5) This shows several billion random games of varying
configurations with node sizes ranging from 40 to 1000. All of these games were solved completely
by lift(ps5); specifically, we first ran ps5 on these games and invoked lift(ps5) only on the non-empty
residual games of ps5, of which there were only thousands of games. This staging is justified as
ps5 is part of the interaction within lift(ps5) = while(ps5, lifted(ps5)).

2This measure is only indicative as the experiment was run in Python processes distributed across standard
machines running Ubuntu in our student laboratories.

32

1000-300-2-4 : Time = 2608895 Total = 3529605 Res = 0 Lift = 0
200-50-1-2 : Time = 943643 Total = 1811520 Res = 119 Lift = 0
200-50-1-3 : Time = 943706 Total = 2203378 Res = 199 Lift = 0
200-50-2-2 : Time = 1044005 Total = 360691 Res = 655 Lift = 0
200-50-2-3 : Time = 943746 Total = 1498422 Res = 349 Lift = 0
200-50-2-4 : Time = 943788 Total = 22164662 Res = 202 Lift = 0
200-50-3-4 : Time = 426389 Total = 36560774 Res = 15 Lift = 0
200-50-3-5 : Time = 426336 Total = 43919554 Res = 0 Lift = 0
200-50-4-5 : Time = 426280 Total = 45220307 Res = 0 Lift = 0
200-50-4-6 : Time = 426254 Total = 49159218 Res = 0 Lift = 0
30-15-2-4 : Time = 2846321 Total = 3641298950 Res = 2757 Lift = 0
40-20-2-2 : Time = 1043808 Total = 447285259 Res = 3469 Lift = 0
40-20-2-4 : Time = 2846303 Total = 1970608294 Res = 4056 Lift = 0
500-50-2-3 : Time = 425916 Total = 90187 Res = 23 Lift = 0
500-50-2-4 : Time = 425984 Total = 5369797 Res = 11 Lift = 0
500-50-3-5 : Time = 426016 Total = 10364935 Res = 0 Lift = 0
500-50-4-6 : Time = 426051 Total = 10806672 Res = 0 Lift = 0
50-25-2-2 : Time = 1043864 Total = 219359597 Res = 4509 Lift = 0
50-25-2-4 : Time = 2846288 Total = 1157521639 Res = 4486 Lift = 0
55-27-2-4 : Time = 2846233 Total = 886941637 Res = 4157 Lift = 0
60-25-2-2 : Time = 788790 Total = 90189308 Res = 3760 Lift = 0
60-30-2-4 : Time = 2846261 Total = 707252484 Res = 4062 Lift = 0

Figure 6: Experimental results from the search for non-empty residual games for partial solvers
ps5 and lift(ps5)

33

