
Let It Recover: Multiparty Protocol-Induced Recovery

Rumyana Neykova Nobuko Yoshida
Imperial College London

Abstract
Fault-tolerant communication systems rely on recovery strategies
which are often error-prone (e.g. a programmer manually specifies
recovery strategies) or inefficient (e.g. the whole system is restarted
from the beginning). This paper proposes a static analysis based on
multiparty session types that can efficiently compute a safe global
state from which a system of interacting processes should be recov-
ered. We statically analyse the communication flow of a program,
given as a multiparty protocol, to extract the causal dependencies
between processes and to localise failures. We formalise our re-
covery algorithm and prove its safety. A recovered communication
system is free from deadlocks, orphan messages and reception er-
rors. Our recovery algorithm incurs less communication cost (only
affected processes are notified) and overall execution time (only
required states are repeated). On top of our analysis, we design
and implement a runtime framework in Erlang where failed pro-
cesses and their dependencies are soundly restarted from a com-
puted safe state. We evaluate our recovery framework on message-
passing benchmarks and a use case for crawling webpages. The
experimental results indicate our framework outperforms a built-in
static recovery strategy in Erlang when a part of the protocol can
be safely recovered.

1. Introduction
1.1 Motivation
Let it Crash recovery model Despite the importance of fast and
correct recovery in distributed systems, it is still difficult and error-
prone to implement fault-tolerant components. A well-established
fault-tolerance model is the Let it crash model, adopted by the pro-
gramming language Erlang. In Erlang, rather than trying to handle
and recover from all possible exceptional and failure states, one can
instead let processes crash and let the runtime automatically recy-
cle them back to their initial state. Failures and errors propagation
are managed by organising the running processes in a hierarchi-
cal structure, called a supervision tree, where each process and its
dependencies are monitored by a parent process, called supervisor.

While the Let it crash model has gained popularity and has
recently been adopted in other commercial languages and frame-
works (Go, Akka and Scala), it still faces two major technical prob-
lems. First, the correctness of recovery strategies relies on the as-
sumption that a global process structure (i.e. a supervision struc-
ture) of the system is correctly written by a programmer. A recent
study reveals a misconfiguration of the supervision tree is a com-
mon source of errors for recovery [27]. Second, supervision strate-
gies have a fixed structure, hence they often recover too little or
too many processes, and are unable to capture the dynamic nature
of the communication dependencies between processes. This of-
ten leads to a redundant and/or a unsound recovery mechanism (as
shown in Table 1 and explained in §1.2). Here a question is: Can
we soundly generate recovery strategies, minimising the recovery
overhead? This paper answers the question affirmatively using a
theory of multiparty session types [17].

G =

 A1→ A2;
†1A2→ A3;

. . .
An→ C

 ;

 B1→ B2;
B2→ B3;

. . .
Bn→ D

 ;

†2C→ E ; D→ E;

E→ C :

{
accept.E→ D : reject.†3end,
reject. E→ D : accept.end

}

Figure 1: Trading Negotiation Global Protocol

Multiparty Session Types (MPSTs) [17] is a typing framework
for verifying protocol conformance of a system of distributed pro-
cesses. When the global interaction pattern is specified as a multi-
party session protocol (called global type), it is projected to a lo-
calised view of the protocol (called local type), which is then used
to type-check each process implementation. The framework (1) has
been applied to several mainstream languages (e.g, Java [18, 21],
Python [11, 24], MPI/C [26], Go [25]) as to ensure safety prop-
erties such as deadlock freedom and type-safety; and (2) has been
extended with exception handling constructs (e.g, [5, 7, 11]), offer-
ing viable solutions for verifying and modelling expected failures.
However, none of the above works is applicable to the Let it crash
model, which targets recovery when a process fails unexpectedly.
The class of unexpected software faults includes, for example, fail-
ures caused by corrupted data, a request timeout, buffer overflow,
out of memory exceptions.

Our approach In this paper, we apply MPSTs in a new direc-
tion: a MPST protocol is used to automatically ensure soundness
of recovered processes. The key idea is to extract a flow of com-
munications from multiparty session types which is in turn used to
calculate all affected parties and recover the system from a glob-
ally consistent state. Our recovery framework relies on two design
ideas: (1) messages that should be re-sent are identified based on
the dependencies in the type structure of a process and (2) only af-
fected participants are notified and recovered. To realise these ideas
we propose a novel algorithm, which localises the scope of the re-
covery, analysing the communication flow, given as a multiparty
protocol. The algorithm works by traversing a dependency graph,
automatically inferred from a given global protocol. We calculate
all dependencies in the graph, affected by a given state. On failure,
the processes from the calculated paths are notified and recovered.

1.2 Trading Negotiation Use Case
We start by illustrating the difficulty of a sound and efficient re-
covery on independent (localised) chained interactions which are
a common topology found in Erlang applications. Fig. 1 shows
the protocol written as a global multiparty session type (Erlang
code can be found in Fig. 8). We write A → B : m to denote a
message exchange from participant A to participant B of a mes-
sage m, we sometimes omit the message from the notation. A se-
quence of messages is denoted by a semicolon ’;’. The notation

1 2016/11/23

Scenario Fig. 2 (a) Fig. 2 (b) Our approach
1 A1 . . .A3 A1 . . .A3 A1 . . .A3
2 all only E (unsound) all
3 all (inefficient) only E (unsound) nothing

Table 1: Comparison between Erlang and MPST-based recovery

A→ B : {m1.G1, m2.G2} represents a choice at a participant A to
send to B either a message m1, or a message m2; then depending on
the chosen action the protocol continues as G1 or G2 respectively.
Message actions (send and receive) are ordered on the sender and
receiver side. For example, C→ E;D→ E describes messages to be
processed by E in the specified order.

The trading negotiation process is split into three phases: In the
first phase, two groups of participants, the team of Alice (Ai) and
the team of Bob (Bi) forward messages to their group leaders, C and
D respectively, with their suggested trading quote. The communica-
tion between the groups is independent (represented by two blocks
of composed global protocols). In the second phase, the leaders
of the groups notify the trader E regarding their proposals (repre-
sented by C→ E;D→ E). Finally, E chooses the best quote and sends
accept or reject to each group leader (represented by a choice).

In the above protocol the dependencies between the processes
are dynamic and change with the execution of the protocol. We
consider, as examples, three possible failures and give the set of af-
fected participants in each case using our MPST-induced approach.
Table 1 summarises the result and compares it with two Erlang re-
covery strategies. In Fig. 1 we use the notation †iA→ B to denote
that B fails after receiving a message from A, and †iA→ B to de-
note that A fails after sending a message to B, †i corresponds to the
scenario number as given below.

Scenario †1: A3 fails before sending the message to A4. A3
affects only its predecessors. Thus, if A3 fails, only A1, A2 and
A3 are restarted. More generally, if Ai fails before sending to
Ai+1, then A1,...,Ai are restarted.

Scenario †2: E fails after receiving a message from C. All partic-
ipants are restarted. Note that since the network is asynchronous
C might have already sent the message to E, although E might
not have selected the message from the queue. When E fails,
the queue will be erased and the messages will be lost. Thus,
inevitably C must be informed about E’s failure.

Scenario †3: E fails after its last protocol interaction. Since E is
not involved in the protocol any more, no other roles should be
notified or recovered.

Erlang recovery strategies In Erlang, there are three types of
supervisions. In one-for-one supervision, if a process fails, only this
process is restarted by the supervisor; in all-for-one supervision, if
any process dies, all the processes are restarted; and in rest-for-one
supervision, if a process terminates, only the rest of the processes
(the ones on the left of the terminated process in the supervision
tree) are terminated.

In Fig. 2 we present two representative supervision hierarchies
with combined strategies and compare them with our approach in
Table 1. The rest-for-one supervision is suitable for disjoint groups
of chained interactions. Hence we connect Alice’s group Ai by a
rest-for-one supervisor and Bob’s group Bi by another supervisor of
the same type. Then a worker E is grouped with the rest by an all-
for-one supervisor (Fig. 2(a)) or one-for-one supervisor (Fig. 2(b)).
The recovery driven by (a) or (b) is, as explained below, either
inefficient or unsound.

Suppose E dies as assumed in Scenario 2. If we chose the
supervision in Fig. 2(b), only E is restarted from the beginning.
However, since C has already sent the message to E, the message by

Supervisor
rest-for-one

role

C

E

A1 B1 D.

Supervisor
rest-for-one

Supervisor
all-for-one

Supervisor
rest-for-one

role

C

E

A1 B1 D.

Supervisor
rest-for-one

Supervisor
one-for-one

Figure 2: Erlang supervision: (a) all-for-one and (b) one-for-one

others will be lost and E will be stuck (deadlock). Consider that we
chose Fig. 2(a). Then all processes are restarted from the beginning,
which works in Scenario 2. However, in Scenario 3, the participants
have already completed the negotiation. Thus it is redundant to
recover any interactions.

To summarise, the advantages of our approach are two-fold.
First, executions ensured by our protocol recovery strategy is safe
by construction. While supervision trees are manually built, and re-
covery strategies are sometimes implemented in an ad-hoc manner,
our proposed recovery algorithm realises sound supervision struc-
tures and guarantees no lost messages and safety of recovered pro-
cesses. Second, our strategy reduces the communication cost by
notifying only the related participants. As shown in Table 1 part of
the error propagation can be avoided when our restart strategy is
employed.

We provide a prototype implementation in Erlang on top of Er-
lang’s built-in fault-tolerance semantics. Though we assume some
conditions from Erlang such as asynchronous messages passing
and ordered queues, our algorithm can be flexibly tuned to vari-
ous assumptions on queues and messaging semantics (such as syn-
chronous and asynchronous message passing without queues).

Contributions of this paper are given as follows:
1. We propose a recovery framework based on MPSTs and show

how session type-based analysis is used to provide the correct-
ness of fault-tolerant recovery (§ 2).

2. We formalise a recovery strategy (§ 3) and prove its safety
properties. The recovered communication system is free from
deadlock, orphan messages and reception error (§ 4).

3. We provide a design and implementation of our recovery strat-
egy on top of runtime monitoring in Erlang (§ 5).

4. We implement several use cases and show that our recovery
strategy is more efficient for common message-passing proto-
cols comparing to the Erlang all-for-one supervision (§ 6).

The paper discusses the related work (§ 7) and concludes (§ 8).
Appendix includes omitted definitions and proofs; and the imple-
mentation, benchmarks and use cases can be found in [29].

2. Overview of Multiparty Protocol-Induced
Recovery

Our framework involves two stages: processing a given global
protocol (type) and runtime supervision. The global type analysis
from the first stage is used for runtime monitoring and recovering
during the second stage.

2.1 Global Protocol Processing
The global type processing involves (1) creating a global recovery
table (GRT) from a given global protocol (type) and (2) projecting
the global protocol into local types and creating a finite state ma-
chine per each local type. The GRT prescribes which part(s) of the
global protocol to be recovered on failure, and the set of processes
to be notified, while the finite state machines are used to track the
current state of each process during the session execution.

To generate a GRT, first we create a dependency graph. A de-
pendency graph is a directed graph that models the causal depen-

2 2016/11/23

0 : A1→ A2

1 : A2→ C

4 : C→ E

2 : B1→ B2

3 : B2→ D

5 : D→ E

6 : E→ C

7 : E→ D 8 : E→ D

10 : end9 : end

n r recovery points
0 A1 {A1 :0}
0 A2 {A2 :0,A1 :0}
1 A2 {A2 :0,A1 :0}
1 C {C : 1,A2 : 0,A1 :0}
3 B2 {B2 :3,B1 :2}
3 D {D :3,B2 :2,B1 :2}
4 C {C :1,A1 :0,A2 :0}
4 E {C :1,A1 :0,A2 :0,D :3,B2 :2,B1 :2,E :4}
5 D {D :3,B2 :2,B1 :2}
5 E {C :1,A1 :0,A2 :0,D :3,B2 :2,B1 :2,E :4}
6 C,E {C :1,A1 :0,A2 :0,D :3,B2 :2,B1 :2,E :4}
7 D,E {C :1,A1 :0,A2 :0,D :3,B2 :2,B1 :2,E :4}
8 E,D {C :1,A1 :0,A2 :0,D :3,B2 :2,B1 :2,E :4}
9 any ∅

10 any ∅

Figure 3: Dependency graph (a) and Global Recovery Table (b) for
the Trading Negotiation example

dencies between the actions in a protocol. The dependency graph
is built by syntactic traversal of the global type. The nodes of the
graph model the states of the global protocol, and the edges model
the causal dependencies between the states. The recovery analysis
is performed on the dependency graph.

Our analysis is built on two key points.
All input-output dependencies before the failed point should

be recovered. We model stateless processes, hence a forwarded
message should be re-sent by its initial sender, not by intermedi-
ate ones. Consider the following protocol (the failed point is under-
lined):

A→ B; B→ C; (2.1)
If C fails to receive the message from B, then A should also resend
the message to B. This is because B’s mail box is emptied and B’s
output data to C may be depended on the message from A.

All messages in the queue of the failed process should be
re-sent. When a process fails, its queue is emptied. At compile
time (when the graph processing is done), the state of the queue
is unknown. Consider the following two examples:

A→ B; C→ B; and A→ B; C→ B; (2.2)

If B fails after receiving the message from A (as shown in the left
example), the message from C might be already in B’s queue. That
is why our analysis will list both A and C as potential participants
which should recover. Hence we notify A and C by sending a request
for recovery. Since A already sent the message to B, A and B should
be recovered. However C has two choices: if C has still not sent
the message to B, it can ignore the request for recovery message;
otherwise C should be recovered since its message in B’s queue was
lost. Similarly if A fails (as shown in the right example), then both
B and C should be notified.

Now consider the following protocol which has additional in-
termediate communications to (2.2):

A→ B;B→ D;D→ C;C→ B; (2.3)
There is an input-output chain from the failed node at B (under-
lined) to C. The output from C (C→ B) depends on an output from
B (B→ D), which had not occurred due to the failure, hence C and
D are not notified.

2.2 Global Recovery Table
Fig. 3 (a) shows the dependency graph for our example and Fig. 3
(b) shows the global recovery table, generated by our algorithm.
The algorithm explores all paths of the session graph connected to
the failed node. Since the syntax of global types is finite, the length
of such paths is limited so that the algorithm terminates. For each
path, the algorithm works recursively on the edges, and maintains
a dictionary that records the recovery points for each participant.

Global Recovery Table

role
Local Type Local Type Local TypeLocal Type

Initial Failure Unaffected Recovered Ignore Failure

Process
A

Process
B

Process
C

Process
D

Figure 4: Supervisor’s actions after the failure

The GRT records the failed node (corresponding to the node of the
global graph), which role has failed, and a reset (recovery) point for
all roles, which depend on the failed role.

2.3 Runtime Supervision
Our supervision is setup at runtime when a session is started and
two types of entities are created: local process supervisors and
processes. The local process supervisors (also called monitors)
track the state of the process they supervise. Each local supervisor
has a finite state machine created from the local type (during the
global graph processing stage). Whenever the process performs a
communication action, the monitor inspects the current state.

In Fig. 4, we list four possible actions that the local supervisors
(LS) can take after a failure. Once a process fails, its LS is notified.
The LS performs a lookup in the Global Recovery Table (GRT) and
notifies the LSs of the affected processes by sending them a request
for recovery, containing the failed state. When the local supervisors
receive request for recovery they query the GRT to retrieve their
new state. If this state has not been reached yet, they “ignore” the
request for recovery; otherwise they “restart” the process. The other
processes remain unaffected (the second left-most in Fig. 4).

As an example, consider the case in (2.2). The initial failure
message for B’s failure is sent to B’s LS; Then B’s LS sends the
recovery messages to A’s LS and C’s LS. Then A is restarted (the
second right-most in Fig. 4); and if C has not sent the message to B
yet, then B’ remains unaffected, otherwise it is recovered.

3. Recovery Algorithm
This section defines a recovery algorithm that given a global type
and a failed local type, returns a set of new local types which should
be recovered. The recovery algorithm is formalised by defining the
causal relation of global types and labelled transition relations.

3.1 Global and Local Types
Syntax For the syntax of types, we follow [13] which is the
most widely used syntax in the literature. A global type, writ-
ten G,G′, .., describes the whole conversation scenario of a mul-
tiparty session as a type signature, and a local type, written
by T,T ′, .., which abstracts session communication structures
from each end-point’s view. A (a,b,c, ...) denotes a finite alpha-
bet and P is a set of participants fixed throughout the paper:
P⊆ {A,B,C, . . . ,a,b,c, . . . ,p,q, . . .}. The syntax of types is given
as:

G ::= p→ p′ : {a j.G j} j∈J | µt.G | t | end

T ::= p?{ai.Ti}i∈I | p!{ai.Ti}i∈I | µt.T | t | end

a j ∈A corresponds to the usual message labels in session type the-
ory. We omit the carried types from the syntax in this paper, as we

3 2016/11/23

are not directly concerned with typing processes. Global branch-
ing type p→ p′ : {a j.G j} j∈J states that participant p can send a
message with one of the ai labels to participant p′ and that interac-
tion described in G j follows. We require p 6= p′ to prevent self-sent
messages and ai 6= ak for all i 6= k ∈ J. Recursive types µt.G are
for recursive protocols, assuming that type variables (t,t′, . . .) are
guarded in the standard way, i.e. they only occur under branchings.
Type end represents session termination (often omitted). The func-
tion roles(G) gives the participants of G. Concerning local types,
the branching type p?{ai.Ti}i∈I specifies the reception of a message
from p with a label among the ai. The selection type p!{ai.Ti}i∈I
is its dual. The remaining type constructors are as for global types.
When branching is a singleton, we write p→ p′ : a;G′ for global,
and p!a.T or p?a.T for local.

Projection The relation between global and local types is
formalised by projection [13, 17]. For projection of branchings,
we use a merge operator [13], written T tT ′, ensuring that if the
observable behaviour of the local type is dependent on the chosen
branch then it is identifiable via a unique choice/branching label.

Definition 1 (Projection). The projection of G onto p (written G�p)
is defined as:

p→ p′ : {a j.G j} j∈J � q=

p′!{a j.G j � q} j∈J q= p

p?{a j.G j � q} j∈J q= p′

t j∈JG j � q otherwise

(µt.G) � p=

{
µt.G � p G � p 6= t

end otherwise
t � p = t end � p= end

where fv(G) denotes a set of free type variables in G. The merging
operation t is defined as a partial commutative operator over two
types such that:

• T tT = T for all types;
• p?{ak.Tk}k∈K tp?{a j.T ′j} j∈J
= p?({ak.(Tk tT ′k)}k∈K∩J ∪{ak.Tk}k∈K\J ∪{a j.T ′j} j∈J\K)

and homomorphic for other types (i.e. C [T1] t C [T2] = C [T1 t
T2] where C is a context for local types). The merging operation
between T1 and T2 is defined only if T1tT2 is defined. We say that
G is well-formed if for all p ∈P, G � p is defined.

Consider the global type given below.
µt.A→ B :{a.B→ C :b.t , d.B→ C :e.end}}

Then the projections on A, B and C are given as follows:

• A’s local type: µt.B!{a.t, d.end}.
• B’s local type is: µt.A?{a.C!b.t, d.C!e.end}.
• C’s local type is: µt.B?{b.t, e.end}.

The projection for role C uses the merge operator. Merge is also
used to project role D from our running example from Fig. 1

3.2 Errors Prevented by Protocol-Induced Recovery
The theory of MPST guarantees that a system of communicating
processes, where each process conforms to a local type (projected
from the same global type), is safe, i.e it is free from deadlocks, re-
ception errors and orphan messages. In this subsection we demon-
strate that existing recovery approaches do not preserve safety,
hence they can introduce all of the above mentioned errors. We
look at two popular approaches of recovery [28] which can be used
in addition (or instead of) supervision trees: (1) recovery by resend-
ing the undelivered messages and (2) restarting processes from their
initial state. For each approach we demonstrate a potential error(s).

G1 = B→ C; A→ C;
B→ A; C→ A;
A→ D; D→ C;

A : C!. B?.C?.D!.end

B : C!. A!.end

C : B?.A?.A!. D?.end

D : A?.C!.end

G2 = B→ C; A→ C;
B→ A; A→ D;
D→ C;

A : C!.B?.C?.D!.end

B : C!.A!.end

C : B?.A?. A!.D?.end

D : A?.C!.end

G3 = A→ B;
C→ B : l1;
C→ B : l2;

A : B!.end

B : A?.C?l1.C?l2.end

C : B!l1. B!l2.end

We omit the labels from local and global types except branching.

Figure 5: Recovery errors: (1) deadlock, (2) orphan message error
and (3) reception error

Fig. 5 shows global and local types for three protocols. We
underline the failed role, e.g A, in the global type and mark with
a box the state of the local types after recovery.

Recovery by resending a message (a deadlock) The process A
fails before receiving the message from B. A naive recovery strategy
might be to resend the unsuccessfully delivered message from B
to A, not taking into account the existence of other parties (C and
D). When A recovers, all contents of A’s queue are deleted. Since
messaging is asynchronous, it is possible that C has already sent the
message to A. This message will be lost when the queue is deleted. C
is at a state of receiving a message from D, while A is stuck waiting
for the message from C. The processes end up in a deadlock.

Recovery by restarting processes from beginning (orphan
message error) We assume the same failure with the above case,
but a different recovery strategy. Instead of resending the failed
message we recover both affected processes by restarting them
from the beginning. No messages are lost and no deadlock occurs:
however, both A and B will repeat their interactions (B→ C and
A→ C). Since C has already received these messages, the orphan
messages will stay in the queue of C and will not be consumed.

Partial recovery of processes (reception error) Assume the
protocol G3 and B fails at A→ B. Suppose C has already sent the
message l1 when B failed but only A and B are recovered. Then the
recovered B, which should receive l1 from C, will receive the wrong
message l2 from C since B’s queue is erased by the recovery.

3.3 A Dependency Analysis on Global Types
As shown in § 2.1, the recovery algorithm needs a dependency anal-
ysis of global types. We define the two key dependency relations
(≺IO and C) used in the algorithm.

Session graphs Global types can be seen isomorphically as
session graphs, that we define in the following way. First, we
annotate in G each syntactic occurrence of subterms of the form
p→ p′ : {a j.G j} j∈J with a node name (denoted by n,n′,n1,n2, . . .)
Then, we inductively define a function nodeG that gives a set of
nodes (or the special node end) for each of the syntactic subterm of
G as follows:

• nodeG(µt.G′) = nodeG(G′)
• nodeG(end) = end

• nodeG(n : p→ p′ : {k j.G j} j∈J) = n

• nodeG(t) = nodeG(µt.G′) if µt.G′ ∈ G and t ∈ fv(G′)

We define G as a session graph in the following way: for each
subterm of G of the form n : p→ p′ : {a j.G j} j∈J , we have edges
from n to each of the nodeG(G j) for j ∈ J. We also define the
functions pfx(n) and roles(n) that respectively give the prefix
(p→ p′ : a) and participants (p,p′) respectively.

Example 2 (Session graph). To illustrate session graphs on recur-
sive global types, we augment the main body of our running exam-

4 2016/11/23

ple with a recursion in the first case of the choice, as shown below:

µt.C→ E;D→ E;E→ C :

{
accept.E→ D : reject.t,
reject.E→ D : accept.end

}
Then its graph representation with the initial node n1 is given as:

n1 : C→ E n2 : D→ E n3 : E→ C n4 : E→ D

n5 : E→ D n6 : end

reject

acceptaccept

reject

The edges of a given session graph G define a successor relation
between nodes, written n ≺ n′ (omitting G). Paths in this session
graph are referred to by the sequence of nodes they pass through.
The empty path is ε . The transitive and reflex closure of ≺ is ≺≺.

Causality and causality chains We define causality relations
in a given G by the relations C and ≺IO. The dependency relation
C represents the order between two nodes which has a common
participant; and the IO-relation ≺IO asserts the order between a
reception by a principal and the next message it sends. Formally,

n1Cn2 if n1≺≺n2 and roles(n1)∩ roles(n2) 6= /0
n1≺IO n2 if n1≺≺n2 and pfx(n1)=p1→p :a1

and pfx(n2)=p→p2 :a2

An input-output dependency (IO-dependency) from n1 to nn
(denoted by n1 ≺≺IO nn) is a chain n1 ≺IO · · · ≺IO nn (n ≥ 1). In
Example 2, we have n1 ≺IO n3, n2 ≺IO n3 and n1 C n2, but (n1,n2)
are not related by the IO-dependency.

3.4 Recovery Algorithm
Affected nodes We define the algorithm to decide the set of the
affected nodes N when a participant p in a global type G fails.
The algorithm is shown in Figure 6, where ni is the failed node,
it corresponds to the state of p at the time of failure. Below we
explain each step of the algorithm. We write n = p → q means
pfx(n) = p→ q : a for some a.

Step 1: Initialisation (Lines 1-2) We initialise a set of affected
nodes N to include the failed node ni and successors of the failed
node (ni C n) having p as a sender in their prefix (n= r→ p). The
latter ensures that the output dependencies of p are added to N as
to recover messages that are lost as a result of deleting p’s queue.
This scenario is shown in example (2.2) in § 2.1.

A set of unaffected nodes S is initialised as nodes n′ that are
IO-dependent from the failed node or the node where p is the sender
(n = p→ r). As explained in example (2.3), even if ni fails, they
do not have to be recovered.

Step 2.1: Traversing input-output dependencies, Backward
traversal of ≺IO (Line 4) A set of backward affected nodes
N ← consists of nodes gathered by traversing IO-dependencies.
As explained in example (2.1) in § 2.1, to recover a given state,
we need to track the IO-chains preceding that state. We also add
the forwarding IO-chains from the unaffected node if they are
dependent from affected nodes.

Step 2.2: Forward Traversal of C-dependencies (Line 5) A
set of forward affected nodes N ← consist of all direct dependent
nodes from backward affected nodes. This prevents unspecified
reception error. We extract both affected and non-affected nodes
since they do not have to be traversed in the next iteration.

Step 3: Termination condition (Line 5-7) We stop if there are
no new affected nodes. Otherwise we repeat Step 2.

After we obtain the set of affected nodes, following the algo-
rithm in Fig. 6, we calculate the recovery point for each participant
in the protocol. Intuitively, a recovery point is a local type that is
assigned to a participant as a result of a recovery.

Algorithm Calculating affected nodes
Input: ni (a failed node), p (a failed role)
Output:N (a set of affected nodes)
1. N =N → = {n | ni C n ∧ n= r→ p}∪{ni}
2. S = {n | ((ni C n′∧n′ = p→ r)∨n′ = ni)∧n′ ≺≺IO n}\{ni}
3. repeat
4. N ← = {n | n≺≺IO n

′ ∨ (nC n′∧n ∈S) ∧ n′ ∈N →}
5. N → = {n | n′ C n ∧ n′ ∈N ←}\ (N ∪S)
6. N =N ∪N ← S =S \N ←

7. untilN ← =N → =∅
8. returnN

Figure 6: Calculating affected nodes

Below we write G/nq to denote a subterm (subgraph) of G
whose occurrence is nq. For example, if we take the session graph
in Example 2 G/n4 = E→ D : accept.end and G/n5 = E→ D :
reject.G, where we write the outputs by the syntax of global types.

We write T ⊇ T ′ to denote T ′ is a subterm of T . For example,
A?a.B!b.end⊇ B!b.end. We define max({Ti}i∈I) = Tj if for all i∈ I,
Tj ⊇ Ti.

Definition 3 (Recovery point). Assume thatN is the set of affected
nodes when ni in global type G failed and the participant p ∈
roles(ni) failed. Assume G/ni � p = Tp. We then define, for each
q ∈P, (1) fG(Tp,q) = max({G/n � q | n ∈N ,q ∈ roles(n)}); or
(2) fG(Tp,q) = /0 if q 6∈ roles(n) for all n ∈N . We call the nodes
corresponding to the recovery points, recovery nodes.

By the finiteness of the session graph, we have:

Proposition 1. The recovery algorithm in Figure 6 terminates.

3.5 Examples of Protocol Recovery
We explain the necessity of the conditions given in Fig. 6 via
examples, presented in Fig. 7. We underline and colour the failed
role and node and list the recovery nodes for G4,5,6,7.

(G1) We assume the failed role (p) is A and the failed node (ni)
is n1. n1 and n2 are added to the initial affected nodes set N since
ni = n1 C n2 = r→ p. (G2) At the initialisation, N = {n1,n3}
since ni = n1 C n3 = r→ p. Then n2 is added in Step 2.1 since
it is backward IO-dependent from n3. (G3) This demonstrates a
need for the non-affected set S . We have S = {n2,n3} since
n1 C n2 = p → r, i.e. n2 is an output from the failed role; and
n2 ≺≺IO n3 (Line 2). These nodes do not have to recover.

(G4) We demonstrate a need of condition nC n′∧n ∈S (Line
4 in Fig. 6). Initially, we setS = {n2} andN = {n1,n3}. Assume
that we do not consider n C n′ ∧n ∈S . Then after four iterations,
we (wrongly) obtainN wrong = {n1,n3,n4} as the final affected set,
i.e. n2 is missing. Assume N wrong. Then the role C will recover
from node n4:D → C, while B will recover from node n1. After
this recovery, B will proceed by sending a message to C, although
C will expect a message from D. Our algorithm checks at every
iteration step, which nodes in the non-affected set S should be
added taking forward dependencies in Line 4. Since we have n2 C
n3 and n3 ∈N →, n2 ∈S , and the final affected set should be
N = {n1,n2,n3,n4}, hence no such error exists. (G5) We add
nodes n3 and n4 to G4, but the affected nodes stay unchanged (by
replacing n3 by n5 and n4 by n6).

(G6) At Step 2.2, N ← = {n3} since n1 C n2 C n3. Because
n3 ∈S and by Steps 2.3 and 2.4, n3 is not added to the affected
nodes set. Hence we have N = {n1,n2} and S = {n3}. (G7) we
have the same set of affected nodes with G6. The added nodes are
either in S or are preceding from the failed node so they are not
affected. See Example 6 in Appendix C for more examples.

5 2016/11/23

G1= n1:A→ B;
n2:C→ A;

N = {n1,n2}
S =∅

G2= n1:A→ B;
n2:D→ C;
n3:C→ A;

N = {n1,n2,n3}
S =∅

G3= n1:A→ B;
n2:B→ C;
n3:C→ A;

N = {n1}
S = {n2,n3}

G4 = n1:A→ B;n2:B→ C;
n3:D→ B;n4:D→ C;

N 0 =N →
0 = {n1,n3}

S0 = {n2}
N ←

1 = {n1,n2,n3}
N →

1 = {n4}
S1 = ∅
N 1 = {n1,n2,n3}
N ←

2 = {n4}
N →

2 = {n4}
N 2 = {n1,n2,n3,n4}
N ←

3 = {n4}
N →

3 =N ←
4 =∅

fG4 = {A:n1,B:n1,C:n2,D:n3}

G5 = n1:A→ B;n2:B→ C;
n3:A→ E;n4:D→ E;
n5:D→ B;n6:D→ C;

N 0 =N →
0 = {n1,n5}

S0 = {n2}
N ←

1 = {n1,n2,n5}
N →

1 = {n6}
S1 = ∅
N 1 = {n1,n2,n5}

N ←
2 = {n6}

N →
2 = {n6}

N 2 = {n1,n2,n5,n6}
N ←

3 = {n6}
N →

3 =N ←
4 =∅

fG5 = {A:n1,B:n1,C:n2,D:n5}

G6 = n1:A→ B;
n2:C→ A;
n3:A→ D;

N = {n1,n2}
S = {n3}

fG6 = {A:n1,B:n1,C:n2}

G7 = n1:C→ A;n2:C→ E;
n3:A→ B;n4:C→ A;
n5:A→ D;
n6:D→ E;n7:B→ E;

N = {n3,n4}
S = {n5,n6,n7}

fG7 = {A:n1,B:n1,C:n2,D:,E:}

Figure 7: Examples for Recovery Algorithm and Recovery Points

4. Semantics and Properties of Multiparty
Induced Recovery

This section first presents the recovery semantics using the recovery
point function. Then we prove that our recovery algorithm satisfies
the safety properties of recovered processes.

4.1 Recovery Semantics
The labelled transition system (LTS) for a local type We
start from a labelled transition relation between local (endpoint)
types defined in § 3.1. We first define observables, called actions
(`,`′, ...). An action ` denotes the sending or the reception of a
message of label a from p to p′ and the recovery message †.

` ::= pp′!a | pp′?a | †
We then define the LTS over local types starting from an individual
local type. The relation T `−→ T ′, for the local type of participant p,
is defined as:

[OUT] q!{ai.Ti}i∈I
pq!ai−−−→ Ti [IN] q?{ai.Ti}i∈I

qp?a j−−−→ Tj

[MU]
T [µt.T/t] `−→ T ′

µt.T `−→ T ′
[REC]

fG(Tp,p) = T ′p

Tp
†−→ T ′p

The first three rules are standard. The rule [REC] represents the case
participant p fails at the point of T and recovers as T ′. It is defined
by the function fG(Tp,p) = T ′ which means, given global type G,
the participant p recovers to T ′ if it fails at T .

The main function fG(Tq,p) returns the new local type for a
participant p when q fails at a state Tq. In [REC], since participant p
fails at Tp, we calculate fG(Tp,p).

LTS over a configuration We define the LTS for a configura-
tion which consists of a collection of local types and FIFO queues.
The item (1) below defines the standard asynchronous communica-
tion rules, adapted from communicating finite state machines [2].
The participant p enqueues a value to FIFO queue wpq of a channel
pq, and participant q dequeues a value from wpq. In addition, we
define the two cases when participant p fails at Tp (item 2 below).
The item (a) is the case when participant q needs to recover as local
type T ′q. In this case, we clean up its input queues. The item (b) is
the case participant q does not need to recover. In this case, we do
not have to change the configuration for q. Note by the case (2-a),
failed participant p always cleans up its input queues.

Definition 4 (A configuration and its LTS). A configuration s =
(~T ;~w) of a system of local types {Tp}p∈P is a pair with ~T =
(Tp)p∈P and ~w = (wpq)p6=q∈P with wpq ∈ A∗. The initial con-
figuration of G is s = (~T ;~w) with wpq = ε and Tp = G � p. A fi-
nal configuration is s = (~T ;~ε) with Ti = end. We then define the
transition system for configurations starting from the initial con-
figuration of G. For a configuration s = (~T ;~w), the transitions of

s `−→ s′ = (~T ′;~w′) are defined as:

1. Tp
pq!a−−→ T ′p and w′pq = wpq ·a and T ′p′ = Tp′ for all p′ 6= p; or

Tq
pq?a−−−→ T ′q and wpq = a ·w′pq and T ′p′ = Tp′ for all p′ 6= q

with w′p′q′ = wp′q′ for all p′q′ 6= pq; or

2. Tp
†−→ T ′p then

(a) if fG(Tp,q) = T ′′q then T ′q = T ′′q and w′rq = ε for all r 6= q;
and

(b) if fG(Tp,q) = /0 then T ′q = Tq and w′rq = wrq and w′qr = wqr

for all r 6= q

We denote s
`1···`n−−−→ s′ (or s −→∗ s′) for s `1−→ s1 · · ·sn−1

`n−→ s′. A
configuration s is reachable if s0→∗ s.

Example 5 (Trading Negotiation). We recall Fig. 3.
(1) Participant B2 fails at node 3. By Definition 3, fG(TB2 ,B2) =
TB2 ; fG(TB2 ,B1) = TB1 where TB1 = G � B1 and TB2 = G � B2. Also

for all p 6∈ {B1,B2}, fG(TB2 ,p) = /0. By Definition 4(2), TB2

†−→ TB2 .
We also set the input queues of B1 and B2 to be empty. Hence
w′B1B2

= w′B2B1
= ε . By (2-a), we set T ′B1

= TB1 . Except B1 and B2,
the queues and local types are unchanged. Note that if p 6= B1, wpB2

is empty before B2 fails (since fG(TB2 ,p) = /0). The cases when A2
fails at node 1 and C fails at node 4 can be calculated similarly.
(2) Participant E fails at node 4. By the algorithm, nodes 0 and 1
are added to N since there is a backward IO-dependency n0 ≺≺IO
n1 ≺≺IO n4; also node 5 is added toN → since n4 C n5. From node
5, there is a backward IO-dependency n2 ≺≺IO n3 ≺≺IO n5, hence
nodes 2 and 3 are also added to N . Hence for all p, fG(TB2 ,p) =
G � p. By Definition 4(2-a), all participants will restart from the
beginning of the protocol.

4.2 Main Results: Transparency and Safety
Our recovery algorithm guarantees the transparency of the recov-
ery procedures and the safety of configurations in the presence of
failures. Transparency means that once a configuration recovers to
some state after a failure, there are always transitions which can
reach another state unaffected by failures. Hence we can recover
the configuration as if there were no failure. The safety includes the
three properties, reception error freedom, orphan message freedom
and deadlock-freedom, which were originally introduced in com-
municating finite state machines [2, 6] as desired properties. These
are ensured by the multiparty session type theory without failures
[12, 13, 22].

6 2016/11/23

Theorem 1 (Transparency). Suppose s0 is the initial configuration
of G. If s0

~̀−→∗s †−→s′, then there exists s′
~̀1−→s′′ where s0

~̀2−→∗s′′ and ~̀2
does not contain †.

Proof. We first prove that a set of local types defined by f for a
given failed type Tp and G, i.e. { fG(Tp,q)}q∈P forms a projection
of a subgraph of G. We also prove that if fG(Tp,q) is empty, then its
queue was empty before recovery. This means that when we restart
a set of processes after a failure of some process, all processes will
always recover from some point of a subprotocol of the original G.
See Appendix C.

The following definitions of configuration properties follow [6,
Definition 12]. We recall that the examples from Fig. 5 could easily
introduce these errors if an incorrect recovery strategy is deployed.

1. Configuration s is a deadlock configuration if s is not final, and
~w =~ε and each Tp is a branching type, i.e. all types are blocked,
waiting for messages.

2. Configuration s is an orphan message configuration if all Tp ∈~T
are end but ~w 6=~ε , i.e., there is at least an orphan message in a
buffer.

3. Configuration s is an unspecified reception configuration if
there exists q ∈P such that Tq is a branching, and Tq pq?a−−−→T ′q
implies that |wpq|> 0 and wpq 6∈ aA∗, i.e., Tq is prevented from
receiving any message from buffer pq, meaning type error.

Theorem 2 (Safety). Any reachable configuration from s0 which
is an initial configuration of well-formed G is free from deadlock,
an orphan massage and a reception error.

Proof. By Theorem 1 and [22, Theorem 3.1].

5. Implementation of Multiparty Induced
Recovery

We implement the recovery semantics and algorithm (as explained
in § 4.1) in a new Erlang library. We use the language Scribble [30]
to describe multiparty session protocols.

Our system consists of the following three layers:
(1) Scribble module: a module for processing global Scribble pro-
tocols. The module takes a Scribble protocol as an input and gener-
ates (1) local types (following Definition 1) and (2) global recovery
tables (following the recovery algorithm from § 4.1).
(2) Monitoring runtime: a component that implements the run-
time semantics for protocol verification and recovery (following
Definition 4). The runtime creates a monitor process per Erlang
process. A monitor checks, at runtime, that messages sent and re-
ceived by a process correspond to its local type. In the case of fail-
ure, monitors restart their respective processes.
(3) An interface for local processes (gen_protocol behaviour):
this module provides the basic functionality for a process to be eli-
gible for verification and recovery.

For developers to use the system there are two requirements.
First, define the process interactions into a Scribble protocol. Sec-
ond, implement a gen_protocol process for each role in a protocol.
The role and the protocol must be specified as a part of the process
initialisation. The process is also required to implement message
handlers for all interactions in the protocol. Hence, developers are
implementing processes using a handler-based API, as customary
in Erlang/OTP, while a monitor attached to each process ensures
that the behaviour of the system follows the semantics in § 4.

We explain the processing of Scribble protocols and how to
program with gen_protocol in § 5.1 and § 5.2 respectively.

5.1 Scribble Protocols for Recovery and Verification
The correspondence between Scribble constructs and their multi-
party session type (MPST) counterparts, as well as the global Scrib-
ble protocol for the example in Fig. 1, are given in Appendix B.
Here we list only important details for the runtime semantics.

Protocol processing Once the protocol is written, the Scribble
tool [30] automatically checks the correctness of the protocol and
generates finite state machines (FSMs). While our recovery analy-
sis is solely based on global protocols, we use the correspondence
between local types and finite state machines [12] to monitor and
track the execution state for each process.

Storing global recovery tables Our tool parses a global Scrib-
ble protocol to create a dependency graph (as explained in § 3.3).
Then it calculates the corresponding Global Recovery Table (GRT),
following § 4.1, and stores it in a database. This is done statically
before an application is started. We generate a GRT per protocol.
The scheme for the database table, holding the GRT records, fol-
lows the shape, presented in Fig. 3; i.e. for every protocol state,
a map of affected roles and their reset points is stored. For a per-
sistent storage, we use Mnesia, which is optimised for fast query
processing on a read-only table where locks are not needed, as in
our case. At runtime the GRT records are accessed only when a
role has to retrieve its new state due to a process failure. Mnesia
is a distributed database, which provides replication capabilities,
hence the GRT can be accessed from different Erlang nodes.

5.2 Erlang Programming with Multiparty Session Protocols
Monitor A monitor intercepts all incoming/outgoing messages
associated to its linked process. Monitors correspond to the local
supervisors shown in Fig. 4 in § 2. When a monitor is spawned, it
is parameterised with a local protocol. Every time a process sends
a message, its monitor checks the message is correct w.r.t the local
type, if so the message is sent to the destination monitor, and from
there dispatched to the corresponding process.

Endpoint processes Endpoint (gen_protocol) processes im-
plement the business logic for a role in a protocol. The endpoint
processes define message handlers and react upon received mes-
sages. The order of messages is not specified since the verification
process (the monitor associated to the endpoint process) ensures
the messages follow the order in the protocol.

For an endpoint process to be part of a protocol, it should imple-
ment a custom behaviour gen_protocol. Behaviours in Erlang are
similar to abstract classes. They encapsulate a common pattern (be-
haviour) and expose a set of required methods to be implemented.
For example, our gen_protocol behaviour checks at compile-time
that all message handlers implemented in a process module have
a matching label in the local type of the process. For example, if
a partial protocol is: A→ B : quote, the process implementing B is
verified to have, as part of its interface, a function named quote.

We implement the gen_protocol behaviour as a modification of
gen_server, which is an implementation of a generic server, part
of the standard Erlang/OTP libraries. It receives messages from
the process mailbox and dispatches them to the message handlers
defined in the process. For example, if a message of the form {〈
123〉, sum, 1, 2} is received in the mailbox of the process with
process id that equals 〈123〉 the gen_server dispatches the message
by invoking the function sum(1, 2).

Communication between endpoints Endpoint processes com-
municate via the API function: role:send(Id, Role, Method,
Args). The first parameter Id is the id of the monitor linked to
the process, Role is the name of the destination role as given in
the protocol. For example, Line 14 in Fig. 8 specifies sending a
message to role E, the notation ? in Erlang is used to annotate local
constants, e.g ?E. The parameter method is a label for the message

7 2016/11/23

1 % Initialisation of A
2 init(Val) →
3 role:send(State#state.role, ?A1, quote, Val).
4
5 % Handlers for C and D
6 quote({msg,Val},State) →
7 role:send(State#state.role, ?E, quote, Val).
8
9 accept({msg,_},State) → {ok,State}.

10 reject({msg,_},State) → {ok,State}.
11
12 % Handlers for E
13 quote({msg, Val},State) when State.prev==undef →
14 {noreply,State#state{prev=Val}};;
15
16 quote({msg, Val},State) when State#state.prev>Val →
17 role:send(State#state.role, ?C, reject, empty),
18 role:send(State#state.role, ?D, accept, empty),
19 {noreply,State};
20
21 quote({msg, Val},State) when State#state.prev<Val →
22 role:send(State#state.role, ?C, accept, empty),
23 role:send(State#state.role, ?D, reject, empty),
24 {noreply,State}.

Figure 8: Message handlers for endpoint processes

being sent. For example, if a protocol specifies quote(int) then
method is quote. The parameter, Args, stands for payloads.

Message handlers as callbacks An endpoint process imple-
mentation consists of defining message handlers for protocol mes-
sages. A part of Erlang code for the Trading Negotiation is given
in Fig. 8. The code snippet displays the callbacks required for the
modules implementing the endpoint processes for roles A, C, D and
E. Note that A and B do not have any interactions after sending an
initial quote message and no handlers are needed. Hence, A sends a
message to A1 in the body of the initialisation function init, Line 3
in Fig. 8. The C process and the D process implement the function
quote, accept and reject. In quote both C and D simply resend
the received message to the process E. The internal choice on E is
implemented as a guard on the message handler quote. The guard
compares the values received from C and D and sends accept to
whoever sends the highest quote. As customary in Erlang, all han-
dlers have a parameter State, which is used to thread the state of
the process between message handlers. For example, Line 14 saves,
in the variable prev, the received value Val. Then on Line 21 prev is
used as a guard to determine which message handler to be invoked.

Starting a protocol The last requirement is implementing a
supervisor for the endpoint processes. A supervisor should specify
a supervisor type and a list of processes to be started. A simpli-
fied supervisor definition for a one-for-all supervisor has the form
{{one_for_all}, Processes}, where Processes is a list of pro-
cesses definitions. We have implemented a custom supervisor type
protocol_supervisor that follows our recovery strategy. Hence, if
a developer wants to use our recovery strategy they have to replace
{one_for_one} strategy with protocol_supervisor as a type of the
supervisor. Finally, the protocol can be started by invoking the start
function of the supervisor, as customary in Erlang applications.

5.3 Supervision
We build our recovery strategy on top of the runtime protocol
verification, provided by role and gen_process. Decoupling of a
protocol checker (role) and an endpoint process (gen_process)
is essential for the recovery. In this way, processes do not send
messages directly to the other endpoints and as a result when a
process fails only its role is notified about the new process id.
Therefore the failure is transparent to the other endpoint processes.

The implementation of our recovery mechanism draws on the
Erlang feature of links, a mechanism for creating a bidirectional

Supervisor
one-for-one

Supervisor
simple-one-for-one

role role role
Process Process Process

Figure 9: Supervision hierarchy

link between processes. It ensures that terminating processes emit
exit signals to all linked processes. We use link to connect a
running process to its role.

A running system with three participants is shown on Fig. 9. The
figure displays a supervision structure and links (denoted as dotted
red arrows) created by our runtime. The processes are grouped
by a protocol_supervisor, implemented as an extension of the
Erlang’s one-to-one supervisor. If a process dies, only this process
is restarted by the supervisor. When a role is created during a
process initialisation, the role receives the process id and links to
it, which ensures the role will be notified if the process fails.

Failure handling The recovery mechanism after a process fails
consists of three key parts:
(1) Notification of failure. A role receives the system message
EXIT when a process fails.Then the role broadcasts a message FAIL,
that contains the failed state, to the other affected roles. The set of
affected roles is retrieved from the GRT. Only the state number is
broadcasted, because it identifies the state. The projection ensures a
unique correspondence between local states and states in the global
dependency graph.
(2) Obtain reset points. When a role receives a message FAIL or
EXIT it queries the GRT, and retrieves the reset state for the new
process. A state represents a node in the local finite state machine
(FSM). The role updates the current FSM state.
(3) Restart a process When a role receives a message FAIL it sends
a kill message to its linked process. When a process dies, either
because of a failure, or as a result of a kill message, it is restarted by
the protocol_supervisor. During process initialisation, the process
receives the id of its role and sends the role its new id so the role
can establish the link.

6. Use Cases and Evaluations
The aim of the evaluation in this section is to demonstrate the
applicability of our recovery strategy (called hereafter protocol-
recovery) to several typical concurrency patterns from open source
projects and the literature [16, 19]. The overhead of protocol-
recovery comes from (1) the overhead of propagating the error and
(2) the lookups performed on the global recovery table.

We compare protocol-recovery against the Erlang all-for-one
supervision strategy. We have organised the benchmarks into three
categories: we evaluate (1) a real world use case, a protocol for
crawling web pages, by inserting failures at random states as to
measure the average performance gain by protocol-recovery; (2)
a set of three typical message-passing protocols, by inserting a
failure at a specific state in the protocol as to measure the maximum
performance gain by protocol-recovery; and (3) the execution times
for the three scenarios of our running example, confirming that in
two out of the three scenarios from § 1, all-for-one is less efficient
than protocol-recovery.

In summary, the use of protocol-recovery results in faster pro-
tocol execution times (up to 52%) than all-for-one in cases where
fewer processes are recovered. In cases where protocol-recovery re-

8 2016/11/23

Figure 10: Execution time for (a) Web Crawler, (b) Ring, MapReduce and Calculator and (c) Trading Negotiation; the colours of the bars on
the graph correspond to (no failure protocol-recovery all-for-one)

Example #roles #states GRT (sec) affected roles
Web Crawler [19] 2*n+2 4*n 0.45 –
MapReduce [19] n+1 n+2 0.11 W[1] . . . W[n]
Ring [19] n 2*n 0.16 W[1] . . . W[n]
Calculator [16] n+1 4*n 0.75 A[1]

Trading Negotiation 2*n+1 2*n+4 0.17 in Table 1

Table 2: GRT generation time (n = 100)

covers all processes, the overhead is small (up to 7%). We compare
with all-for-one only since other static recovery strategies result in
an inconsistent (unsound) monitor state (see Table 1).

We implemented all programs using the Erlang API, presented
in § 5. For each example, we give the global type adopting the
notation from [24, § 3.2] and [14] as to express parametrised pro-
cesses. For example, P[i : 1..n] denotes a range of processes of type
P where i is between 1 and n and i binds the rest of the free oc-
currences of i in the rest of the global type. The examples are sum-
marised in Table 2 and Fig. 10. Table 2(a) shows the number of
roles (participants) for each protocol (#roles), the number of states
in the dependency graph (#states) and the time (in seconds) for cal-
culating the global recovery table (GRT). Each example is parame-
terised on an integer n, which determines the number of roles, and
thus the number of states in a protocol (as shown in Fig. 2) and the
results displayed in Fig. 10 are for n=100. We also show the roles
that are recovered (affected roles) for the protocols where we report
on a specific failure. For the web crawler use case, this column is
not applicable since we insert failures randomly.

Setup We use the version Erlang 17.0. All processes run on
the same Erlang node with Mnesia running on a separate node. The
configuration for the machine is Ubuntu 13.04 64bits GNU/Linux;
8 Cores: Intel(R) Core i7-4770 CPU @ 3.40GHz 16Gb of RAM.

6.1 Web Crawler Use Case
We start with an open source project, a web crawler example.1 A
web crawler protocol specifies the coordination between multiple
processes. The task is splitted into the four stages: (1) connecting
to a webpage; (2) downloading its content; (3) parsing the content;
and (4) indexing the contents of a set of web pages. Multiple
instances of Downloader and Paser processes can run in parallel.
In addition, the task of indexing a parsed content is normally
delegated to a third-party database with capabilities for storing

1 The example is implemented in several github projects such as https:
//github.com/Foat/articles/tree/master/akka-web-crawler

large volumes of data. The protocol is given below:
Downloader[i : 1..n]→ Parser[i] : parse;
Parser[i]→ Indexer : index;Indexer→ Master : url;

The protocol consists of four processes: a Downloader process
downloads the source of a page given the page url address; a
Parser process parses the source of the page; an Indexer process
delegates the parsed result to an external service for indexing; and
a Master process carries the information of visited pages. Note
that after the Indexer is done processing a webpage, it notifies the
Master which url has been processed.

Failure injection A robust implementation of this use case is
challenging since an implemented program relies on several ex-
ternal services, notably the pages that are being crawled and con-
nected to an external database for storing indexed results. There-
fore, numerous failures are possible, for instance, requests can time
out, the parser can choke on the input, an error in the indexing ser-
vice can occur due to a large number of requests. To test all the dif-
ferent scenarios, we have implemented a randomised failure injec-
tion. At the beginning of a protocol execution we chose randomly
a failing state and when this state is reached it has a 20% chance
to fail by performing division by zero. We execute this scenario
100 times and on the graphs on Fig. 10 (a) the results are ordered
based on the number of failures affecting each execution. For ex-
ample, the last bar shows the execution time when a protocol has to
recover five times before reaching a failure-free execution. On av-
erage our protocol-recovery gives a better performance, especially
in the case of multiple failures.

During the experimental evaluation, we tried different failure
strategies, such as assigning a probabilistic failure value to each
process. This approach resulted in many processes failing simul-
taneously. Our recovery managed to complete the tasks, while all-
for-one could not since it quickly reached the maximum number
of allowed restarts. Although it is anecdotal, this experiment shows
that supervision strategies are a source of errors, and highlights the
importance of a sound recovery.

6.2 Micro Benchmarks
For each example, we give the global type and discuss the result of
protocol-recovery in terms of (1) number of affected participants
(Table 2) and (2) overhead (Fig. 10 (b)). For the latter, we compare
the execution times for completing the protocol without a failure,
and with one failure followed by a subsequent recovery.

(1) MapReduce Below we show a typical parallel protocol,
where a Master process splits a task between several Wrorkers.
Each worker performs its sub task and notify the Master by send-
ing a reduce message.

9 2016/11/23

Master→ Worker[i : 1..n] : map;
Worker[i]→ Master : reduce;

A1

A2

An

M

Map

Map

Map
R

Reduce

Reduce

Reduce

Failure: The Master fails after sending map to everyone.
Result: The execution time with recovery depends on the com-

putation intensity of the task performed by each worker. In our
benchmark each Worker[i] sorts a list of 10000 elements. MapRe-
duce in Fig. 10 (b) shows that after a failure, protocol-recovery out-
performs the all-for-one recovery taking only 20% of the time to
complete the protocol (the time before the recovery starts).

(2) Ring We consider a common pattern of chained interactions
between the number of n processes where each process (A[i]) sends
a ping message to its neighbour (A[i+1]). When process A[n]
receives ping, it starts a chain of pong messages. Its protocol is:

A[i : 1..n−1]→ A[i+1] : ping;
A[i : n..2]→ A[i−1] : pong;

A1 A2
pong

ping

A3
pong

ping

An
pong

ping

Failure: A process A[k] fails before sending a pong message.
Result: The total of n-k+1 processes are restarted (these are

processes n, n-1, . . . k). Fig. 10 (b) shows the execution time when
k = n-1 which requires restart of only two processes and thus the
significant performance gain (protocol-recovery outperforms the
all-for-one recovery by 52%).

(3) Distributed Calculator This protocol is a modification
of the ring protocol. Processes cooperate to solve an equation.
Each process (A[i]) calculates an expression (by sending expr to
a calculator C) and resend the continuation cont (the rest of the
equation) to its neighbour. Then the process A[i] waits for result
from C and for the result of their neighbour A[i+1]. When both
are received it sends the total to A[i−1]. Its global type is given as:

A[i : 1..n−1]→ C : expr;
A[i]→ A[i+1] : cont;
C→ A[i] : result;
A[n]→ C : expr;
C→ A[n] : result;
A[i : n..2]→ A[i−1] : result;

A1

Ai

cont.val.

An

cont.val.

C

result
expr.

result
expr.

result
expr.

Failure: C fails after processing a message form A[i].
Result: All processes are recovered since they are all connected

by the IO-dependencies and each output depends on a previous
input, hence this benchmark does not incur performance gain.

6.3 Trading Negotiation
We demonstrate the result of recovery on the failure scenarios ex-
plained in § 1.2 (displayed in Fig. 10(c) as Sc1, Sc2 and Sc3).
We have spawn 100 processes for Alice’s and Bob’s group. The
results of an execution without recovery of the protocol is given
in Fig. 10(a) (denoted as Sc0). In case of recovering fewer pro-
cesses, as in Sc1 and Sc3, the protocol completes faster if we apply
protocol-recovery than if we restart all interactions by the all-for-
one supervision. In case of Sc2, we need to restart all processes. In
this case, protocol-recovery induces only a small overhead 7% in
comparison to all-for-one supervision.

6.4 Summary
Our protocol-recovery strategy outperforms Erlang all-for-one
strategy when there are more intensive local computations; and
protocols are more parallelised (i.e. they are more disconnected,
hence there are less IO-dependencies from the failing node). It in-

curs a little overhead comparing to the case with no failure. The
motivation of our work is not performance gain, but an automatic
error prevention both at the process level (we ensure processes are
safe and conform to a protocol); and at the level of the supervision
trees and dynamic process linking (we create supervision trees and
link processes dynamically based on a protocol structure). Spe-
cific performance optimisations (such as using persistent storage
to cache the intermediate messages) and recovery actions (such as
changing the database connection if this was the reason for the ini-
tial failure) are orthogonal/complementary concerns to our work.

7. Related and Future Work
We summarise closely related works on recovery in Erlang and/or
based on session types. See Appendix A for a wider overview on
recovery techniques such as checkpoint-based approaches.

7.1 Implementations of Recovery in Erlang
A few practical works have proposed to improve the recovery
mechanisms of Erlang supervision trees. Currently, to obtain the
process structure of an application, one must manually inspect the
source code or rely on external documentation. To resolve this is-
sue, the work [27, 28] presents a static analysis that extracts sets
of possible process structures from source code, and automatically
checks the effects of a process failure in each process structure.
More precisely, it checks if best practices are followed when creat-
ing a supervision tree. The authors do not prove any formal guar-
antees and the tool does not ensure soundness of the recovered pro-
cesses. In our work, we define a protocol first for checking contracts
between processes, and implement an automatic recovery strategy
based on that protocol. Hence, for a given session typed program,
we calculate recovery points statically.

The work [8] proposes runtime monitoring for Erlang to detect
messages which do not conform to a specification. The main aim is
porting their former synchronous monitoring Larva [23] for object-
oriented languages to asynchronous monitoring for Erlang. They do
not aim to study efficiency of recovery or ensure safety properties
such as deadlock-freedom as studied in this paper.

Recently the work [11] formalised non-blocking interrupts
based on multiparty session types and integrated this construct into
Scribble framework and runtime monitoring in Python. Unlike our
work, a programmer needs to write an explicit syntax for interrupts
which follows specific exception handling procedure, see § 7.2.

The work [15] presents a design and an implementation of a run-
time verification for Erlang where interactions are checked against
Scribble specifications. The framework allows a session to continue
when a failed role is not involved in the remainder of the session.
This class of failures is subsumed by one of our recovery cases,
Scenario 3 in § 1. The work [15] assumes only unrecoverable fail-
ures and does not reason about consistency guarantees when pro-
cesses are restarted. They combine the error handling and subses-
sions [10] in order to localise failures. Their work is implementa-
tion only; neither formalisation nor its correctness was given.

7.2 Session Types on Adaptations and Exception Handling
We list some related works on session-type based adaptations or
exceptions. Their main focus is modelling application-level con-
structs for these facilities, not an error recovery (fail-fast) frame-
work studied in this paper. All of the following works are limited to
formal modelling and have not been implemented.

There are several works which use session types to reason about
dynamic reconfiguration of processes. The work [3] investigates
the integration of constructs for runtime adaptations in a session
type discipline and presents a session type framework for adaptable
processes. The processes can be suspended, restarted, upgraded

10 2016/11/23

or discarded at runtime. They extend a session π-calculus with
primitives for updates. The authors prove session consistency (the
update does not district session behaviour) and give an encoding
of two Erlang supervision strategies, one-for-one strategy and one-
for-all strategy. Our approach proposes a new method for recovery
with dynamic checking and repairing active sessions, and does not
aim to model existing supervision strategies.

The work [9] proposes a formal model based on multiparty ses-
sion types for data-driven reconfiguration for monitored processes,
where adaptations are parameterised by a set of killed roles. After
reconfiguration, new monitors are created by deleting all traces of
killed roles. They do not restore processes and the semantics is syn-
chronous, hence it is not directly applicable to the Erlang setting.

The work [1] investigates a use of session types for an analysis
of deadlock freedom and typable communication in the presence of
dynamically changing code. The session calculus is enriched with
annotations of a code block that can be updated. The arrival of an
update is treated as an event external to the program. They proved
processes are safe and live when processes with empty queues are
updated and typed by a set of local types projected from some
global type. Our approach uses static dependency analysis of global
types for performing recovery in Erlang without any assumptions
on queue conditions and our algorithm can recover processes from
the middle of an existing session.

Several works [4, 5, 7, 20] studied exception handling con-
structs for session types. The work [5] proposes interactional ex-
ceptions for binary sessions where the try-catch blocks are built
upon session-connections for a single session. This work was ex-
tended to [4] for multiparty session types. The work [20] introduces
a process for a failure of communications where the recovery pro-
cess is included as a part of the syntax of processes with explicit
locations. The work [7] proposes a calculus with explicit excep-
tion blocks with handlers. The user needs to explicitly write excep-
tion handling constructs in each message interaction in a protocol.
Their model requires synchronisation for each occurrence in an ex-
ception block, independently whether an error has been raised or
not. In the case of a recursion, synchronisation is required at every
unfolding. All of the above works [4, 5, 7, 20] and [11] in § 7.1 con-
strain specific exception handling procedures, hence a programmer
needs to write an explicit syntax for handling errors. Our work of-
fers fail-fast (error recovery) programming framework, opposed to
defensive (error prevention) provided by exception handling.

8. Conclusion
In this work, we propose an algorithm to analyse and extract causal
dependencies from a given multiparty session protocol, and use it to
ensure that communicating processes are recovered from consistent
states in the presence of a failure. A recovered system is proved
to be free from deadlocks, orphan messages and reception errors.
The messages to be re-sent and the set of processes to be notified
are computed statically based on the dependencies in the process
structures. To our best knowledge, this is the first work to apply
session types for defining a sound recovery strategy. Our approach
can automatically generate sound supervision structures in Erlang
from types, and we implement the recovery strategy on top of
runtime monitoring. Our programming model uses session type-
based abstractions to increase robustness of the system which is
often undermined when the dependencies between processes are
manually specified. We apply our recovery strategy to common
concurrency patterns and a real world use case to guarantee safe
executions and to reducing the recovery overhead.

Erlang philosophy is “Fail fast and recover quickly”. We be-
lieve that our work would offer an important step towards a new
philosophy: “Fail fast, recover quickly and safely”.

References
[1] G. Anderson and J. Rathke. Dynamic software update for message

passing programs. In APLAS, volume 7705 of LNCS, pages 207–222.
Springer, 2012.

[2] D. Brand and P. Zafiropulo. On communicating finite-state machines.
JACM, 30(2):323–342, 1983.

[3] M. Bravetti et al. Towards global and local types for adaptation. In
SEFM, volume 8368 of LNCS, pages 3–14. Springer, 2013.

[4] S. Capecchi, E. Giachino, and N. Yoshida. Global escape in multiparty
session. In FSTTCS’10, volume 8 of LIPICS, pages 338–351, 2010.

[5] M. Carbone, K. Honda, and N. Yoshida. Structured interactional
exceptions in session types. In CONCUR, volume 5201 of LNCS,
pages 402–417. Springer, 2008.

[6] G. Cécé and A. Finkel. Verification of programs with half-duplex
communication. I&C, 202(2):166–190, 2005.

[7] T. Chen, M. Viering, A. Bejleri, L. Ziarek, and P. Eugster. A type
theory for robust failure handling in distributed systems. In FORTE,
volume 9688 of LNCS, pages 96–113. Springer, 2016.

[8] C. Colombo, A. Francalanza, and R. Gatt. Elarva: A monitoring tool
for Erlang. In RV, volume 7186 of LNCS, pages 370–374, 2011.

[9] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Parallel monitors
for self-adaptive sessions. In PLACES, volume 211 of EPTCS, pages
25–36, 2016.

[10] R. Demangeon and K. Honda. Nested protocols in session types. In
CONCUR, volume 7454 of LNCS, pages 272–286. Springer, 2012.

[11] R. Demangeon, K. Honda, R. Hu, R. Neykova, and N. Yoshida. Prac-
tical interruptible conversations: Distributed dynamic verification with
multiparty session types and python. FMSD, pages 1–29, 2015.

[12] P.-M. Deniélou and N. Yoshida. Multiparty session types meet com-
municating automata. In ESOP, volume 7211 of LNCS, pages 194–
213. Springer, 2012.

[13] P.-M. Deniélou and N. Yoshida. Multiparty compatibility in commu-
nicating automata: Characterisation and synthesis of global session
types. In ICALP, volume 7966 of LNCS, pages 174–186, 2013.

[14] P.-M. Denielou, N. Yoshida, A. Bejleri, and R. Hu. Parameterised
multiparty session types. LMCS, 8, 2012.

[15] S. Fowler. An Erlang implementation of multiparty session actors. In
ICE, volume 223 of EPTCS, pages 36–50, 2016.

[16] J. He, P. Wadler, and P. Trinder. Typecasting actors: From Akka to
TAkka. In SCALA, SCALA, pages 23–33. ACM, 2014.

[17] K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous
session types. In POPL’08, pages 273–284. ACM, 2008. A full
version appeared in JACM(63)9:1–67.

[18] R. Hu and N. Yoshida. Hybrid session verification through endpoint
API generation. In FASE 2016, volume 9633 of LNCS, 2016.

[19] S. Imam and V. Sarkar. Savina - An Actor Benchmark Suite. In
AGERE!, AGERE!, 2014.

[20] D. Kouzapas, R. Gutkovas, and S. J. Gay. Session types for broadcast-
ing. In PLACES, volume 155 of EPTCS, pages 25–31, 2014.

[21] D. Kouzapas, O. Dardha, R. Perera, and S. J. Gay. Typechecking
protocols with Mungo and StMungo. In PPDP, pages 146–159, 2016.

[22] J. Lange, E. Tuosto, and N. Yoshida. From communicating machines
to graphical choreographies. In POPL, pages 221–232. ACM, 2015.

[23] LARVA project. http://www.cs.um.edu.mt/svrg/Tools/LARVA/.
[24] R. Neykova and N. Yoshida. Multiparty Session Actors. In COORDI-

NATION 2014, volume 8459 of LNCS. Springer, 2014. A full version
in LMCS.

[25] N. Ng and N. Yoshida. Static Deadlock Detection for Concurrent Go
by Global Session Graph Synthesis. In CC, pages 174–184. ACM,
2016.

[26] N. Ng, J. G. Coutinho, and N. Yoshida. Protocols by default: Safe mpi
code generation based on session types. In CC, volume 9031 of LNCS,
pages 212–232. Springer, 2015.

[27] J. H. Nyström. Automatic assessment of failure recovery in Erlang
applications. In ERLANG, ERLANG, pages 23–32. ACM, 2009.

[28] J. H. Nyström. Analysing Fault Tolerance for ERLANG Applications.
PhD thesis, ACTA UNIVERSITATIS UPSALIENSI, 2009.

[29] Recovery. On-line Appendix of this paper. http://www.doc.ic.ac.
uk/˜rn710/recovery/.

[30] Scribble project home page. http://www.scribble.org.

11 2016/11/23

A. Appendix: Additional Related Work
This appendix lists additional related work in checkpoint and re-
covery algorithms.

A.1 Checkpoint and Recovery Algorithms
Our recovery method which calculates a recovery point is related
to checkpoint techniques studied in software recovery for message-
passing systems [31] and for web-service choreographies [34, 35].
The survey [31] categorises their checkpointing protocols as unco-
ordinated, coordinated and communication-induced. Our approach
belongs to the third class, where the coordination is done in a lazy
fashion by piggy-backing control information on application mes-
sages where usually a local checkpoint is on the fly associated to
a consistent global checkpoint. Both works [31, 34] study how to
reach a consistent global state. A global checkpoint consists of a set
of local checkpoints, one for each process, from which a distributed
computation can be restarted after a failure. In [31], recovery relies
on the knowledge and skillset of the user; and in [34], the faulty
service has to restart from the beginning. Our approach does not
require these assumptions that rely on the user and the restart point
is not required to be always from the beginning.

The work [35] classifies different interaction patterns and de-
fines a checkpoint based on the executed pattern. The supported
patterns are nesting, sequencing, concurrent and iterative. The
checkpoints are generated using rules (heuristic) defined on the pat-
tern structures. For example, for each request-reply a checkpoint is
generated in the initiator after receiving the reply. Their tool takes
a choreography of web services (given as a UML diagram) as an
input and generates checkpointing locations in the given choreog-
raphy (the initial UML diagram augmented with checkpoint lo-
cations) as outputs. Although such an approach may reduce the
recovery time, it requires additional assumptions and restrictions at
the code level. The targets of the applications studied in [31, 34, 35]
are clearly different from ours.

As a different approach, in [33], binary session types are used at
runtime to calculate the lost messages that can happen in an asyn-
chronous delegation. When the connection is moved, the messages
that may be lost could be regarded as a failure, and the session
types from both sides provide checkpoints of recovery and are used
to work out where the last synchronised state is, thus the relevant
messages can be re-sent to get back to the correct state. This ap-
proach only concerns about delegations between two parties and
is not applicable to recover multiple processes at once in the situ-
ation where messages are propagated following a global protocol
and stored in mailboxes some of which are emptied at the failure.
[32] presents an algorithm to identify checkpoints of a system of
interacting actors. The authors define a consistency condition in a
configuration of transactors (which are actors with rollback prim-
itives). A rollback recovers a transactor to its checkpoint state (if
any). Well-behaved system obeys soundness and liveness, but al-
low message losses. The work is theoretical and not implemented.

B. Appendix: Scribble examples
We first list the correspondence between Scribble constructs and
their multiparty session type (MPST) counterparts in Table 3.

An interaction label(payload)from p1 to p2;G specifies that a
message label should be sent from role p1 to role p2 and that the
protocol should then continue as prescribed by the continuation G.
The choice specifies a branching where role p chooses to engage in
the interactions prescribed by one of the options Gj . Recursion rec
Loop G defines a scope with a protocol name Loop and body G. Any
call continue Loop occurring inside G executes another recursion
instance (if continue Loop is not in an appropriate scope than it

remains idle). The parallel construct expresses parallel executions
of interactions in Gj.

1 global protocol Trading (
2 role A, role B,
3 role C, role D){
4
5 quote(int) from A to C;
6
7 quote(int) from B to D;
8
9 quote(int) from C to E;

10 quote(int) from D to E;
11 choice at E {
12 accept() from E to C;
13 accept() from E to D;
14 or {
15 reject() from E to C;
16 reject() from E to D;
17 }
18 }

Figure 11: Scribble Protocol for Trading Negotiation

Fig. 11 displays the Scribble protocol for the Trading Negotia-
tion example in Fig. 1. A protocol starts with a protocol declara-
tion followed by a protocol name and names of the participating
processes, which are also called roles (Line 2-3). Then the com-
munication between the roles is described as a sequence of mes-
sage interactions of the form label(payload)from role to role.
For example, Line 5 displays sending a message of type quote with
payload int from process A to process C. The causalities in a Scrib-
ble protocol follow those of the counterpart global type.

C. Appendix: Proofs of Main Theorems
This section proves the termination of the algorithm and the main
theorems (Theorem 1 and Theorem 2) in the paper.

We first give examples of recovery points.

Example 6 (Recovery Points).

1. Branching. Consider:

A→ B : {m1.B→ C :m2.C→ A :m5,m3.B→ C :m4.C→ A :m6}
We consider the case when C fails after receiving the message
m1 from B. Then C should be recovered from the beginning
of the protocol. The first occurrence of C in the protocol is a
choice. Therefore, C is recovered from B?{m2.A!m5, m4.A!m6}.

2. Branching with recursion. Consider:

µt.A→ B : {m1.B→ C : m2.t,m3.B→ C : m4}
We consider the same failure, i.e C fails after receiving the
message m1 from B. The first occurrence of C in the protocol is
a recursion. Therefore, C is recovered from µt.B?{m2.t,m4}.

Lemma 1 (Generation). Given G and failed node ni and failed
participant p, we generate the set inductively as in Fig. 12. When
there is no more backward IO dependency (3n+2) or backward or
forward dependent chain (after 3n+ 1 or 3n+ 3 steps), it reaches
the maximum index n. Then N 0 ∪ (

⋃
0≤i≤nN 2+3i) and a recovery

setN coincide.

Proof. By definition.

By the above lemma, Proposition 1 is immediate.

Auxiliary Definitions. We use the following definitions.
Let s0 an initial configuration of G. A configuration s is reach-

able if s0 →∗ s and we define the reachable set of S as RS(S) =

12 2016/11/23

Multiparty Session Types Scribble Description
p→ p′ : {a.G} label(payload)from p to p; G singleton branching type
p→ p′ : {a j.G j} j∈J choice at p {G1} or {G2} . . . or {GJ} branching type
µt.G rec Loop G recursion
t continue Loop recursion variable

Table 3: The correspondence between Scribble and multiparty session types

0. N 0 = {n | (ni C n ∧ n= r→ p) ∨ n= ni}
S0 = {n | (ni C n′ ∧ n′ = p→ r ∧ n′ ≺≺IO n) ∨ ni ≺≺IO n}\{ni}

1. N 1 = {n | n.n′∧n′ ∈N 0∧n ∈S0}
2. N 2 = {n | n≺≺IO n

′∧n′ ∈N 0∪N 1}
3. N 3 = {n | n′ .n∧n′ ∈N 2}\ (N 0∪S0)
4. N 4 = {n | n.n′∧n′ ∈N 3∧n ∈S0 \N 2}
5. N 5 = {n | n≺≺IO n

′∧n′ ∈N 3∪N 4}
6. N 6 = {n | n′ .n∧n′ ∈N 5}\ (N 0∪S0)
· · ·

3n+1. N 3n+1 = {n | n.n′∧n′ ∈N 3n∧n ∈S0 \
⋃

0≤i≤n−1N 3i+2}
3n+2. N 3n+2 = {n | n≺≺IO n

′∧n′ ∈N 3n∪N 3n+1}
3n+3. N 3n+3 = {n | n′ .n∧n′ ∈N 3n+2}\ (N 0∪S0)

· · ·

Figure 12: Generation of Recovery Nodes

{s | s0 →∗ s}. The traces of a system S, denoted by Tr(G), is de-
fined as Tr(G) = {~̀ | ∃s,s0

~̀−→s}. Similarly we write Tr(s) to denote
the set of the visible traces that can be obtained by reducing s. We
denote s≈ s′ if Tr(s) = Tr(s′). Similarly for G≈ G′.

Two prefixes can be permuted if they are not causally depen-
dent. We identify two global types up to these permutations. As-
sume that p,q,p′,q′ are pairwise distinct. We define a permutation
relation between global types (G1 ' G2) as the smallest congruent
relation generated by µt.G' G[µt.G/t] and

p→ q : {ai.p
′→ q′ : {b j.G j} j∈J}i∈I

' p′→ q′ : {b j.p→ q : {ai.G j}i∈I} j∈J

Lemma 2 (Global types). If G1'G2, then (1) {G1 � pi}i∈I = {G2 �
pi}i∈I; (2) Dependent graphs of G1 and G2 are the isomorphic; and
(3) G' G′ implies G≈ G′.

Proof. (1,2) are by definition; and (3) is by (1).

Lemma 3 (Recovered types). 1. The set { fG(Tp,q) | q∈ roles(G)}
always exists and unique for given G and Tp.

2. If G' G′ then
{ fG(Tp,q) | q ∈ roles(G)} = { fG′(T ′p,q) | q ∈ roles(G′)} with
Tp ≈ T ′p.

3. If G≈ G′ and Tp ≈ T ′p, then fG(Tp,q)≈ fG′(T ′p,q).

Proof. By definition.

Definition 1 (Connected global types). We define a connected
global type as a closed well-formed global type generated by the
following rules.

1. end is connected.
2. µt.G is connected if G[end/t] is connected.
3. p→ q : {ai.Gi}i∈I is connected if Gi is connected and

if Gi = pi→ qi : {b j.G′j} j∈J , then {p,q}∩{pi,qi} 6= /0.

Lemma 4 (Subglobal types). Suppose G is well-formed and closed
and p→ q∈G. Then there exists G1 such that G'G1 ⊇G2 = p→
q : {a j.G j} j∈J and G2 connected.

Proof. By induction of well-formed G.

Lemma 5 (Recovery points). Assume P0 = {q | fG(Tp,q) =
Tq and q ∈ roles(G)}. Then there exists G ' G1 ⊇ G2 such that
G2 � q= Tq for all q ∈P0.

Proof. We show that there exists connected G2 such that G'G1 ⊇
G2 and G2 � q = Tq for all q ∈P0. By Lemma 4, there exists
G ' G1 ⊇ G2 such that G2 is connected. Take one of the nodes
in which appears in the maximum occurrence n in G (determined
by Lemma 1). Take G/n. Then by definition, fG/n(Tp,q) = Tq for
all q ∈P0. Since all nodes in N are causally related, we can find
some connected G′ such that G′ ⊆ G1 ⊆ G/n and fG′(Tp,q) = Tq
for all q ∈P0.

Lemma 6 (Queues). Suppose (~T ;~w) †−→(~T ′;~w′) with Tp †−→T ′p and
fG(Tp,q) = /0. Then w′qp = wqp = w′pq = wpq = /0, i.e., if the partic-
ipant q is not affected by a recovery of p, then the queues from q to
p and are p to q are empty before the failure of Tp.

Proof. If fG(Tp,q) = /0, then q is not affected by the recovery point
or it does not start the interaction with p (hence the message from
q to p or p to q is not sent yet). Hence wqp = wpq = /0.

Lemma 7 (Permutation). Suppose (~T 1;~w1) †−→(~T 2;~w2) `−→(~T 3;~w3)
with T 1

p
†−→T 2

p , T 2
q

`−→T 3
q , and fG(T 1

p ,q) = /0. Then there exists
(~T 4;~w4) such that (~T 1;~w1) `−→(~T 4;~w4) †−→(~T 3;~w3).

Proof. For all r, w1
rq = w2

rq (by definition) and w1
qr = w2

qr (by
Lemma 6). Hence we can set T 1

q = T 2
q and T 4

q = T 3
q and for all r,

w1
qr = w2

qr and w4
qr = w3

qr; and w1
rq = w2

rq and w4
rq = w3

rq. Hence
done.

13 2016/11/23

A sequence of transitions s1
`1−→s2 · · ·sm

`m−→sm+1 is said to be
stable if no channel of any intermediate configuration si contains
more than 1 message. More precisely, in each wpq in si, |wpq| ≤ 1.
The following is proved in [12, 13, 22].

Proposition 2 (Stability). Suppose that s0 is an initial configura-
tion of G and s0

~̀−→s and † 6∈ ~̀. Then there exists stable s0
~̀−→s′ such

that s
~̀1−→s′.

Lemma 8 (Reachability). Suppose s0 is an initial configuration of
G and G′ ⊂ G and G′ is closed. Then there is stable s0

~̀−→s′ such
that † 6∈ ~̀ and s′ is an initial configuration of G′.

Proof. By Lemma 4 and Proposition 2.

Lemma 9 (Recovery). Suppose s0 is the initial configuration of
G. Assume s0

~̀−→∗s †−→s′. Then there exists s′
~̀1−→s′′ such that s′′ is an

initial configuration of G′ with G′ ⊆ G1 ' G for some G1 and G′.

Proof. By induction of a number of † in ~̀.

Case (1) Assume † 6∈ ~̀.
Case (1-1) Assume s †−→s′ by Definition 4(2-b). Then s = s′. Hence
by Proposition 2, we conclude.

Case (1-2) Assume s †−→s′ by Definition 4(2-a). Let s = (~T ;~w) with
~T = ~T 1;~T 2 and ~w = ~w1;~w2 where ~T1 contains the local types
which will be recovered by the failure of p. Hence we can set
s′ = (~T ′;~w′) such that ~T ′ = ~T 3;~T 2 and ~w′ = ~w3;~w2 where wrq = /0
in ~w3 such that q in ~T 1 (and ~T 3). By applying Lemma 7 repeatedly,
all transitions from/to ~T 2 can be permuted. Hence by Lemma 2,

we have s
~̀3−→ s3 = (~T 3;~T 4;~w3;~w4) where ~w4 =~ε . Now applying

Lemma 5 to p ∈ roles(~T3) and set ~T 4 appropriately, we have done.

Case (2) Assume † occurs n+ 1 times in ~̀. Then straightforward
by the induction of n.

Then Theorem 1 is by Lemma 8 and Lemma 9; and Theorem 2
is by Theorem 1 and Proposition 2.

Appendix References
[31] Elnozahy et al. A survey of rollback-recovery protocols in message-

passing systems. ACM Comput. Surv., 34(3):375–408, Sept. 2002.
[32] J. Field and C. A. Varela. Transactors: A programming model for

maintaining globally consistent distributed state in unreliable environ-
ments. In POPL, pages 195–208. ACM, 2005.

[33] R. Hu, N. Yoshida, and K. Honda. Session-Based Distributed Pro-
gramming in Java. In ECOOP’08, volume 5142 of LNCS, pages 516–
541. Springer, 2008.

[34] A. V. Vathsala and H. Mohanty. A survey on checkpointing web
services. PESOS, pages 11–17. ACM, 2014.

[35] A. V. Vathsala and H. Mohanty. Interaction patterns based checkpoint-
ing of choreographed web services. PESOS, pages 28–37, 2014.

14 2016/11/23

