
DRAFT 22nd March 2017
© Alceste Scalas and Nobuko Yoshida
This work is licensed under the Creative Commons
Attribution-Share Alike License.

Multiparty Session Types, Beyond Duality

Alceste Scalas
Imperial College London

alceste.scalas@imperial.ac.uk

Nobuko Yoshida
Imperial College London

n.yoshida@imperial.ac.uk

Multiparty Session Types (MPST) are a well-established typing discipline for message-passing pro-
cesses interacting on sessions involving two or more participants. Session typing can ensure desirable
properties: absence of communication errors and deadlocks, and protocol conformance. However,
existing MPST works provide a subject reduction result that is arguably (and sometimes, surpris-
ingly) restrictive: it only holds for typing contexts with strong duality constraints on the interactions
between pairs of participants. Consequently, many “intuitively correct” examples cannot be typed
and/or cannot be proved type-safe. We illustrate some of these examples, and discuss the reason for
these limitations. Then, we present a novel MPST typing system that removes these restrictions.

1 Introduction

The Multiparty Session Types (MPST) framework [7] provides a well-established typing discipline for
processes interacting on multiparty sessions. In a nutshell, it fosters a top-down approach where:

(1) a global type G formalises a choreography involving n interacting roles;
(2) G is projected onto a set of (local) session types S1, . . . ,Sn (one per role of G);
(3) S1, . . . ,Sn are assigned to channels, used by MPST π-calculus processes that are type-checked.

This ensures properties such as type safety and protocol conformance (i.e., all sent/received messages
comply with the session types, and ultimately with their originating global type G). E.g., consider:

G = p→q∶{m1(Int) .q→r∶m2(Str) .r→p∶m3(Bool) .end ,
stop .q→r∶quit .end } (1)

The global type G involves three roles: p, q, r. It says that p sends to q either a message m1 (carrying an
Integer) or stop; in the first case, q sends m2 to r (carrying a String), then r sends m3 to p (carrying a
Boolean), and the session ends; otherwise, in the second case, q sends quit to r, and the session ends.

The projections of G describe the I/O actions expected from processes that play the roles in G:

Sp =q⊕{m1(Int) .r&m3(Bool) ,
stop

} Sq =p
¯

{m1(Int) .r⊕m2(Str) ,
stop .r⊕quit } Sr =q

¯
{m2(Str) .p⊕m3(Bool) ,
quit

} (2)

Here, Sp, Sq, Sr are the projections of G resp. onto p, q, r. E.g., Sp is a session type that represents the
behaviour of p in G: it must send (⊕) to q either m1(Int) or stop; in the first case, the channel is then
used to receive (&) message m3(Bool) from r, and the session ends; otherwise, in the second case, the
session ends. Below is an example of MPST process matching such types: s is a multiparty session, and
s[p] (resp. s[q], s[r]) is a channel with role used to interact on s while playing the role of p (resp. q, r).

(νs)(Pp ∣Pq ∣Pr) where

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Pp = s[p][q]⊕stop

Pq = s[q][p]
˘

{m1(x) . s[q][r]⊕m2("Hi" ) , stop . s[q][r]⊕quit}
Pr = s[r][q]

˘
{m2(y) . s[r][p]⊕m3(true ) , quit}

(3)

Here, (νs)(Pp ∣Pq ∣Pr) is the parallel composition of processes Pp, Pq, Pr in the scope of s. In Pp,
“s[p][q]⊕stop” means: s[p] is used to send stop to q. Pq uses s[q] to receive either m1 or stop from
p; then, in the first case it uses s[q] to send m2 to r; in the second case, it uses s[q] to send quit to r.

http://creativecommons.org
http://creativecommons.org/licenses/by-sa/3.0/


2 MPSTs, Beyond Duality

Using the standard MPST typing rules, we have the following typing derivation:

∀p′ ∈ roles(G) = {p,q,r} ∶ Sp′ =G↾p′

⋮
⊢ Pp▷ s[p]∶Sp

⋮
⊢ Pq▷ s[q]∶Sq

⊢ Pp ∣Pq▷ s[p]∶Sp,s[q]∶Sq
[STD-∣]

⋮
⊢ Pr▷ s[r]∶Sr

⊢ Pp ∣Pq ∣Pr▷ s[p]∶Sp,s[q]∶Sq,s[r]∶Sr
[STD-∣]

⊢ (νs∶G)(Pp ∣Pq ∣Pr)▷∅
[STD-ν ]

(4)
Here, s has type G, because in the premise of [STD-ν ], s[p] (resp. s[q], s[r]) has type G↾p (resp. G↾q,
G↾r), i.e., the projection of G onto p (resp. q, r). The parallel process Pp ∣Pq ∣Pr is typed by rule [STD-∣],
that splits the typing context so that a channel endpoint is not used by two parallel sub-processes. In the
omitted part of the derivation, Pp, Pq, Pr are typed: they use resp. s[p], s[q], s[r] abiding by Sp, Sq, Sr.

Inter-role dependencies Note that after sending stop to q, Pp above terminates without receiving
messages from r via s[p]. Indeed, according to Sp, Pp must input a message from r only after sending m1

(instead of stop) to q. Now, if we take Pr, we see that it could potentially try to send m3 to p — and this
would be an error. However, such an error does not occur: by observing the whole ensemble Pp ∣Pq ∣Pr,
we see that when Pq receives stop from Pq, it “forwards” quit to r (as per Sq); and when Pr receives
quit from q, it does not try to communicate with p (as per Sr). Hence, Sp makes Pp “assume” that by
sending a certain message to the process playing role q, it will also influence the process playing r: this
is an implicit inter-role communication dependency, that can be more explicitly observed in G.

Subject reduction Type safety is based on the subject reduction property: by showing that typed
processes can only reduce to typed processes, we obtain that no (untypeable) error configurations can be
reached. Hence, we would expect that subject reduction holds for our typed example above — roughly:

⊢ P▷Γ and P→∗ P′ implies ∃Γ
′ ∶ ⊢ P′▷Γ

′ (where P = Pp ∣Pq ∣Pr and Γ = s[p]∶Sp,s[q]∶Sq,s[r]∶Sr) (5)

But surprisingly, this is not the case! In MPST works (e.g., [3]), the subject reduction statement reads:

⊢ P▷Γ with Γ consistent and P→∗ P′ implies ∃Γ
′ consistent such that ⊢ P′▷Γ

′ (6)
where Γ is consistent iff ∀{s′[p′]∶Sp′ , s′[q′]∶Sq′} ⊆ Γ ∶ Sp′↾q′ and Sq′↾p′ are dual (Def.A.5, A.4) (7)

i.e., subject reduction is only proved for consistent (also called coherent) typing contexts. The reason is
technical: the proof of MPST subject reduction needs an invariant that (R1) makes the typing context
“safe” (e.g., if the type of s′[p′] sends a message to q′, then the type of s′[q′] can input such a message
from p′), (R2) is preserved when processes communicate and reduce, and (R3) is preserved when typing
contexts are (de)composed by parallel composition (cf. [STD-∣] in (4)). Consistency satisfies (R1)–(R3) by
imposing the duality of the partial projections Sp′↾q′ and Sq′↾p′, for each pair {s′[p′]∶Sp′ ,s′[q′]∶Sq′} ⊆ Γ

(cf. (7)). In our example, the pair s[p]∶Sp,s[q]∶Sq is consistent: the outputs of Sp to q are dual w.r.t. the
inputs of Sq from p. However, the pair s[p]∶Sp,s[r]∶Sr is not consistent: Sp↾r and Sr↾p are undefined—
precisely because the inputs/outputs of Sp/Sr from/to r/p depend on previous I/O with q! (See Ex.A.6)
Spotting “inconsistencies” is tricky: it requires examining all pairs of projections of a choreography;
further, choreographies with inter-role dependencies are often “inconsistent”—even simple ones, like
our G in (1); and without consistency, subject reduction (and type safety) is not guaranteed.

Contributions We present a novel MPST typing system (Def. 3.3) whose subject reduction property
(Theorem 3.6) holds for a larger set of processes w.r.t. existing MPST literature. Our typing rules (1) re-
cord and exploit “global” typing information through an additional “typing rely context”, (2) require
“live” (but not necessarily consistent) typing contexts, (3) do not require the existence of a global type
(unlike [STD-ν ] in (4)), and (4) subsume the “standard” MPST typing rules as special cases. We claim that
our “liveness” condition is a reasonable, semantically-grounded characterisation of “correct” multiparty
interactions, amenable for “bottom-up” choreography synthesis. Proofs are available in §C.



Alceste Scalas and Nobuko Yoshida 3

c,d ∶∶= x ∣ s[p] P,Q ∶∶= c[q]⊕m(d) .P ∣ c[q]
˘

i∈I {mi(xi) .Pi} ∣ P ∣Q ∣ (νs)P ∣ def X(x̃) = P in Q ∣ X ⟨̃c⟩ ∣ 0

[R-COMM] s[p][q]
˘

i∈I {mi(xi) .Pi} ∣ s[q][p]⊕mk(s′[r]) .Q → Pk{s′[r]/xk} ∣ Q (k ∈ I)
[R-X ] def X(x1, . . . ,xn) = P in (X⟨s1[p1], . . . ,sn[pn]⟩ ∣ Q) → def X(x1, . . . ,xn) = P in (P{s1[p1]/x1}⋯{sn[pn]/xn} ∣ Q)

[R-∣] P→ P′ implies P ∣Q→ P′ ∣Q [R-ν ] P→ P′ implies (νs)P→ (νs)P′

[R-def] P→ P′ implies def X(x̃) =Q in P → def X(x̃) =Q in P′

Figure 1: Standard MPST π-calculus. Top: syntax. Bottom: semantics, up-to congruence ≡ (Def.A.7).

2 Multiparty Sessions: Standard Calculus, Types and Typing Contexts

We first provide a series of standard MPST definitions, adopting a notation roughly based on [3]. For
simplicity, we omit basic values (e.g., strings, integers, booleans. . . ). Our new theory is presented in §3.

Definition 2.1 (MPST π-Calculus). MPST processes have the syntax and semantics shown in Fig.1.

A channel c or d can be a variable x, or a channel with role s[p], used to play the role p in session s, and
send/receive messages to/from other roles in s. A process P or Q can be: a selection that uses c to send a
message m with payload d to q, and continues as P; a branching that uses c to receive from q a message
mi (for any i ∈ I), binds xi with its payload, and continues as Pi; a parallel composition where P, Q run
concurrently (and possibly communicate); a delimitation of the scope of s to P; a definition of X (with
parameters x̃) as P, with scope Q; a call of X with actual parameters c̃; a terminated process 0.

As expected, our MPST typing system (§3) will assign session types (Def.2.2) to channels (Def.2.1).

Definition 2.2 (Multiparty Session Types). Session types (ranged over by S,T ) have the syntax:
S,T ∶∶= p

˘
i∈Imi(Si).S′i ∣ p⊕i∈Imi(Si).S′i ∣ end ∣ µt.S ∣ t with I ≠∅ and ∀i ∈ I ∶ fv(Si) =∅

where mi range over pairwise distinct message labels. We define ≡ as the coinductive equivalence
between type trees, such that: µt.S ≡ S{µt.S/t} (i.e., a recursive type is equivalent to its unfolding).

The branching type (or external choice) p
˘

i∈Imi(Si).S′i says that a channel must be used to receive
from p one input of the form mi(Si), for any i ∈ I chosen by p; then, the channel must be used following
the continuation type S′i . The selection type (or internal choice) p⊕i∈Imi(Si).S′i , instead, requires to use a
channel to perform one output mi(Si) towards p, for some i ∈ I, and continue using the channel according
to S′i . end is a terminated channel allowing no further inputs/outputs. µt.S is a recursive session type: µ

binds the recursion variable t in S. Recursive types are contractive: i.e., in µt.S we have S ≠ t′ (∀t′).
Remark 2.3. For brevity, we often omit 0/end in processes/types, and end-typed message payloads.

Remark 2.4. Unlike most MPST works, our processes and types coalesce branching/input and selec-
tion/output. This reduces the amount of notation, without harming expressiveness: a “pure” input/output
can be encoded as a singleton branch/select prefix, while a “pure” branching/selection can be represen-
ted by letting each choice carry an end-typed channel.

We adopt a standard definition of MPST typing context (Def.2.5), slightly adapting the reduction →.

Definition 2.5 (Typing Context). Let Γ be a partial mapping defined as: Γ ∶∶= ∅ ∣ Γ,x∶S ∣ Γ,s[p]∶S, with
the composition Γ1,Γ2 defined iff dom(Γ1)∩dom(Γ2) =∅. We write Γ ≡ Γ

′ iff dom(Γ)=dom(Γ
′) and

∀c ∈ dom(Γ) ∶Γ(c)≡Γ
′(c). We define Γ/c so that (Γ/c)(d)=Γ(d) iff d ≠ c (and is undefined otherwise).

The typing contexts reduction relation→ is in-
ductively defined as shown on the right (where
✠ stands for either & or ⊕).

k ∈ I Sk ≡ Tk

s[p]∶q⊕i∈Imi(Si).S′i , s[q]∶p
˘

i∈I∪Jmi(Ti).T ′
i → s[p]∶S′k,s[q]∶T ′

k

k ∈ I
x∶p✠i∈Imi(Si).S′i → x∶S′k

Γ,c∶S{µt.S/t}→ Γ
′

Γ,c∶µt.S→ Γ
′

Γ→ Γ
′

Γ,c∶S→ Γ
′,c∶S



4 MPSTs, Beyond Duality

An MPST typing context Γ maps variables and channels with roles to session types. The reduction
relation → allows s[p]∶Sp,s[q]∶Sq to “interact”, provided that (1) Sp is a selection towards q, (2) Sq is a
branching from p, and (3) the message labels of Sq are a superset of those in Sp, with equivalent carried
types. Clause (3) implies that if Sp has an “unreceivable” output message, then s[p]∶Sp,s[q]∶Sq is stuck.
Note that we allow x∶S to reduce autonomously: we add this minor extension to simplify our work in §3.

3 Multiparty Session Typing, Beyond Duality and Consistency

We now introduce our new MPST typing system. We start with a coinductive notion of typing context
liveness (Def. 3.1), based on the reductions of MPST typing contexts (Def. 2.5): intuitively, it ensures
that each selection is matched by a compatible branching, and each branching can receive a value from a
compatible selection.

Definition 3.1 (Liveness). The predicate live(Γ) (read “Γ is live”) is the largest predicate such that:

• [L-&] live(Γ, s[p]∶S) with S = q
˘

i∈Imi(Si).S′i implies ∃i ∈ I ∶ ∃Γ
′ ∶ Γ,s[p]∶S →∗ Γ

′,s[p]∶S′i ;
• [L-⊕] live(Γ, s[p]∶S) with S = q⊕i∈Imi(Si).S′i implies ∀i ∈ I ∶ ∃Γ

′ ∶ Γ,s[p]∶S →∗ Γ
′,s[p]∶S′i ;

• [L-µ ] live(Γ, s[p]∶µt.S) implies live(Γ, s[p]∶S{µt.S/t}) ;
• [L-→] live(Γ) and Γ→ Γ

′ implies live(Γ
′) .

Assume some live typing context Γ,s[p]∶S. By clause [L-&] of Def.3.1, if S is an external choice, then
Γ must be able to reduce until some branch of S is triggered. By clause [L-⊕], if S is an internal choice,
then Γ must be able to reduce allowing to send each message of S. Clause [L-µ ] says that if S is recursive,
its unfolding must be live, too. Clause [L-→] ensures that if a live context reduces, the reduct is live, too.

Notably, a live typing context never deadlocks: i.e., if it cannot further reduce, then all its entries
are end-typed. The vice versa is not true: a deadlock-free typing context might not be live. Moreover,
liveness and consistency are incomparable, i.e., one does not imply the other, and vice versa.

Example 3.2. The typing context s[p]∶Sp,s[q]∶Sq,s[r]∶Sr in (4) is live, but not consistent. The con-
text s[p]∶q&m1.r⊕m3, s[q]∶r&m2.p⊕m1, s[r]∶p&m3.q⊕m2 is consistent but not live (nor deadlock-free):
its inputs/outputs occur in the wrong order, thus preventing reductions. Finally, the typing context
s[p]∶µt.q⊕m1.t, s[q]∶µt.p&m1.t, s[r]∶p&m2 is deadlock-free but not live: s[p] and s[q] generate infinite
reductions, but s[r] cannot possibly perform its input (thus violating clause [L-&] of Def.3.1).

Definition 3.3 (MPST Typing Judgement). Let Θ be a partial mapping defined as: Θ ∶∶= ∅ ∣ Θ,X ∶̃S
An MPST typing judgement has the form: Θ ⊢ P▷Γg◁Γr with live(Γg,Γr), and is inductively
defined by the rules in Fig.2. Above, Γg and Γr are called respectively guarantee and rely contexts.

Above, Θ assigns an n-uple of types to each process variable X (one type per argument). Intuitively, the
judgement Θ ⊢ P▷Γg◁Γr says: given the definitions in Θ, P “guarantees” to use its channels linearly
according to Γg, by “relying” on the assumption that other processes use their channels according to Γr.
The additional Γr is the most visible departure from standard MPST typing rules (albeit we subsume them:
see p.6). Note: live(Γg,Γr) implies that Γg,Γr must be defined, i.e., dom(Γg)∩dom(Γr) =∅ (Def.2.5).

In Fig. 2, the first three rules define auxiliary judgements: end(Γ) holds if all entries of Γ are end-
typed; Γ ⊢ c∶S holds if Γ only contains one entry c∶S′, with S′ ≡ S; Θ ⊢ X ∶S1, . . . ,Sn holds if Θ maps X
to an n-uple of types equivalent to S1, . . . ,Sn. The typing rule [T-0] says that 0 is typed if all channels
in Γg are end-typed. By [T-def], def X(x̃) = P in Q is typed if P uses the arguments x1, . . . ,xn according
to S1, . . . ,Sn (with empty rely context), and the latter is the type of X when typing Q. By [T-X ], X ⟨̃c⟩ is
typed if the types of c̃ match those of the formal parameters of X , and any unused channel (in Γg0) is



Alceste Scalas and Nobuko Yoshida 5

∀c ∈ dom(Γ) ∶ Γ(c) ≡ end
end(Γ)

Γ ≡ c∶S
Γ ⊢ c∶S

Θ(X) ≡ S1, . . . ,Sn

Θ ⊢ X ∶S1, . . . ,Sn

end(Γg)
Θ ⊢ 0▷Γg◁Γr

[T-0]

Θ ⊢ P▷x1 ∶S1, . . . ,xn ∶Sn◁∅ Θ,X ∶S1, . . . ,Sn ⊢Q▷Γg◁Γr

Θ ⊢ def X(x1, . . . ,xn) = P in Q▷Γg◁Γr
[T-def]

Θ ⊢ X ∶S1, . . . ,Sn end(Γg0) ∀i ∈ 1..n Γgi ⊢ ci ∶Si

Θ ⊢ X⟨c1, . . . ,cn⟩▷Γg0,Γg1, . . . ,Γgn◁Γr
[T-X ]

Γ = {s[p]∶Sp}p∈I Θ ⊢ P▷ Γg,Γ◁Γr

Θ ⊢ (νs∶Γ)P▷ Γg◁Γr
[T-ν ]

Θ ⊢ P1▷Γ1◁Γr,Γ2 Θ ⊢ P2▷Γ2◁Γr,Γ1

Θ ⊢ P1 ∣P2 ▷ Γ1,Γ2 ◁ Γr
[T-∣]

S ≡ q
˘

i∈Imi(Si).S′i ∀i ∈ I ∀Γ
′
r, Γ

′′
r ∶ Γr →∗ Γ

′
r and Γ

′
r,c∶S→ Γ

′′
r ,c∶S′i Θ ⊢ Pi▷ Γg,yi ∶Si,c∶S′i ◁ Γ

′′
r

Θ ⊢ c[q]
˘

i∈I∪J {mi(yi) .Pi} ▷ Γg,c∶S ◁ Γr
[T-&]

S ≡ q⊕i∈Imi(Si).S′i ∃k ∈ I Γgd ⊢ d ∶Sk ∀Γ
′
r,Γ

′′
r ∶ Γr →∗ Γ

′
r and Γ

′
r,c∶S→ Γ

′′
r ,c∶S′k Θ ⊢ P▷ Γg,c∶S′k ◁ Γ

′′
r ,Γgd

Θ ⊢ c[q]⊕mk(d) .P ▷ Γgd ,Γg,c∶S ◁ Γr
[T-⊕]

Figure 2: Our multiparty session typing rules.

end-typed. By [T-ν ], (νs)P is typed if P can be typed by adding Γ (that annotates s, and only has s-based
entries) to Γg; note that since live(Γg,Γr), the premise Θ ⊢ P▷Γg,Γ◁Γr implies live(Γ). By [T-∣], P1 ∣P2
is typed by splitting the guarantee context in the premises (similarly to [STD-∣] in (4))—but crucially, we
record the “lost” information in the rely context, i.e., P1 is typed by relying on the guarantees of P2,
and vice versa: this allows the typing rules to preserve liveness across a typing derivation. By [T-&],
c[q]

˘
i∈I∪J {mi(yi) .Pi} is typed if c has type S, where S is a (possibly recursive) external choice from

q, with message labels mi (where i ∈ I; as usual, the process can have more labels m j with j ∈ J, which
are immaterial); further, if Γr reduces to Γ

′′
r while moving c∶S to c∶S′i (for any i ∈ I), then c∶S′i and Γ

′′
r

must type the continuation Pi, with the received channel yi ∶Si added to the guarantee context — i.e., Pi

must use it correctly. By [T-⊕], c[q]⊕mk(d) .P is typed if c has type S, where S is a (possibly recursive)
internal choice towards q, whose message labels include mk; further, if Γr reduces to Γ

′′
r while moving c∶S

to c∶S′k, then c∶S′k and Γ
′′
r must type the continuation P — but with the sent channel d ∶Sk now transferred

into the rely context: i.e., after sending d, P cannot use it, but relies on its correct usage by the recipient.
Example 3.4. We now revise the typing derivation (4) in §1 using our rules from Def.3.3:

Γ = s[p]∶Sp,s[q]∶Sq,s[r]∶Sr

D {
⋮

∅ ⊢ Pp▷ s[p]∶Sp◁ s[q]∶Sq,s[r]∶Sr
⋮

∅ ⊢ Pq▷ s[q]∶Sq◁ s[p]∶Sp,s[r]∶Sr
∅ ⊢ Pp ∣Pq▷ s[p]∶Sp,s[q]∶Sq◁ s[r]∶Sr

[T-∣]
⋮

∅ ⊢ Pr▷ s[r]∶Sr◁ s[p]∶Sp,s[q]∶Sq
∅ ⊢ Pp ∣Pq ∣Pr▷ s[p]∶Sp,s[q]∶Sq,s[r]∶Sr◁∅

[T-∣]

∅ ⊢ (νs∶Γ)(Pp ∣Pq ∣Pr)▷∅◁∅
[T-ν ]

We have live(Γ) (see Ex. 3.2), and each application of [T-∣] propagates the entries of Γ in its premises’
guarantee/rely contexts, throughout the derivation. Now, consider the sub-derivation D (top left):

D

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Sp ≡ q⊕{m1(Int) .r&m3(Bool) ,
stop .end } s[q]∶Sq,s[r]∶Sr,

s[p]∶Sp
→ s[q]∶r⊕quit,s[r]∶Sr,

s[p]∶end
end(s[p]∶end)

∅ ⊢ 0▷ s[p]∶end◁ s[q]∶r⊕quit,s[r]∶Sr
[T-0]

∅ ⊢ s[p][q]⊕stop .0 ▷ s[p]∶Sp ◁ s[q]∶Sq,s[r]∶Sr
[T-⊕]

Here, the rely context s[q]∶Sq,s[r]∶Sr cannot reduce (i.e., in [T-⊕] in Fig.2, we have Γ
′ = Γr). By compos-

ing it with s[p]∶Sp (that outputs stop like the process) we get the new rely context s[q]∶r⊕quit,s[r]∶Sr:
by [T-⊕], it must type the continuation 0. Note: in the instance of [T-0], the rely context never interacts
with s[p], albeit p occurs in Sr: this captures the inter-role dependency discussed in §1.
Subject reduction (without surprises) Our typing rules enjoy the Substitution Lemma 3.5 below: if P
is typed with an S-typed variable x, and a Γr containing an S-typed channel with role s[p], then P{s[p]/x}
can be typed by (1) removing s[p] from Γr, and (2) using it in place of x in the guarantee context.



6 MPSTs, Beyond Duality

Lemma 3.5. Let Θ ⊢P▷Γg,x∶S◁Γr such that Γr⊢s[p]∶S. Then, Θ ⊢ P{s[p]/x}▷Γg,s[p]∶S◁Γr/s[p].
Lemma 3.5 allows to prove the Subject Reduction Theorem 3.6 below. “As expected” (cf. (5) in §1),

it holds for all typed processes. The only condition, by Def.3.3, is that rely/guarantee contexts must be
live (Def.3.1): this invariant (that replaces consistency) satisfies the requirements (R1)–(R3) seen in §1.

Theorem 3.6. If Θ ⊢ P▷Γg◁Γr and P→∗ P′, then ∃Γ
′
g such that Γg→∗ Γ

′
g and Θ ⊢ P′▷Γ

′
g◁Γr.

From “new” to (simpler) “old” rules Rules [T-&]/[T-⊕] (Fig.2) can be demanding: the quantification
“∀Γ

′
r ∶ Γr →∗ Γ

′
r . . . can yield many premises (albeit they are finite: by Def. 2.5, the relation → induces

finite-state systems). Lemma 3.7 allows to reduce the number of premises that must be checked explicitly.

Lemma 3.7 (Rely context strengthening). If Θ ⊢ P▷Γg◁Γr and Γr →∗ Γ
′
r , then Θ ⊢ P▷Γg◁Γ

′
r .

Intuitively, Lemma 3.7 holds because if a context reduces, it becomes “more deterministic”; hence, if
P is typed relying on Γr, it can also rely on its reductions. Moreover, Γr can be simplified using Prop.3.8.

Proposition 3.8. Θ ⊢ P▷Γg◁Γr,x∶S iff Θ ⊢ P▷Γg◁Γr. (Note: by Def.2.1, x cannot be a channel with role)

By Prop. 3.8, variables in Γr are immaterial—intuitively, because they do not influence liveness
(Def.3.1). Lemma 3.7 and Prop.3.8 become particularly useful when typing a process that branches/selects
from/to a variable—and (in the latter case) sends a variable. In this case, rules [T-&] and [T-⊕] become the
standard MPST typing rules for branch/input and select/output (see [3]), plus an unused rely context:

S ≡ q
˘

i∈Imi(Si).S′i ∀i∈I Θ ⊢ Pi▷ Γg,yi ∶Si,x∶S′i ◁ Γr

Θ ⊢ x[q]
˘

i∈I∪J {mi(yi) .Pi} ▷ Γg,x∶S ◁ Γr
[T&x]

S ≡ q⊕i∈Imi(Si).S′i k∈I Γgy ⊢ y∶Sk Θ ⊢ P▷ Γg,x∶S′k ◁ Γr

Θ ⊢ x[q]⊕mk(y) .P ▷ Γgy,Γg,x∶S ◁ Γr
[T⊕x]

This is because in [T-⊕], Prop. 3.8 allows to omit Γgy from the rely context of the rightmost premise.
Further, since x∶S reduces autonomously (cf. Def.2.5), in both [T-&] and [T-⊕] the quantification “∀Γ

′
r,Γ

′′
r ∶

Γr→∗ Γ
′
r and Γ

′
r,x∶S→Γ

′′
r ,x∶S′i” amounts to “∀Γ

′
r ∶Γr→∗ Γ

′
r and Γ

′
r,x∶S→Γ

′
r,x∶S′i”; hence, by Lemma 3.7,

checking the rightmost premise once with Γr is sufficient to know that it holds ∀Γ
′
r such that Γr →∗ Γ

′
r .

4 Conclusions and Discussion
We presented a new MPST typing system (Def. 3.3) providing subject reduction (Theorem 3.6) for a
larger set of processes w.r.t. existing works. We record “global” typing information in a “rely context”,
thus removing the consistency/duality restrictions of previous MPST works.
On inter-role dependencies For the first time, we prove type safety of processes implementing cho-
reographies with delegation and complex inter-role dependencies. (For more examples and discussion,
in addition to §1 and Ex.3.4, see Ex.A.6 and §B). In this respect, to the best of our knowledge, the only
comparable work is [6]; however, its process calculus only supports one session, and the paper crucially
exploits this restriction to type parallel compositions without “splitting” them (cf. Table 8, rule [T-SESS])
and track a global type along reductions. Hence, unlike the present work, [6] does not support multiple
sessions and delegation — and extending it to support them appears challenging. Moreover, we argue
that our approach is simpler, since it does not depend on global types and makes them orthogonal w.r.t.
typing rules.
On global types and liveness Our type system does not assume a global type for each session: it only
(implicitly) requires that its local types are live (Def. 3.1), by rule [T-ν ] (Fig. 2). Def. 3.1 is inspired by
the notion of “safety” for Communicating Finite-State Machines (CFSMs) [2] (no deadlocks, orphan
messages, unspecified receptions) and the idea of “MPSTs as CFSMs” [5]—that is not captured by pre-
vious MPST works, due to their consistency clause. The synchronous typing context reduction (Def.2.5)
implies decidable liveness; we plan to study the asynchronous setting. When needed, a set of local types



Alceste Scalas and Nobuko Yoshida 7

can be related to a choreography either via “top-down” projection (§ 1), or “bottom-up” synthesis [8].
Similarly to most previous MPST works, our approach ensures that a typed process (νs)(∣

p∈IPp), with
each Pp only interacting on s[p], is deadlock-free—but does not guarantee deadlock freedom in presence
multiple interleaved sessions [1, 4]: we leave this topic as future work.
Relation with “standard” MPST typing As shown above, our typing rules become the “standard”
ones if processes only use variables. We think that, by distinguishing a “static” process syntax (with
variables only) from a “runtime” syntax (with variables and channels with roles), we could combine the
“standard” typing rules for the former, with our typing rules for the latter (as required by Theorem 3.6).
Encodability [9] proves that consistency (7) creates a strong link between MPST and linear π-calculus
(with binary channels), allowing to encode the former into the latter, and naturally guiding MPST imple-
mentations. The encodability of our “consistency-free” MPST processes (and their implementation) is
now an open problem. Also, typed behavioural congruences and bisimulations need to be investigated.
Acknowledgements We thank the anonymous reviewers for their valuable comments and suggestions.

References
[1] L. Bettini, M. Coppo, L. D’Antoni, M. De Luca, M. Dezani-Ciancaglini & N. Yoshida (2008): Global Progress

in Dynamically Interleaved Multiparty Sessions. In: CONCUR, doi:10.1007/978-3-540-85361-9˙33.
[2] D. Brand & P. Zafiropulo (1983): On Communicating Finite-State Machines. JACM 30(2),

doi:10.1145/322374.322380.
[3] M. Coppo, M. Dezani-Ciancaglini, L. Padovani & N. Yoshida (2015): A Gentle Introduction to Multiparty

Asynchronous Session Types. doi:10.1007/978-3-319-18941-3 4.
[4] M. Coppo, M. Dezani-Ciancaglini, N. Yoshida & L. Padovani (2016): Global Progress for Dy-

namically Interleaved Multiparty Sessions. Mathematical Structures in Computer Science 26(2),
doi:10.1017/S0960129514000188.

[5] P. Deniélou & N. Yoshida (2013): Multiparty Compatibility in Communicating Automata: Characterisation
and Synthesis of Global Session Types. In: ICALP, doi:10.1007/978-3-642-39212-2 18.

[6] M. Dezani-Ciancaglini, S. Ghilezan, S. Jakšić, J. Pantović & N. Yoshida (2016): Precise subtyping for syn-
chronous multiparty sessions. In: PLACES 2015, doi:10.4204/EPTCS.203.3.

[7] K. Honda, N. Yoshida & M. Carbone (2008): Multiparty asynchronous session types. In: POPL,
doi:10.1145/1328438.1328472. Full version: Volume 63, Issue 1, March 2016 (9), pages 1-67, JACM.

[8] J. Lange, E. Tuosto & N. Yoshida (2015): From Communicating Machines to Graphical Choreographies. In:
POPL, doi:10.1145/2676726.2676964.

[9] A. Scalas, O. Dardha, R. Hu & N. Yoshida (2017): A Linear Decomposition of Multiparty Sessions for Safe
Distributed Programming. Technical Report 2017/2, Imperial College London. Available here.

A Auxiliary Definitions and Details

This appendix contains several definitions taken from MPST literature, and further explanations on the
example discussed in §1 (see Ex.A.6).

A.1 Global, Local and Partial Session Types

Definition A.1 (Global Types). The syntax of a Global type G is:

G ∶∶= p→q∶{mi(Ti) .Gi}i∈I ∣ µt.G ∣ t ∣ end where p ≠ q, I ≠∅, and ∀i ∈ I ∶ fv(Ti) =∅

http://dx.doi.org/10.1007/978-3-540-85361-9_33
http://dx.doi.org/10.1145/322374.322380
http://dx.doi.org/10.1007/978-3-319-18941-3_4
http://dx.doi.org/10.1017/S0960129514000188
http://dx.doi.org/10.1007/978-3-642-39212-2_18
http://dx.doi.org/10.4204/EPTCS.203.3
http://dx.doi.org/10.1145/1328438.1328472
http://dx.doi.org/10.1145/2676726.2676964
https://www.doc.ic.ac.uk/research/technicalreports/2017/#2


8 MPSTs, Beyond Duality

The global and local type projections in Def.A.2 and Def.A.5 below, with their respective merging
operators, are based on [11, 10]. Compared with simpler projection/merging definitions (e.g., those
in [3]), they allow for more global types to be projectable, and more typing contexts to be deemed
consistent1. Intuitively, the projection and merging in Def.A.2 below allow to “reconstruct” the expected
behaviour of a role in a choreography, by collecting and combining its internal/external choices along
different execution paths.
Definition A.2 (Projection of a Global Type). The projection of G onto role p, written G↾p, is:

(q→r∶{mi(Ti) .Gi}i∈I)↾p =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r⊕i∈Imi(Ti).(Gi↾p) if p = q
q
˘

i∈Imi(Ti).(Gi↾p) if p = r
d

i∈I Gi↾p if q ≠ p ≠ r

(µt.G)↾p =
⎧⎪⎪⎨⎪⎪⎩

µt.(G↾p) if G↾p ≠ t′ (∀t′)
end otherwise

t↾p = t
end↾p = end

where
d

is the merge operator for (local) session types, defined as:

p
˘

i∈Imi(Si).S′i ⊓ p
˘

j∈Jm j(S j).T ′

j = p
˘

k∈I∩Jmk(Sk).(S′k ⊓T ′

k ) & p
˘

i∈I∖Jmi(Si).S′i & p
˘

j∈J∖Im j(S j).T ′

j

p⊕i∈Imi(Si).S′i ⊓ p⊕i∈Imi(Si).S′i = p⊕i∈Imi(Si).S′i
µt.S ⊓ µt.T = µt.(S⊓T) t ⊓ t = t end ⊓ end = end

A.2 Partial Session Types and Duality

A session type S can be further projected onto a role p, to “isolate” the interactions of S involving p from
those involving other roles (Def.A.5 below). The result is a partial session type (Def.A.3 below). Partial
session types feature branches, selections and recursion — but no role annotations: therefore, they are
similar to binary session types (except that their payload types are multiparty), and endow a notion of
duality (Def.A.4 below). As shown in §1, these technicalities are necessary to define consistency (cf. (7)).
Definition A.3 (Partial Session Types). Partial session types, ranged over by H, have the syntax:

H ∶∶=
˘

i∈Imi(Si).Hi ∣ ⊕i∈Imi(Si).Hi ∣ end ∣ µt.H ∣ t with I ≠∅ and ∀i ∈ I ∶ fv(Si) =∅

where mi range over pairwise distinct message labels.
Definition A.4 (Duality of Partial Session Types). The dual of a partial type H, written H, is:
˘

i∈Imi(Si).Hi = ⊕i∈Imi(Si).Hi ⊕i∈Imi(Si).Hi =
˘

i∈Imi(Si).Hi µt.H = µt.H t = t end = end

We say that H and H′ are dual iff H =H′.
Definition A.5 (Partial Projection). The projection of S onto p, written S↾p, is a partial type defined as:

(q
˘

i∈Imi(Si).S′i)↾p =
⎧⎪⎪⎨⎪⎪⎩

˘
i∈Imi(Si).(S′i↾p) if p = q

d
i∈I S′i↾p if p ≠ q

(q⊕i∈Imi(Si).S′i)↾p =
⎧⎪⎪⎨⎪⎪⎩

⊕i∈Imi(Si).(S′i↾p) if p = q
d

i∈I S′i↾p if p ≠ q

(µt.S)↾p =
⎧⎪⎪⎨⎪⎪⎩

µt.(S↾p) if S↾p ≠ t′ (∀t′)
end otherwise

t↾p = t end↾p = end

where
d

is the merge operator for partial session types, defined as:
˘

i∈Imi(Si).Hi ⊓
˘

i∈Imi(Si).H′

i =
˘

i∈Imi(Si).(Hi⊓H′

i )
⊕i∈Imi(Si).Hi ⊓ ⊕ j∈Jm j(S j).H′

j = ⊕k∈I∩Jmk(Sk).(Hk ⊓H′

k) ⊕ ⊕i∈I∖Jmi(Si).Hi ⊕ ⊕ j∈J∖Im j(S j).H′

j

µt.H ⊓ µt.H′ = µt.(H ⊓H′) t ⊓ t = t end ⊓ end = end
1These merging operators introduce a subtle discrepancy between consistency and subject reduction, as stated in (6). This

does not impact our treatment, since we lift the consistency requirement. For more details, see [9, §2.1, “On Consistency”]).



Alceste Scalas and Nobuko Yoshida 9

Note that Def. A.5 allows to merge different internal choices, but not different external choices. In the
mechanics of “standard” MPST typing systems, this guarantees that a consistent typing context never
reduces to configurations where an output from p to q is not matched by a corresponding input.

Example A.6. Take Sp, Sq and Sr from (2) in §1. By Def.A.5, these partial projections are defined:
Sp↾q = ⊕{m1(Int) , stop} Sq↾p =

˘
{m1(Int) , stop}

Moreover, by Def.A.4, we have Sp↾q = Sq↾p — i.e., the projections are dual. Therefore, by (7), the
pair s[p]∶Sp, s[q]∶Sq is consistent.

Now, consider the following projections, that are not defined:

Sp↾r = r&m3(Bool)↾r ⊓ end↾r = &m3(Bool) ⊓ end (undefined)
Sr↾p = p⊕m3(Bool)↾p ⊓ end↾p = ⊕m3(Bool) ⊓ end (undefined)

and therefore, by (7), the pair s[p]∶Sp, s[r]∶Sr is not consistent.
The reason for Sp↾r (resp. Sr↾p) being undefined is that the session type Sp (resp. Sr) starts with

an interaction with q — and thus, when projecting the type onto r (resp. p), Def.A.5 requires to “skip”
the interaction with q, project the continuations onto r (resp. p), and merge them. The merge operation
between partial types, however, is quite restrictive: it does not allow to combine an branching (resp. se-
lection) with end. These restrictions are in place to rule out erroneous communications (e.g., outputs
from p to r that are not matched by corresponding input capabilities) that could be otherwise accepted
by the “standard” MPST typing rules. The drawback is that the interaction between p (resp. r) and q

can only have a limited influence on the interactions between p (resp. r) and other roles. This curtails
the variety of inter-role dependencies supported by the “standard” MPST theory: see §1 and §B.

A.3 MPST Process Calculus

Definition A.7 (MPST π-Calculus Congruence). Let us define the process declaration D as:
D ∶∶= X(x̃) = P

so that process definitions in Fig.1 can be written as def D in Q. We write fc(P) for the free channels
with roles in P, dpv(D) for the process variables declared in D, fpv(D) for the free process variables
in D, and fpv(P) for the free process variables in P. We write s /∈ fc(P) to mean that there does not
exist a p such that s[p] ∈ fc(P). We define the structural congruence ≡ as the smallest relation such that:

P ∣Q ≡ Q ∣P (P ∣Q) ∣R ≡ P ∣ (Q ∣R) P ∣0 ≡ P (νs)0 ≡ 0 (νs)(νs′)P ≡ (νs′)(νs)P
(νs)(P ∣Q) ≡ P ∣ (νs)Q if s /∈ fc(P) def D in 0 ≡ 0 def D in (νs)P ≡ (νs)(def D in P) if s /∈ fc(P)

def D in (P ∣Q) ≡ (def D in P) ∣Q if dpv(D)∩ fpv(Q) =∅

def D in (def D′ in P) ≡ def D′ in (def D in P) if (dpv(D)∪ fpv(D))∩dpv(D′
) = (dpv(D′

)∪ fpv(D′
))∩dpv(D) = ∅

B More “Correct” but Non-Consistent Examples

We now reprise the projection/merging/consistency restrictions discussed in §1 and Ex.A.6. We present
more examples of “correct” choreographies that, when projected, yield typing contexts that are not con-
sistent according to (7) — and therefore, do not provide subject reduction guarantees under the “stand-
ard” MPST theory. However, all these examples are accepted by our theory (i.e., can provide subject
reduction guarantees, by Theorem 3.6) because they all yield live typing contexts (by Def.3.1).



10 MPSTs, Beyond Duality

B.1 Consistency vs. History-Dependent Branching

In Ex.A.6, consistency does not hold because the partial projections Sp↾r and Sr↾p are undefined, due to
the non-mergeability of internal/external choice and end (as per Def.A.5). We now try to “adjust” G in
(1) and make it consistent, by adding another communication between r and p:

G′ = p→q∶{m1(Int) .q→r∶m2(Str) .r→p∶m3(Bool) .end ,
stop .q→r∶quit .r→p∶m4(Int) .end }

The projections of G′ onto p, q and r are respectively:

S′p = q⊕{m1(Int) .r&m3(Bool) ,
stop .r&m4(Int) } S′q = p

˘
{m1(Int) .r⊕m2(Str) ,
stop .r⊕quit } S′r = q

˘
{m2(Str) .p⊕m3(Bool) ,
quit .p⊕m4(Int) }

Let us now examine the partial projections S′p↾r and S′r↾p:

S′p↾r = r&m3(Bool)↾r ⊓ r&m4(Int)↾r = &m3(Bool) ⊓ &m4(Int) (undefined)
S′r↾p = p⊕m3(Bool)↾p ⊓ p⊕m4(Int)↾p = ⊕m3(Bool) ⊓ ⊕m4(Int) = ⊕{m3(Bool) , m4(Int)}

As noted in the comment of Def. A.5, partial type merging does not allow to combine different
external choices, thus making S′p↾r undefined. Hence, external choices cannot depend on the outcome
of previous interactions with other roles: i.e., p cannot wait for different messages from r, depending on
the interaction between p and q. However, different internal choices can be merged: e.g., r can send a
different message to p, depending on the previous interaction between r and q. Hence, S′r↾p is defined.

B.2 Consistency vs. Recursion

Consider the global type: G′′ = µt.p→q∶{m1(Int) .q→r∶m2(Str) .r→p∶m3(Bool) . t ,
stop .q→r∶quit .r→p∶m3(Bool) .end }

The global type G′′ above is again similar to G in (1) — but now, if p sends m1(Int) to q, the
choreography loops: in fact, q then sends m2(Str) to r, which sends m3(Bool) to p, that continues
recursively. Instead, if p chooses to send stop to q, the latter notifies quit to r, which sends m3(Bool)
to p, and the choreography ends. The projections of G′′ onto p, q and r are respectively:

S′′p = µt.q⊕{m1(Int).r&m3(Bool).t ,
stop.r&m3(Bool).end} S′′q = µt.p

˘
{m1(Int).r⊕m2(Str).t ,
stop.r⊕quit.end } S′′r = µt.q

˘
{m2(Str).p⊕m3(Bool).t ,
quit.p⊕m3(Bool).end}

Note that in all cases, r sends to p the message m3(Bool): this circumvents the merging problems
described in Ex.A.6 and §B.1. However, we stumble into another roadblock:
S′′p ↾r = µt.((r&m3(Bool) . t)↾r ⊓ (r&m3(Bool) .end)↾r) = µt.(&m3(Bool) .(t⊓end)) (undefined)
S′′r ↾p = µt.((p⊕m3(Bool) . t)↾p ⊓ (p⊕m3(Bool) .end)↾p) = µt.(⊕m3(Bool) .(t⊓end)) (undefined)

This is another case of (unsupported) inter-role dependency: in S′′p (resp. S′′r ), the interaction with q

determines whether, after receiving (resp. sending) m3(Bool) from r (resp. to p), the type will (a) loop
on t, and thus, keep interacting with r (resp. p), or (b) end the session. Hence, the partial projection S′′p ↾r
(resp. S′′r ↾p) tries to merge t (from case (a)) with end (from case (b)) — but the operation is undefined.

Additional references for the Appendix
[10] P. Deniélou, N. Yoshida, A. Bejleri & R. Hu (2012): Parameterised Multiparty Session Types. Logical

Methods in Computer Science, doi:10.2168/LMCS-8(4:6)2012.
[11] N. Yoshida, P. Deniélou, A. Bejleri & R. Hu (2010): Parameterised Multiparty Session Types. In: FoSSaCS,

doi:10.1007/978-3-642-12032-9˙10.

http://dx.doi.org/10.2168/LMCS-8(4:6)2012
http://dx.doi.org/10.1007/978-3-642-12032-9_10


Alceste Scalas and Nobuko Yoshida 11

C Proofs

Proposition C.1. If live(Γ) and Γ→∗ Γ
′, then live(Γ

′).

Proof. By induction on the number of reductions in Γ→∗ Γ
′. The base case (0 reductions) is trivial, as

it implies Γ
′ = Γ. The inductive case (n+1 reductions) is proved by the induction hypothesis, and clause

[L-→] of Def.3.1 (liveness).

Proposition C.2. For all Γ,Γ′,Γ0 such that dom(Γ)∩dom(Γ0) = ∅: Γ → Γ
′ if and only if Γ,Γ0 →

Γ
′,Γ0, with Γ0 not reducing.

Proof. (Ô⇒ ) By induction on the size of Γ0, and by Def.2.5.
(⇐Ô ) By induction on the size of Γ0, and by Def.2.5.

Proposition C.3. For all Γ,Γ′,Γ0 such that dom(Γ) ∩ dom(Γ0) = ∅: Γ

n steps
³¹¹¹¹¹¹·¹¹¹¹¹¹¹µ
→⋯→ Γ

′ if and only if

Γ,Γ0

n steps
³¹¹¹¹¹¹·¹¹¹¹¹¹¹µ
→⋯→ Γ

′,Γ0, with Γ0 not reducing.

Proof. By induction on the number of reductions, using (C.2) in the inductive case.

Proposition C.4. Assume live(Γ0). Then, Γ,Γ0→ Γ
′ implies Γ

′ = Γ
′′,Γ′′0 such that either:

(a) Γ
′′ = Γ and Γ0→ Γ

′′
0 , or

(b) Γ
′→ Γ

′′ and Γ
′′
0 = Γ0.

Proof. By Def. 3.1, noticing that we must have dom(Γ)∩dom(Γ0) = ∅ (otherwise, Γ,Γ0 would be un-
defined by Def.2.5); and since Γ0 is live, it cannot interact with Γ.

Proposition C.5. Assume live(Γ0). Then, Γ,Γ0

n steps
³¹¹¹¹¹¹·¹¹¹¹¹¹¹µ
→⋯→ Γ

′ implies Γ
′ = Γ

′′,Γ′′0 such that, for some

m ≤ n, Γ

m steps
³¹¹¹¹¹¹·¹¹¹¹¹¹¹µ
→⋯→ Γ

′′ and Γ0

n−m steps
³¹¹¹¹¹¹·¹¹¹¹¹¹¹µ
→⋯→ Γ

′′
0 ; moreover, Γ,Γ0

m steps
³¹¹¹¹¹¹·¹¹¹¹¹¹¹µ
→⋯→ Γ

′′,Γ0.

Proof. By induction on n, using Prop. C.4.The “moreover. . . ” part of the statement is an immediate
consequence of the first part.

Proposition C.6. Assume live(Γ0) and dom(Γ)∩ dom(Γ0) = ∅. Then, live(Γ,Γ0) if and only if
live(Γ).

Proof. (Ô⇒ ) We show that the following predicate:

P = {Γ ∣ live(Γ,Γ0)} (8)

satisfies the clauses of Def.3.1 (liveness). We proceed by examining each Γ
′ ∈ P, reminding that:

dom(Γ)∩dom(Γ0) =∅ (by hypothesis) (9)

We have the following (non-mutually exclusive) cases:



12 MPSTs, Beyond Duality

• Γ = Γ
′,s[p]∶S with S = q⊕i∈Imi(Si).S′i . We have:

live(Γ,Γ0) and thus live(Γ
′,s[p]∶S,Γ0) (by (8)) (10)

∀i ∈ I ∶ ∃Γ
′′ ∶ Γ′,s[p]∶S,Γ0 →∗ Γ

′′,s[p]∶S′i ,Γ0 (by (10), [L-⊕] and Prop.C.5) (11)

∀i ∈ I ∶ ∃Γ
′′ ∶ Γ′,s[p]∶S →∗ Γ

′′,s[p]∶S′i (by (11) and Prop.C.3) (12)

and by the shape of Γ and (12), we conclude that Γ satisfies clause [L-⊕];

• Γ = Γ
′,s[p]∶S with S = q

˘
i∈Imi(Si).S′i . We have:

live(Γ,Γ0) and thus live(Γ
′,s[p]∶S,Γ0) (by (8)) (13)

∃i ∈ I ∶ ∃Γ
′′ ∶ Γ′,s[p]∶S,Γ0 →∗ Γ

′′,s[p]∶S′i ,Γ0 (by (13), [L-&] and Prop.C.5) (14)

∃i ∈ I ∶ ∃Γ
′′ ∶ Γ′,s[p]∶S →∗ Γ

′′,s[p]∶S′i (by (14) and Prop.C.3) (15)

and by the shape of Γ and (15), we conclude that Γ satisfies clause [L-&];

• Γ = Γ
′,s[p]∶µt.S. We have:

live(Γ,Γ0) and thus live(Γ
′,s[p]∶µt.S,Γ0) (by (8)) (16)

live(Γ
′,s[p]∶S{µt.S/t},Γ0) (by (16) and [L-µ ]) (17)

Γ
′,s[p]∶S{µt.S/t} ∈ P (by (17) and (8)) (18)

and by the shape of Γ and (18), we conclude that Γ satisfies clause [L-µ ];

• Γ→ Γ
′. We have:

Γ,Γ0 → Γ
′,Γ0 (by (9) and Prop.C.2) (19)

live(Γ,Γ0) (by (8)) (20)

live(Γ
′,Γ0) (by (20), (19) and [L-→]) (21)

Γ
′ ∈ P (by (21) and (8)) (22)

and by the hypothesis Γ→ Γ
′ and (22), we conclude that Γ satisfies clause [L-→].

We have proved that P satisfies all clauses of Def.3.1 (liveness). Since live(⋅) is the largest predicate
satisfying such clauses, we have that ∀Γ ∶ Γ ∈ P implies live(Γ); and since ∀Γ ∶ live(Γ,Γ0) implies Γ ∈ P,
we conclude that ∀Γ ∶ live(Γ,Γ0) implies live(Γ).

(⇐Ô ) We show that the following predicate:

P = {Γ,Γ0 ∣ live(Γ)} (23)

satisfies the clauses of Def.3.1 (liveness). We proceed similarly to the case above (Ô⇒ ): by examining
each Γ,Γ0 ∈ P. Then, we know that live(⋅) is the largest predicate satisfying all clauses of Def. 3.1
(liveness); therefore, we have that ∀Γ ∶ Γ ∈ P implies live(Γ); and since ∀Γ ∶ live(Γ) implies Γ,Γ0 ∈ P,
we conclude that ∀Γ ∶ live(Γ) implies live(Γ,Γ0).

Proposition C.7. If end(Γ), then live(Γ).

Proof. By Def. 3.3, we know that ∀c ∈ dom(Γ) ∶ Γ(c) = end: therefore, Γ (vacuously) satisfies clauses
[L-&], [L-⊕] and [L-µ ] of Def. 3.1 (liveness). Furthermore, by Def. 2.5 (reductions of Γ), we have Γ /→:
hence, Γ also (vacuously) satisfies clause [L-→] of Def.3.1 (liveness). We conclude live(Γ).



Alceste Scalas and Nobuko Yoshida 13

Proposition C.8. live(Γ,x∶S) if and only if live(Γ).

Proof. Straightforward by Def. 3.1 (liveness), noticing that x∶S is not relevant for the definition (which
only considers channels with roles).

Proposition 3.8. Θ ⊢ P▷Γg◁Γr,x∶S iff Θ ⊢ P▷Γg◁Γr. (Note: by Def.2.1, x cannot be a channel with role)

Proof. By induction on the derivation of Θ ⊢ P▷Γg◁Γr,x∶S, using Prop.C.8 in the base cases.

Corollary C.9. Θ ⊢ P▷Γg◁Γr iff Θ ⊢ P▷Γg◁Γr/x

Proof. If x /∈ dom(Γr), then the statement holds vacuously. Otherwise, if x ∈ dom(Γr), it is a direct
consequence of Prop.3.8.

Lemma 3.5. Let Θ ⊢P▷Γg,x∶S◁Γr such that Γr⊢s[p]∶S. Then, Θ ⊢ P{s[p]/x}▷Γg,s[p]∶S◁Γr/s[p].

Proof. Assume the hypotheses. We have:

Θ ⊢P▷Γg,x∶S◁Γr (by hypothesis) (24)

Γr⊢s[p]∶S (by hypothesis) (25)

live(Γg,Γr) (by hypothesis (well-formedness) and Prop.C.8) (26)

Note that, in the judgement in the conclusion, the liveness requirement of the guarantee/rely contexts
(Def.3.3) is trivially satisfied:

live(Γg,s[p]∶S,(Γr/s[p])) (by (26), (25), Def.3.3 and Def.3.1) (27)

We proceed by induction on the derivation of Θ ⊢P▷Γg,x∶S◁Γr:

• base case [T-0]. We have:

P = 0 and end(Γg,x∶S) (from the rule conclusion and premises) (28)

S = end (by (28) and Def.3.3) (29)

end(Γg) (by (28) and Def.3.3) (30)

end(Γg,s[p]∶S) (by (30), (29) and Def.3.3) (31)

P{s[p]/x} = 0{s[p]/x} = 0 (from (28)) (32)

end(Γg,s[p]∶S)
Θ ⊢ P{s[p]/x}▷Γg,s[p]∶S◁Γr/s[p]

[T-0]
(by (31), (32) and (27))

• base case [T-X ]. We have:

Θ ⊢ X ∶S1, . . . ,Sn end(Γg0) ∀i ∈ 1..n Γgi ⊢ ci ∶Si

Θ ⊢ P▷Γg,x∶S◁Γr
[T-X ]

(from the rule definition) (33)

P = X⟨c1, . . . ,cn⟩ (from the conclusion of (33)) (34)

Γg,x∶S = Γg0,Γg1, . . . ,Γgn (by (33)) (35)

Now, from (35) and by Def.3.3, we have two cases:



14 MPSTs, Beyond Duality

– Γg0 ⊢ x∶S. Then:

Γg0 = x∶S and S ≡ end (by (33) and Def.3.3) (36)

end(s[p]∶S) (by (36) and Def.3.3) (37)

∀i ∈ 1..n ∶ ci ≠ x (by (36), (35) and Def.2.5) (38)

P{s[p]/x} = P (by (34) and (38)) (39)

Θ ⊢ X ∶S1, . . . ,Sn end(s[p]∶S) ∀i ∈ 1..n Γgi ⊢ ci ∶Si

Θ ⊢ P{s[p]/x}▷Γg,s[p]∶S◁Γr/s[p]
[T-X ]

(by (36), (37) (39))

– Γgk ⊢ x∶S, for some k ∈ 1..n. Then:

Γgk ≡ x∶S (by (33)) (40)

ck = x and ∀i ∈ 1..n ∶ i ≠ k implies ci ≠ x (by (35), (40) and Def.2.5) (41)

P{s[p]/x} = X⟨c1, . . . ,ck−1,s[p],ck+1, . . . ,cn⟩ (by (34) and (41)) (42)

Θ ⊢ X ∶S1, . . . ,Sn end(Γg0) s[p]∶S ⊢ s[p]∶S
∀i ∈ {1..n}∖{k} Γgi ⊢ ci ∶Si

Θ ⊢ P{s[p]/x}▷Γg,s[p]∶S◁Γr/s[p]
[T-X ]

(by (40), (42))

• inductive case [T-&]. In this case, P is a branching on some variable. We have two cases:

(a) P is a branching on some y ≠ x. Then, the statement holds by the induction hypothesis, and
rule [T-&]; or

(b) P is a branching on x, i.e., x is substituted by channel with role s[p].
We detail the proof for the latter (and most interesting) case. We have:

P = x[q]
˘

i∈I∪J {mi(yi) .Pi} ∧ S ≡ q
˘

i∈Imi(Si).S′i (from rule conclusion/premises) (43)

Γr ⊢ s[p]∶S = s[p]∶q
˘

i∈Imi(Si).S′i (by (25) and (43)) (44)

∀i ∈ I ∶ ∀Γ
′
r, Γ

′′
r ∶ Γr →∗ Γ

′
r and Γ

′
r,x∶S→ Γ

′′
r ,x∶S′i

Γ
′′
r = Γ

′
r (by Def.2.5) (45)

Θ ⊢ Pi▷ Γg,yi ∶Si,x∶S′i ◁ Γ
′
r (from the rule premises and (45)) (46)

∀i ∈ I ∶ ∀Γ
′
r,Γ

′′
r such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Γr/s[p]→∗ Γ
′
r and

Γ
′
r,s[p]∶S→ Γ

′′
r ,s[p]∶S′i and

Γ
′′
r ,s[p]∶S′i ,x∶S→ Γ

′′
r ,s[p]∶S′i ,x∶S′i ∶

Θ ⊢ Pi▷ Γg,yi ∶Si,x∶S′i ◁ Γ
′′
r ,s[p]∶S′i (by (46)) (47)

Γ
′′
r ,s[p]∶S′i ⊢ s[p]∶S′i (by Def.3.3) (48)

Θ ⊢ Pi{s[p]/x}▷ Γg,yi ∶Si,s[p]∶S′i ◁ Γ
′′
r (by (47), (48) and i.h.) (49)

S ≡ q
˘

i∈Imi(Si).S′i ∀i ∈ I
∀Γ

′
r, Γ

′′
r ∶ Γr/s[p]→∗ Γ

′
r and Γ

′
r,s[p]∶S→ Γ

′′
r ,s[p]∶S′i

Θ ⊢ Pi{s[p]/x}▷ Γg,yi ∶Si,s[p]∶S′i ◁ Γ
′′
r

Θ ⊢ s[p][q]
˘

i∈I∪J {mi(yi) .Pi{s[p]/x}} ▷ Γg,s[p]∶S ◁ Γr/s[p]
[T-&]

(by (43), (49))

• inductive case [T-⊕]. In this case, P is a selection on some variable. We have two cases:



Alceste Scalas and Nobuko Yoshida 15

(a) P is a selection on some y ≠ x. Then, the statement holds by the induction hypothesis, and
rule [T-⊕]; or

(b) P is a selection on x, i.e., x is substituted by channel with role s[p].
We detail the proof for the latter (and most interesting) case. We have:

∃k ∈ I ∶ P = x[q]⊕mk(d) .P ∧ S ≡ q⊕i∈Imi(Si).S′i (from rule conclusion/premises) (50)

Γg = Γg0,Γgd where Γgd ⊢ d ∶Sk (from rule conclusion/premises) (51)

Γr ⊢ s[p]∶S = s[p]∶q⊕i∈Imi(Si).S′i (by (25) and (50)) (52)

∀Γ
′
r, Γ

′′
r ∶ Γr →∗ Γ

′
r and Γ

′
r,x∶S→ Γ

′′
r ,x∶S′k

Γ
′′
r = Γ

′
r (by Def.2.5) (53)

Θ ⊢ P▷ Γg0,x∶S′k ◁ Γ
′
r,Γgd (from the rule premises and (53)) (54)

∀Γ
′
r,Γ

′′
r such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Γr/s[p]→∗ Γ
′
r and

Γ
′
r,s[p]∶S→ Γ

′′
r ,s[p]∶S′k and

Γ
′′
r ,s[p]∶S′k,x∶S→ Γ

′′
r ,s[p]∶S′k,x∶S′k ∶

Θ ⊢ P▷ Γg0,x∶S′k ◁ Γ
′′
r ,s[p]∶S′k,Γgd (by (54)) (55)

Γ
′′
r ,s[p]∶S′k,Γgd ⊢ s[p]∶S′k (by Def.3.3) (56)

Θ ⊢ P{s[p]/x}▷ Γg0,s[p]∶S′k ◁ Γ
′′
r ,Γgd (by (55), (56) and i.h.) (57)

S ≡ q
˘

i∈Imi(Si).S′i ∃k ∈ I Γgd ⊢ d ∶Sk
∀Γ

′
r, Γ

′′
r ∶ Γr/s[p]→∗ Γ

′
r and Γ

′
r,s[p]∶S→ Γ

′′
r ,s[p]∶S′k

Θ ⊢ P{s[p]/x}▷ Γg0,s[p]∶S′k ◁ Γ
′′
r ,Γgd

Θ ⊢ s[p][q]⊕mk(d) .P{s[p]/x} ▷ Γg,s[p]∶S ◁ Γr/s[p]
[T-⊕]

(by (50), (57), (51))

• inductive case [T-∣]. We have:

∃Γ1,Γ2 ∶ Γg = Γ1,Γ2 (from the rule conclusion) (58)

Θ ⊢ P1 ∣P2 ▷ Γ1,Γ2,x∶S ◁ Γr (from the rule conclusion and (58)) (59)

Now, in the rule premises, x∶S could be used to type either P1 or P2 — i.e., we have either:

Θ ⊢ P1▷Γ1,x∶S◁Γr,Γ2 and Θ ⊢ P2▷Γ2◁Γr,Γ1,x∶S and x /∈ fv(P2) (60)

or

Θ ⊢ P1▷Γ1◁Γr,Γ2,x∶S and Θ ⊢ P2▷Γ2,x∶S◁Γr,Γ1 and x /∈ fv(P1) (61)

We now proceed assuming (60) (the proof for (61) is symmetric). We have:

Θ ⊢ P1{s[p]/x}▷Γ1,s[p]∶S◁(Γr/s[p]),Γ2 (by (60), (25) and i.h.) (62)

Θ ⊢ P2▷Γ2◁(Γr/s[p]),Γ1,s[p]∶S (by (60), (25) and Prop.3.8) (63)

P2 = P2{s[p]/x} (by (60), since x /∈ fv(P2)) (64)



16 MPSTs, Beyond Duality

Θ ⊢ P1{s[p]/x}▷Γ1,s[p]∶S◁(Γr/s[p]),Γ2

Θ ⊢ P2{s[p]/x}▷Γ2◁(Γr/s[p]),Γ1,s[p]∶S
Θ ⊢ (P1 ∣P2){s[p]/x} ▷ Γg,s[p]∶S ◁ Γr/s[p]

[T-∣]
(by (62), (63), (64) and (58)) (65)

• inductive case [T-def]. We have:

Θ ⊢Q▷x1 ∶S1, . . . ,xn ∶Sn◁∅ Θ,X ∶S1, . . . ,Sn ⊢ R▷Γg,x∶S◁Γr

Θ ⊢ P▷Γg,x∶S◁Γr
[T-def]

(from rule def.) (66)

P = def X(x1, . . . ,xn) =Q in R (by (66)) (67)

fv(Q) ⊆ {x1, . . . ,xn} (by (66) (typing of Q)) (68)

fv(X(x1, . . . ,xn) =Q) = ∅ (by (68)) (69)

P{s[p]/x} = def X(x1, . . . ,xn) =Q in (R{s[p]/x}) (by (67) and (69)) (70)

Θ,X ∶S1, . . . ,Sn ⊢ R{s[p]/x}▷Γg,s[p]∶S◁Γr/s[p] (by (66) (typing of R) and i.h.) (71)

Θ ⊢Q▷x1 ∶S1, . . . ,xn ∶Sn◁∅
Θ,X ∶S1, . . . ,Sn ⊢ R{s[p]/x}▷Γg,s[p]∶S◁Γr/s[p]

Θ ⊢ P{s[p]/x}▷Γg,s[p]∶S◁Γr/s[p]
[T-def]

(by (70) and (71))

Proposition C.10. If Θ ⊢ P▷Γg◁Γr and Γ
′
g ≡ Γg and Γ

′
r ≡ Γr, then Θ ⊢ P▷Γ

′
g◁Γ

′
r .

Proof. Assuming Θ ⊢ P▷Γg◁Γr, we proceed by induction on its derivation.

Lemma 3.7 (Rely context strengthening). If Θ ⊢ P▷Γg◁Γr and Γr →∗ Γ
′
r , then Θ ⊢ P▷Γg◁Γ

′
r .

Proof. By induction on the derivation of Θ ⊢ P▷Γg◁Γr, using Prop.C.1 in the base cases.

Proposition C.11. Assume Θ ⊢ P▷Γg◁Γr. Take some Γ
′
r such that live(Γ

′
r) and (dom(Γg)∪dom(Γr))∩

dom(Γ
′
r) =∅. Then, Θ ⊢ P▷Γg◁Γr,Γ

′
r .

Proof. By induction on the derivation of Θ ⊢ P▷Γg◁Γr.

Proposition C.12. Assume Θ ⊢ P▷Γg◁Γr. Take some Γ
′
g such that end(Γ

′
g) and (dom(Γg)∪dom(Γr))∩

dom(Γ
′
g) =∅. Then, Θ ⊢ P▷Γg,Γ

′
g◁Γr.

Proof. By induction on the derivation of Θ ⊢ P▷Γg◁Γr.

Proposition C.13. Assume Θ ⊢ P▷Γg◁Γr. If X /∈ dom(Θ), then Θ,X ∶̃S ⊢ P▷Γg◁Γr.

Proof. By induction on the derivation of Θ ⊢ P▷Γg◁Γr.

Theorem 3.6. If Θ ⊢ P▷Γg◁Γr and P→∗ P′, then ∃Γ
′
g such that Γg→∗ Γ

′
g and Θ ⊢ P′▷Γ

′
g◁Γr.



Alceste Scalas and Nobuko Yoshida 17

Proof. Assume:

Θ ⊢ P▷Γg◁Γr (by hypothesis) (72)

We first prove the following statement, for one reduction step of P:

P→ P′ implies ∃Γ
′
g such that Γg→∗ Γ

′
g and Θ ⊢ P′▷Γ

′
g◁Γr (73)

Assuming the transition P→ P′, we proceed by induction on its derivation.

• base case [R-COMM]. We have:

P = s[p][q]
˘

i∈I {mi(yi) .Pi} ∣ s[q][p]⊕mk(s′[r]) .Q (k ∈ I) (from the rule definition) (74)

P′ = Pk{s′[r]/yk} ∣ Q (from the rule definition) (75)

∃Γ1,Γ2 ∶
Γ = Γ1,Γ2 ∧

Θ ⊢ s[p][q]
˘

i∈I {mi(yi) .Pi}▷Γ1◁Γr,Γ2

Θ ⊢ s[q][p]⊕mk(s′[r]) .Q▷Γ2◁Γr,Γ1

Θ ⊢ P ▷ Γ ◁ Γr
[T-∣]

(by (74), inv. of [T-∣]) (76)

∃Γr1 = Γr,Γ2 and ∃Γr2 = Γr,Γ1 (by (76), premises of [T-∣]) (77)

∃J ∶ ∅ ≠ J ⊆ I ∃Γg1,S ∶ Γ1 = Γg1,s[p]∶S such that
S ≡ q

˘
i∈Jmi(Si).S′i ∀i ∈ J ∀Γ

′
r, Γ

′′
r

Γr1→∗ Γ
′
r and Γ

′
r,s[p]∶S→ Γ

′′
r ,s[p]∶S′i

implies
Θ ⊢ Pi▷ Γg1,yi ∶Si,s[p]∶S′i ◁ Γ

′′
r

Θ ⊢ s[p][q]
˘

i∈I {mi(yi) .Pi} ▷ Γ1 ◁ Γr1
[T-&]

(by (76), inv. of [T-&]) (78)

∃I′ ≠∅ ∃Γg2s′ ,Γg2,T ∶ Γ2 = Γg2s′ ,Γg2,s[q]∶T such that
T ≡ p⊕i∈I′mi(Ti).T ′

i ∃k ∈ I′ Γg2s′ ⊢ s′[r]∶Tk ∀Γ
′
r,Γ

′′
r

Γr2→∗ Γ
′
r and Γ

′
r,s[q]∶T → Γ

′′
r ,s[q]∶T ′

k
implies

Θ ⊢Q▷ Γg2,s[q]∶T ′
k ◁ Γ

′′
r , Γg2s′

Θ ⊢ s[q][p]⊕mk(s′[r]) .Q ▷ Γ2 ◁ Γr2
[T-⊕]

(by (76), inv. [T-⊕]) (79)

s[q]∶p⊕i∈I′mi(Ti).T ′
i ≡ s[q]∶T ∈ Γ2 ⊊ Γr1 (by (79) and (77)) (80)

s[p]∶q
˘

i∈Jmi(Si).S′i ≡ s[p]∶S ∈ Γ1 ⊊ Γr2 (by (78) and (77)) (81)

I′ ⊆ J and therefore k ∈ J (by (80), (77), (78), live(Γ1,Γr1) and Def.3.1) (82)

∀i ∈ J ∶ Si ≡ Ti (by (82), live(Γ1,Γr1) and Def.2.5) (83)

Γg2s′ ⊢ s′[r]∶Sk (by (79) and (83)) (84)

Γr1 ⊢ s′[r]∶Sk (by (84), (79) and (77)) (85)

∀i ∈ J ∶ s[p]∶S,s[q]∶T →≡ s[p]∶S′i ,s[q]∶Ti (by (82), (80), live(Γ1,Γr1) and Def.3.1) (86)

∃Γ
′
r1 ∶ Γr1,s[p]∶S →≡ Γ

′
r1,s[p]∶S′k, ,s[q]∶T ′

k (by (80) and (86)) (87)

Θ ⊢ Pk▷ Γg1,yk ∶Sk,s[p]∶S′k ◁ Γ
′
r1 (by (87) and (78)) (88)

Γ
′
r1 ⊢ s′[r]∶Sk (89)



18 MPSTs, Beyond Duality

Θ ⊢ Pk{s′[r]/yk}▷ Γg1,s′[r]∶Sk,s[p]∶S′k ◁ Γ
′
r1/s′[r] (by (88), (89) and Lemma 3.5) (90)

Γ
′
r1/s′[r] ≡ Γr,Γg2,s[q]∶T ′

k (by (77), (79) and (87)) (91)

∃Γ
′
r2 ∶ Γr2,s[q]∶T →≡ Γ

′
r2,s[p]∶S′k,s[q]∶T ′

k (by (81) and (86)) (92)

Θ ⊢Q▷ Γg2,s[q]∶T ′
k ◁ Γ

′
r2, Γg2s′ (by (92) and (79)) (93)

Γ
′
r2, Γg2s′ ≡ Γr,Γg1,Γg2s′ ,s[p]∶S′k (by (77), (78), (92), (84) and Def.3.3) (94)

∃Γ
′ = Γ

′
1,Γ

′
2 such that: (95)

Γ
′
1 = Γg1, Γg2s′ , s[p]∶S′k (96)

Γ
′
2 = Γg2, s[q]∶T ′

k (97)

Γ→∗ Γ
′ (by (76), (78), (79), (96), (97)) (98)

Θ ⊢ Pk{s′[r]/yk}▷Γ
′
1◁Γr,Γ

′
2

Θ ⊢Q▷Γ
′
2◁Γr,Γ

′
1

Θ ⊢ Pk{s′[r]/yk} ∣ Q ▷ Γ
′ ◁ Γr

[T-∣]
(by (90), (96), (91), (97);

by (93), (97), (94), (96)
) (99)

• base case [R-X ]. We have:

P = def X(x1, . . . ,xn) =Q in (X⟨s1[p1], . . . ,s1[p1]⟩ ∣ R) (from the rule definition) (100)

P′ = def X(x1, . . . ,xn) =Q in (Q{s1[p1]/x1}⋯{sn[pn]/xn} ∣ R) (from the rule definition) (101)

Γg = Γg∗,ΓgR and Γg∗ = Γg0,Γg1, . . .Γgn and Θ
′ =Θ,X ∶S1, . . . ,Sn such that: (102)

Θ ⊢Q▷x1 ∶S1, . . . ,xn ∶Sn◁∅

Θ
′ ⊢ X ∶S1, . . . ,Sn

end(Γg0) ∀i ∈ 1..n Γgi ⊢ si[pi]∶Si

Θ
′ ⊢ X⟨s1[p1], . . . ,s1[p1]⟩▷Γg∗◁Γr,ΓgR

[T-X ]
Θ
′ ⊢ R▷ΓgR◁Γr,Γg∗

Θ
′ ⊢ X⟨s1[p1], . . . ,s1[p1]⟩ ∣ R▷Γg◁Γr

[T-∣]

Θ ⊢ P▷Γg◁Γr
[T-def]

(by (100), (72), inv. [T-def],[T-∣],[T-X ]) (103)

X /∈ dom(Θ) (by (102)) (104)

live(Γg0) (by (103) and Prop.C.7) (105)

live(Γg1, . . . ,Γgn,Γr,ΓgR) (by (103), Def.3.3, (105) and Prop.C.6) (106)

live((Γg1, . . . ,Γgn,Γr,ΓgR)/x1, . . . ,xn) (by (106) and Prop.C.8 ×n) (107)

live(Γg1, . . . ,Γgn,((Γr,ΓgR)/x1, . . . ,xn)) (by (107), (103) and Def.3.3) (108)

Θ ⊢Q▷x1 ∶S1, . . . ,xn ∶Sn◁Γg1, ...,Γgn,((Γr,ΓgR)/x1, ...,xn) ((108) (103), and Prop.C.11) (109)

Θ ⊢Q{s1[p1]/x1}⋯{sn[pn]/xn}▷Γg1, ...,Γgn◁(Γr,ΓgR)/x1, ...,xn ((109), (103), Lemma 3.5 ×n) (110)

Θ ⊢Q{s1[p1]/x1}⋯{sn[pn]/xn}▷Γg∗◁Γr,ΓgR ((110), (102), (103), Prop.C.12, Cor.C.9 ×n) (111)

Θ
′ ⊢Q{s1[p1]/x1}⋯{sn[pn]/xn}▷Γg∗◁Γr,ΓgR (by (111), (104), (102) and Prop.C.13) (112)

Let Γ
′
g = Γg = Γg∗,ΓgR = Γg0,Γg1, . . . ,Γgn,ΓgR (hence, Γg→∗ Γ

′
g) (by (102)) (113)



Alceste Scalas and Nobuko Yoshida 19

Θ ⊢Q▷x1 ∶S1, . . . ,xn ∶Sn◁∅
Θ
′ ⊢Q{s1[p1]/x1}⋯{sn[pn]/xn}▷Γg∗◁Γr,ΓgR Θ

′ ⊢ R▷ΓgR◁Γr,Γg∗

Θ
′ ⊢Q{s1[p1]/x1}⋯{sn[pn]/xn} ∣ R▷Γ

′
g◁Γr

[T-∣]

Θ ⊢ P′▷Γ
′
g◁Γr

[T-def]

(by (111), (113), (101))

• inductive case [R-∣]. We have:

P = P1 ∣P2 (from the rule conclusion) (114)

∃Γ1,Γ2 ∶ Γg = Γ1,Γ2 (by (114) (only typable by [T-∣]) and (72)) (115)

Θ ⊢ P1▷Γ1◁Γr,Γ2 (by (114), (115) and inversion of [T-∣]) (116)

Θ ⊢ P2▷Γ2◁Γr,Γ1 (by (114), (115) and inversion of [T-∣]) (117)

Now, P→ P′ implies either:

P1→ P′1 and P′ = P′1 ∣P2 (by inversion of [R-∣]) (118)

or

P2→ P′2 and P′ = P1 ∣P′2 (by congruence ≡ and inversion of [R-∣]) (119)

We proceed assuming (118) (the proof for (119) is symmetric).

∃Γ
′
1 ∶ Γ1→∗ Γ

′
1 and Θ ⊢ P′1▷Γ

′
1◁Γr,Γ2 (by (116), (118) and i.h.) (120)

Γ1→∗ Γ
′
1 (by (120)) (121)

Γr,Γ1 →∗ Γr,Γ
′
1 (by (121) and Def.2.5) (122)

Θ ⊢ P2▷Γ2◁Γr,Γ
′
1 (by (117), (122) and Lemma 3.7) (123)

∃Γ
′
g = Γ

′
1,Γ2 such that Γg→∗ Γ

′
g (by (115), (120) and Def.2.5) (124)

Θ ⊢ P′1▷Γ
′
1◁Γr,Γ2 Θ ⊢ P2▷Γ2◁Γr,Γ

′
1

Θ ⊢ P′ ▷ Γ
′
g ◁ Γr

[T-∣]
(by (118), (120), (123), (124))

• inductive case [R-ν ]. We have:

∃Q ∶ P = (νs)Q (from the rule definition) (125)

P→ P′ implies ∃Q′ ∶Q→Q′ and P′ = (νs)Q′ (by (125) and inversion of [R-ν ]) (126)

Γs = {c[p]∶Sp}p∈I Θ ⊢Q▷ Γg,Γs◁Γr

Θ ⊢ (νs∶Γs)Q▷ Γg◁Γr
[T-ν ]

(by (125), only typable by [T-ν ]) (127)

∃Γ
′′
g ∶ Γg,Γs→∗ Γ

′′
g and Θ ⊢Q′▷ Γ

′′
g ◁Γr (by (127) (premise of [T-ν ], (126) and i.h.) (128)

live(Γs) (by (127) (premise and conclusion of [T-ν ]) and Prop.C.6) (129)

∃Γ
′
g,Γ

′
s ∶ Γ

′′
g = Γ

′
g,Γ

′
s and Γg→∗ Γ

′
g and Γs→∗ Γ

′
s (by (129), (128) and Prop.C.5) (130)

Γg,Γr →∗ Γ
′
g,Γr (by (130) and Def.2.5) (131)

live(Γ
′
g,Γr) (by (127) (conclusion of [T-ν ]), (131) and Prop.C.1) (132)

Γ
′
s = {s[p]∶S′p}p∈I Θ ⊢Q′▷ Γ

′
g,Γ

′
s ◁Γr

Θ ⊢ P′▷ Γ
′
g◁Γr

[T-ν ]
(by (126), (128), (130), (132))



20 MPSTs, Beyond Duality

• inductive case [R-def]. We have:

P = def X(x̃) =Q in R (from the rule definition) (133)

P′ = def X(x̃) =Q in R′ with R→ R′ (from the rule premises) (134)

Θ ⊢Q▷x1 ∶S1, . . . ,xn ∶Sn◁∅ Θ,X ∶S1, . . . ,Sn ⊢ R▷Γg◁Γr

Θ ⊢ P▷Γg◁Γr
[T-def]

(by (133), (72), inv. [T-def]) (135)

∃Γ
′ ∶ Γ→∗ Γ

′ and Θ,X ∶S1, . . . ,Sn ⊢ R′▷Γ
′
g◁Γr (by (135), (134) and i.h). (136)

Θ ⊢Q▷x1 ∶S1, . . . ,xn ∶Sn◁∅ Θ,X ∶S1, . . . ,Sn ⊢ R′▷Γ
′
g◁Γr

Θ ⊢ P′▷Γ
′
g◁Γr

[T-def]

(by (136) and (134))

We have thus proved (73). Then, we prove the main statement by induction on the number of re-
ductions in P→∗ P′: the base case is trivial (0 reductions, and thus P = P′); in the inductive case (n+1
reductions), we apply the induction hypothesis and (73).


	Introduction
	Multiparty Sessions: Standard Calculus, Types and Typing Contexts
	Multiparty Session Typing, Beyond Duality and Consistency
	Conclusions and Discussion
	Auxiliary Definitions and Details
	Global, Local and Partial Session Types
	Partial Session Types and Duality
	MPST Process Calculus

	More ``Correct'' but Non-Consistent Examples
	Consistency vs. History-Dependent Branching
	Consistency vs. Recursion

	Proofs

