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Abstract

Given a triangle in the plane, a planar convex compact set and an upper and and a lower bound, we
derive a linear programming algorithm which checks if there exists a real-valued Lipschitz map defined
on the triangle and bounded by the lower and upper bounds, whose Clarke subgradient lies within the
convex compact set. We show that the problem is in fact equivalent to finding a piecewise linear surface
with the above property. We extend the result to a convex quadrilateral in the plane. In addition, we
obtain some partial results for this problem in higher dimensions.

1 Introduction

The Mean Value Theorem (MVT) in dimension one has a simple (in fact trivial) converse: Given a
non-empty compact interval C of the real line (regarded as the derivative information for a function) and
two points (x1, h1), (x2, h2) ∈ R2 in the plane with x1 < x2, the following conditions are equivalent:

• There is a continuous map f : [x1, x2] → R which is C1 in (x1, x2) with f ′ ∈ C such that
f(xi) = hi for i = 1, 2.

• (h2 − h1)/(x2 − x1) ∈ C.

Moreover when (h2 − h1)/(x2 − x1) ∈ C, there is a minimal function satisfying this property namely
the affine map L through the two points (x1, h1) and (x2, h2) which has the property that for any other
function f satisfying this property we have min f ≤ minL and maxL ≤ max f .

In this technical report we aim to extend the above converse of the MVT to higher dimensions as
follows. The original motivation for this problem arose from solving the problem of consistency of the
function and derivative information for a locally Lipschitz real-valued map defined on a finite dimen-
sional Euclidean space, where the derivative information is given by the Clarke subgradient. It was
shown in [1] that this consistency is decidable if the Clarke gradient at each point is approximated by
the smallest axis aligned hyper-rectangle it contains, but the general problem when the Clarke gradient
is given by a non-empty compact convex subset was left as open.
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2 The case of a triangle

Suppose we have a non-empty convex and compact polygon B of the plane as the derivative infor-
mation. Assume three distinct points vi = (xi, yi) with i = 1, 2, 3 and T123, or simply T , is the closed
region defined by these three points. Suppose we have hi ∈ R for i = 1, 2, 3. We aim to establish if
there is a Lipschitz witness z = w(x, y) with w : T → R, that goes through the three points (vi, hi),
for i = 1, 2, 3, whose derivative everywhere is contained in B. Let z = P (x, y) = αx + βy + γ with
P : T → R be the plane that goes through three points (vi, hi), for i = 1, 2, 3 with ∇P = (α, β) = b.
Then, w satisfies our requirements iff w − P goes through (vi, 0), for i = 1, 2, 3, with its derivative
consistent with B − b. So we can equivalently consider the latter problem of finding a Lipschitz maps
that goes through (xi, yi, 0), for i = 1, 2, 3, with its derivative contained everywhere in B′ := B − b.

Let eij : vj − vi, with ij in the cyclic order 1, 2, 3 and let e⊥ij ∈ R2 be unit vector orthogonal to eij in
the direction into the triangle T .

By the mean value theorem (MVT) for Lipschitz maps, for a witness to exist, it is necessary that for
all distinct pairs i, j = 1, 2, 3, we have: 0 ∈ B′ · eij .

Assume therefore that these conditions, called the MVT conditions, hold. Thus, there exist bij ∈ B′
for cyclic ordered pairs ij such that bij · eij = 0, i.e., bij = ke⊥ij for some k ∈ R. Let [b−ij, b

+
ij] be the

interval along the direction e⊥ij that is contained inB′. Let P−ij be the plane with∇P−ij = b−ij that contains
eij for each cyclic order ij.

Proposition 2.1. Suppose the MVT conditions hold. Then, there is Lipschitz map w∗ : T → R that goes
through the three points (xi, yi, 0) with i = 1, 2, 3 and whose derivative is contained in B′, such that for
every other witness w with these properties we have: minw ≤ w∗ ≤ maxw.

Proof. If b ∈ B (i.e. 0 ∈ B′), then the plane w∗ = P satisfies our conditions; see the thick dashed
triangle in the figure. Suppose, therefore, that b /∈ B. By considering witnesses of the form w − P we
can equivalently consider the reduced problem with hi = 0 and B′ = B − b. Then 0 /∈ B′. In particular,
the convex hull of the three segments [b−ij, b

+
ij] along e⊥ij does not contain 0. This means that there exist

two pairs i1i2 and i3i1 such that precisely one of the following two conditions hold:

(i) Both b−i1i2 and b−i3i1 have positive components along e⊥i1i2 and e⊥i3i1 respectively while b+i2i3 has
negative component on e⊥i2i3 .

(i) Both b−i1i2 and b−i3i1 have negative components along e⊥i1i2 and e⊥i3i1 respectively while b+i2i3 has
positive component on e⊥i2i3 .

We consider the first case; the second is similar. Thus, assume there exist two pairs i1i2 and i3i1 such
that b−i1i2 and b−i3i1 have positive components along e⊥i1i2 and e⊥i3i1 respectively while b+i2i3 has negative
component on e⊥i2i3 .

Let c0 := b−i3i1 , c1, . . . , ck−1, ck := b−i1i2 be the vertices of B′ from b−i3i1 to b−i1i2 on the same side of the
origin with respect to the line ` that goes through b−i3i1 and b−i1i2 . For any c ∈ R2 let z = Pc(x, y) =
c1x+ c2y + γc be the plane through (vi1 , hi1) with∇Pc = c. Therefore, using our previous notation, we
have: Pc0 = Pi3i1 and Pck = Pi1i2 . Let w∗ := min{P−cj : 0 ≤ j ≤ k}.

Now let w be any Lipschitz map through the three points vi = (xi, yi, 0) for i = 1, 2, 3 and consistent
with B′. Then, w is differentiable a.e., and is equal to the integral of its derivative. Consider any path
p : [0, 1] → T : t 7→ vi1 + t(r − vi1) from vertex vi1 to a point r on the opposite edge E of T . Then

2



inf B′ · (r − vi1) = cj · (r − vi1) for some j with 0 ≤ j ≤ k and w∗ � [vi1 , r] = Pcj , where [vi1 , r] is the
line segment from vi1 to r in T . Thus we get:

w(r)− w(vi1) =
1∫

0

w′(vi1 + t(r − vi1)) · (r − vi1) dt ≥
1∫

0

cj · (r − vi1) dt =

1∫
0

(w∗)′(vi1 + t(r − vi1)) · (r − vi1) dt = w∗(r)− w∗(vi1)

On the other hand,w(vi1) = w∗(vi1) = hi1 = 0. But maxw∗ = maxr∈E w
∗(r). Thus we get

maxw ≥ max
r∈E

w(r) ≥ max
r∈E

w∗(r) = maxw∗

and hence maxw ≥ maxw∗. Since minw ≤ min{hi : i = 1, 2, 3} = minw∗, the result follows.

Now consider the original problem with three points (xi, yi, hi), for i = 1, 2, 3, and derivative in-
formation B. Suppose lower and upper limits c− ≤ c+ are given. Let P : T → R be the plane that
goes through three points (xi, yi, hi), for i = 1, 2, 3 with ∇P = b and put B′ = B − b. Consider w∗

constructed above.

Theorem 2.2. There is a witness to consistency if and only if the following two conditions hold:

• For all distinct pairs i, j = 1, 2, 3, we have: 0 ∈ B′ · eij .

• c− ≤ w∗ + P ≤ c+.

This shows that consistency is semi-decidable, i.e., for any given h = (h1, h2, h3) ∈ R3 we can decide
if there is a witness for consistency with heights hi at vertex vi for i = 1, 2, 3. Returning to the original
problem we have the following. Let rational points vi for i = 1, 2, 3, forming a triangle in the plane, a
rational convex polygon B and rational numbers c− ≤ c+ be given.

Theorem 2.3. It is decidable that there exist hi (i = 1, 2, 3) for which there exists a Lipschitz witness
going through (vi, hi) (for i = 1, 2, 3) consistent with B and the bound c− and c+ in the closed region
bounded by the triangle.

Proof. We first check if there exists h ∈ R3 such that the plane z = P (x, y) = αx + βy + γ going
through the three points (vi, hi) for i = 1, 2, 3 has gradient (α, β) ∈ B. If this condition holds then P
is clearly a witness and we are finished. Otherwise, we know from the construction in this section that
either condition (i) or condition (ii) holds. If, for example, condition (i) holds, then there is a witness
w if and only if w∗ + P is a witness where w∗ is the piecewise linear surface constructed above using
B′ = B − ∇P and z = P (x, y) is the plane through the three points (vi, hi) with hi = w(vi) for
i = 1, 2, 3. We now show that for each consecutive pair of vertices cj and cj+1 in the construction of w∗

above, the line of intersection of the two planes Pcj and Pcj+1
(equivalently the line of intersection of the
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two planes P ′j := Pcj + P and P ′j+1 := Pcj+1
+ P ) is perpendicular to the line segment cjcj+1. Recall

that all planes Pcj pass through the point (v, 0) with v := vi1 . Thus we have

Pj(v) = Pj+1(v) = 0

For u = (x, y) ∈ T we thus have:

P ′j(u) = P ′j+1(u) ⇐⇒ Pcj(u) = Pcj+1
(u) ⇐⇒ Pcj(u)− Pcj(v) = Pcj+1

(u)− Pj+1(v)

⇐⇒ cj · (u− v) = cj+1 · (u− v)

From the last equality we get (u− v) · (cj− cj+1) = 0 as required. Now let the line in T passing through
vi1 perpendicular to cj−1− cj intersect the edge vi3vi2 at point dj for j = 1, . . . , k. Thus, the edge i3i2 is
partitioned by the points d0 := vi3 , d1, . . . , dk, dk+1 := vi2 and T is triangulated into k + 1 sub-triangles
on each of which w∗ is linear. Let tj = w∗(dj) for 0 ≤ j ≤ k + 1. Thus, the existence of a witness
w∗ + P is equivalent to the existence of tj ∈ R for 0 ≤ j ≤ k + 1 such that

• c− ≤ tj ≤ c+ for 0 ≤ j ≤ k + 1, and.

• The plane going through the three points (dj, tj), (dj+1, tj+1) and (v11 , 0) has its gradient in B′ for
0 ≤ j ≤ k.

For extension to quadrilaterals we adopt the following notation for the minimal object of a triangle
given a non-empty compact and convex polygon B ⊂ R2. Let pi := (vi, hi). Then our construction
shows that the minimal object is generated by two planes Pbi1i2

and Pbi3i1
that go through the edges

pi1pi2 and pi3pi1 such that bi1i2 and bi3i1 are extreme points of B satisfying bij · (vj−vi) = (hj−hi) such
that |bij · e⊥ij| has its minimum value for i = i1, j = i2 and i = i3, j = i1. We write M+

123{pi1pi2 , pi3pi1},
respectively M−

123{pi1pi2 , pi3pi1}, to indicate that the minimal object for the triangle T123 with vertices
v1, v2, v3 goes through the edges pi1pi2 and pi3pi1 and is above, respectively below, the plane P : T123 →
R. We let

M123{pi1pi2 , pi3pi1} :=M+
123{pi1pi2 , pi3pi1} YM−

123{pi1pi2 , pi3pi1},

where Y stands for exclusive or.

3 Extension to convex quadrilaterals

Consider a convex quadrilateral Q with vertices vi, i = 1, . . . , 4, enumerated clockwise. Let B ⊂
R2 be a compact convex polygon, representing the derivative information. Denote the edges of the
quadrilateral by i(i + 1) mod 4 for i = 1, 2, 3, 4. We denote the triangle with vertices vi, vj, vk by Tijk
where i, j, k are in cyclic order 1, 2, 3, 4. Let e⊥i(i+1) be the unit vector in the orthogonal complement
of i(i + 1) directed into the quadrilateral. We will also let e⊥13 and e⊥24 be the orthogonal complements
of the diameters v1v3 and v2v4 respectively, say, in the directions into the two triangles T123 and T234
respectively.

Assume we are given hi ∈ R, i = 1, . . . , 4, such that the MVT conditions hold for the points pi :=
(vi, hi) for all the pairs of distinct vertices. Suppose P : R2 → R is the plane that goes through

4



1

2

3

e12

e23

e12

e31

e23

e31

o

−

−

c1

r

b 31 = c0

   b 12=ck

+

ci

b 23=cj

E

Figure 1.

41

34
12

(v3,h3)

(v2,0)

(v1,0)

(v4,0)

(v3,0)

23

h3 > 0

12

23

34

41

Figure 2.

5



(v4, h4), (v1, h1) and (v2, h2). By considering w − P for each witness w, we can again assume that
h4 = h1 = h2 = 0. We can also assume without loss of generality that h3 ≥ 0. See Figure 2.

Denote the plane going through the three distinct points pi, pj, pk by Pijk : Q → R. Each line
segment pipi+1 is an edge of two of these four triangles, namely Pi(i+1)k1 and Pi(i+1)k2 for k1, k2 6= i, j
and k1 6= k2. We have either Pi(i+1)k1 ≥ Pi(i+1)k2 or Pi(i+1)k1 ≤ Pi(i+1)k2 . In fact, by our assumptions,
we know that

P124 ≤ P123, P124 ≤ P134, P234 ≤ P123, P234 ≤ P134 (1)

For each distinct pair vi, vj , by the MVT conditions, there exists b ∈ B such that b·(vj−vi) = (hj−hi).
Let bij ∈ B be the extreme point of B with bij · (vj − vi) = (hj −hi) such that |bij · e⊥ij| has its minimum
value. Let Pij : Q→ R be the linear map through the line segment pipj with∇Pij = bij .

Then we have one of three possibilities: (i) Pij ≥ Pijk1 and Pij ≥ Pijk2 , (ii) Pij ≤ Pijk1 and
Pij ≤ Pijk2 , (iii) Pijk1 < Pij < Pijk2 or Pijk1 > Pij > Pijk2 .

We will show that if the MVT condition hold then we always have at least one minimal object for Q.
If there are more than one minimal objects, then they will have the same maximum and minimum and
thus in practice it is sufficient to find one minimal object for each given data. The following examples
provide the prototype of the generic cases for a minimal object.

Assume P12 ≤ P124 (thus P12 ≤ P123) and P41 ≤ P124 (thus P41 ≤ P134). Then let us the following
four cases (there are in fact more possibilities but these are sufficient).

(a) P23 ≥ P123 (thus P23 ≥ P234) and P34 ≥ P134 (thus P34 ≥ P234). In this case we have

(M123{p1p3, p1p3} YM123{p1p3, p2p3}) ∧ (M134{p1p3, p1p4} YM134{p1p3, p3p4})

Thus, the minimal objects in the two triangles T123 and T134, as constructed in the previous section,
go through the common edge p1p3 and thus, by gluing them together, they form a continuous
piecewise linear map of type Q→ R which is a minimal object for Q.

(b) P23 ≤ P234 (thus P23 ≤ P123) and P34 ≥ P134 (thus P34 ≥ P234). Then, b41, b12 and b23 are
extreme points of B in clockwise order. Let ci for 1 ≤ i ≤ n1 be the vertices of B in clockwise
order between b41 and b12, and let ci for n1 < i ≤ n2 be the vertices of B in clockwise order
between b12 and b23. Let Pci , for 1 ≤ i ≤ n2, be the planes with ∇Pci = ci such that they go
through p1 = (v1, 0) for 1 ≤ i ≤ n1 and go through p2 = (v2, 0) for n1 < i ≤ n2. Put

P = max{P41, P12, P23, Pci : 1 ≤ i ≤ n2} (2)

Then P will be a minimal object. See Figure 3.

Note that in this case three of the four planes Pi(i+1) (for i = 1, 2, 3, 4 mod 4) were below the
corresponding planes of type Pi(i+1)k (for some k 6= i, i + 1). If three of the planes Pi(i+1) (for
i = 1, 2, 3, 4 mod 4) were above the corresponding planes of type Pi(i+1)k (for some k 6= i, i+1),
then we would similarly obtain a minimal object by taking the minimum of the corresponding
planes in Equation 2.

(c) P23 ≥ P123 (thus P23 ≥ P234) and P34 ≤ P234 (thus P34 ≤ P134). As in 1(b), using b34, b41, b12 and
vertices of B in clockwise order from b34 to b41 and from b41 to b12.
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(d) P23 ≤ P234 (thus P23 ≤ P123) and P34 ≤ P234 (thus P34 ≤ P134). Let n1 ≤ n2 ≤ n3 ≤ n4

be such that the set vertices of B in clockwise order from b12 to b23 to b34 to b41 and back to b12,
respectively, can be written as ci for 1 ≤ i ≤ n1, n1 < i ≤ n2, n2 < i ≤ n3 and n3 < i ≤ n4

respectively. Let Pci , for 1 ≤ i ≤ n1, n1 < i ≤ n2, n2 < i ≤ n3 and n3 < i ≤ n4, respectively, be
the planes that go through the vertices p2, p3, p4 and p1. Then, the minimal object is given by:

max{P12, P23, P34, P41, Pci : 1 ≤ i ≤ n4} (3)

We note that if the four planes Pi(i+1) were above the corresponding planes of type Pi(i+1)k for
some k 6= i, i+1, then we would get a minimal object by taking the minimum of the corresponding
planes in Equation 3.

Theorem 3.1. For a convex quadrilateral Q with vertices vi (i = 1, 2, 3, 4), given B and real values
hi ∈ R, (i = 1, 2, 3, 4), there exists a minimal object that is consistent with B and goes through the
points (vi, hi), (i = 1, 2, 3, 4), if and only if the MVT conditions hold for all pairs of distinct points
(vi, hi), (i = 1, 2, 3, 4).

Proof. The only part follows immediately from the mean value theorem. Suppose therefore that the
MVT conditions hold for all pairs of distinct points (vi, hi), (i = 1, 2, 3, 4). Let P be the plane through
the points (vi, hi) for i = 4, 1, 2. By considering w − P for any witness w, we can consider the reduced
problem as presented earlier with h1 = h2 = h3 = 0, the vertices vi for i = 1, 2, 3, 4 in clockwise order
and can assume without loss of generality that h := h3 ≥ 0.

Consider the two triangles p1p2p4 and p2p3p4 which have the edge p2p4 in common, and consider
the four planes P12, P23, P34 and P41, respectively, in relation to the planes P124, P234, P234 and P123,
respectively, i.e. consider the restriction of the following piecewise linear maps to Q:

(i) P12 − P124 : Q→ R

(ii) P23 − P234 : Q→ R

(iii) P34 − P234 : Q→ R

(iv) P41 − P124 : Q→ R
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We have the following cases:

• If three of the maps above are non-negative or non-positive then we obtain a minimal object as in
(b) above.

• If all four maps above are non-negative or non-positive then we obtain a minimal object as in (d)
above.

• Suppose two of the maps are non-negative and the other two are non-positive:

– If (i) and (iv) have opposite signs (and thus (ii) and (iii) have also opposite signs), then we
obtain a minimal object as in (a), i.e., the gluing of the minimal object in T124 and T234.

– If (i) and (iv) are both non-positive then (ii) and (iii) are both non-negative and, in addition,
the following two maps are also non-positive by Relations 1:

P12 − P123 : Q→ R, P12 − P134 : Q→ R

There are now two cases which we will consider in relation to the two triangles P123 and
P341:

∗ If at least one of the two maps P23 − P123 : Q → R and P34 − P134 : Q → R is non-
positive then we obtain a minimal object as in (b) or (d) with respect to the two triangles
P123 and P341.
∗ If both maps P23 − P123 : Q → R and P34 − P134 : Q → R are non-negative, then we

obtain a minimal-object as in (a) in relation to the two triangles P123 and P341.

– If (i) and (iv) are both non-negative then (ii) and (iii) are both non-positive and, in addition,
the following two maps are also non-positive by Relations 1:

P23 − P123 : Q→ R, P34 − P134 : Q→ R

We again have two cases in relation to the two triangles P123 and P341:

∗ If at least one of the two maps P12 − P123 : Q → R and P41 − P134 : Q → R is non-
positive then we obtain a minimal object as in (b) or (d) in relation to the two triangles
P123 and P341.
∗ If both maps P12 − P123 : Q → R and P41 − P134 : Q → R are non-negative, then we

obtain a minimal object as in (a) in relation to the two triangles P123 and P341.

Let rational points vi for i = 1, 2, 3, 4, forming a convex quadrilateral in the plane, a rational convex
polygon B and rational numbers c− ≤ c+ be given.

Corollary 3.2. It is decidable that there exists hi ∈ R, (i = 1, 2, 3) for which there exists a Lipschitz
map that goes through (vi, hi) for i = 1, 2, 3, 4, is consistent with B and has lower and upper bounds c−

and c+ in the closed region bounded by the quadrilateral.
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4 Partial extension to higher dimensions

Suppose we have a non-empty convex and compact polygon B ⊂ Rn as the derivative information.
Assume we have n+ 1 points vi ∈ Rn with i = 0, 1 . . . , n that are affinely independent, i.e., vi − v0 are
linearly independent in Rn for 1 ≤ i ≤ n. Let T be the convex hull of these points. Suppose we have
hi ∈ R for 0 ≤ i ≤ n and two real numbers c− ≤ c+. Consider the question whether there is a Lipschitz
witness w : T → R, that goes through the points (vi, hi), for 0 ≤ i ≤ n, whose derivative everywhere
is contained in B. Let P : T → R be the hyper plane that goes through (vi, hi), for 0 ≤ i ≤ n with
b := ∇P . Then, w satisfies our requirements iff c− ≤ w ≤ c+ and w0 := w − P goes through (vi, 0),
for 0 ≤ i ≤ n, with its derivative contained in B− b. So we can equivalently consider the latter problem
of finding a Lipschitz map w0 that goes through (vi, 0), for 0 ≤ i ≤ n, with its derivative contained in
B′ := B − b and satisfies c− ≤ w0 + P ≤ c+. If 0 ∈ B′ then the constant hyper-plane with value 0
passes through all the points (vi, 0). Thus, we assume 0 /∈ B′.

Let eij := vj − vi, with ij in the lexicographic order. Let e⊥ij be the hyperplane of the orthogonal
complement of eij in Rn with its normal directed into the simplex T .

By the mean value theorem (MVT) for Lipschitz maps, for a witness to exist, it is necessary that for
all distinct pairs i, j = 0, 1, . . . , n, we have: 0 ∈ B′ · eij , i.e., B′ ∩ e⊥ij 6= ∅. Assume therefore that these
conditions, called the MVT conditions, hold. Thus, for each distinct pair of vertices vi and vj , there
exists b∗ij ∈ B′ with minimum absolute value such that b∗ij ∈ e⊥ij .

In the case, n = 2, we have seen that there is a vertex vi1 of the triangle T such that b∗i1i2 = ke⊥i1i2 and
b∗i1i3 = le⊥i1i3 with k and l having the same sign. This meant that there is a minimal object which is either
increasing or decreasing on T .

The property in n = 2 that there exists a vertex such that the extremal values of the derivative induced
from the MVT have the same sign in the direction into the simplex does not hold for n > 2. As an
example consider n = 3. Assume T is the standard simplex in R3 with vertices at the origin and at unit
distance from the origin along each coordinate axis, xi for i = 1, 2, 3. Thus, we have: v0 = (0, 0, 0),
v1 = (1, 0, 0), v2 = (0, 1, 0) and v3 = (0, 0, 1). For each co-dimension one face Fijk of T containing
distinct vertices vi, vj and vk, let nijk be the unit normal to Fijk in the direction into T . Now let

B′ = Conv{(0, 1, 1), (−1, 0,−1), (1,−2, 0)}

It is straightforward to check that the MVT conditions hold with respect toB′ and T , and that we have
the following values for b∗ij:

b∗01 = (0, 3
25
, 4
25
), b∗02 = (− 5

41
, 0, 4

41
), b∗03 = (− 5

17
, 8
3
, 0)

b∗12 = (− 1
12
,− 1

12
, 1
12
), b∗13 = (− 1

19
,− 1

19
,− 1

19
), b∗23 = (−10

51
, 1
51
, 1
51
)

We then obtain the following table for the sign of b∗ij · nijk from which we find that there is no vertex vi
of T for which the three planes going through its three edges eij for j 6= i with extremal values of b∗ij
are all non-negative or all non-positive over T , i.e., for which b∗ij · nijk has the same sign for j 6= i and
k 6= i, j.
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n012 n013 n023 n123

b∗01 − +
b∗02 − +
b∗03 − +
b∗12 + +
b∗13 + −
b∗23 − −

We can however decide, given T and B′, if there is a Lipschitz map w on T with Clarke gradient
contained in B whose directional derivative in T , wherever it exists, in the direction from some vertex
into the simplex is always non-negative or always non-positive.

To decide this problem, we ask if there is a vertex vi, with 0 ≤ i ≤ n, of the simplex with points
bij ∈ B′ ∩ e⊥ij for j 6= i such that

bij · nijk1...kn−2 (4)

has the same sign for j 6= i and distinct km 6= i, j for 1 ≤ m ≤ n−2. Since this question is equivalent to
a finite number of linear inequalities, it is decidable. If such a vertex vi exists, then we take the points b∗ij
that satisfy these common sign conditions such that each b∗ij is at its minimum absolute value. Assume
for definiteness that all the above signs are non-negative. Let U be the set of vertices of B′ and put
Ui = U ∩ conv{0, b∗ij : j 6= i}, i.e., the set of vertices of B′ contained in the convex hull of the origin and
the extremal points b∗ij . For each u ∈ Ui, let Pu be the hyper-plane through vi with ∇Pu = u. Consider
the map P+ : T → R defined by

P+ = min{Pij, Pu : j 6= i&u ∈ Ui}

Then, P+ goes through (vk, 0) for 0 ≤ k ≤ n, its Clarke gradient is contained in B′ and its direction
derivative in T in any direction v − vi for v ∈ T is non-negative.

Proposition 4.1. Suppose the MVT conditions hold. Then the following two statements are equivalent
and decidable:

(i) There is a real-valued Lipschitz map defined in T with Clarke gradient contained in B′ that goes
through (vk, 0) for 0 ≤ k ≤ n such that its directional derivative in T , wherever it exists, in the
direction from some vertex into the simplex is always non-negative.

(ii) There is a vertex vi for some i = 0, . . . , n such that all scalar products in (4) have non-negative
signs.

Moreover, if these equivalent statements hold, then for any map w satisfying the conditions in (i) we
have maxP+ ≤ maxw, i.e., P+ is a minimal object for such maps.

For the example above, we can check that we have a solution for the two vertices v1 and v2. A simple
calculation shows that for vertex v1 we have:

b∗01 = (0, 0, 1/4), b∗12 = (0, 0, 1/4), b∗13 = (−1/4,−1/4,−1/4),

10



which give rise to the hyper-planes P01, P12, P13 : T → R with P01(x1, x2, x3) = x3/4 and P12 = P13

with
P12(x1, x2, x3) 7→ −

x1
4
− x2

4
− x2

4
− 1

4

Thus, the minimal object for witness maps that are increasing in the direction v − v1 for any v ∈ T is
given

P+ = min{P01, P12},

which has its maximum equal to 1/8 over T .
It can be checked that for the vertex v2 we obtain the same hyper-planes P01 and P12 and thus the

same minimal object.
We also obtain the following result for the original problem.

Theorem 4.2. It is decidable that there exist hi ∈ R, 0 ≤ i ≤ n, for which there exists a real-valued
Lipschitz map w defined in T that goes through (vi, hi), with c− ≤ w ≤ c+ in T , whose Clarke gradient
is contained in B and whose directional derivative in T , wherever it exists, in the direction from some
vertex into T is always greater than, or always less than, that of the hyper-plane that goes through the
points (vi, hi) for 0 ≤ i ≤ n.
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