Finite Algorithms for Decoding
Recurrent Iterated Function Systems

Abbas Edalat

Imperial College Technical Report DoC 95/1

Abstract

We present two finite algorithms, the recurrent probabilistic domain algorithm
for decoding a recurrent iterated function system (IFS) and the vector recurrent
probabilistic domain algorithm for decoding a vector recurrent IFS on the
digitised screen. Recurrent IFSs and vector recurrent IFSs are used for fractal
image compression and our algorithms are the first finite algorithms in the
state of art. They have the following advantages compared to the previous two
known algorithms in the field.

e Our algorithms terminate in finite time on any digitised screen without
needing to fix a number of iterations in advance.

e There is a simple complexity analysis for the algorithms.

e The algorithms produce a good quality image up to several times faster
than the other algorithms.

1 Introduction

Recurrent iterated function systems (IFSs) and vector recurrent IFSs are the basis
of the fractal image compressor VRIFS™ developed by M. F. Barnsley’s Iterated
Systems Inc. in the states [2, 5. They encode an image as a measure on the screen
exploiting the self-similarities of the image. Recurrent IFSs and vector recurrent
IFSs generalise IFSs and it is useful to describe IFSs before presenting these two
more general cases. We will, therefore, first explain how images can be regarded as
measures and how an IFS encodes an image and how it is decoded.

1.1 Images as Measures

In fractal image compression, one seeks to encode and decode a colour or a greyscale
digitised image on the computer screen. Using a colour map, a colour or a greyscale
image can be presented by assigning a number to each pixel indicating its brightness

1

or intensity. We can think of this number as the weight of the pixel. Any section of
the image will then have a total weight equal to the sum of the weights of its pixels.
It is technically convenient to rescale the weights of pixels so that the screen as a
whole, consisting of say r x r pixels (where r is the resolution of the screen), has unit
weight in total. In this way, we say that the image is represented by a normalised
measure on the screen, which we can regard as the unit square. Conversely any
normalised measure on the screen, i.e any distribution of weights on pixels which add
up to one corresponds to an image. We can therefore identify (colour or greyscale)
images on the screen and normalised measures on the unit square. Given an image,
the set of all pixels which have non-zero weights is called the support of the image.

1.2 Iterated Function Systems with Probabilities

An affine transformation of the plane is a combination of a rotation, a rescaling, a
sheer and a translation in the plane. Any affine transformation f:R? — R? of the
plane has the form

(2,y) = f(z,y) = (az + by + g,cx + dy + h)

where (z,y) € R? is any point on the plane. It is convenient to express this in matrix

) =) -G - (1),
(2 4)

is the linear part of the transformation; it is the combination of a rotation, a rescaling
and a sheer. The vector
e
(f)

is the translation part of the transformation.

An affine transformation is contracting if there is a number s with 0 < s <1
such that the distance between any two points (z1,y;) and (z2,y2) on the plane is
contracted by at least a factor s, i.e.

V@ =202 + (g — 15)? < s(y/ (21 — 22)2 + (31 — 12)?).

For a contracting transformation f as above, the least number s with this property
is called the contractivity of the affine transformation and is given by

The matrix

3=¢;+ﬂ+ (a—pB)2+~2
where a = (a? +¢?)/2, 8= (b +d?)/2, and v = ab+ cd.

2

An Iterated Function System (IFS) on the plane is given by a finite collection
of contracting affine transformations f; (¢ =1,2,...,N) of the plane. An IFS with
probabilities is an IFS such that each f; is assigned a probability p; with 0 < p; <1
and p; +p2+...+py =1. Given an IFS with probabilities

(f1, fay .-, fN3 DL D2, - - DN)

we can store the coefficients of the maps f; and the probabilities in a table, which
gives the code of the IFS with probabilities. For example the following table is the
code of an IFS with probabilities with four maps (N = 4).

f a b c d g h P

1 0.76 0.00 0.00 0.76 0.12 0.25 0.72
2 0.00 0.00 0.00 0.26 0.51 —-0.00 0.01
3 0.20 0.26 -0.23 0.22 041 0.24 0.13
4 —-0.15 —-0.28 —-0.26 0.24 0.59 0.24 0.24

Table 1.

An IFS with probabilities determines a unique normalised measure, i.e. a unique
image on the plane, called the invariant measure of the IFS. Therefore, we can say
that the IFS encodes this measure or image. The existence and uniqueness of the
invariant measure is shown in [2, page 351]. For example the IFS with probabilities
with the code given in Table 1 above determines the image of a fern shown in
Figure 1. The picture in Figure 2 is gives the support of the image in white.

We will now describe the two prior art algorithms which have been used up to
now to generate, i.e. to decode, the image corresponding to an IFS with probabilities.
These algorithms should be compared with the new algorithm presented in Section 2.

We refer the reader to [1, 5] for the theoretical basis of the following algorithms.
We can assume, by a change of coordinates and rescaling if necessary, that each
contracting affine transformation f; (i =1,2,...,N) maps the unit square, denoted
by X, into itself (i.e. each transformation maps the unit square to a parallelogram
whose sides fall entirely within the unit square). Any point x in the unit square is
represented by its closest pixel zi;, for some k and [with 1 < k,/ <r on the screen,
where r is the resolution.

1.2.1 The Greyscale Photo Copy Algorithm
Given an IFS with probabilities
(flaf27 . '7fN;p1ap27 v)pN) ’

the greyscale photo copy algorithm is equipped with an operator M, called the
Markov operator, which given any image p as input produces a new image M(u) as

output. Suppose u is a digitised image, i.e. for each pixel zx; (1 < k,l <r) we have
w(zk) > 0 with

i p(zr) = 1.

k,l=1

Then the new image M (u) is obtained, by assigning the following weight to pixel zj:
M (1) (zi) = Y pis(fi* (2m2))
=1

where f7'(zy) is the set of all pixels which are mapped to zu by fi.
The invariant measure p* of the IFS is in fact the unique fixed point of M, i.e.

u* is the unique normalised measure which satisfies M(u*) = p*. Moreover for any
initial image p the sequence of iterates of M, i.e.

py M (), M (), M3(p), ..., M™ (), - .-

always tends to p*. This means that if n is sufficiently large, the image represented
by M™(p) is visually close to pu*.

Therefore the algorithm starts with an initial digitised image p and repeatedly
applies M until a convergence to an image takes place. This limiting image is
then the required image: It is the digitised approximation to p*. In most practical
embodiments, the initial image is taken to be a uniformly grey image.

The algorithm eventually produces a good approximation to p* for large n.
However, as the above formula for M(u) shows, calculation of each new iterate of
M is computational intensive and it requires a significant amount of memory (as it
needs to store 2r? numbers): beyond the capacity of a PC. Furthermore, there is no
criteria defining how many iterations be performed, and the number n of iterations
has to be fixed in advance by trial and error depending on the IFS and the resolution
of the screen.

1.2.2 The Random Iteration Algorithm

The random iteration algorithm generates the image corresponding to an IFS with
probabilities

(fl?f?a""fN;plap2a~"7pN)

as follows. Initially, a point xy of the unit square is chosen. Then an integer between
1 and N is chosen at random with p; being the probability of choosing i. Suppose %,
is chosen. This determines a new point namely x; = f;, (o). We then repeat this
procedure to choose, say, i, and put zo = fi,(z;,) = fi, © fi,(z0). In this way we find
a sequence of points

Ty, T1,T2,T3y...,Tpny...

where
Tn = fin ofin+1 o... ofil(xﬂ)

4

When n is large enough, the distribution of the first n terms of the above sequence
on the screen approximates the required image p*, i.e. the invariant measure of the
IFS. More precisely, let L(n,zy) be the total number of the first n terms of the
above sequence which are represented by the pixel 2. Then we have

. L(n, zkl)
* frnd l —_—
wilaw) = lim ==

i.e. for large n, the fraction
L(n,zkl)

n+1

is an approximation to wu(zx).

Like the greysale photo copy algorithm, to use the random iteration algorithm one
has to fix a number n of iterations in advance, which for each IFS with probabilities
is found by trial and error for any given resolution of the screen. Furthermore, the
selection of the integer ¢ from 1,2,..., N with probability p; is quite time consuming
as it takes about log, N computational steps. Last but not least, the algorithm, as
it is random, may fail, during the n iterations specified, to visit some of the pixels
which have non-zero up* value, i.e. which in fact lie on the support of the original
image.

1.3 Compression via Self-tiling

We now describe how compression of an image is done, i.e. given a digitised image u
on the screen how to find an IFS with probabilities

(fl?f?a'"afN;pl’p%"')pN)

which represents that image closely. Details of the method can be found in [5, page
113].

The aim is to find N contracting affine transformations f; and probabilities p;
(1=1,2,...,N) such that the image represented by the measure

M(p) =pipo fit+papo fit+ ...+ pypo fy'

where M is the Markov operator, is visually close to the original image p. Suppose
for now that we have achieved this, i.e. assume we have an IFS with probabilities

(flvf?a'"7fN;p17p27"'7pN)

such that M(u) = p. Since the unique invariant measure p* of the IFS satisfies
M (u*) = p*, one can infer that p* ~ p. This means that the invariant measure of the
IFS is close to the original image, in other words the above IFS with probabilities
gives a good encoding of pu.

Therefore, we have to find

(flaf27"'1fN;p17p27"'7pN)

such that
prppo fit+ppo fyt+ .. +pypo [yt

Each term p;uo fi! in the above sum represents a copy of the original image
transformed by the map f; and attenuated in brightness by the factor p;. Therefore
the above equation represents a self-tiling, or a collage, of u. Therefore, one proceeds
by first assuming all probabilities are zero except p;. Then f; and p; are chosen
such that pypo fi! approximates a part of the image p. Next p, is allowed to be
non-zero, and f, and p, are chosen so that pjuo f; ' +pyuo f5' approximates a larger
part of the image. The procedure is repeated until the whole image p is covered by
such tiles. Then the probabilities are normalised so that they add up to one. The
resulting (f1, f2, ..., fn;P1,P2,-..,PN) gives an encoding of the image u.

This technique for image compression was used originally in a software developed
by M. F. Barnsley, A. Sloan and L. Reuter. (See [1, page 337]). Their system
contains two subsystems, Collage and Seurat. Collage finds the IFS code of a given
image using the above method. Seurat then decodes the image by starting with the
IFS code; for this it uses the random iteration algorithm described previously.

2 The Probabilistic Domain Algorithm

The probabilistic domain algorithm generates the invariant measure of an IFS with
probabilities, i.e. it decodes an image. It is therefore an alternative to the greyscale
photo copy algorithm and the random iteration algorithm described in the last section.
It was presented in [7]. In order to understand the vector recurrent probabilistic
domain algorithm, it is useful to recall how the probabilistic domain algorithm works
as follows.

Suppose (f1, f2,---, fn;P1,P2,.--,Pn) is an IFS with probabilities. We want to
generate the image u* corresponding to the IFS by computing u*(z) for each pixel z.

Assume that the contractivity of f; is s; (0 < s; < 1), which can be calculated in
terms of the coefficients of f; as given in the previous section. Let s be the maximum
value of s; for i =1,...,N. i.e. s=maxj<i<y ;. Then s also satisfies 0 < s < 1. As
before, we can assume that each contracting affine transformation f; (i =1,2,...,N)
maps the unit square X into itself.

Consider the tree, shown in Figure 3, which for convenience has been depicted
upside down. We call it the IFS tree with transitional probabilities.

The root of the tree is the unit square X on depth zero. The immediate
descendents or children of X, situated on depth one, are the images of X under
the maps fi,fs,...,fn, which we denote simply by fiX, foX,...,fnvX. Since an
affine transformation sends parallel lines to parallel lines, each f;X is a parallelogram,

contained in X by assumption; and its sides are at most of length s;. Note that
these parallelograms may intersect. On the next depth, the children of f;X (for
each i =1,...,N) are the images of the depth one parallelograms, f X, foX,..., fv X,
under the map f;. These are denoted therefore by f;fiX, fifeX,..., fifnX. Each
fif; X is a smaller parallelogram with sides at most of length s;s; and is contained in
fi:X. Similarly the next levels of the tree are constructed. A typical node of the tree
on depth level n is a small parallelogram denoted by f;, fi, ... fi, X, with sides at most
of length s; s;,...s;,, which is contained in its parent parallelogram f;, fi, ... fi,_,X.

We give each of the parallelogram in the tree a weight. The unit square X is
given weight one. This weight is distributed among the parallelograms on the next
level by giving each f;X weight p,. The weight p; is then redistributed among the
children of f;X by giving f;f;X weight p;p;. Note that

pip1+pp2+ ... +DipN =pi(pr + D2+ ... Dn) =D

so that the total weight is always preserved. Generally, the parallelogram f; fi, ... fi, X
is assigned the weight pi,pi, ... D, -

Each branch of the tree eventually shrinks to a pixel. In fact, if s;,s;,...s;, is of
the order of the size of a pixel, i.e. of the order of 1/r where r is the resolution of
the screen, then we can identify the node f; fi, ... fi,X with a pixel, and the branch
shown in Figure 4 then terminates at this node, since a child of any pixel is clearly
the same pixel. This terminating node, represented by that pixel, is therefore a leaf
of the tree and it has weight p; p;,...p;,. Clearly when n = [—logr/logs]+ 1, where
[a] is the greatest integer less than or equal to a, all parallelograms on level n have
already shrunk to pixels, i.e. the tree will have finite depth n and all the leaves of
tree will have depth less than or equal to n.

We can now explain how p* is computed. The value p*(z) for a pixel z is given
simply by the sum of the weights of all the leaves which are represented by =z.

The algorithm therefore traverses the finite tree in some specified way in order to
find the leaves and their weights. Then, for each pixel the weights of the leaves
represented by that pixel are summed up to give the total weight of each pixel, which
determines the normalised measure p*.

Clearly then, the algorithm terminates, without needing to specify any fixed
number of iterations as one has to do in the case of the other two prior art
algorithms. .

We can obtain a simple complexity analysis for the algorithm. If s = maxi<;<ns;
and s’ = min;<;<n$;, then it is easy to see that the height of the tree is between h

and h' with

logr logr

h=[-]+1 and A =[-]+1
where [a] is the greatest integer less than or equal to a. A simple calculation shows
that at each stage of computation 10 arithmetic operations have to be performed. It

follows that the total number of computations performed by the algorithm before it

log s log s’

stops is between 10(N + N2+ ...+ N"*) and 10(N + N2 +...+ N"), i.e between

h 1
~ 10N* and 10N]>rv

Nk —1
10N
N

~ 10N".

Since one cannot have a complexity analysis for the greyscale photo copy algorithm
and the random iteration algorithm (as in both cases one has to specify the number
of iterations by trial and error), we cannot make a direct analytical comparison
between the probabilistic power domain algorithm and the other two. However, on
all inputs we have tried, the probabilistic domain algorithm is, often up to several
times, faster than the random iteration algorithm in producing a good quality image.

3 Recurrent IFSs

Recurrent IFSs, which are generalisations of IFSs, were introduced in [4] and their
application in image compression was further developed in [3, 6]. The flexibility of a
recurrent IFS permits the construction of more general measures which do not have
to exhibit the strict self-similarity of the IFS case.

Let X be the unit square as before, and suppose {fi,f2,...,fnv} an IFS acting
on X. Let (p;;) be an irreducible N x N row-stochastic matrix, i.e.

° Z}N=1pij =1 for all 1,
e p;; >0 for all 4,5, and

e for all ¢,j there exist 4,43,...,4, with 4 = ¢ and ¢, = j such that
DiyiaPigiz « + + Pin_1in > 0.

Then {f;;pij;i,7=1,2,...,N} is called a recurrent IFS.

A recurrent IFS decodes N images on X which can be superimposed to produce
a single image. Suppose we have N copies of the unit square X, which we denote by
X xj with j=1,...,N. Then, for each j=1,...,N, we obtain an image u;. In
vector notation, we can write an N-image by

B = (13); = (U1, - N)s

which we call a vector image. We also let zy; x 7 be the pixel 2 in the copy X X j.
There are two decompression techniques in the state of art to generate (u;); [2].

3.1 The Recurrent Greyscale Photo Copy Algorithm

The recurrent greyscale photo copy algorithm generalises the greyscale photo copy
algorithm. The idea is that starting with an N-image &I we generate the sequence of
N-images 7, M(f, M (5, M (T, ..., using the recurrent Markov operator M, which

takes a vector image T to a vector image M (%), whose jth component (M(R)); is
defined by

(M()); (210 X 5) mem Yz % 4))-

If n is sufficiently large, M (%) will be an approximation to M(z*). This method
suffers from the same weaknesses as the greyscale photo copy algorithm described
before.

3.2 Recurrent Random Iteration Algorithm

The recurrent random iteration algorithm generalises the random iteration algorithm.
Take a copy X X 4o and a point z;, € X X i in this copy. Now select i; from 1 to
N such that the probability that j is chosen be p;; and put z;, = fi,(z;,) € X X i5.
Therefore, we have moved from the initial point z;, in X X ¢y to the point z;, in X x1;.
Next, select i, from 1 to N such that the probability that j is chosen be p;; and
put z;, = fi,(x;;) € X X i2. Repeat to obtain the sequence x;,,;,,Zi,, Tizy- -, Tip,-- .-
If n is large, then those points of finite sequence x;,,;,,Zi,, Tis, - - -, s, Which lie on
X x j define the image u} for each j =1,...,N. More precisely, let L(n, zx X j) be
the total number of the first n terms of the above sequence which are represented by
the pixel zx X j in the copy X x 7. Then we have

. . . L(n, 2z x j
i <) = Jim, S

i.e. for large n, the fraction
L(n, z X j)

n+1

is an approximation to pj(zm X j). This method has the same shortcomings as the
random iteration algorithm which we have already mentioned.

4 The Recurrent Probabilistic Domain Algorithm

We now present our first new algorithm. Let {fj;pi;;4,5 =1,2,...,N} be a recurrent
IFS on N copies X X j (j=1,...,N) of the unit square X. We would like to find
15 (zi x j) for each j=1,...,N and each pixel zu.

Since (pi;) is an irreducible row-stochastic matrix, there exists a unique vector
(m;); = (ma,...,my) with m; >0 (1 <j < N) and ¥L;m; =1 which satisfies
m; = SN, m;p;; [9, page 100]. The vector (m;); is called the probability vector
associated with the transition matrix (p;;) and can be-found using the Gaussian
elimination method. We then use the inverse transitional probability matrix [8, page

414] (g;;) which is defined as follows:
¢j = —Dji- (1)

Since m; >0 for 1 < j < N and therefore (g;) is well-defined; it is again
row-stochastic, irreducible, and satisfies Zﬁil miqi; =m; for y=1,...,N.

We now consider the recurrent IFS forest with transitional probabilities in Figure 5,
which consists of N trees with roots X xj for j =1,..., N. The recurrent probabilistic
domain algorithm is based on this forest in the same way that the probabilistic
domain algorithm was based on the IFS tree with probabilities of Figure 3.

The algorithm first computes the unique stationary initial distribution (m;);,
by solving the equations m; = YN, m;p;; for m; (1 < j < N) with the Gaussian
elimination method, and determines the inverse transition probability matrix (g;;)
given by Equation (1). The number of arithmetic computations for this is of the
order of N3. Initially, the set X x {j} is given mass m;, which is then distributed
amongst the nodes of the jth tree according to the inverse transitional probability
matrix (gy). In order to determine /,L;f(zk, X 7), where the number j and the pixel zj
are fixed, the algorithm proceeds, similar to the probabilistic domain algorithm, to
compute the sum of the weights m;gji, ... ¢i,_,:, of the leaves f;fi, ... fi,X of the jth
tree which occupy the pixel 2 X j, i.e.

1 (zm X j) = > Mg Ginin-
fifig- finXCz

The recurrent probabilistic domain algorithm, by efficiently traversing the finite
forest, uses the least number of computations to make the best possible digitised
approximation to the invariant vector measure of a recurrent IFS with probabilities.

The number of computations for the latter is of the order of N* as before, where
h is the height of the IFS tree. Therefore, the complexity of the algorithm is of the
order of N* where k = max(h, 3).

In Figure 6, the four images of a recurrent IFS with N =4 is shown. The arrows
indicate which p;;’s are non-zero.

Compression is done using a generalisation of the collage technique described in
Section 1.3. Details can be found in [2].

5 Vector Recurrent IFSs

Vector recurrent IFSs, which further generalise recurrent IFSs, are the basis of
VRIFS™, which is a fractal image compressor. A vector, recurrent IFS encodes and
decodes N images u; on N different unit squares X; for j=1,...,N. The precise
definition is as follows.

10

Assume we have N unit squares, or computer screens, X; for j=1,...,N. For
each pair ¢,7 =1,...,N, let fin: X; = X;, 1 <n < Nj;;, be a collection of contracting
affine mappings, each with a probability weight p;;, > 0, such that

N;j
Z Dijn = 1,
n=1

for each pair ¢,7 =1,...,N. Let p;; be an irreducible row-stochastic N x N matrix.
Then
(fijn; Pijn; Pij3 1 < 4,5 < N, 1 <n < Ny)

defines a wector recurrent IFS on the unit squares X; for j =1,...,N. A recurrent
IFS and an IFS are special cases of this. If X; =X for all i=1,...,N, N;; =1 and
fijn = f; for all 4,5 =1,..., N, then we have a recurrent IFS (f;;pi;;4,5=1,...,N).
If, furthermore, p;; = p; for all ¢ =1,...,N, then we have, in effect, an IFS
(fiip30=1,...,N).

5.1 Vector Recurrent Greyscale Photo Copy Algorithm

The recurrent greyscale photo copy algorithm can be generalised to the vector
recurrent greyscale photo copy algorithm to generate the NV images uj for j =1,..., N.
As before, we will use the vector notation

w= (:u])] = (“17'-'7/1'1\’)’

Let zi X 7 be the pixel zi; on the unit screen X;. Any image p; on X; induces an
image M;;(p;) on X; defined by

Ni;
Mij(pi) (zra % 3) = Y, Dijntti(Fijn (201 X 7))

n=1

We now define the vector recurrent Markov operator M which takes a vector image 7
to a vector image M (7i), whose jth component (M(%));, is given by

— N
(M(m));(zi % 5) = Y pigMi; (vi) (200 X §).
=1
One then starts with any vector image 7 and generates the sequence Ii, ﬁ(ﬁ),

M2(ﬁ), e ﬁn(ﬁ), For large enough n, ﬁn(ﬁ) approximates 7i*. This method
has the same shortcomings as the greyscale photocopy algorithm.

It is also possible to obtain a vector recurrent random iteration algorithm to
generate i* which will share the weaknesses of the random iteration algorithm.

11

6 The Vector Recurrent Probabilistic Domain
Algorithm

We will now present our second new algorithm. Let (fijn;Dijn;Pij;1 <6, <N, 1<n<
N;j) be a vector recurrent IFS. We will now describe a finite algorithm to generate
u* on N digitised screens. Let (m;); be the unique probability vector associated
with the irreducible row-stochastic matrix (p;;) and let ¢; = %pﬁ be the inverse
transitional matrix. We will consider a forest of N trees whose jtfl tree has a typical
branch depicted in Figure 7.

Note that each node is a subset of its parent node. The root of the tree,
at level 0, is X;. On level one, a typical node is f;n,X; for ¢4 =1,...,N
and n; =1,...,N;;. Similarly on level two we have the nodes f; jn, firiin,Xi, for
i,02=1,...,N, ny=1,...,N;;; and ny =1,..., Ng,,. On level ¢, we have the nodes
fivjn figirng figiang - - - Fir_vie_ane_y Fivieoine Xie for 41,...,e=1,...,N, ni=1,...,Nyjj, ..,
ng =1,...,N;i_,- FEach of the nodes of jth tree is given a weight. The root
node X, is given weight m;, the node f; ;n, X; on level one weight m;q; pijn,,
the node fi,jn, fiyiin,Xi, on level two weight m;q;i, GiyiyDiijn, Pizisn,, and generally
the node fijn, fiziiny fiziong - - - fis—rie—ane fivieoine Xiy On level t is given the weight
M Qjiy Qivig - - - Qir—1iePirjn Pigirng - - - Picis_1ng- Lhese weights are shown on Figure 8.

The vector recurrent probabilistic domain algorithm finds the leaves of the jth
tree (for each j=1,...,N) and for each pixel zy X j sums up the weights of those
leaves which are occupied by the pixel. In other words,

* \
K (zkl X]) = Z MjQjiyQiyiy - - - Qip—1it Pirjni Pigiang - - - Pigig_1my-

fiying Figiyng - figis_q1ny Xiy C2r

Like the probabilistic power domain algorithm and its recurrent version, the vecrtor
recurrent probabilistic domain algorithm uses the least number of computations to make
the best possible digitised approximation to the invariant vector measure of a vector
recurrent IFS with probabilities. A simple calculation will determine the maximum
number of arithmetic operations in the algorithm. Let s;;, be the contractivity of
fijn and put s = max;jnSijn. Then the height h of forest is h = [—}%g—:] + 1, where
r is the resolution of the screen. It can be shown that the number of arithmetic
computations needed in the algorithm is less than 12N"*([TN._, N;;)". In practice
N is chosen small and for most pairs i, we have N;; =1. A selection of images
encoded by vector recurrent IFSs can be found in [2, 5].

References

[1] M. F. Barnsley. Fractals Everywhere. Academic Press, 1988.

[2] M. F. Barnsley. Fractals Everywhere. Academic Press, second edition, 1993.

12

[3] M. F. Barnsley, M. A. Berger, and H. M. Soner. Mixing Markov chains and their
images. Prob. Eng. Inf. Sci., 2:387-414, 1988.

[4] M. F. Barnsley, J. H. Elton, and D. P. Hardin. Recurrent iterated function
systems. Constructive Approrimation, 5:3-31, 1989.

[5] M. F. Barnsley and L. P. Hurd. Fractal Image Compression. AK Peters, Ltd,
1993.

[6] M. A. Berger. Images generated by orbits of 2-D Markov chains. Chance,
2(2):18-28, 1989.

[7] A. Edalat. Power domain algorithms for fractal image decompression. Technical
Report Doc 93/44, Department of Computing, Imperial College, 1993. British
Patent Application no. P17444GB filed by Imperial College on 17-9-93.

[8] W. Feller. An Introduction to Probability Theory and Its Applications. Wiley,
London, 3rd edition, 1968.

[9] J. G. Kemeny and J. L. Snell. Finite Markov Chains. D. Van Nostrand, 1960.

13

Figure 1

Figure 1. The greyscale image encoded by the IFS with probabilities given in Table 1.

14

Figure 2

Figure 2. The support of the image in Figure 1.

15

Figure 3

Figure 3. The IFS tree with transitional probabilities.

16

Figure 4

th

fufi, X

l
fufig oo fin X

Figure 4. A complete branch of the IFS tree with transitional probabilities.

17

Figure 5

< . iy

.

\\\\

< P, egZlooo--

S~

. ﬁW e
.
.

Figure 5. The recurrent IFS forest with transitional probabilities.

18

Figure 6

Figure 6. A vector of four images generated by a recurrent IFS.

19

Figure 7

filjnl Xi1

fi1jn1 fizil n2 Xi'z

filjnl fizilnz fisizns Xis

filjnl fizilnz fiaizne. R fit_1it-2m-1fitit_:\ntXit

Figure 7. A branch of the jth tree of the forest of a vector recurrent IFS.

20

Figure 8

M ;G531 Piq jng

M ;q5i1 Giyiz Piyjng Piziing

m]qjll Qil 12 qig’ig,pilj'nl pigil nzpigizng,

M iG55, Gigin « + - Giz_15:Pirgng Piiing » + » Pivie_1ny

Figure 8. The weights given to the nodes of the branch in Figure 7 of the jth tree
of the forest of a vector recurrent IFS.

21

