
Towards Interoperability in Heterogeneous Database Systems

A. Zisman J. Kramer

Imperial College Research Report No. DOC 95/11

Department of Computing
Imperial College

180 Queen's Gate, London SW7 2BZ - UK
Email: az@doc.ic.ac.uk, jk@doc.ic.ac.uk

December, 1995

Abstract

Distributed heterogeneous databases consist of systems which differ physically and logically,
containing different data models and data manipulation languages. Although these databases are
independently created and administered they must cooperate and interoperate. Users need to access and
manipulate data from several databases and applications may require data from a wide variety of
independent databases. Therefore, a new system architecture is required to manipulate and manage
distinct and multiple databases, in a transparent way, while preserving their autonomy.

This report contains an extensive survey on heterogeneous databases, analysing and comparing the
different aspects, concepts and approaches related to the topic. It introduces an architecture to support
interoperability among heterogeneous database systems. The architecture avoids the use of a
centralised structure to assist in the different phases of the interoperability process. It aims to support
scalability, and to assure privacy and confidentiality of the data. The proposed architecture allows the
databases to decide when to participate in the system, what type of data to share and with which other
databases, thereby preserving their autonomy. The report also describes an approach to information
discovery in the proposed architecture, without using any centralised structure as repositories and
dictionaries, and broadcasting to all databases. It attempts to reduce the number of databases searched
and to preserve the privacy of the shared data. The main idea is to visit a database that either contains
the requested data or knows about another database that possible contains this data.

Keywords

Heterogeneous databases, global schema, interoperability, federation, information discovery,
scalability, shared data, semantic information, autonomy, transparency.

Contents

1 Introduction 4
1.1 Motivation : 4
1.2 Goals and Contributions : 5
1.3 De�nitions : 6
1.4 Report Outline : 7

2 Related Work 10
2.1 Dealing with Heterogeneous Databases : 10

2.1.1 Semantic and Syntactic Conicts : : : : : : : : : : : : : : : : : : : 10
2.1.2 Choice of a Canonical Data Model : : : : : : : : : : : : : : : : : : 12
2.1.3 The Integration Process : 14
2.1.4 Conclusion : 15

2.2 Global Schema : 16
2.3 Interoperability : 17

2.3.1 Initial Architectures : 18
2.3.2 Direct Interoperability : 25
2.3.3 Indirect Interoperability : 25
2.3.4 Phases of the Interoperability Process : : : : : : : : : : : : : : : : : 29
2.3.5 Other Approaches : 30
2.3.6 Conclusion : 43

2.4 Interdependencies : 44
2.5 Transaction Management : 46

3 The Proposed Architecture 48
3.1 Description : 48

4 Initialisation Process and Scalability of the System 57
4.1 Initialisation Process : 57
4.2 Scalability of the System : 58

4.2.1 Addition Case : 59
4.2.2 Deletion Case : 65
4.2.3 The Modi�cation Case : 68
4.2.4 Consulting and Updating Syst-DB : : : : : : : : : : : : : : : : : : 68
4.2.5 Master vs. Syst-DB : 69

2

5 The Discovery Process 70
5.1 Assumptions : 70
5.2 General Description : 71
5.3 The Algorithms : 75

5.3.1 Algorithm to identify a group : 75
5.3.2 Algorithm to visit a component : 76
5.3.3 Interruption algorithm : 77

5.4 Proof of the Algorithm : 79
5.5 Variation of the Discovery Process : 79

6 The SPD 80

7 A Case Study 82
7.1 The Architecture : 83
7.2 The Discovery Process : 85
7.3 The Scalability Process : 89

7.3.1 Addition : 89
7.3.2 Deletion : 89

8 Conclusion and Further Work 91

3

Chapter 1

Introduction

1.1 Motivation

Before database systems appeared it was very di�cult to share heterogeneous �les created
through multiple autonomous applications. It was a complex task to manage all of these
�les in a single application. They had a great number of di�erences, such as �eld naming,
value types and �le structures. To resolve these problems and di�culties the use of
autonomous �les were changed by the use of a central collection of data named database,
managed by a centralised control system called database system.

During the seventies, centralised databases were widely used and after some years a
similar problem appeared, but in a di�erent environment. The development of database
management systems has increased the utility of these systems, but has not solved the
problem of having a great number of databases in a large company or community. Users
need to access and manipulate data from several databases and applications may require
data from a wide variety of independent databases. These databases are independently
created and administered, di�ering physically and logically. Each independent database
has its own schema, expressed in its own data model, accessed by its own retrieval language
and designed by one or a group of persons.

The development of distributed computing and networking has provided the technical
basis for remote access. However, the situation requires for a new system architecture
designed to manipulate and manage di�erent and multiple databases. We are faced with
the challenge of trying to simultaneously manipulate di�erent databases, without losing
their autonomy and in a way that is transparent to the users and applications, that is,
make them interoperable.

Kamel and Kamel [56] outlined some of the requirements and objectives that must be
ful�lled and provided when interoperating with heterogeneous databases, such as:

1. Distributed transparency, that is, the users must access a number of di�erent
databases in the same way as accessing a single database.

2. Heterogeneity transparency; users must access other schemas in the same way they
access their local database (using a familiar model and language).

3. The existing database systems and applications must not be changed.

4. Addition of new databases must be easily accommodated into the system.

4

5. The databases have to be accessed both for retrievals and updates.

6. The performance of heterogeneous systems has to be comparable to the one of
homogeneous distributed systems.

Although the area related to heterogeneous databases has been hardly studied and
various approaches proposed, it still asking for new solutions and approaches. One im-
portant issue when dealing with interoperability of heterogeneous databases is the discover
of relevant data and where it is located. Most of the existing approaches in the literature
assume that the relevant data is either already known or identi�ed and try to process it
e�ciently. However, in a n environment with a large number of databases this assumption
is not reasonable. The information discovery process is related to the fact that, during the
resolution of a query, the system does not know the location of the correct information
and which are the components that contain this information.

Another drawback when dealing with heterogeneous databases is concerned to the
resolution of conicts and representation of semantic aspects. It is very important to
understand, capture and deal with the semantics of the data in order to permit the
detection of the correct data and the assignment of conicts that may appear. The
uni�cation of data is also a signi�cant question. It is necessary to execute the uni�cation
as automatic as possible, preserving the databases autonomy and without interfering
in the original data stored in the involved databases. On the other hand, transaction
management is a complex task in the environment of heterogeneous databases. It is
very di�cult to guarantee the ACID and serializability properties because each system
has its own mechanism to ensure the properties. The interdependencies among data in
di�erent databases have to be carefully studied. It is essential to allow consistency during
the exchange and share of data. Thereby, it is necessary to �nd a way of representing,
manipulating and maintaining interdependencies.

1.2 Goals and Contributions

Based on the problems of interoperating with heterogeneous databases and on the existing
approaches we propose a new way of dealing with these systems. We suggest the use of
an architecture to support interoperability of autonomous heterogeneous databases. The
architecture permits the transparent execution of both read and write operations in remote
databases, in the same way as manipulating local databases, without compromising their
autonomy. It avoids the use of a centralised structure to assist in the di�erent phases
of the interoperability process (resource discovery, resolution of semantic heterogeneity
and uni�cation of remote and local data). The architecture also assures privacy and
con�dentiality of the data and supports scalability of the system, allowing component
databases to join and leave the system. With this architecture the databases can decide
when to participate in the system, what type of data to share and with which other
databases. Thereby, preserving their autonomy.

We also propose a distributed algorithm to perform information discovery. This pro-
cess is executed neither using a centralised structure containing the relationship and infor-
mation about the shared data and its location, nor performing broadcast to all databases
in he system. Each component database has structures containing information about
other databases that possible contain requested data. In order to help in the discovery

5

process, we suggest the use of special structures possessing semantic information of the
shared data. These structures are local for each component.

The approach also permits a dynamic evolution of the system by allowing databases
to join and leave the system. We demonstrate the scalability property of the system by
the speci�cation of di�erent cases. With the proposed approach it is possible to have the
participation of databases that share and exchange data and databases that only consult
and interrogate the other members of the system.

1.3 De�nitions

There is a variety of de�nitions in the literature to describe terms like: distributed
databases, heterogeneous databases, federated databases, multidatabases and interopera-
ble systems. To avoid confusion and to facilitate the comprehension of the text we briey
describe these terms.

According to Ceri and Pelagatti [23], distributed databases are considered as a collection
of data distributed over di�erent computers of a computer network. Each node of the
network has autonomous capability, performs local applications and may participate in
the execution of some global application that requires accessing data at several sites, using
the communication subsystem.

Heimbigner and McLeod [48] classi�ed databases along two dimensions: (a) concep-
tual/logical structure and (b) physical organisation and structure. Each of these dimen-
sions can be either centralised or decentralised. Therefore, we can identify four classes
of databases: (1) logically centralised and physically centralised (this class includes the
traditional integrated databases); (2) logically centralised and physically decentralised
(including distributed databases1 and some approaches to compose databases support);
(3) logically decentralised and physically centralised; or (4) logically decentralised and
physically decentralised. In a logically centralised system there is a single central concep-
tual schema, where in a logically decentralised one there are various distinct conceptual
schemas. A physically centralised system contains the data stored in the same computer,
where physically decentralised databases have data stored in many separate computers.

Database systems can also be classi�ed as homogeneous or heterogeneous. Like [48,
91] we consider as homogeneous the databases where the local schemas and the global
schema are de�ned using the same data model and data manipulation language. On the
other hand, heterogeneous databases contain di�erent data models and data manipulation
languages2.

We use the terms component and database interchangeable. These terms mean a
database sharing and exchanging data. The terms local database or local component are
used to denote a database with its original characteristics. That is, a database with its
attributes before joining and participating in a system of heterogeneous databases.

The term federated database system, introduced by Hammer and McLeod [44] and
extended by Heimbigner and McLeod [48], is a federation of loosely coupled databases
without a global schema. That is, autonomous component database systems that coop-

1This is the way in which the term has been largely used in the literature.
2For Thomas et al. [104] a database is heterogeneous if the local nodes have di�erent types of com-

puters, operating systems, communication links and protocols, and database management systems, even
if all local databases are based on the same data model.

6

erate with each other. The federated architecture has to resolve two conicting require-
ments: (a) the maintenance, as far as possible, of the autonomy of the components, and
(b) the achievement of a reasonable degree of information sharing. In this architecture
each component contains three di�erent schemas (private, export and import). The ex-
change of data is executed by performing negotiations among the involved databases (see
subsubsection 2.3.1).

Multidatabases and interoperable databases are both considered here in the same way
as de�ned in [68, 69, 71]. Like the federated databases they are also multiple autonomous
databases, managed together without a global schema. The di�erence consists in the
architecture. The multidatabase is basically a set of databases (heterogeneous) containing
a multidatabase language (universal or common language), that allows the manipulation
of the databases3 (see subsubsection 2.3.1).

Unless otherwise speci�ed, during the text we use the term federation for a group of
autonomous heterogeneous databases, sharing and exchanging data, independently of the
architecture in use. Hence, it is possible to have a federation of federated databases, a
federation of multidatabases, a federation of interoperable databases, and so on.

It is also important to de�ne what is meant by transparency and autonomy when
handling with di�erent databases. Transparency is the ability to access a data without
knowing that this data is distributed over di�erent heterogeneous databases. For the
user and application the system is seen as a traditional centralised database. The data is
accessed in the same way that the user access his/her database, using the same data model
and language. The system has to be able to automatically propagate the information
throughout the components of the system when necessary.

Autonomy refers to the capacity of a component to choose its own design and oper-
ational model. An autonomous component is able to: (a) de�ne the data that it wants
to share with other components, (b) de�ne the representation and naming of the data
elements, (c) determine the way that it views the data and combines existing data, (d)
decide when to enter or leave a federation, (e) specify whether to communicate with other
components, (f) execute local operations without interference from external operations,
(g) add new data and withdraw access to any shared data.

1.4 Report Outline

The remainder of this report is organised as follow.
Chapter 2 contains the literature survey analysing and comparing the di�erent aspects,

concepts and approaches related to the area of heterogeneous databases. We divide the
existing approaches that deal and manipulate with di�erent autonomous databases into
two groups. In the �rst group, a global schema is used to integrate the databases. The
second group does not use a global schema making the databases interoperable. Thereby,

3Sheth and Larson [91] used the term federated database systems to describe systems with broader
capabilities. For them a federated database system is a collection of cooperating autonomous component
database systems. They categorised federated database systems into loosely or tightly coupled, based on
who manages the federation and how the components are integrated. A loosely coupled federated database

system is what is called in [68, 69, 71] multidatabases or interoperable database systems, and in [44, 48]
by federated database system. A tightly coupled federated database system permits the existence of a
global schema.

7

we present important concepts that appear in both group of approaches, such as: seman-
tic and syntactic conicts, choice of a canonical data model and the integration process.
Following, we describe the characteristics of these groups, together with some approaches.
Finally, we briey present the interdependencies and transaction management character-
istics.

In chapter 3 we propose an architecture to support interoperability among heteroge-
neous databases. The architecture permits the transparent execution of both read and
write operations in remote databases, in the same way as manipulating local databases,
without compromising their autonomy. It avoids the use of a centralised structure to
assist in the di�erent phases of the interoperability process, assures privacy and con�-
dentiality of the data, and supports scalability of the system. To guarantee autonomy
and transparency new structures are added to each database before joining the system.
These additional structures provide the information necessary to achieve interoperability,
without modifying the original structure of a database.

Chapter 4 introduces how to initialise a system of heterogeneous databases using the
proposed architecture. A very important issue when dealing with heterogeneous databases
is to permit a dynamic evolution of the system. We claim that the proposed architec-
ture permits this evolution without suspending the execution of the whole system and
preserving the autonomy of the databases. We present the scalability property of the
architecture by identifying and describing all possible cases. This description consists in
the speci�cation of how to perform the evolution of the system.

Chapter 5 describes a process to execute information discovery in the proposed archi-
tecture. Most of the existing approaches in the literature assume that the relevant data
is either already known or identi�ed. The discovery process has the characteristic of not
using any centralised structure as repositories and dictionaries, containing information
about the shared data and its location. It also avoids broadcasting to all databases. To
execute the information discovery process we propose the use of a hierarchical structure,
local for each database. This structure contains information about the location of di�er-
ent databases by classifying them in groups. These groups are speci�ed depending on the
type of shared data of the databases.

Chapter 6 investigates the use of a special structure (SPD) containing semantic in-
formation about the shared data. The semantic of the shared data is important in all
the di�erent phases of the interoperability process. The focus of our study related to the
semantic aspects of the shared data is to help on the information discovery process. This
chapter is not complete. It is necessary to specify more details of how to represent and
manipulate with the semantic characteristics.

In chapter 7 we present an example (case study) were we analyse the architecture, the

8

discovery process and the scalability property. This example is useful to illustrate all the
proposed ideas.

Chapter 8 presents a summary and a critical review of the research �ndings. It also
describes the conclusions and suggests some topics for further work.

9

Chapter 2

Related Work

This chapter contains a literature survey of the work that has been done to support the
manipulation and management of di�erent heterogeneous database systems.

We divide the current approaches in the literature that deal with the problem of
manipulating and managing di�erent and multiple autonomous databases into two groups.
The �rst group uses the idea of having a global schema [1, 11, 14, 23, 26, 30, 62, 67, 91,
97, 104] integrating all the databases in a logical single database. Hence, users may
manipulate data of the global schema or of an external schema derived from it. As
de�ned by Litwin [69], it is the reapplication of the database approach principle one
level up, i.e., all data has to be converted into a new (distributed) database. However,
due to the necessity of preserving autonomy of the databases and the lack of a general
solution to resolve the semantic conicts it is di�cult to create a global schema. The
second approach assumes that the databases the user may access have no global schema
[14, 23, 29, 33, 48, 50, 68, 69, 71, 91, 105]. The existing databases are interoperated instead
of being separately manipulated or only components of a single global schema.

2.1 Dealing with Heterogeneous Databases

In this section we present some important aspects that appear in both groups of ap-
proaches. Following, the next two sections focus on the approaches which use a global
schema and the approaches which make the databases interoperable, respectively.

2.1.1 Semantic and Syntactic Conicts

One fundamental question when dealing with autonomous heterogeneous database systems1

is related to the resolution of semantic and syntactic conicts. This has to be addressed
either when using the approach of integrating all of the systems in a global schema or
when applying a method to interoperate between them, The conicts appear whenever
trying to identify semantically related objects in systems independently created and ad-
ministered. That is, systems containing di�erent constructs to model the same portion of
the Universe of Discourse (UoD). Batini et al. [6] de�ned conicts as being two (or more)
not identical representations of the same concept. As outlined in [6, 29, 62, 108, 114] the

1This question is also important when dealing with Intelligent and Cooperative Information Systems
[17, 34, 35, 81].

10

success in schema integration (and database interoperability) depends on understanding
the semantics of the schema elements and on the ability to capture and deal with these
semantics. Thus, it is necessary to have methods that make explicit the semantics of the
di�erent data models [109].

The semantic and syntactic conicts can be originated by di�erent reasons, such as:
(a) the di�erent viewpoints that groups of users and designers have about certain infor-
mation during the design phase (di�erent perspectives); (b) the existence of di�erent kinds
of constructs in the data models, permitting di�erent modelling possibilities (equivalent
constructs); (c) the fact that di�erent design speci�cations can result in di�erent schemas
(incompatible design speci�cations) [6].

The fact that the same concept can be described in di�erent schemas using di�erent
representations, generates several types of semantic relationships between these repre-
sentations. In [6, 40] these relationships are classi�ed as: identical, when the represen-
tations are exactly the same; equivalent, when the representations are not exactly the
same, but it is possible to use either behavioural, or mapping, or transformational equiv-
alences; compatible, when the representations are neither identical nor equivalent, but the
constructs and integrity constraints are not contradictory; and incompatible, when the
representations are contradictory. The equivalent, compatible and incompatible semantic
relationships are de�ned as conict.

Based on the classi�cations and frameworks that appear in the literature for the dif-
ferent types of conicts [6, 14, 30, 40, 56, 59, 62, 99, 100, 108] we classify these types as
follow. Name, involving homonyms, when two items have the same names but di�erent
meanings, and synonyms, when two items have di�erent names but the same meanings.
Scale, involving the use of di�erent units of measurement. Structural, when the same facts
are described in two schemas using di�erent elements of the same data model (di�erent
choice of modelling constructs or integrity constraints). Representation, when the same
data item has di�erent representations in the schema. Di�erent levels of abstraction, when
one schema contains more information details than the other. Schematic discrepancies,
when data in one database corresponds to metadata in another2.

Saltor et al. [89] proposed a general solution to schematic discrepancies based on a
framework of generalisation and aggregation. They suggested operations that transform
data into metadata and vice-versa, in both relational and object-oriented data models.

In [94] the author developed a semantic taxonomy to characterise semantic similarities
among two objects3. In this taxonomy, the degree of similarity is denoted by a qualita-
tive measure named semantic proximity, that classi�es and distinguishes the two objects
as: semantically equivalent, semantically related, semantically relevant and semantically
resemblant [92]. Two objects are: (a) semantically equivalent, when they represent the
same real world entity or concept; (b) semantically related, when there is a generalisa-
tion or aggregation abstraction between the domains of the two objects; (c) semantically
related, when there is a context dependency relation between them; and (d) semanti-
cally resemblant, when they cannot be related to each other by any abstraction in any
context, but they have the same role in their respective context(s). On the other hand,
semantic incompatibility does not mean the lack of any semantic similarity, it means that
the objects are unrelated. This can only be established either when there is no context

2In [61] the authors proposed a higher order language for interoperability of databases with schematic
discrepancies.

3Unless otherwise specify, by the word \object" we mean any construct of a data model.

11

and no abstraction in which the domains of two objects can be related, or when the ob-
jects being compared cannot have similar roles in the context(s) that they exist. This
semantic taxonomy was also used to relate a structural taxonomy emphasising schematic
(structural/representational) di�erences among the objects. That is, they identify se-
mantic similarities between objects that have di�erent types of schematic di�erences such
as: incompatible problems of domain, entity de�nition, data value, abstraction level and
schematic discrepancies.

Francalanci and Pernici [40] a�rmed that to detect conicts the �rst step is to discover
similarity between schema portions, even when existing di�erent meanings to similarity
concepts. After detecting the similar schema portions, the second step consists in the use
of transformational and mapping equivalence notions. These notions are used to ensure
if the schema conicts are similar or not. Nevertheless, to execute schema comparison
it is necessary to use the experience of the designer and his knowledge about the model,
schema and application context (human help).

In order to identify relationships (similarities) among objects and to detect semantic
and syntactic conicts some approaches have been proposed. Chatterjee and Segev [24]
proposed a probabilistic technique for comparison of records across databases when the
identifying attributes are structural or semantically incompatible. The idea is to compare
not only the identifying attributes of two records, but all of the attributes that identify
instances and are common to the two records being compared. Using this technique the
probability of correct identi�cation is improved. If the two records describe the same
real world instance and their identi�ers are di�erent, then most of the other common
attributes would match. Therefore, if two records sharing the same identi�er refer to two
di�erent real world instances, then the common attributes are less likely to match. After
comparing two records a comparison value is assigned to them. Depending on this value it
is possible to conclude if these records correspond or not to the same real world instance.

Yu et al. [114, 115] proposed another approach to identify relationships. The idea
is to use a global concept space (knowledge base - KS) that permits the speci�cation
of common concepts and relationships among unknown terms. The steps to determine
relationships consist of: (a) automatic mapping of names to a set of common concepts
by their description and creation of new concepts whenever necessary, (b) calculation of
the similarity of each pair of names arranging them in descending order of similarity by
using similarity functions, (c) conformation by the DBA of the relationships of each pair
of related name.

Urban and Wu [108] proposed the use of a semantic data model to describe the struc-
tural semantics of the other component data models, that participate in an environment
of heterogeneous databases.

The conict solution consists in modifying either one or both conicting schemas, in a
way that the �nal representation satis�es the requirements of both original schemas (see
[6] and [40] for a survey about the approaches to detect and resolve conicts).

2.1.2 Choice of a Canonical Data Model

In both groups of approaches it is necessary to choose a canonical data model to per-
mit cooperation and communication between the heterogeneous databases.The canonical
data model is used to bridge the gap among the di�erent data models of the local com-
ponents. It facilitates the detection of interdatabase semantic relationships and provides

12

transparency to the access of di�erent components. The canonical data model is used
either to describe the global schema (see subsection 2.2), or to express the shared data of
the involved components (see subsubsections 2.3.1 and 2.3.5), or as an intermediate data
model (see subsubsection 2.3.3).

The task of chosen a canonical data model is not simple. The characteristics of a
data model are responsible to make a certain model suitable or not suitable for this goal.
Many of the data models that exist in the market are used as canonical data models in the
existing systems, such as: Entity Relationship (DDTS [23, 91]), Relational (MERMAID
[14, 91, 104], DATAPLEX [14, 26, 104], ADDS [14, 104]), Functional (MULTIBASE
[14, 23, 91, 97, 104]), Object-Oriented (PEGASUS [1, 57], Heimbigner [14, 48], Hammer
et al. [44, 45, 37, 38]), ERC++ (Tari [103]), and so on.

As outlined by Saltor et al. [88] a data model is responsible for the representation abil-
ity of a database which is composed of two factors: expressiveness and semantic relativism.
Expressiveness means the degree that a data model can represent the conceptualisation
of the reality aspects. It is composed of structural and behavioural parts. Semantic rela-
tivism of a database is the degree where a database can accommodate all of the di�erent
conceptualisations that distinct persons have about the same aspect of reality. There-
fore, semantic relativism of a data model is the power of its operations to derive external
schemas from its database schemas. That is, multiplicity of possible representations of a
given real world.

The canonical data model must have an expressiveness equal or greater than the
data models of the other components in the system. It may allow simple translations
(mappings) between the data models of the existing component databases. Due to the
possible limited expressiveness of the original data models, sometimes, it is necessary to
include structural and behavioural semantic enrichment before translating schemas.

Eliassen and Karlsen [33] a�rmed that the adoption of a canonical data model is a
requirement for providing data model transparency, since it can permit uniform access
to the heterogeneous databases (homogenisation). They believe that an o-o data model
is suitable as a canonical data model. At the federation level it is necessary a strong
notion of identity (the property that distinguishes an object from all other objects in the
system), and object-oriented data models support this identity notion.

Saltor et al. [88] developed a framework to analyse what are the characteristics that
a data model should have to be suitable to be used as a canonical data model. They
conclude that the hierarchical and network models are not suitable. On the other hand,
the ER model and its extensions are inferior when compared to the existing o-o models.
However, in their opinion, the functional and some o-o data models supporting views
seam to be the best data models for this task.

Tari [103] a�rmed that an object-orientation of a canonical data model is generally
advised. The relational model is not suitable, since it does not contain the necessary
semantics for de�ning all essential mappings. In his opinion the object-oriented models
have some advantages such as: complex objects, shareability, abstraction hierarchy, and
object identity. However, the o-o models fail when representing explicit information of
databases applications as: (a) representation and manipulation of complex relationships
of the database applications (in particular n-ary relationships); (b) lack of representation
and management of the constraints as an element of a system; (c) permission to model be-
haviour of database applications in procedural language, causing problems for integrating
and translating operations in local databases. On the other hand, the entity relation-

13

ship models solve the problems related to the o-o models by allowing descriptions of all
database information. Therefore, they fail to express behaviour information of database
applications. Based on these aspects Tari proposed the ERC++ model to be used as a
canonical data model. ERC++ is an extension of the semantic entity relationship ERC+
data model (S. Spaccapietra and C. Parent) that uses rules (�rst order logic formulae) to
represent general and behaviour aspects.

In [21, 22] Castellanos et al. proposed a semantic extension of an o-o model named
BLOOM, to be used as a canonical model. BLOOM contains objects, types, classes
and semantic abstractions. Objects represent the real world objects; types describe the
structure and behaviour of the object instances; class is a set of objects associated with
a type; semantic abstractions are based on a rich set of semantic concepts, which permits
the distinction of di�erent types of dependencies, specialisations, and aggregation and
captures more semantics than most of the existing data models. The model has a set of
integration operators to support multiple semantic in a federated schema and to overcome
schematic discrepancies. It also contains upward inheritance where global types, formed
by the integration of local types, inherit their structure and behaviour. This facilitate the
task of de�ning federated schemas. BLOOM was developed with the objective of coupling
relational and o-o databases. It achieves this goal after the conversion of relational and o-o
schemas to BLOOM schemas. In BLOOM the comparison task in the integration process
(see subsubsection 2.1.3) is guided by the structures of generalisation and aggregation
semi-lattices. Normally, the searches are not guided at all. However, when they are
guided many comparisons are eliminated causing reduction of the complexity.

We a�rm that the choice of a suitable common data model must depend on the
data models of the components that participate in a federation. Actually, it is necessary
to make an engineering task to analyse the best canonical data model depending on
the combinations of the existing component data models. It is also very di�cult to
translate a database schema in one model to a schema in another model when considering
a general level. That is, it is possible to �nd some approaches to perform translations
between some speci�c data models, but there are no general techniques to do this. The
semantic and behaviour information aspects are very important when trying to translate
the speci�cations of data models. However, the great majority of the current data models
su�er from the lack of semantic and/or behavioural information.

2.1.3 The Integration Process

Heiler et al. [47] de�ned integration as a means of combining or interfacing data and
functions of a system into a cohesive set. The integration process requires the identi�ca-
tion of relationships and dependencies among data and procedures. A great number of
methodologies, tools and solutions to integrate database schemas have been proposed and
presented as survey in the literature as can be found in [5, 6, 20, 27, 30, 31, 39, 40, 62, 64,
77, 78, 80, 93, 101, 113]. Other solutions have been suggested by commercial and proto-
type systems such as: DATAPLEX [14, 26, 104], DDTS [23, 91], DHIM [25], MERMAID
[14, 91, 104], MULTIBASE [14, 23, 91, 97, 104], PEGASUS [1, 57]. However, despite the
methodologies, algorithms and heuristics that help the integration process, it is necessary
to have human assistance to support the resolution of conicts (there is a lack of automatic
processes). This assistance is only reasonable when the number of components is small.
There are some systems [11, 14, 23, 30, 91, 97] that use an auxiliary database to assist

14

in the resolution of these incompatibilities. As outlined in [93] the results of a schema
integration activity are not unique and cannot be generated totally automatically. The
integration process needs information that goes further than synthesising dependencies
and involves a subjective activity. The data models are unable to capture the semantics of
real world objects in terms of their meaning and use. Besides, the meta-data information
about the modelled objects that is normally captured in a schema is not enough.

Larson et al. [62] discussed the use of attribute equivalence for schema integration.
They a�rmed that two attributes are considered to be equivalent when there is a certain
mapping function between the domains of two attributes. Sheth et al. [93] outlined that
this attribute equivalence de�nition is incomplete and inadequate. They believe that a
mapping does not imply attribute equivalences. There is no particular set of descriptors
to de�ne an attribute that is proper to help with attribute equivalence discovery.

Batini et al. [6] compared some of the existing methodologies that deals with integra-
tion and described the following steps to be performed.

1. Preintegration: consists in analysing schemas before integrating them, in order to
decide upon the integration policy to be used. This policy is related to the choice of
schemas to be integrated, the order of integration and preferences to entire schemas
or portions of schemas.

2. Comparison of schemas: in this stage the schemas are compared and analysed to
determine relationships among concepts and to detect conicts and interschema
properties.

3. Conforming the schemas: corresponds to the resolution of conicts to allow the
merging of various schemas. In this phase it is necessary close interactions with
users.

4. Merging and restructuring: perform the uni�cation of schemas originating some
intermediate integrated schema(s). The global schema has to possess the follow-
ing characteristics: (a) completeness and correctness, the original component must
contain all the information presented before the uni�cation process; (b) minimality,
guarantees that the concepts are represented only once; and (c) understandability,
allows the end user to easily understand the uni�ed schema.

Spaccapietra et al. [100] divided the integration process into two phases. The �rst
phase, named investigation phase, consists in determining commonalities and discrepan-
cies among schemas. The second phase consists in the semi-automatically integration. In
this phase the DBA interacts whenever the integrator does not have knowledge to resolve
conicts.

2.1.4 Conclusion

We believe that it is not possible to allow di�erent databases, independently created and
administered, to share and exchange information without addressing the similarity and
equivalent aspects of the involved data. Hence, the semantic related to the data is a
fundamental question and still needs to be solved. It is necessary to �nd a simple and
automatic way, as much as possible, of representing and manipulating with the semantic.

15

These semantic aspects reduce and distinguish the di�erences among data of databases
independently created, identify the equivalence and similarities between di�erent data
and permit comparison of distinct data.

The semantic of the data is signi�cant and used in various phases such as: the discovery
of the correct information, the integration and uni�cation process, the conict resolution,
and so on.

The conict resolution is another aspect that needs attention. The goal is to create
a way to deal with this feature without having to ask for human help (or ask only when
strictly necessary).

On the other hand, it is also important to make a comparative study of the di�erent
existing data models, using di�erent possible combinations, to de�ne the suitable canon-
ical data and in which situation. Notice that this is a laborious engineering task, but
necessary to be done.

2.2 Global Schema

The �rst approach that appeared in the literature to the problem of managing with
heterogeneous database systems was based on the design of a global schema. This global
schema is produced by selecting the independently developed schemas of each component
(local schema), resolving semantic and syntactic conicts among them, and creating an
integrated schema with all their information (see subsubsection 2.1.3). This process is
also called view integration by Bright et al. [14] and is more di�cult than just creating a
union of the input schemas. It has to deal with ambiguity and similarity of terms, and the
di�erences in the representation and interdependencies of the data. The global schema
is simply another layer above the local schemas and can be usually replicated at each
node for e�cient user access [14]4. As presented in �gure 2.1, some of the architectures
that use a global schema convert each local schema to another semantically equivalent
schema, de�ned in terms of a common data model, before integrating them and forming
the global schema. Therefore, providing data model transparency, since the global schema
permits uniform access to the heterogeneous databases (homogenisation). Examples of
these architectures can be found in systems and approaches like: MERMAID [14, 91, 104],
DATAPLEX [14, 26, 104], DDTS [23, 91], MULTIBASE [14, 23, 91, 97, 104], Dayal [30].

The building of a global schema formed by the integration of di�erent schemas (local)
is not a simple task. It has to resolve problems of semantic and syntactic conicts,
equivalence and ambiguity of data, and di�erences in modelling and viewing aspects of
the real world. All of these have to be executed without losing the meanings and goals
where the data was originally created.

One important drawback when using a global schema is related to the fact that the
autonomy of the local databases cannot be guaranteed. Bouguettaya [7] a�rmed that
there is a tradeo� between sharing and autonomy summarised as: \the more there is
sharing, the less autonomous databases are". With a global schema the databases do
not have self-government to de�ne the representation and naming of the sharing data, to
determine the way that it views the data and combine existing data, to specify whether
and how to communicate with other components, to execute local operations without

4Sometimes, when the nodes have limited storage facilities, it is either di�cult or impossible to replicate
the global schema.

16

Local Schema nLocal Schema 2Local Schema 1

Common Local Common Local Common Local
Schema 1 Schema 2 Schema n

Global Schema

Figure 2.1: Global Schema Architecture

interference from external operations, and so on, compromising the autonomy of these
components. Another problem is related with the addition of new component databases
into the system and with the modi�cation of the existing local schemas. Both operations
have to be reected into the global schema causing alterations. In some cases these
alterations can force the reconsideration of many design decisions [14].

In the global schema approach it is also necessary to de�ne a data model and a data
manipulation language (canonical) that is used in the global schema. Every access to the
databases presented in the federation is �rst executed in the global schema, via a common
data language (universal). Following, it is distributed to the appropriate components in
such a way that is transparent to the users. Therefore, breaking query into subqueries
and relating each subquery to a proper local database are also di�cult tasks.

2.3 Interoperability

Due to the di�culty of integrating the component databases of a federation into a global
schema other approaches appeared in the literature. These approaches are based on the
idea of making heterogeneous databases interoperable without using a global schema.
Litwin and Abdellatif [68] a�rmed that: \a single schema for the thousands of databases
on future open systems is a dream". Examples of existing interoperable commercial
systems are: MRDSM (Multics Relational data Store Multiple) [14, 68, 69, 91], Calida
[14, 69], Oracle V5 [68, 69], Sybase [68, 69, 104].

In the next section we �rst present some architectures and methodologies that were
initially proposed in the literature and that were used as foundation to other approaches.
We classify the interoperability approaches into direct and indirect depending on the way
that the databases communicate between each other, as introduce in subsections 5.2 and
5.3 respectively. Then, we show di�erent phases of the interoperability process. Following,
we exhibit some existing approaches classi�ed into two subgroups. The �rst subgroup uses
a centralised structure like dictionaries and/or repositories containing information about
the objects that are exported by the components. The second subgroup does not make
use of any centralised structure. Finally, we present a conclusion with some outstanding
problems.

17

EXTERNAL

SCHEMA 1
EXTERNAL EXTERNAL

SCHEMA 2 SCHEMA n

CONCEPTUAL SCHEMA

INTERNAL SCHEMA

Export Level

Conceptual Level

Internal Level

External/Conceptual Mapping

Conceptual/Internal Mapping

Figure 2.2: ANSI/SPARC three-Level schema architecture

2.3.1 Initial Architectures

We present a general description of some architectures and methodologies that are used
in distributed database systems. These architectures are applied by certain commer-
cial and prototype systems to solve the problem of interoperability among heterogeneous
databases. For historical, informative and comparative reasons the standard three-level
schema architecture for centralised database systems (ANSI/SPARC Study Group Data
Base Management System) [28, 106] is also reviewed.

ANSI/SPARC Three-Level Architecture

This architecture is divided into three general levels: external, conceptual and internal as
shown in �gure 2.2.

External Level: Is concerned with the way that the data is viewed by individual users.
The subset of the database that may be accessed by a user or a class of users is
described by an external schema.

Conceptual Level: Consists of objects that provide a conceptual or logical-level de-
scription of the database. It is described by a conceptual schema consisting of
conceptual or logical data structures and the relationships among these structures.

Internal Level: Is concerned with the way that the data is stored. It contains physical
characteristics of the logical data structures in the conceptual level and is described
by an internal schema.

According to �gure 2.2 there are two levels of mappings de�ning the correspondence
between the objects of the external and the conceptual schema and between the objects
of the conceptual and the internal schema.

18

External

Schema
External
Schema

External

Schema

Federated
Schema

Federated

Schema

Export

Schema

Export

Schema

Export

Schema

Component

Schema

Component

Schema

Local

Schema

Local

Schema

Component

Database

Componet

Database

. . .

. . .

. . .

. . .

. . .

Figure 2.3: Five-Level schema architecture

Five-Level Schema Architecture

Sheth and Larson [91] proposed a �ve-level schema architecture for describing the archi-
tecture of a database system that is distributed, heterogeneous and autonomous5. This
architecture is an extension of the three-level architecture as shown in �gure 2.3 and
�gure 2.4 and includes the following.

Local Schema: Is the conceptual schema of a component database system and it is
expressed in the same native data model of the component, that is, di�erent local
schemas may be expressed in di�erent data models.

Component Schema: Is the result of the translation of a local schema into a common
data model previously chosen; this translation is done by the transforming processor.

Export Schema: Represents the subset of a component schema that is available to
the federation and its users. Notice that not all data of a component are available.
The �ltering processor is used to provide the access control and to limit the set of
operations that can be submitted on the corresponding component schema.

Federated Schema: Is the integration of multiple export schemas and includes the
information of data distribution that is generated when integrating export schemas6.
It is possible to have multiple federated schemas in a system, one for each class of
federation users (a group of users and/or applications performing a related set of
activities). To transform commands from the federated schema into one or more
export schemas, the architecture uses the constructing processor.

5For Sheth and Larson [91] a distributed, heterogeneous and autonomous database system was called
as federated database system.

6There are systems that use a separate schema to contain these information called distribution schema

or allocation schema.

19

External Schema

Filtering Processor

Federated Schema

Constructing Processor

Export Schema

Filtering Processor

Component Schema

Transforming Processor

Local Schema

Component Database

External Schema

Filtering Processor

Federated Schema

Constructing Processor

Export Schema

Filtering Processor

Component Schema

Transforming Processor

Local Schema

Component Database

External Schema

Filtering Processor

Federated Schema

Constructing Processor

Export Schema

Filtering Processor

Component Schema

Transforming Processor

Local Schema

Component Database

.

.

Figure 2.4: System architecute of the �ve-level schema

External Schema: De�nes a schema for a user, or application, or a class of users
and applications. A �ltering processor is used to analyse the commands on an
external schema and to ensure their conformance with access control and integrity
constraints of the federated schema. When the external and the federated schemas
present di�erent data models it is necessary to use the transforming processor to
transform commands between these schemas.

The federated, export and component schemas must be represented using the same
data model named canonical or common data model, previously chosen. All of their
commands must be expressed using an internal command language (see subsubsection
2.1.2). Thereby, this architecture poses the problem of choosing a common data model
and an internal command language that are suitable for the federation. The component
schema contains unnecessary translated information since it comprises all the local schema
in a canonical data model. Generally, only part of this schema is available to the federation
and users. Another drawback is the integration of schemas in the federated schema level,
even when these schemas are represented in the same data model, because of possible
semantic and syntactic di�erences. Notice that in the �ve-level schema architecture the
export and federated schemas avoid the access of a certain data by unauthorised users,
guaranteeing more privacy and con�dentiality on the system.

Sheth and Larson [91] outlined the possibility of redundancies in this �ve-level schema
architecture (notice that the local, component and export schemas embody the same
information). Therefore, various alternative architectures can be derived from the �ve-
level schema architecture by adding or removing some basic components.

20

Federated Database Architecture

Hammer and McLeod [44] proposed the notion of a federated database that is a loosely
coupled set of component databases. Heimbigner and Mcleod [48] extended this principle
to the notion of a loosely coupled database without a global schema. The federated
architecture was initially proposed for a federation of databases using the same data
model (object-oriented). However, it is possible to apply it for a heterogeneous federation
(translating the original database schemas in schemas described in the object-oriented
data model). The key points in a federated approach are autonomy and cooperation
in interdatabase sharing. It is important to remain that federated database approach
appeared to provide a better alternative to the global integration approach (see subsection
2.2) and was not designed to address the issue of large multidatabases [7].

The federated database model used in [48] is based on three basic data modelling
primitives: objects, corresponding to some entity or concept of the real world; types, that
are time-varying collections of objects sharing common properties; and maps, \functions"
that map objects from some domain type to sets of objects in the power set of some
range type (e.g., a map where the value of all objects in the domain type has cardinality
between zero and eight).

In the federated architecture the basic elements are components which represent indi-
vidual information systems that desire to share and exchange information. It is possible
to have any number of these components in the federation. A component may be viewed
as an autonomous database and has three schemas: private, export and import, as shown
in �gure 2.5.

Private Schema: Describes the portion of data of a component that is local to the
component. This portion of the schema and the data that it describes correspond to
a normal database in a nonfederated environment. It also contains some information
and transactions relevant to the participation of the component in the federation
as: descriptive information about the component, primitive operations for data
manipulation, and the import and export schemas.

Export Schema: Speci�es the information that a component is willing to share with
other components of the federation, that is, the information to be exported to
other components. It is a metaschema consisting of a set of types and maps in the
component schema that contains the de�nitions of types and maps that are to be
exported.

Import Schema7: Speci�es the information that a component desires to use from other
components grouping data from several export schemas. After the importation of
some types and maps a component can restructure this information to adapt for
its purposes. This restructure is made by the derivation operators that manipulate
de�nitions of types and maps to produce new ones.

Each federation has a single distinguished component named federal dictionary that
contains information about the federation itself and describes available data items and
services in the federation. Thus, the di�erence between the federal dictionary and any

7This concept is similar to the federated schema of the �ve-level architecture [91].

21

other component is the database that it contains. The federal dictionary does not medi-
ate communications among other components and has no direct control over them. As
denoted by Milliner and Papazoglou [74, 75], in a large unstructured network of data dic-
tionary it is very di�cult to locate the desire information. When the federation contains
a large number of components, the use of the federal dictionary is a performance bottle-
neck. In a centralised structure like the federal dictionary it is also necessary to resolve the
problem of failures and to permit an easy way of making updates. Notice that with the
dictionary any component willing to participate in the federation has to share data and
this data can be accessed by any other component. Hence, it is not possible to guarantee
privacy and con�dentiality of the information without using special strategies. It is also
impractical to allow a component to participate in the federation only interrogating the
other components, that is, without having to share any data.

In the federated architecture the process of accessing a data from another component
is executed in several steps. First, a component consults the federal dictionary to discover
about existing databases and schemas. Second, it contacts those components, examines
their export schemas and starts the \importation process". During the importation phase
the federated architecture uses a mechanism of negotiation to coordinate the sharing of
information between two components. The negotiation is a multistep, distributed dialogue
among two components that establishes the right to access some data elements (a kind
of contract). The importation of a type or map is a separate process from the process of
accessing a data. The type (map) is imported once and introduced in the import schema
of the importing database. The accesses to the contents of that type (map) are carried
out directly without any negotiation. Notice that during the importation, the importing
database has to understand and comprehend the imported schema. This is di�cult in
an environment formed by heterogeneous databases, where the importation may force
translations of the imported schema.

A drawback in the federated architecture is that it does not have the concept of
interdatabase dependencies between the export schemas. That is, consistency constraints
among data of two or more di�erent components. In this case, to achieve the interdatabase
dependencies we suggest the addition of an extra element (component) to the architecture,
containing this information. Another di�culty in this architecture is related to the unit
of data sharing that in this case is the schema. The components of the federation record
their export schemas in the federal dictionary. As outlined in [7] the databases have
to show all information they export to the whole federation violating the autonomy and
privacy, and the importing databases have to understand the organisation of the imported
schema. Notice that in the �ve-level schema architecture the unit of data sharing is also
the schema. However, the export and federated schemas avoid the problem of showing all
the information that a component export to the whole federation.

Multidatabase Architecture

The multidatabase architecture proposed by Litwin et al. [69, 71] extends the ANSI/SPARC
architecture as can be seen in �gure 2.6. The architecture is divided into the following
levels.

Internal Level: This level contains the existing databases, each with its physical schema
(PSi), 1 � i � n, where n is the number of existing databases.

22

Import

Schema

Import

Schema

Export

Schema

/Export Schema Export Schema/

Private Schema Private Schema

Private

Schema

Federal

Dictionary

Figure 2.5: Federated database architecture

Conceptual Multidatabase Level: This level contains the conceptual schema (CSi) of
the database willing to cooperate. This schemamay be the actual conceptual schema
or a local external schema. In the latter case, the actual conceptual schema is called
an internal logical schema (ISi). The conceptual schema may support di�erent
data models and may hide private data. Unlike the federated architecture, it is
possible to have de�nitions of dependencies between sub-collections of databases.
These dependencies are expressed as dependency schemas (DSi) consisting of the
only tool to preserve the consistency of data in di�erent databases (note that in
this architecture we have the absence of a global schema). Generally, the schema in
this level are represented in a common data model. Thus, the problem of choosing
a suitable data model to be used as a common one persists8.

External Level: This level contains the construction of external schemas (ESi), that
are mono or multidatabase schemas, presented as a collection of databases inte-
grated as a single one. A database may participate in di�erent external schemas
and be manipulated locally. When the appropriate interdatabase dependencies are
not enforced it is not possible to guarantee the consistency of data from di�erent
databases presented as a single database, since there is not a global schema in the
architecture.

The access of the multiple databases is performed directly at the multidatabase level,
using a multidatabase universal language or common language), or through an external
view, using either a multidatabase language or a (local) database language, in the case that
the external schema de�nes a single database. The multidatabase language must allow the

8In [71] the authors suggested the use of the relational data model to be used as a common model
since it contains a nonprocedural manipulation language.

23

DS DSi j

External Level

Conceptual

Multidatabase

Level

Internal Level

ES n2ES n1ES 1

CS 1
CS

2 CS n

IS IS n2

PS 1 PS 2 PS n

. . .

. . .

. . .

. . .

Figure 2.6: Multidatabases schema architecture

users to de�ne and manipulate a collection of autonomous databases in a nonprocedural
way. In [68, 69, 71] they assume that a set of databases becomes a multidatabase only
when a multidatabase language is provided.

Unlike distributed databases, in the multidatabase architecture we can have the dis-
tinction between the notion of database and site. The former is a logical collection of data
bearing a semantically meaningful name; the latter is a distinct physical network node at
which some number of databases reside.

Litwin et al. [71] compared the federated architecture with the multidatabase one and
a�rmed that they are very similar. An import schema corresponds to an external schema,
a private schema corresponds to either the internal schema or the conceptual schema at
the multidatabase level, and an export schema could be equivalent to a conceptual schema
at the multidatabase level. In our opinion the federated and multidatabase architectures
di�er in the sense that the multidatabase architecture does not make distinctions between
the public (shared) and private data. In the federated architecture the public data is
described in the export schema. In the multidatabase architecture the public data is
speci�ed in the conceptual schema (or internal local schema) which also describes all
the private data of a component. We believe that this distinction is very important.
It avoids the access of not allowed data and the necessity of using di�erent ways to
make distinctions between the public and the private data (using the data manipulation
language, for instance).

The multidatabase architecture does not contain mechanism of negotiation to coordi-
nate the sharing of information. It permits users and/or applications to access the data of
the di�erent databases either directly or using an external view, formed by the integration
of di�erent parts of distinct databases (external schema). Notice that the construction of
the external schemas forces the resolution of semantic and syntactic conicts during the
integration of some schemas.

24

Conclusion

In this subsection we presented some architectures and methodologies proposed to permit
the access and manipulation of heterogeneous, autonomous databases, without performing
a global integration of these databases. In subsection 2.3.5 we exhibit other existing
approaches. However, even having some advantageous aspects and good features, these
architectures contain some reminding problems outlined below.

The �ve-level and multidatabase architectures have the problem of choosing and using
a canonical data model. Notice that this problem does not appear explicit in the federation
architecture, since it was initially proposed for a federation of databases using the same
data model. However, when this architecture is applied to databases containing di�erent
data models it is necessary to use a common data model to describe the export and import
schemas. The distinction between the shared data (public) and the private data is very
signi�cant to guarantee privacy of the data. Therefore, it is necessary to be careful on
the type and the way that the data is shared. It is important to avoid a component to
show all of its exported information to all components of the federation compromising the
privacy of its data. the approaches applied to manipulate heterogeneous databases should
not allow the use of centralised structures as dictionaries and repositorious, containing
global information about the involved components. They guarantee the interdatabase
dependencies in order to preserve the consistency of data in di�erent components. Other
question that these architectures do not solve is related to the fact of preventing the access
of a certain data by the same component more than one time, generating a great amount
of tra�c in the system. That is, the lack of \cache structures" containing data frequently
accessed.

In an environment of di�erent autonomous databases independently created and ad-
ministered it is necessary to have semantic related to the data. Since the existing data
models are not rich enough in semantic it is essential to �nd a way of representing this
semantic. Notice that the present architectures do not mention anything about this prob-
lem.

2.3.2 Direct Interoperability

The direct interoperability between autonomous heterogeneous databases consists in the
direct mapping (translation) among the components, as assigned in �gure 2.7. The task of
direct mapping two di�erent databases may be extremely complex or sometimes impossi-
ble, specially when one of the components is semantically more expressive then the other
one. Another problem is related to the high number of transformators and translators of
schemas, where in this case can grow with the square of the number of di�erent types of
data models existing in the federation (O(n2)).

2.3.3 Indirect Interoperability

When applying this strategy di�erent and multiple autonomous heterogeneous databases
are manipulated and managed by the use of an intermediate (canonical) data model
and data manipulation language. The canonical data model is used to represent other
models, bridge the gap between local models, detect interdatabase semantic relationships
and achieve interoperability. The original schemas of the components are converted into

25

1DB 2
DB

3
DB DB

n

Figure 2.7: Direct interoperability of components

DB DB

DBDB

1 2

3 n

C D M

Figure 2.8: Indirect interoperability using canonical data model (CDM)

schemas in the canonical data model originating a certain homogenisation. This process
is called schema transformation or generation [51]. Hsiao [51] declared that the capability
of having various database schemas in di�erent data models for the same database system
is important for data sharing. However, he a�rmed that it is not possible to access and
manipulate a database, via a new schema, in a data model di�erent from the original
one. Associated with the new data model of this schema there is a data language and
the database system has to be able to understand the semantic of this language. Hence,
it is necessary to have transaction translations, that is, a transaction written in the data
language of the new data model is translated into an equivalent transaction in the original
data language.

The approach is executed in two steps. The �rst phase is related to the transformation
(mapping) of a source database schema in one data model into a database schema in the
common data model, and to the translation of transaction written in the source data
language into transaction in the common data language. The second phase lies on the
translations of schemas and transactions in the common data model and data language
into equivalent schemas and transactions in the target (remote) database schema and
language, respectively. The process must guarantee that the output schema is a valid
schema for the target database. Figure 2.8 presents this situation. Notice that the
intermediate data model is conceptual and virtual. There is no database related to the
intermediate data model. In [54, 55], Johannesson proposed a method for translating
schemas in the context of a logic based modelling approach. In particular, the proposed
method executes transformations from relational schemas to conceptual schemas.

With an intermediate data model/data manipulation language, the number of schema

26

transformators and language translators is linear with the heterogeneity of the federa-
tion. For n di�erent types of data models in the federation, 2n transformators and 2n
translators (O(n)) are necessary. Notice that this approach permits the inclusion of any
database containing new data model and data language. The addition of new data models
and languages into the federation causes only the generation of new transformators and
translators between the data model and language of the new database and the canonical
one, and vice-versa.

The problem of resolving semantic and syntactic conicts during the mappings is also
presented. It is not possible to guarantee consistency when the architecture does not
contain an appropriate method to delineate interdatabase dependencies (see subsection
2.4). The use of a canonical data model (language) may produce a situation where two
di�erent components of the federation, DB1 and DB2 for example, want to share data and
both of them are speci�ed in the same data model. In this case, the mappings between
the data models of DB1 and DB2, and the intermediate data model generate unnecessary
work.

Unlike the global integration approach, when using a canonical data model is possible
to maintain much of the autonomy of the heterogeneous databases of the federation. Hsiao
[50] mentioned that despite the linear number of transformators and translators, this ap-
proach is also important to the speci�cation and validation of the access and concurrency
controls. To perform speci�cation, the schemas and transaction in the intermediate data
model and language, respectively, are translated into schemas and transaction in the local
data models and language of a local database. Then, to execute validation, the access and
concurrency control mechanisms of the local database must check the translated speci�ca-
tion against data in the system. Therefore, the autonomy of each component is guaranteed
by the local access and control mechanisms. However, for concurrent accesses to databases
that are in di�erent places it may be necessary to specify, in the canonical data model,
which are the integrity constraints, application speci�cations and security requirements.
Otherwise, the system cannot guarantee reliability and deadlock free accesses.

We believe that the best concept is to use both the direct and indirect interoperability
approaches interchangeable. That is, use a canonical data model/data manipulation lan-
guage to intermediate operations between databases having di�erent data models (data
manipulation language). On situations where the interoperation has to be done between
databases containing the same data model (data language), we allow them to interoperate
directly without making unnecessary work. This is a good approach since it avoids the
problems of having a high number of translators and transformations, avoids di�erences in
semantic expressiveness of the data models and unnecessary translations, and guarantees
the maintenance of the components autonomy. Nevertheless, the problem of choosing a
suitable canonical data model/data manipulation language remains (engineering task, see
subsubsection 2.1.2).

Use of Metamodel

Instead of using an existing commercial data model as a canonical data model, some
approaches use a metamodel9 to execute this task.

Atzeni and Torlone [4] proposed a metamodel which is a framework for the de�nition of
di�erent data models and for the management of translations of schemas from one model

9A metamodels is a formalism for the de�nition of models.

27

to another. This approach does not cover all of the possible models, but covers all of
the widely used conceptual models and can be extended to be applied for other models10.
The idea consists in reducing the constructs of the conceptual models to few categories as:
lexical, types, abstract types, aggregations, grouping constructs, functions, generalisations,
allowing a model to be de�ned with respect to these metaconstructs. Notice that if a model
with a completely new construct is proposed this construct can be easily introduced into
the metamodel. The de�nition of a model with respect to the metaconstructs is done by
a language named model de�nition language (MDL). The de�nition of a model by MDL
generates a schema de�nition language (SDL).

After de�ning two di�erent models by means of the metamodel it is necessary to
permit the transformation of schemas in these two models. It is assumed that there is
an intermediate \supermodel" which involves a construct for each metaconstruct in the
metamodel. Thus, the transformation process is executed in two steps via the \super-
model". The process must guarantee validation, that is, the output schema has to be
a valid schema for the target database. Other requirement is the preservation of equiv-
alence, although there is no accepted de�nition of equivalence and some problems may
appear independently of the notion of equivalence assumed. For instance, some of these
problems can be the loss of information, when the data model of the source component
allows a �ner representation of features than the data model of the target database; or
degradation, when it is possible to have two equivalent schemas, but these schemas do
not represent the same semantics. The authors a�rm that since it is very di�cult to
�nd general automatic transformations that work in every case, part of the process has
to be speci�ed by a specialist called model engineer. The model engineer has to specify
a transformation for each aspect of metaconstruct for which the model being de�ned has
no construct. This work can be supported by a set of prede�ned functions implementing
the standard transformations between the basic constructs.

On the other hand, Papazoglou et al. [82] a�rmed that the use of a canonical data
model to achieve interoperability su�er from two drawbacks. The �rst drawback is the
assumption that di�erent data models can be mapped directly into a central more expres-
sive data model. The second problem is related to the impossibility of using the canonical
data model for incremental transformations. That is, the translation of a query from a
source to a target model requires the existence of an entire equivalent canonical schema
for both databases. Thus, to avoid the complex task of choosing a suitable canonical
data model and the existence of an entire canonical schema for the involved databases,
the authors proposed the use of an intermediate meta-model as a generic technique for
translations between diverse data models.

The propose approach is based on the fact that the intermediate meta-model is able
to capture and describe typical constructs (elements of models) that are found in conven-
tional data models in a generic format. This allows a data model to be de�ned in terms
of these meta-constructs (elements of metamodels). In their approach the intermediate
metamodel views a meta-model as a collection of high-level abstractions (metaclasses) and
a schema as an instantiation of the abstract constructs. An instance of the intermediate
metamodel is known as an intermediate schema meta-graph or ISMG11.

10In [4] the authors do not want to solve the whole problem, but want to show the feasibility of the
approach.

11It is worth mention that this approach has some similarities with the idea proposed by Gangopadhyay
and Barsalon [42], even not having the same goal. In [42] the syntax and semantics of data models,

28

The transformation of schemas into a collection of populated ISMG meta-classes is
performed in three steps. The �rst step consists in the enrichment of given schemas
to guarantee semantic consistency. In the second step, the enriched schemas are passed
through a class library that together with some generation rules generates the ISMG meta-
classes. On the third step, the ISMG descriptions of two di�erent schemas generated in
the second step are compared and mapped into each other by applying transformation
rules. The generation and transformation rules speci�ed in [82] are for the relational and
object-oriented data models.

Therefore, whenever a query made in one component (source) has to use any other
di�erent component of the federation (target) it is necessary to identify the partition of
the source ISMG related to the query, called query graph (QG). Then, the QG together
with the query are sent to the target database. Notice that the authors assumed that the
target component is previously known. When the QG and the query arrive in the target
component the QG is superimposed on the ISMG of the remote component to identify
the di�erences between them. After the identi�cation of the di�erences the system uses
transformation rules to convert the query graph into a form that most closely semantically
matches the target ISMG. In the next step the received query is translated into a form
that makes it executable at the (target) component. When the execution is concluded
the results of the query are sent (returned) to the source database.

In our opinion the idea of using either a canonical data model or an intermediate meta-
model is actually to achieve the same purpose, that is, interoperability of heterogeneous
databases using an intermediate framework to execute transformations and translations.
The use of an intermediate meta model only avoids the hard task of chosen an existing
data model suitable for the role of a canonical model. Notice that in the approach pro-
posed in [82], instead of having an entire canonical schema for each involved database the
approach has the ISMG. We believe that in a federation of heterogeneous databases it is
important to have an intermediate structure (data model) to facilitate the transforma-
tions and translations. However, the choice of which model to be used depends on the
heterogeneity of the system, i.e., on the kind of data models that are trying to interoperate
(engineering task). One approach to avoid the problem of translations is to use the idea
of maintaining a copy of the di�erent schemas to be shared in the canonical data model
previously chose.

2.3.4 Phases of the Interoperability Process

Hammer and Mcleod [45] divided the interoperability process into three subtasks (phases)
that can be executed during di�erent operational phases, outlined below:

1. Resource discovery and identi�cation:

This �rst phase is also known as information discovery. It consists in locating and
identifying information in the other components of the federation that is relevant,
identical, similar, or related to the requested data. Sheth [92] a�rmed that in the
future the primary issue will not be how to e�ciently process the data that is known
to be relevant, but to determine which data is relevant and where it is located. The

schemas and databases can be uniformly described by the use of a metalevel system called M(D)M. The
data modelling constructs are mapped to this formal common metamodel which formalises the syntax
and the semantics of the constructs as a collection of second-order logic formulae.

29

great majority of the approaches related to the resource discovery are based on
the idea of using a federal dictionary or repository containing the exported data
[15, 16, 45, 46, 110]. They assume that complete descriptions are speci�ed a priori
and do not normally change. However, this is not what happens in a federation of
numerous databases (components).

2. Resolution of semantic heterogeneity:

After identifying the remote information suitable for a certain request it is necessary
to detect and resolve some conicts that may exist between the local and non-local
information. Thus, the basic problem consists in determining the relationship that
exists between a remote and local object. To compare these objects it is necessary
to use the notion of equivalence and similarities (see subsubsection 2.1.1).

3. Uni�cation of remote and local data:

The third and last phase consists in the importation of the foreign information into
the local component, as natural as possible. However, this uni�cation task is not
simple and in some cases the local component has to be restructured to guarantee the
completeness, minimality and understandability of the �nal result (see subsubsection
2.1.3). During the importation of the remote data it is possible that some structural
conicts appear, forcing their resolution.

2.3.5 Other Approaches

We present below some of the existing approaches that permit interoperability in hetero-
geneous databases. Some of these approaches are derived from the initial architectures
presented in subsubsection 2.3.1. We divide these approaches into centralised and de-
centralised, based on the existence of a central structure to help with the information
discovery and relationship identi�cation processes.

Centralised

This group of approaches [15, 16, 37, 38, 45, 46, 110, 111] uses a centralised structure, such
as a dictionary or repository, containing information about the objects that are exported
by the components of a federation (shared data) and the location of those objects12.
A centralised structure is not suitable for a system where a component can often join,
leave and change their speci�cations, since these tasks generate too many updates. Other
problems are related to the performance bottleneck that may exist when a great number
of components access the centralised structure, to the failures that can occur in this
structure, and to the fact that not all sites want to advertise their data to everyone. Notice
that when an information (shared data) is introduced into a dictionary or repository it
can be used by all components that access these structures not guaranteeing privacy and
con�dentiality. With a centralised structure it is also di�cult to allow a component to
participate in the system without sharing data, i.e., only interrogating other databases.
We present below some architectures that can be classi�ed in this group.

1. Remote-Exchange

12The federated architecture [48] is also classi�ed in this group.

30

In the Remote-Exchange system [37, 38, 45, 46] the discovery of the appropriate
remote data relevant to the request of a component is performed by a special com-
ponent, named sharing advisor. It uses a centralised structure called semantic dic-
tionary containing knowledge about the objects that are exported by the components
of the federation (shared data). The semantic dictionary is accessed by the sharing
advisor. It represents a dynamic federated knowledge base about shared information
in the federation. The sharing advisor also uses sharing heuristics that allow it to
identify whether either the meaning of a type object being registered can be deter-
mined based upon its properties or it is necessary additional assistance from users.
Thus, whenever a component inquires for a certain information the sharing advisor
uses the information of the semantic dictionary and a set of heuristic rules to iden-
tify the concepts that it considers to be relevant. The approach uses a functional
object database model called Minimal Object Data Model (MODM) to describe the
shared data (structure, constraints and operations).

When a database is registered into the system this (new) component informs the
sharing advisor about the data that it is willing to share with the other components.
Notice that in this case the shared data of a component is available to the whole
federation, violating the privacy and con�dentiality of certain data. It also does not
allow a component to participate in the system only interrogating the other com-
ponents. In the semantic dictionary the information are represented by a hierarchy.
In this hierarchy similar types are classi�ed into a collection called concepts and
subcollections called subconcepts. However, the relationships express in this concept
hierarchy are only approximations of the true, they do not express strong relation-
ships. Thereby, they ask for mechanisms that provide more exact relationships and
human help.

Hammer et al. [46] classi�ed 3 basic kinds of discovery requests combined allow
a component to identify non-local information: similar concepts, complementary
information and overlapping information.

The sharing advisor uses some techniques to access remote data such as: (a) se-
mantic and behavioral equivalence, used to identify semantically related objects;
(b) constraints analysis, where the knowledge of constraints about remote objects
suggests their relevance and relationships among local objects; (c) probabilistic ap-
proach, where a probability index is assign to each object reecting the probability
that the object is relevant to the requested information; (d) user feedback data, the
user return a feedback data for each retrieved information based on the relevance
of the information with respect to the query; (e) heuristics, some rules used to help
with the identi�cation of semantically similar objects that can be incremented due
to the feedback of data from users; (f) machine learning techniques, which can be
applied based on heuristics and the feedback data of the user, causing the advisor
to identify semantically similar objects more accurately.

Hammer et al. [45, 46] proposed the use of a combination of several di�erent struc-
tures to resolve the problem of conict resolution . The �rst idea is to use meta-
functions that return meta-data information about the remote data. The meta-
functions contain all the information about the structure of a type object. Instead
of encapsulating behaviour they encapsulate the structure of a type object. The
second aspect is related to the use of a local lexicon, for each component, contain-

31

ing semantic information (precise meaning) about the shared data exported by this
component. This information is represented in a uniform way as a static collec-
tion of facts. The local terms are described by concepts, presented in a dynamic
list that contains common concepts of the federation, related through a set of pre-
de�ned relationship descriptors. The authors a�rmed that since interoperability
only make sense among components that model similar or related information, it is
reasonable to expect a common understanding of a minimal set of concepts taken
from the application domain. However, we believe that the current goal is to permit
interoperation between databases that do not necessary have similar or common in-
formation. Thus, this idea is not suitable for the case where, for instance, a user from
a database containing information about university wants to discover the address
of a certain restaurant in the city of London. The third structure is the semantic
dictionary that maintains partial knowledge about the relationships of all terms in
the local lexicons of the federation. In some sense it complements the local lexicons,
since these structures contain only semantic information and do not have knowledge
about the relationships of their objects. The strategy of execution is characterised
by performing the majority of the user inputs before the resolution step and not
during this step.

The Remote-Exchange system can be considered as a variation of the federated
architecture [48] (see subsubsection 2.3.1). It makes the distinction between the
private and shared data and uses a centralised semantic dictionary with similar
roles to the federated dictionary.

We believe that despite of the problems related to the use of a centralised structure to
perform the information discovery process the approach contains drawbacks related
to the conict resolution. Sometimes the conicts cannot be resolved automatically
and ask for user help. The idea of using a structure for each component with seman-
tic information about the shared data is feasible. However, it is necessary to specify
a way of representing and accessing this information. Other weaknesses are related
to the lack of strong relationships in the contents of the semantic dictionary and to
the maintenance of this structure in a dynamic environment, with a large number of
components. Notice that the use of a sharing advisor trying to \coordinate" some of
the interoperation steps can become impractical for a large number of components.
In this case it is necessary a good concurrency control protocol.

In the Remote-Exchange system, di�erent cases were considered in details to allow
the execution of the uni�cation phase in [37, 45]. Depending on the situation, the
idea is to either add a new class related to the new data being imported or create
a superclass adding necessary attributes.

2. InHead

The InHead (Intelligent Heterogeneous Autonomous Database Architecture) pro-
posed by Weishar and Kerschberg [110, 111] incorporates an object-oriented Knowl-
edge/Data Model (KDM). The KDM integrates Arti�cial Intelligence problem-
solving techniques and advanced semantic data modelling techniques.

The idea is to construct object-oriented domain models and an overall domain model.
The domain models are representations of data and knowledge of the constituent
databases. The overall domain model contains semantic relationships among the

32

objects of those domain models. The domain models are represented as Knowledge
Sources (KSs) in a blackboard architecture13. They have global and local domain
expertise and are comparable to the local schema. The KSs work together providing
users with simultaneous, multiple viewpoints of the system. The overall domain
model is a global thesaurus KS executing the same role of a data dictionary.

The part of the local KS that is used by other components (shared data of a
database) comprises object structure, relationships, constraints, operations and
rules that are encapsulated into an abstract object type called Data/Knowledge
Packets. Thus, not only object structure semantics are exported (shared), but also
object operational semantics. The components of the federation remain the same
and the data/knowledge packets with the local domain model can be used to resolve
semantic problems at the local level, before sending a query to the global knowledge
source. For instance, suppose the situation where there are two di�erent databases
having the same attribute \price", but in one of them the \price" includes VAT
and in the other it does not. Thus, to resolve this situation, it is possible to use a
local domain KS together with a data/knowledge packet specifying the meaning of
\price".

The propose architecture provides a natural way for knowledge discovery and solving
problems cooperatively. This natural way consists in allowing the knowledge sources
to share the information in their data/knowledge packets with other KSs, on one or
many blackboards.

The InHead global thesaurus KS addresses semantic heterogeneity issues to data
items. These data items are similarly named, related, subclass and/or superclass of
data items located elsewhere within the federation. It also actively works with users
to reformulate queries. The thesaurus acts as a repository of knowledge of data-item
terms and of their usage, and as an active participant in formulating improved query
speci�cation (provides global data-item de�nitions and locations).

Whenever a query is performed the system consults the global thesaurus using
another element called controller. If the solution to the query is obvious, the con-
troller sends it to the appropriate components of the federation. Otherwise, the
controller sends the query to the blackboard where the KSs try, cooperatively, to
�nd a solution to resolve the semantic ambiguities of the query. Whenever a solu-
tion cannot be found (the system cannot resolve semantic ambiguity), the user is
consulted to clarify and resolve the problem. Notice that this approach is similar to
the Remote-Exchange system. Both approaches use a central structure containing
the relationships between the data in the federation and local structures possessing
semantic information about the shared data of components. The controller is also
responsible to conduct the necessary query translation and optimisation, to send the
query to the components, to integrate the query results and to provide the answer to
the user. In [110, 111] the authors do not give details of how the semantic conicts
are resolved and how the results are uni�ed, providing the answer to the user.

We a�rm that this approach su�ers from the same drawbacks presented in the
Remote-Exchange approach. When dealing with a dynamic environment contain-

13The blackboard framework is regarded by AI researchers as the most general and exible knowledge
system architecture and o�ers expert system programming techniques.

33

ing a great amount of components, it is di�cult to use a controller coordinating the
execution of the system and to update the global thesaurus. The idea of sharing
(exporting) not only object structure semantics, but also object operational seman-
tics is feasible. Each component is responsible to de�ne, organise and manipulate
with the semantic of their local data, preserving the autonomy of the components.
However, it is not clear how to represent and update this semantic information.

3. Summary Schema Model

Bright and Hurson [15] and Bright et al. [16] proposed the use of SSM (Summary
Schema Model) to provide automated support for identi�cation of semantically sim-
ilar data in a federation of autonomous, heterogeneous databases. The SSM uses
linguistic tools and information retrieval theory to build a global data structure
to achieve data discovery automatically. The semantic power of the SSM comes
from the linguistic knowledge represented in an on-line taxonomy, that combines
information found in dictionaries and thesaurus14. The DBA of each component
is responsible for linking local shared data to terms in the federated taxonomy.
That is, for each local term the DBA chooses the closest dictionary de�nition in the
taxonomy.

A summary schema is an abstract, concise description of the local shared data. The
summary schema retains most of the semantic contents of the shared data using
terms with broader meanings, called hypernym, instead of the original data.

In the SSM the components of the federation are structures in a hierarchy. Each
internal node contains a summary schema created from the schemas of its children,
maintains a copy of the taxonomy and has entries for speci�c word meanings. The
leaf nodes contain database schemas in the relational data model. So, the highest
level of the hierarchy contains summary schemas, representing all of the information
available in the federation in a concise way. The hierarchy is kept short, but bushy
(when the number of components is high). The authors a�rmed that even having a
global data structure (the hierarchy), the idea of using SSM is better then employing
a global schema integrating all of the components. The hierarchy is smaller than a
global schema and its creation and maintenance are partially automatic.

In SSM two terms that are semantically related have a path between them using
di�erent links in the taxonomy. To measure the semantic similarity of data the SSM
uses a Semantic-Distance Metric (SDM). The SDM is a weighted count of the links
in the path between two terms. Terms with few links separating them (small SDM
value) are similar and terms with many links (large SDM value) are less similar.

When an imprecise query is submitted to the system, that is a query describing data
in the own terms of the user, the SSM query processor takes the imprecise terms
and maps them to entries in the taxonomy. After the mapping, the system tries
to match these terms to terms that are semantically close in the local summary
schema, using speci�ed SDM value. When the terms cannot be matched locally,
the query processor moves to a higher level in the hierarchy trying to match these
terms. If a match is found, the terms are replaced by the shared data references of

14The authors used two taxonomies as bases for the SSM: the Roget's and the Webster's 7th New
Collegiate Dictionary. A comparison between these two taxonomies is presented in [15].

34

the local component represented in the matching summary schema. Otherwise, if
the terms cannot be matched in the highest level of the hierarchy, then there is no
matching available in the federation.

Besides the disadvantages that appear in a centralised structure this approach adds
the problem of �nding general terms (hypernym) to represent the local access terms.
It also has the complexity of the search space based on the complexity of the tax-
onomy structure.

Decentralised

In this second group, the approaches [7, 8, 9, 18, 35, 34, 74, 75, 81]15 are characterised by
not using a centralised structure containing the exported data. We present below some
of these approaches.

1. Global Concepts

Milliner and Papazoglou [74, 75] proposed a decentralised approach focused on the
step of inter-node relationship discovery, as opposed to the step of resource dis-
covery. They a�rmed that, in spite of the size and complexity of interoperable
databases, it is impractical to use a network-wide global directory and, to submit a
circumforaneous query that traverses the entire network to retrieve descriptions of
the requested data objects. Based on the idea that relationship information must be
\data-driven" and neither speci�ed nor explicit classi�ed, these authors proposed
an architecture for dynamic, incremental inter-node relationship formation.

The information about the relationships between remote nodes16 (seeding knowl-
edge) is stored in a special node, associated with each database node, called node
knowledge-base. This special node contains naming conventions and aliases, services
descriptor for invoking remote service, de�nitions of terms in the form of thesaurus,
and so on. This information is stored in the form of facts. The sharing and exchange
of information is achieved through a common minimal object-oriented data model,
describing the structures, constraints and operations of the shared data. The dis-
tributed information environment is based on a client/server-oriented multidatabase
(CSOMD) architecture, where each node contains an information broker able to ac-
cept client requests and locate the place where these requests can be executed.
To guarantee transparency in the process of the broker, the architecture contains,
for each node, other components such as repositories, directories and dictionaries.
These components provide information about identity and interfaces to allow the
location and execution of remote operations.

Milliner and Papazoglou proposed a high level \context abstraction" to maintain
the organisational autonomy of the nodes. The context abstraction de�nes objects
using Global Concepts (GCs). These GCs divide the Universe of Discourse (UoD)
into dynamic clusters of database nodes, based on areas of interest, causing reduction
in the search space. The databases are related to the GCs by link weights. Thus,
a database belonging to a cluster has a strong link to the GC that this cluster

15Some of these approaches were suggested to the problem of integrating many systems (not only
databases), which comprise the emerging �eld of Intelligent and Cooperative Information Systems (ICIS).

16In [74, 75] a node or database node may contain a collection of databases.

35

represents and can be referred to another GC with a weak link. In order to allow
a consistent degree of granularity, the system may allow a dynamic merging and
splitting of the GCs and updating of the link weights. Associations between nodes
and GCs in the node knowledge-base are represented in the form of weighted facts.

There are several phases of negotiation (node interaction) in the approach being
presented. The �rst phase consists in the formation of clusters or nodes based
around areas of interest (GCs). The second phase involves the search of the inter-
node relationship space (resource discovery) by search heuristics. Thus, when a
database needs to search an object it can start by looking �rst into the databases
that are strongly linked to the same GC that it belongs to. After this initial phase,
the search is executed using one or a combination of the heuristics explained below.

In the node based heuristic the search is performed based on the link weights with
which a node is related to the various clusters. That is, the search is executed in
the nodes of the clusters from the stronger to the weaker links.

In the concept based heuristic the search is accomplished using the GC's view of
node groupings (not the view of the node). Each GC has knowledge of nodes in all
clusters and the search is based upon the strength with which the various clusters
are linked to a GC (concept server).

The token based heuristic is characterised to have a number of nodes involved in the
organisation of the search. First, a node identi�es the closest cluster and explores
it. Then, the control of the search is not remained with the node or the related
GC. It is given to a node in the cluster that consults the GC with which it has its
second strongest link. So, the search is performed from node to node in a breadth
�rst manner. To avoid cycles (the exploration of a node for a second time), the
information of which node has been already explored is passed from node to node
along the search.

The other phases of negotiation include: (a) determining the access rights (restric-
tions) to remote node information, (b) delivery of integration/interoperability facts
that are stored in the knowledge-base, and (c) reviewing of the weights of the links
between a node and the GCs. A node can disseminates information either by broad-
casting its new fact to relevant node knowledge-bases, or contacting and interacting
with relevant nodes in a cluster in a background fashion. The original knowledge
for interoperation is provided by seeding knowledge, but grows as queries are being
processed, resulting in a dynamic assembly. The incorporation of facts may be per-
formed either automatically or semi-automatically. This depends on the existence
of su�cient local knowledge to resolve ambiguity.

In the propose approach there is a centralised initialisation phase where the databases
are registered, building the system. After this phase, the system \grows" by the
automatic merge and split of the existing global concepts and the update of link
weights. The updating of global concepts and link weights are executed by concept
server processes, running in some prede�ned nodes. A concept server process indi-
cates whether the number of nodes clustered around their GCs exceeds (falls below)
a speci�c value. In the splitting process, new groups based on node link weights are
determined and new concept servers created. The merging process is based on link
weights to locate the appropriate concept servers. Thus, the link weights assigned

36

during the initialisation phase is constantly updated. After the merging/splitting
process, messages are sent to update the concept server address and GC-node link
weight information, possible causing e�ort on communication. However, in [74, 75]
the authors do not specify how new databases are added into the system and how
existing components are removed. They assume for simplicity that all nodes in the
system are registered during initialisation, that is, there is neither addition of new
components nor remotion of existing components.

We a�rm that it is a composite task to maintain the update of the clusters and
the node knowledge-base, specially in the situation where a database is free to enter
or leave the federation whenever it wants to. It is suitable to apply the idea of
grouping databases, trying to make the universe of search smaller. In this case, the
search can be guided by the di�erent types of groups. Nevertheless, we believe that
the criterion of clustering based on the area of interest is not su�cient, due to the
fact that these groups may still have a great number of components. Notice that
for each di�erent query, containing a distinct area of interest, it forces the creation
of a new cluster. It is also necessary to specify criteria for the link weights, that is,
which values must be given and in which situation.

2. InterBase

The InterBase system [19, 34, 35] is a prototype developed at Purdue University
to integrate pre-existing systems in a distributed, autonomous and heterogeneous
environment. InterBase can be used to integrate not only database systems but also
non-database systems. It supports system level integration instead of logical level
integration like MERMAID [14, 91, 104], DATAPLEX [14, 26, 104], MULTIBASE
[14, 23, 91, 97, 104], MRDSM [14, 68, 69, 91].

In the system the user can either write global applications (global transactions), that
are translated to a uniform language called InterBase Parallel Language (IPL), or
write their queries directly in IPL. IPL permits Flex Transaction Model, where the
correct execution of a transaction is beyond the traditional either all or none exe-
cution. It also allows time constraints on subtransactions, improving the exibility
of subtransaction scheduling. The model admits that users decide which of its sub-
transactions (subtasks of a global application being executed) can be committed or
aborted in the �nal stage of a transaction.

The global transactions are sent to a Distributed Flexible Transaction Manager
(DFTM) that interprets and coordinates their execution over the entire system. For
each global transaction, DFTM generates an image of itself allowing various global
transactions to run concurrently. Each image disappears after the execution of the
related global transaction. The concurrency execution of the global transactions
is achieved by the Distributed Concurrency Controller (DCC). It determines the
global transactions that can be executed simultaneously and the transactions that
must wait until speci�c conditions are satis�ed. The DCC uses the theory of Quasi
Serializability17 because serializability is incompatible with the preservation of local
autonomy (see subsection 2.5). However, this theory de�nes a weaker consistency
criterion than the traditional serializability.

17Quasi Serializable schedule was proposed by W. Du and A. Elmagarmid (1989) and consists in
serializabling local transaction schedules and serially executing global transactions.

37

For each component of the system, named Local Software System (LSS), there is a
Remote System Interface (RSI) located between DFTM and LSS. The RSI translates
a command from DFTM into a format understandable by the LSS and sends it to
the LSS to be executed. Thereby, the autonomy of a LSS is preserved. Notice that
the interfaces between DFTM and RSIs are similar, and between RSIs and LSSs are
dissimilar. Each RSI coordinates the execution order of the subtransactions in the
LSS that interfaces with it.

RSI supports client/server model for LSSs, that is, LSSs can be treated as servers
that provide services for subtransaction. It consists of two components: RSI server
and RSI services. The RSI server receives requests from global applications to
execute their subtasks, interacts with these global applications to arrange a subtask
order and, based on this order, schedules the execution of the subtasks. The RSI
service is created by the server and implements the execution of a subtask. This
division permits subtasks of di�erent applications to be executed at the same time on
the same LSS (multipleRSI services created by the same server). The RSI server can
also run in di�erent platforms of its corresponding services and the system permits
some standardisation of RSI servers.

The system contains a RSI Directory. It provides users with location and distribu-
tion transparency of RSIs and necessary connection information to global applica-
tions.

The system allows decentralisation of the resource discovery by creating a copy
(image) of the RSI Directory and DFTM for each global transaction. Although
this approach avoids the problem of performance bottleneck, the creation of these
copies can be very expensive. On the other hand, all of the other problems that
appear when using a centralised structure (updates, failures of the structure, no
privacy of information, and so on) can be presented. The use of a uniform language
as IPL is not very useful since this can generate unnecessary work in translations
and retranslations of queries. In [19, 34, 35] it is neither clear and speci�ed how
DFTM divides a global transaction into subtransactions, nor how it identi�es which
LSSs are involved in the execution of this global transaction, nor how it deals with
the problem of resolving conicts and unifying the results of a global transaction.
Notice that InterBase approach does not distinguish the public data from private
data. It also does not specify semantic information related to the component data.

3. ICCS - Agents

In [81] Papazoglou et al. proposed an approach to the emerging �eld of Intelli-
gent and Cooperative Information Systems (ICCS), trying to solve the problem of
integrating heterogeneous information systems (ISs)18. That is, operating units (in-
formation sources) that are similar in functionality and goals, but di�er in design
and implementation. They a�rmed that to achieve interoperability and cooperation
it is necessary to resolve the problem of semantic heterogeneity. This is done by
allowing the ISs to contain sophisticated knowledge-based capabilities.

18Papazoglou et al. de�ned information system as a conglomerate of applications that implement the
necessary functions over a collection of data and knowledge. It consists of a conceptual schema. That
is, a formal description of the structure and semantics of the part of the universe represented by the
data/knowledge. In this part of the text we use IS interchangeable with components.

38

The goal of ICIS is to �nd a decentralised approach to the next generation infor-
mation systems. The approach should imply that knowledge, control and data are
logically and spatially distributed. The approach must have neither global control
nor global data storage. No component has a global view of the problem domain and
of the activities being performed in the system. To perform this goal they proposed
the use of a community of information agents. The information agents are the ISs
wrapped with a \skin", which make them \conversable" with each other, and allow
the automatically execution of a common task without human intervention. Thus,
equivalent to a logical front-end.

The information agents are organised in groups in terms of their subject areas19

and have two roles. In the �rst role, named retrieval expert, the agents help the
user to formulate the correct request, to �nd the appropriate information sources
and to retrieve the information from these sources. In the second role, named
knowledge-driven system, the agents maintain knowledge about the application do-
main, the structure and semantic of individual sources, the method of cooperation
(communication) between them, the translation methods required to homogeneize
heterogeneous data, and so on.

Due to the functions and capabilities of the information agents, it is necessary to
have a set of high-level modelling tools. This is performed by creating a common
knowledge-level model (KLM). The KLM must help with the homogenisation of the
ISs, must provide that knowledge and data are represented in a uni�ed representa-
tion schema, and must permit conditions to support inter-agent communication and
cooperation. Thus, a knowledge model of an agent is a collection of tools for describ-
ing data/knowledge properties, object relationships, domain semantics, inter- and
intra-object constraints and general means for inferencing. The KLM may be ma-
terialised by the use of object-oriented/knowledge-based technology. The complete
knowledge of an information agent can be modelled by the de�nition constructs of
the KLM. The de�nition part (schema) of the domain knowledge of an agent is rep-
resented as a hierarchy of knowledge-objects. The assertion and inferential parts are
represented through a set of rules embedded into the knowledge-objects. The agent
schemas developed in KLM describe not only data of the various systems, but also
the meaning or semantics of information, rules for their composition and semantics
of application domains. The requests for information are made in the KLM data
language. This forces the KLM queries to be translated into the speci�c model and
data language of an agent involved in the process.

Each information agent has a knowledge directory. The knowledge directory pro-
vides a decentralised way to locate the correct agents and contains the necessary
information to resolve a problem. Nevertheless, it seems that it is a complex task
to update and maintain the knowledge directories in a dynamic environment, where
components can join and leave the system constantly. The information agents con-
tain two types of knowledge: autoepistemic and epistemic. Autoepistemic consists of
the knowledge that a component has about its own capabilities. Epistemic refers to
meta-knowledge capabilities and behaviour of other components. Epistemic knowl-

19This idea of clustering the information agents by means of their subject areas seams to be similar
to the approach proposed by Milliner and Papazoglou [74, 75], where the components of a federation are
de�ned using Global Concepts.

39

edge is divided into group or cluster knowledge, and global knowledge. The group
knowledge consists of the information shared by a community of information agents
which is dynamically formed. The global knowledge consists of the information
that is not into the autoepistemic and group knowledge. It is less detailed than the
group knowledge. When a query cannot be handled by an information agent and
the agents in its group, the global knowledge is used to identify the information
agents that cooperate with the current agent.

When receiving a query an information agent may use its autoepistemic and epis-
temic knowledge to resolve it. It is assumed that an information agent has su�cient
knowledge, resources and capacity to divide a query into partial queries and to
match them with information resources of di�erent information agents. This pro-
cess is called task or problem decomposition and needs to be better detailed. It is not
speci�ed how the information agents use its knowledge, capacity and resources to
achieve this task. This also forces the requirement of su�cient knowledge, resources
and control in all the system to allow a good solution of the queries. Another process
related to the problem of resolving query is the negotiation. It consists in the se-
quence of committing each information agent to perform a series of problem-solving
actions. In the current approach the component that receives the query acts as
its manager (primary agent), using \contracting" information agents to resolve the
partial queries into which the original query was decomposed. Each partial query
corresponds to a single contracting agent that may act as master agent, having to
report back to the primary agent. So, master agents integrate the results produced
by its contractors forming a partial solution. The complete solution is formed by
the primary agent. In this case, we a�rm that there is the problem of de�ning how
di�erent subtasks are related to each other, requiring strategies for ordering sets of
subtasks and creating partial results.

The queries are decomposed into subqueries and negotiable queries. The subqueries
(negotiable queries) correspond to the tasks that are handled by components in
the same (outside the) cluster of the primary agent. The primary (master) agent
generates a plan which consists of the local organisation of commitments for the
agents involved in the computation. After the generation of the plan, each agent
is responsible for two kinds of commitments: shallow and deep commitment. These
commitments result in subqueries and negotiable queries, respectively and are re-
moved in the end of the plan.

The solution of a query can be performed by accessing other agents recursively,
forming a chain. These agents are chosen and speci�ed based on the autoepistemic
and epistemic knowledge. The approach of passing a query (or subqueries) to other
agents that can possible know where to �nd the correct information is suitable to
the discovery process. However, it can generates the problem of having a data of
a component accessible by all components in the system. There are cases where
a component wants to share its data only with a speci�c group of components in
the system, but not with all the other components. It is also necessary to use a
mechanism to avoid cycles.

4. FINDIT

40

In the PhD thesis of Bouguettaya [7] and in [8, 9, 10] a decentralised approach was
proposed to achieve interoperability among a large number of databases. It is a two-
level approach based on the idea of coalition20 (�rst level) and service (second level),
allowing databases to be grouped into tight and loose conglomerates. The goal is
to allow the databases to know dynamically what other databases contain. It is
performed by a proposed framework and system called FINDIT. The �rst prototype
for this approach is currently operational.

A coalition is a group of databases that share some common interest about an in-
formation type. A service is provided as a means to share minimal information
description. The services can be between two coalition, between two databases, and
between a coalition and a database. Notice that a database can simultaneously be
member of di�erent coalition and also a servicer. Coalition and services use single
information type as basic unit of sharing. They di�er from the federated architec-
ture [48] (see subsubsection 2.3.1), where the unit of data sharing is a whole schema
containing all information types. The databases organise themselves based on in-
formation interest and optionally in geographical proximity. A coalition involves an
arbitrary number of databases that share certain information type with all other
databases of the coalition. It provides more information with a relatively high over-
head. On the other hand, services provide less information with a less overhead.
The exchange of information in a service is directional, that is, two databases can
be entities of a service, but only one of them provides information to be shared. As
denoted in [7], unlike the federated [48] and the Remote-Exchange [37, 38, 45, 46]
approaches, the FINDIT architecture permits the distinction between components
that are participating (consulting), from the components that are sharing infor-
mation with other databases. That is, the use of coalition and services and the
non-existence of a centralised structure with the export schemas of the participants,
permit the presence of a component that only consults other components.

Each participating database contains an object-oriented co-database storing infor-
mation about coalition and services that it is involved on. The co-database is used
by a component to allow the users to know about the information that they may
have access to and about the database itself. A co-database contains subschemas
representing coalition and services. Each of these subschemas consists of classes.
These classes store descriptions of the databases that participate in those coalition
and services and of the type of information that they contain.

In the system, the answer of a query is executed in two phases. The �rst phase
consists in educating users about the space of information and �nding the target
databases that are most likely to have the type of information being searched. The
second phase consists in dynamically specifying and querying the actual information21.
The author assumed that only one information type may be requested within one
query.

The system uses information type name, structure, behaviour and graphical rep-
resentation to achieve the goal of the �rst phase. The framework makes use of a

20Database coalition has equivalent notion of political coalition presented in democracies, where a group
of people stay together based on some common objectives for a limited period of time.

21This phase was not focused in [7, 8].

41

special query language called TASSILI. It has constructs to educate users about the
space of information and formulate their queries. With TASSILI it is possible to
connect databases and to perform remote queries. It is a data de�nition and a data
manipulation language.

The resolution process of a query consists in the dynamic education of users about
the space of information and databases know the information that other databases
contain. It is performed interactively with the user who is responsible to clarify and
resolve any doubt of the system.

FINDIT uses a documentation for each information type to solve the problem of
understanding a foreign information in a di�erent component environment. The
documentation is shared with other components. It consists of a demonstration of
what an information type is and what it o�ers.

The execution of a query maps a set of information type names to a set of classes.
The �rst set contains synonyms of an information type and the second set has names
that are either a coalition or a servicer class. The default is to try to conduct a
query �rst in a coalition class, and in the coalition that contains the database where
the query was performed. A servicer class is chose only when there is no coalition
class name available.

When a query cannot be resolve in those coalition and services that the component is
member of (failure case), then the database tries to �nd another possible component
that may have the information. This can be done in two di�erent ways. One way
is to verify in its co-database if there are coalition or services that know about
the information. The other way is to request a subset of databases in the same
coalition where the database is member of, that know about other coalitions that
they participate that possible contain this information. In the case where there is
no coalition, the database tries to �nd a service with other databases that know
about the information. Whenever a database that seams to have the information
is discover, then the query is sent to this database and the process of resolution
executed. Otherwise, the query is considered to have failed.

Notice that the idea of sending the query from one component to the other was also
proposed by Takizawa and Hasegawa [102] and by Papazoglou et al. [81] (primary
and master agents). For a discovery process in a decentralised environment this
is a good approach. However, there are cases where a component wants a restrict
group of components to have access to its data, because of security and protection
reasons. In FINDIT, the way in which the information is discovered does not avoid
other components, outside a restrict group, to access this data. Other coalition and
services are eventually searched to identify the information. Thus, to guarantee
protection of the information it is necessary to check if the database containing the
requested information can tell about this information to the user.

The failure of queries can be considered as a suitable task to the system. It in-
creases the system knowledge about other information that it does not know. The
resolution of queries out of the local database domain interest extends the system.
In this extension new coalition and/or services are formed. FINDIT also permits
the addition and deletion of components, providing a scalable system. However, in
[7, 8, 9, 10] the authors deal with the scalability aspect from the situation where it

42

is already known the correct coalition and service related to that component.

In our opinion, the high interaction with the user during the resolution process of a
query does not guarantee transparency of its execution. Notice that in many cases
the user is responsible to guide this resolution process, giving necessary information
to the system to locate the correct data. Another problem is related to the di�culty
of manipulating with queries that contain more than one type of information. This
is a normal situation when dealing with heterogeneous databases. However, in
FINDIT this makes the resolution process a very complex and confuse task to the
user. It is necessary to break the query into subqueries, to try to resolve each of them
with the help of the user and, in the end, to place the results together. In [7, 10]
the authors outlined that it is necessary and important to complement FINDIT to
allow the direct use of the actual data after locating it. The resolution of conicts
and the uni�cation of the located data is not yet de�ned in FINDIT.

2.3.6 Conclusion

Although the area of heterogeneous databases has been hardly examined and various
approaches proposed it reminds some important problems not yet solved. One important
problem is related to the information discovery of a data, in particular when dealing with
a great number of components. Most of the existing approaches assume that the system
knows where the correct data is located. The problem of information discovery is related
to the fact that during the resolution of a query the system does not know where the
correct information is located and which are the components that have this information
available.

When dealing with a vast collection of databases it is not suitable to use a centralised
structure to help with the execution of the di�erent phases of the interoperability process
(information discovery, conict resolution and uni�cation of the results). The use of a
centralised structure does not guarantee autonomy of the involved components; generates
di�culties in executing some operations like addition, remotion and modi�cation; does
not assure privacy of the information; and does not guarantee good performance in the
execution of the di�erent processes (performance bottleneck). When using a centralised
structure it is also necessary to solve the problem of failures. On the other hand, the
idea of either broadcasting for all of the components or performing queries that visit all
the databases to locate and/or identify correct data (resources) is also impractical. Both
of these approaches can generate a great amount of tra�c in the network. Notice that
these ideas can also lead to the generation of a large amount of unnecessary translations.
That is, a query is sent to various components that does not have the requested data
and that contain data models di�erent from the data model of the component where the
query was performed. Therefore, it is necessary to propose a way that allows all of the
phases in the interoperability process to be done neither using centralised structures nor
broadcasting for all of the components. The proposed approach has also to permit new
and existing components to join and leave the environment without di�culties. That is,
it has to guarantee the scalability of the system.

We agree with approaches like: Global-Concepts [74, 75], ICCS-Agents [81] and FINDIT
[7], where the databases are grouped in order to diminish the universe of search. Therefore,
it is necessary to determine the criteria to be used to form the di�erent groups.

43

Another complication when dealing with di�erent autonomous databases is concerned
to heterogeneity. It is not easy to make a query understandable to di�erent components
(data models). One important aspect to assign with the lack of semantic and behavioural
information and with the inability of reason about semantic di�erences among the di�erent
data models. Therefore, it is essential to understand, capture and deal with the semantics
of the elements. It is also indispensable to extend the mechanisms of de�ning type speci�c
behaviour (procedures, functions, or methods), to identify similarities of the data and to
extend the data models to include more semantic information about the meaning of the
data. These are very important aspects to permit the detection of the correct data and
the assignment of conicts that may appear.

In our opinion, the use of an additional structure for each component containing
semantic information of the shared data (Remote-Exchange [37, 38, 45, 46], InHead [110,
111] and ICCS-Agents [81]) is reasonable. However, it is necessary to determine a way to
de�ne, represent and manipulate with the semantic aspects of the data.

We also defend the idea of separating the data that a component wants to share
(public) from its other data (private). Nevertheless, it is important to determine the
type of data to be public and how to represent and access this data. The use of a
recursive procedure to execute the information discovery process, starting in a certain
point (component) and moving to other one, depending on the information found inside
the last component visited, is feasible. However, it is necessary to avoid unauthorised
access of data and cycles during the process.

The inclusion of a certain data in any requester component is another feature that
requires speci�cations. It is not easy to perform uni�cation of data, as automatic as
possible, preserving the components autonomy and without disturbing the original data
stored in the involved components.

The managing of heterogeneous databases has to guarantee that the users of the
di�erent components are able to perform both read and write (consult and update) op-
erations, in a transparent way for the users and applications, preserving the autonomy of
the components and guaranteeing privacy on the data. It is also necessary to permit the
participation of databases in the system that share and exchange data, and of components
that only consult and interrogate the other members of the system.

2.4 Interdependencies

One important aspect in facilitating information sharing and exchange in federated database
systems is the management of interdependencies among data in di�erent databases.

Li and McLeod [66] a�rmed that the data interdependency can be of various forms
and complexities. It can goes from simple value dependencies to more complex structural
and behavioral dependency relationships. They believe that data interdependency man-
agement is a sub-issue of the general area of distributed integrity constraint management.
In [66] the authors proposed an approach to deal with interdependencies among data in
di�erent databases based on an object-oriented federation model and architecture named
ODF [65] (objecti�ed database federation).

ODF is considered to be an extension of the federated architecture [48] (see subsub-
section 5.1.3), using an object canonical data model (see subsection 3.2) and applying
an object-oriented methodology as a design and implementation approach. In this ap-

44

proach databases are inter-relatable through prede�ned relationships and interoperable
through message-passing, which is used to exchange information and to negotiate shar-
ing/exchange agreements. The databases are viewed as objects and names OCs objecti�ed
components. Each OC has associated with it a set of methods that support requests for
data and/or services from a remote OC.

An OC has three areas (private, protected and public) and a derivation dictionary.
The private area corresponds to the data that is local to the OC; the protected area
contains data that is accessible by some selective OCs; the public area has the data that is
accessible to every OC in the federation. The derivation dictionary maintains information
of where and how imported data is derived and inherited from other OCs22.

Li and McLeod identi�ed four di�erent types of interdependencies that may exist
between two objects (Oi, Oj, for instance) from two di�erent databases (DB1, DB2, for
instances), outlined below. Existence dependency, where the existence of Oi depends
on the existence of Oj; structural dependency, when structural changes of an object in
one database may a�ect the structure of another object in another database; behavioural
dependency, behavioural changes (modi�cation of methods) of Oi may a�ect the behaviour
of Oj; value dependency, related to the fact that changes in the attribute values of Oi

can be reected to the attribute values of Oj. It is also possible to have \non-parallel"
interdependencies, that is, changes in attribute values can inuence changes in methods.
Another possibility is to have di�erent combinations of the interdependencies ranging
from a single one to a totally combined one.

Rusinkiewicz et al. [87] stated that interdatabase dependencies should specify the
dependency conditions and the consistency requirements that must be satis�ed by the
related data, and also the consistency restoration procedures that must be invoked when
the consistency requirements are violated. They proposed a model that allows speci�ca-
tions of constraints among multidatabase in a declarative fashion. The model uses a data
dependency descriptor that provides more semantic information then constraints that are
used to specify database integrity. This descriptor de�nes dependencies between related
data, consistency requirements and consistency restoration procedures. The authors also
proposed a system architecture to be used to maintain interdependent data objects in a
multidatabase environment.

In this architecture it is assumed that every database has associated with it an inter-
database dependency system that acts as an interface between di�erent databases. The
dependency system of di�erent sites can communicate with each other. There is also
a centralised or distributed interdatabase dependency schema (IDS). The IDS is always
consulted by a dependency system whenever a transaction is submitted for execution.
This consult is performed in order to determine if the data accessed by the transaction
depends on a data of other components. When a transaction updates data in a component
which is related to data in other components, then various transactions are performed to
guarantee mutual consistency of related data. These transactions are submitted to the
database management systems of the correspondent related data.

We believe that the problem of representing and maintaining information about in-
terdependencies among data in di�erent databases has to be carefully treated, since it is
very important to allow consistency during the exchange and share of data. Therefore,

22Comparing ODF with federated architecture [48] we observe that private area corresponds to \private
schema" concept, protected and public areas to \export schema", and derivation dictionary to \import
schema".

45

the architectures for heterogeneous databases have to contain a way of representing and
managing with these interdependencies. On the other hand, it is very di�cult to have in-
formation related to database dependencies when dealing with a great number of di�erent
databases (great quantity of data) that are constantly and dynamically modi�ed. In spite
of some existing approaches it is necessary to �nd a way of representing, manipulating
and maintaining those interdependencies.

2.5 Transaction Management

Transaction management is considered to be a complex task in a federation of hetero-
geneous databases. In this environment it is necessary to manage two di�erent types of
transactions: local transactions and global transactions. The local transactions are di-
rectly submitted to a component by its local user, originated at this local component.
The global transactions are submitted by multidatabase users, originated at a remote
component. As outlined in [13, 90, 98] it is di�cult to guarantee the ACID23 and serializ-
ability properties, since each system has its own mechanism to ensure these properties. It
is necessary to �nd some approaches that develop strategies to use di�erent transaction
processing mechanisms together such as: mixed concurrency control algorithms and com-
mit protocols, without violating the components autonomy; global coordination of the
concurrency control and recovery strategies shared by the systems; di�erent treatment for
the local and global transactions; de�nition of new concepts that permit the execution of
transactions in a heterogeneous environment; and so on.

Breitbart [13] a�rmed that it is not possible to have transaction management algo-
rithm for a federation without any restrictions on the local database management systems.
He outlined that to �nd such an algorithm it is necessary to impose some restrictions on
either the type of global transactions that may be executed in the federation or on the
structure of the local concurrency control mechanisms. In [12] the author proposed a
concurrency control algorithm that ensures global serializability and freedom of global
deadlocks. For this algorithm it is assumed that each local component uses the two-phase
locking protocol24, therefore violating the local autonomy of these components.

Mullen et al. [79] proved that in a heterogeneous database system it is impossible
to execute atomic commitment of global transactions25, even not having system failure,
without violating the autonomy of the local components. Since it is assumed that the local
components do not di�erentiate local transactions from global subtransactions that they
execute, then in the situation where it is necessary to undo or redo some subtransactions
to ensure the correctness of the atomic commitment protocol, the autonomy of the local
components is not guaranteed. In this case it is possible to execute the undo and redo of
a local transaction. They also proved that even when the system violates local autonomy
by assuming that its components may use only strict two phase locking for concurrency
control, it is not feasible to perform atomic commitment that can tolerate at least a single
system failure.

A concurrency control schema that permits the local component autonomy and global

23ACID for Atomicity, Consistency, Isolation and Durability [23].
24All the locks requested by a transaction may be performed before any lock is released.
25The atomic commitment protocols for global transactions guarantee that all subtransactions of a

global transaction are either uniformly committed or uniformly aborted.

46

serializability was proposed by Kim and Moon [60]. The idea is to use two di�erent
types of concurrency control schemas: timestamp ordering and two phase locking. To
detect and resolve conicts (direct and indirect) the approach uses a preprocessor for each
component named LEM (local execution monitor). The local transactions are submitted
to LEM to examine the e�ects of them to global serialisation order, and the indirect
conicts caused by local transactions are detected at each LEM. Sheth [91] a�rmed that
the problem of fault tolerance has received little attention and that there is also a lack of
adequate transaction management algorithms to provide a speci�ed level of consistency.
Therefore, it is necessary more work to permit viable and correct algorithms to transaction
management.

We believe that more work has to be executed on the transaction management area
in order to develop algorithms that allow the manage of local and global transactions
without violating the autonomy of the databases involved. Actually this is a very hard
task and without a solution until now (open problem).

47

Chapter 3

The Proposed Architecture

Based on the existing approaches to interoperability of autonomous databases and on the
drawbacks in these approaches, we propose a new architecture that tries to diminish these
problems. Our goal is to permit heterogeneous autonomous databases, independently
created and administered, to interoperate with each other, in a transparent way, and
without compromising their autonomy. We aim to avoid the use of centralised structures
to help with the information discovery process. The architecture aims to preserve the
privacy of data, execute both retrieval and update operations, and support scalability
of the system including dynamic modi�cations of the components. We wish to permit
the situation where a certain query q0 is performed in component DB1 (source) and the
answer for this query, or part of the answer, is presented in a di�erent component DB2

(target). Thus, the execution of the di�erent phases of the whole interoperability process
has to be automatic and transparent if possible.

3.1 Description

In the proposed architecture the component databases are arranged into federations as
illustrated in �gure 3.1. A federation consists of a set of databases willing to share data
with each other. The criteria used to form a federation are based on the shared data of
the components and the components that are allowed to access this shared data. Inside a
federation, the shared data of a component is public for all the other components in this
federation. A database outside this federation cannot access the shared data of the com-
ponents in that federation. That is, suppose a database DB1, in a federation F1, sharing
a data d1. We desire to permit d1 to be accessed (public) by all the other components that
are in F1. Therefore, it is possible to have a database participating in di�erent federations
(overlapping), sharing a distinct set of data in each of these federations. In �gure 3.1,
DB11;DB12;DB15 and DB30 participate in federations 2 and 3 at the same time. The
architecture also permits a component to participate in a federation without sharing any
data, only interrogating (consulting) other databases (named an enquirer database). The
enquirer database only accesses data of other components, but is not accessed by other
components. Therefore, it is possible to have a component that participates in a federa-
tion sharing a set of data and in another federation as an enquirer. This approach permits
structures which support data con�dentiality and security.

The idea of having the same component in di�erent federations, depending on the data
that it is sharing and on the other components that have access to this data, is based

48

FEDERATION 1

M

DB 5

DB 9

DB 6

DB 1

DB 2

DB 3

DB 4
M

M

DB 7

DB 8

DB 2

FEDERATION 3

MDB 11

DB 12
DB 13

GROUP

GROUP

GROUP

UNIVERSITY

GROUP

INSTITUTE

HOSPITAL

FEDERATION 2

M

DB 12

DB 11

DB 15 DB 20

GROUP

MDB 21

DB 30

ACCOUNTANCY

GROUP

PERSONNEL

M

DB 14

DB 15

DB 30
RESTAURANT

GROUP

PERSONNEL

Figure 3.1: Federations of heterogeneous databases

on the concept of avoiding a speci�c data to be accessed by components not allowed to.
Thus, guaranteeing better con�dentiality and security of the information. Notice that in
the approach proposed by Bouguettaya [7] the idea of using coalition and services, and
the way that a data is searched, can lead to the situation of accessing a certain component
not belonging to the coalition that contains the requester component. Thus, to guarantee
con�dentiality and privacy of the data it is necessary to check if the database that contains
the requested information is allowed to give this information to the user.

To illustrate the use of federations consider a holding formed by four di�erent com-
panies. Each company contains independently created personnel databases having infor-
mation related to the employees and their salary histories. Consider two di�erent cases.
The �rst case dealing with the accountancy of the holding. The second case assigning the
background of the employees (their di�erent types of job). In our approach we create two
federations. One federation contains the personnel databases sharing payroll information.
The other federation encloses these databases, but sharing the di�erent types of job. It
should be unreasonable to make public the salary of the employees when dealing with a
di�erent matter.

As proposed by Milliner and Papazoglou [74] we group the components of a federation
in order to make the universe of search smaller, thereby facilitating the process of infor-
mation discovery. In our approach, inside a federation a group of components is formed
based on the type of data that these components share. For instance, we could have a
university group (formed by databases sharing information about universities), a hospital
group (containing databases sharing data about hospitals), and an institute group (having
databases exchanging data of institutes) forming a federation, as presented in federation
1 of �gure 3.1. Since a certain type of data can be related and classi�ed in two or more
di�erent areas we can have a database that participates in more than one group in the
same federation (DB2 is related to university and institute groups). The public data (set

49

of data) of a component in a federation is shared with all the other components in the
federation and not only with the components composing its group. It is also possible to
have the same group name classifying two di�erent groups in two distinct federations .

Each database has an administrator (DBA) to assist with the organisation of the
system. The DBA decides about the di�erent data that the component can share, which
are the federation that it participates and the relationships with the other components. On
the other hand, each federation contains a manager. The manager supports the decision
about the di�erent groups inside a federation, the terms associated to these groups, and
the common data model and language used to facilitate the interoperation among the
di�erent components.

We suggest the use of a special structure named Syst-DB containing general infor-
mation about the whole system. This information is related to the di�erent federations
existing in the system, the various groups in each of those federations, the participant
databases, the di�erent data shared by each component in the federations that it partici-
pates, and so on. The idea of maintaining a structure like this is to assist on the scalability
of the system. That is, support the correct insertion (registration) or deletion of either
a component or a group of component, and the creation and removal of federations (see
chapter 4). Without using a structure like this it is impossible to know the best way of
organising the system. It is also di�cult to guarantee the functionality, reliability and
correct operations of the system according to its speci�cations. The Syst-DB works as a
\mirror" reecting the whole situation of the system.

We propose to implement the Syst-DB as a centralised relational database. Figure 3.2
presents a schema for the Syst-DB, expressed in the entity-relationship model, with its
entities, relationships and respective attributes (the keys are represented by underlined
attributes). Chapter 4 contains details of the functionality and operability of the Syst-
DB1.

Notice that in the approaches that make use of a centralised structure containing
information about all the databases in the system (federated architecture [44], Remote-
Exchange system [37, 38, 45, 46] and InHead [110, 111]), it is not necessary to know about
the other existing components before adding a new database2. In this case, the interop-
erability process is performed based on the centralised structure. On the other hand, the
approaches that organise their components in either coalition, or clusters, or groups, do
not specify a way of deciding about the best and correct place to insert a \new" compo-
nent. In FINDIT [7] they deal with the scalability of the system from the situation where
it is already known the correct coalition and service related to that component. However,
before adding a new component, it is not speci�ed how to get knowledge about the coali-
tion, services and databases existing in the system. The approach proposed by Milliner
and Papazoglou [74] contains a centralised initialisation phase where the databases are
registered, building the system. After this phase, the system evolves by the automatic
merge and split of existing Global Concepts (GCs) and the update of link weights. The
authors assume that all nodes in the system are registered during the initialisation phase.
No new nodes join and no established nodes leave the system.

1Notice that even using a centralised structure having general information about the system to assist
in the scalability process, this structure is not used during the interoperability phases, in particular the
discovery process of a certain data. Our goal is to permit a decentralised discovery process.

2Record that the use of a centralised structure generates other drawbacks like: performance bottleneck,
di�culty of updating, failure of the structure, no guarantee of privacy and con�dentiality, and so on.

50

is-composed

Contain

Masters

id-mast

id-fed
id-fed

id-fed

Components

N N

N

Have

Federations Groups

N

1

N

cdl

id-group

name-gr

id-comp
type-comp

dba

id-group

id-group

id-comp

Id-fed id-group

type-data

cdm

manager

type-fed

Figure 3.2: A relational schema for the Syst-DB

As presented in �gure 3.1 each group contains a component named the master (M)
that records the location of the di�erent components existing in a federation. The master
controls the process of adding and removing components. It permits a component (or a
group of components) to join or leave a federation without stopping the whole system
and notifying this to the other remaining components (see chapter 4). The master is
also important in the discovery process since it contains the more up to date information
about the existing components in its group (see chapter 5). During the discovery process,
the master is consulted when data is not found in any of the components in its group,
helping to identify a database, not yet visited, that possibly contains this data. Thus,
when the masters have no knowledge about components containing the searched data, it
is guaranteed that either no component in the system has this knowledge or the data does
not exist in the system. The type of information that the master holds and the way that
it is structured is the same as the LOC structure speci�ed below in item 4.

Before adding a new database into a federation some preparation has to be made.
Simpson and Alonso [96] a�rmed that: \an autonomous database should have the freedom
to present itself di�erently to di�erent users, or to refuse to provide service or information
about itself to certain users.\ Therefore, apart from the notion of federation that guaran-
tees privacy of information, we propose the addition of new structures to each database.
These additional structures guarantee autonomy and transparency of the databases. A
component should be able to accommodate information necessary to achieve interoper-
ability without modifying the original structure and preserving its autonomy. The new
structures of each component, LPS, MLPS, SPD and LOC, are related to each federation
with which the component participates. Hence, for each federation a component possesses
a di�erent set of these structures. Figure 3.3 shows a database prepared to join a federa-
tion with all of its additional structures. In this example the database DBi participates in
two di�erent federations, j and k. In the following, we explain the need and functionality
of these additional structures.

1. LCS/LPS

51

DB i L C S

MLPS

MLPS

L P S

L
P
S

L O C

L O C

S P D

S P D

i
i

i

k

k
k

i
k

i

j

j

j

i

j

i

i

Figure 3.3: A component database with its extra structures

We use the idea of the �ve-level [91] and federated [48] architectures of separating
shared data from private data. As can be seen in �gure 3.3, the non-public data
(private) of each component is represented in the local component schema (LCS).
The LCS is de�ned in the original data model of the component and is the original
schema of the component. On the other hand, the information that a component
shares with the other participants of its federation is called public data and is regis-
tered in a special schema called local public schema (LPS). The LPS is speci�ed in
the same data model of its component. Notice that this new approach di�ers from
the existing methodologies since it permits each component to contain more than
one LPS, one for each federation, distinguishing the shared data for each federation.
It is possible to have overlapping information in the di�erent LPSs of a component,
i.e., common data in these di�erent LPSs. The use of various LPSs prevents the allo-
cation of all the shared data of a component in the same place and guarantees better
con�dentiality and privacy of information. In the existing methodologies all of the
shared data of a component is stored into a special structure (for example, export
schema in the federated architecture), becoming public for all of the components in
the system. In the federated architecture the unit of data sharing is the schema. In
the propose architecture the unit of data sharing is also a schema (the LPS), but
containing speci�c data to be shared with a federation, not all the exported (public)
data. To illustrate this, consider the situation of 3 di�erent databases, DB1;DB2

and DB3, with DB1 willing to share a certain data d0 with DB2 but not with DB3,
and another data d00 with DB3 but not with DB2. For the existing methodologies
both d0 and d00 are presented in the export schema of DB1. To avoid the access of
d0 by DB3 (d00 by DB2) it is usually necessary to use some special way of making
the information secure, by introducing additional information to the data. In the
proposed approach, with the notion of di�erent federations and LPSs for each fed-
eration, security is automatically preserved, e.g. federation 1 containing DB1 and
DB2 with d0 in LPS1

1
, and federation 2 having DB1 and DB3 with d00 in LPS2

1
.

2. MLPS

Associated with each LPS there is a mirror local public schema (MLPS). The MLPS
contains the public data of the component expressed in either a common (canonical)

52

data model (intermediate) for all the federation, with a corresponding common data
language, or in an intermediate meta-model [4, 82]3. The choice of the data model
used to describe the MLPSs of a federation depends on the data models of the
components in the federation. Thus, two di�erent federations could use distinct
canonical data models to express their MLPSs. Unlike the existing approaches,
our architecture permits the existence of the shared data in the local data model
and in a canonical data model previously chosen. The advantage of having public
data of each component represented in two di�erent data models is twofold. First,
the LPS is used to avoid unnecessary translation work in the situation where it is
known that the data sharing is made between two components that use the same
data model for their local component schemas. In this case, it is better to use
the original data model (direct interoperability) than another one playing the role
of an \intermediator". Second, the MLPS is used to maintain a linear number of
translators when performing interoperability among databases with di�erent data
models (indirect interoperability). That is, without using an intermediate data
model (meta-model) it is necessary to have mappings between each type of data
models in the federation for all di�erent data models. The MLPS also permits
the interoperability among heterogeneous components by detecting interdatabase
semantic relationships, and bridging the gap between the di�erent data models of
the components. The MLPSs preserve the autonomy of the components.

3. SPD

We propose the use of a structure called semantic public data (SPD), local for each
component and federation, to facilitate the task of identifying similarities, equiva-
lences and conicts, when discovering and integrating data. The SPD expresses and
describes semantic information of the public data in a di�erent way from the LPS
and MLPS (not as a data model). In the Remote-Exchange approach proposed by
Hammer et al. [45, 46] and in the InHead architecture [110, 111], they suggest the use
of a local structure, for each component, containing a certain semantic of the data
(local lexicon and data/knowledge packets, respectively). However, these structures
are used with a centralised structure containing the relationships between the data
of the federation. In our case, we are avoiding the use of any centralised structure
to assist in the interoperability process. Therefore, all the information necessary to
resolve semantic and syntactic conicts and to identify similarities and equivalences
is presented in the SPD. The semantic information in the SPD is peculiar to each
component and not for all data in the system. This helps to preserve the autonomy
of each component. Therefore, whenever a database wishes to change its sharable
data and/or change the meaning of this data, it can perform these tasks locally
without modifying or interfering on the other databases of the federation. Another
function related to the SPD is to assist in determining when a component contains
particular information. That is, the SPD is responsible for the identi�cation and
speci�cation of the requested data in a component.

3A meta-model is a formalism for the de�nition of models. The use of an intermediate meta-model
is suggested to avoid the complex task of choosing a suitable canonical data model from the existing
commercial data models, and to avoid the di�culties in translating di�erent data models into a central
more expressive data model.

53

��
��
��
��
��

��
��
��
��
�� �

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

HOSPITAL

M

INSTITUTE* * UNIVERSITY

M

DB

Aeronautics * Computing

DB

DB

Europe * South-America

DB1* DB 3
DB4

Brazil * Chile U.K.

DB 2

M DB DBDB**
5 9

*
6

7

8

2

Education * Research

Figure 3.4: Hierarchical structure - LOC and M

4. LOC

The information discovery process can be performed with the use of a hierarchical
structure named locate (LOC)4. In this case, we avoid both the use of a centralised
structure in the whole system, containing information of the shared data and its re-
lationship, and the broadcasting to all the components of the system. This structure
records the position of the di�erent databases existing in a federation and maintains
(organises) the components grouped by the type of information being shared.

The hierarchical concept of the LOC is di�erent from that of co-databases proposed
by Bouguettaya [7]. The co-database of a component contains information about
coalitions and services of its component and descriptions about the databases pre-
sented on the coalition and services. Our hierarchical structure organises all the
databases in a federation by specialised terms (names) depending on the type of
information that a component is sharing. Each group of components in a federation
is divided in virtual subgroups5, depending on the specialisations that can be de-
scribed for the components of a group. These specialisations are de�ned based on
the type of shared information.

Figure 3.4 presents the LOC structure for federation 1 in the example of �gure 3.1.
The �rst node in the hierarchy (root node) contains the names of the groups inside
federation 1. The internal nodes contain the terms used to express specialisations
of these groups (virtual subgroups). Notice that a node in one level contains more
speci�c names than the terms existing in its parent node. Thereby, the structure
consists of a natural hierarchy from general terms to more speci�c terms.

Inside a node the terms are strings of characters de�ned by DBAs, separated by a
special mark (*)6 and organised in alphabetical order. Associated with each term

4Note that the master and the LOC are the same structures. They di�er only in the fact that the
master can contain more up to date information. In this part of the text we use only the term LOC.

5The term virtual subgroup stands for the fact that the di�erent groups are not physically divided into
subgroups meant by specialisations. They are divided from the organisation point of view based on some
speci�c terms.

6Our suggestion is to implement this special mark as 1 byte with all of the bits equal to \zero", or

54

CCCC*. . . *FFF* . . . RR* . . . * ZZZ

100 200 250

AAA * BB * . . . * 200 203

Figure 3.5: A chain of nodes containing specialised terms of a certain name

there are left and right pointers. The left pointer either points to a leaf node or is
unde�ned (nil), represented as black square boxes in the �gure. The right pointer
either indicates an internal node holding specialised terms or is unde�ned (nil). The
contents of the left leaf node depends on the position of this leaf. The left leaf node
related to a term in the root node can contain two di�erent types of information:
(a) the address of the master of the group associated with this term (represented
as M), when the term is specialised (the right pointer is de�ned); (b) the address
of the master together with the addresses of di�erent components in the group
(represented as DBi; 1 � i � n, where n is the number of di�erent components
in the system, and separated by (*)), when the term is not specialised (the right
pointer is unde�ned). The left leaf node related to a term inside an internal node:
(a) can be unde�ned, when the term has specialisations (right pointer is de�ned);
(b) can contain address(es) of component(s) related to this term separated by (*),
when the term does not have specialisations (right pointer unde�ned).

In the case where a certain query needs to access some components by a more
general term and this term is specialised, this can also be performed by visiting
all the left leaf nodes of the branch related to that term. For instance, consider
a query that asks for the total number of lecturers in Computer Science in all of
the Universities in the world. In this case DB1;DB2;DB3 and DB4 (see �gure 3.4)
have to be visited.

Each node corresponds to a disk page, thus the limit of information stored in a node
is the size of a disk page. When a node in the hierarchy contains a great amount
of data (various types of specialisation for a term) and the size of a page is not
enough to accommodate all of the data, then the last information in this node (the
one more in the right) is the address of another disk page. This disk page contains
the rest, or part of the rest, of the terms, forming a chain, as shown in �gure 3.5.
We a�rm that this is a very uncommon situation since supposing a disk page with
size of 2 Kbytes, each pointer occupying 2 bytes, the special mark using 1 byte, and
each name possessing 35 bytes, it will be possible to store 50 di�erent names into
each node.

The proposed structure is unbalanced. It depends on the level of specialisations
that can be achieved for each group of the federation. In our opinion, the use of a
balanced tree has limitations on the natural hierarchy of the terms used to classify
and organise the structure. The decision to use a hierarchical structure is because
of the fact that a tree permits better performance in the search process and it is a
natural way of expressing the hierarchy of terms.

equal to \one".

55

In [3, 96] the authors proposed the use of an external index to help on the information
discovery process. The external index is a partial index of external resources locally
for each node. It contains network addresses of source nodes together with condensed
descriptions of the information that these sources hold. In [3] they suggested the
idea of having a tree of keywords for each site where this tree contains references
to the information that the local site knows and the names of sites that are good
sources for this information 7. Each keyword in the tree contains attached weights
to help to match a query (the queries have weights associated with their keywords
as well). The authors a�rmed that the main problem when using a full n-level
tree (balanced) to store information is the lack of a natural hierarchy to place the
keywords. In our opinion the use of weights is another di�culty since it is necessary
to specify criteria not only on how to determine the keyword weights, but also on the
query weights. Notice that unlike the approach presented in [3] we are suggesting the
use of an unbalanced hierarchical structure that classi�es the di�erent databases in
a federation in a natural hierarchy, going from general terms to more speci�c terms.
Our hierarchy contains only addresses of the databases related to the terms.

The proposed architecture allows a component to join or leave a federation without
stopping the whole system. The other components are updated assisted by the master.
Even the LOC structure containing information about other components in the federation
can be simple updated. Notice that it is also possible to modify the public data, which
has to be reected into the LPS, MLPS and SPD. This is done without a�ecting the other
components of the federation.

In the architecture, an enquirer database is not addressed in the LOCs of the other
components in a federation. Thus, no component tries to access it. On the other hand,
the enquirer component has a LOC structure for discovering components to consult, but
it does not contain the LPS, MLPS and SPD structures. Whenever the enquirer database
decides to share some information this can be easily executed by adding it in the system
as a \new" component (see chapter 4).

7In [74] the authors a�rmed that the approach proposed in [96], of using external indices tends to
centralise the search within a single index. However, we do not agree with this statement.

56

Chapter 4

Initialisation Process and Scalability

of the System

A fundamental question when dealing with autonomous heterogeneous database systems
is to permit a dynamic evolution of the system. It is important to allow databases to
join and leave the system without stopping it and without causing many modi�cations to
the other databases. In this chapter we outline how to initialise a system composed by
autonomous heterogeneous databases using the proposed architecture. We also guarantee
the scalability property by identifying all the possible cases.

4.1 Initialisation Process

This process is related to the construction of an interoperable system containing di�erent
federations and components. The construction of an interoperable system is performed
whenever a group of components want to share and exchange information among each
other. In this case, the DBAs of the involved databases elect a person (or team) to
coordinate the initial formation of this system. This person is responsible to identify a
scheme for the system possessing all speci�cations that allow its correct functioning.

That scheme has to include the speci�cation of the di�erent federations of the system,
depending on the di�erent sets of data to be shared; the de�nition of the databases
composing each federation; the canonical data model and language to be used in each
federation; de�nition on how to classify the distinct components in groups and specialised
terms, and so on. Based on these speci�cations each DBA is responsible to de�ne how
to build the extra structures of its component. Notice that all of these speci�cations are
de�ned having conformity of the involved people. Following, the various masters of the
system are established and the Syst-DB is constructed with general information about
the whole system.

After this �rst phase the system starts to operate and any modi�cation related to its
\grow" or \shrink" is executed as speci�ed in the next section. This initialisation phase
can be performed for a restrict number of databases (for instance, 2 databases in a single
federation1). Following, based on the scalability property the system can evolve easily.

1It does not make sense to have a system that allow interoperability among heterogeneous databases
composed by a single database.

57

4.2 Scalability of the System

The propose architecture permits a dynamic evolution of the system. It allows a com-
ponent or a group of components to join or leave a federation without having to stop
the whole system and preserving the autonomy of all of the databases. In the approach,
the choice of either joining or leaving the system is unilateral. That is, a component
(or group) has autonomy to decide whenever it wants to participate in the system, ei-
ther sharing or exchanging data, or only interrogating the other components (enquirer
databases). However, whenever adding a component into a federation it is necessary to
have authorisation from the other databases of this federation. Record that the criteria
to form a federation depends on the data to be shared and on the other components
with which they want to share this data. Therefore, the existing databases have to agree
on sharing and exchanging data with that new component. In the case of an enquirer
database it is also necessary to have authorisation of the components that are going to be
interrogated by it. Sometimes it is possible to have a database that does not want certain
databases to have access to its data.

We divide the scalability process into three cases: (a) the addition case, (b) the dele-
tion case, and (c) the modi�cation case. The �rst two cases are subdivided into four
subcases: (1) addition (deletion) of a single component, (2) addition (deletion) of a group
of components, (3) creation (removal) of a federation, and (4) addition (deletion) of an
enquirer database. Apart from the removal of a federation and deletion of an enquirer, the
execution of these subcases is performed in two di�erent steps. The �rst step is related to
organisational aspects of the system. That is, the speci�cation of where to allocate new
components and when to create new federations and groups. The second step refers to the
inclusion (removal) of components and to the noti�cation of the changes performed in the
system, into the other databases. This noti�cation is necessary due to the fact that the
discovery process does not use any centralised structure containing information about the
other databases. Thus, whenever a component joins or leave a federation (or the whole
system) the other components have to be informed (updated) about the changes.

In the next two sections we present all of the possible cases. The execution of these
cases are supported by the Syst-DB structure, the DBAs of the involved components and
the managers of the involved federations. Thereby, they guarantee the non-interruption of
the system whenever a component joins or leaves a federation. Notice that when we refer
to the addition of a \new" component it is possible to have already this component in the
system. However, the term \new" refers to the case where this component wants share and
exchange data with a new group of components. That is, it refers to the participation of
a component in a di�erent (new) federation. In the case where a component is completely
\new" for the system (does not participate in any federation until now) and it wishes to
participate in more than one federation, we consider the addition into each federation as
a di�erent process. On the other hand, the deletion of a component does not mean the
complete removal of this database from the system. Actually, it means the elimination
of a component from one of the federations that it participates. Nevertheless, it can still
participating in other federations. Hence, the complete removal of a component from the
system can be performed through various delete processes (one for each federation that
this database is related to).

The execution of the addition and deletion processes is assisted by the DBAs and
managers of the involved components and federations, respectively. The necessity of

58

human help is to decide about the characteristics of how to organise the system, to
allow (authorise) inclusion of databases and to maintain the system consistent. In the
addition cases (see subsection 4.2.1), the Syst-DB is always consulted before inserting a
new structure2. This is to identify and analyse the correct place to insert it. Therefore,
the dynamic characteristics of the system permit modi�cations of it between the analysis
and the inclusion of the new structure. Hence, reecting on the decisions taken. To
better illustrate, we list below the situations that can occur between the consultation
and the insertion of a structure. (a) Remotion of a federation where either a single or a
group of components, or an enquirer database is supposed to be inserted; (b) remotion of a
component that participates in a federation where either a single or a group of components
are considered to be added; (c) remotion of a component that is assumed to participate in
a new federation being formed; (d) insertion of another new component into a federation
where another new single or group of components were considered to be added (record
that the decision where to include a structure is related to the existing components and
asks for the authorisation of the related databases). All of these cases can be supported
by the DBAs and managers involved.

4.2.1 Addition Case

This case is divided into the addition of a single sharing component, the addition of a
complete group of components, the creation of a new federation and the addition of an
enquirer database. For the two �rst cases, during the inclusion and noti�cation phase, it is
not necessary to inform to all the components in a federation, at the same time, about the
existence of a new component (or group). We adopt the idea of �rst informing strategic
points (the masters) and then, whenever possible, notifying the other components of the
federation. The way in which the discovery process is executed permits the access of new
components even when they are not noti�ed in all the existing databases.

Single Sharing Component

Consider a component DBi to be added into the system willing to share data with other
components.

a) Organisation Phase:

In this phase, based on the set of data that DBi is willing to share with the other
components, its DBA consults the Syst-DB in order to identify either (i) a federation
where DBi can be inserted, or (ii) some existing components to form a new federation
with DBi. According to this consultation, the DBA can realize that it is better to include
DBi in more than one federation by dividing its set of sharable data. In this case, the
insertion of DBi into each federation is performed separately as a di�erent addition case.

In case (i) suppose that the DBA identi�es federation Fj as a possible federation to
include DBi, and than s/he contacts the manager of Fj. This manager is responsible to
verify if the other databases in Fj agree with the participation of this new component
and to specify the correct group to allocate DBi. Therefore, the manager contacts the

2In this part of the text, unless otherwise speci�ed, by structure we mean either a single component,
or a group of components, or a federation, or an enquirer database.

59

DBAs of the other components in order to get an authorisation of inclusion. When all
the DBAs agree with the addition of the new member (authorise it) the addition process
starts. Notice that this authorisation process does not stop or lock the involved databases
and preserve the autonomy of all the components, since it is performed by the DBA of
each database who has enough control and knowledge about it. Nevertheless, whenever
some of the existing components in Fj do not agree to form a federation with DBi, then it
is possible to compose a new federation without these databases (case (ii)). The inclusion
of DBi into Fj can generate the creation of either a new group in Fj or the speci�cation
of specialised terms that better classify DBi in an existing group of Fj. The creation of a
new group is explained in subsubsection 4.2.1. The speci�cation of new terms is executed
by the manager of Fj, since s/he has good knowledge about the federation. Thus, after
identifying the correct group to introduce DBi and the necessary terms, the manager
informs the DBA of DBi about these facts. Following, the inclusion and noti�cation of
DBi is executed as explained in item (b) below.

In circumstance (ii), after consulting Syst-DB, the DBA realizes that there is no suit-
able federation to allocate DBi. S/He speci�es possible databases appropriate to form a
new federation with DBi. This case is related to the creation of a new federation outline
in subsubsection 4.2.1.

b) Inclusion and Noti�cation Phase:

After performing the organisation phase suppose that the DBA of DBi identi�es fed-
eration Fj, and the manager of Fj noti�es group Gl in Fj as the correct position to insert
DBi. Thus, after identifying how to classify DBi in Gl (speci�cation of terms) the ad-
ditional structures (LPSj

i ; SPD
j
i ;MLPS

j
i , LOC

j
i) are created and added to DBi (this

is done individually and separated). The LOCj
i can be built based on the master of Gl

named Ml. Notice that Ml contains the more up to date information related to Gl, as
clari�ed next.

Following, Ml is noti�ed about the existence of a new component DBi willing to join
the federation. This noti�cation is made by updating the tree of Ml with the information
related to DBi. After introducing DBi to Ml we guarantee that DBi can be achieved by
the discovery process of any query q0 related to Gl. This is really possible since, during the
discovery process, the master of a group is visited, whenever it is necessary (see chapter
5).

To update the other components inside Fj we propose Ml to send the new information
to the other masters in Fj. At this point, each master is responsible to update the LOC
structures of the databases inside their respective groups. This task can be done in two
di�erent ways.

One way consists in broadcasting the new information by the master of each group to
all the components of its group. Nevertheless, depending on the number of components
involved and on the frequency of new databases joining the federation, this method can
generate a great amount of tra�c in the network. The second mode consists in updating
the components during the discovery process, assisted by the discovery graph (see chapter
5), as a \reply" of a visit in the LOC of a component containing more up to date informa-
tion (specially when this component is a master). Therefore, every time that a component
DBi sends a query to another component DBk having more up to date information in

60

Education * Research

 Practice * Theory

Europe * South-America

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

HOSPITAL

M

INSTITUTE* * UNIVERSITY

M

DB

Aeronautics * Computing

DB

DB1* DB 3
DB 4

Brazil * Chile U.K.

DB 2

M DB DBDB* **

DB DB 10

5 96

8

2

7

Figure 4.1: Example of LOC with the new component DB10

LOC
j
k than in LOC

j
i of DBi, the additional information of DBk is introduced into DBi.

This can be done by comparing the two structures LOCj
i and LOC

j

k.
Notice that the proposed update approach permits the LOC structures of a federation

to contain di�erent information at the same time, i.e., all the LOCs do not handle the
same information. However, the way in which the discovery process is executed guarantees
the access of any existing (public) data registered in the components of a federation. In
the worst case the process achieves a master that contains up to date information.

We propose the use of another strategy together with the \reply" approach to increase
the performance of the updating process. This strategy consists in updating the databases
located \near", in a classi�cation point of view, to the new componentDBi, after notifying
the master Ml. Hence, the �rst components to be updated are the components classi�ed
with the term near to the term that DBi is related to, succeeded by the components
related to the above term in the hierarchy, and so on, until achieving the root node. The
information of which are the components near DBi can be discovered by accessing the
master.

To illustrate the \near" strategy consider the hierarchy structure of �gure 3.4. Suppose
that a new component DB10 is added to the federation. Consider DB10 as a database
related to a research institute in theory computing. Assume thatDB2 is related to practical
aspects of Computer Science. The up to date LOC structure containingDB10 is presented
in �gure 4.1. The \near" strategy consists in updating DB2, followed by DB8 and DB7,
respectively. With this strategy we guarantee thatDB10 can be accessed in less steps, even
when a query is performed in a source outside the group of DB10, not having information
about DB10. The use of this strategy, together with the \reply" method, permits a better
performance in the process of updating the other components.

Consider the case where a query q0 is performed in DB1 and it does not know about
DB10 (DB1 has the LOC structure presented in �gure 3.4, for instance). Suppose that
q0 is related to a research institute in theory computing. When the discovery process
traverses the LOC of DB1 it identi�es DB2 as a possible target component and sends q0

to it. However, since DB2 contains data about practical aspects in Computer Science it
does not hold the answer for q0. Thus, a search is executed into the LOC of DB2 and DB10

is identi�ed (we are assuming that DB2 contains information about DB10 by the use of

61

(source)

DB 1 DB DB
6 10

(a)

(b)

DBDBDB 1 6 10
M

(source)

Figure 4.2: Discovery graph to access DB10

the \near" strategy). Thereby, the correct component is accessed in less steps comparing
to the case when the master is accessed. Figure 4.2 presents the graph for the discovery
process of q0 with (a) and without (b) using this \near" approach.

Notice that the \near" strategy cannot be used to update a federation instead of
using the master. It is impossible to know which is the more up to date LOC inside the
federation that can assist in the construction of the LOC structure of a \new" component.
Another drawback is related to the identi�cation of all the \near" components. The LOC
structure that may be chosen to support this task can contain no information about other
components recently introduced.

Despite the noti�cation of the \new" component in other components of the federation
it is necessary to update the Syst-DB. This can be performed, by the manager of the
federation, at the same time (in parallel) that the �rst master (Ml) is being updated.

Group of Sharing Components

The creation of a new group of components Gk can be performed because of two di�erent
reasons: (i) as a reection of the addition of a single component DBi, or (ii) as the
inclusion of a collection of related databases willing to share and exchange information.

Case (i) occurs when the insertion of a new single component (DBi), in a federation
(Fj), forces the creation of a new group (Gk), to better classify DBi into Fj. Situation (ii)
can be subdivided into two cases: (1) the new group to be added generates the creation
of a new federation containing this group, and (2) the new group is added (as a \block")
into an existing federation. Notice that here we are not mentioning the case where a
collection of components is introduced into a federation and these components are related
to the di�erent groups of the federation. Actually, this case is treated as the addition of a
single sharing component executed various time (one addition for each component in the
collection).

a) Organisation Phase:

This phase is related to the inclusion of a collection of databases (case (ii) above)3.
The �rst step consists in selecting one of the DBAs of the involved components to consult
the Syst-DB. This DBA consults the Syst-DB and identi�es if either the new group can

3The organisation phase for case (i) has been already executed when trying to include a single sharing
component.

62

be inserted in an existing federation, or a new federation has to be created for this group.
Notice that this decision can be executed together by all the involved DBAs based on the
information of Syst-DB.

In the �rst case, suppose that federation Fj is chosen to receive the new group. The
manager of Fj is contacted in order to verify if the other members of Fj agree with the
inclusion of this new group, to specify how to allocate (classify) the new group into Fj,
and to de�ne new terms whenever necessary. Sometimes, some of the components of this
group can participate in (be allocated to) other groups existing in Fj

4. The authorisation
process is executed in the same way as performed in the addition of a single component,
that is, consulting the DBAs of the other members. After having the authorisation and
de�ning the new speci�cations for Fj, the manager noti�es them to the DBAs of the new
components. Following, the inclusion and noti�cation of the new group is performed as
present below in item (b).

The case where a new federation has to be created containing the databases of the
group is speci�ed in the next subsubsection.

b) Inclusion and Noti�cation Phase:

Consider the situation of adding a complete new group Gk into federation Fj. This
requires the creation of a new term in the root node of the LOC structures, together with
a new branch related to this term.

After preparing all the components of the new group Gk with its additional structures
it is necessary to update all the masters of the other existing groups inside Fj. That is, we
assume that Gk is introduced into Fj (reachable by the other components) when all the
masters have the information about it. Following, each master is responsible to update
the components of its group. This can be done in the same way as proposed for the
case of introducing a single component, i.e., either broadcasting or as a \reply" during
the information discovery process. In the current case the \near" approach cannot be
applied, since there are no \near" components in the tree (a new term is inserted into the
root node).

We a�rm that when all the masters of Fj are noti�ed about the existence of a new
group, this information is reachable by the other components. These components consult
the related master whenever necessary.

Associated with the noti�cation of the masters about the new group it is also necessary
to update the Syst-DB. This is performed by the manager of the federation.

Creation of a Federation

The creation of a new federation in the system can occur as a result of: (i) the addition
of a single component DBi, or (ii) the addition of a group of components Gk. In case (i),
the DBAs of the databases identi�ed as candidates to form a new federation with DBi

are consulted to determine if they have interest to participate in this federation5.

4Record that the architecture permits a component to be classi�ed in di�erent groups, inside the same
federation, sharing the same set of data.

5Notice that the creation of a new federation has the similar steps executed in the initialisation of the
system.

63

a) Organisation Phase:

After specifying the databases to participate in a new federation Fy a manager is
chosen to coordinate this federation. The DBAs of those components are responsible to
determine the set of data to be shared by each database in the new federation. Based
on this data and on the type of components, the manager speci�es the federation. The
speci�cation includes de�nitions: of di�erent groups and associated terms, of common
data model and language to be used in the federation, of semantic relationships between
the di�erent data, and so on. That is, a complete design (scheme) is de�ned for the new
federation Fy.

b) Inclusion and Noti�cation Phase:

Based on the scheme de�ned for the new federation Fy, the DBAs of the involved
components have to de�ne their additional structures (LPS;MLPS; SPD and LOC).
Following, the masters are identi�ed and constructed. After preparing all the structures,
the manager of Fy updates the Syst-DB about the existence of a new federation. Thus,
the components of Fy can interoperate among each other.

Addition of an Enquirer

This is a special case where a database wants to participate in the system as an en-
quirer, i.e., only interrogating other components without sharing any data. Notice that a
database can be an enquirer in one federation and can participate in other federations by
sharing data. A database is an enquirer depending on the federation that it participates.
Due to the fact that an enquirer does not share any data, it does not have to be known
by the other participants. Nevertheless, the enquirer has to know about the other com-
ponents to interrogate them and to have authorisation to participate in a federation. We
are not specifying the addition of a group of enquirers. This can be seen as the addition
of various single enquirers.

a) Organisation Phase:

Consider an enquirer database DBEi willing to participate in the system. In this
phase, the DBA of DBEi consults the Syst-DB to specify which are the federations that
best suit its characteristics. For each di�erent federation that DBEi decides to partici-
pate, it maintains the addresses of the masters of these federations, together with a copy
of one of these masters, in its LOC structure6. Suppose that DBEi wants to participate
as an enquirer in federation Fj. The DBA of DBEi asks the manager of Fj permission to
participate. This manager is responsible to contact the DBAs of the other components
to get this authorisation.

b) Inclusion and Noti�cation Phase:

6Record that for an enquirer database it is not necessary to maintain the LPS;MLPS and SPD

structures.

64

When the DBAs of all the existing components of Fj authorise the participation of
DBEi, it is inserted as an enquirer. Thus, every time that DBEi needs to interrogate Fj

it consults its LOCj
i and executes the normal information discovery process. Notice that

the other components in the federation does not know about the existence of the enquirer
(they only authorise it).

The DBEi is responsible to update its di�erent LOC structures. That is, periodically,
it consults the masters of the federations that it participates and update its di�erent
LOCs. Even when the DBEi has a not up to date LOC structure, the information
discovery process permits the location of the correct data. However, it is necessary to
update the di�erent LOCs of DBEi because of the insertion of new groups of components
into the system. They can be used as new sources to be consulted. Whenever an enquirer
database joins a federation in the system this fact is registered into the Syst-DB.

4.2.2 Deletion Case

Unlike the addition case, the task of updating the components of a federation about the
removal of either a single component or a group of components is complex and laborious.
The information about the non-existence of a certain component (or group) has to be
known by all the components. Otherwise, during the discovery process of a query q0, it
is possible to identify a possible target component not present in the federation anymore.
We a�rm that the removal process does not occur as often as the addition process. The
number of components that leave a federation is less than the number of components that
join a federation. Di�erently, after a certain period of time, it will be possible to achieve
an empty federation.

Nevertheless, we permit the LOC structures of the components to hold incorrect infor-
mation for a certain period of time. This is allowed to avoid a great amount of messages
in the network by broadcasting to all the LOCs about the removal of a database. The
idea consists in updating the system gradually, not all the components at the same time.
However, this can lead to the situation of trying to access a database that does no more
exist in the system. We propose the insertion of a \special" message into the network
address related to the component removed of a federation (or the system), specifying that
it does not last. Therefore, whenever a transaction (query) tries to access that database
it achieves the message and identi�es the non-existence of the component. We present
below an approach to deal with the problem of removing a single sharing component, a
complete group of components, a federation and an enquirer database. For the two �rst
cases we present the organisation, and the removal and noti�cation phases. The removal
of a federation and of an enquirer database does not have to be noti�ed in the other
components of the system.

Single Sharing Component

Consider a database DBi in a federation Fj that does not want to share and exchange
data with the other components of Fj anymore. The removal of DBi from Fj can only
be performed when DBi is not executing remote transactions, that is, transactions from
other components of Fj.

65

a) Organisation Phase:

In this phase the DBA of DBi decides that DBi has to cease sharing data with the
other components of Fj. Thus, DBi tries to �nish all of the remote transactions that still
in execution and stops accepting new remote transactions. Its DBA contacts the manager
of Fj to inform that it wants to leave the federation. The manager identi�es the group(s)
that DBi is classi�ed, updates the Syst-DB about the elimination of DBi from Fj, and
inserts the \special" message into the position (network address) of DBi, reporting that
it is not available to Fj anymore.

We propose the idea of �rst updating Syst-DB in order to avoid \new" components of
forming either a group or a new federation, with the set of data that DBi is sharing with
the components of Fj. The use of a special message into the address of DBi (related to
Fj) is to execute a \reply" to any component that tries to access DBi and does not know
about the the non-existence of it yet.

The deletion of a component can generate the elimination of a complete group when
this group is formed by a single component (the one being deleted). The removal of a
complete group is explained in the next subsubsection. On the other hand, it is impossible
to have the removal of a federation caused by the deletion of a single component. It does
not make sense to maintain a federation formed by only one component.

b) Removal and Noti�cation Phase:

After updating Syst-DB and inserting the special message into the address of DBi, the
masters of the groups that containDBi have to be noti�ed. The noti�cation is executed by
removing the identi�cation of DBi from the tree. Consider Gl a group in Fj, with master
Ml, containing DBi. Using the same idea of the addition case, Ml sends messages to the
other masters in Fj about the elimination of DBi. Each of these masters is responsible
to update the components in their group.

Apart from the broadcasting and \reply" approaches used in the addition case, a
component can be noti�ed about the non-existence of another database, whenever it
detects the special message in the address of this component.

The information about the deletion of a component is not determined for every com-
ponent at the same time. However, sooner or later every database is noti�ed about this
fact. We a�rm that it is better to try to access a component that does not exist, than
to stop the whole system to notify about the removal of a component (record that the
number of deletions is small). For the system, a component does not exist in a federation
since the moment that the \special" message is introduced into its position (address).

Group of Sharing Components

The removal of an existing group Gk from a federation Fj can be performed by two
di�erent reasons: (i) as a reection of the deletion of a single component DBi, or (ii) as
the removal of a collection of related databases that do not want to share and exchange
information anymore. This latter case is rare, but possible.

Case (ii) can force the removal of a complete federation from the system, when this
federation contains only the group being removed. This situation is de�ned in next sub-
subsection.

66

a) Organisation Phase:

This phase is related to the removal of a complete group Gk (case (ii) above)7. The
DBA of one of the components of Gk informs the manager of Fj that Gk wants to leave
the federation. The manager has to identify if there are other groups in Fj containing
any of the components of Gk. Following, the manager updates the Syst-DB about the
removal of these components. When all the involved components �nish the execution of
all the remote transactions, the manager inserts the \special" message into the addresses
of all these components. Then, the other databases in Fj (not in Gk) have to be noti�ed
about the non-existence of Gk. This is performed as presented below.

b) Removal and Noti�cation Phase:

Consider the case of removing a complete group Gk from federation Fj. This requires
the removal of the term related to Gk from the root node of the LOC and master structures
in Fj. When any of the components of Gk is classi�ed in other groups of Fj, di�erent from
Gk, the related branches of the tree have to be updated too. Following, all the masters
in Fj are updated and responsible to report the fact for their own components.

When the number of components in Gk is big (more than three, for instance), we
propose to execute the updating of the components by broadcasting, in order to accelerate
the updating process. The reasons to adopt the broadcast strategy when the number of
removed components is big are: (a) a low frequency of removing a complete group caused
by case (ii); (b) a high probability of trying to access a component of the removed group.
Nevertheless, when the number of components in the deleted group is small we suggest to
perform the update in the remaining databases using the \reply" and \near" strategies.

Removal of a Federation

Consider the removal of a federation Fy. The elimination of Fy from the system can occur
as a result of: (i) the deletion of a group of components, when the federation is formed
only by this group, or (ii) the agreement of a collection of databases that do not want to
share and exchange data anymore.

Case (i) is identi�ed by the manager of Fy. However, in case (ii) the manager has
to be noti�ed about the intention of all the components to �nish with the federation.
The manager updates the Syst-DB about the non-existence of Fy in the system. At this
point, no other component (or group of components) tries (try) to be added into Fy. It
is also necessary to inform the enquirer databases of Fy about its non-existence. Thus,
the manager of Fy consults the Syst-DB and identi�es the enquirers of Fy. Following,
s/he sends a message to these enquirers announcing the removal of Fy. The DBAs of the
enquirers are responsible to update the database about this fact. This is done by deleting
the LOC structure of these enquirers related to Fy.

When all the remote transactions in execution in Fy �nish, the masters are deleted.
Each component is responsible to delete its additional structures related to Fy (LPS,

7The organisation phase for case (i) has been already executed when trying to remove a single sharing
component.

67

MLPS, LOC and SPD).

Deletion of an Enquirer

The elimination of an enquirer database DBEi from a federation Fj is very simple. Due
to the fact that DBEi participates in Fj in a unilateral way, it is not necessary to notify
the other components of Fj about the non-existence of DBEi.

Whenever DBEi wants to stop enquiring the components of Fj its DBA noti�es the
manager of Fj. The manager is responsible to update the Syst-DB. Following the LOCj

i

of DBEi is removed and it does not participate in the federation.

4.2.3 The Modi�cation Case

This case consists in the situation where a component participating in one or more fed-
erations wants to modify some of its shared data. Without loss of generality, suppose
a database DBi that participates (sharing and exchanging information) in federations
Fj; Fy and Ft, and has a di�erent set of shared data (possible overlapped) with each of
these federations (LPSj

i ; LPS
y
i and LPSt

i).
Assume that LPSj

i has to be modi�ed. This modi�cation can be related to the ad-
dition of a new type of data and/or the removal of a certain existing type of data. Any
change in one of the LPSs related to DBi forces a review about the maintenance of DBi in
the federation that contains the modi�ed LPSs. The participation of a database in a fed-
eration depends on the data that this component is sharing and on the other components.
Thus, it is necessary to have a \multilateral" agreement.

The DBA of DBi contacts the manager of Fj and noti�es the necessity of the changes
into LPSj

i . Following, this manager contacts the other DBAs related to the components
of Fj to inform about the changes. The manager, together with the DBAs, verify if these
changes can violate the speci�cations related to the formation of Fj.

In the situation where those changes do not interfere with the speci�cations of Fj,
the LPS

j
i is updated. Notice that this is executed without interfering with the other

components and preserving the autonomy of the databases. The decision of performing
changes is done by the proper component. It only needs permission of the other compo-
nents. However, in the case where the changes do not guarantee the maintenance of the
speci�cation of Fj, we propose the removal of DBi from Fj. Following, DBi is added,
with the \modi�ed set of sharing data", into a proper federation.

4.2.4 Consulting and Updating Syst-DB

Whenever the addition and deletion processes are performed the Syst-DB has to be con-
sulted and/or updated. This is performed to guarantee con�dentiality and correct infor-
mation of the system. In all of the addition cases, the Syst-DB is always consulted before
inserting a new structure into the system. Thus, for the insertion of a structure, the
number of consults in the Syst-DB is equal to the number of updates performed into it.
On the other hand, in the deletion cases, the Syst-DB is consulted only when removing
a federation of the system, to identify the possible enquirer databases in this federation,
but it is updated in all the cases. Therefore, we conclude that when a structure is inserted

68

or removed from the system the number of consultations is less or equal to the number
of updates in the Syst-DB.

We propose the use of a centralised structure for the Syst-DB. The idea of having
di�erent copies of the Syst-DB (replication) in the network facilitates the consultation
task, but makes di�cult the update of the Syst-DB. In our case this idea is not e�ective
since the number of consults is less or equal to the number of updates. On the other
hand, as proposed in [35], the idea of creating images (copies) of the Syst-DB for each
consultation is very expensive. It can also generate the problem of having images that
are not up to date.

The Syst-DB reects the situation of the system. Therefore, it is possible to have
changes of the Syst-DB between a consultation and an update related to it. However,
those changes do not cause problem in the addition and deletion processes because of the
help of the DBAs and managers.

4.2.5 Master vs. Syst-DB

In the propose approach we suggest the use of structures like the master and the Syst-DB
to assist in the discovery process and to permit scalability of the system. Notice that
the principal role of the master is to support with the discovery process. In particular,
to facilitate updating the LOC structures of a federation when databases join or leave a
federation. We a�rm that the use of the master does not cause a centralisation of the
discovery process. During this process, the master is visited in the same way as the other
components (LOCs), in order to identify databases that can have the desired data. This
is di�erent than consulting the same structure to discover the correct position of a certain
data, for every query.

In the updating process the master is used as a starting point to this procedure.
The other components \know" which are the structures that possible have more up to
date information (masters in this case), consulting them whenever necessary. However,
throughout the insertion of a new group into a federation it is possible to have a certain
centralisation in the various existing masters. Record that when a group is not identi�ed
in the root node of a source component its master is consulted to verify if a new group has
been inserted. We guarantee that this does not occur very often, and that the number of
consultations in each master (related to this new group) is not so big.

The Syst-DB is used to permit the evolution of the system in a correct way. It assists
in the insertion (deletion) of new components, group of components and federations into
(from) the system, related to the organisation and classi�cation points of view. The
necessity of having a structure like the Syst-DB maintaining a good organisation of the
system is because the choice to include or remove a database does not depend on the other
components. The inclusion of a component in a wrong position can cause drawbacks to
the system, such as: violation of the security and con�dentiality of the data and di�culties
in locating the correct data.

69

Chapter 5

The Discovery Process

One important issue when dealing with interoperability of heterogeneous databases is the
discover of relevant data and where it is located. Most of the existing approaches in the
literature assume that the relevant data is either already known or identi�ed and try to
process it e�ciently. Thus, based on the lack of approaches and on the importance of
information discovery we present a new distributed concept suitable for this task.

5.1 Assumptions

Before presenting the information discovery process we outline some assumptions neces-
sary to better perform the process.

1. There is a way in which a certain query q0 can be broken into atomic subqueries
in order to determine the di�erent data necessary to ful�ll this query. The term
atomic subquery is used to identify that a subquery is undivided.

2. There is a form of knowing if the component where q0 is performed (source compo-
nent) contains part of the information necessary to answer the query and which is
this part.

3. Each component has a way to identify which of the federations that it participates
has to be searched in order to �nd the correct data. This last assumption can
be performed by maintaining, for each component, an extra structure with the
information about the di�erent federations that it participates.

The basic concepts of the process are to try to reduce the universe of search and to
permit starting points for the search operation. That is, decrease the number of compo-
nents that are visited during the discovery of the correct data and identify components
that may have the requested data. Other goals are related to the avoidance of centralised
structures to assist on the discovery process, and transparency of the process.

70

5.2 General Description

After identifying the query q0 to be searched outside the source component1 and the
correct federation, the discovery process for q0 is started. Notice that for each di�erent q0

its discovery process is performed inside a single federation. We do not allow a query to
pass through federations in order to preserve the con�dentiality of the system.

In the �rst step of the discovery process of a query q0 the source component consults
its LOC structure related to the proper federation. Based on the kind of data to be
searched the LOC hierarchy is traversed. A correct branch is chosen at each step, until
a left side leaf node is reached (i.e., the right pointer related to a certain term visited is
unde�ned (nil)). This leaf node can contain three di�erent types of sets of information:
(a) the address of the master together with the address of one or more databases inside
a speci�c group (in the case where there is no specialisation of the general name of the
group)2; (b) the address of a speci�c component; (c) the addresses of more than one
component. In any of the above cases q0 is sent to these respective components, named
possible target components, together with the addresses of the source component and the
master of the group to be searched. When q0 is sent for more than one component the
search is performed in parallel. The address of the source component is sent to permit this
component to receive the answer of q0. The address of the master is also important since
the propose architecture allows a component to participate in di�erent groups. Thus, it
is necessary to determine which is the group related to the current search.

When a possible target component receives q0 and it does not contain the requested
data, then it consults its own hierarchy structure (LOC) to �nd other possible target
components to be searched. The process is recursive. If a new possible target component
is detected, q0 is sent to it. Notice that this is done, since the LOC structures of the
components in a certain group can have more up to date information related to the group
that it belongs to than the LOC of the source component (see chapter 4). When the LOC
of a component is searched and all of the identi�ed components have been visited, then
the master of its group is searched. Therefore, whenever this component participates in
more than one group, the address of the master of the current group, passed together
with the query, is used to clarify doubts. Notice that we do not want to allow a master
of a di�erent group to be searched since this can generate unnecessary searches. Record
that the master of a group contains the most up to date information of this group. Thus,
the master of another group can contain either less or the same type of information than
the master of the group being searched. We do not propose the discovery process to start
at the master of the group identi�ed in the LOC structure of the source component. This
can generate a centralisation of the process. On the other hand, a possible variation of
traversing the hierarchical structures of the source and master components at the same
time, can cause the identi�cation of unnecessary duplication of information.

Sometimes it is not possible to identify a term related to a query q0 in the root node of
the LOC of the source component for q0. In this case the procedure visits the master of the

1Unless otherwise speci�ed, from now on, the term query is referred either to a single atomic query,
when this query cannot be broken into subqueries, or to one of the atomic subqueries of a certain non-
atomic query.

2In the case where a group name is not specialised the achieved leaf contains the addresses of the
master and of the databases forming this group. We guarantee that the number of these components is
really small, otherwise the group will be able to be divided in subgroups.

71

group of this source, in order to try to �nd a proper group related to q0. This situation can
happen whenever a new group is created into the federation and that source component
has not been noti�ed yet. However, in the way which the updating procedure is executed,
all the masters have the information about a new group before the other components are
updated (see chapter 4). Notice that in this case there is a certain \centralisation" of the
process in the master. Nevertheless, we guarantee that the creation of a new group (new
term in the root node) is not performed very often. Another point is related to the fact
that not all the components visit the same master at the same time. Only the components
of a group visit its master when they do not have knowledge about the new information.

We propose the idea of building a \virtual decentralised" direct acyclic graph, named
discovery graph, for each query q0 performed in a source component, to assist on the
discovery process

The Discovery Graph

The discovery graph DGq0 (V (DGq0); E(DGq0)) consists of a nonempty set of vertices
V (DGq0) and set of edges E(DGq0). V (DGq0) = fdb1; db2; � � � ; dbi; dbj; � � � ; dbng, 1 � i; j �
n, i 6= j, k V (DGq0) k = n, is composed by the source component of a query q0, by the
component databases of a group inside a federation visited during the discovery process
of q0, and by the master of this group (when it is visited during the discovery process of
q0)3. The set of edges E(DGq0) contains direct edges of the form eij = dbidbj, with dbi
and dbj di�erent from the source and master components respectively, denoting that dbj4

was identi�ed after traversing the LOC structure of dbi and discovering that dbj has not
been visited yet for the search related to q0. It is also possible to have an edge eij = dbidbj
where dbi is the source component and dbj the master, whenever the master is visited
during the discovery process of q0.

Notice that the graph is built in parallel since the discovery process is also executed
in parallel. For each query q0, whenever the master of the group of the components being
searched is visited, it is represented in DGq0 and it is managed in the same way as the
other components. In this case, we propose the noti�cation about the visit of the master
into the source component. Figure 5.1 represents this fact where the dash arrow denotes
the knowledge of the source about the existence of the master in the discovery graph.
We a�rm that when the master does not appear in the discovery graph for a query q0,
or appears in a leaf of the graph, this means that the graph is not very deep. The other
visited components contain up to date information.

The term \virtual" stands for the fact that DGq0 is not completely stored in a certain
component and that it exists only during the discovery process of q0. Each component
holds the information of the part of the graph related to it. That is, suppose the situation
of �gure 5.2 where dbj; dbk; dbl, (1 � j; k; l � n; j 6= k 6= l) are identi�ed to be visited after
traversing the LOC of dbi. Hence, after visiting dbj ; dbk and dbl, dbi stores the information
that there are three direct edges from dbi to dbj; dbk and dbl, respectively. dbj ; dbk and dbl
are called sons of dbi and dbi is called its parent.

To prevent cycles, that is, the investigation of a component more than one time for
the same query q0, we propose each component to handle the information that it has done

3Notice that in the graph the master is represented in the same way as a component database.
4To simplify the notation we are not specifying the federation related to dbi and dbj.

72

db i db j

db t M

Source

Figure 5.1: A portion of a discovery graph with the master

db
i

db j

dbk

db l

. . .

Figure 5.2: A portion of a discovery graph

a search for q0. Thus, before visiting a possible \new" component, this component is
consulted to detect if it has been searched for q0. Due to the fact that DGq0 is not totally
stored in a single place and that DGq0 is built in parallel, it is not possible to consult the
whole graph (the set V (DGq0), for instance) to determine if a certain database has been
already consulted. The idea of sending a list of visited components together with q0 is
also not useful here. It is impossible to have a complete list of these components, at each
phase, since the process is executed in parallel.

A discovery process for a query q0 can �nish because of three reasons: (a) a correct data
to ful�ll q0 is found (success of the process); (b) all the components in a group are visited
and none of them contains the correct data (failure of the process); (c) the user/application
asks to suspend the process (stop). Since the discovery process is executed in parallel in
cases (a) and (c) it is necessary to cancel the discovery process of q0. This is done by
suspending all the transactions related to q0 that still in execution. On the other hand, if
case (b) occurs, then the source component of q0 has to be noti�ed.

For cases (a) and (c) we suggest the idea of cancelling the discovery process by send-
ing interruption messages (Int-Msg for short). We are not adopting the \time-out" or
\number of components visited" approaches as a way of deciding about case (b). In an
environment containing a great number of di�erent world-wide databases, either a slow
transaction or a large quantity of databases visited can generate the wrong deduction of
the non-existence of a data. The source component is responsible to determine about the
cessation of a discovery process. Thus, the Int-Msg is sent recursively to all components
visited during the process and in the order that they where searched. The graph DGq0 is
traversed again in the same way that it was built (in parallel). Notice that each compo-

73

nent visited during the discovery process knows the other components visited after it and
identi�ed in it. Hence, it is not necessary to traverse again the LOC hierarchy of each
visited component.

If DGq0 contains the master component of the current group we propose to send the
Int-Msg also from the source to the master. Then the master can send the Int-Msg
to its sons (in parallel). This is to achieve a better performance on the interruption
process. Record that the source component knows about the existence of the master in
the discovery graph (�gure 5.2).

One can think that in the propose approach it could be possible to have the situation
where an Int-Msg arrives in a component always after the component has dispatched
the query (a livelock problem). Nevertheless, we guarantee that the discovery process
always stops after a certain point, because the number of components in a group is �nite
and a component is never visited twice. Therefore, the Int-Msg always achieves all the
components visited in the execution of the process. Another problem is related to the fact
that an Int-Msg arrives in a certain component before the request query q0 has arrived
in it. Actually, this situation cannot happen since an edge eij = dbidbj (with dbi and
dbj di�erent from the source and master) is added to the graph after visiting dbj, i.e.,
after dbj received the request for q0. Even in the cases where dbi sends an Int-Msg for
its other (possible) sons, before receiving a reply from dbj , dbi sends the Int-Msg for dbj
immediately after receiving the reply from dbj.

Another approach consists in sending messages from a possible target component to
a source component of a query q0, asking to continue the process. This can be performed
every time before the possible target component sends q0 for a \possible" son. We decide
not to adopt this approach, since it generates a great amount of tra�c in the network.
The variation where a possible target component asks its father authorisation to continue,
which asks its own father, and so on, until reaching the source component is not useful
here. This also generates a lot of messages going and coming, even when the graph is
more bushy than deep.

The idea of mixing both approaches together, that is, sending Int-Msgs and allowing
a component to asks its father if it may continue, is not so advantageous here. Suppose
the situation of �gure 5.3, where dbj asks dbi if it may continue (represented by \May
I?") before the Int-Msg sent by dbh arrives in dbi. dbi tells dbj to continue (represented
by \Yes") and after receiving the Int-Msg from dbh sends it to dbj. However, it is possible
that dbj has already sent the request of a query to one of its possible sons. Since every
involved component receives the Int-Msg (the group has a �nite number of components),
we a�rm that the message related to the authorisation to continue is unnecessary. It only
generates more tra�c in the network. The only advantage of this mixed approach is to
accelerate the interruption process in some cases. However, with the idea of sending the
Int-Msgs starting from the source and master components increases the performance of
the process.

When all the possible components for a query q0 are visited and none of them contains
the correct data, the source component has to be informed. This is done to avoid making
the source component to wait. A component stops its search for a query q0 when it does
not contain both the answer for q0 and knowledge about another possible component. It is
a node represented in the graph without an outcoming edge. Whenever this happens this
component noti�es its father about the non-existence of the information. When its father
receives this type of message from all of its sons it sends the same message to its father,

74

Source

dbh dbi dbj

dbg

Int-Msg Yes

May I ?

Int-Msg

Int-Msg

Figure 5.3: Two approaches in execution at the same time

and so on, until the source component is achieved. Hence, the failure of the discovery
process is concluded when the source component receives the non-existence message from
all of its sons. We allow the Int-Msg to have greater priority than the message of non-
existence of an information, that is, the latter message is discarded in the presence of the
Int-Msg.

We believe that the way in which a data is searched avoids the examination of all of
the components of a group at the same time and it also reduces the universe of search
to at most a certain group of databases into the federation. The process does neither
broadcast for every component nor use a centralised structure. It is also executed without
any interference of the user guaranteeing transparency in the process. Even using a
structure like the master, the proposed process cannot be consider centralised. The master
is only consulted in special situations and not by every component at the same time.
Nevertheless, it is necessary to resolve the problem of having the master down. Another
drawback is concerned to the fact that the correctness of the algorithm is directly related
to the way that the groups are formed in a federation and to the choice of the specialised
terms. Therefore, we have to specify criteria of how to de�ne and organise the groups.

5.3 The Algorithms

The discovery process is described below using algorithms that are presented under the
form of decision tables [116]. These tables are divided into two subtables (conditions
and actions) where \y", \n" and \-" stand for \yes", \no" and \indi�erent", respectively.
Numbers in a certain column of an action section indicate the order in which the actions,
corresponding to conditions which are all true for that column, are to be performed. Con-
ditions and actions are expressed as \macros" de�ned after the tables. Some algorithms
are described using macros de�ned in previous algorithms.

5.3.1 Algorithm to identify a group

Comment: This algorithm identi�es the correct group of components inside a federation
where a query q0 can be possible solved, if this group exists.
Input: The query q0, the LOC structure of the source component related to the correct
federation and the master of the group containing this source component.

75

Table A:

related-term-root? y n

traverse-LOC 1
traverse-M 1
go-to-table-B 2

return-poss-tgt-comp 2
return-M 3

Conditions:
related-term-root?: is the term related to q0 identi�ed in the root node of the LOC of the
source component?
Actions:
traverse-LOC: traverse the LOC structure until achieving a proper left leaf node.
traverse-M: traverse the master of the group of the source component.
go-to-table-B: execute table B.
return-poss-tgt-comp: return the addresses of the possible target components inside the
proper left leaf node achieved.
return-M: return the address of the master of the group containing the possible target
components to be visited.

Table B:

related-term-root-M? y n

return-poss-tgt-comp 1
return-M 2
message-1 1

Conditions:
related-term-root-M?: is the term related to q0 identi�ed in the root node of the master
of the group containing the source component?
Actions:
message-1: return the message: \the system does not contain any component where the
query q0 can be solved".

5.3.2 Algorithm to visit a component

Comment: This algorithm is performed for each possible target component. It identi�es
if this possible target component either contains the answer of q0 or knows about other
possible target components.

76

Input: The query q0, the address of a possible target component DBi returned by the
algorithm that identi�es a group, the address M of the master of the group containing
DBi, the address of DBj parent of DBi, and the address of the source component of q0.

DBi-searched-q0? y y n n
M -searched-q0? y n - -
DBi-contains-q0? - - n y

DBj -does-nothing 1
noti�cation-DBj

register-M-DBj 1
register-M-source 2
register-DBi 1 1

traverse-M-group 3
traverse-LOC-DBi 2
return-poss-tgt-comp 4 3
send-asw-q0-source 2

Conditions:
DBi-searched-q0?: does the possible target component DBi have already been searched
for q0?
M -searched-q0?: does the master of the current group has already been searched for q0?
DBi-contains-q0?: does DBi contains the answer for q0?
Actions:
DBj -does-nothing: DBj does not do anything related to DBi.
noti�cation-DBj : DBj receives a message from DBi about the non-existence of a correct
information to q0.
register-M-DBj : the master M is registered in DBj as a son of DBj , forming the part of
the discovery graph related to DBj .
register-M-source: the source of q0 is noti�ed about the existence of the master M in the
discovery graph of q0.
register-DBi: the component DBi is registered in DBj as a son of DBj , forming the part
of the discovery graph related to DBj ;
traverse-M-group: traverse the master M of the group being visited;
traverse-LOC-DBi: traverse the LOC structure of DBi until achieving a proper left leaf
node;
send-asw-q0-source: send a possible answer for q0 to the source component;

5.3.3 Interruption algorithm

Comment: This algorithm is recursive. It sends Int-Msg to interrupt the discovery pro-
cess. For each vertices (component) in the discovery graph the algorithm uses information
of the sons of these components.
Input: A component visited during the discovery process of q0 that is a vertices of the
discovery graph, and the addresses of the sons of this component inDGq0 . This component
can be either the source, or a related master, or a common component.

77

Table A:

found-asw-q0? y y - - - - -
all-sons-source? - - y y - - -
suspended? - - - - y y -

DGq0 -contains-M? y n y n y n -

send-Int-Msg-S-M 1 1 1
send-Int-Msg-S 1 1 1
send-Int-Msg 1
go-to-table-B 2 2 2 2 2 2 2

Conditions:
found-asw-q0?: does the source component related to q0 is satis�ed with the information
(answer) found for it?
all-sons-source?: does the source component of q0 received a noti�cation of non-existence
of the correct information from all of its sons?
suspended?: does the source component of q0 received a noti�cation to stop the discovery
process?
DGq0 -contains-M?: does the discovery graph for q0 contain the master of the visited group,
that is, does the source component knows about the existence of the master?
Actions:
send-Int-Msg-S-M: the Int-Msg is sent in parallel to the sons of the source component and
to the master visited component during the discovery process of q0.
send-Int-Msg-S: the Int-Msg is sent in parallel to all of the sons of the source component
visited component during the discovery process of q0.
send-Int-Msg: the Int-Msg is sent in parallel to all of the sons in DGq0 of an involved
component (visited) that received the Int-Msg.

Table B:

received-Int-Msg? y y
component-has-sons? y n

interrupt-process 1
send-Int-Msg 1
return-table 2

Conditions:
received-Int-Msg?: does a component di�erent from the source component received an
Int-Msg?
component-has-sons?: does the component that received an Int-Msg have sons?
Actions:
interrupt-process: the current database does not send Int-Msgs and stops the process.
return-table: go to the beginning of this table.

78

5.4 Proof of the Algorithm

To prove the information discovery algorithm we assume that the di�erent groups in a
federation are well de�ned. Suppose a query q0 performed in a source component DBS

that participates in federation F 0. We want to proof that the data d0 for q0 is found, using
the proposed algorithm, if there is a component DB 0 inside F 0, classi�ed in a group G0.

Proof:
Consider DB0 a component in F 0, participating in G0 and containing d0. Assume that

d0 is not found when applying the discovery algorithm (failure of the discovery process).
By the algorithm, the failure of the discovery process occurs whenever all the compo-

nents of a certain group related to the query, including the master, are visited and none
of those visited databases contain the correct data for this query.

Therefore, if d0 is not found, then the discovery graph for q0 (DGq0) does not contain
DB 0 in its set of vertices. The non-existence of DB0 in DGq0 means that none of the LOC
structures of the visited components and the master of G0 contain a reference to DB0.
However, if the master does not have a noti�cation for DB0, then DB0 does not belongs
to F 0. Record that the master of a group always has the most up to date information of
its group. Thus, this is a contradiction.

Hence, if d0 exists in a component that participates in a group G0 related to q0, inside
the federation that contains the source component for q0, then, applying the discovery
algorithm, d0 is always found. 2

5.5 Variation of the Discovery Process

One way of optimising the search process is to allow the databases of a federation learn
with the queries. The idea consists in maintaining a special structure named discovery-
history in each component, related to each federation that it participates. The discovery-
history is used to allow fast execution of future queries similar or equal to any query
performed in the past.

Whenever a query is performed in a source component it �rst consults its related
discovery-history to see if a similar query has been executed in the past. In the case
where similar queries has been performed, the discovery process consults the components
associated. If the correct data is not found in these components the LOC structure of
the source is traversed and the process is executed normally. In the case where no similar
queries are found in the discovery-history the process follows normally.

Every time that a data is found to a query q0, the discovery-history of the source
component related to q0 is updated. The type of data found, together with its position
are introduced into the discovery-history. Notice that the discovery-history does not hold a
copy of the data (answer) that ful�ls q0, but a possible place to �nd this answer. Therefore,
we avoid the problem of the cache structures where it is necessary to update di�erent
copies of a certain data (record that the process is executed in a dynamic environment).
The information inside the discovery-histories of the system can be used in the future to
update the LOC structures.

79

Chapter 6

The SPD

One fundamental question in the di�erent phases of the interoperability process is related
to the semantic aspects of the data. These semantic aspects are also important during
the information discovery process. In this process it is necessary to identify a component
(target) that contains the data to ful�ll a certain query q0. Therefore, some databases
are visited (possible target components) in order to verify if they contain the required
data. These databases are independent created and administered, and contain di�erences
in the way that an object is modelled. Thereby, it is possible to have a query q0 formed
by certain terms that are not known by other components. Notice that this situation can
happen not only when dealing with databases that use di�erent data models. Even when
the involved databases have the same data model in their schemas it is possible to have
di�erences of modelling.

We propose the use of the SPD to help on the determination of similarities, equiva-
lences, di�erences and conicts during the discovery process. Thus, the LOC structure
is used to determine the possible components that may contain the searched data. The
SPD is used to assist in the veri�cation of the existence of the searched data in those
components.

In many cases, the translations and mappings between the local data models and the
canonical data model (or metamodel) are not su�cient to permit the correct interoper-
ability of the components. There are some important semantic aspects that cannot be
represented in a data model. Hence, it is necessary to use a special structure containing
this information.

The idea is to have a SPD associated with each LPS of a component. The SPD
contains semantic information of the data inside the related LPS. It is possible to have
di�erences (conicts) involving the data. These di�erences are classi�ed as: naming,
structural, representational, di�erent levels of abstractions and schematic discrepancies
(see subsubsection 2.1.1). Hence, the SPD has to contain the speci�cations for all of these
di�erences, particular for its component. We present next how to possible deal with some
of these di�erences using the SPD.

1. Naming

In the case of synonyms and homonyms we suggest the idea proposed in [45], where
there is a set of general terms and the items can be mapped to these terms. Thus,
when a query q0 is executed in a source component and has to be sent to possible
target components, the necessary items are �rst translated to general terms before

80

being sent. Thereby, when it arrives in a possible target component those items are
retranslated in order to perform the query.

2. Structural and Representational

These cases are related to the fact of having the same object described and repre-
sented in di�erent ways. It is possible to have either a n object represented as an
attribute in one data model and as an entity in another or the same attribute de�ned
di�erently in distinct databases. As recorded in [24] we can have di�erent types of
structural conicts, such as: (1) type mismatch, e.g., an attribute de�ned as char in
one schema and as numeric in another schema; (2) formats, e.g., date represented
by (day, month, year) and by (month, day, year); (3) units, e.g., quantity in pounds
and in kilograms; and (4) granularity, e.g., the cost of an object with and without
V.A.T. included.

To resolve these conicts we suggest to have explanation of these attributes in the
SPD structure.

The use of this approach has the advantages of preserving the autonomy of the com-
ponents and of allowing the execution of changes in the system in an easy way. That is,
whenever a component modi�es its shared data or a database is added or removed from
a federation, these facts do not have to be reected into the other components. Record
that each component contains semantic information about its data. However, the idea
requires the use and de�nition of global concepts to map the items. It also requires trans-
lations and retranslations of queries, making the execution more complicated. In some
cases these translations can be unnecessary; when two involved databases use the same
terms to express the same real world object.

Another idea consists in having a SPD for each component in a federation, but con-
taining semantic information related to the shared data of all the other components in
the federation. That is, for a certain data, the SPD contains the equivalent speci�cation
of this data in all the other components. Thus, to perform the discover of a data, a query
is sent in its original form to the possible target components. When achieving a possible
target component, the query is translated, with the help of the SPD, depending on the
way that this possible target component speci�es the terms related to the query. With
this approach the autonomy is also preserved, since each component continues to use the
data in the way that it was originally modelled. It performs less mappings. Neverthe-
less, it is di�cult to execute changes in the system. Whenever a component is added or
removed from a federation, this has to be updated in all other SPDs of the components.
Therefore, we believe that this approach is not suitable for our case.

More work has to be done in order to solve the semantic problem and help in the
information discovery process. Apart from the naming and structural and representational
aspects, we need to analyse the other possible cases that can occur. It is necessary to
specify a way of dealing with all of the possible di�erent cases.

81

Chapter 7

A Case Study

We present below a case study to illustrate the propose architecture, the information
discovery process, and the addition and deletion procedures.

We present below a simple example to illustrate the proposed architecture. Consider
the following scenario involving book-stores, chemists, hospitals, universities and credit-
card companies. Suppose that a company named \Cia-Shops" owns two di�erent book-
stores and two chemists in di�erent parts of the world. Each of these shops has its
own database independently created and administered. To facilitate the control of the
company, the owner of the company wants to have an overall view of the accounts without
creating a single central database with that information.

Cia-Shops and other book-stores and chemists decide to build a \pool of shopping"
(network) to improve the sales in the shops and to facilitate the life of the customers.
The aim is to permit people from di�erent universities and hospitals (lecturers, professors,
students, doctors, nurses, employees, and others) to buy the products in the pool via the
network. Payment is made either by credit-card or directly discounting from the payroll
of the sta�.

In this scenario, it is important to guarantee privacy of information. That is, a cus-
tomer willing to buy a certain product in one shop is not permitted to access special
information such as accountancy, salary of employees in the shop, stock of the shop,
special clients, and so on. It is also desired to permit interoperability among the dif-
ferent databases in the pool without a�ecting their autonomy. This interoperability has
to be performed in a transparent way, guaranteeing scalability of the system and good
performance.

The databases are organised in two di�erent federations in order to guarantee privacy
and con�dentiality. Figure 7.1 presents federation 1 formed by the databases of the book-
stores and chemists of the Cia-Shops, interoperating in order to control the accounts,

DB
bs
1

1
DB

bs
1

2

M
bs1 M

ch1
1DB

ch 2

DB
ch
1

1

ChemistGroup
Book - Store

Group

FEDERATION 1

Figure 7.1: Federation of the databases in Cia-Shops

82

pro�ts and expenses of the company. Federation 2, in �gure 7.2, contains the \pool of
shopping" with the databases of the book-stores, chemists, hospitals, universities and
credit-card companies.

DB
2cc

2
DB

DB

cc

cc

..
.

Credit-Card

Group

2
1

2
6

M
cc 2

DB
u
2

4

M
u2

DB
u
2

3

DB
u
2

2

DB
u
2

1

University Group

DB
bs
2

3
DB

bs
2

1

DB
bs
2

2

M
2bs

Book - Store
Group

2
M

ch Chemist

DBch
2

2

DB
ch
2

1

Group

DB
h
2

2

DBh

DB
u

Hospital
Group

2
1

2
2 M

h2

FEDERATION 2

Figure 7.2: Federation of the databases in the pool of shopping

In �gures 7.1 and 7.2 we can see the databases of the di�erent book-stores, identi�ed by
DBbsv (1 � v � 3) and the databases of the chemists, represented by DBchy

(1 � y � 2).
Similarly, the universities and hospitals are represented as DBuk (1 � k � 4) and DBhl

(1 � l � 2), respectively. DBcct (1 � t � 6) stands for the databases of the credit-card
companies. Thus, the databases are represented as DBj

xi
, where: x 2 fbs; cc; ch; h; ug; i

is an integer expressing a database in any of the di�erent existing type of groups; and
j = f1; 2g, represents the two federations of the example. Notice that there are some
databases that appear in both federations, but sharing di�erent information in each.
Inside the federations the databases are classi�ed (organised) in di�erent groups in order
to facilitate the information discovery process. In federation 2, DBu2 belongs to two
di�erent groups (university and hospital groups), since it is a hospital-university.

Debits

Receipt

Produce

Work at

Supplier

Has
N

N

1

N

1

1

N

N
1

N

1

Salary

Employee

Is-supplied

Is-related
to

1

N

Stock-item

N

N

N

Is-sent-to

Like

Special-clients

Different-areas

Figure 7.3: Part of the conceptual schema of DBbs1 - LCS

7.1 The Architecture

We select two di�erent components that participate in the system to demonstrate some
aspects of the architecture. Suppose that federation 1 and federation 2 use the rela-

83

tional and object-oriented data models as the canonical data model, respectively. Con-
sider DBbs1 (book-store database) representing its conceptual schema in the E-R model,
with part of its LCS presented in �gure 7.3. On the other hand, suppose DBbs2 a
relational data model with part of its LCS shown in �gure 7.4, where the keys are
represented by underlined attributes. Both of these databases participate in federa-
tion 1 and federation 2. Thus, each one contains two groups of additional structures
(LPSj

i ;MLPS
j
i ; SPD

j
i ; LOC

j
i ; i; j = f1; 2g). Figure 7.5 illustrates DBbs1 and DBbs2 with

their additional structures. We present next some of these structures forDBbs1 and DBbs2.

Employees (emp-id, name-emp, addr-emp, birth-date, start-date, ..., area-id)

Request (req-id, date, descr, emp-id, clie-id)

Special-client (clie-id, name-cl, addr-cl,, ...)

Stock-item (item-num, descr, qty, price, min-qty, sup-id, area-id, ...)

Salary-hist (emp-id, date, salary)

Different-areas (area-id, descr, ...)

Supplier (sup-id, name-sup, addr-sup, facilities, ...)

Likes (clie-id, area-id, ...)

Has (req-id, item-num, ...)

Receipt (rec-id, req-id, date, ...)

Supplies (item-num, sup-id, qty, ...)

Figure 7.4: Part of the conceptual schema of DBbs2 - LCS

In federation 1 the owner of the company wants to have a complete view of his company
in order to retain better control. Therefore, the LPS1

1
and LPS1

2
structures (local public

schema) are equal to the local conceptual schemas of DBbs1 and DBbs2 (�gures 7.3 and
7.4, respectively). However, federation 2 deals with the aspect of allowing customers
to buy products, having a speci�c shared data. The LPS2

1
and LPS2

2
are presented in

�gures 7.6 and 7.7, respectively.
We present next the LOC and master structures and the masters of all the involved

components. Suppose that the LOC structures of all the components are updated, having
the same information inside a certain federation. Thus, �gure 7.8 presents the LOC

bs
1

1

1

1

1

1

1
12

2

2
1

1
1

1

2
1

L C S
S

L O C

DB L
P MLPS

L O C

S P D

MLPS

S P D

L P S

bs

1

1

2

2

2

1

1

2

2

2

2

2

22

2

2
2

L C S
S

L O C

DB L
P MLPS

L O C

S P D

MLPS

S P D

L P S

Figure 7.5: DBbs1 and DBbs2 with their additional structures

84

Special-clients

Is-sent-to

Different-areas

Like

Employee

Stock-item

Debits

Receipt

Produce

N

N

1

1

N

N

N
Is-related

N

1

1

Figure 7.6: Part of the local public schema of DBbs1 in federation 2 - LPS2

1

Employees (emp-id, name-emp)

Request (req-id, date, descr, emp-id, clie-id)

Receipt (rec-id, req-id, date, ...)

Special-client (clie-id, name-cl, addr-cl,, ...)

Stock-item (item-num, descr, qty, price, min-qty, sarea-id,)

Different-areas (area-id, descr, ...)

Has (req-id, item-num)

Likes (clie-id, area-id)

Figure 7.7: Part of the local public schema of DBbs2 in federation 2 - LPS2

2

structure for federation 1 and �gure 7.9 presents the LOC structure for federation 2.
Notice that, although the components of federation 1 are part of federation 2, and some
groups have the same names (terms), the part of the tree related to those databases in
both federations are di�erent.

The MLPS1

i , i = f1; 2g, related to DBbs1 and DBbs2 in federation 1, consist in the
translation of the LPS1

i to the relational data model. On the other hand, MLPS2

i ,
related to DBbs1 and DBbs2 in federation 2, are the mapped of the LPS2

i to an object-
oriented data model. The topic related to the translation between di�erent data models
has received attention in the literature [22, 54, 55, 89, 107]. Therefore, we do not present
here the details of the MLPS

j
i , i; j = f1; 2g. Figure 7.10 presents a part of the Syst-DB,

related to the scenario that it is being analysed, with some of its entities, relationships
and attributes.

7.2 The Discovery Process

Suppose the situation where a lecturer, an user of database DBu4 , performs a query q0

into DBu4 . This query q0 is concerned to the price of an art book. Therefore, DBu4 is a
university database and does not contain information about books and prices. Thus, it
is necessary to identify a federation which DBu4 participates that is related to the query
q0, In this case it is federation 2. Following, the LOC2

4
structure is traversed (�gure 7.9).

DBbs1 is identi�ed as a possible target component and Mb2 as the address of the related

85

Arts Science

DB bs 1

BOOK-STORE CHEMIST

M * DB ch 1 * DB ch 2

*

DB bs 2

ch1
M b 1

*

Figure 7.8: LOC and master structures of components in federation 1 - LOC1

i ;Mx1

DBcc 5 *DB
cc 6

M 2

Arts * Science

France * UK
DB

DB
DBbs

bs 3
2

bs 1

Mch

b

2 * DBch 1 *DBch 2

Europe * USA

DB

DB
cc

cc
2

3

Amex * Master * Visa

North-Hem * South-Hem

DB DBcc cc 4

M h 2
M u 2

South-America * USA

Brazil * Chile

DB
DB

u 2
h 2

DB h 1

South-America * Europe

DBu 2

France * Italy

DB

DB

u

u
1
* DB

u

BOOK-STORE * CHEMIST * CREDIT-CARD * HOSPITAL * UNIVERSITY

1

3

4

M
2cc

Figure 7.9: LOC and master structures of components in federation 2 - LOC2

i ;Mx2

master. Then, q0 and the addresses of DBbs1 and Mb2 are sent to DBbs1 . When receiving
the request of q0, DBbs1 is consulted and the fact that DBbs1 has been consulted.

Assume that DBbs1 does not contain the art book referred in q0. At this point LOC2

1

of DBbs1 is traversed, but no other possible target component is identi�ed. Then, the
master of the book-store group (Mb2) is consulted to identify a possible target component.
Consider the case where a new book-store database, named DBbs4 , willing to participate
in the pool of shopping, was inserted into the system, but not yet updated into LOC2

4
and

LOC2

1
. Nevertheless,Mb2 contains the information about the existence ofDBbs4 , as shown

in �gure 7.11. When Mb2 is consulted DBbs4 and DBbs1 are identi�ed as possible target
component. Then, the request is sent to DBbs4 and DBbs1. When receiving the request,
DBbs1 ignores it, since it has already been consulted for q0 (record that this information
is added into DBbs1 after consulting it). On the other hand, when DBbs4 receives the
request it is consulted. The discovery graph for q0 is presented in �gure 7.12. The dash
arrow represents that the source component knows about the existence of the master in
the graph.

First let us consider the case where DBbs4 contains the data d0 for q0. DBbs4 sends
d0 to DBu4 (the source component). Suppose that DBu4 is satis�ed with d0 (a correct
answer is found). Then, DBbs4 is responsible to cancel the discovery process in execution
by sending the Int-Msg to DBbs1 and Mb2 , at the same time. Following, this components
are responsible to send Int-Msgs to their sons, and so on. The discovery-history (see
subsection 5.4) is updated notifying the existence of d0 in DBbs4 .

On the other hand, assume that DBbs4 does not contain the answer d0 for q0 and

86

id-fed manager cdm

F1

F2

Peter

Mary

Relational

obj-orien.

SQL

OSQL

cdl type-fed

Cia-Shops

Pool of Shop

Federations

id-fed id-group id-comp

F1

G1

G1

G1

G1

G2

G2

.
.
.

G3

G3

G3

G3

G2

G2

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

bs1

bs2

ch1

ch2

bs1

bs2

ch1

ch2

cc1

cc2

cc3

cc4

Have

id-group

G1

G3

G4

G5

G2

name-gr

book-store
chemist

hospital

university

credit-card

Groups

id-fed id-group

F1

F1

F2

F2

F2

F2

F2

G1

G2

G1

G2

G3

G4

G5

is-composed

id-master id-fed id-group

Components

M bs1

ch1

bs2

M

M

M

M
ch2

M

M

h2

u2

cc2

F2

F2

F1

F1

F2

F2

F2

G2

G1

G1

G2

G3

G4

G5

id-group type-comp dba

DB

DB

DB

cc3

cc4

DB u1

u2

u3

u4

bs1DB

bs2DB

bs3

ch1

DB

DB

ch2DB

cc1DB

cc2
DB

cc6

h1
DB

DB

h2DB

DB

DB

DB

cc5

Relational

obj-orien.

obj-orien.

Functional

Relational

Hierarchical

Relational

Relational

obj-orien.

Network

Relational

obj-orien.

obj-orien.

Relational

Network

Functional

obj-orien.

John

Peter

Mary

Jane

Lewis

Rob

Tracy

Phelip

Junior

John

Francys

Paul

Richard

Alan

Luise

Carl

William

F1

F1

F1

F2

F2

F2

F2

F2

F2

F2

F2

Master

Figure 7.10: A view of the Syst-DB

DBcc 5 *DB
cc 6

M 2

Arts * Science

France * UK

DB
DBbs

bs 3
2

Mch

b

2 * DBch 1 *DBch 2

Europe * USA

DB

DB
cc

cc
2

3

Amex * Master * Visa

North-Hem * South-Hem

DB DBcc cc 4

M h 2
M u 2

South-America * USA

Brazil * Chile

DB
DB

u 2
h 2

DB h 1

South-America * Europe

DBu 2

France * Italy

DB

DB

u

u
1
* DB

u

BOOK-STORE * CHEMIST * CREDIT-CARD * HOSPITAL * UNIVERSITY

1

3

4

M
2cc

DB
bs 1 bs4

* DB

Figure 7.11: Mb2 with a new component

87

M
b 2

DB
u 4

bs1
bs

4

DBDB

Figure 7.12: Discovery graph for q0

does not know any other possible target component (failure of the process). In this case,
DBbs4 noti�es Mb2 (its parent) about the non-existence of the information. Then, Mb2

noti�es its own parent (DBbs1) and so on, until DBu4 receives this information. Notice
that it is useless to send the non-existence information fromMb2 directly to DBu4 (source
component). The failure of the process can only be concluded when the source component
receives noti�cation from all of its sons.

7.3 The Scalability Process

Here we do not present all the cases related to the addition, deletion and modi�cation in
the system (see chapter 4). For simplicity, we exhibit one example related to the addition
of a new component and another one concerned to the deletion of an existing database.

7.3.1 Addition

Consider a university U5 willing to share and exchange information with other universities
related to development of projects. To perform this task DBA of U5 consults the Syst-DB
and discover four di�erent university databases that participate in the system in federation
2. However, it also realises that the type of information that they share and exchange are
not related to the projects (federation 2 deals with the pool of shopping). Following, the
DBA of U5 (DBA5 for short) contacts DBA1;DBA2;DBA3 and DBA4 in order to verify
the possibility of forming a federation with some (or all) of these databases. Assume that
U2; U3 and U4 are interested in sharing information related to projects with U5, composing
a new federation (federation 3, for instance).

One of the DBAsi (2 � i � 4) is elected the manager of federation 3. This manager
is responsible to decide how to organise those databases into the federation, to create
the terms related to the groups, to build the LOC and master structures, to de�ne the
common data model and data language, and so on. At the same time, each DBA of the
involved components is responsible to prepare its database to participate in federation
3, by specifying the additional structures. When all the involved components are pre-
pared, Syst-DB is updated with the necessary information related to federation 3 and
the databases can start to interoperate. Notice that the creation of this new federation
is performed by the reection of the insertion of a new component (DBu5 , for instance)
and it is executed without stopping the system. Figure 7.13 presents federation 3 and
�gure 7.14 exhibits the LOC and master structures for the components in federation 3.

88

DB

DB

DB

DB

u

u

u

u

5

2

3

4
M

c
3

Computing

Group

Linguistic

Group

DB

DB

u

u

u

M
5

4

l
3

FEDERATION 3

Figure 7.13: Federation of the university databases sharing projects

COMPUTING * LINGUISTIC

Practice * Theory

Europe * USA
Africa * Europe

M

DBu

DB u DB u
u 4

*DB DBu5

M * DB u 4 *DBu5
c 3 l 3

32

5

Figure 7.14: LOC and master structures for federation 3

89

DBcc 5 *DB
cc 6

M 2

Arts * Science

France * UK

DB
DBbs

bs 3
2

Mch

b

2 * DBch 1 *DBch 2

Europe * USA

DB

DB
cc

cc
2

3

Amex * Master * Visa

North-Hem * South-Hem

DB DBcc cc 4

M h 2
M u 2

Brazil * Chile

DB
DB

u 2
h 2

South-America * Europe

DBu 2

France * Italy

DB

DB

u

u
1
* DB

u

BOOK-STORE * CHEMIST * CREDIT-CARD * HOSPITAL * UNIVERSITY

1

3

4

M
2cc

DB
bs 1 bs4

* DB

South-America

Figure 7.15: New master for Mh2 after removing DBh1 from federation 2

7.3.2 Deletion

Assume that DBh1 wishes to suspend to share and exchange information in federation 2.
Thus, the manager of federation 2 is informed about this fact. S/He has to identify the
groups in federation 2 whereDBh1 participates (hospital group, in this case), to update the
Syst-DB about the removal of DBh1 from federation 2 and to insert the \special message"
into the address of DBh1 . Following the master of the hospital group (Mh2) is updated
with the structure presented in �gure 7.15. Then, Mh2 is responsible to send messages
to the other masters in federation 2 updating them. Those masters are responsible to
update the components related to their groups. Notice that the removal of DBh1 from
federation 2 does not generate the deletion of the hospital group.

90

Chapter 8

Conclusion and Further Work

In this report we proposed an approach to permit interoperability among autonomous
heterogeneous databases. This approach allows the participation of databases that share
and exchange data, and the participation of databases which interrogates the other com-
ponents. We presented an architecture that organises di�erent databases into federations,
depending on the data to be shared and on the other components with which they want
to share this data. The use of federations aims to guarantee privacy and con�dentiality
of the shared data. Inside a federation the databases are classi�ed in di�erent groups and
subgroups, according to the type of shared data, in order to reduce the universe of search.
Before joining a federation a database needs to be prepared and new structures are added
to each component. These additional structures provides the information necessary to
achieve interoperability and preserve autonomy. The architecture supports participation
by both enquirer databases and components that share and exchange information. It
permits semantic representation of the shared data of each component in each federation.

We also presented an algorithm to perform the information discovery process in a
distributed way, without broadcasting to all components. This process is executed with
the help of a hierarchical structure containing specialised terms and components related
to these terms. Nevertheless, the correctness of the information discovery process is
directly related to the way that the groups are formed in a federation and to the choice
of specialised terms. That is, if the groups are well de�ned, then the discovery process
can either �nd the data or conclude that it does not exist in the system. To improve the
discovery process it is important to specify a large variation of groups inside a federation.
However, these groups should contain a low number of components associated to them.

We claim that the approach supports scalability of the system, privacy and con�den-
tiality of the data, preserves the autonomy of the databases and performs interoperability
in a transparent way.

More work has to be done concerning the problem of how to specify and organise
the di�erent groups in a federation. It is necessary to evaluate and analyse what are
the problems that can appeared when having a large number of federations, and how to
control the participation of a component in many federations. We have to �nd a way to
represent and specify the semantic information of the shared data necessary to perform
the information discovery process. It is essential to solve the problem of failures related
to the master and Syst-DB structures.

91

Bibliography

[1] R. Ahmed, P. De Smedt, W. Du, W. Kent, M.A. Ketabchi, W. A. Litwin, A. Ra�i,
and M. Shan. The Pegasus heterogeneous multidatabase system. Computer,
24(12):19{27, December 1991.

[2] R. Alonso and D. Barbara. Negotiating data access in federated database systems.
In 5th Conference on Data Engineering, pages 56{65, Los Angeles, February 1989.
IEEE.

[3] R. Alonso, D. Barbara, and S. Cohn. Data sharing in a large heterogeneous en-
vironment. In 7th International Conference on Data Engineering, pages 305{313,
Held Kobe, April 1991. IEEE.

[4] P. Atzeni and R. Torlone. A metamodel approach for the management of multiple
models and the translation of schemes. Information Systems, 18(6):349{362, 1993.

[5] C. Batini and M. Lenzerini. A methodology for data schema integration in the entity
relationship model. IEEE Transaction on Software Engineering, SE-10(6):650{664,
November 1984.

[6] C. Batini, M. Lenzerini, and S.B. Navathe. A comparative analysis of method-
ologies for database schema integration. ACM Computing Surveys, 18(4):323{364,
December 1986.

[7] A. Bouguettaya. A Dynamic Framework for Interoperability in Large Multi-
databases. PhD thesis, Faculty of Graduate School of the University of Colorado,
1992.

[8] A. Bouguettaya and R. King. Large multidatabases: Issues and directions. In D.K.
Hsiao, E.J. Neuhold, and R. Sacks-Davis, editors, Interoperable Database Systems
(DS-5), pages 55{68. Elsevier Science Publisher B.V., 1993.

[9] A. Bouguettaya, R. King, D. Galligan, and J. Simmons. Implementation of in-
teroperability in large multidatabases. In The Third International Workshop on
Research Issues on Data Engineering: Interoperability in Multidatabase Systems,
Vienna, Austria, April 1993.

[10] A. Bouguettaya, S. Milliner, and R. King. Resource location in large scale hetero-
geneous and autonomous databases. Submitted for publication.

[11] Y. Breitbart, P.L. Olson, and G.R. Thompson. Database integration in a distributed
heterogeneous database system. In International Conference on Data Engineering,
pages 301{310, Los Angeles, California, February 1986. IEEE Computer Society.

92

[12] Y. Breitbart, A. Silberschatz, and G. Thompson. Reliable transaction management
in a multidatabase system. In Proceedings of ACM SIGMOD Conference, 1990.

[13] Y. Breitbart. Multidatabase interoperability. SIGMOD RECORD, 19(3):53{60,
September 1990.

[14] M.W. Bright, A.R. Hurson, and S.H. Pakzad. A taxonomy and current issues in
multidatabase systems. Computer, pages 50{60, March 1992.

[15] M. W. Bright and A. R. Hurson. Linguistic support for semantic identi�cation and
interpretation in multidatabases. In First International Workshop on Interoperabil-
ity in Multidatabase Systems, pages 306{313, Los Alamitos, California, 1991. IEEE
Computer Society Press.

[16] M. W. Bright, A. R. Hurson, and S. Pakzad. Automated resolution of semantic het-
erogeneity in multidatabases. ACM Transaction on Database Systems, 19(12):212{
253, June 1994.

[17] M. L. Brodie, F. Bancilhon, C. Harris, M. Kifer, Y. Masunaga, E. D. Sacerdoti,
and K. tanaka. Next generation database management system technology. In J-
M Nicolas W. Kim and S. Nishio, editors, Deductive and Object-Oriented Databases.
Elsevier Science Publishers, 1990.

[18] M. Brodie and M. Hornick. An interoperability development environment for in-
telligent information systems. In Proceedings of the International Workshop on the
Development of Intelligent Information Systems, Niagara-on-the-Lake, April 1991.

[19] O. Bukhres, J. Chen, and R. Pezzolli. An InterBase system at BNR. SIGMOD
RECORD, 22(2):426{429, June 1993.

[20] M. A. Casanova and V. M. P. Vidal. Towards a sound view integration methodology.
In Proceedings of the 2nd ACM SIGACT-SIGMOD Symposium on Principles of
Database Systems, pages 36{47, Atlanta, Georgia, March 1983.

[21] M. Castellanos, F. Saltor, and M. Garcia-Solaco. A canonical model for the inter-
operability among object-oriented and relational databases. In U. Dayal M.T. Ozsu
and P. Valdueriz, editors, Distributed Object Management, pages 309{314. Morgan
Kaufmann Publishers, San Mateo, California.

[22] M. Castellanos and F. Saltor. Semantic enrichment of database schemas: An object
oriented approach. In First International Workshop on Interoperability in Multi-
database Systems, pages 71{78, Kyoto, April 1991. IEEE Computer Society Press.

[23] S. Ceri and G. Pelagatti. Distributed Databases Principles and Systems. Computer
Science Series, 1984.

[24] A. Chatterjee and A. Segev. Data manipulation in heterogeneous databases. SIG-
MOD RECORD, 20(4):64{68, December 1991.

[25] H.R. Cho, Y.S. Kim, and S. Moon. Development of an autonomous heterogeneous
distributed database system: Dhim. Microprocessing and Microprogramming, 37(1-
5):119{122, January 1993.

93

[26] C. Chung. DATAPLEX: An access to heterogeneous distributed databases. Com-
munications of the ACM, 33(1):70{80, January 1990.

[27] C. Collet, M.N. Huhns, and W.M. Shen. Resource integration using a large knowl-
edge base in Carnot. Computer, 24(12):55{62, December 1991.

[28] C. Date. An Introduction to Database System. Addison-Wesley, Reading, Mass.,
4th edition, 1986.

[29] S. Dao, D. M. Kersey, R. Williamson, S. Goldman, and C. P. Dolan. Smart data dic-
tionary: A knowledge-object-oriented approach for interoperability of heterogeneous
information management systems. In First International Workshop on Interoper-
ability in Multidatabase Systems, pages 88{91, Kyoto, April 1991. IEEE Computer
Society Press.

[30] U. Dayal and H. Hwang. View de�nition and generalization for database inte-
gration in a multidatabase system. IEEE Transaction on Software Engineering,
SE-10(6):628{645, November 1984.

[31] L. G. Demichiel. Resolving database incompatibility: An approach to performing
relational operations over mismatched domains. IEEE Transactions on Knowledge
and data Engineering, 1(4):485{493, December 1989.

[32] D. Edmond, M. Papazoglou, and Z. Tari. Using reection as a means of achieving
cooperation.

[33] F. Eliassen and R. Karlsen. Interoperability and object identity. SIGMOD
RECORD, 20(4):25{29, December 1991.

[34] A. K. Elmagarmid, J. Chen, and O. A. Bukhres. Remote system interfaces: An
approach to overcoming the heterogeneity barrier and retaining local autonomy in
the integration of heterogeneous systems. International Journal of Intelligent and
Cooperative Information Systems, 2(1):1{22, 1993.

[35] A. K. Elmagarmid, J. Chen, W. Du, O. Bukhres, and R. Pezzoli. InterBase: An ex-
ecution environment for global applications over distributed, autonomous, and het-
erogeneous software systems. Technical Report TR112P, Purdue University, 1994.

[36] D. Fang, J. Hammer, and D. McLeod. A mechanism and experimental system
for function-based sharing in federated databases. In E.J. Neuhold D.K. Hsiao
and R. sacks davis, editors, Interoperable Database Systems (DS-5), pages 239{253.
Elsevier Science Publisher B.V., 1993.

[37] D. Fang, J. Hammer, and D. Mcleod. The identi�cation and resolution of semantic
heterogeneity in multidatabase systems. In First International Workshop on In-
teroperability in Multidatabase Systems, pages 136{143, Kyoto, April 1991. IEEE
Computer Society Press.

[38] D. Fang, J. Hammer, D. McLeod, and A. Si. Remote-Exchange: An approach
to controlled sharing among autonomous, hetreogeneous database systems. IEEE
Spring Compcon, pages 510{515, San Francisco, February 1991.

94

[39] P. Fankhauser and E.J. Neuhold. Knowledge based integration of heterogeneous
databases. In D.K. Hsiao, E.J. Neuhold, and R. Sacks-Davis, editors, Interoperable
Database Systems (DS-5), pages 155{175. Elsevier Science Publisher B.V., 1993.

[40] C. Francalanci and B. Pernici. View integration: A survey of current developments.
Technical Report 93-053, Departamento di Eletronica e Informazione - Politecnico
di Milano, 1993.

[41] Y. Freundlich. Knowledge bases and databases. IEEE Computer, 23(11):51{57,
November 1990.

[42] D. Gangopadhyay and T. Barsalou. On the semantic equivalence of heteroge-
neous representations in multimodel multidatabase systems. SIGMOD RECORD,
20(4):35{39, December 1991.

[43] H. Garcia-Molina nad b. Lindsay. Research directions for distributed databases.
SIGMOD RECORD, 19(4):98{103, December 1990.

[44] M. Hammer and D. McLeod. On database management system architecture. MIT
Lab for Comp. Sc., (MIT/LCS/TM-141), October 1979.

[45] J. Hammer and D. McLeod. An approach to resolving semantic heterogeneity in a
federation of autonomous, heterogeneous database systems. International Journal
of Intelligent and Cooperative Information Systems, 2(1):51{83, 1993.

[46] J. Hammer, D. McLeod, and A. Si. An intelligent system for identifying and inte-
grating non-local objects in federated database systems. Technical report, Computer
Science Department, University of Southern California, 1994.

[47] S. Heiler, M. Siegel, and S. Zdonik. Heterogeneous information systems: Under-
standing integration. In First International Workshop on Interoperability in Multi-
database Systems, pages 14{21, Kyoto-Japan, April 1991. IEEE Computer Society
Press.

[48] D. Heimbigner and D. McLeod. A federated architecture for information manage-
ment. ACM Transaction on O�ce Information Systems, 3(3):253{278, July 1985.

[49] A. Herbert. Databases in distributed systems: The new frontier. In 4th International
Conference on Extending Database Technology, Cambridge, 1994.

[50] D. K. Hsiao and M. N. Kamel. The multimodel, multilingual approach to interoper-
ability of multidatabase systems. In First International Workshop on Interoperabil-
ity in Multidatabase Systems, pages 208{211, Kyoto, April 1991. IEEE Computer
Society Press.

[51] D. K. Hsiao. Federated databases and systems: Part i - a tutorial on their data
sharing. VLDB Journal, 1:127{179, 1992.

[52] C. Hsu, M. Bouziane, L. Rattner, and L. Yee. Information resources management in
heterogeneous, distributed environments: A metadatabase approach. IEEE Trans-
actions on Software Engineering, 17(6):604{625, June 1991.

95

[53] R. Hull and R. King. Semantic database modeling: Survey, applications, and re-
source issues. ACM Computing Surveys, 19(3):201{260, September 1987.

[54] P. Johannesson. Schema transformation as an aid in view integration. In C. Rolland,
F. Bodart, and C. Cauvet, editors, Advanced Information Systems Engineering - 5th
International Conference, CAISE'93, number 685 in Lecture Notes in Computer
Science, pages 71{92. Springer Verlag, June 1993.

[55] P. Johannesson. A method for transforming relational schemas into conceptual
schemas. In 10th International Conference on Data Engineering, pages 190{201,
Houston Texas, February 1994. IEEE Computer Society.

[56] M. N. Kamel and N. Kamel. Federated database management system: Require-
ments, issues ans solutions. Computer Communications, 15(4):270{280, May 1992.

[57] W. Kent. The breakdown of the information model in multi-database systems.
SIGMOD RECORD, 20(4):10{15, December 1991.

[58] W. Kim, N. Ballou, J. F. Garza, and D. Woelk. A distributed object-oriented
database system supporting shared and private databases. ACM Transactions on
Information Systems, 9(1):31{51, January 1991.

[59] W. Kim and J. Seo. Classifying schematic and data heterogeneity in multidatabase
systems. IEEE Computer, 24(12):12{18, December 1991.

[60] Y. S. Kim and S. C. Moon. Update synchronization pursuing site autonomy in hetre-
ogeneous distributed databases. Microprocessing and Microprogramming, 34:41{44,
1992.

[61] R. Krishnamurthy, W. Litwin, and W. Kent. Language features for interoperability
of databases with schematic discrepancies. In J. Cli�ord and R. King, editors,
Proceedings of the 1991 ACM SIGMOD International Conference on Management
Data, volume 20, pages 40{49, Denver, Colorado, May 1991. SIGMOD RECORD.

[62] J. A. Larson, S. B. Navathe, and R. Elmasri. A theory of attribute equivalence in
databases with application to schema integration. IEEE Transaction on Software
Engineering, 15(4):449{463, April 1989.

[63] S. C. Laufmann. Coarse-grained distributed agents for transparent access to remote
information. In M.P. Papazoglou and J. Zeleznikow, editors, The Next Generation
of Information Systems: From Data to Knowledge, number 611 in Lecture Notes in
AI, pages 223{237. Springer Verlag.

[64] Y. Lee and S. Moon. Heterogeneous schema integration method for multidatabase
system. Micropeocessing and Microprogramming, 38(1-5):265{272, September 1993.

[65] Q. Li and D. Mcleod. An object-oriented approach to federated databases. In First
International Workshop on Interoperability in Multidatabase Systems, pages 64{70,
Kyoto, April 1991. IEEE Computer Society Press.

96

[66] Q. Li and D. McLeod. Managing interdependencies among objects in federated
databases. In E.J. Neuhold D.K. Hsiao and R. sacks davis, editors, Interoperable
Database Systems (DS-5), pages 331{347. Elsevier Science Publisher B.V., 1993.

[67] Y. E. Lien and J. H. Ying. Design of a distributed entity-relationship database sys-
tem. In Computer Software And Applications Conference, pages 277{282, November
1978.

[68] W. Litwin and A. Abdellatif. Multidatabase interoperability. Computer, 19(12):10{
18, December 1986.

[69] W. Litwin. From database systems to multidatabase systems: Why and how.
In W.A. Gray, editor, Proceedings of The Sixth British National Conference on
Databases (BNCOD 6), British Computer Society Workshop Series, pages 161{188,
July 1988.

[70] W. Litwin, M. Ketabchi, and R. Krishnamurthy. First order normal form for rela-
tional databases and multidatabases. SIGMOD RECORD, 20(4):74{76, December
1991.

[71] W. Litwin, L. Mark, and N. Roussopoulos. Interoperability of multiple autonomous
databases. ACM Computing Surveys, 22(3):267{293, September 1990.

[72] P. Lyngbaek and D. McLeod. Object management in distributed information sys-
tems. ACM Transaction on O�ce Information Systems, 2(2):96{122, April 1984.

[73] F. Manola. Object-oriented knowledge bases. AI Expert, (5):26{36, March 1990.

[74] S. Milliner and M. Papazoglou. A scalable architecture for interactions between
autonomous distributed database nodes. Submitted for publication.

[75] S. Milliner and M. Papazoglou. Reassessing the roles of negotiation and contracting
for interoperable dtabases. Int'l Workshop on Advances in Databases and Informa-
tion Systems, Russian ACM SIGMOD, May 1994.

[76] I-Min, A. Chen, and D. McLeod. Derived data update in semantic databases. In
Proceedings of the Fifth International Conference on Very Large Data Bases, pages
225{234, Amsterdan, 19989.

[77] A. Motro and P. Buneman. Constructing superviews. In ACM SIGMOD, editor,
International Conference on management of Data, pages 56{64, April-May 1981.

[78] A. Motro. Superviews: Virtual integration of multiple databases. IEEE Transac-
tions on Software Engineering, SE-13(7):785{798, July 1987.

[79] J. G. Mullen, W. Kim, and J. Sharif-Askary. On the impossibility of atomic com-
mitment in multidatabase systems. Technical Report TR113P, Purdue University,
1994.

[80] S. Navathe, R. Elmasri, and J. Larson. Integrating user views in database design.
Computer, 19(1):50{62, January 1986.

97

[81] M. K. Papazoglou, S. C. Laufmann, and T. K. Sellis. An organizational framework
for cooperating intelligent information systems. International Journal of Intelligent
and Cooperative Information Systems, 1(1):169{202, 1992.

[82] M. P. Papazoglou, N. Russel, and D. Edmond. Database homogenization using an
intermediate meta-model. Submitted for publication.

[83] W. D. Potter and R. P. Trueblood. Traditional, semantic, and hyper-semantic
approaches to data modelling. IEEE Computer, 21(6):53{63, June 1988.

[84] S. Ram. Heterogeneous distributed database systems. Computer, 24(12):7{10, De-
cember 1991.

[85] J.B. Rothnie and N. Goodman. A survey of research and development in distributed
database management. In Very large Data Bases, pages 48{62, Tokio-Japan, Octo-
ber 1977.

[86] J.B. Rothnie JR.and P.A. Bernstein, S. Fox, N. Goodman, M. Hammer, T.A. Lan-
ders, C. Reeve, D.W. Shipman, and E. Wong. Introduction to a system for dis-
tributed databases (sdd-1). ACM Transaction on Database Systems, 5(1):1{17,
March 1980.

[87] M. Rusinkiewicz and A. Sheth. Specifying interdatabase dependencies in a multi-
database environment. Computer, 24(12):46{53, December 1991.

[88] F. Saltor, M. Castellanos, and M. Garcia-Solaco. Suitability of data models as
canonical models for federated databases. SIGMOD RECORD, 20(4):44{48, De-
cember 1991.

[89] F. Saltor, M. G. Castellanos, and M. Garcia-Solaco. Overcoming schematic discrep-
ancies in interoperable databases. In E.J. Neuhold D.K. Hsiao and R. sacks davis,
editors, Interoperable Database Systems (DS-5), pages 191{205. Elsevier Science
Publisher B.V., 1993.

[90] P. Scheuermann, C. Yu, A. Elmagarmid, H. Garcia-Molina, F. Manola, D. McLeod,
A. Rosenthal, and M. Templeton. Report on the workshop on heterogeneous
database systems held. SIGMOD RECORD, 19(4):23{31, December 1990.

[91] A.P. Sheth and J.A. Larson. Federated database systems for managing distributed,
heterogeneous, and autonomous databases. ACM Computing Surveys, 22(3):183{
236, September 1990.

[92] A. P. Sheth. Semantic issues in multidatabase systems. SIGMOD RECORD,
20(4):5{9, December 1991.

[93] A. P. Sheth, S. K. gala, and S. B. Navathe. On automatic reasoning for schema in-
tegration. International Journal of Intelligent and Cooperative Information System,
2(1):23{50, 1993.

[94] A. Sheth and V. Kashyap. So far (schematically) yet so near (semantically). In
E.J. Neuhold D.K. Hsiao and R. sacks davis, editors, Interoperable Database Systems
(DS-5), pages 283{312. Elsevier Science Publisher B.V., 1993.

98

[95] A. Silberschatz, M. Stonebraker, and J. D. Ullman. Database systems: Achieve-
ments and opportunities. SIGMOD RECORD, 199(4):6{22, December 1990.

[96] P. Simpson and R. Alonso. A model for information exchange among autonomous
databases. Technical report, Princeton University, May 1989.

[97] J.M. Smith, P.A. Bernstein, U. Dayal, N. Goodman, T. Landers, K.W.T. Lin, and
E. Wong. Multibase - integrating heterogeneous distributed database systems. In
National Computer Conference, volume 50 of AFIPS Conference Proceedings, pages
487{499, 1981.

[98] N. Soparkar, H.F. Korth, and A. Silberschatz. Failure-resilient transaction manage-
ment in multidatabases. Computer, 24(12):28{36, December 1991.

[99] S. Spaccapietra and C. Parent. Conicts and correspondence assertions in interop-
erable databases. SIGMOD RECORD, 20(4):49{54, December 1991.

[100] S. Spaccapietra, C. Parent, and Y. Dupont. Model independent assertions for in-
tregration of heterogeneous schemas. VLDB Journal, 1(1):81{126, 1992.

[101] S. Spaccapietra and C. Parent. View integration: A step forward in solving struc-
tural conicts. IEEE Transactions on Knowledge and Data Engineering, 6(2):258{
274, April 1994.

[102] M. Takizawa, M. Hasegawa, and S. M. Deen. Interoperability of distributed informa-
tion system. In First International Workshop on Interoperability in Multidatabase
Systems, pages 239{242, Kyoto, April 1991. IEEE Computer Society Press.

[103] Z. Tari. Interoperability between database models. In E.J. Neuhold D.K. Hsiao
and R. sacks davis, editors, Interoperable Database Systems (DS-5), pages 101{118.
Elsevier Science Publisher B.V., 1993.

[104] G. Thomas, G.R. Thompson, C. Chung, E. Barkmeyer, F. Carter, M. Templeton,
S. Fox, and B. Hartman. Heterogeneous distributed database systems for production
use. ACM Computing Surveys, 22(3):237{266, September 1990.

[105] H. R. Tirri, J. Srinivasan, and B. Bhargava. Integrating distributed data sources
using federated objects. In U. Dayal M.T. Ozsu and P. Valdueriz, editors, Distributed
Object Management, pages 315{328. Morgan Kaufmann Publishers, San Mateo,
California.

[106] D. Tsichritzis. Integrating data base and message systems. In Very large Data
Bases, pages 356{362, Cannes- France, September 1981.

[107] D. Tsichritzis and F. Lochovsky. Data Models, chapter 14. Prentice-Hall, Englewood
Cli�s, N.J.

[108] S. D. Urban and J. Wu. Resolving semantic heterogeneity through the explicit
representation of data model. SIGMOD RECORD, 20(4):55{58, December 1991.

99

[109] S. D. Urban. A semantic framework for heterogeneous database environments. In
First International Workshop on Interoperability in Multidatabase Systems, pages
156{163, Kyoto-Japan, April 1991. IEEE Computer Society Press.

[110] D. Weishar and L. Kerschberg. Data/knowledge packets as a means of supporting
semantic heterogeneity in multidatabase systems. SIGMOD RECORD, 20(4):69{73,
December 1991.

[111] D. Weishar and L. Kerschberg. An intelligent heterogeneous autonomous database
architecture for semantic heterogeneity support. In First International Workshop
on Interoperability in Multidatabase Systems, pages 152{155, Kyoto, April 1991.
IEEE Computer Society Press.

[112] R. Williams, D. Daniels, L. Haas, G. Lapis, B. Lindsay, P. Ng, R. Obermarck,
P. Selinger, A. Walker, P. Wilms, and R. Yost. R�: An Overview of the Architecture,
chapter three, pages 196{218. Readings in Database Systems.

[113] S. B. Yao, V. E. Waddle, and B. C. Housel. View modeling and integration using the
fucntional data model. IEEE Transactions on Software Engineering, SE-8(6):544{
553, November 1982.

[114] C. Yu, W. Sun, S. Dao, and D. Keirsey. Determining relationships among attributes
for interoperability of multi-database systems. In First International Workshop on
Interoperability in Multidatabase Systems, pages 251{257, Kyoto-Japan, April 1991.
IEEE Computer Society Press.

[115] C. Yu, B. Jia, W. Sun, and S. Dao. Determining relationships among names in
heterogeneous databases. SIGMOD RECORD, 20(4):79{80, December 1991.

[116] S.L. Pollack, H.J. Hicks, and W.J. Harrison. Decision Tables: Theory and Practice.
John Wiley and Sons, New York, 1971.

100

