An Authentication Service Supporting Domain
Based Access Control Policies

Imperial College Research Report No. DoC 95/13
15 September 1995

Nicholas Yialelis and Morris Sloman

E-mail: ny@doc.ic.ac.uk, mss@doc.ic.ac.uk
Fax: ++44 171 581 8024

Department of Computing
Imperial College
180 Queen’s Gate
London SW7 2BZ
UK

Abstract

This paper describes the basic architecture of an authentication service for distributed systems
in which domains are used to group objects in order to specify policy. This is necessary for
very large scale systems where it is impractical to specify policies for individual objects. The
enforcement of a policy that is specified in terms of domains requires authentication of object
membership of domains.

As the use of asymmetric cryptography would result in unacceptable performance, the proposed
system is based on the use of symmetric cryptography for intra-realm authentication of
identities or domain membership, while asymmetric cryptography can still be used for inter-
realm authentication. It utilises replicated trusted authentication servers with minimal state in
order to avoid problems in terms of the security and state consistency of the replicas. This is
achieved by using private-key certificates which provide a similar functionality to the public key
certificates in asymmetric cryptosystems, but have better performance. Authentication servers
are also used as translators, i.e. they translate messages that were encrypted with the secret key
of the sender by re-encrypting them with the secret key of the receiver. The paper also describes
the establishment of secure channels between remote objects as well as the authentication of
object membership of domains.

Keywords: access control, authentication, certificates, domains, security architecture, security
policy.

1. INTRODUCTION

The notion of a domain is used to specify policies in terms of groups of objects rather than for
individual objects. Domains provide the means of coping with the complexity of very large
scale, inter-organisational distributed systems which could include millions of objects. These
concepts have been used within the framework of the Esprit funded SysMan project for
management of object based distributed systems [Sloman ez al. 1993]. Access control policies
specify what operations a set of subjects is permitted to perform on a set of targets. As the
scope of these policies is specified in terms of domains, access control decisions are based on
authenticated domain membership rather than individual object identities [Sloman 1994].

This section gives an overview of domains and how they are used to specify access control
policies. It also briefly discusses the access control enforcement model and its relationship to
the authentication system.

1.1 Domains

A domain represents a collection of objects (users, files, servers, workstations, etc.) that have
been explicitly grouped together for management purposes [Sloman et al. 1993]. The policy set
of a domain Dx is the set of references held by Dx to its direct members. An object may be
direct member of more than one domain. As domains are themselves objects, they can be
members of other domains. An object is an indirect member of a domain Dx if it is a direct
member of a domain Dy which is direct or indirect member of Dx. Domain objects are
maintained within Domain Servers which collectively provide a Domain Service. A Domain
server holds the domain objects corresponding to a part of the domain structure and the
addresses of the domain servers responsible for other parts of the domain hierarchy.

Each object has a Unique Identifier (UID) created from the host IP address where the object
was originally created plus time stamp. This identifier remains unchanged even if the object
migrates to a new host. In addition, each object has an Object Identifier (OID) which consists of
its UID and its current network address.

1.2 Access Control Policies and Scope Expressions

An access control policy specifies a relationship between a subject scope and a target scope in
terms of the operations which subjects are permitted to perform on targets as well as
constraints on the applicability of the policy (e.g. validity time for the policy). A policy is
represented by a tuple of the form:

(Subject Scope, Target Scope, Operation Set, Constraints)

The subject and target scopes in a policy are specified using scope expressions. They are
applied on objects (of both domain or non-domain type) and return a set of objects. A
simplified syntax of the scope expressions is defined as follows:-

SC_EXPR ::= object* |
objecte |
{ object } |
SC_EXPR + SC_EXPR |
SC_EXPR - SC_EXPR |
SC_EXPR 4 SC_EXPR |
(SC_EXPR)

Operators:
+ set union

- set difference!

set intersection
* when applied on a domain object a set is returned that contains all direct and indirect

members of the domain and the domain object itself; otherwise a set is returned that

contains the object itself.
when applied on a domain object a set is returned that contains all direct members of

that domain; otherwise @ is returned.
{} returns a set that contains the object on which it is applied.

>

e

The interpretation of the expressions is from left to right.

1.3 Access Control Policy Enforcement Model

We briefly describe the access control model (shown in Figure 1.1) to indicate its relationship
to the authentication service. The Policy Service permits human security managers to specify
access control policies graphically and distributes these policies to Access Control Agents
(ACA) which reside in every node within the system. The ACA holds the policies applying to
targets within a node. A Subject is the object that invokes an operation and a Target is the

object that provides an interface on which operations can be invoked.

" Subject Scope Target Scope
Access Control

POLICY Policy held by
| | e the ACA

Operation Set

Access \ -

Control [rrrrrrviiiinniininey

Policy -
: List \ z
H i Reject \ Z
. Access Request Ref »
q > eference .
Monitor Grant

(invokes operation)

l Constraints
o

Target
Node

Subject J Target
Object EPL Object
Holds Policies, Aduthe.nticaées
Jetermines EPLs Access < Authentication 4 i zgfl’?’;zyrg}’l’w
Control Agent Agent of the subject

2 & 4 1

Domain Service || Authentication Service

Policy Service

Figure 1.1 Access Control Policy Enforcement Model

The Access Control Policy List (ACPL) identifies all policies which apply to a particular target,
and the Enabled Policy List (EPL) is the subset of the APCL permitting a particular
authenticated subject to access the target. The ACPL and EPL are determined by the ACA.

I'This operator cannot be used in the subject scope expression as the authentication system cannot support
verification of non-membership in domains. In distributed systems, in general, it is impossible to prove non
membership. For a short discussion on this issue see [Abadi et al. 1993].

3

There is one Reference Monitor (RM) supporting all objects within an address space in a node; it
makes access control decisions on whether or not an operation is permitted, based upon the
EPLs which are given to it by the ACA. The access control mechanism is described in detail in
[Yialelis ez al. 1995]. The authentication agent supports authentication of domain membership
and individual object identities on behalf of all objects in a node (see section 2 for more detail).

The emphasis of this paper is on the basic design of the authentication system that supports
domain membership authentication. Section 2 presents the basic architecture of the
authentication service and explains how secure channels between remote objects are established
using a trusted authentication service. Section 3 shows how this authentication service can be
used to authenticate domain membership and cope with frequently changing domain structures.
Finally, section 4 summarises the design and discusses further work. A list of the abbreviations
used in this paper is given in the appendix.

2. ARCHITECTURE OF THE AUTHENTICATION SERVICE

The efficiency of the authentication mechanism is critical as a subject may be member of
multiple domains requiring the authentication of many membership certificates. The overheads
of generation and verification of membership certificates based on the use of public-key
encryption would be too time consuming. Symmetric encryption based on shared secret keys is
used in our system as it is about 1000-5000 times faster than public key encryption [Lampson
et al. 1992].

The Authentication Service (AS) is provided by a number of replicated Authentication Servers.
An Authentication Agent (AA) in each host interacts with the AS to perform identity and domain
membership authentication. The utilisation of the AAs makes authentication transparent to the
application objects. All AAs are registered with the AS during the bootstrapping of their hosts.

2.1 Replicated Authentication Servers

Authentication systems based on secret-key cryptography use a trusted on-line authentication
service which is usually provided by replicated authentication servers to improve both
performance and availability (e.g. Kerberos [Stallings 1995]). These servers hold identities and
secret keys of users and servers so it is difficult to maintain security and consistency of this
state information held by these replicas. In order to avoid these problems we have adopted a
scheme similar to the one described in [Davis et al. 1990] which utilises replicated servers with
minimal state (figure 2.1). The advantages are that very simple tamper proof machines can be
used as authentication servers, and replication permits performance improvement without
problems of maintaining consistency (see also [Lampson et al. 1992]).

Replicated servers that know the master key Km

) e (3 O

Authentication Service

Use certificates to
authenticate remote
principals and verify
membership

Publish Certificates
encrypted with Km

Retrieve
certificates

Security Database
(distributed)

Principal involved
in an authentication

Figure 2.1 Using Private Key Certificates

The security database shown in figure 2.1 consists of private-key certificates containing
encryption keys and identities for the principals that have been registered to the AS i.e.
authentication agents and users. These certificates are encrypted using a master key known
only to the replicated authentication servers [Davis et al. 1990] to provide both secrecy and
integrity. The principals retrieve the certificates from the security database which need not be
secure i.e. these are similar to public key certificates in an asymmetric cryptosystem. The
master key is the only state information held by authentication servers which has to be kept very
secure. The replicated authentication servers can also be used as translators (relays) [Lampson
et al. 1992]. That is, they decrypt received messages from the sender and re-encrypt them with
the secret key of the receiver.

In this paper we assume that the clocks of the authentication servers and the other nodes of the
system are loosely synchronised. If this assumption cannot be made, the protocols presented in
the following sections can be changed to use the challenge-response approach though this will
increase the number of communication steps required.

Usually, a set of replicated authentication servers can only be trusted by a limited number of
principals; for example by the principals in a university department or an organisation. We use
the term realm (as in the Kerberos model) to denote the set of principals that are served by a
certain collection of replicated authentication servers. This report discusses intra-realm
authentication, i.e. when the principals involved in an authentication belong to the same realm.
Inter-realm authentication is also possible by registering ASs in a Certification Authority (CA)
hierarchy [Lampson et al. 1992] .

2.2 Notation

This section discusses the notation used to represent encrypted messages, private-key
certificates and statements. A message M encrypted under the secret key K is represented as
{M},. We assume that a secret-key cryptosystem that provides both secrecy and privacy is
used.

The expression A => B denotes that A speaks for B where A and B are principals. The relation
speaks for is defined as in [Lampson et al. 1992], that is A speaks for B if the fact that principal
A says something means that we can believe that principal B says the same thing. The operator
= is transitive which means that if A= B and B= C, then A= C. If secret keys are
considered to be principals, the statement K = B means that if we receive a message M
encrypted under the key K, we can believe that M has been said by B.

The notation A<~ B is used as in [Burrows et al. 1990], to denote that the shared key K can
be used by the principals A and B to communicate with secrecy and integrity. In the interests of
clarity, we also use this notation in the description of the authentication protocols. If A believes

that A<Lab——> B is true, it derives that Kab = B. Similarly, B derives Kab = A if it believes

that A(K—ab)B is true. In addition, if both A and B believe A(K—ab>B, we say that a
secure channel has been established between principals A and B.

Each private-key certificate encrypted by an authentication server contains the id of the server
and the time it was generated which form the unique id of the certificate (CID). In addition,
each certificate contains an expiration time, when the certificate becomes invalid. The format of
a private-key certificates is:

{CID,Te,< statement >} g,

where Km is the master key of the AS and Te is the expiration time. In the interests of brevity,
we usually omit the CID or the expiration time in examples.

2.3 Secure Channels between Authentication Agents

We assume that a secure communication channel exists between any two objects on the same
node as they communicate via the system software/hardware which has to be trusted anyway. It
is necessary to provide means of establishing secure communication channels between objects
in different nodes. In general, these channels should be able to provide both secrecy and
integrity. The establishment of object-to-object secure channels is undertaken by the node AAs
and it requires a secure channel between them.

When an AA of node X (AAx) is registered to the AS a secure channel (that provides both
secrecy and integrity) is established between the AS and AAx (see Figure 2.2). The registration
of the AA has to be done by the security administrator who has the right to register AAs to the
AS. The shared secret key Kx used for this channel (see also in [Davis et al. 1990] a discussion
on key distribution) is certified by a private-key certificate of the form:

{CID,Te,AAx <ﬁ——> ASYKm

We assume here that the transmission of Kx to AAx takes place off-line as at that moment there
is no on-line channel that provides secrecy and integrity between the AS and the AAx.

Including the above-mentioned certificate in messages from AAx to AS, AAx and AS are able to
use the established channel even though AS does not store Kx, as this key can be retrieved from
that certificate.

Authentication Service

/Secure Channels
; Ky

S

O
v AAy

Kxy

Figure 2.2 Secure channels between AAs, and between AAs and AS

The following protocol is used to establish a secure channel between two authentication agents
AAx and AAy.

Message 1. AAy -> AAx: {Tez,AAy<i>AS} Km

Message 2. AAX -> AS: {Te;, AAx s AS) g {Ten, AAy <25 AS) kom

Message 3. AS -> AAx: {Ts, Te3,AAx<ﬁ‘y—>AAy} K {Ts, Te3,AAx<—K—xy—>AAy} Ky

Message 4. AAx -> AAy: {Ts,T e3,AAx<—KLAAy} Ky {AAx; Tx} Kxy

Message 5. AAy -> AAx: {Tx}gyy

This protocol is similar to the one employed by Kerberos which is analysed in [Burrows et al.
1990]. The main difference is that the authentication server in our system is provided with two
private-key certificates that mention the keys it shares with the AAs involved in the protocol. In
the first message, AAx gets the private-key certificate that mentions the secret key of AAy. In
message 2, AAx sends that certificate along with the one that mentions its own secret key Kx. At

6

this point the authentication server involved in the protocol can decrypt these two certificates as
it knows the master key Km. If we assume that no revocation of certificates takes place2, we can
state that:

AS believes AAx(—K—x>AS and AS believes AAy(ﬂaAS

The rest of the protocol can now be analysed using BAN logic as in [Burrows et al. 1990]
Upon the completion of the protocol we derive that:
AAx believes AAx <—KxL> AAy AAx believes AAy believes AAx ﬂ) AAy
and

AAy believes AAx eﬂa AAy AAy believes AAx believes AAx <—-I£xl—-> AAy

The shared key Kxy can then be used for secure communication between AAx and AAy. If, for
instance, AAx sends a time stamped message M encrypted with Kxy, i.e. {Ts,M}gyy, AAy

derives that AAx says M. This is because Kxy = AAx. The timestamp Ts guarantees the
freshness of the message (i.e. the message is not a replay of an old message). In addition, as no
untrusted principal can see the key Kxy, we also achieve message secrecy.

In fact, as soon as a shared secret key has been established between two AAs, further session
keys can be established without the use of the AS. These keys can either be used for secure
communication between the AAs or for secure communication between the objects on the two
nodes. The second use is explained in the following section.

2.4 Channels between Objects

AAs establish secure channels on behalf of the objects on their nodes. In theory, a single key
can be used for more than one object-to-object channel between two nodes provided that this
secret key is not revealed to the objects3 and it is only used for encryption of a limited amount
of traffic. However, not all channels between objects require the same type or level of security4.
This indicates that different object-to-object channels should use different keys (which may
correspond to different cryptosystems). For instance, in figure 2.2, AAx and AAy can establish a
channel on behalf of ObjX and ObjY by choosing a shared secret key Ks. This key is given to
ObjX and ObjY which can now selectively encrypt and decrypt the messages they send to each
other. The effect is that the authentication and the establishment of the channel is transparent to
the objects that use the channel.

An AA should also be able to verify that a remote authenticated AA is trusted to act on behalf of
a given remote object. This is achieved by checking that the IP address of the AA (obtained
from the OID) is the same as that of the object for which it acts. All OIDs of objects that reside
on a node contain the same IP address even if the node has been allocated more than one IP
address. It is implied here that the user that creates an object on a node trusts the AA of that
node to support the object in terms of authentication and secure communication. This
mechanism, however, cannot be used when migration of objects is expected to take place.

The establishment of a secure channel between two objects is triggered by the subject. A
simplified procedure for channel establishment is illustrated in figure 2.3. In phase (1), the
subject requests the establishment of a secure channel with the target. This request can also
specify the type and level of security required. In phase (2), the two responsible AAs agree’ on
the key Ks that the two objects should use and on the channel identifier (CHID). In phase (3),
the two partners of the channels are informed about the key and CHID of the new channel.

2Revocation is discussed in section 2.5.

3Objects on a node cannot, in general, be trusted to the same extent as the AA.

4 For many applications the provision of integrity is sufficient. Provision of secrecy may not be required for
efficiency or legal reasons.

5The two AAs need a secure channel to communicate. If such a channel does not exist, one has to be established
as described in section 2.3.

o [0N
@) *(3)
AAy
J Kxy

Phase (1):

ObjX->AAx: EstablishChannel(ObjY, Channel_Type)
Phase(2):

AAx and AAy agree on Ks and CHID

Phase(3):

AAx->0bjX: Ks, CHID

AAy->0bjY: Ks, CHID

Figure 2.3 Establishing an Object-to-Object Secure Channel

The two AAs involved in the establishment of a channel maintain information related to the
channel. Since a channel is associated with a subject and target, a CHID is a reference to the
OIDs of these objects, to the shared secret key and cryptosystem they are using, and permits the
reference monitor to identify the EPL associated with the subject. Because of the importance of
domain membership for access control decision, the notion of the channel is augmented to
represent the authenticated domain membership of the involved objects. Section 3 describes
how the two authentication agents verify the domain membership of the objects that use a
channel. The concept of the secure channel is discribed in detail in [Yialelis et al. 1995].

The encryption and decryption of the messages can be performed in the address space of the
object that use a channel or in a separate address space that is trusted at least to the same extent
as the object.

2.5 Certificate Revocation

Revocation of private-key certificates is more difficult with stateless authentication servers but
we can move the task of rejecting revoked certificates from the authentication servers to the
AAs. The AAs base their beliefs on statements issued by the AS. The correctness of these
statements depends on a number of private-key certificates which are processed by the AS. The
AS can therefore associate each statement with the certificates on which it is based. The AA that
receives a statement along with the identifiers of the certificates it is based on, can check whether
the statement is valid provided that it has access to a Certificate Revocation List (CRL). One of
the authentication servers, referred to as the Revocation Server, can be dedicated to the
maintenance and publication of the CRL. A single server is adequate as we do not expect a high
revocation rate and one of the other servers can take over the function if it fails. The revocation
server periodically publishes a CRL containing the CIDs of the certificates that have been
revoked but have not expired, plus a digest (H(CRL)) of the CRL. The digest is encrypted with
the master key Km. An AA gets the latest CRL every time it runs an authentication protocol and
checks its integrity by requesting translation of the encrypted digest from the AS (figure 2.4).

The protocol for establishment of secure channels has to be changed slightly in order to cope
with revoked certificates. The statements that the AS generates should contain a Certificate
Dependence List (CDL). This CDL contain the CIDs of the certificates on which the statement
is based on. In the protocol given below, the CDL in the statement that is addressed to AAx is
(CID2) while the CDL in the statement addressed to AAy is (CIDI). The two authentication
agents should check these lists against the current version of the CRL in order to reject the
statement if it is based on a revoked certificate:

Message 1. AAy -> AAx: {CID2, Tey, Ay 25 AS) km

Message 2. AAx -> AS: {CIDl,Tel,AAxLAS} Km-ACID2, T ez,AAyAAS} Km
Message 3. AS -> AAx:

(CDLLTs, L, AAx 525 AAy) g, (CDL2, Ts, L AAx 2225 Ay Ky

Message 4. AAx -> AAy: {CDL2,Ts, L, AAx 05 Ady) Ky» {AAX, Tx} gxy
Message S. AAy -> AAX: {Tx}gyy

The revocation server publishes a new version of the CRL when it receives a new revocation
request. In addition, it publishes a new version of the CRL (even if it is empty or identical to the
previous version) periodically for instance every hour. In this way, denial of service attacks can

be detected and counter measures can be taken according to the security policy applied to the
system.

Revocation Server

“ Publishes CRL

CRL, {H(CRL)}Km

HDRL) JKm
il (Tad® I3\

- Runs
Retrieve Authentication
CRL AAX Protocol
Checks for revoked
Certificates

Figure 2.4 Revocation of Certificates

3. AUTHENTICATION OF DOMAIN MEMBERSHIP

We present a domain membership authentication scheme that is based on the assumption that
the domain service is trusted to certify membership of objects. More specifically, we rely on the
parent domains of the claimant in order to verify the membership it claims. Domains are
distributed in server components which reside on manager workstations or on dedicated servers
around the system. This imposes some difficulties in the design of the system since there is no
single trusted server to provide information about the domain membership of the subjects (c.f.
the notion of the Privilege Attribute Server-PAS in the SESAME architecture [Parker et al.
1994]). Membership authentication is achieved by utilising the AS as translator (relay). It re-
encrypts membership statements with the secret key of the AA that has to verify the
membership of the claimant. So we avoid the creation of secure channels between the domain
servers that certify a membership and the AA of the verifier.

In this section, we denote the fact that an object A is direct member of the domain B as A< B.
Similarly, if A is indirect member of B, we write A << B.

3.1 A simple example
In the example illustrated in figure 3.1, we assume that ObjX has to be authenticated as indirect
member of domain A by AAy. AAx is also involved in the authentication as it acts as

representative of ObjX. ObjX is a direct member of the domain B which is maintained at the

9

domain server DSb. B is also a direct member of A which is maintained at the domain server
DSa. In this case, there is no single domain server that can state ObjX << A. Instead, the
verifier (AAy) combines two individual statements ObjX < Band B < A uttered by the two
domain servers in order to establish ObjX << A. These statements are received by the verifier

through a communication channel that ensures the integrity of the messages. One way to
achieve this is to establish two secure channels between the verifier and the two domain servers
as we have explained in section 2.4. This is not efficient for transmitting a single message, so
we have adopted a mechanism which is based on the ability of the AS to translate (re-encrypt)
messages.

According to this mechanism, AAx (which acts on behalf of ObjX) collects two membership
statements {Ts1,A says (B<A)}kq and {Ts2, B says (ObjX < B) Ykb which have been
encrypted with the secret keys of the AAs of their respective domain servers. These statements
cannot be read by the verifier (AAy) but they can be re-encrypted with the secret key of AAy by
the AS. In fact, the authentication server that receives these encrypted statements establishes

AAa says (Asays (B<A)) and AAbsays(Bsays(0ObjX < B)) since Ka= AAa and
Kb = AAb. If AAa= A and AAb = B hold, the server also establishes that A says (B < A)
and B says (ObjX < B). The server goes on to encrypt two statements that can be read by AAy:
{Tsl,Asays(B<A)} Ky and {Ts2,Bsays (ObjX < B)} Ky These statements are sent to AAx
which forwards them to AAy. AAy can now decrypt these statements and establishes that
Asays (B< A) and Bsays (0ObjX < B) (AAy believes that Ky = AS and that AS is trusted on

its statements). So AAy eventually establishes ObjX << A. The complete protocol sequence for
this example is given in figure 3.1.

bSa

Authentication Service

AAa

—4p denotes

Message 5 domain
membership
Message 1. AAa -> AAx: {Tsl,Asays (B<A)}gg, {Tel,AAa&AS}Km
Kb

Message 2. AAb -> AAx: {Ts2, B says (ObjX < B)}gp, {Te2, AAb¢—— AS} ki,
Message 3. AAx -> AS: {Tsl,Asays (B<A)}gq, {Tel,AAa<——Ka—>AS}Km
{Ts2, B says (ObjX < B)}kp ., {Te2,AAb<Lb-> ASYKm

{Te3,AAy<i> ASYKkm
Message 4. AS -> AAx: {Ts],Asays(B<A)} Ky {Ts2, B says (ObjX < B)} Ky
Message 5. AAx -> AAy: {Tsl,Asays (B<A)} Ky {Ts2, B says (ObjX < B)} Ky

Figure 3.1 Example of Domain Membership Authentication

10

The method illustrated in this example can be generalised for authentication of multiple levels of
indirect membership. The procedure is repeated for each of the membership to be authenticated.

3.2 Channels and Domain Membership

In our system, authentication of domain membership is performed in the framework of an
established secure channel between a subject and a target object. In the example mentioned in
section 3.1, the authenticated membership ObjX << A is associated with the channel CHxy
between ObjX (subject) and ObjY (target). The authenticated membership of the subject is used
by the ACA of the target to generate the EPL. The RM can use the CHID identified in a request
to determine which EPL to check.

The subject of a channel may be a direct or indirect member of a large number of domains, but
only the membership that satisfies the subject scopes of the access control policies, is used by
the ACA to generate an EPL . The decision as to which membership should be verified is made
by the access control service [Yialelis et al. 1995].

In addition, the subject may request the authentication of domain membership of the target of a
channel. In this case the subject triggers the authentication and the responsible AAs swap roles;
that is the AA of the subject becomes the verifier while the AA of the target collects the
necessary statements.

Note that the encrypted messages in figure 3.1 contain timestamps which are used to verify the
freshness of the membership statements. When a membership statement expires while the
channel that has been associated with is still in use, re-authentication is required by the AA that
acts as verifier. If the re-authentication fails, the channel becomes invalid. In this way the system
copes with changing domain membership. The lifetime of the membership statements can be
adjusted to comply with the security and efficiency requirements of the system.

4. CONCLUSIONS AND FURTHER WORK

We have outlined the design of an authentication service for object based systems that makes
use of the notion of domains as a means of specifying policies in terms of groups of objects to
cope with large scale systems that contain millions of objects. Enforcement of policies that have
been specified in terms of domains require authentication of object membership of domains.

The described system is based on symmetric cryptography and utilises an authentication service
which is provided by servers holding minimal state, i.e. only the master key. This makes
replication of secure servers easy as there are no consistency problems to be overcome. In
addition, the authentication service can be used as a translator (relay) in order to avoid time
consuming establishment of secure channels when authentication of domain membership is
performed.

There is a small Trusted Computing Base, i.e. an authentication agent (AA) and access control
agent (ACA), which is replicated on every node in the system. Only the AAs and the users need
to be registered with the AS and the authentication mechanisms are transparent to other objects.

An important issue which has not been discussed in this paper is the delegation of access
rights. The design supports cascaded delegation of access rights by utilising the authentication
service as translator for the delegation tokens which prove that a delegation has taken place. The
notion of the channel is augmented to support delegation by associating it with delegated access
rights and the OIDs of the objects that have delegated access rights. Revocation of delegation is
supported by the revocation server which periodically issues a list that contains the ids of the
revoked delegation tokens.

The design also supports user authentication which can be achieved either by following the
conventional password paradigm or by using smart cards. We are working on the design of

11

inter-realm authentication which registers individual authentication services within a CA-

hierarchy.

The domain service has been fully implemented and the authentication service and access
control system are being implemented within the SysMan project.

Acknowledgements

We gratefully acknowledge financial support from the Swiss Bank Corporation (London), and
Esprit SysMan (7026) and IDSM (6311) projects. We also acknowledge the contribution of
our colleagues, working on these projects, to the concepts discussed in this paper.

REFERENCES
[Abadi et al. 1993]

[Burrows et al. 1990]

[Davis et al. 1990]
[Lampson et al. 1992]
[Parker et al. 1994]
[Sloman et. al 1993]
[Sloman 1994]
[Stallings 1995]

[Yialelis et al. 1995]

APPENDIX

M. Abadi, M. Burrows, B. Lampson and G. Plotkin, “A Calculus for
Access Control in Distributed Systems”, ACM Transactions on
Programming Languages and Systems, Vol. 15(4), pp. 706-734, 1993.
M. Burrows, M. Abadi and R. Needham, “A Logic of Authentication”,
ACM Transactions on Computer Systems, Vol. 8(1), pp. 18-36, 1990.
D. Davis and R. Swick, “Network Security via Private-Key
Certificates”, ACM SIGOS Operating Systems Review, Vol. 24(4), pp.
64-67, 1990.

B. Lampson, M. Abadi, M. Burrows and E. Wobber, “Authentication
in Distributed Systems: Theory and Practice”, ACM TOCS Vol. 10(4),
pp. 265-310, 1992.

T. Parker and D. Pinkas, “SESAME V2 - Overview”, SEASAME,
1994.

M. Sloman, J. Magee , K. Twidle, and J. Kramer, An Architecture for
Managing Distributed Systems, Proc. 4th IEEE Workshop on Future
Trends of Distributed Computing Systems, Lisbon, Sep. 1993, pp 40-
46.

M. Sloman, Policy Driven Management for Distributed Systems,
Plenum Press Journal of Network and Systems Management, Vol.2(4),
pp. 333-361, 1994.

W. Stallings, Network and Internetwork Security, Prentice Hall, 1995.
Nicholas Yialelis and Morris Sloman, “A Security Framework
Supporting Domain Based Access Control in Distributed Systems”,
Research Report DoC 95/14, Imperial College, 1995.

The following abbreviations are used in this paper:

AA Authentication Agent
ACPL Access Control Policy List
AS Authentication Service

CA Certification Authority
CDL Certificate Dependence List
CHID Channel Identifier

CID Certificate unique Identifier
CRL Certificate Revocation List
EPL Enabled Policy List

OID Object Identifier

RM Reference Monitor

TCB Trusted Computing Base
UID object Unique Identifier

12

