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Abstract

This paper shows how the Situation Calculus can be extended to deal

both with `narratives' and with domains containing real-valued parame-

ters, whose actual values may vary continuously between the occurrences

of actions. In particular, a domain is represented where action occurrences

may be `triggered' at instants in time when certain parameters reach par-

ticular values. Its formalisation requires the integration of several types

of default reasoning. Hence Baker's circumscriptive solution to the frame

problem is extended to re
ect the assumptions that by default a given

action does not occur at a given time point, that by default a given set

of parameter values does not trigger a given action, and that by default

a given action occurrence does not result in a discontinuity for a given

parameter. Regarding the minimisation of discontinuities, the example

illustrates how circumstances can arise where, at a particular time point,

discontinuities in some parameters can be `traded' for discontinuities in

others. It is argued that, in general, in such cases extra domain-speci�c

information will be necessary in order to eliminate anomalous models of

the domain.
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1 Introduction

This paper is a slightly extended version of [5]. It builds on the work of Miller
and Shanahan [6], of Sandewall [9] [10] and of Pinto [7] to develop a Situation
Calculus able to represent both `narrative' information and information about
real-valued parameters whose actual values may vary continuously in time. The
need to represent continuous change raises several issues in reasoning about
actions. In particular, a truly comprehensive solution to the frame problem
must be applicable to domains involving both continuous and discrete change.

Narrative information is information about what actions have or have not
actually occurred at particular instants of time. In order to represent narratives,
the Situation Calculus's usual ontology (of actions, Boolean-valued 
uents and
situations) is extended here, as in [6], with a time line (in fact, a real-number
line). Using the extra predicate Happens, action occurrences are embedded
at various points along this time line, thus dividing it into non-overlapping
intervals. Extra axioms are included which equate all the time points within
a single such interval to a single situation, using the function State (mapping
time points to situations). The axiomatisation thus ensures that between action
occurrences (the Boolean values of) all 
uents persist. At points in time where
actions occur, this principle of persistence is weakened to a default. Which

uents persist at such points is largely determined by the particular solution to
the frame problem employed by the conventional Situation Calculus component
of the theory. The solution used here is based on that of Baker [1]. As in [6],
Baker's circumscription policy is extended, in this case to model other modes
of default reasoning relating either to continuous change or to narratives.

To deal with continuous change, the Situation Calculus's ontology is further
extended with the familiar mathematical notion of a parameter. Whereas 
u-
ents take on Boolean values at di�erent moments of time, parameters take on
real number values. As mentioned above, 
uents are associated with the notion
of persistence. The corresponding notion for parameters is that of continuity
(in the usual mathematical sense). Following Sandewall [9], in this paper the
view is taken that during periods of time in which no actions occur, both the
principle of persistence of 
uent values and the principle of continuity of pa-
rameter values are inviolate. At points in time where actions occur, both of
these principles are weakened to defaults. A problem analogous to the frame
problem arises for parameters { that is, how to succinctly express that most
parameters remain continuous at most points where actions occur. To borrow
some terminology from Sandewall, attention will be restricted here to narratives
which are piecewise continuous, i.e. in which there are only a �nite number of
action occurrences in any given �nite interval of time.

The paper is organised as follows. In Section 2, an example domain is in-
troduced, and a conventional mathematical model constructed and examined
in some detail. The example is of particular interest �rst because it involves
negative feedback, and second because it includes an action occurrence which
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has been `triggered' by parameters reaching certain values at the end of a pe-
riod of continuous change. In Section 3 the domain-independent axioms of the
extended Situation Calculus are described, and in Section 4 the formalism is
applied to the example described in Section 2. The paper ends with a general
discussion in Section 5.

2 The Water Tanks Example

This example involves two open-top water tanks, TankA and TankB. The
two tanks have identical length and width, but TankA is taller than TankB.
TankA is suspended above TankB, and in the bottom of TankA are two taps,
TapC and TapD, both of which (when open) discharge water into TankB, at a
rate proportional to the level of water in TankA (i.e. at a rate proportional to
the water pressure at the bottom of TankA). Initially, TankA contains more
water than will �t into TankB, TankB is empty, and both taps are closed. This
initial scenario is illustrated in Figure 1. L is the initial level of the water in
TankA, and HB is the height of TankB.
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Suppose that at time T1, TapC is opened causing water to 
ow from TankA

to TankB, at time T2 (sometime later) TapD is also opened, and at time T3
(sometime later still) TankB over
ows. This course of events is also illustrated
in Figure 1. Note that the over
owing event (i.e. action occurrence) at T3 is
`triggered' { T3 is determined by the times T1 and T2 and the functions describing
the 
ow of water through the two taps.

A mathematical model of this domain can be formulated in a standard way.
Four parameters are needed { all functions from time (represented by the non-
negative reals) to the reals. LevelA(t) and LevelB(t) are the functions repre-
senting the levels of water in TankA and TankB respectively, and F lowC(t)
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and F lowD(t) represent the water 
ow through TapC and TapD. Let K be the
constant of proportionality between the level of water in TankA and the 
ow
through either of the taps when open. It will be assumed that speci�c values
have been given for T1 and T2 such that 0 < T1 < T2. The speci�c value of T3
is obviously dependent on L, HB, K, T1 and T2, and it will also be assumed
that L, HB, K, T1 and T2 are such that T2 < T3.

The process of constructing the model may be summarised as follows. (i) For-
mulate some equations relating the functions LevelA(t), LevelB(t), F lowC(t)
and F lowD(t) and/or their derivatives under various di�erent physical circum-
stances of the system. (ii) Divide the time line into several intervals (such as the
interval between T1 and T2, where TapC is open but TapD is closed). For each
such interval, pick a subset of these equations which are applicable through-
out the interval, and solve them simultaneously to derive explicit independent
expressions for each parameter in terms of time alone. Generally, because the
initial equations are often di�erential equations, these solutions will contain un-
known constants. (iii) Use knowledge of the physics of the system to assign
particular values to these unknown constants. As will be seen, these assign-
ments are in fact determined either by `initial conditions', or by decisions as to
which parameters of the system are continuous at the points T1, T2 and T3.

To simplify the discussion, a particular convention concerning the points of
transition between one interval and the next is adopted in this section. When-
ever the interval of time under consideration has a greatest lower bound Tl
(other than 0), it is assumed that Tl is not contained in the interval, but when-
ever the interval has a least upper bound Tu, it is assumed that Tu is contained
in the interval. Hence, for example, it is assumed that the interval where TapC
is open but TapD is closed is the half-open interval (T1; T2]. Furthermore, at
all points in each such interval (Tl; Tu], except possibly at Tu, it is assumed that
each parameter is continuous, and that all its derivatives are well de�ned and
are also continuous. At points such as Tu, it is simply stipulated that for each
parameter P (which may be a derivative of some other parameter)

P (Tu)
def
= lim

t!T
�

u

P (t)

i.e. the value of each parameter at Tu is de�ned as its limit from the left at Tu.
The successive derivatives of P at t are written as P 0(t), P 00(t), etc.

The following equations are each applicable in the circumstances indicated

Always: LevelA0(t) = �(F lowC(t) + F lowD(t)) (1)
TankB not full: LevelB0(t) = F lowC(t) + F lowD(t) (2)
TankB full: LevelB0(t) = 0 (3)
TapC closed: F lowC(t) = 0 (4)
TapC open: F lowC(t) = K:LevelA(t) (5)
TapD closed: F lowD(t) = 0 (6)
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TapD open: F lowD(t) = K:LevelA(t) (7)

In the interval [0; T1] the relevant equations are (1), (2), (4) and (6). Their
simultaneous solution is

LevelA(t) = C1

LevelB(t) = C2

F lowC(t) = 0
F lowD(t) = 0

where C1 and C2 are arbitrary real valued constants. Since it is also known
that LevelA(0) = L and LevelB(0) = 0 (because these values have been given
as initial conditions),

LevelA(t) = L (S1)
LevelB(t) = 0 (S2)
F lowC(t) = 0 (S3)
F lowD(t) = 0 (S4)

At time T1, TapC is opened, so that in the interval (T1; T2] the equations to
solve are (1), (2), (5) and (6). Their simultaneous solution is

LevelA(t) = C3:e
�Kt

LevelB(t) = C4 �C3:e
�Kt

F lowC(t) = C3:Ke�Kt

F lowD(t) = 0

where C3 and C4 are arbitrary real valued constants. In fact, it is implicit in
the description of the domain that no `sudden' change in the level of TankA or
of TankB occurs at T1 { i.e. it is known that LevelA(t) and LevelB(t) are both
continuous at T1. Hence, with a little algebra, it is easy to see that C3 = LeKT1

and C4 = L. Hence the �nal solution in this interval is

LevelA(t) = Le�K(t�T1) (S5)
LevelB(t) = L� Le�K(t�T1) (S6)
F lowC(t) = LKe�K(t�T1) (S7)
F lowD(t) = 0 (S8)

Notice that this solution forces a discontinuity in LevelA0(t), LevelB0(t) and
F lowC(t) at the point T1, and also forces discontinuities in all their derivatives.
Merely mechanically limiting the number of discontinuous parameters at this
point, without considering the physical realities of the system, could have re-
sulted in trading all these discontinuities for a single discontinuity in LevelA(t),
by putting C3 = C4 = 0.

In the interval (T2; T3], both TapC and TapD are open, and the equations
to solve are (1), (2), (5) and (7). Their simultaneous solution is
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LevelA(t) = C5:e
�2Kt

LevelB(t) = C6 � C5:e
�2Kt

F lowC(t) = C5:Ke�2Kt

F lowD(t) = C5:Ke�2Kt

where again C5 and C6 are arbitrary real valued constants. Again, it is known
that LevelA(t) and LevelB(t) are both continuous at T2. Hence C5 = LeK(T1+T2)

and C6 = L. Hence the �nal solution in this interval is

LevelA(t) = LeK(T1+T2�2t) (S9)
LevelB(t) = L� LeK(T1+T2�2t) (S10)
F lowC(t) = LKeK(T1+T2�2t) (S11)
F lowD(t) = LKeK(T1+T2�2t) (S12)

As before, this solution forces discontinuities at the point T2, this time in
LevelA0(t), LevelB0(t) and F lowD(t) and all their derivatives. In this case
there are two other sets of assignments to C5 and C6 which would have re-
sulted in trade-o�s in discontinuities. The assignments C5 = 0 and C6 =
L � LeK(T1�T2) would have kept F lowD(t) and its derivatives continuous at
T2 (as well as maintaining the continuity of LevelB(t)). Alternatively, to keep
LevelA0(t) and LevelB0(t) continuous at T2 the assignment C5 = L

2 e
K(T1+T2)

and C6 = L(1+ 1
2e

K(T1+T2)+ eK(T1�T2)) could have been made. However, both
of these alternative sets of assignments would have resulted in discontinuities
in LevelA(t) { i.e. `sudden disappearances' of water from TankA, as well as
discontinuities in F lowC(t) and its derivatives.

The speci�c value for T3 can now also be computed, using (S10) and the
knowledge that LevelB(T3) = HB. This gives

T3 =
T1+T2

2 + 1
2K ln(

L
L�HB

)

Finally, in the region (T3;+1), TankB is over
owing, and the equations to
solve are (1), (3), (5) and (7). Their simultaneous solution is

LevelA(t) = C7:e
�2Kt

LevelB(t) = C8

F lowC(t) = C7:Ke�2Kt

F lowD(t) = C7:Ke�2Kt

where again C7 and C8 are arbitrary real valued constants. Again, it is known
that LevelA(t) and LevelB(t) are both continuous at T2. Hence C7 = LeK(T1+T2)

(= C5) and C8 = HB. Hence the �nal solution in this interval is

LevelA(t) = LeK(T1+T2�2t) (S13)
LevelB(t) = HB (S14)
F lowC(t) = LKeK(T1+T2�2t) (S15)
F lowD(t) = LKeK(T1+T2�2t) (S16)
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At T3, no trade-o�s in discontinuities are possible. The inclusion of equation
(3) in the model for this last region guarantees a discontinuity in LevelB0(t) and
all its derivatives. Since (S13), (S15) and (S16) are identical to (S9), (S11) and
(S12) respectively, all other parameters are continuous at this point.

For the sake of discussion, expressions such as (1) { (7) will be referred to
here as equality constraints, and expressions such as (S1) { (S16) as trajectories.
(Trajectories are thus a special case of equality constraint which mention only
one parameter, and no derivatives of parameters.)

There are several points to note about mathematical models such as the one
above. First, notice that there is often a natural association between individ-
ual equality constraints such as (1) { (7) and individual or `local' properties of
the domain. For example, (5) must hold if and only if TapC is open. Second,
for other more complex domains, perhaps involving non-linear relationships be-
tween parameters and derivatives, it might not be easy to formulate explicit
trajectories for each parameter { it may be necessary for example to employ
numerical or approximation methods to provide a simultaneous solution to a
given set of equality constraints. Third, notice that the equality constraints
such as (1), (2), etc. persist through the transition points T1, T2 and T3 to a
greater degree than the trajectories (S1), (S2), etc. For example, expression (1)
is relevant throughout all four intervals, whereas the expressions (S1), (S3) and
(S9) are all di�erent.

For these reasons, a suitably extended Situation Calculus will be used in this
paper to describe transitions from one set of equality constraints such as f(1),
(2), (4), (6)g to another such as f(1), (2), (5), (6)g, and mathematics will be
relied upon to transform a given set of equality constraints such as f(1), (2), (4),
(6)g into a set of trajectories such as f(S1), (S2), (S3), (S4)g. As has been seen,
the mathematics sometimes generates arbitrary constant symbols in trajectories,
such as C1; : : : ; C8. The extended Situation Calculus must therefore enable the
inference of the speci�c numerical values of these constants. Such inferences
will be based in part on the general principle of minimising discontinuities at
points of transition, and in part on domain-speci�c information, such as the
`commonsense' knowledge that opening a tap does not cause a body of water to
instantaneously disappear.

3 A Situation Calculus for Piecewise

Continuous Domains

3.1 The Language

Following the usual practice, the Situation Calculus presented here will be writ-
ten in a sorted predicate calculus, with sorts A, S and F , for actions, situa-
tions and 
uents respectively, as well as a sort X for `domain objects' (blocks,
water-tanks, or whatever). It will also include a sort T of time-points, a sort
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P of parameters, and a sort R of values which parameters can take at speci�c
time-points. In fact, models will be considered only in which terms of sort R are
interpreted as real numbers, and terms of sort T are interpreted as non-negative
reals. The sorting of the logic is summarised in Figure 2 below.

NAME OF SORT SYMBOL VARIABLES
Actions A a; a1; a2; : : :

Situations S s; s1; s2; : : :

Fluents F f; f1; f2; : : :

Times T t; t1; t2; : : :

Parameters P p; p1; p2; : : :

Reals R r; r1; r2; : : :

Domain objects X x; x1; x2; : : :

F-preds (predicate sort) H = 2F h; h1; h2; : : :

Valuations (function sort) V : P 7! R v; v1; v2; : : :

Figure 2

Figure 2 also includes the second order sorts H (f-preds) and V (valuations).
F-preds, which are predicates ranging over 
uents, are included so that the
second-order version of Baker's solution to the frame problem [1] can be incor-
porated in the framework. They help in establishing a large enough space of
situations in each model, so that the solution to the frame problem cannot be
compromised by failing to take into account a particular hypothetical combina-
tion of 
uents (see [1] for further explanation).

Valuations, which are functions from P to R, are included here for an analo-
gous reason. As stated in the introduction, and following the approach in [6], in
the axiomatization given below a function State will be used to associate par-
ticular (half-open) intervals along the time line with a single situation. But in
domains involving continuous change, the e�ects of a particular action may not
depend only on which 
uents hold throughout such intervals of time. They may
also depend on the instantaneous values of the (continuously varying) parame-
ters at the particular instants of time at which the action occurs. Therefore, to
fully describe action preconditions it is sometimes necessary to be able to refer
to speci�c parameters' values. Here (as in [1]) situations may be thought of as
sets of 
uents. Similarly, valuations are in e�ect sets of parameter values. Since
action preconditions may be expressed partly in terms of parameter values, the
Result function is extended here so as to range over valuations as well as over
actions and situations. For example, the fact that turning a car ignition key
starts the engine if the battery is connected and has su�cient voltage might be
axiomatized using the 
uents Connected and EngineOn, the parameter Voltage
and the action Turn, as

Holds(EngineOn;Result(Turn; v; s)) 
[Holds(Connected; s) ^ v(Voltage) > 12]
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The use of universally quanti�ed variables of sort V e�ectively establishes a
large enough space of sets of parameter values, irrespective of whether the val-
ues in a particular such set ever simultaneously occur at any point in time. This
becomes especially important when attempting to describe all the hypothetical
instantaneous circumstances under which an action (such as the over
ow action
in the example of the previous section) could be triggered. The formalisation
below will incorporate a default assumption that a given hypothetical circum-
stance does not trigger a given action. To avoid problems analogous to the Yale
Shooting Problem, it is therefore important not to index triggering information
with a temporal argument.

The domain-independent predicate,function and constant symbols of the for-
malism are listed in Figure 3.

FUNCTION SORT
Sit 2F 7! S

Result A� V � S 7! S
State T 7! S

Function P � T 7! R
Values T 7! V

� P 7! P

PREDICATE SORT
Holds F � S
Ab A� F � V � S
Absit 2F

Happens A� T
Performed A� T
Triggers V � S �A
Continuous P � T

Differentiable P � T
Breaks A� P � V � S

InstantEffect A� P � V � S �R
< R�R
< T � T

CONSTANT SORT
S0 S

all real numbers R
0 and all +ve real numbers T

Figure 3
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3.2 Domain-independent Axioms

The following six domain-independent axioms, which do not directly concern
continuous change, are included in every theory. All variables are assumed to
be universally quanti�ed with maximum scope unless otherwise stated. Axiom
(F1) is a frame axiom. Note that, for the reasons described above, both the
function Result and the predicate Ab range over valuations as well as situa-
tions. As usual, Ab is minimised to provide a non-monotonic solution to the
frame problem. Axiom (ES1) is Baker's second order `existence of situations'
axiom (the second conjunct of which simply expresses the uniqueness-of-names
property for Sit terms). Absit is minimised at a higher priority than Ab so as
to establish a large enough space of situations in each minimal model (see [1]
for further explanation).

:Ab(a; f; v; s)! [Holds(f;Result(a; v; s))$ Holds(f; s)] (F1)

[:Absit(h)! [Holds(f; Sit(h)) $ h(f)]] ^ (ES1)
[Sit(h1) = Sit(h2)! (h1(f)$ h2(f))]

State(t) = S0  :9a1; t1[Happens(a1; t1) ^ t1 < t] (N1)

State(t) = Result(a1; Values(t1); State(t1)) (N2)
[Happens(a1; t1) ^ t1 < t ^
:9a2; t2[Happens(a2; t2) ^ t1 < t2 ^ t2 < t]]

[Happens(a1; t) ^Happens(a2; t)]! a1 = a2 (N3)

Happens(a; t)$ [Performed(a; t)_ Triggers(Values(t); State(t); a)] (N4)

Axioms (N1){(N4) concern the narrative aspect of each theory. Axioms
(N1) and (N2) associate half-open intervals along the time line to situations
in a straightforward way. (N2) is shorter than its counterpart in [6], because
the simplifying assumption is made here that two or more actions do not occur
simultaneously { this assumption is expressed in Axiom (N3). The issue of
concurrency is orthogonal to the main concerns of this paper. To deal with
concurrency and the combined e�ects of simultaneous actions, the axioms can
be extended in the manner described in [6].

Axiom (N4) provides a de�nition of Happens in terms of the predicates
Performed and Triggers. It expresses that an action A happens at a particular
time T either if it is performed at T (implicitly by an external agent), or if it
is triggered by the instantaneous set of circumstances at T . This set of circum-
stances is captured partly by the situation term State(T ), which enables indirect
reference to the set of 
uents which hold at T , and partly by the valuation term
Values(T ), which represents the instantaneous values of all parameters at T .
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Both the predicates Performed and Triggers are minimised (this is discussed
in more detail below).

To deal with continuous change, two extra function symbols, Function and
�, have been included in the language (see Figure 3). Mathematically, param-
eters can be regarded as functions of time. To re
ect this, Function takes a
parameter and a time point and returns a real number. Axiomatizations of
the usual mathematical de�nitions of continuity and di�erentiability, in terms
of the predicates Continuous and Differentiable, are assumed, as well as an
appropriate de�nition of the operator @

@t
(see appendix). Given a parameter P ,

the term �(P ) names the `derivative of P '. Hence the following two axioms are
included in every theory.

Values(t)(p) = Function(p; t) (C1)

Differentiable(p; t) ! Function(�(p); t) = @
@t
Function(p; t) (C2)

To respect the convention regarding parameter values at end points of half-open
intervals of time, described at the beginning of Section 2, it is su�cient to ax-
iomatize the mathematical constraint that, at every time-point, the function
associated with each parameter is left-hand continuous:

8p;t;r9t18t2[[t2 < t ^ (t � t2) < t1 ^ 0 < r]! (C3)
jFunction(p; t)� Function(p; t2)j < r]

To describe instantaneous changes in the values of parameters at times when
actions occur, and discontinuities in their corresponding functions of time, the
predicates InstantEffect and Breaks are introduced. Both predicates are min-
imised. InstantEffect(A;P; V; S;R) should be read as `in the circumstance
represented by the valuation V and situation S, the action A causes the pa-
rameter P to instantaneously take on the value R'. More precisely, Axiom (C6)
below states that if A also happens at time T , and V and S describe the cir-
cumstances at T , then R is the value of the right-hand limit of P at T . (In
fact, InstantEffect is not used in the domain speci�c axioms of the next sec-
tion, describing the water tanks example. But it is useful for domains such as
Sandewall's `bouncing ball' scenario [9], where it is necessary to express that
a `bounce' action instantaneously reverses the horizontal velocity of a moving
ball.)

Breaks(A;P; V; S) can be read as `in the circumstance represented by the
valuation V and situation S, the action A can potentially cause a discontinuity
in parameter P '. This predicate is somewhat analogous to the predicate Ab, but
with its second argument of sort P rather than F . The following four domain-
independent axioms make direct use of InstantEffect and Breaks. Axiom (C4)
can be regarded as a kind of `frame axiom' for parameters.
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:[Happens(a; t)^Breaks(a; p; Values(t); State(t))] ! (C4)
[Continuous(p; t)^Differentiable(p; t)]

Breaks(a; p; v; s)! Breaks(a; �(p); v; s) (C5)

[InstantEffect(a; p; Values(t); State(t); r) ^Happens(a; t)]! (C6)
8r19t18t2[[t < t2 ^ (t2 � t) < t1 ^ 0 < r1]

! jFunction(p; t2)� rj < r1]

[InstantEffect(a; p; v; s; r)^ v(p) 6= r]! Breaks(a; p; v; s) (C7)

Finally, an axiom is needed expressing the condition of piecewise continuity:

9r8a1;t1;a2;t2[[Happens(a1; t1) ^Happens(a2; t2) ^ t1 < t2]! (C8)
0 < r � (t2 � t1)]

Circumscription will be used here to model the various modes of default
reasoning associated with narrative domains involving continuous change. The
predicates Absit, Ab, Performed, Triggers, InstantEffect and Breaks all need
to be minimised. The exact circumscription policy and its e�ects will be dis-
cussed in the next section, following an axiomatization of the water tanks ex-
ample.

4 An Axiomatization of the Water Tanks

Example

The following constant symbols will be used to axiomatize the water tanks ex-
ample of Section 2. TurnOnC, TurnOnD and StartSpillB of sort A, OpenC,
OpenD and OverflowingB of sort F , and LevelA, LevelB, F lowC and F lowD
of sort P. Uniqueness-of-names axioms are assumed which state that the con-
stants of each sort are distinct, and that each ground term of sort P constructed
with the function � is distinct from any other. As in Section 2, the meta-variables
T1 and T2 of sort T and L, HB and K of sort R are also used in the axiomati-
zation below { these should simply be thought of as real number constants.

Given the domain-independent axioms of the previous section, the example
can now be described with 27 extra domain-dependent axioms. For readability
they are grouped below into `action rules', `instantaneous e�ect rules', `initial
situation facts', `occurrence facts', `triggering rules', `initial value facts' and
`equality constraint rules'. In axioms (T17){(T27) below, abbreviations have
been used for terms of sort R constructed with the function symbols Function
and �. For example, the terms Function(F lowC; 0) and Function(�(LevelA); t)
have been abbreviated to `F lowC(0)' and `LevelA0(t)' respectively.
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Action rules:

Holds(OpenC;Result(TurnOnC; v; s)) (T1)
Holds(OpenD;Result(TurnOnD; v; s)) (T2)
Holds(OverflowingB;Result(StartSpillB; v; s)) (T3)

Instantaneous e�ect rules:

Breaks(TurnOnC;F lowC; v; s) (T4)
Breaks(TurnOnC; �(LevelA); v; s) (T5)
Breaks(TurnOnC; �(LevelB); v; s)  :Holds(OverflowingB; s) (T6)
Breaks(TurnOnD;F lowD; v; s) (T7)
Breaks(TurnOnD; �(LevelA); v; s) (T8)
Breaks(TurnOnD; �(LevelB); v; s)  :Holds(OverflowingB; s) (T9)
Breaks(StartSpillB; �(LevelB); v; s) (T10)

Initial situation facts:

:Holds(OpenC; S0) (T11)
:Holds(OpenD; S0) (T12)
:Holds(OverflowingB; S0) (T13)

Occurrence facts:

Performed(TurnOnC; T1) (T14)
Performed(TurnOnD; T2) (T15)

Triggering rules:

[v(LevelB) = HB ^ v(�(LevelB)) > 0] (T16)
! Triggers(v; s; StartSpillB)

Initial value facts:

LevelA(0) = L (T17)
LevelB(0) = 0 (T18)
F lowC(0) = 0 (T19)
F lowD(0) = 0 (T20)

Equality constraint rules:

LevelA0(t) = �(F lowC(t) + F lowD(t)) (T21)
Holds(OverflowingB; State(t)) ! LevelB0(t) = 0 (T22)
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:Holds(OverflowingB; State(t)) (T23)
! LevelB0(t) = F lowC(t) + F lowD(t)

Holds(OpenC; State(t))! F lowC(t) = K:LevelA0(t) (T24)
:Holds(OpenC; State(t))! F lowC(t) = 0 (T25)
Holds(OpenD; State(t)) ! F lowD(t) = K:LevelA0(t) (T26)
:Holds(OpenD; State(t)) ! F lowD(t) = 0 (T27)

The aim in considering this example is to construct a representation, in a
principled way, from which the trajectories (S1){(S16) can be inferred (in the
relevant time intervals). Let �wt be the theory consisting of the domain in-
dependent axioms (F1), (ES1), (N1){(N4) and (C1){(C8), together with the
domain dependent axioms (T1){(T27) and uniqueness-of-names axioms for ac-
tions, 
uents and parameters. By itself, �wt does not entail these trajectories.
As discussed above, various modes of default reasoning also need to be repre-
sented { namely the assumptions that by default a given action does not a�ect a
given 
uent, that by default a given action does not occur at a given time point,
that by default a given set of parameter values does not trigger a given action,
and that by default a given action occurrence does not result in a discontinuity
for a given parameter. Prioritized and parallel circumscription will be used here
to model these assumptions (see [4] for a full explanation of the notation used
below). The complete representation of the domain is

CIRC[�wt ; Absit > Ab; Performed; T riggers; InstantEffect; Breaks ;
Holds; Sit; Result; S0;Happens; State; Values; Function; �]

This expression will be referred to as CIRCcc[�wt]. Much further investiga-
tion needs to be done to ascertain the extent to which CIRCcc is an appropriate
policy in general for domains involving continuous change. It could be, for ex-
ample, that for other domains extra priorities have to be introduced. However,
it is not hard to show that it yields the correct results in the case of the water
tanks example. The full proof of this is somewhat tedious, but the following is
an outline of its main steps.

Given any model M of �wt, a corresponding model M 0 can be constructed
with the same universe of discourse, which contains the same interpretations for
all ground action, 
uent and parameter terms, and which is also a model for Ax-
ioms (circ1){(circ6) below. (M 0 is constructed using the trajectories (S1){(S16)
to de�ne the interpretations of Function and V alues, and equating S0 and all
situation terms constructed with the Result function to an appropriate Sit term.
State(T ) is equated with S0 for T � T1, withResult(TurnOnC; V alues(T1); S0)
for T1 < T � T2, etc.) In (circ6), n is a variable whose sort is the natural
numbers and NthDerivative(P1 ; P2; N ) means `P1 is the N th derivative of P2'.
(This of course assumes an appropriate axiomatization of the naturals, and an
appropriate de�nition of NthDerivative1 in terms of the function symbol �.

1E.g. NthDerivative(p1; p2; n)$
([n=0 ^ p1=p2 ] _ [n=n1+1 ^ p1=�(p3)^NthDerivative(p3; p2; n1)])
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NthDerivative should be regarded as a temporary de�nitional extension of the
language.)

:Absit(h) (circ1)

:InstantEffect(a; p; v; s; r) (circ2)

Ab(a; f; v; s)$ (circ3)
[[a = TurnOnC ^ :Holds(OpenC; s)] _
[a = TurnOnD ^ :Holds(OpenD; s)] _
[a = StartspillB ^ :Holds(OverflowingB; s)]]

Performed(a; t)$ (circ4)
[[a = TurnOnC ^ t = T1] _
[a = TurnOnD ^ t = T2]]

Triggers(v; s; a) $ (circ5)
[a = StartSpillB ^ v(LevelB) = HB ^ v(�(LevelB)) > 0]

Breaks(a; p; v; s)$ (circ6)
[[a = TurnOnC ^ 9n:NthDerivative(p; F lowC; n)] _
[a = TurnOnC ^ 9n:NthDerivative(p; �(LevelA); n)] _
[a = TurnOnC ^ 9n:NthDerivative(p; �(LevelB); n)

^ :Holds(OverflowingB; s)] _
[a = TurnOnD ^ 9n:NthDerivative(p; F lowD; n)] _
[a = TurnOnD ^ 9n:NthDerivative(p; �(LevelA); n)] _
[a = TurnOnD ^ 9n:NthDerivative(p; �(LevelB); n)

^ :Holds(OverflowingB; s)] _
[a = StartspillB ^ 9n:NthDerivative(p; �(LevelB); n)]]

It is clear that, since the `if' halves of (circ3){(circ6) follow from �wt, the
interpretations in M 0 of all the predicates to be minimised must each be con-
tained in their corresponding interpretations in M . In other words, since M

is an arbitrary model of �wt, (circ1){(circ6) are entailed by CIRCcc[�wt].
It is therefore su�cient to show that the trajectories (S1){(S16) follow from
�+
wt = �wt [ f(circ1); : : : ; (circ6)g.
Axiom (C8), expressing the property of piecewise continuity, plays a crucial

role in the derivation of (S1){(S16) from �+
wt. For example, to derive (S1){(S4)

in the region [0; T1], axioms (N4), (T18), (circ4) and (circ5) are �rst used to
establish that no action occurs at time 0. Axiom (C8) ensures that there can
only be a �nite number of time points in [0; T1] at which actions occur, and
hence that (by (circ4)) there exists a least such time point. Finally, using (N1),
(N4), (T11){(T13), (T21), (T23), (T25), (T27) and (circ5), it is possible to
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show that if this least time point were before T1 this would contradict either
the continuity condition of axiom (C4), or the left-hand continuity condition of
axiom (C6).

5 Discussion

The formalism developed in this paper is in some respects similar to the ex-
tended Situation Calculus of Pinto [7], in that in both approaches it is possible
to describe mathematical constraints between parameters, as well as their ex-
plicit trajectories. The main advantage of the approach described here over
Pinto's is that it deals with what Pinto describes as `inter-state constraints', by
introducing axioms and default reasoning mechanisms involving the predicates
InstantEffect and Breaks. It also avoids the need to `name' many di�erent
types of mathematical function, and encode various properties of these names,
and avoids the need to identify a special class of `natural' actions as the only
type of action that can be triggered.

There is an important advantage of both the axiomatization presented here
and Pinto's over approaches which depend on encapsulating the behaviour of
at least one parameter inside an explicit Trajectory predicate (or similar), e.g.
[11], [13], [12]. This is that information about a parameter's behaviour, in the
form of various mathematical constraints, may be distributed in a natural way
throughout the domain-dependent part of the theory. For example, in the water
tanks scenario the mathematical knowledge of the domain is expressed in ax-
ioms (T17){(T27); it was not necessary to solve the relevant sets of simultaneous
di�erential equations before axiomatizing the domain. Hence these formalisms
may be used together with various mathematical techniques or modes of math-
ematical reasoning as and where necessary (Pinto assumes the availability of an
`oracle' to deal with mathematical aspects of his theories). For example, once
the Situation Calculus has been used to establish that a collection of mathe-
matical constraints holds during a particular interval, numerical methods may
be used to solve these constraints simultaneously.

In this paper, attention has been restricted to domains in which the set of
time points at which actions occur is sparse, i.e. where every �nite interval of
time contains only a �nite number of such points. Further work needs to be done
in investigating the consequences of lifting this restriction. Davis [2] provides
an interesting general discussion of this and related issues.

As regards default reasoning about discontinuities, the water tanks example
shows that, on its own, Sandewall's default mechanism [9] for inferring continu-
ity of parameters across breakpoints (which builds on the idea of chronological
minimisation) is not always su�cient. In the example, a choice has to be made
at particular time points between discontinuities in some parameters or discon-
tinuities in others. The introduction and minimisation here of the predicate
Breaks allows such choices to be made based partly on domain-speci�c infor-

16



mation.
As Sandewall points out [9], `qualitative reasoning' is as much a part of math-

ematics as `quantitative reasoning'. Ordinary mathematical language together
with standard logic is rich enough to express incomplete knowledge about the
functions associated with particular parameters, perhaps using mathematical
inequalities or existentially quanti�ed numerical variables. For example, some
forms of qualitative reasoning could be achieved within the framework described
in this paper using `constraint rules' such as

Holds(OpenC; State(t))! LevelA0(t) > 0

Holds(OpenC; State(t))! 9r[F lowC(t) = r:LevelA0(t)]

As mentioned in Section 4, further work needs to be done in examining the
general properties of the circumscription policy CIRCcc. However, its e�ect as
regards the water tanks example is quite straightforward. The fact that axioms
(circ1){(circ6) are entailed by the circumscribed theory shows that, in this case,
the various default assumptions are `mutually independent'. Although this will
clearly not always be the case, it could be that for a class of domains at least,
some kind of `separation property' could be proved (analogous to Theorem 3.1
in [6]), perhaps showing the equivalence of sentences such as CIRCcc[�wt] to
conjunctions of more manageable expressions. It also seems likely that for do-
mains such as �wt, circumscription could be replaced by some more specialised
procedure for generating expressions such as (circ1){(circ6), which are, in ef-
fect, simply a form of closure axiom for each minimised predicate. (circ3), for
example, is analogous to a conjunction of Reiter's successor state axioms [8].

In [3], Gelfond, Lifschitz and Rabinov brie
y discuss a somewhat di�erent
approach to representing continuous change in the Situation Calculus. Periods
of continuous change are represented as actions with a non-zero duration. How-
ever, it is unclear how phenomena such as triggered action occurrences would
be represented using this type of approach.
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Appendix: Some Mathematical Details

The following axioms provide appropriate de�nitions of continuity and di�eren-
tiability. To de�ne derivatives a new function sort is needed, M : P � T 7! R.
Notice that Function is of sort M. The function @

@t
is of sort M 7! M. The

term @
@t
Function(p; t) which appears in Axiom (C2) should more properly be

written as @
@t
(Function)(p; t).

Continuous(p; t)$ (A1)
8r9t18t2[[jt� t2j < t1 ^ 0 < r]

! jFunction(p; t)� Function(p; t2)j < r]

Differentiable(p; t) $ (A2)
9r8r19t18t2[[0 < jt� t2j < t1 ^ 0 < r1]

! j(Function(p;t)�Function(p;t2)
t�t2

)� rj < r1]

[Differentiable(p; t) ^ @
@t
(Function)(p; t) = r]! (A3)

8r19t18t2[[0 < jt� t2j < t1 ^ 0 < r1]

! j(Function(p;t)�Function(p;t2)
t�t2

)� rj < r1]
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