Decentralised Process Enactment

Ulf Leonhardt ~ Anthony Finkelstein
Jeff Kramer Bashar Nuseibeh

Technical Report 95/5

Department of Computing

Imperial College of Science, Technology and Medicine
180 Queen’s Gate, London SW7 2BZ, UK

February 2, 1995

Abstract

The ViewPoints framework for distributed and concurrent software engineering provides
an alternative approach to traditional centralised software development environments. We
investigate the use of decentralised process models to drive consistency checking and conflict
resolution in this framework. Our process models use pattern matching on local development
histories to determine the particular situation (state) of the development process, and employ
rules to trigger situation-dependent assistance to the user. We describe how communication
between such process models facilitates the decentralised management of explicitly defined
consistency constraints in the ViewPoints framework.

1 Introduction

Software engineering processes usually involve the participation of a number of people. The more
people are involved, the more important becomes the collaboration and communication between
the individuals. The different participants will have different views on and assumptions about
the problem domain. This necessitates organised interaction including conflict detection and
resolution.

Synchronisation and conflict resolution are most easily tackled by adopting the notion of central
coordination, often paired with a central data repository. However, centralised control and data
storage in a conceptually concurrent and distributed context are problematic when it comes to
performance, reliability and flexibility. In most systems, these centralised control mechanisms are
used to check and enforce consistency whenever possible. It has been recognised that such an eager
approach does not adequately reflect the needs of concurrent and distributed software engineering
processes [4].

An alternative is the decentralisation of data storage and consistency control. As a consequence,
conflict detection and resolution have to be made based on interaction and local, and thus partial,
knowledge about the system. The ‘eager’ approach to conflict detection and resolution discussed
above is not viable as the complexity introduced by the distribution of control makes it too
expensive. Tolerating inconsistencies is often desirable in order to avoid unnecessary restrictions
on the development process [16]. Consequently, the focus is shifted from avoidance to management
of inconsistencies.

Inconsistencies arise from different views and assumptions which interfere. They also indicate
the need for further action by the participants in order to achieve consent on the matter in
question. By addressing this issue explicitly (for example [23]), we can devise and support more

sophisticated models of cooperation and communication among the members of the development
team (see also [10]). A ‘lazy’ approach to consistency detection and enforcement can be taken:
synchronise whenever necessary. However, inconsistency management is a complex task. Local
agents have to decide what checks to invoke, when to invoke them, and how to keep track of the
results. Process support therefore becomes even more crucial.

In this paper we show how fine-grained, decentralised process models can be used to drive con-
flict detection and resolution. These models are used to guide the developer rather than automate
the development process. We describe how the process models initiate and monitor consistency
checks in order to gain knowledge about the system under development. These consistency checks
are the prime means of coordination for the development of such a system.

The constraint relations that are computed by consistency checks need to be derived from
logically centralised notions of consistency. Therefore we also discuss how these constraints can
be expressed, and how a correspondence between global and local constraints can be established.
As a framework for this work we use the ViewPoints approach which has been described in earlier
papers [12, 17, 21, 23].

We start our discussion with a brief account of the ViewPoints framework (section 2), followed
by a “motivating example” (section 3). Then we describe our process modelling approach (sec-
tion 4) and its application to decentralised inconsistency management (section 5). In a scenario
walk-through at the end of this paper (section 6) we outline how our models of a concurrent
software engineering process can guide the human agents involved in such a process.

2 ViewPoints

ViewPoints are the building blocks of our framework for supporting distributed software engi-
neering. Each ViewPoint contains an artefact of the development process (for example, a partial
specification) together with a thread of development activities concerning this artefact. These
are locally managed, and can be characterised as a collection of loosely coupled objects that
encapsulate partial knowledge.

A ViewPoint contains knowledge about the notation, tools and strategies it supports—‘method
knowledge’; and the results of the application of that knowledge—‘specification knowledge’. A
ViewPoint is structured into the following ‘slots’:

Style contains the representation scheme in which the partial specification contained in a View-
Point is represented.

Work Plan contains a process model specifying what the ViewPoint user can do and how the user
should do it.

Domain specifies the part of the modelled system described by the ViewPoint.
Specification contains the result of the method user’s activities, i.e. the partial specification.

Work Record stores current status, history and rationale of the ViewPoint’s development process.
It contains a trace of all the actions in the ViewPoint’s development history.

We use partially instantiated ViewPoints, ViewPoint templates, to specify method knowledge in a
reusable way. Thus specific development methods can be implemented as a collection of ViewPoint
templates.

2.1 Implementation

We have developed a prototype implementation of automated support for the framework called The
Viewer [21], which has been extended following collaboration with Hewlett-Packard and Siemens
[3, 13, 14]. The Viewer supports both method design and method use and is therefore both
CASE and MetaCASE tool. Template sets supporting methods for requirements engineering and
distributed systems design have been implemented [26, 18].

3 A Scenario

Our scenario is structured into five steps which, we believe, highlight some of the important issues
in concurrent software engineering (see also [9]).

We use data flow diagrams as an example notation. In such a diagram, a node in a graph
may be decomposed in a separate diagram. For such a diagram hierarchy we wish to ensure
that decomposition diagrams exist for composite nodes (constraint 1), and that the contextual
data flows are the same for nodes and their respective decomposition diagrams (constraint 2).
Constraint 1 specifies syntactic completeness, constraints 2 specifies a notion of agreement.

Composite nodes are shaded grey, primitive nodes are white. We adopt the convention that the
domain of each ViewPoint denotes the node of the parent diagram of which it is a decomposition.
Only if the domain of the ViewPoint is labelled top, a parent node does not exist. In this case, the
ViewPoint contains the root node of the data flow diagram hierarchy. The Work Record of the
ViewPoint lists the last seven events in the development history of the ViewPoint (the full history
is stored).

In this example, the following constraints on data flow diagrams form the basis of the consis-
tency checks (for a formal specification see appendix). We will ignore in-ViewPoint constraints
and checks.

A (owner=Anne; domain=top)

Specification Work Record
01 <A> add-node
® 02 <A> add-node
- 03 <F> add-link
dt @ 04 <F> add-link
d4 05 <F> add-link
06 <F> add-link
07 <D> make-node-composite

Figure 1: A ViewPoint with a simple data flow diagram in its Specification slot, and a development
history listed in its Work Record. ViewPoint A contains the non-primitive node Y for which no
corresponding decomposition ViewPoint exists (step 1).

Step 1 The owner of ViewPoint A, Anne, has developed a top-level data flow model of the
system. She has flagged node Y for further decomposition, thus violating global constraint 1
(Figure 1). Subsequently, Anne assigns the responsibility to decompose Y to Bob.

Step 2 Bob creates a new ViewPoint B the domain of which indicates that it is a decomposition
of Y. As the new ViewPoint initially contains an empty specification. Global constraint 2 is not
satisfied (Figure 4).

Step 3 Bob continues developing ViewPoint B by creating a data flow diagram that decomposes
Y. When he has finished both ViewPoints satisfy all local and global constraints (Figure 5).

Step 4 Now, Anne and Bob concurrently develop their ViewPoints as their understanding of
the target system increases. Anne adds an output to Y (d7). Bab does the same but uses a
different label (d6). He also adds another output (d9) and renames a third (d4-d8). The result
again violates global constraint 2.

Step 5 While decomposing X Anne realises that its interaction with Y is much more complex
than expected. Anticipating the need to restructure ViewPoint A Anne merges the decompositions

of X and Y deleting both. Consequently, constraint 1 no longer holds, because the result of the
merge is neither a decomposition of X nor Y.

In each of the above steps constraints are temporarily violated. Therefore, there is a need
to tolerate such constraint violations in a concurrent development process. In this context, con-
straints can only be checked and enforced at certain points. Hence consistency must be established
by organising the application of the different checks and monitoring their result. As steps 4 and
5 show, this consistency management may be difficult, even in a such a simplified example. Con-
sequently, guidance to users regarding the invocation of consistency checks is necessary. Such
guidance must also be tailored to the development method used. In step 4, for example, more
frequent checking may be required in order to avoid the accumulation of inconsistencies.

The results of previous consistency checks and all local development activities are stored in
individual Work Record slots (see Figure 5, for example). Clearly, this knowledge must be taken
into account when deciding when to invoke particular consistency checks.

In the following sections we describe a process modelling approach that addresses these issues.
In section 6 we then apply this framework to the scenario presented above.

4 Decentralised Process Modelling

In line with the ViewPoints approach, the process modelling framework must support multiple,
loosely coupled process models. At run-time there will be no explicit representation of the global
process and hence no global coordination. However, it may be necessary for the method designer to
“derive” the local process models from a global model, or to verify certain properties by integrating
all local models into a global one.

In this section, we introduce techniques for fine-grained, local process modelling [22] in order
to address some of the issues outlined above. We then discuss, how cooperation between process
models and other global objectives may be achieved in this context.

4.1 Fine-grained local process models

We believe that enactable, fine-grained process models need to address the following issues:
e Identifying the current state of the process.
e Deciding what course of action is appropriate—taking into account the state of the process.
e Enacting the decisions made in the process.

The following sections describe our approach to solving these problems.

4.1.1 Process state

Our process models conceptually operate on the state of the process. Here, the term state denotes
a view of the process which is organised according to a pre-defined schema. In our framework,
the state information is structured into a set of functions and predicates which can be accessed
by other components of the process model during its execution.

We have identified two different ways to implement these observer functions and predicates!:
state machines, and “stateless” observation procedures. In the latter, the function or predicate
is evaluated whenever it is used by the process model, it does not need to “remember” anything
that has happened in the past. In contrast, if the predicate is implemented as a state machine,
only events in the process trigger changes of the predicate’s value.

Since each of these predicates only monitors a limited aspect of the actual process the state
explosion problem can be avoided by using a number of concurrent observer predicates. These
state machines may also have an infinite number of states. Here, however, we only use finite state
machines in order to keep the representation of our process models clear and simple.

1Subsequently, we shall use the term observer predicate to refer to both observer functions and predicates

We use reqular expressions as a concise and easy—to—handle notation to represent finite state
machines (see [2]). Thus, we can make use of a variety of efficient and powerful tools for regular
expression handling that are readily available in many programming environments.

Regular grammars define the notion of well-formed input words over some language. For each
regular grammar a finite state machine can be constructed that decides whether a given sequence of
input characters (word) is well-formed. Thus a regular expression defines an acceptor automaton.

This principle can be applied to ViewPoints by using the sequence of actions and events stored
in the Work Record as input words for such acceptor automata. Essentially, this amounts to
regular expression matching over the development history of a ViewPoint. This process can also
be viewed as looking for known patterns of activity in the past of a ViewPoint. The value of an
observer predicate associated with a grammar will therefore indicate whether or not the pattern
of activity defined by the grammar has been be recognised.

4.1.2 Making decisions

The observer functions and predicates define a discrete and finite set of states for the process.

In this setting, we call the mapping of the current state into a course of action a decision?.
Typically, a specific course of action will be appropriate not only for one state but for a set of
similar states. We call such a set of states a situation. Situations can be defined by logical
propositions built from the observer predicates and functions described above.

To express “decision knowledge” in our process modelling framework, we use rules of the general

form
<situation><response>

The situation forms the pre-condition of the rule. That means, the rule fires whenever the current
state matches the situation described. Response specifies what course of action should be taken as
result of the decision made. An extension to these rules would be the addition of post-conditions
in the MARVEL-style [5] to support planning activities.

4.1.3 Enaction

We distinguish three different types of such responses in decision rules:

e Informal Guidance. Here, we assist the user by displaying help texts, video clips, etc.
Typically, such assistance would be given in complex and difficult situations.

e Precise Recommendations. Specific actions are recommended to the user. In this case, the
user is asked to select an action from a limited number of choices. Usually, this applies to
well-structured decision problems.

o Automatic Ezecution of actions. This should only occur if the correctness of the decision is
reasonably certain and acceptable to the user.

4.1.4 Local architecture

Figure 2 shows how local process models for ViewPoints are structured, and how they interact
with other components of the ViewPoint. We use the event trace from the work record (shown in
abbreviated form as a sequence of tokens) to feed the acceptor automata defined by regular expres-
sions. These, together with the other observer predicates, are matched against the preconditions
of the decision rules. If a rule fires, the reaction is enacted on the process.

2The terms decision and situation are a variation of the NATURE process meta-model terminology [15], although
defined in a different framework.

Work Record Process ModéI'

Observers Decision Rules

event trace

regular expressions
ABC."$
RV[*AB]$
GV[rA]'S Situation Reaction
a&~b recommend: "X should be done"
elf execute: Y

functions/p
getTime
i | numberOfNodes
numberOfArcs

modification of
process instance

actions and
events

queried
information

Process Instance

Figure 2: Local architecture

4.1.5 Notation

Our process models consist of tests (that is, acceptor automata defined by regular expressions),
and rules (mapping situations into reactions).
Here, you see the definition of a simple test:

Ta: .#D["RI*$ not-successfully-
checked-since-D

A test has a short and a long name which enclose a regular expression3. In this example, it matches

if a D-event but no subsequent R-event can be found in the local Work Record of the ViewPoint. D

and R are abbreviations for actions or communication events which are defined in the Work Plan.
Rules map a situation into a response to the environment.

Rule: R,
Situation: T4 A-Ts A-T¢
Response: recommend:
child-exist—-check

The pre-condition, named situation, is a logical proposition using tests defined in the process
model. Additionally, method specific predicates may also be available in individual templates.
The response part of the rule describes what should be done when the rule fires. The commands
display, recommend, and execute are available to describe such responses.

4.2 Communication between process models

We believe that an implementation of the ViewPoints framework can be built on top of a commu-
nication system that supports asynchronous message-passing. Therefore we used message-passing
between ViewPoints as the basic communication mechanism in the framework®.

In this setting, ViewPoints can asynchronously send messages to and receive messages from
other ViewPoints. Messages sent and received are important events in the life of a ViewPoint.
Hence these events are recorded in the Work Record, making communication visible to the local

3We assume familiarity with the basic constructs of regular expressions as used by Lex [6].
4We assume some underlying reliable point-to-point communication medium.

process model. From the perspective of the communicating process models, a message passing
transaction consists of two phases:

1. The source ViewPoint executes an action that sends a message to the destination ViewPoint.
The action is appended to the Work Record of the source ViewPoint. Since such an action
can be executed automatically or at least recommended to the user, a process model in this
context can initiate communication transactions.

2. Upon receipt, an incoming message is automatically appended to the Work Record of the
destination ViewPoint. No other processing is necessary. As a result, the local process model
at the receiving end sees a message on the Work Record and can react accordingly.

We can also use this basic message-passing scheme to build other, more sophisticated communi-
cation and cooperation protocols (two-phase locking, for example). In section 5.2 we describe a
protocol for two-party consistency checking using message-passing between ViewPoints.

5 Managing Consistency

In this section we describe the application of our process modelling framework to consistency
management. Our intention to “automate” consistency management necessitates a formal spec-
ification of the constraints we want to impose on the system. Such constraints may apply only
locally—*‘in-ViewPoint’ constraints— or globally—‘inter-ViewPoint’ constraints. Inter-ViewPoint
constraints form the basis of coordination between different ViewPoints.

In our framework, consistency checking is decentralised, that is, each ViewPoint checks with
the ViewPoint it considers relevant.

We use local and global consistency constraint to define a desirable state of the decentralised
development process. In this sense, we specify a goal for the guidance and assistance that is
provided by the process models.

In the remainder of this section, we discuss how local and global consistency constraints can
be managed.

5.1 Local consistency management

Achieving consistency of the local partial specification contained in some ViewPoint is a necessary
subtask of global consistency management. Here, the purpose of the process model is to guide the
invocation of local actions and consistency checks.

The local process model sees consistency checks like any other action performed by the View-
Point. The result of a check is posted to the work record and therefore visible to the process
model.

The consistency checks available will vary considerably from template to template. It is the
method designer’s task to implement specific process models together with the consistency checks
required for the different templates.

The consistency checks should be “fine-grained’ because only then the process model can give
fine-grained guidance (see also [22]). It is desirable to decompose more complex constraints into
independent parts that can be checked separately. Once the checks have been identified, they are
integrated into the process model together with the other Work Plan actions.

5.2 Global consistency management

In our framework, global consistency management initiates and monitors two-party consistency
checks between ViewPoints. Therefore, we now present a process model driven enaction of two-
party consistency checking.

The protocol is based on message passing between ViewPoints as introduced in section 4.2.
It assumes that the set of instantiated ViewPoints is constant, that is, a fixed configuration of

ViewPoints. We then show how, by self-modification of process models, the general case of varying
configurations is addressed.

Execute G
| request action “1equest for cooperation
Append request message |
: : to work record :
acceplances i
i o Execute .
: accept action ;

Append accept message | : .
- to work record ’
. Execute S o .
G result of the check 3
i check action ‘ Mee .
| Appendresut [Append resut message ‘
: to work record . to work record

Figure 3: Protocol for two-party checks

Fixed configurations of ViewPoints Given that the set of ViewPoints is fixed and all View-
Points know this, cooperation can be hard-coded into the local finite-state machine process models.
A two-party consistency check is carried out by the protocol shown in Figure 3. The actual
computation of the check involving the partial specifications contained in both ViewPoints is done
by the source ViewPoint VPg.

Variable configurations of ViewPoints We address this problem by reducing it to the fixed
ViewPoints case discussed above. We do so by dynamically modifying the finite state process
models as new ViewPoints are created and other ViewPoints are discarded. = The results of
completeness checks that look for particular ViewPoints are used to update the process model
lazily. To cater for a varying set of ViewPoints , parts of the process model must be generic
in order to allow for Work Record entries containing ViewPoint identifiers to be processed. The
following generalisations of the process modelling architecture are necessary:

e Regular expression templates® with a ViewPoint identifier as a parameter have to be used
to handle communication messages. Instances of such templates behave like the ‘ordinary’
regular expression discussed above. For example:

Tg(v): .*q(v)["PI*$ child-located

Here ¢(v) is the generic event necessitating the abstraction of the regular grammar.

e To handle dynamically created regular expressions, rule templates are introduced. We re-
strict ourselves to one ViewPoint identifier as argument. For example:

Rule: R4(v)
Situation: Ty(v)
Response: recommend: -
child-agrees-check-request-(v)

Such a rule would be instantiated and deleted together with the relevant regular grammars
concerning a specific ViewPoint. There is an instance of this rule for each known ViewPoint
with which communication can take place.

5These must not be confused with ViewPoint templates.

o We also want to be able to express statements like: If all checks have succeeded do X.
Technically, this requires the expression of a universal quantification at some point in our
model. Here quantification over instances of the same regular expression template plays this
role. For example:

Rule: R7(v)
Situation: (Vv).T;(v)
Response: display:
“All children known have been
checked successfully”

The pre-condition of this rule is satisfied if all instances of the template T;(v) match.

o Sometimes it is not necessary to know the identity of the other party involved when respond-
ing to a communication event. In this case, we ignore the address part of a communication
message. For example:

Ty: #U[r(*)1*$ commissioned-vp-
not-sighted-yet

Here r(*) matches any instance of r(v). Such regular expressions have one instance only, and
do not require special treatment as far as the rules are concerned.

On the basis of such generic tests and rules we believe that communication of arbitrary and
evolving configurations of ViewPoints can be handled.

5.3 Coordinating the checks

The framework described for two-party consistency checking necessitates cooperation among View-
Points. Therefore the method designer developing process models has to look at the system in its
entirety rather than at a specific ViewPoint template. This global perspective plays an important
role by guiding and verifying the design of the local process models. The task of composing and
decomposing process models, however, is non-trivial and requires tool support.

It is difficult to give general rules governing how consistency checks should be coordinated.
Again, a recommended sequence of checks could be described. The notion of state shown has to
be modified because remote actions influencing the state of a constraint will, in general, not be
observable. Therefore, we have to resort to more heuristic measurements of the state. For example
the age of a check (that is, the number of local actions and events since the last successful check)
could be interpreted as reflecting the probability that the constraint still holds.

6 The Scenario Revisited

We now demonstrate our process modelling approach by applying it to the scenario described in
section 3.

6.1 DFD ViewPoints

The ViewPoints used in this scenario each contain a simple data-flow diagram (DFD). Conse-
quently, all ViewPoints are instances of the same ViewPoint template which defines a DFD tech-
nique. A simple example showing the Specification and Work Record slots of one such ViewPoint
is shown in figure 1.

Checks To detect violations of the constraints listed, we use local and two-party consistency
checks. They are derived from the consistency constraints outlined above.

Two-party checks We now decompose the global constraints into two-party constraints. In
this example, the resulting checks are symmetric, which may not generally be the case.

e parent-exists-check detects whether the ViewPoint has a parent node. The check also
succeeds if the domain is labelled top.

e child-exist-check takes all the composite nodes in the local diagram and tries to find the
corresponding decomposition ViewPoints. As a side-effect of this check, the process model
is modified by adding and/or removing generic actions, tests (that is, acceptor automata
defined by regular expressions) and rules that control the interaction with decomposition
ViewPoints.

e parent-agrees—-check-do-(v) is a generic action performing a check for agreement between
the local DFD and the DFD provided by v. The name and address of v is established by
a previous completeness check. Agreement in this case means the contextual data flows of
the child node must match those of the parent. Actually, some communication messages
have to be exchanged before the check can go ahead (see section 5.2). These must also be
parametrised.

e child-agrees-check-do-(v) performs the same operation as above, but in the opposite
direction.

Work Plan All available actions are described in a ViewPoint’s Work Plan. In addition to the
check and communication actions described above, we also have operations on the DFD elements:
Nodes {add, remove, make-composite}, Links {add, remove, rename}. All actions are assigned
tokens that are used by the process model.

Process Model Also part of the work plan is the process model consisting of regular gram-
mars T, and rules R;. Actions, rules and tests can have one parameter, then they are generic.
Generic parts of the work plan are instantiated and deleted as side-effects of existence checks (for
example, parent-exists-check).

The regular expressions T, as presented here operate on sequences of action tokens. The action
tokens for static events are fixed, and the tokens for generic events are dynamically allocated. Here
are all the tokens used in the regular expression examples in the scenario:

add-node

make-node-composite

add-link

remove-link

rename-link
parent-exist-check
parent-exist-check-succeeded
child-exist-check-succeeded
child-exist-check-failed
commission-viewpoint

a(v) parent-agrees-check-request-(v)
i(v) parent-agrees-check-requested-(v)
m(v) parent-agrees-check-succeeded-(v)
q(v) child-located-me-(v)
r(v) parent-located-me-(v)

cHTOoOoOmamo>

.-

Except for the parametrised tokens necessitated by these dynamic allocations, the syntax and
semantics of the regular expressions follow the usage by the lexical analyser generator Lex [6].

The rules R; uses the regular expressions 7T} as predicates in their pre-conditions. There are
three alternatives that can be used in the action part of such rules:

do:<action> automatically executes the given action.

10

recommend:<action> suggests that action be enacted by the user.

display:<text> gives informal guidance by displaying the help message text.

6.2 Process modelling at work

We now outline how our process modelling framework applies to the scenario described in section 3.
For each step, we discuss how guidance should be provided to the user. The reader may also find
it useful to consult section 3 on page 3 to recall some of the details.

Step 1 Here, a DFD and thus a ViewPoint is missing to make the specification complete (Fig-
ure 1). Clearly, some local process model has to detect the violation of the constraint. Typically,
ViewPoint A can discover this by executing the corresponding check.

After the check has been performed, Anne is informed of the need to create a new (or indeed,
to change some existing) ViewPoint to fulfil the constraint. The process model should give Anne
the choice between doing nothing, creating a new ViewPoint , or delegating responsibility (using
email, for example).

Example We can use the following tests and rules to provide guidance in this situation:

Ta: .*D["RI*$ not-successfully-
checked-since-D

Tg: .*0["RT]1*$ exist-child-check-
pending

Tc: .+TL["ORT1{0,10}$ exist-child-check-
just-failed

Rule: R,
Situation: Tu4 A-Ts A-T¢
Response: recommend:
child-exist-check

Thus Anne would be advised to invoke a check looking for decomposition ViewPoints whenever
the following conditions hold:

e The check has not been successfully carried out since the action make-node-composite was
last performed in the local DFD (T}).

e There are no checks of this kind pending (—Tg).

o The check has not failed less than ten actions ago (—7T¢)

Step 2 The ViewPoints A and B do not agree with each other (Figure 4). Potentially, both A
and B can discover the inconsistency. However, given that the Specification of B is empty, B is
unlikely to initiate the check and may refuse to cooperate with A on this matter. ViewPoint A
waits for some acknowledgement message from the decomposition ViewPoint because A initiated
B’s creation. Effectively, the checking of global check 2 is therefore suspended as long as B remains
empty. The process model of B, however, will advise Bob to elaborate ViewPoint B, thus making
it non-empty. The checking of global constraint 1 at ViewPoint A would detect the presence of B
and update the local process model.

11

A (owner=Anne; domain=top)

B (owner=Bob; domain=Y)

Specification

Work Record Specification

04 <F> add-link

05 <F> add-link

06 <F> add-link

07 <D> make-node-composite

08 <P> child-exist-check

09 <T> child-exist-check-failed
10 <U> send-commision-viewpoint

Work Record

Figure 4: Now a decomposition ViewPoint for Y exists, but the inputs and outputs do not match

(step 2).

Example The invocation of checks by Anne or Bob can be inhibited by the following tests

and rules:

Tp: ~.{0,10}$ underdeveloped

Ty: #U[r(*)]1*$ commissioned-vp-
not-sighted-yet

Rule: R,
Situation: -Tp
Response: display:
“Viewpoint should be developed fur-
ther”

Rule: R3
Situation: T
Response: display:
“do not enact child-exist-check
or child-agrees-check-request
because ViewPoint creation com-
missioned but not acknowledged”

In this situation Ry advises Bob to perform some additional local development before considering
any non-local checks. R3 tells Anne to wait until the ViewPoint to be created by Bob reports its

existence to ViewPoint A.

A (owner=Anne; domain=top)

B (owner=Bob; domain=Y)

Specification

Work Record Specification

05 <F> add-link

06 <F> add-link

07 <D> make-node-composite

08 <P> child-exist-check

09 <T> child-exist-check-failed
10 <U> send-commision-viewpoint
11 <q(B)> child-located-me-B

Work Record

01 <a>
02 <A>
03 <F>
04 <F>
05 <F>
06 <F>
07 <O>
08 <Q>

add-node
add-node
add-1link
add-link
add-link
add-link
parent -exists-check
parent -. . -succeeded

Figure 5: The specification is now consistent with respect to the formulated constraints (step 3).

12

Step 3 Now, all constraints are satisfied (Figure 5). All global checks are eventually initiated
by A or B with their result communicated to the work record of both ViewPoints. The checks
carried out separately, however, do not guarantee that both ViewPoints are consistent, even at
any single point in time. To achieve this would require two-party checks to be performed as atomic
transactions.

Example The initiation of the agreement check between A and B is recommended by these
tests and rules:

Ty(v): .*q(v)["P1*$ child-located

TE: *Q["0]*$ parent-probably-
exists

Rule: Rs
Situation: Tg
Response: recommend:
parent-agrees-check-request-(v)

Rule: R4(v)
Situation: Ty(v)
Response: recommend:
child-agrees-check-request-(v)

For ViewPoint A, Ty(B) succeeds when ViewPoint B has been identified. Consequently, Anne is
advised to check the agreement with the child whose existence is now reasonably certain. Tg tests
for a recent success of the check for the existence of B’s parent. If this is the case, Bob can also
initiate the agreement check with ViewPoint B’s parent, A.

A (owner=Anne; domain=top) B (owner=Bob; domain=Y)
Specification Work Record Specification Work Record
10 <U> send-commision-viewpoint 08 <Q> parent-..-succeeded
11 <g(B)> child-located-me-B 09 <i(A)> parent-..-requested-A
12 <b(B)> child-..-request-B @ s 10 <e(A)> parent-..-accept-A
13 <1(B)> child-..-accepted-B 11 <m(v)> parent-..-succeeded-A
14 <d(B)> child-..-do-B d2] d6 a8 12 <F> add-link
15 <n(B)> child-..-succeeded-B 13 <F> add-link
16 <F> add-link 14 <H> rename-link

Figure 6: The outputs of Y do not match the contextual outputs of ViewPoint B (step 4).

Step 4 Again, we face disagreement between ViewPoint A and ViewPoint B (Figure 6). This
step highlights a general problem of concurrent development. Clearly, both process models at-
tempt to achieve local consistency. When local constraints are satisfied, global checking can be
recommended. The ‘waterfall model’, for example, prescribes the sequencing of the checks with
backtracking. The resolution of inconsistencies in this model is an iterative process, supported
by communicating check results. However, the process model cannof “manufacture’ agreement on
details like the labelling of arcs. It merely supports conflict resolution by pointing out deficiencies.
The check results become part of the work record and then the process model can ‘nag’ the user
until the constraint is satisfied (if that is what the method designer wants).

13

Example In this step, the development activities concerning the contextual data flows in
both ViewPoints is likely to disturb any pre-existing agreement between A and B. Therefore A
and B are advised to renew the check:

Th(v): .*m(v)["FGHa(v)i(v)]*$ context-
links-ok

Rule: Res(v)
Situation: —Th(v)
Response: recommend:
parent-agrees—-check-request-(v)

This rule applies only to Bob’s ViewPoint. A symmetric rule for ViewPoint A can be analogously
constructed.

A (owner=Anne; domain=top)

Specification Work Record

14 <d(B)> child-..-do-B

15 <n(B)> child-..-succeeded-B
- 16 <F> add-link
da @ 17 <j(B)> child-..-requested-B
[a7 18 <f(B)> child-..-accept-B
19 <p(B)> child-..-failed-B
20 <D> make-node-composite

Figure 7: ViewPoint A contains the non-primitive nodes X and Y but the respective decomposition
ViewPoints do not exist (step 5).

Step 5 As in step 1, the completeness constraint 1 is violated (7). Eventually Anne is advised
to check the global constraints by the process model. Global check 1 fails for both X and Y.
Consequently, the local process model must be updated to remove the parts no longer needed for
the communication with the two ViewPoints. Otherwise, this case is similar to Step 1.

7 Related Work

Ben-Shaul and Kaiser proposed an approach towards “modelling and enaction of inter-group col-
laboration among independent, autonomous, and, possibly, pre-existing processes” [7]. They pre-
sented an “international alliance” metaphor to define collaboration in terms of ‘treaties’ which
are enacted at ‘summits’. Conceptually, our consistency constraints fulfil the role of such treaties,
and the application of a consistency check can also be interpreted as a summit between two View-
Points. Our approaches differ, in that we focus on intra-group collaboration whereas Ben-Shaul
and Kaiser address cooperation among groups.

Jarke et al. describe decision-oriented, logically centralised process models [15]. They propose
process models dedicated to guidance which use pattern matching to identify situations that can
be mapped into guidance, a clear similarity to our work. They also use process models to structure
process traces, a task fulfilled (in a less flexible way) by the Work Records in our framework. Jarke
et al. address the issue of deriving guidance from these process traces. We have identified this
problem in our framework and are currently investigating possible solutions.

Balzer [4] describes a mechanism for managing inconsistencies employing “pollution markers”
to identify constraints that have been violated, which can then be either avoided or resolved. We
have generalised and decentralised these concepts in our approach. In his work, Balzer also uses
enforced consistency constraints, which we consider problematic to adopt in our framework.

14

Narayanaswamy and Goldman advocate “lazy” consistency as basis for cooperative software
development [20]. They focus mainly on preventing conflicts of updates of shared artefacts, where
we concentrate on conflict detection and resolution. In their setting, dependencies between prod-
ucts are defined by a single explicit relation. In contrast, our framework allows for many different
kind of such dependencies to be defined in terms of consistency constraints. This gives us more
detailed information for the resolution of inconsistencies.

8 Further Work

We have identified three major areas in need of further work. These are: guidance; support for
evolution; process specification support. We see the role of process modelling as providing guid-
ance rather than automation. In this case the way in which the guidance is framed and the means
by which the guidance is actually delivered are critical. In this paper we have concentrated on
process observation and decision making, however the practical utility of the techniques described
will depend on advances in guidance. Some indication of our approach to this problem is given
in [11]. We have indicated above some of the problems of evolution in an environment in which
ViewPoints are created and (occasionally) destroyed, and we have outlined our solution to these
problems. We feel that this area is in need of further work and to this end we will be exploring other
grammar-based schemes, among them Activity Structures [24]. We have, as yet, little experience
of how to actually arrive at process models of the form we have presented. Compositional process
model design requires attention, in particular derivation of local process models from higher level
cooperation policies. There are a number of improvements we would like to make to our imple-
mentation, of which the most pressing is integration with The Viewer; also some improvements
to the user interface we provide to the process modelling capability are required.

9 Conclusions

This paper has examined the application of process modelling techniques to the problem of con-
sistency management. The approach proposed in this paper is based on constraint checks derived
from a static notion of consistency. We have outlined how consistency constraints can be decen-
tralised in order to facilitate decentralised consistency management.

The consistency constraints are expressed in terms of agreement and completeness relations
over the set of all ViewPoints. We believe that consistency constraints need to be represented
explicitly to form the basis for the design and verification of mechanisms for consistency manage-
ment.

We have developed an architecture for communicating local process models which is fully
decentralised. In this respect, we believe, it reflects the nature of development processes in multi-
perspective environments (exemplified by the ViewPoints framework). Global and local consis-
tency checking is driven by local process models employing regular grammars and rules. This we
achieve by decomposing and distributing global strategies and protocols for cooperation and com-
munication. We have presented a communication mechanism based on message passing between
ViewPoints, and consequently their local process models. We have also shown that protocols for
two-party consistency checking can be built on top of this communication layer.

Our process models are ‘fine-grained’, and therefore capture the level of detail which we believe
to be essential for adequate guidance. The granularity of process models in our framework critically
depends on the granularity of consistency checks. Therefore we also favour fine-grained consistency
constraints. ”

The application of the proposed process modelling architecture to the scenario has demon-
strated the process-model driven consistency management as the innovative feature presented in
this paper. We have also developed a prototype implementation of our process modelling frame-
work which we have used to validate the ideas described.

15

10 Acknowledgements

We would like to gratefully acknowledge the constructive comments of Michael Goedicke. This
work was partly funded by the UK Department of Trade and Industry (DTI) as part of the
ESF project, by the UK EPSRC VOILA project, and by the European Union (ESPRIT BRA
PROMOTER, ISI, Human Capital and Mobility).

References

(1] In A. van Lamsweerede and A. Fugetta, editors, Proceedings of the 3rd European Software En-
gineering Conference (ESEC ’91), volume 550 of LNCS, Milan, Italy, October 1991. Springer-
Verlag.

[2] A. Aho, R. Sethi, and J. Ullman. Compilers: principles, techniques, and tools. Addison-
Wesley series in Computer Science. Addison-Wesley, Reading, Mass., 1986.

[3] L. Ballesteros. Using ViewPoints to Support the FUSION Object-Oriented Method. M.Sc.
Thesis, Department of Computing, Imperial College, London, UK, September 1992.

[4] R. Balzer. Tolerating inconsistency. In Proceedings of the 13th International Conference on
Software Engineering, Austin, Texas, May 1991. IEEE CS press.

[5] N. Barghouti and G. Kaiser. Scaling up rule-based software development environments. In
van Lamsweerede and Fugetta [1], pages 380-395.

[6] Bell Telephone Laboratories, Inc., Murray Hill, New Jersey. UNIX programmer’s manual,
seventh edition, 1983. Volume 2.

[7] 1. Ben-Shaul and G. Kaiser. A paradigm for decentralized process modeling and its realization
in the OZ environment. In Proceedings of the 16th International Conference on Software
Engineering, pages 179-188, Sorrento, Italy, May 1994. IEEE CS press.

[8] M. Chang and C. Woo. SANP: A Communication Level Protocol for Negotations. In Pro-
ceedings of the 3rd European Workshop on Modelling Autonomous Agents in a Multi-Agent
World, Kaiserslautern, Germany, August 1991. North Holland.

[9] S. Easterbrook, A. Finkelstein, J. Kramer, and B. Nuseibeh. Coordinating Distributed View-
Points: the anatomy of a consistency check. International Journal on Concurrent Engineering:
Research and Applications, Special issue on conflict management, 2(3), 1994.

[10] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh. Inconsistency handling
in multi-perspective specifications. In IEEE Transactions on Software Engineering, August
1994.

[11] A. Finkelstein and J. Kramer. TARA: Tool assisted requirements analysis. In Conceptual
Modelling, Databases & CASE: an integrated view of information system development. Mc-
Graw Hill, 1991.

[12] A. Finkelstein, J. Kramer, B. Nuseibeh, M. Goedicke, and L. Finkelstein. ViewPoints: A
Framework for integrating multiple Perspectives in System Development. International Jour-
nal of Software Engineering and Knowledge Engineering, 2(1):31-58, March 1992.

[13] P. Graubmann. The HyperView Tool Standard Methods. REX technical report REX-WP3-
SIE-008-V1.0, Siemens, Germany, July 1990.

[14] P. Graubmann. The Petri Net Method ViewPoints in the HyperView Tool. REX technical
report REX-WP3-SIE-021-V1.0, Siemens, Germany, January 1992.

16

[15] M. Jarke, K. Pohl, C. Rolland, and J. Schmitt. Experience-Based Method Evaluation and Im-
provement: A Process Modeling Approach. NATURE Report Series 94-15, ESPRIT Project
6353, RWTH Aachen, Germany, 1994.

[16] J. Kramer. CASE Support for the Software Process: A Research Viewpoint. In van Lam-
sweerede and Fugetta [1].

[17] J. Kramer and A. Finkelstein. A configurable framework for method and tool integration.
In European Symposium on Software Development Environments and CASE, volume 509 of
LNCS, pages 233-257, Konigswinter, Germany, June 1991. Springer-Verlag.

[18] Fui Kien Lai. CORE in The Viewer. M.Sc. Thesis, Department of Computing, Imperial
College, London, UK, September 1993.

[19] U. Leonhardt. Process Modelling in TheViewer. Technical report, Department of Computing,
Imperial College, London, UK, 1994. (in preparation).

[20] K. Narayanaswamy and N. Goldman. “Lazy” Consistency: A Basis for Cooperative Software
Development. In Proceedings of CSCW’92, pages 257264, Toronto, Canada, 1992. ACM
press.

[21] B. Nuseibeh and A. Finkelstein. Viewpoints: A vehicle for method and tool integration. In
Proceedings of the International Workshop on Computer-Aided Software Engineering (CASE
’92), pages 50-60, Montreal, Canada, July 1992. IEEE CS press.

[22] B. Nuseibeh, A. Finkelstein, and J. Kramer. Fine-grain process modelling. In Proceedings
of the 7th International Workshop on Software Specification and Design (IWSSD-7), pages
42-46, Redondo Beach, California, December 1993. IEEE CS Press.

[23] B. Nuseibeh, J. Kramer, and A. Finkelstein. Expressing the relationships between multiple
views in requirements specification. In Proceedings of the 15th International Conference on
Software Engineering, pages 187-196, Baltimore, Maryland, May 1993. IEEE CS press.

[24] W. Riddle. Activity structure definitions. Software Design & Analysis, March 1991. Technical
Report 7-52-3.

[25] R. Smith and R. Davis. Frameworks for Cooperation in Distributed Problem Solving. In
IEEE Transactions on Systems, Man, and Cybernetics, volume 11, January 1981.

[26] T. Thanitsukkarn. The Constructive Viewer. M.Sc. Thesis, Department of Computing,
Imperial College, London, UK, September 1993.

[27] W. Turski and T. Maibaum. The specification of computer programs. International computer
science series. Addison-Wesley, 1987.

Papers related to the ViewPoints framework can be found on ftp://dse.doc.ic.ac.uk/dse-papers/.

17

A Expressing and Checking Consistency Constraints

We use the term constraint for an explicitly defined relation over the domain of ViewPoints. A
configuration of ViewPoints, that is, a set of ViewPoints, may or may not satisfy a constraint. As
consistency constraints are method-specific they form a natural part of a ViewPoint template.

Constraints can specify a syntactic notion of completeness. Broadly speaking, by checking
such completeness constraints we discover missing ViewPoints. Secondly, we are also looking for
conflicting information with agreement constraints. Disagreement usually indicates the need for
action on the part of the ViewPoints party to the disagreement.

The products of the development process must eventually be consistent, that is, satisfy all
the defined constraints. Thus the constraints specify the goal of the development process. These
constraints also provide a means of monitoring the progress of the development process. The more
fine-grained the constraints are, the more information can be obtained about the process.

A.1 Formalising consistency constraints

Our intention to “automate” consistency management necessitates a formal specification of the
constraints we want to impose on the system. By expressing these constraints in some formal
system we implicitly build a class of states of the process that we deem to be desirable. Effectively,
the constraints represent a theory, the models of which are consistent states.

We may want to distinguish between constraints that only apply locally—‘in-ViewPoint’ con-
straints—and those that are global—‘inter-ViewPoint’ constraints. As our goal is to distribute
the checking of the constraints and perform as little global checking as possible, the constraint
specification framework should reflect this distinction.

We use many-sorted first-order logic to formally express consistency constraints.

A.1.1 Local constraints

Typically, such a constraint would specify syntactic correctness for the content of the ViewPoint.
Consequently, the extra-logical language introduced will be specific to the representation-style
of the ViewPoint. Local constraints and local language represent a “local theory” Tj,. for each
ViewPoint. As the extra-logical language is specific to the ViewPoint template, all instances of a
template can share the same set of constraints and thus have the same theory Ti,..

A.1.2 Global constraints

Here, we have to deal with all the different representation styles as well as with the structure of the
ViewPoints framework. A specification of the latter is necessary in order to facilitate reasoning
about the constraints we are interested in. Global constraints will typically include references
to specific representation styles as well as to the general framework. Hence a “global theory”
Ty106 incorporating such constraints will use parts of the local languages. The distinction between
agreement and completeness constraints introduced above translates into canonical forms for the
representation of global constraints:

e Completeness constraints

(Gs(2) A Ga(7))
:>(E|y € VP)(Gt(x’ y’h—) A R(IIJ, Y, ﬁ))s

Here Gs(z) “selects” suitable ‘source’ ViewPoints for the cohstraint. Typically, we also
want to “select” information from the representation domain with G4(7). For the so chosen
domain objects x and @ a ‘target’ ViewPoint y which satisfies G4(z,y,7) and R(x,y,n) is
forced to exist, hence the interpretation as completeness constraint. We treat Gi(z,y,7) as

67 refers to an arbitrary number of variables over the domains defined in the representation of some ViewPoint.
Outermost universal quantifiers have been omitted from all formulae.

18

a guard for R(z,y,7) in order to facilitate efficient checking procedures. An example for this
kind of consistency condition would be:

For each non-primitive node n in the representation of one ViewPoint there exists
a ViewPoint in a domain with the same name as n.

Formally, this statement looks like this:

(n €Evp & A —prim_node(n))
=(Jy € VP).label,(n) = domain(y)

e Agreement constraints

(Gs(z) A Ga(M))
=(Vy € VP).(Gi(z,y,7) = R(z,y, 7))

Here, we have a universal quantification over target ViewPoints y which is effectively re-
stricted by the ‘guarding’ predicate Gi(z,y, 7). Hence we constrain the set of ViewPoints
as determined by Gy(z,y,m) to “agree” with z, the agreement relation being defined by
R(z,y,7m). As an example we might choose:

No two nodes in different ViewPoints have the same label.
This translates into:

(n1 €vp)
=(Vy € VP).((mz =y An2 €yp y)
=>=label,(ny) = label,(n2))

Using rules of this structure we can express and represent a global view of the system. However,
in a distributed setting such a global view will not necessarily be the primary representation
used to deal with inter-ViewPoint relationships. So a certain part of the knowledge about these
relationships, if not all of it, will be distributed among the actual ViewPoints.

A.1.3 Distributing the constraints

Overview As there is no central global coordination at run-time, all the consistency constraints
must be represented and checked in a local and decentralised fashion. Consequently, we need
to create “combined local theories” T; . for every ViewPoint which incorporate both the local
and relevant global consistency constraints. Intuitively, if all the individual ViewPoints satisfy
their respective theories T; . then the set of ViewPoints as a whole also satisfies both global and
local constraints, and is thus consistent. The distribution of the theory Ty,; must be done on
the template-level because instances of the same template conceptually share the same set of
constraints.

Obviously, some transformation mapping Ty05 and the different Tj,. into template-specific Tj .
is needed. This can be done by taking the individual Tj,. and adding as much of the global theory
Tgio as necessary. The converse transformation might also be of use when we want to prove
certain properties over collections of ViewPoints. For the time being we shall be focusing on the
top-down direction that involves two steps: modularising and localising Tyi.p .

Modularising Ty,; We want to identify the set of constraints that need to be incorporated
into the different templates. Intuitively, we can interpret the first universal quantification over
ViewPoints as identifying the “source ViewPoint” of the constraint. In an analogous manner, we
think of the second ViewPoint as “destination ViewPoint”.

We can now ‘modularise’ Ty by distributing the constraints to the templates of all possible
source ViewPoints. If the constraint is represented in one of the canonical forms introduced above,
we can unfold the universal quantification over the source ViewPoints. As a result, every template

19

gets a part of each global constraint. Subsequently, irrelevant constraints (that is, constraints that
will always hold) can be removed from individual templates by using partial evaluation techniques.

As a result, each of the templates has at least the constraints that are relevant to its instances.
These constraints represent template-specific theories Ty ; which can be seen as modules of Tj;.
The conjunction of the constraints in the templates is semantically equivalent to the original theory
Tyi08, that is, a given ‘state’ will satisfy all the partial theories Ty ; if, and only if T, is satisfied.

Localising Tg05 The template specific parts of Tyj5 have to be incorporated by the respective
local theories Tjo.. Technically speaking, the parts of T3 have to be implemented” in terms
of the respective Tj,.. This is achieved by building a conservative extension Tj. of Tj,. and an
interpretation between theories from T} ; to Tj .

The correspondence between locally and globally represented constraints allows us to choose
the degree of distribution we want to adopt. In this paper we explore the consequences of the
radical approach of total distribution. But we have to bear in mind that this choice will not always
be optimal when we consider performance and management concerns.

A.2 Checking constraints

For constraints concerning only the local specification, this is straightforward. If the constraint
is global, that is, involves other ViewPoints as well as the local specification, a number of issues
arising from the distribution of the ViewPoints have to be addressed.

1. Conceptually, constraints operate on some sort of state. In a distributed system, such as a
collection of ViewPoints , we can only find approximations to a notion of state. Thus the
results of consistency checks are also approximations at best. Alternatively, the freedom
of the system can be restricted to make it behave in a more sequential way (transactions,
locking, etc.). We believe, that most of the time the development process can live with
approximations of consistency information.

2. Each check potentially has to consider all the ViewPoints in the system. This is neither
desirable nor practical, especially for large systems. Therefore we would like to structure
our ViewPoint universe in such a way that we can limit our search to a small set of View-
Points without ever having to interact with all the others. One solution could be to use the
domains already defined in the ViewPoints framework to restrict quantifications.

3. A ViewPoint is required by the constraints it contains to “know” about other ViewPoints.
Hence we need some logically centralised service that keeps track of all the ViewPoints (that
is, a name server).

4. Due to failures of the various resources involved (humans, software, hardware) checking of
a constraint can be impossible. Obviously, we would like the system to be resilient against
partial failures.

Location. A check can be computed by the source ViewPoint, by the target ViewPoint or by
some third party (for example a “check server”).

Synchronisation. We have established a check’s source ViewPoint is responsible for initiating
the check. Nevertheless, the check requires at least some degree of cooperation from target View-
Points. We could by convention force the target ViewPoint to coopétate, but what if a particular
target ViewPoint cannot respond? A sensible approach may be to require the target ViewPoint
to send the relevant data to the source ViewPoint within some time limit and leave the actual
application of the check to the source ViewPoint(the source ViewPoint is busy invoking and partly
applying the check anyway.) However, it may be useful retain a certain degree of flexibility by

7"We use the terminology given by Turski and Maibaum in [27]

20

using process models to describe the actual protocols for consistency checking. Other options
include negotiation techniques derived from distributed artificial intelligence (for example [25, 8]).

Guards. If checks are not to be carried out by some third party, it seems sensible to adopt
the two-party check involving just one source and one target ViewPoint as the basic transaction
units of consistency checking. But it makes sense to decompose these two-party checks even
further. Most of our constraints will have parts that are relatively easy to compute, and others
that will be computationally expensive. The structure of the constraints given above already
takes this distinction into account. Gy(z,y,7) (read “guard on the target ViewPoint”) is intended
to designate the first, “easy” part of the check. R(y,7) then refers to the expensive, “heavy-
weight” component of the check. If the easy part of the check does not hold, it normally does
not make sense to proceed any further. Hence the easy part can be thought of as guarding the
“heavy-weight” part of the check.

Granularity. A single constraint can cover all aspects of consistency that arise between a
ViewPoint and its environment. In this setting, communication and coordination seem to be
much simplified. However, when such coarse-grained constraints are applied we do not get the
level of detail from the result we would like in order to guide conflict resolution in a meaningful
way. We can therefore identify a tradeoff between coordination cost and observational detail which
governs the choice of the “optimal granularity” for consistency checks.

B The ViewPoint framework

In this chapter, the many-sorted predicate calculus shall be used to define the static notion of
consistency for a configuration of ViewPoints. Firstly, the general framework will be specified.
Secondly, the notion of consistency for data flow diagram ViewPoints as used in the case study is
going to be defined.

SPEC 1 This defines the basic entities of the framework (templates, viewpoints, domains, repfe-
sentations) and their relations. Equality is assumed to be part of our logic.

e sorts:
TEMPL, VP, DOM, REPR, REP_ST

e relations:
inst_ofy: VP x TEMPL

E€4-: VP x DOM
contains_rep: VP x REPR
presented_in: REPR x REP.ST
contains_style: TEMPL x REP.ST

e functions:

domain: VP — DOM

tmpl: VP — TEMPL
content: VP — REPR

style: TEMPL — REP_ST

meta_model: REPR — REP_ST

e axioms:
bz = tmpl(y) & instofi(z,y)
F & = meta-model(y) < presented_in(z, y)
F & = content(y) < contains_rep(z,y)
F z = style(y) © contains_style(z,y)
F z = tmpl(y) = meta-model(content(y)) = style(x)

21

C Axiomatisation of the Case study

C.1 Data flow diagrams

SPEC 2 This specification can be interpreted over data flow diagrams that are the representation
style of the ViewPoints in our case study.

e sorts:

NODE, ARC, LABEL

e relations:
prim_node: NODE

e functions:
label, : NODE — LABFEL

label, : ARC — LABEL
context: — NODFE

arc_beg: ARC — NODE
arc.end: ARC — NODFE

e axioms:
F (labeln(ny) = label,(n2)) = ny = no
F (labely(a1) = labely(az)) = a1 = az

This theory incorporates already the internal consistency constraints for the case study. A diagram
interpretation satisfying this theory is therefore a consistent representation for ViewPoints in our
case study. Note that the local constraint listed in section 6 saying that arcs must be connected
to at least one node is implicit because the caculus does not allow for functions to be partial. are
implicit because

C.2 Global constraints

SPEC 3 Here we combine the framework and relevant parts of the representation. We extend
SPEC1 conservatively with:

e sorts:
NODE, ARC, LABFEL

e relations:
prim_node: NODE

€up- NODE x VP
€up- ¢ ARC x VP

e functions:
label, : NODE — LABFEL

label, : ARC — LABEL
context: VP — NODE

arc_.beg: ARC — NODE
arc.end: ARC — NODE

e axioms:
F (n €yp v1 A mprim_node(n)) =
(Fvz).(label, (n) =; domain(va))
A (Val €up V1,82 Eyp U2)-
((arc-beg(ay) = context(vs) < arc_end(az) = n)
A (arc_end(ay) = context(vy) < arc_beg(az) = n))
F (labelp(ny) = label,(n2)) = ny = no

22

F —label,(n) = "top”
F domain(vy) = d A ~d = "top” = (Jva, n).(n Eyp va A label,(n) = d)

The first axiom is a good example for partitioning the check into heavy and light weight parts.
The name of the domain can be checked very easily, possibly by querying some domain server.
The check for interface compatibility then is the more expensive part.

C.3 Distributed constraints

SPEC 4 This is the distributed version of the global constraints (SPEC3) embedded into the
normal specification of the local representation SPEC2. We arrive at this specification by extending

SPEC?2 with domains of remote ViewPoints and elements of the representation. Thus we have
SPEC?2 +

e sorts:

RVP, RNODE, RARC, RVP

e relations:
€vp-: RNODE x RVP

€yp-: RARC x RVP

e functions:
label,, : RNODE — RLABEL

label, : RARC — RLABEL
context: RVP — RNODE
arc_beg: RARC — RNODE
arc_end: RARC — RNODE
ldomain: — DOM

e axioms:
F —prim_node(n)) =
(3v,).(label, (n) =1 domain(v,))
A ((Yar)(Va, €vp vr).
((arc-beg(a,) = contezt(v,) < arc_end(a;) = n)
A (arc_end(a,) = context(v,) < arc_beg(a;) = n)))

Now we would have to prove that the parts of the unfolded global specification translate into this
theory.

For implementation purposes it makes sense to decompose the axioms into an existence and
an agreement part. The two check procedures would have to communicate the objects of interest,
that is the decomposition ViewPoints.

D Case Study: Actions and Events

Here a rudimentary Work Plan for data flow diagram ViewPoints is presented. It was used in the
case study in section 6 and is explained there in greater detail.

23

D.1 Static Part
D.1.1 Events

e Assembly Actions

<A> add-node

 remove-node

<C> rename-node

<D> make-node-composite
<E> make-node-primitive
<F> add-link

<G> remove-link

<H> rename-link

Internal Checks
<I> name-cons-check

<J> 1link-cons-check

*

Internal Check Results
<K> name-cons-check-succeeded

<L> 1link-cons-check-failed
<M> name-cons-check-succeeded
<N> 1link-cons-check-failed

External Checks
<O> parent-exists-check

<P> child-exist-check

External Check Results
<Q> parent-exists-check-succeeded

<R> child-exist-check-succeeded
<S> parent-exists-check-failed
<T> child-exist-check-failed

e Other Events
<U> send-commission-viewpoint®

D.1.2 Tests
Ty: .*D["R]I*$ not-successfully-
checked-since-D
Tg: .*0["RTI*$ exist-child-

check-pending

Tc: .*TL["ORT1{0,10}$ exist-child-
check-just-failed

Tp: ~.{0,10}$ underdeveloped

Tg: .*Q["0]*$ parent-
probably-exists

8 Commission sent be E-mail or whatever means appropriate

24

D.1.3 Rules

Rule: R,

Situation: T A-Tg A-T¢
Response: recommend:
child-exist-check

Rule: R

Situation: —Tp

Response: display:
“Viewpoint should be developed
further”

Rule: Rs3
Situation: T}

Response: display:
“do
not enact child-exist-checkor
child-agrees—check-request
because ViewPoint creation com-
missioned but not acknowledged”

D.2 Generic Part

D.2.1 Events

e Generic Actions

<a(v)>
<b(v)>
<c(v)>
<d(v)>
<e(v)>
<f(v)>
<g(v)>
<h(v)>

parent-agrees-check-request-(v)
child-agrees-check-request-(v)
parent-agrees-check-do-(v)
child-agrees-check-do-(v)
parent-agrees-check-accept-(v)
child-agrees-check-accept-(v)
parent-agrees—check-reject-(v)
child-agrees-check-reject-(v)

¢ Communication Events

<i(v)>
<j(v)>
<k(v)>
<l(v)>
<m(v)>
<n(v)>
<o(v)>
<p(v)>

parent-agrees—check-requested-(v)
child-agrees-check-requested-(v)
parent-agrees—-check-accepted-(v)
child-agrees-check-accepted-(v)
parent-agrees-check-succeeded-(v)
child-agrees—-check-succeeded-(v)
parent-agrees—-check-failed—-(v)
child-agrees—check-failed-(v)

e Other Events

<q(v)>
<r(v)>

child-located-me-(v)
parent-located-me-(v)

25

D.2.2 Tests

Ty: UL (*)]*$ commissioned-
vp-not-sighted-
yet

.*xq(v) ["P]*$ child-located

Ty(v):

Th(v):

Ti(v):

km(v) [“FGHa(v)i(v)]*$ context-

links-ok

n(v)[Tj(v)b(v)]*$ child-agrees

D.2.3 Rules

Rule:
Situation:
Response:

Rule:
Situation:
Response:

Rule:
Situation:
Response:

Rule:
Situation:
Response:

Ry(v)

Ty(v)

recommend:
child-agrees-check-request-(v)

Ry

Tg

recommend:
parent-agrees-check-request-(v)

Re(v)

~Th(v)

recommend:
parent-agrees-check-request-(v)

R7(v)

(Vv).Ti(v)

display:

“All children known have been
checked successfully”

26

