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Abstract

"This paper presents a logical system, CIUrps, as a labelled realization to our approach of
Compromising Interfering Updates. Basically, this approach proposes a method for handling logically
conflicting inputs into knowledge bases, via restricting their consequences. The main idea is to
update the database with as many consistent consequences of the inputs as possible, in the case
that the inputs themselves are not allowed to be kept in it. And in the case that a revision applies,
the idea is to keep as many as possible of the consistent consequences of the retracted sentences as
a comproinise.

Our approach caters for the specific case where compromised solutions for revising knowledge
bases apply, when conflicts involving updates occur. In comparison with approaches that require
preference between conflicting inputs, or that avoid them by cancelling them out completely, our
approach fits as an alternative which provides more informative results, and is directed to some
specific applications. Hence, instead of preventing updates to be performed, when they introduce
inconsistency to the system, our approach proposes to generate the consequences of the conflicting
inputs, and to get rid of the inconsistency, via a minimal number of retractions of those consequences.
We expect the resulting database to be consistent w.r.t. the integrity constraints, and to retain a
safe-mazimal subset of the consistent non-supported consequences. This reconciliation of conflicting
inputs follows some specified postulates for compromised revision.

CIU_ps is based on the Labelled Deductive Systems framework (LDS). This framework deals
with labelled formulae as its basic units of information. By labelling the formulae, we are provided
with a way of including in the labels extra information to the system. The main motivation
for adopting LDS as the underlying framework of this formalization was to take advantage of its
labelling facility, to control the derivation process of the compromised consequences. We embed in
the labelling propagation conditions, which act on the inference rules, part of the control mechanism
for the compromised approach. This control mechanism helps the update operations to perform the
reconciliation of conflicting inputs. The update operations invoke a compromised revision on the
labelled database, whenever conflicts arise. .

In this paper, we present briefly our main motivations and we discuss the general issue of conflict
resolution and theory revision. We introduce the basic specification of our approach CIU, for the
case of database updates, describing the adopted policies for reconciling conflicting updates under
a compromised reasoning perspective. We introduce the CIU_rps system, by decribing informally
its main features and definitions. In CIUps, we propose a specific revision method which applies
some compromising criteria for achieving the revised database. Finally, we summarize the system’s
main properties.



1 Introduction

Resolving conflicting updates in dynamic databases, or conflicting actions in planning applications, for
instance, are frequent and critically important problems of real applications. Such problems require the
revision of theories and knowledge bases. As pointed out by Winslett in [Win-90], it is not realistic to aim
for a generic approach in those cases, since theory revision is fundamentally dependent on application-
specific mechanisms, principles and heuristics. The approach we propose in this paper, caters for the
specific case where compromised solutions apply when conflicts occur. It supports a compromised way
of handling conflicting updates for revising databases.

Our approach is mainly suitable for applications which allow for compromised solutions, i.e. solutions
which present the closest result with relation to the expected one. Some of the applications which can
benefit from our approach, are in the area of design processes. Here, one builds up the goal state of
a particular task, via performances of intermediary updates. This procedure allows for compromised
results of updates when conflicts arise.

In more practical terms, consider the situation where DB is a database and A an input. Assume
that A is inconsistent with DB . Current belief revision/update approaches will keep A and mantain
consistency by selecting some element from DB to form a revised database, usually denoted as DBx* A.
There is a lot of research in this area, both theorectical, e.g.: the AGM theory of belief revision!, and
algorithmic research, e.g.: Reason Maintenance Systemsz. Our aim is to offer an alternative approach,
which is flexible enough to keep more data in DB, in the case of conflicts. We view the above situation
as a conflict between two inputs (DB and A) into an empty database, and we tackle the problem of
reconciling these inputs. Under our approach, the conflicting input A is kept in DB only in the case that
A generates inconsistency to DB indirectly®, in which case a revision also applies in order to restore
consistency. However, in the case that A is not allowed to be kept in DB, its consistent consequences,
w.r.t. the existing data of DB, are added to the database under the compromised policy of our
approach. This way, instead of preventing updates to be performed, when they introduce inconsistency
to the system, our approach reconciles the conflicting inputs by compromising on their consequences.
We propose to generate the consequences of the conflicting inputs, and get rid of the inconsistency, via a
minimal number of retraction of those consequences. We expect the resulting database to be consistent
w.r.t. the integrity constraints, and to retain a safe mazimal subset of the consistent consequences of
those updates. This reconciliation of conflicting inputs follows some specified postulates for compromised

revision.4

1.1 Motivations

As pointed out by Galliers [Gal-90], in most of the existing Al research work, conflicts either simply
never arise, or are alternatively avoided when they do arise. However, in a constantly changing and
unpredictable environment, inconsistencies within the system are most of the times inevitable, and
conflict situations do arise. The central interest in [Gal-90] is to solve conflicts in cooperative multiagent
systems, by facing their positive aspects. They claim that achievement of cooperation from conflict,
among formalized agents may involve the decision of a mutually preferred compromised solution, and/or
persuasion to the validity of another position.

Gabbay and Hunter, in [GaHu-91,93], also support that inconsistency should be faced and formalized.
They urge for a revision on the way inconsistency is currently being handled in formal logical systems,
as opposed to the way it is handled by humans. They claim that there is a need for the development of
a framework, in which inconsistency can be viewed in a context-dependent way. As a signal for external
and/or internal actions, and not necessarily as a bad element which induces the whole system to collapse.

1The AGM theory was first introduced in [AlMa-82,85,86][AGM-85], and since then gained many followers who
apply and modify that theory in various ways, see for instance [Mak-85],[Neb-89] [RaFo-89],[JaPa-90],[Neb-90],[Rot-
91,92],[KaMe-92] [BoGo-93],[Mak-93],[Sri-93] and [FrLe-94].

2Reason Maintenance Systems were initiated in [Doy-79] based on justifications, and in [Kle-86a] based on assumptions.
More recent research work following this line have also emerged. Some of them are found in [Elk-90],{GiMa-90],[PiCu-
89],[RoPi-91],[Salw-91] and [WaCh-91].

3By indirectly here, we mean that A alone does not violate any of DB’s integrity constraints.

4In [Dar-96c,96d], the compromised revision is defined under a belief revision perspective and some postulates for
finite bases with integrity constraints are introduced, as guidelines for the compromised revision function.



They argue that dealing with inconsistencies is not necessarily a job for restoring consistency, but rather
for supplying rules which state how to act in the case of inconsistencies.

We strongly endorse the viewpoints of Galliers and Gabbay & Hunter. Based on the same grounds, we
investigate an approach which handles conflicts that introduce inconsistency into a system, and puts
forward a compromised reasoning way for dealing with conflicting updates and actions, instead of simply
avoiding them.

As in [Gal-90], we propose to solve conflicts by facing their positive aspects. We do so, by reconciling
the conflicting updates with the underlying knowledge base, and getting as many of their consequences
as possible.

We support the point in [GaHu-91,93), that inconsistency (caused by conflicts) should be faced and that
we should supply mechanisms for handling situations when they arise. In the current work, we approach
such situations by allowing some consequences of the conflicting updates to remain in the database.
However, by reconciling the conflicting inputs, we also restore consistency, which does not conferm to
their view of keeping inconsistency in the system and supplying the appropriate mechanisms to handle
it.

Our main motivation in pursuing this approach, comes from the premise that by reconciling conflicting
updates with a knowledge base, our approach provides more informative results. In comparison with
approaches that require preference between conflicting inputs, or that simply avoid them by cancelling
them out completely, our proposal of comprorhised revision allows more information to be kept in a
theory base. Following our compromised revision approach to conflicts, one will possibly not get all of
what he/she originally wanted®, in the case of conflict. Instead, he/she will get extra data, leading to the
direction of the original goal. This is because most of the extra data are related to the goal’s consistent
consequences.

The results we get with our approach suit the needs of particular application areas, e.g. design
processes; resource allocation; and decision making. As an application example, let us consider a
research organization which has the task of deciding the allocation of funds among projects. We assume
that it is necessary for the projects to discriminate all the expenses required for each of their phases,
allowing for the option of satisfying only partially those phases (compromised solutions). We assume
also that the decision makers are not supposed to favour any project in particular. So, if funds are not
sufficient to support all the projects’ requirements, our approach would be appropriate to be applied in
the process of funds allocation. In the sense that it would allow for as many of all the projects’ phases
as possible, considering the constraints involved in the process.

1.2 Our Approach to Handling Conflicting Inputs

Our approach proposes to reconcile conflicting inputs with respect to the underlying theory, and
establishes some policies for dealing with the problem of inconsistency caused by them. The way
we approach the problem of conflicting inputs differs from the other existing approaches, in the sense
that we allow for a special process of performance of the conflicting updates. A process of reconciliation
of conflicting inputs, which considers restrictions of the effects of those inputs by compromising on their
consequences. We refer to our approach as CIU, meaning Compromising Interfering Updates.

By conflicting, or interfering, updates, we mean either simultaneous updates which interfere with each
other, generating inconsistencies as part of their combined effects, or updates which are inconsistent
to be performed because they conflict with the given database or scenario representation, by violating
some of their constraints. Below, we present two examples which illustrate the intuitive notion of our
approach with relation to database updates.

Example 1.1 Let us consider the database of formulae as shown below:
(1) A — B
(2) AANC — 1L
(3) A

5The idea of this revision approach conforms with the meaning of the word compromise. Quoting from the Oxford’s
Dictionary: “Compromise” is a settlement of a dispute which each side gives up something it has asked for, and neither
gets all it asked for.



If we want to update this database with the formula (4) C , then, by applying a TMS-like approach [Doy-79], for
instance, we would force C in, by removing A and all the consequences derived from A , in order to keep comststency,
as shown below.

(1) A - B
(2) AAC — L
(4) C

In the way we approach this problem, we would also end up with either A or C , but not both. However, we want to
be able to keep all the comsistent derived consequences of the conflicting update. In this case, we would be able to have
B as well in the resulting database, as shown below.

(1) A - B
(2) AAC — L
(4) ¢C
(5) B
.
The example above could be interpreted with the following meanings for the sentences A, B and C: A = “Executive
Class Passenger”; B = “Extra baggage allowance”; C = “Economic Class Passenger”. Then, we would have that the

database update above represents a situation, in which an executive class passenger for some reason has to be moved
to the economic class, in a particular flight. However, even in the the economic class, the originally executive class

passenger still keeps his/her right of having extra baggage allowance.

CIU can be described as a module of a reasoning system, which is invoked whenever we have conflicting
updates, w.r.t. databases and to their sets of integrity constraints. We assume that we have a database
module D which is subjected to a module of integrity constraints I . The integrity constraints are
assumed to be protected against any update modification, and they restrict the possible transactions
on D. The database can be, for instance, a declarative representation of a scenario, In terms of the
facts that hold in the current state. A finite set of updates, to be performed on the database, is given
as input to the system. We assume that the updates executing module only effectively performs the
updates in the case that they modify D without violating any integrity constraint. Otherwise, CIU
module is invoked in order to perform the compromised version of the set of updates. In the end, the
compromised updated database is supposed to be consistent and to satisfy the constraints in module
I. The peculiar characteristic that CIU has in dealing with updates is that, instead of preventing an
update to be performed when inconsistency arises®, CIU proceeds and generates the consequences of the
conflicting updates.

When CIU is invoked, it instigates the compromised performance of the conflicting updates, by firstly
generating all their consequences/derivations. Later it takes care of restoring consistency in the database.
In order to restore consistency, a special revision procedure takes place. It is based on the minimal
elimination of the formulae involved in the generation of inconsistency, and guided by the compromised
reasoning policies of the approach.

1.2.1 Different Kinds of Conflicting Inputs

Conflicting inputs can be of various kinds. For instance, we can have simultaneous updates which
interfere with each other, generating inconsistencies as part of their combined effects, or updates which
are inconsistent to be performed because they conflict with the given database, by violating some of its
constraints. We can also have the case in which updates are individually consistent to be applied, but
if performed in parallel they interfere with each other.”

6This would make the approach equivalent to many existing ones which do not allow for updates to be performed if
they are not consistent with the theory.

7A similar motivating approach was pursued by Cholvy [Cho-93] in the context of multi-sourced information
environment. Cholvy treats the problem of consistency of information provided by different sources, considering
the case that the global set of information is inconsistent even if each separate source is consistent. Notice, however,
that in this work we propose to deal with inconsistency generated by conflicting updates within the same system, while
Cholvy treats the inconsistent information which is due to the combination of different data/knowledge bases. A further
analogy between the two approaches requires, at least, a re-definition of the basic conflicting entities, in order to cater
for the representation of information sources.



Below, we state clearly all the different kinds of conflicting inputs that we are considering, and we
describe how we propose to handle them. We consider that A and B are formulae of the language
being considered. We consider classical logic as the underlying logic, including the usual connectives. A
database DB is such that DB = A|JPa , where A denotes set of formulae which compose the
body of the database, and Pa denotes the set of integrity constraints which rules A.

(a) Conflicting inputs within the update, or within the transaction, e.g. Update = {A,—-A}. In this
case, the updates are rejected, since one logically cancels the other. However, if within a transaction
T we have the following sequence of inputs T = {A,—A, B}, the subset {A4,—~A} is removed
from T and the remaining inputs in the transaction are still performed. In this case, T = {B}.

(b) Inputs which conflict directly with some of the integrity constraints which rule the database, e.g.
DB = AUUPa, Pn ={ A— L1}, and Update = {A}. In this case, the input is not allowed
to be inserted in the database. However, we allow the consistent consequences of the input to be
inserted in DB, with particular status of non-supported data.

(c) Inputs which conflict indirectly with some of the integrity constraints which rule the database, e.g.
DB = AUPa, Po ={ ANC — 1}, A ={C}, and Update = {A}. In this case, the input
is inserted in the database and a revision procedure takes place in order to restore consistency and
allow the database to accomplish the new update. The revision presents special properties which
preserves the consistent consequences of all the retracted formulae from DB.

(d) Inputs which contradicts existing data of the database, e.g. DB = AUPa, A ={ A}, and
Update = {—A}. In this case, the input is inserted in the database and a revision on DB takes
place, just as described above.

1.2.2 Multiple Updates Case

In the case of a transaction, which involves a set of single updates, if we have “n” conflicting updates
w.r.t. the integrity constraints, the resulting compromised updated database might contain at most
“n — 17 of those updates. Transactions have their consistency initially checked with relation to the three
conditions described below. Assume that a transaction T = {Uy,Us,---,Un} , composed of n updates,
is to be performed to DB, and I is the set of integrity constraints which rules DB.3

1. For any U; and any Uj in a transaction T' = {Uy,---,Upn}, where 1 <i<n;1<j<njandi#j,
if U; expresses a formula which is the complement of the formula expressed by Uj;, say A and
—A ? then the set {U;,U;} is retracted from the transaction T.

2. For any U; in a transaction T = {Uy,---,Un}, where 1< i < n,if U; violates an integrity
constraint in I, {U;} U I t L, then the update U; is rejected, however its consistent
consequences are allowed to remain as non-supported consequences in the database.

3. For any U; and U; in a transaction T = {Uy,--+,Un}, where 1 < i< mn; 1< j <n;and
i # j, such that U; and U; are not complementary updates in T, and {U;} U I ¥ L anf
(U} U1 ¥ L,if {Us,U;} U I + L, then a choice is made between U; and Uj, according to
meta-level information concerning, the relevance of the updates within the transaction!®. In this
case, the transaction is then reduced to T — {Uy}, where k is either ¢ or j , depending on
this meta-level based choice, however the consistent consequences of Uy are allowed to remain as
non-supported consequences in the database.

In the cases described above, when consistency of the updates is not obtained initially, the updates which
cause inconsistency are not supposed to be performed, since they are removed from the transaction, as

8The formulae considered here are propositional sentences from the system of propositional classical logic.

9This would represent adding and deleting the formula A in the same transaction.

10This meta-level information is totally context-dependent. We could, for instance, have a total ordering among the
updates in T, so that each U; would be less preferable than U,4+;. We will not discuss details about this meta-level
based choice in this paper.



described. However, the transaction is not cancelled due to the fact that some of its updates failed the
initial consistency checking phase!!.

Condition 1 above, ensures that complementary information is cancelled prior to the database transaction
performance, in order to avoid redundant update execution.

Condition 2 puts forwards that an update U; which violates directly an integrity constraint of the
database cannot be performed, however, under our compromised approach, its consistent consequences
can be kept in DB. For instance, if T = {4,B,C}, DB = {} and I = {C — L1}, the
transaction would be reduced to {4, B}, since {C} J I + L. Eliminating the update that violates
the integrity constraint from the transaction, and allowing the other updates in T to be performed
is, most of the times, an intuitive procedure which conforms with the compromised philosophy of our
approach. Consider the case that A expresses that worker W1 gets a raise of 10% on his salary; B
expresses that worker W2 gets a raise of 30%; and C expresses that worker W3 gets a raise of 50%
on his salary. Assume that their company has restricted raises of 50% or higher on workers’ salaries.
Then, update C would not be performed and would have to be negotiated later. However, this would
not stop updates A and B from being performed.

Condition 3 caters for the case when two updates are individually consistent to be performed, but
together they violate the set of integrity constraints which rules the database. In the case of two
conflicting updates within the same transaction, our approach allows for their consistent consequences
to be kept in the database.

.

2 CIU formalized under the LDS Framework

Labelled Deductive System (LDS) is a logical framework, introduced by Gabbay in [Gab-94], for the
representation of various existing logical systems and their interactions. LDS basically arose in response
to conceptual pressure from various application areas and their needs. The LDS framework deals with
labelled formulae as its basic units of information, where the labels can be of arbitrary form, belonging to
a given labelling algebra. LDS’s derivation rules act on the labels as well as on the formulae. These rules
include some prescribed ways, given by the labelling algebra, to propagate the labels. The handling of
labelled formulae is a very important feature of LDS. The extra power given by the labelling algebras allows
standard proof systems to be extended with non-standard features. Hence, the LDS formalism provides
a rich syntactic characterization for a proof-theorectical presentation, which combines the information
of the labels with the formulae. This way, the proof systems are able to cover a wider operating scope,
without modifying their structure.

By labelling the formulae, we are provided with a way of including in the labels extra information to
the system. The original motivation was to be able to code control information in the labels, such as
dependencies within a proof, and controlling flags for a derivation process. Nevertheless, also structural
database information, and network information, among other meta-level pieces of information, can be
incorporated explicitly into the object language via the labels. Moreover, labelling may also be used to
facilitate truth maintenance and conflict resolution.

We propose here to build a Labelled Deductive System to formalize our approach. We present a logical
systemn CIUpps as a labelled realization to our specified system CIU. Following the lines of [Gab-94],
CIU_ps is defined by the triple (A, Lcru, Mcru), where Lcru denotes the system’s language, A
denotes an algebra of labels, and Mcjy denotes a discipline for labelling formulae of the logic, and
propagating the labels within to the system’s deduction mechanisms. One of the main motivations for
adopting LDS as the underlying framework of this formalization was to take advantage of its labelling
facility, to control the derivation process of the compromised consequences. Actually, we embed in the
labelling propagation conditions, which act on the inference rules, part of the control mechanism for
the compromised approach. This control mechanism helps the defined update operations to perform the
reconciliation of conflicting inputs. The update operations invoke a compromised revision on the labelled
database, whenever conflicts arise.

11Most of the database-update approaches in the literature do not conform with this viewpoint, since they adopt a
style denoted sometimes as all-or-none updates performance, in the case of inconsistency or integrity constraint violation
within a transaction, e.g. [MBM-95].



Before introducing the formal definitions of CIUpps, we discuss briefly the components and the
mechanisms used in this formalization, relating them to their formal definitions as well as to the
philosophy of our approach.

2.1 CIUpps Briefly Described

2.2 The Language

The system’s basic units of information are labelled formulae, denoted as declarative units and written
as 7 : a, where 7 is a label and o is a logical formula. The intended meaning of v : « is that
v indicates the nature of the formula o« w.r.t. its data status in the database. In order to supply
a proper syntax for these labelled formulae, the system’s language Lciu is defined as composed of
a propositional logical language L, and a distinct language for the labels L,. The logical language
£ provides propositional well formed formulae (wff), (the « part of a declarative unit), whereas the
labelling language L. caters for the representation of the labels. £, is mainly based on finite lists
of typed constants symbols, used to qualify the label nature, and on binary function symbols which are
used to define how labels propagate in relation to the derivation rule being applied. Definitions 2.1,
2.2, 2.3, 2.4, 2.5 and 2.8 state formally the language L, the wif’s of £, and the languages L and
Lciu, respectively. Definitions 2.17, 2.18, 2.19, 2.20, 2.21 and 2.22 state how the functions of L,

are defined w.r.t. the label types. )

2.2.1 The Labelled Database

We consider a labelled database, denoted as D, to be the tuple D = (Ap, X) , where Ap is a set
of declarative units, and = is an ordering on the declarative units of Ap.

Notice that the ordering relation = is not part of the language Lcu, but it is used to compare the
declarative units of this language on a meta-level. Intuitively, the notion of an ordering, comparing the
declarative units of Ap), states the meaning of priority or relevance to those elements. In general, such
an ordering is guided by the requirements of the database application. Among many different meanings
that it can bring to Ap, we can cite that it can express the novelty of the declarative units in the
database, or some sort of degree of importance, for instance. Here, we leave the interpretation of the
ordering < open, since we do not specify which database application our formalization is dealing with.
However, in the course of the formal definitions, we will assume some basic properties on <, restricting
it to our formalization requirements.

The intended meaning of using labelled formulae in our database representation is to provide the structural
information of the database, by using the labels to express the nature of each of the formulae available
in and from the database. Borrowing the conceptual presentation of deductive databases, we distinguish
in D the explicit facts from the rules. In deductive databases’ terms, we distinguish between the
extensional and the intensional components of our labelled database D. The extensional data refer to
the formulae stored as explicit facts, and the intensional data refer to the deductive rules, in our case
the clausal formulae, and the derivable data. Our approach, however, requires that we introduce two
more formulae identifications to our database. One which refers to the protected data, and another
which addresses the non-supported consequences generated by the compromised solutions of our revision
policy. Hence, the possible types of data in our labelled database D are the following:

o Extensional data, used to represent explicitly stored facts;
o Intensional data, used to represent rules, (clausal formulae), and derivable facts;

e Protected data, used to represent data which cannot be modified or removed from the database,
for instance, integrity constraints; and

o Non-supported data, used to qualify consequences whose set of premises is not available from the
database.

This last sort of data will eventually appear after a compromised revision takes place on the database.



By handling declarative units, we are able to distinguish by the labels all those different data. We then
define that a label 7 can be of the type ‘E’, ‘', ‘P>, or ‘N’. These types qualify, respectively, the
possible declarative units listed above.

In this formalization we allow for the empty database, where Ap = 0, and we consider that a single
declarative unit in Ap composes a singleton database D. Definitions 2.9, 2.10, 2.11, 2.12 and
2.13 state formally the concept of declarative units and their types, and Definition 2.14 formalizes the
notion of a CIUps labelled database.

Example 2.1  Let us consider the database D, where the set Ap, of declarative unils is as shown
below:

(]) Iy ¢ A—- B

(2) Ip ¢ C - D

(3) PL: ANC - L
(4) E1: A

We have that (1) and (2) are the intensional part of the database, (3) represents the protected part of the
database, which serves as an integrity constraint; and (4) is the only ezplicit fact of this database. There
is no non-supported data represented in this database.

2.2.2 The Inputs

The inputs of the system are in the form of update requests, which invoke an update function. This
update function, formally denoted as U(D, o, §) = 'D', takes into account the two labelled databases
D and D', before and after the update, respectively, and the arguments o and 6. o is the type of
update to be performed, and & is the data involved in the update. The o argument can take one of
the constant values of the set {Uj, U_}, where ¢ U} ’ implies that the update requests an addition of
the argument & , and * U_ ’ implies that the update operation requested is a deletion. The ¢ argument
denotes a declarative unit v : a.

In this section, we first introduce the LDS formalization of the approach for the case that the update
requests involve single declarative units. Then, we present the notion of transactions to cater for the
case of a request involving a sequence of updates.

Example 2.2

Let us consider the database D; of ezample 2.1. An update of the form U(Dy, Uy, Ex : C) requests
that the declarative unit Eo : C be added to Dj.

Basically, the allowed updates in CIUpps w.r.t. declarative units, are the ones involving addition or
deletion of declarative units which are either extensional data or intensional data. Atomic formulae of
L. can be used in the update only as explicit facts. The intensional data involved in the updates are not
supposed to be atomic formulae of L, since these forms of intensional data represent the derivable data
from the database. However, derivable formulae are allowed to be added to the database, when they
are introduced as explicit facts, using extensional labels. These restrictions avoid the manipulation of
non-supported data, and of protected data in the updates, as expected. Non-supported data can only
be derived or added to the database by the system, as a compromised solution. And protected formulae

cannot be modified by means of updates to the database. Example 2.3 illustrates some allowed updates
in ClULps.

Example 2.3



According to the database Dy of ezample 2.1, the declarative unit 13 : B is not allowed to be involved
in an update request, however it would be allowed if it were given the form of an ezplicit fact: E3z : B.
Hence, U(Dy, Uy, E3 : B) is considered as a valid update request, as well as U(D1, U, Ey : A), and
U(Dy, -, 1y : C — D). On the other hand, U(D;, Uy, P2 : E — 1), and U(Dy, U4, N; : D)
would not be valid update requests.

The update function invokes the update operations of conditional addition, ), and conditional retraction,
=, of data to/from the database, depending on the argument o. These update operations are defined
taking into account the compromised philosophy of our approach, and they also invoke the revision
function, whenever it is needed. See Definitions 2.38 and 2.46. Definition 2.37 states formally the
concept of updates, w.r.t. declarative units. And Definition 2.51 caters for the formalization of the
transaction notion.

2.2.3 The Notion of Integrity

We use a notion of database integrity in order to extend the classical notion of getting consistency. By
defining integrity constraints on the database, we can customize the notion of consistency w.r.t. the
needs of the application area. In general, integrity constraints are formulae intended to be inconsistent.
In this formalization, we have restricted the integrity constraints to be declarative units of the form,
P : Ai-;4i — L, where each A; isa proposition or its negation. So, these integrity constraints
extend the notion of classical consistency, such that if ¥ : Al_, A; can be derived in the labelled
database D, for any label v, then D is inconsistent.

Our approach requires that integrity checkings be carried out everytime the database suffers a
modification. Given that initially a CIUrps database is assumed to be consistent, we have that
whenever the database becomes inconsistent, the integrity constraint violation is due to the update being
performed on the database. However, under the compromised philosophy of the approach, an integrity
constraint violation does not have the same restrictive weight that it usually has in conventional databases.
We do not view the update input which causes integrity constraint violation as a totally banned input
option. Actually, we allow its consistent consequences to be added to the database. Proof theoretically,
a CIULps database is consistent w.r.t. to the set of integrity constraints I, if it does not derive L via
the application of the inference rules. Semantically speaking, given a database, the problem of proving
its consistency w.r.t. the set of integrity constraints I, is solved by proving that all the declarative units
v : AL, A; which are premises of the ones in I, are not satisfiable in all the models of the database.

In this work, we distinguish between two kinds of integrity constraint violation, referred to as direct and
indirect. We say that an input directly violates an integrity constraint, if we can derive bottom from
the set of integrity constraints, when that input is added to it, in the set-theoretical sense. And we say
that an input indirectly violates an integrity constraint, if it does not comply with the previous case,
and if it causes the database to become inconsistent w.r.t. the set of integrity constraints, when it is
added to it. Example 2.4 illustrates this notion. Definitions 2.12 and 2.29 state formally the notion
of integrity constraints and the notion of a consistent CIUrps database, respectively.

Example 2.4

Let us consider the database D; of ezample 2.1, and the update request U(Di, Uy, E2 @ C) of
ezample 2.2. If the declarative unit E; : C is added to Dy as requested, the integrity constraint
P, : A A C — L willbe violated. Hence, the declarative unit 14 : L will be derivable, since the
declarative unit Ey : A isin Dy, and the updated Dy will become inconsistent. This indicates that
the resulting database needs to be revised. In this case, we say that the input Eo : C violates indirectly
some intlegrity constraints in Dj.



2.2.4 The Derivation Mechanisms

The proof system defined for CIUrps plays an important part in the reconciling notion of our approach.
It is given by a set of inference rules; some labelling conditions, which have to be satisfied by the inference
rules in order to define the labelling propagation in the derivable declarative units; the notion of proof
of a declarative unit; and the notion of the system’s consequence relation.

In CIULps the notion of consequence is stated as a binary relation between a database and a declarative
unit, denoted as D Fcru,ps 7 : @, (or D F 7:a for short). The intended meaning is to determine
via the derivation mechanisms, if a given declarative unit 7 : a is derivable from a labelled database
D. That is, if we can exhibit a proof of 7 : @, denoted as p[y : a], from D. Definitions 2.28 and
2.27 state formally the notions of consequence and proof, respectively.

This formalization considers a convenient subset of the set of inference rules relative to each connective
defined in the language, presented in the natural deduction style. In the course of their formal definitions,
more details are given about them. We also justify why some of the connectives do not present
correspondent inference rules in CIUpps. Definition 2.26 states the general notion of inference rules in
ClULps, and Definitions 2.30, 2.31, 2.32 2.33, 2.34, 2.35, and 2.36 state formally the inference
rules defined for the system w.r.t. the labelling conditions.

The concept of labelling propagation conditions is used to monitor the application of inference rules
and the basic update operations. We denote a labelling condition with ¢x(v1,72), where the subscript
x identifies the inference rule or the database 6peration that it stands for, and ; and <2 are the
labels which should be combined to satisfy the condition x. In most cases, the combination of the
labels 4, and 7 is given by the £, function (©x. So, unless differently specified, we say that the
labelling condition @x(71,72) holds if 71 ©y 72 defines a label of L,. Then, the algebra of labels is
simply defined as the set of all the labelling conditions of the form ©x(71,72), which hold in our system.
Definitions 2.23 and 2.24 formally present the notions of CIUrps labelling conditions, and the
algebra of labels, respectively.

Remark 2.1

Alternatively, we could also have defined a sort of resource labelling system, which would , for instance,
annotate on the labels of the formulae the proof-steps taken or the labels of the premuses used to obtain
them. In such a system, one could define the constraints on the way the formulae were derived. That s,
one could say that a labelled formula v : « would only be accepted as derivable if the label v did not
involve any label of type P, addressing protected formulae, for instance, or any other particular formula
type. It would also be possible o recognize non-supported consequences as derived formulae which carried
labels in ~. whose wff are available from the database any longer. Such a formalzation would be more
general than the one presented in this section. However, it would also need a more elaborated algebra of
labels, in order 1o cater for the labelling propagation and to control the derivation mechanisms employed.

2.2.5 The Reconciling Notion

In CIULps. the notion of reconciling conflicting updates with the underlying database in follows the
compromised reasoning policies for updates described previously. This notion is mainly represented by
the compromised revision function, which we denote here as ©, and by the compromised contraction
function, denoted by the operator Z=.

When we get an input request U(D, Ui, ¥ : a), the basic operation of conditional inclusion of a
declarative unit into a labelled database is invoked. This function is denoted by the operation 4. We
define that (D, y:a) = D, also written as D | y:a = D', such that:

'

D = DU {y:e} if Ap, y:a F L;
T\l DO vy otherwise.

By D U {7 :a}, we mean that the declarative unit y:a is added to Ap, such that it takes the
highest position in the ordering <.

10



In the case that a revision applies within the operation [, we have the two following possibilities:

1. I, y:a F 1. This means that the declarative unit violates the integrity constraints in D
directly. In this case, 7 : @ is not allowed to be inserted in Ap. However, the compromised
revision function takes care of including in the revised database, all the consistent consequences of
v:a w.r.t. D, as a compromised solution.

2. Ap,y:a F L when I, y:a ¥ L. In this case, a revision applies in order to accomodate
4 : a in the resulting database and to preserve consistency. As defined in the policies of our
approach, the compromised revision allows for the consistent consequences of retracted declarative
units to remain available in the resulting database. The ordering < on Ap facilitates the process
of choosing which declarative unit to discard, in order to regain consistency.

When the input request is U(D, U, ¥ : ), the operation Z is invoked. = retracts a declarative
unit from a labelled database in a compromised way. That is, the compromised contraction function,
written as Z(D, v : «a) = D' or D' =D = v :a, retracts the existing declarative unit v :a from
Ap, and inserts to it the consequences of 7 : @ w.r.t. D as a compromised solution, provided that
D' ¥ 5 :«. In this case, a revision is not needed, because there is no chance that D =y : a F 1,
since we always consider that D is initially consistent.

The compromised retraction is a very straightforward operation. Basically, if the declarative unit to
“be retracted is present in the database, it deletes it and preserves its consistent consequences as non-
supported consequences. Otherwise, no operation is performed on the database.

The operations |4 for data inclusion, and Z for data retraction, can be described as algorithms which
are defined on top of the notion of the consequence relation. That is, the definition of these operations
make use of the proof procedure which presents the consequence relation .

The consequences which those operations add to the database, without support from their premises,
carry the non-supported label type and are subject to continuous checking by the proof system, as the
database is further modified. We can say that the derivation mechanism of our system is sensible to
the presence of the non-supported declarative units. By this we mean that it applies some restrictions,
in the case that a non-supported declarative unit is involved in a derivation process. Further in this
section, we make this point clearer.

Below, we give more details and examples about the conditional additional operation of declarative units,
and the compromised revision.'?

e Given a labelled database D = (Ap, <), and an update request U(D, Uy, 71 : «a), consider
that I, y1 : a ¥ L. If 72 : o € Ap, then the resulting database will have the declarative
unit y; : o replacing v2 : «a, and for all other declarative units z in Ap, z < 711 @ «a.

Example 2.5

Let us consider a labelled database Da, with the following set Ap,:

(4) Ei
(5) N1

(]) I A — B
() 1,:C — D
(3) Pp : ANC — L
A
D

and the update request U(Ds, Uy, E2 : D) . So, according to our defined notion of updates, the
non-supported declarative unit Ny : D is replaced by the declarative unit E; : D.

121 most of the examples in this section, the ordering < is omitted on purpose, since it does not take a central role.

11



o Given an update request U(D, Uy, 71 : @) ,suchthat I, v; : o ¥ L If 72 : na € Ap,
the resulting database will have the declarative unit y; : o added to it, and the declarative unit
42 : =a retracted from it, via our compromised notion of retraction.

Example 2.6
Let us consider a labelled database D3, with the following set Ap,:

(]) E; : A
(2) E; : B
(3) I7 ¢ -B — C

and the update request U(Ds, U4, Ez @ B) . In this case, the declarative unit E; : —B s replaced by
the E3 : B, and the declarative unit Ny : C is added to the revised database due to the compromised
retraction of (2).

e Given an update request U(D, Uy, v : a),if I,y : « ¥ Land Ap, v : « F L, then the
database needs revision to accomodate the insertion of the declarative unit vy : a.

"Example 2.7

Let us consider the labelled database Dy of ezample 2.1, and the update request U(Dy, Uy, E2 @ C).
When the declarative unit By : C is added to Ap, as requested, there is an integrity constraint
violation. This invokes the compromised revision function. Since the incoming data has priority over
the eristing data in the database, we will end up retracting Ey : A in order to be able to incorporate
Ey : C into D;. Hence, the resulting database after the compromised revision is the following:

(1) Iy ¢ A — B

(2) I C - D

(3) Py : ANC —- L
(4) Eq ¢ C

(5) Ny ¢ B

It is important to notice in the example above, that the declarative unit (5) would not be derivable
from the resulting database, had the update operation been a conventional one, without any embedded
reconciling revision notion for conflicting updates.

Definitions 2.38 and 2.46 state formally the notions of conditional addition, and compromised retraction
of a declarative unit to/from a CIULps database, repectively. The revision procedure invoked by those
operations is presented in section 2.6.4.

In section 2.7 we present some properties of the system CIULps, concerning its consequence relation,
the basic update operations, the revision function, and other general features of the system.

2.3 C1Upps Basic Definitions
We present in this section the basic definitions concerning the CIULps formalization .

Definition 2.1 (Language £)

L is a propositional logical language composed of:

o an alphabet which is ezpressed by a countable!® number of propositional letters, A, B, C, D,---
with or without subscript, including T and L;'*

13By countable we mean finite or enumerable.
14We consider T and L as distinguished propositions of £, meaning true and false, respectively.

12



o the logical connectives -, A, and —;

e the punctuation symbols < ( ;¢ ) ’and © , .

Definition 2.2 (Well formed formulae of £)
Given a propositional logical language L, the wff of L are obtained as follows:

o If a 1is a propositional letter, then o is a wff;
o If a isa wff, then —~a is a wff;
o If ay and ay are wffs, then a; A az is a wff;

e If ay and ay are propositional letters or their negation, and [ 1s a propositional letter, then
a; A ag — [ is a wff.

e The only wff of L are those obtained by finite applications of the items above.

Definition 2.3 (Literal Formula)

Let o denote an atomic proposition'S of the logical language L. A literal formula, or just literal for
short, is a wff of L defined as a or -a.

0

Definition 2.4 (Clausal Formula)

Given the logical language L, a clausal formula'® is any wff of the form AI_, ci — B, where each o
is a literal of £, and B 1is an atomic proposition of L, including L.

0

Definition 2.5 (Language L)
Let the language of the labels, denoted by L., be composed of:

e a finite sel of types T, where T = { E, 1, P, N}, in which each type is a list of constants as follows:

— E = Ei, Eg, -+, Eg;
-1 = I g,y Iy;

— P = Py, Pg, -+, Pm;
— N = Nj, Ng,---, Np;

e the binary function symbols ‘©y’, ‘©=z’, ‘©Opn’s O’ ‘©_p’ ©Ou

e the punctuation symbols ‘(’; ‘), % 9’ and .

Definition 2.6 (Terms of £.)

Given a labelling language L., the terms of L., denoted as t,, are obtained as follows:

o If t., € 7 where z s atypein T, then t, is a term of L,;

15We sometimes refer to propositional letters as atomic propositions or atomic formulae.
16 Also called Horn clause.
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o If t,1 and t,, are terms of L., then ty1 ©x ty2 s also a term of L., where
X € {W,E,CR,Al,—1,—E,Ll1};

e The only terms of L. are those obtained by the items above.

Definition 2.7 (Labels)

Given a labelling language L., a label v is a term of L., such that either v € Z where Z € T, or v 1s
aterm t, which results from the application of a function ©y, where X € {¢,Z,crR,Al,—1,—E, L1},
such that t, 1is a defined value in (©y, that is t, belongs to a type m T.

]

Remark 2.2

The labels of L., compose a subset of the set of terms of L, since not every term of the type t41 ©x ty2,
returns a label as a result.

Definition 2.8 (CIU.ps Language Lciv)

Given a language of labels L. and a logical language L, the CIULps language, denoted as Lciu, 15
defined as the ordered pair: ( L, L ).

0

Definition 2.9 (Declarative Unit)

Given the language Lcru, a declarative unit is a labelled formula of the form v : «a, where v 1isa
label of the language L., and o 1is either a literal formula, or a conjunction of literals, or a clausal
formula of L.

o

Remark 2.3

In the declarative unit defined above, the + label type will be chosen, according to the formula o 1t s
qualifying. The label types are either E, 1, P, or N, as defined in L. A label of type ‘E ’is supposed
to qualify an ezplicitly stored formula in the database. A label of type ‘1’ qualifies derived and clausal
formulae. A label of type ‘P ’is supposed to qualify a protected formula, and a label of type ‘N ’ qualifies
a non-supporied formula in the database. This notion of non-supported formulae qualifies the formulae
which are no longer derivable, after compromised updates have taken place in the database.

We define below the different types of declarative units which are considered in our database.

Definition 2.10 (Extensional Data)

Given the language Lciu, extensional data are declarative units of the form v : a, where v € E,!7
and the formula « is either a literal formula, or a conjunction of literal formulae.

0

Definition 2.11 (Intensional Data)

Given the language Lcyu, intensional data are declarative units of the form v : a, where ¥ € 1, and
the formula o is either a literal formula, a conjunction of literal formulae, or a clausal formula whose
consequence is different from L.

17We will use the symbol € to denote both set-membership and list-membership.
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Remark 2.4

In the above definition of intensional data, if the formula a is a literal, or a conjunction of literals, it
means that the declarative unit v :a can be derived '8 by the system, from the given database.

Definition 2.12 (Protected Formulae - Integrity Constraints)

Given the language Lcru, an integrity constraint !° is defined as a declarative unit of the form v : a,
where ¥ € P, and « is a clausal formula of the form: N_,Bi — L, where each B; is a literal
formula of L.

0

Definition 2.13 (Non-supported Formulae)

Given the language Lcru, a non-supported formula is a declarative unit of the form v : a, where
v € N, and o« is either an atomic formula, or a conjunction of atomic formula of L.

. O

The extensional declarative units qualify explicitly stored data in the database. The intensional declarative
units qualify implicitly stored data in the database, i.e., rules of the database presented in the clausal
form, or derivable formulae. The non-supported declarative units qualify the compromised consequences
of our approach, which are then stored explicitly under the N label type. These declarative units
result from the CIULps reconciling revision notion, when a conflicting update occurs. In general, the
“non-supported” status of those compromised consequences can be changed into an “intensional-data”
or “extensional-data” status, via an update performance or via the application of the inference rules,
under some given conditions.

Definition 2.14 (CIULps Database)

A ClULps database, also called labelled database, denoted as D, is the tuple (Ap, x), where Ap
is a finile set of declarative units Ap = {y1 :0a1, Y2 1@z, -+, Tn :an}, and < 15 an ordering on
the declarative units of Ap. The declarative units in Ap can be extensional data; intensional data;
integrity constraints; and non-supported formulae.

0

Remark 2.5

Concerning the set of declarative units in the initially described database, we assume that different labels
will always refer to different wff’s.

Below we define the ordering <, as well as the special conditions which it applies to some declarative
units in Ap.

Definition 2.15 (The Ordering <)

Given a set Ap = {71 : a1, Y2 : a2, -+, Yn :an}, let < be e pre-order on  Ap, such that the
following conditions are satisfied:

e Vyita; € Ap, ity X 7@

18The formal notion of derivability for CIUpps is stated in the definition 2.28, further in this section.
196, far, we are considering only integrity constraints as protected formulae. However, we can think of extending this
notion to other formulae as well, depending on the application’s requirements.
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oV i iy, vy, Ykiar € Ap, tf vita X v o and yj :aj <X Yk : ok, then
Yitai X Yk Qg

eV7yi:a;, vj:aj € Ap,if vi € P and 7; € P, then vi:tai X 75 and v toj X ¥ia,
also written as 7v; o 7j : Qj.

e Vy:ia; vj:a; € Ap,if vi € P and v; ¢ P, then 7;:ca; is not comparable to 7; : aj via
<.

O

The two first conditions in the definition above, represent respectively the properties of reflexivity and
transitivity of <, since it is a pre-order.

The third condition states the natural concept that the protected data in Ap are equivalent in the
ordering. This assumption is justified by the fact that protected data are not supposed to be modified
or retracted from Ap. Hence, there is no need to have them under an ordering, since we will never
have to choose any single declarative unit among them to be retracted from Ap.

The last condition places the set of protected formulae in Ap as a distinguished non-related one.

Below, we define the way that the ordering =< propagates to newly inserted declarative units in Ap.
This propagation notion is based on the consequence relation of the system, which is defined in Section
2.4.

Definition 2.16 (Propagation of the Ordering <)

Given a set Ap ordered by <, assume that the declarative unit 7 : o; 15 inserted to Ap. The ordering
of Ap U vi:a; isthen obtained satisfying one of the following conditions:

o If Z F % :aj, for any set Z C Ap, such that Z 1s minimal w.r.t. C, then v; a5 X vt
Vyj o € Z.

o If Ap ¥ vi:ay, then vj:a; < 7vi:oi, Vyj:a; € Ap.
(]

The first condition in the definition above, states the propagation of the ordering < on the consequences
of Ap. As a natural dominance dependency, we define that a derived declarative unit has a higher
position in the ordering than any of the declarative units involved in its derivation.

The second condition states the ordering of the expanded set Ap, by a new declarative unit which is
not a consequence of Ap. In this case, we assume that the new declarative unit gets the highest priority
in the ordering.

Below we define the functions ‘©y’, ‘©z’s ‘©On’s ‘©-, ‘©_g’, and ‘©y,’, based on different
combinations of label types given in L,. The functions ¢ ©y ’, where X € {¥,Z,Al,— 1,— E, L1},
combine two label types of £, and return another label type as result, in the case that the combination
succeeds. Given two labels 1 and 72, 71 ©y 72 returns another label 3 as a result, if 41 can be
combined to 7, under the operation or inference rule X. If we assume that L is the set of all terms
given by L., then the binary functions ¢ ©y ’, are defined from L x L to L. These functions are
required by the labelling conditions, in the definition of the update operations and of some ClUrps
inference rules. Figure 1 illustrates the results obtained by the (©y functions.

Definition 2.17 (©)

Given the function symbol (©, and the labels v, and 72 of the language of labels L., we assume
that v1 ©y 72, ts given as follows:

eIf 1 € E and 72 € E, then 11 ©y 12 € E;
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e Ifvy1 €1 and v € 1, then v1 ©y 72 € I,
e If 1 €E and 7, € N, then 71 ©y 72 € E;

o For all the other cases not specified above, v, ©y Y2 s not defined.?°

m]
1| 72 |[MO@ur2|M©z7 1Oz | 11©-172 [ 11©=p72f 1O L7
E | E E - E I - I
E | 1 - N I I I I
E | P - - - - I -

E N E N N I ) I
I E - - I I - I
I 1 I - I ‘ I 1 I
I P P - - - I -
I N - = N 1 - I
P E ) - - - - -
P 1 P - - - - -
P P P : - - - B,
P N - ) - - - -
N | E E - N I - 1
N |1 - N N 1 N I
N | P - - - - 1 -
N | N N N N I - I
Figure 1: Labelling functions.

Definition 2.18 (©z)
Given the function symbol (©=, and the labels vy, and vy of the language of labels L, 7 ©z 72, s

given as follows:
e If vy € E and v2 € 1, then 1 ©=z 12 € N;
e If 1 € E and v2 € N, then 71 @z 72 € N,

e If vi €1 and 72 € 1, then 71 ©z 72 € N;

20Formally speaking, in the case that ~; ©y ~2 is not defined, we would have to return a dummy symbol as a
non-defined result. However, in order to avoid cumbersome notation, we do not include such symbol in the definitions
of the ©, labelling functions.
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e If 1 €N and 72 € I, then 11 ©=z 72 € N;
e If v1 € N and v, € N, then 11 ©=z 72 € N;
o For all the other cases not specified above, y1 ©z 72 1s not defined.

Remark 2.6
The function ©= always returns a label of type N for those cases defined.

Definition 2.19 (©,,)

Given the function symbol (©,,, and the labels vy, and 72 of the language of labels L., we assume
that v1 ©a; 72, s given as follows:

71 ©/\1 Y2 = Y2 Op 715

If v1 and v, are of the same label type Z, where z € {E, 1, N},
then v1 ©Op Y2 € Z;

If 71 € N, then 2! @/\[ Y2 € N, where ‘72 € {Es I N};

If v € E and 72 € 1, then 71 O 72 € 1)
o For all the other cases not specified above, v1 ©a; v2 s not defined.

Definition 2.20 (©_,)
Given the function symbol (©_,, and the labels y1, and 72 of the language of labels L., we assume

that v1 ©_, 72, ts given as follows:

e 11O 712 = 72 O

eIf 1 € E and 72 € E, then 11 ©_y712 € 1,
e If 71 € E and 72 € 1, then 11 ©_;72 € I,
eIfyy € E and v2 € N, then 71 ©, 72 € 1,
e Ifv1 €1 and 72 € 1, then 1 ©_; 712 € |;
e If 1 €1 and y2 € N, then 71 ©_, 72 € I
e If 1 € N and 72 € N, then 1 ©_; 72 € I,

o For all the other cases not specified above, v1 ©_,; Y2 s not defined.

Remark 2.7

The function (©_,, is commutative w.r.t. the label types, and 1t always returns a label of type 1 for
those cases defined.

Definition 2.21 (©_z)

Given the function symbol ©_g, and the labels vy, and vy of the language of labels L., we assume
that v1 ©_g 72, is given as follows:

eIf 1 €EE and v2 € 1, then v1 ©_g 712 € I;
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eIf 1 € E and 7 € P, then 71 ©_z 72 € I;
oIf 1 €1 and y2 € P, then y1 ©_g 72 € I;
o If m €
e If 11 €

e Ifyi1 €N and 72 € P, then 11 Oz 712 € 1

I and v, € 1, then 41 ©_z 72 € I,
N and v € 1, then v1 ©_z 72 € N;

o For all the other cases not specified above, v1 ©_g 72 1s not defined.

Definition 2.22 (©,;)
Given the function symbol ©,,, and the labels vy, and 72 of the language of labels L., we assume

that v, ©, 72, 1s given as follows:
* NOuT = 7120QumN
e If 71 € 1,and v2 € EUIUN, then 71 ©; 72 € 1,
elf 1 €E and 72 € B, then 11 @72 € I

(]

If 1 € E and y2 € N, then 71 ©,; 72 € 1)

If 1 € N and v2 € N, then 11 @, 72 € I,

For all the other cases not specified above, 1 ©, Y2 is not defined.

Remark 2.8

The function (©,, is commutative w.r.t. the label types, and 1t always returns a label of type 1 for those
cases defined.

In CIULps, inference rules as well as update operations on the database depend on some defined
labelling propagation conditions, which compose the algebra of labels. We introduce below the labelling
propagation conditions for each inference rule and update operation, which will be defined further in
this section.

Notation 2.1

We denote as I Rcqu the set of all the inference rules of CIULps, such that IRcju = {cR, Al, AE, — 1, = E, —=E, 11
These abbreviations refer to the different inference rules defined in the system. Namely, CR represents

conditional reflezivity; Al represents A iniroduction; AE represents A elimination; — 1 represents

—  introduction; — E represents — elimination; —E represents — elimination; and LI repre-

sents L introduction.?! We denote as UP the set of the update operations of CIUpps, such that

UP = {l¥, =}.%

Definition 2.23 (CIULps Labelling Conditions)

Given any labels v, and v5 of the language L., let @x(71,72) be the labelling propagation conditions
for ClUrps, where X € IRciy \J UP, such that @x(v1,72) satisfies the following:

e For x € {W, Z, Al, =1, —E, L1}, ¢x(71,72) holds if v1 ©x 72 returns a label 73, as n
Definition 2.7.

21Gee Definitions 2.23, 2.31, 2.32, 2.33, 2.34, 2.35, and 2.36.
22Z8ee Section 2.6.
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e For X = CR, @cr(71,72) holdsif y1 € E, and 72 € I;
o For X = AE, ¢pas(71,72) holdsif y1 € EUIUN and 72 belongs to the same label type as v;;

e For X = =E, @-g(71,72) holds if y1 and v, belong to the same label type z, where Z € T
m Ly,

For any other case not specified above, @x does not hold.

Definition 2.24 (Algebra of Labels A)

Given the language of labels L.,, and the labelling conditions ©x(71,72), where X € IRcru UUP,let A
be the algebra of labels in CIULps, such that A is the followingset: A = {px(71,72) | ex(71,72) holds}.

O

Definition 2.25 (CIUrps Labelled Deductive System)

A Labelled Deductive System CIUps is a tuple (A, Lcru, Mcru), where A is the algebra of labels and
Loy is the system language, and Mcy represents the possible deduction and change mechanisms of
the system. Mcry includes the set of all inference rules and the set of update operations of ClULps.?®

0

2.3.1 Discussions

In this formalization, the introduction of labels allows to represent explicitly the defined types of the
formulae that we can deal with in the database. The labels also control the derivation process via the
labelling conditions of the algebra of labels. The labelling functions (©y are tightly related to the
derivation mechanisms represented by the inference rules, and to the expected result types of the update
operations. They map the possible labels of the inputs for the inference rules and update functions, to
their corresponding output label within the resulting declarative unit. The ordering < on the set of
declarative units, allows the system to state the application’s priority or relevance on the data being
represented. Moreover, < also facilitates the process of choosing one particular declarative unit among
the conflicting ones, when revising the labelled database for a compromised solution. In the next section,
we present the derivation mechanism of the system.

23Gee Sections 2.5 and  2.6.
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CIUrps Basic Definitions:

Lcpu is the CIULps language, such that Lcow = ( £, £ ), where L, is
the language of the labels, and £ is a propositional logical language.

v : « is a declarative unit
where v is a label of L., and « is either a literal, a conjunction of literals,
or a clausal formula of L.

D = (Ap, X),isa CIUrps database, where

Ap = {71 a1, ¥2 : @2, **, Y : @n}, in which the declarative units can
be extensional data; intensional data; integrity constraints; and non-supported
formulae; and =< is an ordering on Anp.

Labelling Conditions @x(71, 72):

For x € {w, Z, AL, =1, = E, =1, L1}, ©x(71,72) holdsif 1 ©y y2 returns
a label va;

For X = CR, ¢ca(71,72) holdsif 1 € E,and 72 € [;

For X = AE, @as(71,72) holdsif 91 € EUIUN and 72 belongs to the
same label type as 41; For X = =E, ¢-g(71,72) holdsif 7, and 7. belong
to the same label type z, where z € T in L,; and

For any other case not specified above, @x does not hold.

Algebra of Labels:

A = {ex(,72) | x(71,72) holds}.

A Labelled Deductive System CIUpps:
ClUrps = (A, Lciv,Mcrv),

where Mcju  includes the set of all inference rules and the set of update
operations of CIULps.

Figure 2: Summary of the CIULps Basic Definitions.
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2.4 CIUrps Proof System

The Proof System of CIUrps is defined taking into account the following definitions:

o The language Lciu, and a labelled database D;
e The set of inference rules;

e The algebra of labels which contains the labelling conditions that are satisfied, in order to define
the labelling propagation in the derivable declarative units;

o The notion of proof of a declarative unit; and

e The system’s consequence relation w.r.t. a database D and a particular declarative unit.

For all the definitions to follow, we assume that a CIUrps is given by (A, Lciu, Mcu), and that D
isa ClUrLps database.

In CIULps, the inference rules are applied to declarative units. Hence, given a database D, an inference
rule generates a declarative unit from a set of declarative units. In general terms, an inference rule can
be defined as follows.

Notation 2.2
We denote an inference rule as 1R, such that IR € IRcry , where IRciv = {cR, AI, AE, — 1, = E, —E, L1}

Definition 2.26 (CIULps Inference Rules)

Given a database D, an inference rule IR is defined, in the general case, as a tuple (Ag, ¢ix, Cir),
where:

o Ay indicates a set of declarative units, in or derived by D, used as antecedents, or premises, of
the rule;

o o denotes the labelling condition which needs to be satisfied by the application of the IR wnference
rule;

e Cy represents the declarative unit derived from Ay wvia the inference rule IR, provided that o
holds.

0

Below, we introduce the notions of a proof in CIUrps, and of the consequence relation Fcruops,
which determines for an arbitrary database D and for an arbitrary declarative unit 7 : a, whether
D tcrupe 7 :a holds or not.

Definition 2.27 (Proof)

Given a database D , and a declarative unit v : «, a proof of v : « from D, written
ply : a], is a pair (P,, k), where P, is a finite sequence of the pairs (or sub-derivations) A/C,
P, = {A1/Cy, A2/Cs,---, An/Cr}, where n >0, and each A;, for 1 <i< n, is a set of declarative
units used as premises by a CIUpps inference rule IR, in order to reach the consequent Cj which 1s a
single declarative unit. The declarative units in A; are either in Ap, or are derived from Ap, in which
case they include previous consequences C; of P,. And k is a mapping from the set {1,---, n}, to the
set of inference rules IRcyu, such that for each i, where 1 <1i < n, k(i) = IR, for any IR € I[Rcv,
and A;/C; = Awr/Cu.
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Definition 2.28 (Consequence Relation Fcry, p5)

Given a database D , and an arbitrary declarative unit v : o, we say that vy : o is a consequence of D,
denoted by D Fcru,ps 7:@, (or D b y:a for short), if there exists a proof p[y:a] from D.

(m]
Below, we state the notion of a consistent CIUrps database.

Definition 2.29 (Consistent CIUrps Database)

Given a database D, we say that. D is consistent if and only if it does not derive L2 4e DF v : L
for any label ~v .

7

]

2.5 CIU;ps Inference Rules

We define the inference rules for CIULps, based on the labelling propagation conditions of the algebra
~of labels.

Definition 2.30 (Conditional Reflexivity (CR))

Given a database D, for any declarative unit ¥ : «, such that y:a € Ap , the inference rule CR is
the tuple (Ack, Pcr, Cer); where Ak = {7 : a}, land Cox = v : a, provided that pcp(y,7:) € A
for any label vi, such that D + ;i : a, where D = D — {y:a} 25

D

Remark 2.9  The reflezivity rule is conditioned to @cg, only in the case that declarative units have
different versions within the database.?® Otherwise, the labelling condition @cx does not play any relevant
role within the CR inference rule.

Definition 2.31 (A Introduction (AI))

Given a database D, for any pair of declarative units v, : a; and 72 : aa, where «; and oy
are either literals or conjunction of literals, if there ezists a declarative unit 73 : ay A «ay, where
v =7 ©n 72 and oai(71,72) € A, then the inference rule Al is the tuple (An1, @a1, Car), where
An = {7 @1, 72 : az };and Cap = v3 @ a1 A az. Hence, given that @ (71,72) holds:

Y1 P Qg Y2 i (2

Y3 a1 A ag

Definition 2.32 (A Elimination (AE))

24GSee remark 2.10 for the cases when D + ~ : L in ClUpps .

25For simplicity of notation, we consider that « can be taken directly from the declarative unit it belongs, in
order to be checked against another formula of L. Formally, this is done via a function f, which ranges from the
set of declarative units to the set of wif’'s of L. f associates with each declarative unit a wff of L, such that:
Vay:ra, f(v:ia) = a.

26 \We say that a declarative unit -+ : a has a different version within a database D, if there exists another declarative
unit 4; : o either in Ap or derivable from it, where ~ and +; are not of the same type, and o; = o.
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Given a database D, for any declarative unit of the form ¥ : a1 A aa, the inference rule AE is the
tuple (Ang,Prp, Cag), where Apg = {m @ a1 A a2 }; eae(71,72) is the labelling condition; and
Cae = 712 : a1 or Cag = 72 @ o, where pag (1, 72) € AT

v ap A az 7 o oap A ag

72 oo Y2 i @z

Definition 2.33 (— Introduction (— 1))

Given a database D, for any pair of declarative units v, : oy and vy @ @, where ay s either a literal or
a conjunction of literals and « is a propositional letter, such that D, v1 : oy F 72 @ a2 28 ifthere exists
a declarative unit v3 @ a; — g, where y3 : a1 A oz, where y3 =7 ©_, 72 and ¢_i(711,72) € A,
then the inference rule — 1 is the tuple (A, -1, C—i), where Ay = {71 @ a1 72 @ @ }; and
Ci = 73 : ay — ay. Hence, provided that: @—i(71,72) holds:

D,m o1 b 7y2 1 ag

Y3 P oy — Q2

]
Definition 2.34 (— Elimination (— E))
Given a database D, for any pair of declarative units v : ay and 7y2 @ oy — 03 where
o, s either a literal or a conjunction of literals, if there exists a declarative unit 7y3 @ a2, where

vs =71 ©_g v2 and ¢_g(71,72) € A, then the inference rule — E is the tuple (A_g, o—g,C_g),

where Ay = {7 : @1, 72 : a1 — az };and Cg = 73 : az. Hence, given that ¢_g(v1,72)
holds:

Y1 P g Y2 oy — Q2

Y3 - Qa2

Definition 2.35 (- Elimination (-E))

Given a database D, for any declarative unit v, : o , where oy = ——a and o 154 proposttional
letter, if there ezists a declarative unit v, : o, where @-g(11,72) € A, then the inference rule —E
is the tuple (Aog,p-p,Cg), where Ag = {m : a1 };and Cop = 712 ¢ @ Hence, provided that
e-e(71,72) holds:

Yo T

Y2 @

~ Definition 2.36 (L Introduction (L1))

27By Definition 2.23, <2 is of the same label type as <, such that v € EUIUN.
28By D, v; : a; we mean that the declarative unit v : o1 is temporarily added to Ap as an assumption.
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Given a database D, for any pair of declarative units v, : a1 and 3 : a2, where ay = -aj and oy isa
propositional letter, if there exists a declarative unit v3 : L, where v3 = v1 ©1, 72, and ¢1:1(11,72) € A,
then the inference rule L1 1s the tuple (Ay;, @11, CLi), where Ay = {11 @ a1, 72 : az }; and
Cii = 3 : L. Hence, given that ¢ ,(v1,72) holds

7 o Taz Y2 i Q2

73 ¢ L
0

Provided that the respective labelling conditions hold, the meanings of the inference rules above are the
following:

The rule (A1) says that given two provable declarative units 7 : a3 and 7, : as, we can also prove a
declarative unit 3 :a; A os.

Conversely, the rule (AE) says that given 7; : a3 A az provable, we can prove 73 : o and 7 : as.

The rule (— 1) says that if we can prove 72 : as from a database D, by assuming vy, : «; as
hypotheses, then we can prove 73 :a; — a3 from D, and y3:0a1 — a2 does not depend
on the hypotheses 7; : ;. In a more simple description, we say that y3: a1 — a» holds if by
assuming 7v; : @j, we can prove %z : az. This rule admits a sort of sequent presentation in its
antecedent part.

The rule (— E) says that if we have v, :a; and y2:a; — a2 provable, then we can prove 73 : as.
As shown in [Dum-77], this rule is essentially the Modus Ponens rule.

The rule (-E), also referred to as the double negation elimination rule, allows us to deduce v : o
given that 7, : =—a is provable.?

The rule (L1) says that if we can prove a contradiction, say 7 :« and 711 : -a, then can prove
inconsistency from our database. The introduction rule for L is defined in the literature differently.
In [Pra-65] and in [RySa-92], they refer to it as the = elimination rule.

Remark 2.10
We say that D + v : L, if one of the following cases holds:
o There exists a declarative unit v; : «, such that D + 71 : «a, and there also exists a declarative

unit y2 : a — L, such that D + v : o — L. In this case, the — E inference rule is
applied and v is given by v1 ©_; Y2, provided that @_g(y1,72) holds.

o There erists a declarative unit v, : a A -«, such that D F v @ a A -a. In this case, the
L1 inference rule is applied and v 1is given by the labelling condition @ ;.

29Gince we do not include the = Introduction rule in our system, the rule (—=E) is not very likely to be applied in a
proof.
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ClUrps Proof System Definitions:

Proof: ply : o] = (P,, k),

where P, = {A;/Ci, A2/Ca,- -, An/Cyn}, for n >0, and k is a mapping
from {1,---, n}, to the set [Rcju, such that for each i k(i) = IR, for any
IR € IRcU, and A,‘/Ci = Am/Cm.

D + 4 : a, if there exists a proof p[y : o] from D.

CIUrps Inference Rules:

Conditional Reflexivity: (Ack, @cr, Ccr)s
where Acp = {7 :a}, Cx =7 a and @cr(v,7i) € A, for any 7,
such that D' F 5 : a, where D = D — {y : a}.

A Introduction: (An;, @a1, Car), where oai(71,72) € A,

AT 3 Y2 i a2

3 : a; A az

A Elimination: (Aag, g, Cas), Where ©ae(71,72) € A,

7 oPoar A a 71 o oar A az

Y2 i Oy Y2 i Qa2

— Introduction: (A, p—;,C—,), where ¢_i(11,72) € A,

D,y o1 byt oas

Y3 - oay — @3

— Elimination: (A_g,¢—g, C—g), where ¢_g(71,72) € A,

RANNRENE ) Y2 iy Qa2

Y3 ¢ Qa2

- Elimination: (Aog, ¢-g, C-g), where ©-g(71,72) € A,
7 P o

Y2 L«

L Introduction: (Ayy, @11, Cri), where @1(71,72) € A,

718 o 72 - o

vz ¢ L

Figure 3: Summary of the CIULps Proof System Definitions.
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2.5.1 Discussions

In this section, we have introduced the proof system’s basic definitions. The inference rules for the logical
connectives were based on the natural deduction presentation style for propositional logic, following [Pra-
65]. Some differences, however, apply in our presentation. We use labelled formulae and we define some
conditions for applying the rules. The introduction of labelling conditions controls the application of
the inference rules, and the labelling propagation on derived and updated declarative units. Hence, it
guides the derivation mechanism specifically to the requirements of our compromised approach. We have
introduced a reflexivity inference rule in the proof system. Due to this rule, and to the way that a proof
is defined in our system, we always have that if a declarative unit 7 : « can be proved from D,
the proof ply : a] applies at least one inference rule. And if it is the case that p[y : o] applies
only one inference rule, this rule is the conditional reflexivity one. Unlike the typical natural deduction
presentation, which supplies two types of rules - introduction and elirnination - for each operation, we
have omitted on purpose two usual inference rules from our proof system. The — Introduction rule
was not included, due to the fact that we do not want to generate negated wif of £, when integrity
constraints were involved in the derivation. Moreover, the derivation of a formula y; : -« everytime
vs : a together with D generate inconsistency, would interfere with the revision process of ClULps.
The Ez Contradictione Quodlibet (EcQ) inference rule3®, which says that everything can be derived from
inconsistency, was also omitted. Mainly because we do not want our system to collapse in the presence
of inconsistency. It would be unnatural to abandon a database once we discover that it is inconsistent.
Instead, we propose to take inconsistency as a signal for revision on the database. In the next section,
we define how the updates are performed in CIUpps, and how they invoke the compromised revision
mechanism.

2.6 Updates and Revision in CIUrps

Update requests are the inputs of our system. Basically, the updates in CIULps involve addition or
retraction of data to or from a labelled database D. The retraction is performed in the compromised
way. by allowing the consequences of the retracted declarative units to be kept in Ap as non-supported
data. And the addition of data is conditioned to the way it conflicts with D, if it is the case. This
operation may invoke revision, when a compromised solution applies.

Updates are defined as single declarative units operations. A single update deals with addition or
retraction of declarative units to or from D. In this section, we define first the operations for a
single update. and then we present the notion of transactions, which can involve a sequence of different
updates. Revision is viewed as a function invoked by the update function, whenever a compromised
solution applies. This is further detailed in the subsection 2.6.4.

2.6.1 Single Updates

Single updates in a labelled database D, involve addition or retraction of declarative units which are
either extensional data or intensional data. The intensional data involved in the updates are supposed to
be clausal formulae of £ in their non-labelled part. That is, non-clausal formulae can only be involved
in updates as extensional data. These restrictions avoid the manipulation of non-supported data, and
of protected data in the updates, as expected. Non-supported data.can only be derived by ClUrps,
whereas protected formulae cannot be modified by means of updates to the database. 31

30Sometimes also referred to as L Elimination. See [RySa-92].

31We are not concerned here in dealing with the modification of the protected data of a database in CIUppg. For
our current interests, we consider that the initial database has got its protected data well defined, and that they remain
the same after all update operations.
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A single update in CIUps, is formally defined as a function, denoted as Up(D, o, §) = D', where
D and D' are the labelled databases, before and after the update, the argument o is the type of
update to be performed, and & is the declarative unit v : a involved in the update. The o argument
can take one of the constant values of the set {U4, U_}. “c = U}” implies that the update operation is
addition, and “o = U_” implies that the update operation is retraction. In both cases, the & argument
of the update function can be either extensional or intensional data, where o is a clausal formula, in
this last data type.

Definition 2.37 (Single Update Function)

Assume that Deoju and Dy are the set of databases and the set of declarative units of CIULps system,
respectively. Let o be a type of updates given by the set {ug, u_}. Given that v :« 1s a declarative
unit and D a CIUrps database, let the update function Up:Dcru X {usy, U_}x Dy = Dcru be
defined as follows:

e Up(D, Uy, v : a) DY ay:e.

e Up(D,U_, 7 : a) = DEvy:qa.

Where D |4 v :a and D = v : a are the basic update operations of conditional inclusion and
compromised retraction.3?

(i

2.6.2 Basic Update Operations

We define as CIULps basic database update operations, the notion of conditional inclusion of a declarative
unit in a labelled database, 3® denoted by (4, and the notion of compromised retraction of a declarative
unit from a ClUpps database, denoted by Z=.

Next, we introduce some assumptions for the definition of D ) v : a . For both operations, ) and
=, we assume that the given database D is initially consistent. Also in both operations, ¥ :« can
only be of types E : « or I : a,such thatfor 1 : @, @ Isa clausal formula of L.

2.6.3 Basic assumptions for D 4 v: o

Given a database D = (Ap, x), if the declarative unit 7 : « is consistent with Ap, then 5 :a is
simply added to Ap in the set-theoretical sense. The ordering on Ap |J {y : o} is given by the
propagation of =<, as in Definition 2.16.

When 7 :a is inconsistent with Ap, then the conditional inclusion of 7 :a to D is responsibility
of the revision function ©.3% In this case, two possibilities may apply: (We denote as [ the set of
integrity constraints in Ap.) :

e The declarative unit violates directly some integrity constraints in Ap,ie. [, y:o F 7/ e
for some 5 € L,. In this case, the inclusion of this declarative unit is not allowed. However, its
consistent consequences w.r.t. D are added to Ap, as non-supported consequences.

e The declarative unit does not violate directly any integrity constraint of the database. In this case,
v : o is added to Ap, and some old declarative units are retracted from Ap, via compromised
retraction, in order to maintain consistency in the resulting database.

The resulting database from D 4 v :« is always consistent.

32Gee Definitions 2.38 and 2.46.

33This notion of conditional inclusion is motivated by the notion of structured addition of data in structured databases,
in [Gab-94].
34See Definition 2.50.
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Definition 2.38 (D ¥ v : «)

Given a consistent database D = (Ap, <), and a declarative unit = : «, let the operation |t denote the
conditional addition of a declarative unit in D. Such that D W v:a =D'. Assume that c is the
following condition ¢; = Ap,y:a ¥ ¥ : L, for any label v/ € L. Then, the new database D' is
obtained as follows:

((Ap — Xp) U {y:a},x) if c1 is satisfied ;
DOy:a otherwise.

Where D @ 7 :a denotes the revision of D by v : a. (Ap — Xp) U {y:a} isordered by <,
according to Definition 2.16. And Xp C Ap, which is given as follows:

Xp = {m:a|m:a€Ap, and pu(y,m) € A}.

Remark 2.11

‘In Definition 2.38, the retraction of the set Xp from Ap caters for the case that there exists a
declarative unit v : a in Ap, prior to the inclusion of v : a. Hence, the declarative unit vy : o 1s
removed from Ap, provided also that the labelling condition @u(vy,v) holds. This prevents the resulting
database from having different versions of declarative units. That is, the same wiff of L under different
labels. Ezample 2.5 in section 2.1, ilustrates such situation.

Next, we define the notion of compromised retraction of a declarative unit from a ClULps database.
Basic assumptions for D Z v : «

The notion of conditional retraction of a declarative unit from a database, allows for compromised
consequences of retracted declarative units to be added to the database, carrying a non-supported label

type.

Given a database D = (Ap, <), when a declarative unit 7 :a € Ap Iis requested to be retracted
from Ap in CIULps, we allow the set of consequences of v :« w.rt. D, denoted as Con(y : @), to
be added to the resulting database, under the condition that the consequences in Con(y : @) together
with the set (Ap —{v:a}) do not derive v : a, for any label .

In order to guarantee the condition above, we have to restrict the addition of some of the elements of the
set of all the consequences of 7 :a w.r.t. D. This implies a choice problem among those consequences.
To solve this problem, we adopt the following strategy:

1. We generate the set Con(y: a) as the set of all consequences of y:a wrt. D.

2. 1f Con(y:a) U (Ap —{y:a}) ¥ ¥ : «a, for any for any label 7/, then all the elements of
Con(y :a) are added to Ap — {7 :a}, to compose the resulting database.

3. 1f Con(y:a) U(Ap —{y:a}) F v : a, forsome v € L, then we get the safe-mazimal
subset of Con(y:a) that fails to derive 4 : a. So, all the elements of the safe-mazimal subset
of Con(y:a) are added to Ap — {7y :a}, to compose the resulting database.

As introduced in [Dar-96c], the notion of a safe-mazimal subset3® of an ordered set X, w.r.t. a condition
¢ which involves X in its premise, is denoted as Smaz(X).. Smaz(X). is defined with the aim that
when it substitutes X in the condition ¢, ¢ succeeds. The set Smaz(X). is obtained considering
the ordering <, the set-inclusion property of minimality, and some auxiliary sets denoted as Fail(X).,

35More details about the safe-maximality notion for this formalization is given in section 2.6.4.
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min(Fail(X).), Min(Fail(X).), and RMin(Fail(X).). The set Fail(X). contains all the minimal
subsets of X w.r.t. C, such that when they substitute X in the condition ¢, ¢ fails. The set
min(Fail(X).) contains the subsets of minimal elements w.r.t. <, of each set belonging to Fail(X),.
The set Min(Fail(X).) contains all the elements of each set belonging to min(Fail(X).). And the
set RMin(Fail(X).) is a refined construction of the set Min(Y), so that fewer elements of the original
ordered set are removed from it.

Below, we give the general definitions for the auxiliary sets Fail(X)., min(Fail(X).), Min(Fail(X).),
RMin(Fail(X).) and Smaz(X)..
Definition 2.39 (Fail(X).)

Given an ordered set X, w.r.t. <, and a condition ¢ which involves X in its premise, let Fail(X).
be the following set:

0 if ¢ is satisfied;
FaillX). =X {S|SCX;

such that if ¢(X/S), ¢ fails;

and S is minimal w.r.t. C} otherwise.

Where c(X/S) denotes the fact that the set & substitutes the set X 1n condition c. And each set
S; of Fail(X)., for i=1,---,n, is ordered by < as a subset of X.

O

Definition 2.40 (min(Y))

Given a set Y such that Y ={S1,Sa2,--+,Sn}, where each S;, for i=1,---,n, s ordered w.r.t. <.
Let min(Y) be the following set:

0 fY = 0;
min(Y) = ' (min(S;) | min(Si) C St
and Vz € min(S;), = is minimal w.r.t g in S;}  otherwise.

Definition 2.41 (Min(Y))

Given a set Y such that Y ={S1,Sa,---,Sn}, where each S;, for i=1,---,n, 1s ordered w.r.t. <,
assume that min(Y), is such that min(Y) = {min(S1), min(S2),---, min(S,)}. Let- Min(Y) be the
following set:

Min(Y) = {z |z € min(S), Ymin(S;) € min(Y)}.

Definition 2.42 (RMin(Y))

Given a set Y such that Y = {S,S2,--,Sn}, where each S;, for i=1,---,n, 1s ordered w.r.1. the
partial order <. Assume that min(Y), is such that min(Y) = {min(S1), min(S2), -, min(S,)}.
Let RMin(Y) be the following set:

RMin(Y) = min(Y)' U (Min(Y)—M*) U CM.

Where: M~ = {y |y € min®, Ymin® € M}; M = {min® | Vmin® € Min(Y)}; and
- min® = {Se | Sy = min(S;), Ymin(S;) € min(Y), s. t. z € min(S;), and z € Min(Y)}.

And CM = {z |z € Min(Y), such that min® € M}.
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Remark 2.12

In Definition 2.42, the set min® contains the set-elements of min(Y'), which have the the element z
in common, for an element z in Min(Y). The set M contains all the sets min®, for all z 1n
Min(Y). The set M* is the union of all the sets min® in M. the set CM contains the common
elements z of the sets min® in M.

Definition 2.43 (Smaz (X))

Given an ordered set X, w.r.t. <, a condition ¢ which involves X in its premise, and the set
Min(Fail(X).), let Smaz(X). be a subset of X, obtained as follows:

X if ¢ 1is satisfied;
Smaz(X). =
X — RMin(Fail(X).) otherwise.

The set Smaz(X), is ordered by < as a subset of X.
0

We define below the set of consequences of a declarative unit % : o w.r.t. a database D, where
vy:a € D.

Definition 2.44 (Con(y:a))

Given a consistent database D = (Ap,<), and a declarative unit v : o, such that yv:a € D, let the
sel Con(y:a) be defined as follows:

Con(y:a) = {y : ai |Ap F % : a;, and (Ap—{y:0a}) ¥ 7 @ a;i}.

Remark 2.13

Notice that since the idea is to add the declarative units in Con(y : o) to the resulting database contracted
by 7 : a, these declarative units have to carry the label type N, of non-supported consequences. So, we
have to re-label the declarative units in Con(y : «), before we get the safe-mazimal subset out of it. The
definition below caters for this re-labelling on Con(y : a).

Definition 2.45 ( CCon(y : a) )

Given a sel Con(y : a), let the set CCon(y : a), denoting the compromised version of Con(y : a), be
defined as follows:

CCon(y:a) = {7/ : &} |Vyi : ai € Con(y:a),
v, = v©z=7i, such that p=(7,7) € A, and o} = e}
]

/

This way, we guarantee that all the declarative units 7] : af in CCon(y : @), carry the label type N,
of non-supported consequences.

Remark 2.14 (Smaz(CCon(y : @))c,)
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From Definitions 2.43 and 2.45, we have that the safe mazimal subset of CCon(y : a), relative to the
condition ¢; = CCon(y:a) J(Ap —{y:a}) ¥ v : a, forany v € L, is given as follows:

CCon(y : @)
if ¢y 1s satisfied;
Smaz(CCon(y : a))e, =
CCon(y : a) — RMin(Fail(CCon(y : @))c,)

otherwise.
[
Now, we can define the compromised retraction operation.
Definition 2.46 (D= vy : «a)
Given a consistent database D = (Ap,<), and a declarative unit v :« , let the operation “Z ” denote

the compromised retraction of a declarative unit from D . Such that D Z vy :a = D', where the new
database D is obtained as follows:

(AD)<> . lf Yo é A'D;

((Ap | Smaz(CCon(y : @))e,) — {7 : @}, <)  otherwise.

Where (Ap |J Smaz(CCon(y : ))c,) is ordered by <, according to Definition 2.16.

Summary - Single Updates

We have defined as single updates for CIULps, the update requests which involve addition and retraction
of declarative units to and from a labelled database D. We have restricted the declarative units in
the single updates, to be either extensional data or intensional data which are present in D. These
restrictions avoid that the updates handle protected data, as usually expected, and also non-supported
data. We have assumed that non-supported data can only be derived by the system, and can not be
involved in update operations. The basic update operations which are invoked by the single updates, carry
the reconciling flavour of our compromised approach to conflicting inputs. The operation of conditional
inclusion |#. invokes the compromised revision function ©, when a compromised solution for the update
applies. The compromised retraction operation =, already embeds in its definition the mechanism for
allowing consequences of retracted declarative units to be added to the database as non-supported data.
This operation uses the notion of safe-maximality, when a choice is needed among the compromised
consequences. In the next section, we define the compromised revision mechanism, which is invoked by
the update function.

2.6.4 Revisionin ClUrps

Revision plays a central role in our system. It is basically via the revision mechanism, that the
compromised philosophy of our approach is introduced in CIULps. The compromised revision adopted
here. frees the database from inconsistency and allows some consequences from conflicting updates, or
from retracted declarative units, to be kept in the resulting database:*

The compromised revision mechanism distinguishes between the protected formulae and the other
formulae in a CIUpps database.

Notation 2.3
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CIUrps Single Updates Definitions:

Single Update Function: Up:Dcru X {U4, U~} xDu = Dcru:
e Up(D, Uy, v 1 a) =Dy : a

e Up(D,U_, vy : ) = DE«v : a.

/

Given D = (Ap,X), v : «, and the condi,tion cp = Ap,y : a ¥ ¥ L,
for any label v/ € Ly, DY v : a = D, where:

{ (Ap — Xp) U {y:a},x) if c; is satisfied ;
D =

DOy« . otherwise.
Xp = {y:a|m:a€Ap, and pu(7,m) € A}.

Given that X is ordered by <, and a condition ¢ which involves X ,

0 if ¢ is satisfied;
Fail(X), =< {S|SCX;
such that if ¢(X/S), c fails;
and S is minimal w.r.t. C} otherwise.
X if ¢ is satisfied;
Smaz(X). =
X — RMin(Fail(X).) otherwise.

Given that v : o« € D,
Con(y:a) = {% : a;i |Ap F % : a;, and (Ap—{y : a}) ¥ 7 @ a;}.

CCon(y:a) = {y/ : ot |V : ai € Con(y:q),
2 = 1@y, such that g=(,%) € A, and af = as).

Given ¢ = CCon(y:a) U(Ap —{y : a}) ¥ v : o, forany v € L,,
CCon(y : a),
if ¢4 is satisfied;

Smaz(CCon(y s a))e; = CCon(y: @) — RMin(Fail(CCon(y : @)).,),

otherwise.
D=Zvy : a = ’D’, where:
(Ap, ),
P = if v:a0 ¢ Ap;
((Ap |JSmaz(CCon(y : a))e,) — {7 : a}, X),
otherwise.

Figure 4: Summary of the CIUrps Single Updates Definitions.
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Given a database D = (Ap, <), we denote as I the finite set of declarative units of the type P : «
which represent the integrity constraints ranging over D, such that I C D.

I = {% : a; |V% : ai € Ap, such thaty; € P}.

The revision in CIUrps is based on the compromised revision ® for finite bases with integrity
constraints, defined in [Dar-96c]. Like in [Dar-96c], here we also adopt the notion of safe-mazimality
as an impartial solution to choose among minimal elements of an ordered set. This notion restricts the
notion of maximal subsets relative to certain conditions. One of the advantages in adopting this notion
is that we get uniqueness in the result.

Notation 2.4

Given a database D = (Ap,<), and a declarative unit 7y : a, we denote as D © 7:« the result of
revision D by v :«, with the compromised revision ©.

Compromised Revision Steps

In CIULps, given a database D = (Ap,<), and a declarative unit 7 : o, such that v:a € Ap,a
revision is invoked by the update Up(D, Uy, ¥ : a), when one of the conditions below holds:

1.If I, y:a + 7I : L, for some label '/ € Ly;

2.1f I, v:e ¥ v :1,and Ap, v : a F v i L for v € L.
When Condition (1) applies, we take the following revision steps on D:

e If o contradicts a tautology of the underlying logical system, then we reject the update request,
and the result of the compromised revision is the original database, such that D © v:a = D.

e Otherwise, we do not add v :a to Ap, but we generate a set of consequences of v :a with
respect to D, and we add to Ap a safe-maximal subset of this set of consequences, relative to
the condition that the consequences in it together with Ap are not inconsistent and do not derive

]

v :a, for any label 'y’ of L,.

When Condition (2) applies, we add the input 7 :a to Ap, and we reject from Ap some old
declarative units, which are not protected, to regain consistency. We adopt the safe-maximality notion
whenever we have to choose among a set of declarative units to be retracted from the ordered database,
for not satisfying a particular condition imposed to it.36 We also take into account the inclusion of the
consistent consequences of the retracted sentences, as non-supported data. This is done via the following
steps:

e First we get the minimal set>” of minimal elements®®, say R..a, to be retracted from (Ap —1I),
such that the resulting database is consistent with the inclusion of 7 : a.

e Then, we make the compromised retraction of the set Ry.q from Ap, with the condition that the
consistent consequences of R..q to be kept in the resulting database, should not contribute to the
derivation of any element in R,.,, and should not introduce inconsistency either.

36See Definition 2.43.
3TWith relation to C.
3 With relation to <.
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o Finally, we get the resulting database, such that it is consistent. It has the same structure as D,
and it contains v : @, and the selected consequences of R,.q.

In the subsections to follow, we introduce the basic assumptions and the auxiliary definitions, for the
two cases of revision described above.

Definitions for the case that I,v:a 7' - L

For this case, we have to define the set of consistent consequences of the declarative unit v :a w.r.t.
D, that will be inserted to the resulting database, as a revision compromise.

We will denote as CI(v : a), the set of all consequences of the requested input v :a wua.t. D. Our
goal is to define CI(y:«) such that y:a ¢ CI(y:a),and CI(y:a) |J Ap is consistent and do
not derive 7 :«. When defining CI(y : ), we have to consider the following:

e (Ap—1I) |J{y:a} can also be inconsistent when I J {y:e} F y L.

e When selecting a subset of CI(v : @), in the case that CI(y:a) |J Ap + v : L1, if a maximal
subset of CI(y:a) is considered to avoid inconsistency, in order to cater for the minimal change
revision notion, it might not be necessarily unique.

Taking these problems into account, we adopt the notion of safe mazimal subset, as in Definition 2.43,
and we proceed in the following way:

o First we get a safe-maximal subset of (Ap —I), w.r.t. condition c3, where c3 = (Ap—1) | {r:
a} ¥ 4 : L, for any label ~'. We use the auxiliary sets Fail(Ap—1I)., and RMin(Fail(Ap—1I).,)
to create Sma:c(AD —I)e,, as stated in Definitions 2.39, 2.42, and 2.43. We then prove that
Smaz(Ap — I)e, U {y:a} ¥ v+ L for any label 7. (See Remarks 2.15, 2.16, and 2.17; as
well as Propositions 2.1 and 2.2).

e Then we define CI(y:a) in relation to Smaz(Ap — I),. This step allows us to eliminate the
possibility of dealing with an inconsistent set, in the case that condition c3 Is not satisfied. (See
Definition 2.47).

e From CI(y: ), we get a safe-maximal subset, w.r.t. the condition ¢4 = CI(y:a) |J Ap ¥ v
L, for any label v'. The auxiliary sets Fail(CI(y : @))c, and RMm(Fazl(C]('y a))Q) are
used to create Smaz(CI(y : @))c,. And we prove that Smaz(CI(y : )., U Ap ¥ v : 1, for
any label v (See Remarks 2.18 and 2.19; and Proposition 2.3).

. Fma]ly, we get a safe-maximal subset of Smaz(CI(y : a)),q, w.r.t. condition c¢5, where
cs = Smaz(Cl(y:a))e, U Ap ¥ ~ L, for any label 7 . And it is proved that
Smaz(Smaz(CI(y : a))e)es U Ap F v :a, for any label v'. (See Remarks 2.20, and 2.21,
as well as Proposition 2.4).

We state below the remarks, definitions and prbpositions cited above. The proofs of the propositions
stated in this section appear in the appendix of this paper.

Remark 2.15 (Fail(Ap — I).,)

Given a database D = (Ap,<), ¢ declarative unit v : a, and the condition ¢z = (Ap —1) U {r:
a} F v i L, for any label ', by Definition 2.39, we have that Fail(Ap — )¢, 1s the following set:

0,
if c3 is satisfied;

Fail(AD—])cﬁ = {S|SQ(AD—I);

such that SU{y:a} F v : 1,
and S is minimal w.r.t. C},
otherwise.
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Each set S; of Fail(Ap —1I)c,, for i=1,---,1, is ordered by < as a subset of Ap.

Proposition 2.1
Given a database D = (Ap,<), and a declarative unit v : a, such that (Ap—1) U {v: o} F oy oL,

for some label 7I € Ly, and it is not the case that —a s a tautology.  Then, given
the set FaillAp — I)e;, = {S1, S2,---,S;}, it s sufficient to retract one element from
each  Si, such that ((Ap — I) — S(Fail(Ap — D)e,))Ufy : a} ¥ v ¢ L, for any label
v € L, where S(Fail(Ap — I)e;) = {% : i | VSi € Fail(Ap — I, Iy a* €S,

such that v;, v* € 2, and o; = o*}, where z s a label type in L,.

Remark 2.16 (RMin(Fail(Ap — I)c,))

Applying Definition  2.40, for Y = Fail(Ap — I).,, we obtain the set min(Fail(Ap — I).,).- By
Definitions 2.41 and 2.42, we get the sets Min(Fail(Ap —I).,) and RMin(Fail(Ap — I)c,).

Remark 2.17 (Smaz(Ap — I).,)

Given a database D = (Ap,<), a declarative unit v : @, and the condition cz = (Ap —1) U {r:
a} F 7I : L, for any label 7’, by Definition 2.43, we have that Smax(Ap — I)c, 1s ihe faIIowwg set:

(Ap —1) if c3 is satisfied;

Smaz(Ap — I)e, =
(Ap — I) — RMin(Fail(Ap — I).,) otherwise.

Smaz(Ap — I)., is ordered by < as a subset of Ap.

Proposition 2.2

Given a database D = (Ap,<), a declarative unit 7 : a, such that (Ap—1) U{y:a} F v : L, for
some v € L, and it is not the case that —a is a tautology, Smaz(Ap — I)e,, v:a ¥ v L, for
any ‘y/ €L,.

Now we define the set of consequences of the input v :a, CI(y:a), wr.t. Smaz(Ap — I)c,.

Definition 2.47 (CI(v : a))

Given a database D = (Ap,<), and a declarative unit vy : a, such that it is not the case that -« 1isa
tautology. let CI(7y :a) be the set of consequences of v :a, w.r.t. Ap, such that:

Cl(y:a) = {v*:a"| Smaz(Ap —1I)., ¥ 7" :a", and
Smaz(Ap — ), U{y:a} F 7" :a*;
o* # «, and Smaz(Ap — ), U {7*:a*} ¥ y:a},

where CI(y :«) is finite, mazimal w.r.i. C, and is ordered by <, according to Definition 2.16.

We now get the safe-maximal subset Smaz(CI(y : @)), relative to the condition ¢4 = CI(y
a) J Ap ¥ vy L.
Remark 2.18 (Fail(CI(y : a))e,)

Given a database D = (Ap,X), a declaratwe unit v : a, such that CI(y : @) 1s non-empty, and the
. condition cq = CI(y :a) | Ap F 7 : L, for any Iabel 'y € L., by Definition 2.39 we have that
Fail(CI(y: «))e, ts the following set:
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0 if cq4 1s satisfied;

FaillCI(y:a)), =% {S|1SCCI(y:a);
such that SUAp ‘yl : 1, and
S is minimal w.r.t. C} otherwise.

Each set S; of Fail(CI(y :@))e,, for i=1,---,m, is ordered by < as a subset of CI(y:a).

Remark 2.19 (Smaz(CI(y : a))e,)

Given a database D = (Ap,<), a declalrative unit v : a, such that CI(y:«a) is non-empty, and the
condition ¢4 = CI(y:a) |J Ap ¥ v : L, for any label v € L, by Definition 2.43 we have that
Smaz(CI(y : a))e, ts the following set:

Cl(y: «) if cq 1s satisfied;

Smaz(CI(y : a))e, = {
Cl(y:a)— RMin(Fail(CI(y : a)),) otherwise.

Smaz(CI(y : @))., is ordered by < as a subset of CI(y: ).

Proposition 2.3

Given a database D = (Ap,<), a decla,rative unit v : a, such that CI(y : a) is non-empty,
Ap,y :a F v : L for some label v € L,, and it is not the case that o s a tautology,
Smaz(CI(y : @), U Ap ¥ v : L, for any label v € L.

We still have to guarantee the condition ¢5 = Smaz(CI(y : @))., UAp ¥ v+ a. So, we get the
safe-maximal subset Smaz(Smaz(CI(y : @))e,)es-

Remark 2.20 (Fail(Smaz(CI(y : @))c,)es)

Given a database D = (Ap,<), a declarative unit 7 : a, such that CI(y : ) is non-empty, and the
condition cs = Smaz(CI(y : a)), UAp ¥ 7y :a, forany v € Ly. By Definition 2.39, we have thal
Fail(Smaz(CI(y : @))e,)es 15 the following set:

0 if c5 is satisfied,
Fail(Smaz(CI(y : @))ey)es =3 {51 S C Smaz(CI(y : a))e,;

such that SUAp F 'y' :a,

and S is minimal w.r.t. C} otherwise.

Each set S; of Fail(Smaz(CI(y: a))e,)es, for i=1,---,n, is ordered by < as a subset of CI(y: a).

Remark 2.21 (Smaz(Smaz(CI(7 : @))c,)es)

Given a database D = (Ap, <), a declarativc/unit 7 a, suclh that CI(y : a) 1is non-empty, and the
condition c¢5 = Smaz(CI(y : @), UAp ¥ v :a, forany v € L. By Definitron 2.43, we have that
Smaz(Smaz(CI(y : @))e,)es S the following set: .

Smaz(CI(y : a))e,,

if cs 1is satisfied;
Smaz(Smaz(CI(y : @))ey)es = Smaz(CI(y : @))e,~
RMin(Fail(Smaz(CI(y : @))ey)es)s

otherwise.
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Smaz(Smaz(CI(y : @))e,)es is ordered by <, as a subset of CI(7:a).

Proposition 2.4

Given a database D = (Ap, <), a declarative unit 7y : a, such that CI(y : a) is non-empty, and it is

not the case that a is a tautology, Smaz(Smaz(CI(y:a))e,)es U Ap ¥ ¥

ta, forany v € Ly.

Definitions for the case that [,y:a F v oL

Given D = (Ap,x),and ¢ = (Ap=I) U{y : a} ¥ 'y' : 1, where
v €Ly, and I={yi:0; |Vyi:a; € Deltap, s. t. v € P}.

0

if c3 is satisfied;

{S|Sc(ap-1);

s.t.SU{y : a} F 4 : L,

and S is minimal w.r.t. C}

otherwise. )

Fail(Ap — I)e, =

(Ap — 1),
Smaz(Ap — 1), =< if c3 is satisfied;
(Ap — I) — RMin(Fail(Ap — I).,), otherwise.

Cl(y:a) = {y : a* | Smaz(Ap —I), ¥ : o* and
Smaz(Ap — I, U{y : o} F 7* Doat;
o* # a, and Smaz(Ap —I)e, U {y* : «*} ¥ v : a},

Given ¢4 = Cl(y:a) U Ap F v : L, for any label vy €L,
0 if ¢4 is satisfied;
{S1SCCI(y:a);
such that SUApF Y : L,
and S is minimal w.r.t. C}  otherwise.
Cl(y : a),
if c4 Is satisfied;
Cl(y:a)— RMin(Fail(CI(y : @))c,)s

otherwise.

Fail(CI(y : a))e,

Smaz(CI(y : @))e, =

Given c5 = Smaz(Cl(y :a)), UAp F v : a,forany 7 € L,
0 .

if c5 is satisfied;

{S|SC Smax(CI(y:a))e,s
such that SUAp 7/ ta,
and S is minimal w.r.t. C}
otherwise.

Smazx(CI(y : @))c,,
if cs 1s satisfied;

Fail(Smaz(CI{y : a))ey)es =

Smaz(Smax(CI(y : @))ey)en = { Smaz(CI(y : @))e,—
RMin(Fail(Smaz(CI(y : @))e)es),
otherwise.

Figure 5: Summary of Auxiliary Definitions for Revision - Case (2).
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2.6.5 Definitions for the case that I,y:a F 7’ :1l and Ap,y:a F 7' oL

In this case, we first have to define the minimal subset, w.r.t. C, of Ap that should be retracted from
it, in order to allow the introduction of 7 : & and keep consistency. We refer to this set as Ry.o. Then,
we have to define the set of consequences of R,., to be added to the resulting revised database as a
compromiise.

Notation 2.5
We denote as Ap_; the subset of Ap, which excludes the set of integrity constraints 1. Ap_j = Ap—1.

Our aim is to define R..a, such that Ry, C Ap-y, and the following conditions are satisfied:
(Ap_j—Ryo) ¥ 7 :a*, ¥7" 10" € Ryia; (Ap_r—Rya) U{y:a} U ¥ v L forany v €Ly
and R,., is minimal w.r.t. C. However, we will have to face choice problems, among the declarative
units of Ap_j, in order to build up the set R,.,. In order to get a version of R.., which accomplishes
the conditions above, we proceed in the following way:

e First we get the set R,., which is a subset of Ap_j, relative to the condition ¢s = Ap | {7:
a} ¥ v : L, for any v € L. (See Definition 2.48).

e Then we define the safe-maximal subset of (Ap_j — Ry.qa), denoted as Smaz(Ap_; — Ry.a)ers
relative to the condition ¢z = (Ap—;— Rya) ¥ 7" :0@*, ¥y" :a” € Ry.q. We then prove that
Smaz(Ap—1— Ry:a)e, does not derive any declarative unit of R..,. (See Remarks 2.22 and 2.23,
and Proposition 2.5).

e From Smaz(Ap_1— Ry:a)er, We define the safe-maximal subset
Smaz(Smaz(Ap—t — Ry.a)er)es, in order to guarantee that Smaz(Ap-_i— Rya)e, U {y:a}
\J I is consistent. (See Remarks 2.24 and 2.25, and Proposition 2.6).

e Finally, we have that RX., = Ap_y — Smaz(Smaz(Ap — Ry.a)er)cs, is the extended version of
Roy.a, for Ry.a C R}, which accomplishes the conditions cited above. Hence, R, is effectively
the set of declarative units that we need to retract from Ap, in order to restore consistency when
an input v : o conflicts with D and I,y:o ¥ v @ L.

Concerning the set of consequences of RX.,, denoted as CR(R.,), which should be included in the

resulting revised database as a compromise, we define in the following way:

e First we get the maximal set CR(R}.,), of consequences of R}, w.a.t. D. (See Definition
2.49).

o Then we define the safe-maximal subset of CR(R}.,), Smaz(CR(R}.,))e,, Which guarantees
that Smaz(CR(R%.q))es U (Ap—R3,) ¥ 7 :a*, V9" 1 a” € Ry, We also show that

Smaz(CR(R:.o))es U (Ap—Ry) U {y:a} F v : L, for any label v € L. (See Remarks
2.26 and 2.27, and Propositions 2.7 and 2.8).

Definition 2.48 (R..o)

Gwen a database D = (Ap, <), an input 7y : «, such that it is not the case that —~o s a tautology,
and the condition cg=Ap U {y:a} ¥ v : L, for any v €L,. Let Ry.q be the following set:

Rya = RMin(F(Ap_1)e)-

Where RMin(F(Ap—1)e,) is given according to Definition 2.42, and the set F(Ap_g)s, 1s such that:
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0 if ce is satisfied;

A_ c = '
F(AD-1)ee {S|SCAp_;; SU{y:a}try :L;

and S s minimal w.r.t. C} otherwise.
Where each set S; of F(Ap_1)es, for i=1,2,---,n, is ordered by <, as a subset of Ap.
i 0O

Now we need to guarantee that (Ap_;— Rya) ¥ 7" :o*, ¥y* :a* € Ryqa. In order to fulfill
this condition, we apply the notion of safe-maximal subset on (Ap_1 — Ry.a). First we get the set
Fail(Ap—1 — Ry:a)cs, relative to the condition c¢7 = (Ap—1 — Ry:a) ¥ 7" 1. Then we get the safe
maximal subset Smaz(Ap_1 — Ry.a)es- .

Remark 2.22 (Fail(Ap-; — Ry.a)eq)

Given a database D = (Ap, <), and an input 7y : @, such that the set Ry.o # 0, and the condition
c7=(Ap_1— Rya) ¥ 7" :a", Yy* :a* € Ry.o. According to Definition 2.39, Fail(Ap_1 — Ry.a)eq
1s the following set:

0 if c7 1s satisfied;
FaillAp_; — Rya)er =13 {S| SC(Ap-1— Rya)s

3y :a* € Ry, 5. L. SEY 1 a%;

and S is minimal w.r.t. C} otherwise.

Where each set S; of Fail(Ap_1— Ry.a)eq, for i=1,2,---,n, is ordered by <, as a subset of Ap.

Remark 2.23 (Smaz(Ap—1 — Ry:a)er)

Given a database D = (Ap, <), a declarative unit v : o, such that Ry.q 1s non-empty, and the condition
e = (Ap_1—Rya) ¥F¥" 10", V7" 1 a* € Ry.o. By Definition 2.43, we have that Smaz(Ap_1—Ry.a)es
ts the following set:

(A'D—I - Rfy:a);
if c7 1is satlisfied;
Smaz(Ap_1 — Rya)er =
(Ap_; — Ry.a) = RMin(Fail(Ap_1 — Rya)er)s

otherwise.

Smaz(Ap_; — Ry.a)e, 15 ordered by <, as a subset of Ap.

Proposition 2.5
Given a database D = (Ap, ). for any set Ry.o C Ap_y, we have that Smaz(Ap_;— Ryia)er ¥ 7"
o*, V¥ 1o € Rya.

We still need to guarantee that Smaz(Ap_; — Rya)e, U {y:a} U I ¥ v : L, forany 7" € L.
Hence, we get a safe-maximal subset of Smaz(Ap_r — Ry.a)c, Which guarantees this condition.

Remark 2.24 (Fail(Smaz(Ap_1 — Ry:a)er)ca)

Given a database D = (Ap, X), an input 7 : a, such that the set Ry.q # 0, and the condition
cs = Smaz(Ap_j — Rya)er U{y: @} U T ¥ v*: L, forany v* € Ly. According to Definition 2.39,
Fail(Smaz(Ap—1 — Ry:a)er)es 15 the following set:
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¢ @,
if cg 1is satisfied;

Fail(Smaz(Ap-1 — Rya)er)es =4 {S| S C Smaz(Ap—_r — Ry.a)ers
s. . SU{y:a} ¥ v :L;
and S is minimal w.r.t. C},
otherwise.

Where each set S; of Fail(Smaz(Ap—1 — Ry:a)er)es, for i =1,2,---,n, is ordered by <, as a subset
Of AD.

Remark 2.25 (Smaz(Smaz(Ap—1 — Ry.a)er)es)

Given a database D = (Ap,<), a declarative unit 7 : a, such that R,., is non-empty, and the condition
cs = Smaz(Ap_; — Rya)er U{y:a} U I ¥ v*: L, forany v* € Ly. By Definition 2.43, we have
that Smaz(Smaz(Ap—_1 — Ry.a)er)cs 15 the following set:

Smax(A’D—I - Rfy:a)@; )

if cg 1s satisfied;

‘ Smaz(Smaz(Ap-1 — Ry:a)er)es = Smaz(Ap_1 — Rya)er—

RMin(Fail(Smaz(Ap_1 — Ry.a)er)es)s

otherwise.

Smaz(Smaz(Ap_1 — Ry:a)er)es 18 ordered by <, as a subset of Ap.

Proposition 2.6

Given a database D = (Ap,<), and a declarative unit vy : a, such that R.,., 1s non-empty,
Smaz(Smaz(Ap—; — Ry:a)er)es U{v:at U I ¥ v : L, forany v* € L,.

Given that R;., = Ap_1— Smaz(Smaz(Ap-1 = Rya)er)es, and that R, s effectively the set of
declarative units that we have to retract from Ap, when an input v : a conflicts with D, we have
already guaranteed that retracting RZ., from Ap will not make any of its elements derivable from
the resulting set. However, the contraction for compromised revision allows the consistent consequences
of the of declarative units to be retracted, to become available in the resulting revised database. Hence,
we also have to cater for introducing the consequences of the elements of R, w.r.t. D, provided that
they do not conflict with the database ((Smaz(Smaz(Ap—; — Ry.a)er)es ULy 1 a}), ).

Definition 2.49 below caters for the set of consequences of the elements of R} ,. We call such a set
CR(R} ).

Definition 2.49 (CR(R3.,))

Given a knowledge base D = (Ap, <) and a set R}, € Ap, such that R}, should be retracted
from Ap, such so that it is guaranteed that Ap — R%., ¥ 7" :a", ¥y :a" € R},. Let CR(R.,)
be the set of consequences of the elements in R%., w.r.t. D, considering I, such that:

CR(R:,) = {(y :a' |Ap F 7 :a and Ap— R, ¥ v a,
for v € Ly; and Vy* :a* € R34, o #a", and
Ap— Ry, U {y :a'} ¥ v :a*),
where CR(R}.,) s mazimal w.r.t. C, and is ordered by <, according to Definition 2.16.

a

Our objective is to include the set CR(R}.,) in Ap—R;,,, without being able to derive any element of
RZ., from the resulting base. But with Definition 2.49, this is not yet possible. We still need to specify
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a subset of CR(R}.,), that satisfies this condition. However, we do not need to check for consistency
of the base ((Ap — R}.,) UCR(R}.,), <), since the original base, D = (Ap, <), is assumed to be
consistent and as R%., C Ap, CR(R}.,) € Cn(Ap), and Cn(Ap) is consistent.

We then state formally the subset of CR(R}.,), by obtaining its safe-maximal subset, relative to
condition ¢ = CR(R}..) U (Ap—Rj,) ¥ v":a", V" 0" € R4

First, we obtain the set Fail(CR(R?.,))c,, Which contains all the minimal subsets of CR(R}.,) that
contribute to the failure of the condition cg.

Remark 2.26 (Fail(CR(R}.4))cs)

Given a knowledge base D = (Ap, <), a set R, € Ap, such that CR(R}.,) s non-empty, and
the condition c¢o = CR(RY,) U (Ap—Rj,) ¥ ¥ :a*, V" :a" € R, By Definition 2.39, we
have that Fail(CR(R}.,))e, s the following set:

0 if co 1is satisfied ;

(515 CCR(R,.):
such that 3y* : a* € CR(R}.,),
Su(Ap—-R;,) F 7" :a” and

S is minimal w.r.t. C}* otherwise.

Each set S; of Fail(CR(R%.4))e,, for i=1,---,k, is ordered by < asa subset of CR(R}.,)-

Fail(CR(R;.\))es =

Now we build up the set Smaxz(CR(R}.,))c, using both CR(R}.,) and RMin(Fail(CR(R3.,))cs)-

Remark 2.27 (Smaz(CR(R.4))cs)

Given a knowledge base D = (Ap, X), a set Ry, € Ap, such that CR(R}.,) tis non-emply, and
the condition c¢g = CR(R:..) U (Ap—R:,) ¥ 7" :a”, V9" 10" € R3,. By Definition 2.43, we have
that Smaz(CR(R 4))e, s the following set:

CR(R}.)
if co 1is satlisfied;
SmaI(CR(R;:a))CQ =
CR(R:.,) — RMin(Fail(CR(R}.o))cs)

otherwise.

Smax(CR(R%.,))e, 18 ordered by <, as a subset of CR(R}.,).

Proposition 2.7
Given a knowledge base D = (Ap, <), for any set R}, C Ap, such that CR(R.,) s non-emply,
Smaz(CR(RS.0))e, U (Ap = Ry,) ¥ 77 1a”, V97 1a” € R,

The proposition below guarantees that the safe maximal subset of the consequences of RI,,
Smaz(CR(R.,))e,, when added to (Ap — RX.,) U {7 : a}, does not generate inconsistency.

Proposition 2.8

Given a database D = (Ap, %), and an input 7 : ¢, such that it is not the case that —a 15 a
tautology. If I, v:a ¥ 4 : L and Ap, y:a b v': L, for any set Ry.a, as in Definition 2.48, such
that CR(R%.,) is non-empty, Smaz(CR(R}.q))es U (Ap — R:y,) U{y:a} ¥ o : L, for any label
Y € L,.

vThe Compromised Revision Function for CIULps
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I

Definitions for the case that I,y :a ¥ 'yl : 1l and Ap,y:a F v : L:

Given D = (Ap,<),and cs=Ap U {y:a} F v L, for ¥ €L,

Ry = RMin(F(Ap_r)c)-
0 if cg 1s satisfied;
{S|SCAp_r; ‘
SU{7:a}F7/:L;
and S is minimal w.r.t. C}  otherwise.

F(AD—I)CG =

Given c7 = (Ap_1— Rya) ¥ 7v* 1 a*, V7" 1 a* € Ry,
if c7 1s satisfied;
(515 C (Apet = Rya)s
Fail(A’D—I - Rfy:a)c-/ = 37* rat € R’y:aa
such that S+ v* : a*;
and S is minimal w.r.t. C}  otherwise.

Smaz(Ap_1 - Reyia)er =
(AD—I - R‘y:a);
if c7 Is satisfied;
(Ap_; — Ry:o) — RMin(Fail(Ap_y — Rya)er)s

otherwise.

Given cg = Smaz(Ap_1—Rya)e, U{y:a} U T ¥ 7" :L forany 7" € Ly,
Smaz(Smaz(Ap_; - Ryia)er)es =
Smaz(Ap-1 — Ry.a)er
if cg Is satisfied;
Smaz(Ap—1 — Ry:a)es—
RMin(Fail(Smaz(Ap-1 — Ry:a)er)ca)s

otherwise.
Given R, = Ap_j— Smaz(Smaz(Ap_; — Ryia)er)es
CR(R:.,) = {7l co | Ap F v :a and Ap-— R, ¥ - Lo
for ¥ € Ly;and Yy* :a" € R: . o # a*, and

Ap—-Ry, U {y :a'} ¥ ¥*:a"}

Given cs = CR(R;.,) U (Ap—=Ry,) ¥ 7" 1™, V" 10" € R,
CR(R,,,),
if cg is satisfied;

Smaz(CR(R%.4))es = CR(RY.G) —
RMin(Fail(CR(R.4))cs),

otherwise.

Figure 6: Summary of Auxiliary Definitions for Revision - Case (3).
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The definition of the compromised revision function ® is based on the three possible cases below.

e If the database augmented by the requested input 7 : a is inconsistent because «o contradicts
a tautology of the logical system, then we make the database consistent by rejecting the input.
D G v:a=D.

e If the database is inconsistent because I, v : a F 7’ : 1, for some label 7I € L,
and it is not the case that —a is a tautology. Then, we regain consistency by rejecting
v : a, but allowing its consistent consequences to be added to the database. In this case,
Do y:a={((Ap | Smaz(Smaz(CI(y : @))ey)es), <)

e If the database is inconsistent because Ap, v: o F 'yl : L, for some label 'y’ € L., when
I, v:a F 7l . L, then we regain consistency by keeping 7 : o in the database and
rejecting from it a safe-minimal number of declarative units that are not protected. We allow
the inclusion of the consistent consequences of the retracted sentences, as a compromise. In this

case, D © v:a=((Ap - Ry,) U Smaz(CR(RY.q))es U {r:0}), <)

We formalize now the definition of the compromised revision function considering the steps described
above.

Definition 2.50 (Compromised Revision Function)

Given a database D = (Ap, <) and an input v : @, let the operation © denote the compromised revision
of D by v : «, such that the result D ©® v : a 15 a new database with the same structure of D. We denote
by Ap © o the resulting set of declarative units of D © 7 : a, such that DO v:a={Apoya I
And Apgy.a is such that one of the following conditions holds:

(Casel) I, v:a F v : L, for some label = L., and —a 1s a tautology, then Apgy:a = Ap.

(Case 2) I, v:a k 7' : L, for some label 'y' € L., and 1t is not the case that —a s a tautology,
then Apgya = Ap |J Smaz(Smaz(CI(y @ @))ey)es-

(Case 3) If Ap,y : at 7l . L, for some label 'yl € Ly, and I,y : a ¥ -yl : L, then
AD@‘YiO = (AD - R;:G)Usmax(CR(Rry:a))Ca U{7 : CY}.

O

The proposition below states that all the consistent consequences of an input v : a, which violates some
integrity constraints of a database D, are availablein D © 7 :a.

Proposition 2.9

Given a base D = (Ap, <), for any input v : a, such that —a 1s not a tautology, and Cl(y:«) 1is
non-empty.if I, v :a b v : L, for any label v € L, then ¥y :a” € Smaz(Smaz(CI(y : @))e,)es
DF v :a" and D © v:a kB ¥ 1"

The proposition to follow states that all the consistent consequences of the retracted declarative units
from Ap w.r.t. an input 7 : «, in order to achieve D © v :«, are derivable from D © 7v:a.

Proposition 2.10

Given a base D = (Ap, X), for any input v : «, such that —~a s notd tautology, if Ap,v:abk 7' c 4,
for some label v € L, and I,y :a¥Fy : L, then Vy" :a™ € Smaz(CR(R}.4))es: D F 7" 1™ and
also D @ y:a F " 1o,

The two propositions to follow, state important conditions concerning the declarative unitsin D © v : a.

Proposition 2.11
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Given a base D = (Ap, X), for any input v : o, such that -« is not a tautology, if Ap,y:atb 71 o4,
for some label v € Ly, and I,y:aFy : L, then ¥y* : 2" € R,,, D O v:a ¥ *

Proposition 2.12

Given a base D = (Ap, <), for any input 7 : «, such that o 15 not a tautology, 1fa declarative unit
v*:a* € D O7:a, then either v* :a* € Ap and yv* :a* & R} ,; or v" :a" ¢ Ap and either
v a* € Smaz(Smaz(CI(y : a))e)es, o7 ¥ " =7 :a, 01 ¥* 12" € Sma.’r(CR(RZ;:a))C9

Summary - Revision in CIULps

We have introduced the revision ® in ClIUrps, based on the compromised revision ® for finite
bases with integrity constraints defined in [Dar-96¢c]. Since in CIULps the revision function is part of
the update function, some cases of the revision ® were embedded by the update definition and were
not defined within the revision ®. So, ® is basically devoted to free the database from inconsistency
by allowing some consequences from conflicting updates, or from retracted declarative units, to be kept
in the resulting database as a compromise. We have adopted the notion of safe-maximality introduced
in [Dar-96¢c], as an impartial solution to choose among the minimal declarative units of the labelled
database, considering the ordering <. Basically, the safe-maximality mechanism can be described as
a procedure which is applied whenever a condition ¢ needs to be satisfied for defining a subset out
of an ordered set X. So, first we get the setr Fail(X)., which contains all the minimal subsets of
X which fail to accomplish condition c¢. Then, we get the set Smaz(X)., which is a subset of X
which satisfies ¢, subtracted by the set RMin(Fail(X).). This last set contains at least one minimal
elenient, w.r.t. the ordering on X, of each minimal sets in Fail(X).. In [Dar-96c], we have also allowed
for user interaction when defining some of the safe-maximal subsets, so that we would achieve minimal
change in the original set. This approach could also be incorporated in the safe-maximality notion used
in ClUpps, if required by the user. Some properties of the revision function © in CIULps, were
presented in this section. In Section 2.7.2, we also prove consistency and a compromised version of
persistence for the revision ©. In the next section, we extend the notion of single updates to to the
notion of transactions, which involves a sequence of updates.

2.6.6 Transactions

Basically, a transaction in CIUrps is a sequence of updates to be performed on a given labelled
database.

Definition 2.51 below, presents formally the notion of updates transactions in CIULps.

Definition 2.51 (CIUrps Transactions)

Let Degu be the set of CIUpps databases and let D and D' be two ClULps databases. Let
UP = Upy.- Upn be a sequence of update functions where for each 1<i<n Upi(D;, o, 6;) — D'
ts such that D =7 i—1,fori=1 Dy = D,andfor i=n 2 n = =D Let UPqeq be the set of all the
sequences of updates of this form. A CIULps Transactzon is a function Trans : Dcjy xU Peeg — Dcyu,
such that Trans(D,UP) = D'

0

A transaction. then incorporates the results of various single updates in sequence. Within each update
request Up; of a transaction, compromised revision ® may apply:- Since, by the definition of single
updates, the resulting updated databases are consistent, then we also have that the result of a transaction
is a consistent labelled database.

In Section 2.7.2. we show the consistency property for a CIUpps transaction, and also the property
of database structural properties preservation.
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Definition for Compromised Revision in CIUrps:

e Compromised Revision Function: .

Given a database D = (Ap, <) and aninput 7:¢,

Doryia= (A‘DO'yzaa '\<>
where Ap @ .o Is such that one of the following conditions holds:

(Casel) I, v:a b ~" i L, for some label 7' € L, and —a is a tautology,
then Apgy.a = Ap.

(Case2) I, v:atk 'y/ : L, for some label 7I € L+, and it is not the case that
—a is a tautology, then Apgy.a = Ap |J Smaz(Smaz(CI(y : @))ey)es-

(Case 3) If Ap,y:atF 'yl : L, for some label —yl € Ly,and I,7:aF 7I o4,
then Apgya = (Ap — R3..) U Smaz(CR(R}.4))es U{y : @}

Figure 7: Compromised Revision in CIULps.
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2.7 Properties of the System CIUrps

In this section we show some properties of our system, concerning the consequence relation Fcru,ps,
the compromised revision, the updates, the basic update operations, and the transactions of CIULps.

2.7.1 Properties of the CIULps Consequence Relation

As already expected for a consequence relation which does not follow the classical standards, the CIULrps
consequence relation relaxes both reflexivity and monotonicity conditions. We consider, however, a
restricted version of reflexivity, and a weaker monotonicity condition, to be satisfied by Feruips>

The Restricted Reflexivity Notion

In CIULps, thi snotion means that if a declarative unit is present in the database, and it can be proved
by the application of the conditional reflexivity inference rule, then we say that it is a consequence of
the system.

Proposition 2.13 (Restricted Reflexivity) *

Given a database D = (Ap, X) and a declarative unit v : «, such that v :a € Ap, then we say that
D beruipe 7@, provided that v :« is derivable from D wvia the Conditional Reflexivity inference
rule, ( CR ).

Proof:

By Definition 2.30, 7 :a € Cor. Therefore (y:a,pcr,v: ) defines the inference
rule cRr. Then, by hypotheses (g holds, and by Definition 2.27, we have that a proof of
~:ais given by ply:a] = ({A1/Ci},k), where k(1)=cr, A1 ={y:a} and C1=7:«
Hence, by Definition 2.28, D + v :a.

Remark 2.28

The consequence relation Fcru,ps Ssatisfies the property of restricted reflezivity, as long as 1t satisfies the
application of the conditional reflezivity inference rule CR. That 1s, provided that the condition applied
to the CR inference rule holds, when required.

The Restricted Monotonicity*’ Notion

The Restricted Monotonicity notion basically guarantees that the addition of a derivable sentence to a
knowledge base does not cause any harm to further inferences of the base.

In our system, Fcru,ps satisfies this property as shown below.

Proposition 2.14 (Restricted Monotonicity)

Given a database D = (Ap, X), and the declarative units v, : @ and vz : B, we say that the consequence
relation & satisfies the property of Restricted Monotonicity, if the following rule is satisfied:

9We will also refer to Fcruyps as F, for short, whenever its meaning is not compromised.
40\We refer to this property as Restricted Monotonicity, following Gabbay’s definition, in [Gab-94], concerning the basic
axioms for a consequence relation of non-monotonic systems.
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DtFyi:a DF y:p
D,nn:ab v:p

Proof:

By Definition 2.27,if D F 7, :« there is a proof p[y :a] from D. The same applies
to 72 : B. So, given p[y: : @] and p[ys : o], and that D is assumed to be consistent, then
for any 71 : o and 7 : 8 such that it is not the case that + —a and F —f, it is guaranteed
that we can still show a proof p[y2 : @] from D |J {y1 : @}, since D |J {71 : o} does not
imply any other changes on D. Hence by Definition 2.28, we have that D, 7, : o Foye i B,
as we wanted to prove.

The Restricted Monotonicity property also appliesto CIULps, when we consider the conditional inclusion
operation | instead of set inclusion for adding the derivable sentence to the base. If a declarative
unit is a consequence of the database, then if we add it to the database via the conditional inclusion
operation, restricted to some labelling conditions, this should not interfere with further inferences of the
system.

Proposition 2.15 (Restricted Monotonicity - |4} version)

Given a database D = (Ap, <), and the declarative units 7 : o and 7o : B, we say that the consequence
relation & satisfies the property of Restricted Monotonicity (| wversion), if the following rule is satisfied:

DHEmia Dt y:p
’Dtt)'y;:ozl—'y;:ﬂ

where D 4 vy i a is the conditional addition of the declarative unit 7’1 :a to the database D *!, such
that v, ¢ P, v; € EUL such that ou(1y,71) € A, where v, is obtained as follows:

If 1 € 1 and o is a clausal formula, then 7’1 € L

If 1 € 1 and o 1is not a clausal formula, then 7’1 € E.

If v1 € E, then 7;, € E.

If v1 € N, then v, € E.

And 'y.l_, is restricted to the following condition:

If 91 :a=7y2:0, then 7;, = 7;. Otherwise, 'y; =vs.

Proof:

By the Definition 2.38,since D + % :« and D is assumed to be consistent, we have
that D |4 7, : a is consistent and is given by D | 7; ca={(Ap—-Xp)U {7; R
where Xp ={ 1 :a |y :a € Ap, and cpu(‘y;,w) € A}. By definition, ¢u(7,,7) only
holds for some cases that y, € EUI, in accordance with the proposition condition. Also,
since D |3 7'1 -« does not revise the database, we have that Vv, : 3, such that D + 75 : 3,
if y2:8# 7 :a,then D4 7; ca b 7, : (. Otherwise, due to the fact that 7,1 Do ls
added to D, following the conditions abolve, and al,so to the changes implied by the retraction
of Xp from D, we have that D ) v, :a F 7,: 8, where 7, = 7,. Hence, when all the
stated conditions apply, it is guaranteed that the consequence relation Fcru,ps satisfies
the property of restricted monotonicity.

41Gee Definition 2.38.
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The Deduction Property Notion

We say that a consequence relation has the Deduction Property, if the implication operator of the
language is such that, for all sentences A, B and sets of sentences A, A - A— Biff A, A + B. This
property relates the meta-level implication of the consequence relation with the with the object-level one.
For this reason, it cannot be enforced on the consequence relation by means of the system’s inference
rules.

ClIULps satisfies the deduction property, under some labelling restrictions, as shown below.

Proposition 2.16 (Deduction Property)

Given a database D = (Ap, <), and the declarative units v, : « —  and 72 : B, we say that the
consequence relation Fcru,ps satisfies the Deduction Property, if we have the following:

Dbk y:a—=f iff Dyyiiatb v:0

where 3 is given by y1 ©_; Y2, 72 18 given by the labelling conditions of the inference rules applied
in the derivation of ¥ : 8, and « is not a clausal formula.*?

Proof:

We prove the if and only if of the proposition statement separately, in the cases (a) and
(b) below.

(@)If D, yy:a F y2:0,then D Y3:a—pf

By Definition 2.33, by applying — introduction to D, 71 :a F 72 : §, we get that
D F y3:a— B, where y3 = 71 ©_, 72, provided that ¢_i(11,72) € A

b)If DF y3:0—pF,then D, 11« oy B

By Definition 2.34, if we assume 7; : @, by applying — eliminationto D F y3:a — f

and 7 : a, we get 'y' : B such that 7’ = 71 ©_g 73, provided that ¢_g(71,73) € A.
If we then consider that y5 = 7, we show that D, 1 :a F 72 : 0.

From (a) and (b), we prove that D + y3:a — g iff D, v :a F v : . This way,
the consequence relation Fcju,,s Pproves to satisfy this restricted version of the deduction
theorem.

CIULps also satisfies a restricted version of the Deduction Theorem, which justifies the introduction of
the logical connective —, by taking into account the conditional inclusion operation, and some labelling
restrictions as shown below.

Proposition 2.17 (Deduction Property - |# version)

Given a database D = (Ap, <), and the declarative units v : o =B and 7y : B, we say that the
consequence relation Fcu,pe satisfies the Deduction Property (¢ version), if we have the following:

42(, is constrained from being a clausal formula, because the system does not support embedded implications.
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DPFoyz:a—=f iff DWUWyiatk 1:8
where 3 1is given by v ©_, 72, 11 € EUIL, 72 ¢ N,%3 and o is not a clausal formula.

Proof:

We prove the if and only if of the proposition statement separately, in the cases (a) and

(b) below.

(@)If DWvy:at y:0,then D+ y3:a—p

By hypotheses and by Definition 2.38, we have that 5, € E since a is not a
clausal formula. This hypotheses also allows the application of the (— 1) inference rule.
Since by hypotheses, 7y, ¢ N, then even if the operation D |# 71 : o revises the
database, the application of the (— 1) inference rule is restricted to the non-compromised
case. That is, the derived declarative unit 43 : @ — B does not depend on any non-
supported compromised consequence, introduced by the revision function. Hence, in the case
that 71 :@ € D W 7 : @, by hypotheses and by Definition 2.27, we have that a proof of
vsia— B, plys:a— B = ({A1/C1, -, An/Cn}, k), where k(1) = (— CR), A1 = {7 :0a}
and C; =71 : a; for some k(n—=1), 71 :8 € An—1 and Cph_; =172:f; and k(n) = (—1),
Apn={m:@, v2:8} and Cp =73:a— [, where 73 is given by 7 ©-_, 72- Hence, by
Definition 2.28, D F v3:a — B. In the case that v, : a0 ¢ D W 71 : o, that would mean
thatif DWWy, : a F v, : B, 72 € N and this case is constrained by the proposition statement.

(B)If D+ v3:a— B, then DWWy :ak y2:p

]

By Definition 2.34, if we assume 7; : a, by applying — elimination, we get vy :
where ¥ = v, ©_; 73, provided that ¢_g(y1,73) € A. We can consider that vo = ¥

if we restrict that 7, € N. So, we have that D F 7 :f. By Restricted Monotonicity,
Proposition 2.15, from D F v, :( and the assumption that D F 7 :a, we show that

DWy:ab y:pb

From (a) and (b), we prove that D + y3:a— 8 iff D Wy :a b y2: 0, considering

that the restrictions required apply.

Remark 2.29 [t is important to notice that in the deduction property stated in Proposition 2.16, v : «a,
in D, 71 :a F 72: 3, can introduce inconsistency to the database. However, 72 : B can still be derived,
and so can 73 : « — B, since we show that the non-explosiveness property holds (Proposition 2.18). In
the deduction property stated in Proposition 2.17, the same does not happen because we guarantee that

D W v :a b s consistent.

The Notion of Strong Transitivity

In general, the full version of Transitivity, or Cut, is such that for all sentences A, B and sets of
sentences A and [, if A+ A and T, A + B, then T, A F B. Strong Transitivity** states the

following variation of the cut rule: if A + A and A, A + B, then A F B.

431 this case, v, is constrained from being of type N, because this would allow for the case in which v : « ¢ Dy~ :a.

44 Also referred to as Unitary Cut in [Gab-94].
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ClULps satisfies Strong Transitivity, provided that some labelling restrictions apply, as shown below.

Proposition 2.18 (Strong Transitivity)

Given a database D = (Ap, %), and the declarative units v, : @ and 7y :p, such that v1 & P, we
say that Fcru, s satisfies the property of Strong Transitivity, if the following rule is satisfied:

DF v« D, vi:a k y2:p0
Db oy :f

where 712 is given by the labelling conditions of the inference rules used for the derivation of 7’2 : 6.

Proof:

By Definition 2.33, (— introduction), from D, 7 : @ F 72 : [, we get
D + 1@©_7 : « — B. By applying Definition 2.34, (— elimination),
DF ym©ov2: a—»ﬂ and D F v :a,weget D F y©_g(11©_,72) : B. Hence, we
have that D 7, : 8, for 7, -71©_.E(‘/1©_>;72) given that ¢_e(71,1m©_72) € A

Strong Transitivity also holds for the case that we consider 7; : @ added to D, via the conditional
addition operation. That is, when we consider D & 7; : «, provided that some labelling restrictions
apply, as shown below.

Proposition 2.19 (Strong Transitivity - | version)

Given a database D = (Ap, <), and the declarative units v, : o and y2: f3, such that v ¢ P, we say
that Fequ, s satisfies the property of Strong Transitivity (&) version), if the following rule is satisfied:

DFyia 'DL+J7;:ozl-‘yg:ﬁ
Dk oyy:f

w hmr -), is given by the labelling conditions of the inference rules used for the derivation of 7 5 : (3, and
4, € EUL, such that:

If 91 € 1 and o« 1is a clausal formula, then 71 €L

If 1 € 1 and « 1s noi a clausal formula, then 71 € E.

If 71 € EUN, then 71 € E.

Proof:

By hypotheses and by Definition 2.38, since D + 7 :a and D is assumed to be
consistent, then D |4 71 a is consistent and is given by D I 7, : = ((Ap— Xp)U {7; :
a}, %), where Xp={m:a|n:a€Ap, and gou(71,71) € A}. By definition, we have that
\ru('ha')’l) only holds for some cases that 71 € EUI, in accordance w1th the proposition
condition. By the Deductive Property, Proposmon 2.17, from D W 71 o boye B we
have that D + 3 :a — (3, where v3 = 71 ©—; 72, plowded that 90_.1(71,‘)/3) e A.
So, by Definition 2.34, if we - elimination to 7; : a and 71 @_,, o 1 — (3, we get
v B, where ¥ = m @_,E 7, @—u ¥2), provided that go_.E('yl,'yl ©_, v2) € A We
can consider then that v5 = 7, since no labelling restrictions is applied to 72 : 5. Hence,
we show that D F 72 B.
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The Notion of Non-explosiveness

The Non-explosiveness is a notion considered by some pragmatic formalisms, when dealing with
contradictory information and conflicting data in general. In traditional logical approaches, the system
is forced to collapse when inconsistency is detected. As pointed out in [Wag-94],

“It seems to be an unnatural overreaction to abandon a knowledge base once it 1s
discovered to be inconsistent. Rather, one should accomodate it by means of a logic which
continues to function plausibly under inconsistency.”

CIULps supports this viewpoint, and we show below the Non-explosiveness property for Fcrv,ps-

Proposition 2.20 (Non-explosiveness)

Given a database D = (Ap, x), and a declarative unit vy : o such that o is not a tautology, we say
that the consequence relatmn '_CIULDS satzsﬁes Non ezplosiveness, if when D, y:a F v* : L, we do
not have that D, v:«a + 'y o ,forany 0% ‘o € Le.

Proof: .

By hypotheses, D, 7 o F 4*: L, so we have that D F v:« since by initial
assumption, D F +* : L, for any label y*. If we assume that D F 7 : al, for a
certain 7y :a €, ﬁcw, and also that {y : a} ¥ y' : o, then if by assuming that
D, v:a bk 7I : a we reach a contradiction, we can show by reductio ad absurdum that
D, v:a F 7’ o Thls sufﬁces to prove non-explosiveness. So, by Prop051t1011 2.14, we
get- that D, y:a 'y o 1fwe have that D - y:a and D F 'y .o . By assumption,
it is not the case that D F 7 :a', and by the proposition hypotheses we can assure that
D ¥ v :«. Since we do not manage to show that D, v:a F 7 : o, we can conclude then
that D, v:a F 7 .o, as we wanted to prove.

2.7.2 Properties of the Compromised Revision ©

Database Structural Properties Preservation

We say that the revision function & preserves the structural properties of a given initial database D,
if by revising D by an input 7 : a, the resulting database D © 7 : o presents the same structural

organization of the initial one.

Proposition 2.21 below guarantees that the structural properties of a CIULps database are kept via
performances of the compromised revision ©.

Proposition 2.21
Given a database D = (Ap, <), for any input v : a following the definition of ClULps declarative

units, D ® 7 :a is another database with the same structure as D, D © y:a = (ADoy:ar X)-

Proof:
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By Definition 2.50, for all the three cases that defines the revision ©, DOy:a isa
new database with the same structure of D. DO vy :a = (Apgya, X)-
In case 1, AD@’y:a = A'D-
In case 2, Apgya = Ap U Smaz(Smaz(CI(y : «))e)es- By Remark 2.21,
Smaz(Smaz(CI(y : @))e,)es is a set of declarative units also ordered by <.
In case 3, Appyia = (Ap — R}.,) U Smaz(CR(R}.q))es U{7 : @}, where R, is a subset
of Ap, Smaz(CR(R}.,))e, is a set of declarative units ordered by <, and v:a is added
to the database with the highest position in the ordering <.
Hence, for all the three cases which defines the revision ©, DO7y : « preserves the structural
properties of the initial database D.

Consistency

In order to show that the revision function @ is consistent, we need to prove that for any initial
consistent database D, and and any input 7 :w, if we revise D by the input, the resulting database
‘D ® v :a is consistent.

Below, we state the consistency theorem of the compromised revision D © 7 : .

Theorem 2.1 (Consistency of ©® )

Given a database D = (Ap, <), for any declarative unit v:a, DOvy:a F 7' . L, for any label 7I
of L.

Proof:

By Definition 2.50, we state that D © v :a = (Apgyia, X), Where App,.q 1s obtained
conditioned to three cases.

In case 1, we have that if I, y:a F '/ : 1, for some label ‘y’ €Ly, and - isa
tautology, then Apgy.a = Ap. So, it is guaranteed that D © y:a F 7’ : 1, since by
assumption D F -y’ : L, for any label 7’ €L,.

In case 2,if I, vy:a F 'y’ : 1, for some label 'yl € L,, and —a is not a tautology,
then Apgya = Ap | Smaz(Smaz(CI(y : a))e,)es- By Proposition 2.3, we have proved
that Smaz(CI(y : a))e, U Ap F ¥ : L, for any label 7' € L,. Since by Definition ??
and Remark 2.21, Smaz(Smaz(CI(y : @))e,)e, Is a subset of Smaz(CI(y : «)).,, we also
have that Smaz(Smaz(CI(y : a))..)es U Ap ¥ 7 : L. Hence, we guarantee that in case
2 D ¥ 4 : L, for any label 'yl € L,.

In case 3, if Ap,y:atF 7’ : 1, for some label 7I € Ly, and I,y : aF 7' : 4,
then Apgya = (Ap — R.o)USmaz(CR(R;.,))e, U{7 : a}. By Proposition 2.8, we have
proved that Smaz(CR(R}..))e, U (Ap—R;,) U {v:a} ¥ 9 :L. Hence, it is also

guaranteed for case 3 that D F 7’ : L, for any label 7' € L,.

Persistence

As shown in [Dar-96¢c], compromised revision satisfies a restricted version of the persistence property,
which we called Compromised Persistence.
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Basically, the persistence notion states that as much of the original base should survive a revision as
possible. Hence, by revising a database D with a sentence 7 :a and then retracting 7y : «, we should
be able to derive from the resulting database, all the consequences of D that do not directly contradict
~ : a. The compromised version of this persistence notion, considers that we should be able to derive
from the resulting base all the consequences that do not do not directly contradict 7 : a, and also that
do not violate integrity contraints in D.

In CIULps, the notion of compromised persistence involves both revision and the update operation, in
the case of compromised contraction.

If we consider compare Definition ?? of revision ®, with Definition 2.50 of revision ©, we notice that
revision @ only caters for cases 1,3 and 4 of revision ®. Case 2 of ® is dealt directly by the update
function in CIULps.%® Also the compromised contraction © defined in [Dar-96c], is implemented by
the update Up(D, U_, ¥ : a), where the compromised notion of keeping the consistent consequences
of the retracted declarative units is embedded in the retraction operation D = v : o (Definition 2.46).

Due to the differences cited above, we cannot abstract from the property of compromised persistence
proved in [Dar-96c], and assume that it holds for revision ©. Hence, we need to show that the this
notion of persistent is also guaranteed in CIUrps. The proposition below caters for this matter.

Proposition 2.22 (Compromised Persistence in CIULps)

Given a dafabase D (Ap, ), zf we revzse it by a declaratwe unit 7, then V 7 o such that
D%-'y cy,‘y ca # v aand'y o ¢R.ya,D I-'y o whereD =UpPDO7y:a,U_, v : a).

Proof:
By Definition 2.50, we have that in case 1, D ® ¥ :a =D. And, by Definitions

2.37 and 246, Up(D ® v:@e, U_, ¥ : a) = D. So, in this case it is vacuously
guaranteed that V 71 . a such that D F 7y : o, D F 4 :a. In case 2,

Do y:a = (Ap |J Smaz(Smaz(CI(y : @))e,)es, <), where no declarative unit is
retracted from Ap,and vy:a ¢ D © y:a. So, Up(D © 7:a, Uo, vt a) = D,
where D' = D 0 7, a And we guarantee that V 5 : o  such that

I

D F 7I : oz', D + 7 ca. Incase 3, D ® 7 : a = (Apoya, <), Where
Apoya = (Ap — R:..)USmaz(CR(R;.,))e; U{y : @}. By Definitions  2.37 and 2.46,
UpDO7vy:a,U_,y @) = D', where D' = ((Ap|JSmaz(CCon(y : @))e,)—{7: @}, X),
By definition, the consequences of D which are not anymore available from D © v :a are
the ones in Rwa, where RZ., C Ap. As proved in Proposition 2.11 Vy" ot € R,
DOy:a ¥ v :a* So,wehavethat V'y’ :a' suchthat D' F 4 o, 'y ca ¢ R}, since
by retracting {y : a} from D ® 7 : a the declarative units of the set Smaz(CCon(y : @))e,
do not derive any declarative unit of RX.,. By Definitions 2.37 and 2.46, it is guaranteed

that if v : a is derivable from D ® 7 : a, it is no longer derivable from D'. Hence, for the
three cases that deﬁnes the revision ©, compromlsed persxstence is satisfied. So V 'y o
such that D F 7 Lo Up(D ® y:a,U_, vy : a) b v :a,provided that 'y Lo + v
and 7I ca ¢ R, asstated in the proposition.

2.7.3 Properties of the CIUrps Updates

Database Structural Properties Preservation

45See Definition 2.37.
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We say that the update function preserves the structural properties of a given database D, if by updating
D with an input 7 : a, the resulting database D = Up(D, o, v : a), where ¢ = {uj, U_},
presents the same structural organization of D.

Proposition 2.23 below guarantees that the structural properties of a CIULps database are kept via
single updates performances.

Proposition 2.23

Given a database D = (Ap, <), for any update type o, Up(D, o, §) yields another database D'
which has also the structure (Ap, <), given that & is a labelled formula of the form v : «, following
the definition of CIULps declarative units.

Proof:

We have to prove the statement of the proposition for both cases, when ¢ = U, and
o=U_

[(1) ¢=uy] In this case, Up('D, Uy, 7:a) =D | v:a. By Definition 2.38, we
have that D Y y:a= D', where D = {((Ap — Xp) U {7 ca}, %), if ¢ is satisfied, and
D' = D ® v: a,otherwise. Where ¢; = Ap,y:a ¥ 4/ : L, foranylabel ' € L,, and
Xp C Ap, such that Xp = {y:a|m:a€Ap, and <pu(7 71) € A}. So, in the case
that ¢, is satisfied, the resulting database is already guaranteed to be of the same structure
as D. Also, by Definition 2.38, all the elements of D are well defined declarative units of
ClUrps. When c¢; is not satisfied, D' is the resulting database from the revision of D
by v:«, D ® v:a. By Proposition 2.21, we guarantee that D © 7 :a preserves the
structural properties of database D.

[(2) o = u_] In this case, Up(D, u_, ¥ : @) = D Z v : a. By Definition
2.46, we have that D Z 7y : a = D', where D = (Ap,x), if v :a ¢ Ap, and
D' = ((Ap|JSmaz(CCon(y : @)),)— {7 : a}, <), otherwise. According to Definition 2.45,
Smaz(CCon(y : @))., contains non-supported declarative units, and is ordered by <. So,
Definition 2.46, shows that the resulting database of D Z v : o also preserves the structure
of the original database D.

Hence, by cases (1) and (2), we have that the single update function Up(D, o, 7 : )
always generates a new database D', which has the same structural properties of the original
database D.

Consistency

To show that the update function Up(D, o, §) is consistent, we need to prove that for any initial
consistent database D, and any declarative unit v : «, if we update D with 7 : «, the resulting
database D is always consistent.

Below, we state the consistency theorem for the update function Up(D, o, §).

Theorem 2.2 (Consistency of Up(D, o, 6))

Given a database D = (Ap,x), for any declaratwe umi v : «, and for any update type o, where
o = {uy, u_}, Up(D, 0, y:a) = D, and D' ¥ 4 L, for any label v of L.

Proof:
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(1) In the case that o = Uy, Upg'D, Uy, y:a) =D W v :a. By Definition 2.38,
we have that D i) y:a = D', where D = ((Ap— Xp) U{y:a},x),if c1 is satisfied,
where ¢, = Ap,y:a ¥ 4 : L for any label ¥/ € L£,,and Xp C Ap, such that

Xp = {y:a|y:a€Ap, and pu(y,7) € A}. So, in this case, by satisfying ¢ we
already guarantee that D' ¥ 4 : L. In the case that c; is not satisfied, D' is given
by the revision of D by 7v:a. D' = D ® v:a. By Theorem 2.1, we guarantee that
DOv:a¥F 'yl c L.

(2) In the case that ¢ =u_, Up(D, U_, y:a) =D E 7 :a. By Definition 2.46, we
have that D=+ :a =D, where D = (Ap,<),if v:a ¢ Ap, in which case it is guaranteed
that D ¥ 7I . 1 since D' =D and D is assumed to be consistent. In the case that
v:ia€Ap, D = ((Ap|JSmaz(CCon(y : a))e,) — {7 : @}, <). According to Remark 2.14,
Smaz(CCon(y : a)), is a subset of CCon(y:a) (Definition 2.45), which is a re-labelled
version of Con(y : a). By Definition 2.44, Con(y:a)={y : ai | Ap F ¥ : o, and
(Ap—{y:a}) ¥ % : a;}. So, originally the declarative units of Con(y:a) were already
derivable from D. Since D is assumed to be consistent, we can also conclude that in this
case D ¥ 7I c L.

Hence, by cases (1) and (2), we show that the single update function Up(D, o, v : )
always generates a new database ’D', which is consistent.

2.7.4 The Basic Update Operations | and =

Conditional Addition Operation |4

The CIULps notion of conditional addition of data in a database, does not satisfy associativity. The
reason for this is mainly due to the fact that the |4 operation may invoke revision, and then we cannot
guarantee associativity in compromised revision.

B ¢ is Non-associative

Given the |# operation of conditional inclusion of a declarative unit into a CIUpps database, we say
that |4 satisfies associativity iff given a database D, and the declarative units 7v; : @3 and 72 : ag,
the following holds:

DWmn:a)Wriaa=DHr:e)Wn:a

However this property does not follow in our system, since the conditional addition of a declarative unit
into a database D, may invalidate previously derivable data, and may also cause that some existing
data be contracted from the database, via the system’s compromised revision.

We can show that associativity does not hold for the operation (4, via a counter-example.

Example 2.8 (Counter-Example for the Associativity of ) ..

Given a consistent database D = (Ap, <), where Ap={E1: A, P1:AANB— L1 1i: A— D, 19
B — C}; and the declarative units 4 :ay =Ez: B, and 73 :az = E3: A.

If we add 74, : oy to D and then we add 73 : az to the result of the first conditional addition, by
Definition 2.38, we have that D ¥ 11 : an = (Ap, <), where Ap = {E2 : B, Py : ANB —
1, 3:A—=D 1,:B—=CnN :D}. And D B m : a1) W v o = (A;,, <), where
Ay ={E3:A4, P :ANB— L1 11:A— D, 1,: B—C,N;:C}.

56



If we now do (D W 72 : a2) W 1 : a1, we have that D | 72 : a2 = (A}, <), where
5 ={e3:A, P1:AAB—> L1, 11:A-> D, 13: B—=C}. And (D ) 72:a2) Y m 11 = (AT, %),
where Ay ={E;:B, P1:AAB— L1, 11:A—> D, I : B— C,N;: D}.

Then, we have that A;IJ # Ap. Hence, this shows that the associativity property does not hold for the
operation |t), as erpected.

Compromised Contraction Operation =

The CIUrps compromised contraction of data from a database, also does not-satisfy associativity.

Given the = operation of compromised contraction of a declarative unit from a CIULps database,
for any declarative units 7; : @; and 7z : ag, it is not always the case that (D Z 7, :01) E 72102 =
DPEy:a2)E 1o

By Definition 2.46, we have that D Z v : a = D', where D' = (Ap,xX),if y:a ¢ Ap, and
D' = {((ApUSmaz(CCon(y : @))e,) — {7 : a}, <), otherwise. Associativity for = only holds in
the case that either 7; : @y or 72 : @z is not in Ap, and 71 : a1 ¢ Smaz(CCon(yz : az))e,
and 72 : a3 ¢ Smaz(CCon(y: : a1))e,. If we consider, for instance, that v; : @2 ¢ Ap, and
vo i ay € Smaz(CCon(y : @1))e,, then (P E v : 1) E y2: a2 = ((AD=y:a, U Smaz(CCon(y:
@2))e,) — {72 : a2}, X), which is different from D Z 71 : .

2.7.5 Properties of the CIU.ps Transactions

Database Structural Properties Preservation

Since a transaction is defined as a sequence of updates, and we have already proved that the update
function preserves the structural properties of a given database D, then it lS trivially guaranteed that
a ClUpps transaction Trans(D,UP), returns a resulting database D', which presents the same
structural organization of D. Proposition 2.24 below caters for this transactlon property.

Proposition 2.24

Given a database D = (Ap, <), for any sequence of updates UP, where UP = Upy,---,Up, and
for each 1<i<n Up,( i Oi, 6) = ’D such that D; = D 1, a transaction Trans(D,UP)
yields another database D' which has also the structure (Apr, \), of the original database D.

Proof:

By Definition 2.51, the base case of our proof is when n = 1. In this case, UP = Up,
Trans(D,UP) = Upi(Di1, o1, 61) = D',, where D; = D and D, = D. By
Proposition 2.23, D' preserves the structural propertles of D. In the case that n > 1, for
each 1<i<n in Upi(Ds, oi, &) = D', D; = Again, by Proposition 2.23,
D'; preserves the structural properties of D By applymg the n updates in Trans(D,UP),
we have that D', also preserves the structural properties of D. Hence, we have shown by
induction on the number of updates in the transaction, that Trans(D U P) always generates

a new database D', which has the same structural properties of the original database D.
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Consistency

It is also trivial to show that a transaction Trans(D,UP) is consistent, since we have already shown
that each update operation, in its sequence of updates, returns a resulting database D' which is always
consistent.

Below, we state the consistency theorem for the transaction function Trans(D,UP).

Theorem 2.3 (Consistency of Trans(D,UP))

Given a database D = (Ap, <), for any sequence of updaies UP, where UP = Up1,---,Upn and
for each 1 <i<n Up,( i, Oi, 6) = D'; such that D; = D' -1, @ transaction Trans(D UP)
yields another database D' such that D' ¥ 7 : L, for any label 7 of L.

Proof:

By Definition 2.51, the base case of our proof is when n = 1. In this case, UP = Up,
Trans(D,UP) = Upi(D1, o1, 61) = D' 1 where D; = ’D and D'y, = D'. By
Proposition 77, we have proved that D ¥ 'y : L, for any label 7 of L£,. In the case that
n>1 foreach 1<i<n in Upi(D;, 0i,°8;) = D'; i, Dy = D’ i—1. Again, by Proposition
7?7, D'; ¥ 4 : L, for any label v of L,. By applying the n updates in Trans(D,UP),
we have that D', is also a consistent database. Hence, we have shown by induction on the
number of updates in the transaction, that Trans(D,U P) always generates a new database
2 , which is consistent. That is, Trans(’D,UP) = I, such that D ¥ 7 : 1, for any
label v of L.

2.7.6 Discussions

In this section, we have shown some important properties of the system CIUpps w.r.t. the consequence
relation, the revision function, the updates and the transactions. In CIULps, the consequence relation
satisfies particular versions of the properties of restricted reflexivity, restricted monotonicity, the deduction
theorem, strong transitivity (unitary cut), and non-explosiveness. Some of those properties follow also
for the case that the conditional inclusion operation of the system is considered, in the place of the
conventional set-theoretical inclusion. The updates and the transactions defined for CIULps, are shown
to preserve the structural properties of the given initial labelled database, and to be consistent. The
revision operator ® is defined based on the revision operator ® of [Dar-96c]. Hence, © also preserves
the structural properties of the input database; is consistent; and satisfies compromised persistence.

2.8 Summary and General Remarks

In this section, we have introduced CIUpps - a labelled realization of our approach of Compromising
Interfering Updates, based on the logical framework of Labelled Deductive Systems. In CIULps, the
labelling conditions applied to the inference rules and to the update operations, control both the derivation
and the reconciliation processes of the system. Hence, it guides the derivation mechanism specifically to
the requirements of our compromised approach. The labelling functions represented by ©y, map the
possible labels of the inputs for the inference rules and update functions, to their corresponding output
label within the resulting declarative unit. The ordering =< on the set of declarative units is supposed to
contribute to the expressive power of the labelled database, and to serve as basis for the construction of
the safe-mazimal consistent subsets which are introduced in [Dar-96¢], to provide a unique solution from
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the revision process. The inference rules for the logical connectives were based on the natural deduction
presentation style for propositional logic, with the main difference that in CIUrps we use labelled
formulae and we define some conditions for applying the rules. In CIULps, the update requests involve
addition and retraction of declarative units to and from a labelled database D. We have restricted
the declarative units in the single updates, to be either extensional data or intensional data which are
present in D. These restrictions avoid that the updates handle protected data, as usually expected, and
also non-supported data. The basic update operations which are invoked by the single updates, carry
the reconciling flavour of our compromised approach to conflicting inputs. The operation of conditional
inclusion |4, invokes the compromised revision function ©®, when a compromised solution for the update
applies. The compromised retraction operation Z, already embeds in its definition the mechanism for
allowing consequences of retracted declarative units to be added to the database as non-supported data.
This operation uses the notion of safe-maximality, when a choice is needed among the compromised
consequences. We have introduced the revision ® in CIUrps, based on the compromised revision ®
for finite bases with integrity constraints defined in [Dar-96¢c]. So, © is basically devoted to free the
database from inconsistency by allowing some consequences from conflicting updates, or from retracted
declarative units, to be kept in the resulting database as a compromise. We have adopted the notion of
safe-maximality introduced in [Dar-96c], as an impartial solution to choose among the minimal declarative
units of the labelled database, considering the ordering <. Transactions were defined in CIUrps as
a sequence of updates. Hence, it incorporates the results of various single updates in sequence. Within
each update request of a transaction, the compromised revision © may apply. Since, the resulting
updated databases are consistent, then we also have that the result of a transaction is a consistent
labelled database.

CIULps handles the non-supported consequences which are generated from the compromised revision
on the database, without applying specific restrictions to them. However, a more application-oriented
implementation of this approach could better explore the handling of non-supported consequences for
the application own needs. Within a hypothetical reasoning context, for instance, the non-supported
consequences of rejected inputs could represent the consistent consequences of a particular input, say a
game move, which would have been supported, had the input not conflicted with the existing constraints.
In this case, the labelling control of the non-supported data would have to distinguish among the
consequences of different rejected inputs. And the derivation mechanism would also have to take the
conditional aspect of those consequences into account.

As a further work for the CIULps formalization, we intend to propose a semantics for the system,
which grasps the intuitive notion of the reconciliation among conflicting data. As a first thought, we
could try to define a semantics for CIUrps, which would characterize on a state basis the changes of
a labelled database D. Each state could be defined as a snapshot of the database, and each step from
one state to another would be given by an update operation D. So, we would have a sequence of states
representing the databases, initially and after the update operations, up to the current database. In
such a semantics, the following concepts would be of relevance: a sequence of database states Sp; an
interpretation for the language Lcju, considering the labelling conditions; the notion of a model; the
notion of satisfiability of a declarative unit; the notion of satisfiability of a labelled database; and the
notion of semantic entailment. Alternatively, we could also think of using the possible worlds semantics
to characterize the models of a given labelled database, where the accessibility relation would represent
a move from one database to another, via an update. There is still a lot to be investigated in order
to define a semantics for CIUrps. It is our contention to put effort in this direction, so that we can
provide a complete updating logical system for our approach.

3 Final Remarks

In this paper, we have introduced our approach of Compromised Interfering Updates, and we have
presented a a logical system, CIULps, as a labelled realization to the approach, under the Labelled
Deductive Systems framework (LDS). Some relevant properties were presented, establishing the main
results of the system.*6

46Full proofs of the properties cited in this paper are available in [Dar-96b,96d].
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Under the compromised philosophy of the approach presented here, some other pieces of work were
developed by the author. In [Dar-96a), the problem of dealing with inconsistency after the performance of a
database transaction is addressed, within the context of deductive databases. In this formalization, CIU is
defined on the basis of the integrity-checking method for deductive databases described in [SaKo-87]. [Dar-
96¢,96d] presents more details about the idea of compromised reasoning and the compromised revision
under a belief revision perspective. A planned further work in this research line, is the investigation
of compromised solutions for modelling simultaneous occurrence of actions, where we have to tackle
problems which arise when reasoning about possible conflicts and combined effects of these actions. We
believe that this area can benefit much from compromising on solutions. We have studied the existing
approaches related to these aspects in the context of actions, but so far not much has been developed
on it. [Dar-96d] presents a brief comparison with Truth Maintenance Systems. A more detailed study
on their differences, advantages and limitations, is also a planned future work.
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A Auxiliary Proofs

This appendix presents proofs of some propositions cited in section 2 of this paper.

Proposition A.1 (Proposition 2.1)
Given a database D = (Ap,<), and a declarative unit 7y : «, such that (Ap=1) U{y:a} F 'y/ i1,

for some label 'y’ € L,, and it is not the case that —a 15 a tautology.  Then, given
the set  Fail(Ap — )y = {Si, Sa2,---,Sj}, 1t is sufficient to retract one element from
cach  S;, such that ((Ap — I) — S(Fail(Ap — De,))U{y : e} F v i L, for any label
v € L, where S(Fail(Ap —I)e,) = {7 : i | ¥Si € Fail(Ap — I)e,, Iy a0t €S,

such that vi, v* € z, and o; = o*}, where Z is a label type in L.

Proof:

By Remark 2.15, each set S; € Fail(Ap —I);, is minimal w.r.t. C, such that
S U{y:a} F 7’ : 1, for 7’ € L,. Then, for any declarative unit 7" : o™ € S,
(Si—{7*:a*}) U{y:a} ¥ v i L, for ¥ €L, Thisis true for all S; € Fail(Ap —1I)c,.
S(Fail(Ap — I).,) is a set that contains one element of each S; € Fail(Ap — De,, for
i =1, 1. Therefore, it is guaranteed that ((Ap —I)—S(Fail(Ap—1I)c,)) U{y : a} ¥ vy L,
for any label 4 € L.

|
Proposition A.2 (Proposition 2.2)
Given a database D = (Ap, <), a declarative unit v : a, such that (Ap—-1) U{y:a} F 7: . L, for
some v € L., and it is not the case that —a is a tautology, Smaz(Ap — I)e,, v ¥ v o L, for

any ‘y’ € L.

Proof:
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By Remark 2.17, in the case that Smaz(Ap — I);;, = (Ap — I), the statement of
the proposition is already guaranteed by condition c¢3. In the case that Smaz(Ap —
Dey = (Ap = I) = Min(Fail(Ap — I).,), we have proved in Proposition 2.1, that
((Ap = I) = S(Fail(Ap — De,))U{y : a} F v : L, for any label 4 € L,, where
S(Fail(Ap — I)c,) is any set which includes one element of each set S; € Fail(Ap — I).,
By Definition 2.42, RMin(Fail(Ap — I).,) contains at least one minimal element w.r.t.
%, of each set S; of Fail(Ap — I).,. Hence, there exists a set S(Fail(Ap — I).,),
such that S(Fail(Ap — I)e,) € RMin(Fail(Ak).,). Then, abstracting from Proposition
2.1, we have that ((Ap — I) — RMin(Fail(Ap — I).,)) U{'y a} ¥ 4 L. Therefore,
also when Smaz(Ap — I)e, = ((Ap = 1) - Mzn(Fazl(Ap —1I)e,)), it is guaranteed that
Smaz(Ap — I)e, U{y : a} F 'y : L, for any label v € L,.

Proposition A.3 (Proposition 2.3)

Given a database D = (Ap,<), a declarative unit v : «, such that CI(y : o) s non-empty,
Ap,y :a F 5 : L for some label v € Ly, and it is not the case that « s a tautology,

Smaz(CI(y : a))e, U Ap F 7' : L, for any label 7I € L,.
Proof:

By Remark 2.19, in the case that Smaz(CI(y : @), = CI(y : «), the statement of the
proposition is already guaranteed by condition c4. In the case that
Smaz(CI(y : @))e, = CI(y : @) — RMin(Fail(CI(y : @))c,), we have that by Definition 2.39,
each set S; € Fail(CI(y : @))c, is minimal w.r.t. C, such that S; |J Ap F ' oL, for
some 7y € L. Then, for any element 7" :a* € S;, (Si—{y":e*}) U Ap ¥ v L.
This is true for all S; € Fail(CI(y : a)),. By Definition 2.42, RMin(Fazl(CI('y cx))cq)
contains at least one minimal element w.r.t. <, of each set S,' of Fail(CI(y a))e,-
Therefore, we have that (CI(y:a) — RMm(FazI(CI('y a))e,)) U Ap F oy i L Hence
also when Smaz(CI(y:a)), = C'I('y a) — RMin(Fail(CI(y: «))e,), it is guaranteed
that Smaz(Cl(y:a))e, U Ap ¥ v : L, forany v €L,.

Proposition A.4 (Proposition 2.4)

Given a database D = (Ap, <), a declarative unit vy : «, such that CI(y: oz) is non-empty, and 1t s
not the case that « 1is a tautology, Smaz(Smaz(CI(y :a))e,)es U Ap ¥ v :a, for any v €L,

Proof:

By Remark 2.21, in the case that Smaz(Smaz(CI(y : @))c,)es = Smaz(CI(y : @))e,,
the staternent of the proposition is already guaranteed by condition c5. In the case that
Smaz(Smaz(CI(y : @))e,)es = Smaz(CI(y : a))e,— RMin(FaiI(Sma:r(CI(’y a))ey)es)s We
have by Definition 2.39, that each set S; € Fazl(Smax(CI(7 a))e,)es 1s minimal w.r.t.
C, such that S; |J Ap F 7 : a, for some 'y € L. Then, for any element ¥* :a* € S,
(Si— {y*:a*}) U Ap F v :a. This is true for all S; € Fail(Smaz(CI(y : a))e,)ecs-
By Definition 2.42, RMin(Fail(Smaz(CI(y : @))c,)es) contains at least one minimal
element wr.t. X, of each set S; of Fail(Smaz(CI(y : @))e,)e,. Therefore, we have that
Smaz(CI(vy : a))e, — RMin(Fail(Smaz(CI(y : @))e,)es) UAD ¥ v : a. Hence, also when
Smaz(Smax(CI('y @))ey)es = Smaz(CI(y : @))e, — RMin(Fail(Smaz(CI(y : @))ey)es)
it is guaranteed that Smaz(Smaz(CI(y : @))e,)es U Ap ¥ 7 :a, for any Y €L,
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Proposition A.5 (Proposition 2.5)

Given a database D = (Ap,<), for any set Ry.o C Ap_1, we have that Smaz(Ap_1—Rya)es ¥ 7"
a*, V¥* 1 a* € Ryq.

Proof:

By Remark 2.23, in the case that Smaz(Ap-1 — Rya)er = (Ap—1 — Rya), the
statement of the proposition is already guaranteed by condition c7. In the case that
Smaz(Ap_1 — Rya)er = (Ap—1 — Ry.a) — RMin(Fail(Ap_1 — Ry.a)e,), We have that by
Definition 2.39, each set S; € Fail(Ap-1 — Ry.a)e, is minimal w.rt. C, satisfying
the condition (Ap_; — Ry:e) F 7% : @*, for any v* : " € Ry Then, for any element
7’ ca €S, (S; — {7' : a’}) F 4* i a*, Vv :a" € Ryo This holds for all
S; € Fail(Ap_1 — Ry.a)e,- By Definition 2.40, the set min(Fail(Ap-; — Ry.a)c,) contains
at least one element of each S; € Fail(Ap—; — Ry:a)er, for 1 =1, --- k. And by Definition
7?7, RMin(Fail(Ap_; — Ry.a)c;) contains at least one element of each set min(S;)
of min(Fail(Ap-; — Ry.a)e,). Hence, also when Smaz(Ap-; — Ryo)er = (Ap-1-—
Ry.a) = RMin(Fail(Ap—r—Ry.a)c,), it is guaranteed that Smaz(Ap-1—Ry.a)e; ¥ 7" 10,
Vy*:a® € Ry

Proposition A.6 (Proposition 2.6)

Given a database D = (Ap,<), and a declarative unit 7y : o, such that Ry.. 15 non-empty,
Smaz(Smaz(Ap-1 — Rya)er)es U{yv:ial U T ¥ y*: L, forany v* € Ly.

Proof:

By Remark 2.25, when = Smaz(Smaz(Ap-1 — Rya)er)es = Smaz(Ap_1 — Rya)ers
the statement of the proposition is already guaranteed by condition cg. In the case that
Smaz(Smaz(Ap_; — Ry:a)er)es = Smaz(Ap—1 — Ry:a)e, — RMin(Fail(Smaz(Ap_; — Ry.a)er)es), W
have that by Definition 2.39, each set S; € Fail(Smaz(Ap-s — Ry.a)er)es 1s minimal
w.r.t. C, satisfying the condition Smaz(Ap_r — Ry.a)e, b 7* : L. Then, for any element
v 1o €8, (Si—={y :a'}) ¥ 4" : L. Thisholdsforall S; € Fail(Smaz(Ap—1—Ry.a)er)ee:
By Definition 2.40, the set min(Fail(Smaz(Ap-; — Ry.a)er)es) contains at least one
element of each S; € Fail(Smaz(Ap—1 — Ry:a)er)ess for 1 = 1, ---, k. And by Definition
7?7 RMin(Fail(Smaz(Ap—; — Ry.a)er)es) CONtains at least one element of each set min(S;)
of min(Fail(Smaz(Ap-1 — Ry.a)er)cs). Hence, also when Smaz(Smaz(Ap_1— Ryia)er)e
= Smaz(Ap—_1— Rya)ey - RMin(Fail(Smaz(Ap_; — Ryia)er)es), it 1s guaranteed that
Smaz(Smaz(Ap_r— Rya)er)e U {v:a} UIF~y:L, for any v* € L,.

Proposition A.7 (Proposition 2.7)

Given a knowledge base D = (Ap, X), for any set R}, C Ap, such that CR(R3.,) is non-empty,
Smaz(CR(R}.o))e, U (Ap—R3,) ¥ 7" :a”, Vy" 10" € Rl,.

Proof:
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By Remark 2.27, in the case that Smaz(CR(R}.,))c, = CR(R}.,), the statement of the
proposition is already guaranteed by condition cg. In the case that Smaz(CR(R}.4))cs =

CR(R}..)— RMin(Fail(CR(R}.,))c, ), we have that by Definition 2.39, eachset S; € Fail(CR(R}.4))es

is minimal w.r.t. C, satisfying the condition S; | J(Ap—R}.,,) F 7" :a",fora v* : a* € R} ,.
Then, for any element 7 :a € Si, (Si—{y :e'})U(AD - R: ) ¥ v* :a*. This holds
for all S; € Fail(CR(R}.,))e,- By Definition 2.40, the set min(Fail(CR(R}.q))es)
contains at least one element of each S; € Fail(CR(R}.,))cs, for i = 1, --- k. And
by Definition 2.42, RMin(Fail(CR(R}.,))c,) contains at least one element of each set
min(S;) of min(Fail(CR(R}.,))e,). Hence, also when Smaz(CR(R}.q))e, = CR(RY.,)—
Min(Fail(CR(R?.,))c, ), it is guaranteed that Smaz(CR(R}.q))e, U (Ap — R},) ¥ 7" a7,
Vy* i a* € RS, .

Proposition A.8 (Proposition 2.8)

Given a database D = (Ap, X), and an input v : a, such that it is not the case that -« 1is a
tautology. If I, y:a ¥ v : L and Ap, vy:a b 7' : L, for any set R,.q, as in Definition 2.48, such
that CR(R%.,) is non-empty, Smaz(CR(R}.q))es U (Ap — Ry.o) U{v:a} ¥ o' : L, for any label
Y € Ly.

Proof:

By definition, R, = Ap_;— Smaz(Smaz(Ap-; — Rya)es)e,- Then, we can also
say that Smaz(Smaz(Ap-1 — Ry.a)er)es = Ap_1r— R}.,. In Proposition 2.6, we have
shown that Smaz(Smaz(Ap-1 — Rya)er)es U {70} U I ¥ v L1, forany ¥ € L,.
That is, (Ap-r—R%.,) U{rv:a} U I ¥ 7 : L. Since Ap_; denotes (Ap — 1),
(Ap-r—R:.,) U I can besubstituted by (Ap—R’.,). So, by Proposition 2.6, we have that:

() (Ap=Ry) U{y:ia} ¥ 9':L

By definition, R:., is the set that has to be retracted from Ap, to accomplish the in-
clusion of % : a, keeping consistency. Since by Proposition 2.7, we have shown that
Smaz(CR(R%.4))es U (Ap — Ry,) ¥ 7" 1a*, V9" 1a” € R, there is no chance that

yiao

{7 : a} conflicts with Smaz(CR(R}.4))cs- Then, it follows that:
(2)  Smax(CR(R}.,))es U {7v:0} F vy L
Hence, by (1) and (2), it is guaranteed that:
Smaz(CR(R%.4))es U (Ap— R3,) U {v:e} ¥ 7' : L, for any label v € £,.

Proposition A.9 (Proposition 2.9)

Given a base D = (Ap, <), for any input v : a, such that —a is not a tautology, and CI(y:a) is
non-empty,if I, v:a + v : L, for any label v € L, then Vy* :a* € Smaz(Smaz(CI(y : a))c,)es,
DF¥F v:a" and D © 7v:a F y* :a".

Proof:

By Definition 2.47, we guarantee that all the declarative wnits in CI(y : «) are not
originally present or derived from D. By Definition 2.43 and Remark 2.21, we have that
Smaz(Smaz(CI(y : a))ey)es S CI(y : @). And by Definition 2.50, we state that in the
casethat I, v:a b v :L, DO v:a=(Ap |J Smaz(Smaz(CI(y : @))cy)es, <), where
Smaz(Smaz(CI(y : @))e,)es is part of D @ v : a. Hence, Vv* : o* € Smaz(Smaz(CI(y :
a))ey)ess DF v*:a*and D @ y:a F v :a".
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Proposition A.10 (Proposition 2.10)

Given a base D = (Ap, X), for any inp"tt v : a, such that —a is not a tautology, if Ap,y:at v L,
for some label v € L., and I,y:a¥F v : L, then Vy* :a* € Smaz(CR(R},))es, P F 7" :a” and
also D © vy:a F v«

Proof:

By Definition 2.43 and Remark 2.27 Smaz(CR( o))es 1s a safe maximal subset of
CR(R;.,), relative to condition ¢g. So, Vy* : 0 € Sma:c(CR( vea))ess D F 4* : a*, since
CR(R o) 1s a set of consequences of R}., and by deﬁmtlon R;a C Ap. By Deﬁnition
2.50, in the case that Ap,y:a bt 'y L for some label 'y €Ly, and I,y:aF 'y o4,
we state that D © v :a = ((Ap — .G)USmaz(CR (Ry.a))es U{7 - a}, %). Hence,
Vy* i a* € Smaz(CR(R%y))ees D © y:ia b 4" :a”. Therefore we guarantee that
Vv* ia* € Smaz(CR(R%.4))es, P F 7" :a”and D © y:ia F 77

Proposition A.11 (Proposition 2.11)

Given a base D = ’ (Ap, X), for any mput v : ) such that —a is not a tautology, if AD,'y al— 'y o4,
for some label v € L, and I,7: a}"y 1, then Vy*:a* € Ry, DO v:ia K 77

Proof:

By definition, R}., = Ap_j—Smaz(Smaz(Ap-;—Ry.a)er)es Where Smaz(Smaz(Ap_r—
Ry.a)er)es 1is a subset of Ap_j— Ry and Ry ¢ Ap_1 — Ry.a. In the case that
Ap,y ' a F 7’ : L, for some label 7' € Ly, and I,y : aF 'y' : L, we state that
D O v:a=((Ap— R)USmaz(CR(R;..))e U{7 : a}, ). By Definition 2.43 and
Remark 2.23, R,.o € Smaz(Ap_; — R}.,)c, and it is shown in Proposition 2.5 that
Smaz(Ap_1 — Ry..)e, ¥ 7" *, V'y" ot € R,ya By Proposition 2.7 has proved that
Smar(CR(RY.4))es U (Ap — RY.q) ¥ 4" i1a®, Vy*:a* € R% 4. Since Ry:.a contains the elements that
have to be retracted from AD in order to accomphsh the msernon of ~:oa and keep Lonsxqtency, 1t
is then also guaranteed that D @~v:a ¥ ~* :o*, V4*:a* € Ra. Hence, D @~ :a F y* o at,
Vy*:ia* € Ry,

Proposition A.12 (Proposition 2.12)

Given a base D = (Ap, <), for any znput v : «, such that —-a isnota tauiology, zf a declarative unit
v ia* € D Oy :a, then either v* :a* € Ap and 7" :a* ¢ Ry, or v*:a” ¢ Ap and either
v ro* € Smaz(Smaz(CI(y : @))e,)es, 7 ¥ 1@ =7:a, 0or ¥ :a" € Sma:c(CR(R;:a))cg,

Proof:

By Definition 2.50, we state that D © 7 :a = (Apeyia, %), where in the case that
I, y:o F 71 1, for some label 7’ €Ly, Apgya=Ap U Smaz(Smaz(CI(y Da))ey)es-

*

Thls means that Vy* : «* € D O v : a, either 7 @ « € Ap

or ¥ : o* € Smax(Smar(CI( : @))e,)es- And when Ap,y @ a F v L
and I,y : a ¥ 7 : L1, Apgya= (Ap—R,) USmaz(CR(R;..))e, U {7v:a}
By definition, Smaz(Smaz(Ap-1 — Ry.a)er)es IS equivalent to A—D 1 — R, since
Ry, = AD 1—Smaz(Smaz(Ap-1—Ry:a)es)es- Then, VB € K ® a, either v* :a® € Ap
and v ia* ¢ Rig or v :a* € Smaz(CR(R}.,))c,- Hence, all the cases of Definition
2.50 satlsfy the proposition statement above.
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