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Abstract

This paper proposes a method for handling logically conflicting inputs into knowledge
bases. Basically, it concerns reconciling conflicting inputs with the underlying theory, via
restricting their consequences. The main idea is to update the database with as many
consistent. consequences of the inputs as possible, in the case that the inputs themselves
are not allowed to be kept in it. And in the case that a revision applies, the idea is to
keep as many as possible of the consistent consequences of the retracted sentences as a
comproimise.

Resolving conflicting updates in dynamic databases, for instance, are frequent and
critically important problems of real applications. Such problems require the revision of
theories and knowledge bases. It is not realistic to aim for a generic approach in those
cases, since theory revision is fundamentally dependent on application-specific mechanisms,
principles and heuristics. The approach we propose here, caters for the specific case where
compromised solutions for revising knowledge bases apply, when conflicts involving updates
occur. In comparison with approaches that require preference between conflicting inputs,
or that avoid them by cancelling them out completely, our approach fits as an alternative
which provides more informative results. Examples of inputs include database updates,
actions, and beliefs.

In more practical terms, consider the situation where K is a database and A an
input. Assume that A is inconsistent with K . Current belief revision/update approaches
will keep A and mantain consistency by selecting some element from K to form a
revised database, usually denoted as K * A. There is a lot of research in this area, both
theorectical, e.g.: the AGM theory of belief revision, and algorithmic research, e.g.: Reason
Maintenance Systems.

Our aim is to offer an alternative approach, restricted to some specific applications,
which is flexible enough to keep more data in K in the case of conflicts. We view the above
situation as a conflict between two inputs (K and A) into an empty database, and we
tackle the problem of reconciling these inputs. Under our approach, the conflicting input
A is kept in K only in the case that A does not directly contradict the K’s integrity
constraints, in which case a revision also applies in order to restore consistency. However,
in the case that A is not allowed to be kept in K , its eventual consistent consequences,



w.r.t. the existing data of K , are added to the database under the compromised policy
of our approach.

This way, instead of preventing updates to be performed, when they introduce
inconsistency to the system, our approach proposes to generate the consequences of the
conflicting inputs, and to get rid of the inconsistency, via a minimal number of retractions of
those consequences. We expect the resulting database to be consistent w.r.t. the integrity
constraints, and to retain a maximal subset of the consistent non-supported consequences.
This reconciliation of conflicting inputs follows some specified postulates for compromised
revision.

Justifications for the proposed approach are mainly based on its practical applications.
In particular design processes, where one builds up the goal state of a particular task,
via performances of intermediary updates. Within this procedure, compromised results
of updates can help to build up the goal state, when conflicts arise. This is so, because
in general, our approach provides more information about the setting in order to carry
on the application development. We also find applications in Al, in particular in theory
revision, where our approach can provide a compromised way for revising a theory base
with conflicting information.

B Overview of the Paper

This paper is organized in the following way. In the introduction section, we present our main
motivations and we discuss the general issue of conflict resolution and theory revision. We
introduce the notion of compromised reasoning; and we point out some application areas, which
may enjoy the benefits of the compromised solutions proposed in this work. As an additional
point, some claims and viewpoints, extracted from the literature, are briefly described in order
to serve as support for the current work. Also in Section 1, we introduce the basic specification
of our approach for the case of database updates, describing the adopted policies for reconciling
conflicting updates under a compromised reasoning perspective.

In Section 2, we introduce a compromised characterization to revision under the perspective
of belief revision. We define a base-theory revision operator ® for specific applications
which allow for compromised solutions. A compromised contraction for revision is also
defined. Correspondence theorems and some propositions establish relevant relationships among
functions, postulates and some relations of this characterization. ® proposes a specific revision
method which applies some compromise criteria for achieving the revised theory. Hence, the
contribution of the ® compromised revision re-enforces the importance of having different
theory change operators available for specific applications, in order to concieve the construction
of a more realistic framework for theory revision.

In Section 3, we summarize the obtained results and discuss about the approach of compromising
conflicting updates. Existing work in labelled databases and in deductive databases under this
approach are described briefly. Limitations of the formalized compromised revision presented
in this paper, as well as proposals of further work and future research are presented.

Appendix A contains the proofs of the propositions cited in Section 2.



1 Introduction

One of the main goals in Artificial Intelligence is to design an intelligent agent, which comprises
a knowledge base and a set of beliefs about the world, and which is able to incorporate new, and
possibly contradictory, knowledge into that set. Pursuing this goal, researchers from different
sub-areas of AI', like belief revision; diagnosis; learning; planning and reasoning about effects
of actions, have to face common problems of theory revision?.

Reasoning about updates, actions, changes and their implications, composes the scope of the
basic motivation for this work. Within this scope, our main concern is to deal with the problem
of conflicting updates. That is, the problem of deciding what to do when updates interfere with
each other, generating contradictory data, or violating constraints that are given by the system
in which they are applied.

Among the Al sub-areas mentioned before, we are interested in applications which involve
database updates, belief revision, and reasoning about the effects of actions.

Resolving conflicting updates in dynamic databases, or conflicting actions in planning
applications, for instance, are frequent and critically important problems of real applications.
Such problems require the revision of theoriés and knowledge bases. As pointed out by Winslett
in [Win-90], it is not realistic to aim for a generic approach in those cases, since theory revision
is fundamentally dependent on application-specific mechanisms, principles and heuristics. The
approach we propose in this paper, caters for the specific case where compromised solutions
apply when conflicts occur. It supports a compromised way of handling conflicting updates for
revising knowledge bases, what we call compromised reasoning.

Our approach is mainly suitable for applications which allow for compromised solutions, i.e.
solutions which present the closest result with relation to the expected onme. Some of the
applications which can benefit from our approach, are in the area of design processes. Here, one
builds up the goal state of a particular task, via performances of intermediary updates. This
procedure allows for compromised results of updates when conflicts arise.

In more practical terms, consider the situation where DB is a database and A an input.
Assume that A is inconsistent with DB . Current belief revision/update approaches will keep
A and mantain consistency by selecting some element from DB to form a revised database,
usually denoted as DB * A. There is a lot of research in this area, both theorectical, e.g.: the
AGM theory of belief revision*, and algorithmic research, e.g.: Reason Maintenance Systems?.
Our aim is to offer an alternative approach, which is flexible enough to keep more data in DB,
in the case of conflicts. We view the above situation as a conflict between two inputs (DB and
A) into an empty database, and we tackle the problem of reconciling these inputs. Under our
approach, the conflicting input A is keptin DB only in the case that A generates inconsistency
to DB indirectly®, in which case a revision also applies in order to restore consistency. However,
in the case that A is not allowed to be kept in DB, its eventual consistent consequences,
w.r.t. the existing data of DB, are added to the database under the compromised policy of

1For a comprehensive reading about Artificial Intelligence and its applications, the reader is referred to
[Ban-90],[PaDe-90],[Nil-80], Ric-89], [Sha-92] and [Win-92)].

2Gee, for instance, [Bre-91],[Gar-88],[Mak-85], [Neb-91] and [RaFo-89]. .

*The basic idea of compromised reasoning is detailed further in this section.

*The AGM theory was first introduced in [AlMa-82,85,86][AGM-85], and since then gained many followers
wlho apply and modify that theory in various ways, see for instance [Mak-85],[Neb-89] [RaFo-89],[JaPa-90],[Neb-
90],[Rot-91,92],[KaMe-92] [BoGo-93),[Mak-93],[Sri-93] and [FrLe-94].

®Reason Maintenance Systems were initiated in [Doy-79] based on justifications, and in [Kle-86a] based on
assumptions. More recent research work following this line have also emerged. Some of them are found in
[Elk-90],[GiMa-90),[PiCu-89],[RoPi-91],[Salw-91] and [WaCh-91].

SBy indirectly here, we mean that A does not directly violate any of D B’s integrity constraints.



our approach. This way, instead of preventing updates to be performed, when they introduce
inconsistency to the system, our approach reconciles the conflicting inputs by compromising on
their consequences. We propose to generate the consequences of the conflicting inputs, and get
rid of the inconsistency, via a minimal number of retraction of those consequences. We expect
the resulting database to be consistent w.r.t. the integrity constraints, and to retain a maximal
subset of the consistent consequences of those updates. This reconciliation of conflicting inputs
follows some specified postulates for compromised revision.

1.1 Motivations

As pointed out by Galliers [Gal-90], in most of the existing Al research work, conflicts either
simply never arise, or are alternatively avoided when they do arise. However, in a constantly
changing and unpredictable environment where centralised control over the entire system is most
of the times impossible, inconsistencies within the system are inevitable, and conflict situations
do arise. The central interest in [Gal-90] is to solve conflicts in cooperative multiagent systems, by
facing their positive aspects. They claim that achievement of cooperation from conflict, among
formalized agents may involve the decision of a mutually preferred compromised solution, and /or
persuasion to the validity of another positioh. These attitudes are, undoubtedly, considered as
natural among humans, in a cooperative situation. Moreover, based on studies about human
society, they also claim that conflict relations constitute a fundamental social interaction process
and they have important functions and consequences.

Gabbay and Hunter, in [GaHu-91,93], also support that inconsistency should be faced and
formalized. They urge for a revision on the way inconsistency is currently being handled in
formal logical systems, as opposed to the way it is handled by humans. They claim that
there is a need for the development of a framework, in which inconsistency can be viewed in
a context-dependent way. As a signal for external and/or internal actions, and not necessarily
as a bad element which induces the whole system to collapse. They argue that dealing with
inconsistencies is not necessarily a job for restoring consistency, but rather for supplying rules
which state how to act in the case of inconsistencies. Examples of some circumstances in which
inconsistency can be desirable, meaningful and useful, provided that the system is capable of
activating appropriate actions to handle it, are presented in their work.

We strongly endorse the viewpoints of Galliers and Gabbay & Hunter. Based on the same
grounds. we investigate an approach which handles conflicts that introduce inconsistency into
a system, and puts forward a compromised reasoning way for dealing with conflicting updates
and actions, instead of simply avoiding them.

As in [Gal-90], we propose to solve conflicts by facing their positive aspects. We do so, by
reconciling the conflicting updates with the underlying knowledge base, and getting as many of
their consequences as possible.

We support the point in [GaHu-91,93], that inconsistency (caused by conflicts) should be faced
and that we should supply mechanisms for handling situations when they arise. In the current
work, we approach such situations by allowing some consequences of the conflicting updates
to remain in the database. However, by reconciling the conflicting inputs, we also restore
consistency, which does not conform to their view of keeping inconsistency in the system and
supplying the appropriate mechanisms to handle it?.

Our main motivation in pursuing this approach, comes from the premise that by reconciling
conflicting updates with a knowledge base, our approach provides more informative results. In

"This view is planned as part of our further work in this approach.



comparison with approaches that require preference between conflicting inputs, or that simply
avoid them by cancelling them out completely, our proposal of compromised revision allows
more information to be kept in a theory base.

Following our compromised revision approach to conflicts, one will possibly not get all of what
he/she originally wanted®, in the case of conflict. Instead, he/she will get extra data, leading
to the direction of the original goal. This is so, because most of the extra data are related to
the goal’s consistent consequences.

The results we get with our approach suit the needs of particular application areas, e.g. design
processes; resource allocation; and decision making.

We believe that this approach is appealing, based on the following premises:

e We derive a compromised solution to the problem, which presents some degree of impartiality.®
And we consider that impartiality also plays an important role when deciding what to do in
the case of conflict. It is not always the case that we have an established criterium, such as
priority, preference, seniority, etc, to choose between conflicting updates.

¢ By compromising on the performance of conflicting updates, we can keep track of the original
intention within the maximal set of consistent consequences which is generated. Hence, we gain
the property of building up, systematically; from the initial compromised solution, further in
-the direction of the original goal, via subsequent compromised results.

As an application example, let us consider a research organization which has the task of
deciding the allocation of funds among projects. We assume that it is necessary for the projects
to discriminate all the expenses required for each of their phases, allowing for the option of
satisfying only partially those phases (compromised solutions). We assume also that the decision
makers are not supposed to favour any project in particular. So, if funds are not sufficient to
support all the projects’ requirements, our approach would be appropriate to be applied in the
process of funds allocation. In the sense that it would allow for as many of all the projects’
phases as possible, considering the constraints involved in the process.

In a way, the proposed approach tries to represent a common aspect of life. In many occasions of
everyday life situations, we try to do our best to get what we can, out of the things we originally
wanted to achieve in life, and for some reason (possibly because of a conflicting situation at the
time being considered), we do not satisfy all the requirements to get it. Hence, we end up with
the most we can get out of the situation, without being able to get everything which was stated
in the original goal. By pursuing this approach, it does not mean that we are working on the
representation of the frustrated loser. On the contrary, we want to put forward an approach
which has the positive aspect of compromising and going further, rather than giving up, when
it faces a conflicting situation.

1.2 Some Approaches which handle Inconsistency

The majority of the existing approaches for conflict resolution and for reasoning in the presence
of inconsistency in data or knowledge bases seems to have a common concern. The one
of maintaining consistency of their databases or knowledge bases in face of contradictory
information. Only a few of the existing approaches propose to ]Eeep inconsistency in the data
/ knowledge base, and handle it appropriately in order to supply desirable results.

8The idea of this revision approach conforms with the meaning of the word compromise. Quoting from
the Oxford’s Dictionary: “Compromise” is a settlement of a dispute which each side gives up something it has
" asked for, and neither gets all it asked for.

.®This is due to the fact that the system does not simply choose any particular input, out of the conflicting
ones, to be performed.



For this work, we are interested in formalisms which can handle inconsistent data, not necessarily
as part of their knowledge bases, but as a means of reaching a revised and consistent resulting
base, which somehow takes advantage of the conflicting input.

Among the works which deal with inconsistency, we find in the literature logical studies which
basically approach the problem in two main different lines: one which uses classical logic and
eliminates inconsistency, by managing maximal consistent sets, for instance; and the other which
uses non-classical logics in order to handle inconsistency.

Examples of studies which use classical logic are the works by Baral & Subrahmanian et.al.
[MBKS-92], Cholvy [Cho-90], and Bauval & Cholvy [BaCh-91] in the context of theory
combination, mainly based on the maximal consistent subsets of the global theory. The technique
of maximal consistent subsets, supporting the minimal change notion, is also used by Fagin
et al [FUV-83] and Kupper et al [KUV-84], in the context of database updates. Gardenfors
[Gar-88] and Nebel [Neb-89] also use this technique, in the area of belief revision. As well as
Ginsberg & Smith [GiSm-88], in the area of reasoning about actions.

Examples of studies which do not use classical logic are listed here. The work of Besnard
[Bes-90], which uses paraconsistent logic. The work by Cerro & Herzig [CeHe-86,92], which
uses modal logic for reasoning about updates in the presence of contradictory data. The work
by Gabbay and Hunter [GaHu-93], which presents a meta-level system, based on first-order
linear temporal logic, for handling inconsistent data. And the work by Wagner [Wag-94], which
considers formalisms which are closest to defeasible inheritance systems, where contradictory
pieces of information neutralize each other.

Here, we pursue the line of using a logical framework for reasoning about updates in the presence
of contradictory data. We eliminate inconsistency, by managing maximal consistent sets within
a reconciling strategy, which allows for consistent consequences of conflicting inputs to be kept
in the resulting base. Due to this strategy, our approach can be classified as non-monotonic.

In general, conflict resolution is fundamentally context-dependent. In the case of conflicting
updates, the area of Database Theory has been the focus of many studies, which propose
solutions to the problem in basically two main contextual approaches: in the View Updates
context, from which we can cite the works by Fagin et al [FUV-83], [FKUV-88] and by Rossi &
Naqvi [RoNa-89]; and in the context of Logical Databases, for instance, the works by Manchada
& Warren [MaWa-87], Naqvi & Rossi [NaRo-90], and Guessoum & Lloyd [GuLI-90}. In [Win-90],
we find a survey and classification!® of a number of the proposed semantics for the context of
updating logical databases, restricted to the propositional case. The main goal of the survey
is to expose the differences between semantics that are relevant when one is deciding which
semantics to use for a particular application.

In the case of actions, the areas of planning and reasoning about the effects of actions, have
given grounds for the development of different approaches to handle the problem of conflicts
and reasoning with inconsistent data.

The area of reasoning about effects of actions is considered a driving force behind some
developments in the area of updates [Win-90]. Basically, the main problem in this area is that of
adding a new formula, which describes the known effects of a given action, to a knowledge base
which may contradict the formula added. The objective of this area is to formalize reasonable!!
ways of drawing common-sense conclusions about the effects of actions.

In planning, the main problem is to devise a sequence of actions that will change the current state
of the world to some desired goal state. The work in planning counts on the contributions of the

10This classification ranges from model-based to formula-based and from permissive to restrictive semantics.
1By reasonable, here, we mean the way a human would do it, given the same information about the initial
scenario and about the action to be performed.



reasearch done in the area of reasoning about effects of actions, since in order to achieve the goal
state, we must be able to revise the knowledge base according to the known effects of the actions
to be performed. Most of the approaches which deal with conflicting or interfering actions are
oriented towards restricting their performance, and by doing so, avoiding the introduction of
inconsistency into the system, with respect to the underlying theory.

In Belief Revision, the main concern is to solve the problem of revising derived beliefs whenever
the underlying set of beliefs changes. The approaches in this area adopt a particular revising
policy as a strategy, for instance in terms of temporal priority of facts, in order to restore
consistency whenever the underlying set of base beliefs is modified.

Generally, in belief revision, the input sentence to revise the belief set is supposed to contradict
some of the sentences already present in this set. Hence, the only way to accept the new sentence
and still keep the resulting set consistent, is to give up the belief in the old contradicting sentences.
In the AGM theory [AlMa-82,85,86][AGM-85], they introduce their revising strategy by means
of a set of postulates, which can be viewed as dynamic integrity constraints or transitions
laws. Nevertheless, in the case of contractions, the postulates just provide a minimum set
of requirements that a contraction function should satisfy. They do not uniquely determine
a contraction function. Hence, the problem of choosing what to retract in order to avoid
inconsistency has to be tackled by other means. Epistemic Entrenchment is a proposed way to
deal with this problem [GiMa-88].

The problem of resolving conflicting data in order to keep the consistency of the information,
also arises in an environment which handles different information sources (data / knowledge
bases). In a multi-source information environment context, we may have inconsistent data in
the global set of information, even if each separate source is consistent. Since the different
sources of information are independently developed and also managed, the notion of global
consistency does not exist. Nevertheless, the problem of consistency arises when grouping the
several sources for the need of a particular application.

This kind of problem is treated by Dubois et al, in [LDP-92], using possibilistic logic, and
by Cholvy in [Cho-93]. Within an application which needs to use information provided by
several sources, Cholvy describes the case of solving a particular part of a global problem by
dealing with several expert systems. Hence, the knowledge coming from each expert system
has to be combined, by virtually grouping the knowledge of the different systems, since the
knowledge may remain distributed among the systems. Cholvy defines a logical framework
which allows reasoning with multi-sourced information, and which does not collapse in the case
of inconsistency!?.

1.3 Our Approach to Handling Conflicting Inputs

Our approach proposes to reconcile conflicting inputs with respect to the underlying theory,
and establishes some policies for dealing with the problem of inconsistency caused by them.
The way we are approaching the problem of conflicting inputs differs from the other existing
approaches, in the sense that we allow for a special process of performance of the conflicting
updates. A process of reconciliation of conflicting inputs, which considers restrictions of the
effects of those inputs by compromising on their consequences. It allows for a maximal set of
consistent consequences, which are generated from those conflicting updates with respect to the
existing data, and to the integrity constraints which range over the database.

In general, we refer to our approach as CIU, meaning Compromising Interfering Updates.

12 As it is the case in classical logic.



By conflicting, or interfering, updates, we mean either simultaneous updates which interfere
with each other, generating inconsistencies as part of their combined effects, or updates which
are inconsistent to be performed because they conflict with the given database or scenario
representation, by violating some of their constraints.

We are also concerned about the specific case of allowing for the special performance of
simultaneous updates when they are individually consistent to be applied, but if performed
in parallel they interfere with each other. In this case, we postulate that if an update satisfies
its pre-conditions to be performed individually, it should also be allowed to be performed
in parallel with other updates, as long as the performance process copes with inconsistency
handling in the case of conflicts. A similar motivating approach was pursued by Cholvy [Cho-
93] in the context of multi-sourced information environment. Cholvy treats the problem of
consistency of information provided by different sources, considering the case that the global set
of information is inconsistent even if each separate source is consistent. Notice, however, that
in this work we propose to deal with inconsistency generated by conflicting updates within the
same system, while Cholvy treats the inconsistent information which is due to the combination
of different data/knowledge bases. A further analogy between the two approaches requires, at
least, a re-definition of the basic conflicting entities, in order to cater for the representation of
information sources. :

Below, we present two examples which illustrate the intuitive notion of our approach with
relation to database updates and to actions, respectively.

An idea of how our approach would behave for the database update case, can be given via the
example below.

Example 1.1  Let us consider the database of formulae as shown below:

(1) A —- B
(2) ANC — L
(3) A

If we want to update this database with the formula () C, then, by applying a TMS-like approach
[Doy-79], for instance, we would force C in, by removing A and all the consequences derived
from A, in order to keep consistency, as shown below.

(1) A - B
(2) ANC — L
(4) C

In the way we approach this problem, we would also end up with either A or C, but not both.
However, we want to be able to keep all the consistent derived consequences of the conflicting
update. In this case, we would be able to have B as well in the resulting database, as shown
below.

(1) A —- B

(2) ANC — 1L
(4) C

(5) B

Remark 1.1



The ezample above could be interpreted with the following meanings for the sentences A, B and

C:

A = “Ezecutive Class Passenger”;
B = “FErtra baggage allowance”;
C = “Fconomic Class Passenger”.

Then, we would have that the database update above represents a situation, in which an ezecutive
class passenger for some reason has to be moved to the economic class, in a particular flight.
However, even in the the economic class, the originally ezecutive class passenger still keeps
his/her right of having extra baggage allowance.

In order to present an intuitive notion of our approach w.r.t. actions, let us consider a planning
application, where actions are scheduled to be performed. In many applications, an action is
taken, as part of a plan, in order to realize some goals. In a logical representation, these goals
are logical consequences of the post-conditions of the actions, also known as side-effects, and
the post-conditions themselves. Compromising on some of these goals, in case of conflict, means
allowing for some consequences while retaining consistency.

The following example illustrates the point of having actions which are initially inconsistent to
be applied.

Example 1.2  Let us consider a scenario in the Blocks World, where we have blocks a, b, c,
and d, as shown the picture below:

b
Suppose we want to perform the action of placing block d on top of block b. This action 18
not consistent, since it does not satisfy the constraint of the Blocks World, which says that if a
block is not “free” another block cannot be placed on top of it. Nevertheless, if we think about
compromising on the consequences, we may notice that the consequence of having d on top of b
cannot be accepted, but we can accept the consequences of having d above b and d above a, which
are the resulting consequences of performing this same action. So the solution to this problem
would end up placing d on top of block c. What we are pursuing in this case is not the original
update with all the consequences of the action, but, instead, we are implementing what we can

call a compromised solution, by eliminating the inconsistent consequences because of the existing
restrictions.

Resulting Scenario:

’EEHE

Remark 1.2



A possible interpretation for the previous ezample would be the situation in which the blocks a,b
and ¢ represent owners of flats of a building, which have been already sold by a state agency. The
position that they occupy in the stack refer to their flats’ respective floors in the building. Block
d can be seen as a potential flat buyer, who, for instance, implies a constraint of not getting a
flat on the first two floors, but higher. So, if a floor immediately above the second floor does not
have available flats any longer, any other floor above would also be a solution.

The sub-section to follow introduces the notion of “compromised reasoning”, concerning conflict
resolution and theory revision, by presenting some examples of application areas which adopt
compromised solutions in various ways.

1.4 Compromised Reasoning & Application Areas

Compromised solutions for conflicting updates and actions meet our intuitions in different
application areas. For instance, we can think of examples in the legal context, where one might
want to have some consequences of actions, without performing them as they were originally
specified, because they may contradict some laws or some restrictions of the underlying legal
system. In this situation, one would go for a compromised solution for the performance of those
actions.

Basically, compromising on the consequences of updates and actions in the case of conflict, is
a suitable way for building up intermediate stages of development processes in general. If we
think of applications in the area of design, for instance, the extra information that we get, in
keeping as many of the consistent consequences of conflicting updates/actions as possible, may
help us to build up an intermediate phase of the whole process, and to reduce the total amount
of time needed for concluding the task under consideration.

Consider, for instance, the application of Printed Circuit Board Design, and the task of
positioning integrated circuits and other components on a board. Suppose that we want
to place a component, say IC1, on a void area of the board, where no components are allowed
to be placed. Let us assume that this particular IC invokes the placement of other components,
according to some rules and placement requirements of the board design. Hence, if we allow for
the consistent consequences of the action of placing IC1 on the void area, we will end up having
the placement of further components, which certainly speeds up the whole process. We will
also have more information available for further components placement, than we would have if
we simply refused the inconsistent action.

We can also think of compromising consequences in applications where updates or actions are
restricted by the availability of common resources. In these cases, because of lack of enough
resources, it might not be possible to get all the consequences for all the actions. The approach,
then, is appropriate to be applied, when it is preferable to get as many of the consequences
of all the actions as possible, and not just the consequences of only some of the actions.
Some applications, which show these characteristics, are the ones which involve decisions about
distribution of resources among different candidates, in the case that impartiality is encouraged.
That is, when it is not preferred that one single candidate gets all the resources available and
the others get none. The example described earlier, in section 1.1, considering the task of
allocation of funds among projects in a research organization, fits in this sort of application.

In general, via the compromised reasoning strategy of our approach, we are able to keep bits
of new information, or a subset of the consequences of updates, which could not be totally
assimilated, or performed, due to a conflicting situation. These consequences and bits of new

10



information might reveal important facts about the current situation, which then might signal
the system to take specific actions, depending on the application context. Examples found in
[Dar-89,91], summarized below, illustrate this case in the military defense application.

Consider a defense system in which a knowledge base KB contains information about all the
possible threats, in terms of the enemies’ weapons, concerning a particular geographic area.
Assume that an input from a sensoring unit detects the presence of a threat 5 which could
not be expected to be at that particular area, according to the current knowledge base. Threat
v then conflicts with some information in K B. Nevertheless, the input comes from a reliable
sensoring unit and has to be taken into account. One way of dealing with this situation could
be to analyse the consequences of threat v in KB, and according to them, take a specific
counter-attack action which takes the current scenario into consideration. In this case, our
approach could be applied as a means of reconciling vy with K B.

1.5 Reconciling Interfering Inputs

Here, we present our approach for reconciling inputs in the case of conflicts, for the case of
database updates. We refer to it as Compromising Interfering Updates, CIU for short. In section
1.5.1, we briefly describe the basic mechanism employed by CIU. Section 1.5.3 introduces
the adopted policies for reconciling conflicting updates with the underlying database under a
compromised reasoning perspective.

1.5.1 CIU Basic Description

The main concern of the CIU approach is to deal with the problem of resolving conflicting updates
in a database. It handles inconsistency by putting forwards a compromised policy which restricts
the consequences of those updates. It allows for a maximal set of the consequences to hold,
provided that they do not imply inconsistency when added to the database.

CIU can be described as a module of a reasoning system, which is invoked whenever we have
conflicting updates, w.r.t. databases and to their sets of integrity constraints. Figure 1 illustrates
such a system including CIU module. The arrows in the end of the links in figure 1, indicate
the possible flow of data among the modules.

The way CIU appears in the context of database updates is quite straightfoward and, a priori,
does not seem to have anything new to add as an original contribution to the area. However,
it is the way in which CIU approaches the problem of dealing with conflicting updates that will
certainly bring an original flavour to this work.

As shown in Figure 1, we assume that we have a database module D which is ruled by a module
of integrity constraints I . The integrity constraints are assumed to be protected against any
update modification, and they restrict the possible transactions on D. The database can be,
for instance, a declarative representation of a scenario, in terms of the facts that hold in the
current state. A finite set of updates, to be performed on the database, is given as input to the
system. We assume that the updates executing module only effectively performs the updates in
the case that they modify D without violating any integrity constraint. Otherwise, CIU module
is invoked in order to perform the compromised version of the set of updates. In the end, the
compromised updated database is supposed to be consistent and to satisfy the constraints in
module [I.

The peculiar characteristic that CIU has in dealing with updates is that, instead of preventing
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Figure 1: CIU in a Database System.
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an update to be performed, when inconsistency arises!3, CIU proceeds and generates the
consequences of the conflicting updates.

When CIU is invoked, it instigates the compromised performance of the conflicting updates, by
firstly generating all their consequences/derivations. Later it takes care of restoring consistency
in the database. In order to restore consistency, a special revision procedure takes place. It is
based on the minimal elimination of the formulae involved in the generation of inconsistency,
and guided by the compromised reasoning policies of the approach.

1.5.2 Different Kinds of Conflicting Inputs

Conflicting inputs can be of various kinds. For instance, we can have simultaneous updates
which interfere with each other, generating inconsistencies as part of their combined effects, or
updates which are inconsistent to be performed because they conflict with the given database,
by violating some of its constraints. We can also have the case in which updates are individually
consistent to be applied, but if performed in parallel they interfere with each other.

Before describing the adopted policies for reconciling conflicting updates with the underlying
database, we need to state clearly all the"different kinds of conflicting inputs that we are
considering, and also to describe how we propose to handle them.

For the examples below, consider that A and B are formulae of the language being considered.
We consider classical logic as the underlying logic, including the usual connectives. A database
DB is such that DB = A|JPa, where A denotes set of formulae which compose the body
of the database, and Pa denotes the set of integrity constraints which rules A.

The different kinds of conflicting inputs we can get are the following;:
(a) Conflicting inputs within the update, or within the transaction.

Example 1.3  Update = {A,-A}

(b) Inputs which conflict directly with some of the integrity constraints which rule the database.

Example 1.4 DB = AUPa
Pr ={A- _L}
Update = {A}

(c) Inputs which conflict indirectly with some of the integrity constraints which rule the
database.

Example 1.5 DB = AUPa
Py = { ANC — l}

A ={C}

Update = {A}

¥ This would make the approach equivalent to many existing ones which do not allow for updates to be
performed if they are not consistent with the theory.
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(d) Inputs which contradicts existing data of the database.

Example 1.6 DB = AUPa
A ={ A}
Update = {-A}

The way we propose to handle the above different conflicting inputs in our approach is as
described below. We always have to bear in mind that the main idea of the approach is to
update the database with as many consistent consequences of the conflicting inputs as possible.

(a) In the case of conflicting inputs within the update, or the transaction, the updates are
rejected, since one logically cancels the other. However, if within a transaction T we
have the following sequence of inputs T = {A,-A, B}, the subset {A,-~A} is removed
from T and the remaining inputs in the transaction are still performed. In this case,
T = {B}.

(b) In the case of inputs which conflict diréctly with some of the integrity constraints which
rule the database, the input is not allowed to be inserted in the database. However, we
would still have two optional lines to follow:

Option 1 - We reject the update completely and no changes are performed on DB.
Option 2 - We allow the consistent consequences of the input to be inserted in DB,
with particular status of non-supported data. AS expected, our approach follows Option
2, since we end up having more consistent consequences of the conflicting input in the
database.

(c) In the case of inputs which conflict indirectly with some of the integrity constraints which
rule the database, the input is inserted in the database and a revision procedure takes
place in order to restore consistency and allow the database to accomplish the new update.
The revision presents special properties which preserves the consistent consequences of all
the retracted formulae from DB.

(d) In the case of inputs which contradicts existing data of the database, the input is inserted
in the database and a revision on DB takes place, just as described in the item above.

We describe below the adopted policies for reconciling conflicting updates with the underlying
database, under a compromised reasoning perspective.

1.5.3 Compromised Reasoning Policies for Updates
The compromised reasoning policies for updates guide our approach in the sense of restricting

the effects of those updates, by imposing restrictions on their consequences in order to keep
consistency in the case of conflicts.

Single Update Case
Consider that an update U is to be performed to a database DB, adding some data into DB.

DB is assumed to be initially consistent. Assume that when U is performed to DB, the
updated database violates an integrity constraint IC of the set of integrity constraints which
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range over DB. Our concern is to reconcile U with DB, by allowing a version of this update
to be performed in a compromised way, following the policies below:

e If U violates the integrity constraint IC indirectly 14 then a revision on DB takes
place, allowing U to be kept in DB, and also the consistent consequences of the data
which might have to be retracted, so that DB is able to incorporate U and still be
consistent.

e If U violates the integrity constraint IC directly, then U is not allowed to be added
to DB, yet its consistent consequences are kept in DB .

o The consequences of the data which are retracted from DB in order to accomplish
a compromised update, carry a distinguished status in the database, so that further
derivations can take their status into account in the case of generating further
consequences. 1°

e The revision mechanism has to be defined in a way, such that a maximal consistent
subset of generated consequences of the conflicting update is available from the resulting
database. :

Multiple Updates Case

In the case of a transaction, which involves a set of single updates, if we have “n” conflicting

updates w.r.t. the integrity constraints, the resulting compromised updated database might
contain at most “n — 1” of those updates, and their subsequent consequences, provided that
they all satisfy the constraints on Dcju.

Transaction updates have their consistency initially checked with relation to the three conditions
described below. Assume that a transaction T = {U;,Us,---,Uy,}, composed of n updates, is
to be performed to DB, and I is the set of integrity constraints which rules DB. (The
formulae considered here are propositional sentences from the system of propositional classical
logic).

1. For any U; and any U; in a transaction T = {Uy,---,Un}, where 1 <i < nj 1 < j < n;
and i # j, if U; expresses a formula which is the complement of the formula expressed
by Uj,say A and -A 16 then the set {U;,U;} is retracted from the transaction 7'

2. For any U; in a transaction T = {Uy,---,U,}, where 1 < i < n,if U; violates an
integrity constraint in I, {U;} U I F L, then the update U; is rejected, however
its consistent consequences are allowed to remain as non-supported consequences in the
database.

4Suppose that the update U represents a formula o, which conflicts with a database DB . If there is
an integrity constraint IC in DB of the foom o — L, then we say that the update U violates IC
directly. Otherwise, U is said to violate IC indirectly. For instance, in the case that U is an atomic
formula @, and the integrity constraint that U violates has a conjunction of atomic formulae, which includes
a, as its antecedent part.

15The handling of these compromised consequences is under the responsability of the derivation mechanism
of the approach. The compromised consequences are also referred to as non-supported consequences.

16This would represent adding and deleting the formula A in the same transaction.
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3. For any U; and U; in a transaction T = {Uy,---,Upn}, where 1 <1< n;1<j < n;and
i # j, such that U; and U, are not complementary updates in T,and {U;} U T ¥ L
anf {U;} U I ¥ L,if {U;,U;} U T F L,then a choice is made between U; and Uj,
according to meta-level information concerning, the relevance of the updates within the
transaction!”. In this case, the transaction is then reduced to T —{Ux}, where k is either
i or j, depending on this meta-level based choice, however the consistent consequences
of Uy are allowed to remain as non-supported consequences in the database.

In the cases described above, when consistency of the updates is not obtained initially, the
updates which cause inconsistency are not supposed to be performed, since they are removed
from the transaction, as described. However, the transaction is not cancelled due to the
fact that some of its updates failed the initial consistency checking phase!®. Moreover, the
consistent consequences of the updates mentioned above are allowed to remain in the database

as non-supported consequences.

Condition 1 above, ensures that complementary information is cancelled prior to the database
transaction performance, in order to avoid redundant update execution.

Condition 2 puts forwards that an update U; which violates directly an integrity constraint of
the database cannot be performed, however, under our compromised approach, its consistent
consequences can be kept in DB For instance, if T = {4,B,C}, DB = {} and
I = {C — 1}, the transaction would be reduced to {A,B}, since {C} U I F L.
Eliminating the update that violates the integrity constraint from the transaction, and allowing
the other updates in T to be performed is, most of the times, an intuitive procedure which
conforms with the compromised philosophy of our approach. That is of keeping in the database
as much information as possible from conflicting updates. Consider the case that A expresses
that worker W1 gets a raise of 10% on his salary; B expresses that worker W2 gets a raise
of 30%; and C expresses that worker W3 gets a raise of 50% on his salary. Assume that
their company has restricted raises of 50% or higher on workers’ salaries. Then, update C

would not be performed and would have to be negotiated later. However, this would not stop
updates A and B from being performed.

Condition 3 caters for the case when two updates are individually consistent to be performed,
but together they violate, already initially, the set of integrity constraints which rules the
database. In the case of two conflicting updates within the same transaction, our approach
allows for their consistent consequences to be kept in the database. However, if the resulting
set of their consistent consequences is empty, then we have to face the problem of preference
among the conflicting updates. To do this, we rely on meta-level information concerning the
relevance (or the weight) of the updates involved in the conflict. Depending on this information,
we can either decide for the extreme case in which no update is effectively performed on the
original database, or we can have that at least one of the conflicting updates in the transaction
is performed in full, provided that it does not violate the integrity constraints of the database.
Take the example where a transaction is given by T = {A, B,C}, and the integrity constraint
set of the database is given by I ={AAB — L}. Assume that A expresses that Paper-1
is submitted to a scientific conference; B expresses that Paper-1 is submitted to a scientific
journal; and C expresses that Paper-2 is submitted to a conference. All papers are from the

1" This meta-level information is totally context-dependent. We could, for instance, have a total ordering
among the updates in T, so that each U; would be less preferable than Uit1. We will not discuss details
about this meta-level based choice in this paper.

18 Most of the database-update approaches in the literature do not conform with this viewpoint, since they
adopt a style denoted sometimes as all-or-none updates performance, in the case of inconsistency or integrity
constraint violation within a transaction, e.g. [MBM-95].
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same author (Researcher-X). According to some academic constraints, the same paper cannot
be sent to a conference and to a journal at the same time. So, a meta-level choice has to be
made between A and B, depending on the updates’ weights of transaction T'. We can imagine
different options for such a choice. For instance, the one based on the fact that a publication
in a journal has more academic relevance than a publication in the proceedings of a conference,
then B would be preferred over A. Alternatively, Researcher-X might be willing to take part
in many conferences as he can this year, in order to establish some academic contacts, and in
this case A would be preferred over B. '

The next part of this paper, introduces a formalization for the compromised revision of our
approach, within the belief revision perspective.

2 Compromised Revision for Conflicting Updates

We introduce here a compromised characterization to database revision. This characterization
shows how our approach of reconciling conflicting inputs behaves under the perspective of belief
revision. We propose a formal structure to our compromised revision approach, on the basis of
‘the AGM model [AlMa-82] [AGM-85] [Gir-88]. But unlike in the AGM approach, we consider
our theory representation as a set of sentences which is not closed under logical consequence.
We refer to it as base. Compromised revision is presented for conventional bases and for bases
subject to a protected subset of integrity constraints. Some postulates for compromised revision
are established, and a revision function for bases with integrity constraints is specified.

As a background introduction, the next section reviews the basic notions of the area of Belief
Revision.

2.1 Belief Revision

Basically, Belief Revision is concerned with the problem of modelling the dynamics of the
knowledge and beliefs of an agent [Gar-88]. In a computational setting, Belief Revision faces
three main methodological issues:

o The representation of the beliefs in the database;

e The definition of the relation between the elements explicitly represented in the database
and the beliefs that may be derived from them; and

e The choice about what to retract, in order to avoid inconsistency.

Belief Changes can be classified into three main basic types, namely “Ezpansion”, “Revision”,
and “Contraction”. Considering a belief system K, in which beliefs are represented by sentences,
an expansion of K occurs when a new sentence and its logica] consequences are added to K.
We say that a belief system K is revised by a sentence, say A, when A is inconsistent with
K and is added to it. So, in order that the resulting belief system be consistent, the revision
operation takes care of deleting some of the old sentences of K. Finally, contraction of a belief
system K by a sentence A indicates that A is retracted from I, without any addition of
"new sentences. However, in this case, some other sentences in K might have to be given up,
in order to keep the resulting belief system consistent.
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There are two methods to follow, when dealing with the problem of belief revisions and
contractions. One is to present explicit constructions of the revision proccess; while the other
refers to the formulation of postulates for such constructions. According to [GaMa-88], the
postulates should be viewed as dynamic integrity constraints or transition laws.

In the sections to follow we make a review of the way Alchourrén, Gardenfors, and Makinson
defined their approach to Belief Revision, the so-called AGM Theory. For more details refer to
[AlMa-82],[AGM-85], and [Gar-88].

The language considered throughout this section survey is based on first order logic!?, and is
denoted by L. The underlying logic includes classical propositional logic and is compact, that
means that a set of formulae has a model in this logic if and only if every finite subset of this
set of formulae also has a model. A belief system K is defined as a set of sentences of L.
K + A denotes that system K logically entails A. It is also assumed that F satisfies
“disjunction in the premises”, i.e. that K |J{BVC} F A whenever both K U {B} F 4
and K U {C} F A. A belief set is defined as a set K of sentences of L which satisfies
the following integrity constraint: If K + A then A € K. The only inconsistent belief set,
under this definition, is the set of all sentences in L, denoted by K, since by classical logic,
whenever K is inconsistent, then K + A for every sentence A in L. Belief sets are
used in the AGM theory as models of belief states. A belief state is a representation of the
beliefs and knowledge of an agent at a certain time point. A belief set is required to be closed
under the consequence relation. Cn(K) denotes the set of logical consequences of K, such
that K C Cn(K), Cn(K) = Cn(Cn(K)), and Cn(K;) C Cn(Kz) whenever K; C K. The
consequence operation Cn also includes tautological implication, and is compact. A base for
a belief set K, denoted as By, is defined as a finite subset of K such that Cn(Bk) =K.
By is said to be a base for K iff By is a finite subset of K and Cn(k)= K.

2.1.1 The AGM Rationality Postulates

In this section, we show the sets of postulates for the three main epistemic (belief) changes,
proposed by Alchourrén, Géardenfors, and Makinson [AGM-85], and consequently named after
them: the AGM postulates.

Expansions

Expansion is supposed to be the simplest case of belief change, since it deals with the addition of
a new sentence together with its logical consequences to the belief set. The expansion operator
is denoted as “ + ” and K + A denotes the result of expanding the belief set K with the
sentence A. Expansions can be defined as the logical closure of K together with A:

K+ A={B|K|J{A} + B}

The AGM Postulates for Expansions

(K*1) K+ A is a belief set.

197 is closed under applications of the boolean operators, namely — (negation), A (conjunction), V
(disjunction), and — (implication).
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(K*t2) A e K+ A.

(K*3) K C K+ A.

(Kt4) If A € K then K+ A=K.

(K*5) If K C H then K+A C H+A.

(K+6)  For all belief sets K and all sentences A, K+ A is the smallest belief set that
satisfies (K+1)-(Kt5).

Notes: By the postulate (K*1), the resulting expanded set is guaranteed to be a belief set,
and by postulate (K12), we have that the new sentence is also part of the expanded set.
Postulate (K *3) guarantees that the original set of beliefs does not loose any element with the
expansion operation. Postulate (K *4) states the vacuity of the expansion operation, in the case
that the sentence to be added to the belief set is already an element of the set. Postulate (K*5)
guarantees the monotonicity property between expansions of belief sets. Finally, postulate
(K*6) ensures that expansions satisfy the minimal change notion, by stating that only the
information which is relevant is added to the original set during an expansion operation.

Revisions

Revision is not considered to be a simple case of belief change, because, unlike expansion, the
sentence to revise the belief set is supposed to contradict some of the sentences present in this
set. Hence, the only way to accept the new sentence and still keep the resulting set consistent,
is to give up the belief in the old contradicting sentences. The revision operator is denoted as

“ ”

+7 and K+ A denotes the result of revising the belief set K  with the sentence A.
The set of postulates for revisions is shown below.

The AGM Postulates for Revisions

(K*1) K *A is a belief set.

(K=2) A € K+xA.

(K*3) NKN*+A C K+ A

(K*4) If -A ¢ K then K+A C KxA.

(K*5) K*A = K, ifand only if F -A.

(k*6) If FrA— B then Kx+xA = K=x*B.

(K*7) Kx*A&B C (K *A)+ B.

(K*8) If -B ¢ K*A then (K+xA)+B C K#*A&B..

Notes: By the postulate (K*1), the resulting revised set is guaranteed to be a belief set, and
by postulate (/*2), we have that the sentence revised is also part of the resulting set. Postulate
(I°*3) states that the revised set of beliefs is at least a subset of the expanded set, when both

operations use the same sentence. Postulate ()*4) caters for the case in which no old belief
has to be given up from the original belief set. Postulate (K*5) guarantees that the revised
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set is consistent, unless the negation of the sentence to be revised is a tautology. Postulate
(K*6) ensures the equality between revisions of logically equivalent sentences, considering the
same original set of beliefs. (K*1)-(K*6) represents the basic set of postulates for revision. The
postulates (K*7) and (K*8) are extra conditions for “composite” belief revision, and they are
analogous to postulates (K*3) and (K*4) in the “single” case.

Contractions

In contractions, we are supposed to give up the belief in the specified sentence. However, we
may well have to contract the original set by other sentences, in the case that the specified
sentence to be contracted is supported (implied) by them. The main problem that contractions
have to face, and consequently revisions as well, is that the way to achieve a contraction may
not be unique. The set of postulates for contractions, shown below, just provide a minimum set
of requirements that a contraction function should satisfy, and it does not uniquely determine
a contraction function. Hence, the problem of choosing which sentences to be retracted has to

be tackled by other means?°.

The contraction operator is denoted as “ — 7 and K — A denotes the result of contracting
the belief set K by the sentence A.

The AGM Postulates for Contractions

(K1)~ K — A is a belief set.

(K~2) K-A C K.

(K-3) If A ¢ K then K-A = K.

(K=4) Ifnot F A then A ¢ K-A.

(K-5) If A€ K then K C (K-A)+A.

(Kk=6) If A< B then K-A = K-B.

(K-7) K-ANK-B C K- A&B.

(Kk-8) If A ¢ K—A&B then K- A&B C K - B.

Notes:

By the postulate (K1), the resulting contracted set is guaranteed to be a belief set. Postulate
(I’ =2) claims that the resulting contracted set of beliefs is at least a subset of the original set.
Postulate (A ~3) states the vacuity of the contraction operation, in the case that the sentence to
be deleted in the belief set, is not an element of the set. Postulate (K ~4) indicates the success
condition of the contraction, which states that if the sentence to be removed is not a logically
valid one, then it is not present in the resulting set of beliefs: Postulate (I{~5) states the
recovery of the original set of beliefs. The contracted theory should contain enough information
to recover all sentences deleted. Postulate (K ~6) ensures the equality between contractions of
logically equivalent sentences, w.r.t. the same original set of beliefs. (K~1)-(K~6) represents

20 ppistemic Entrenchment, for instance, is a proposed way to deal with this problem. More details about it
is found in [GiMa-88], and also summarized further in this appendix.
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the basic set of postulates for contractions. As for the revision postulates, the postulates
(K~7) and (K ~8) are extra conditions for “composite” contraction, and they are analogous to
postulates (K ~3) and (K ~4) in the “single” case.

The notion of minimal change of the belief set, when having to retract a sentence from it,
was the underlying motivating idea for the contraction postulates. This notion is based on the
Conservativity Principle, which states that if a change in the belief set has to be made in order
to accomodate a new concept, then as much as possible of the old beliefs should be maintained.

2.1.2 Contraction Functions

Contraction as well as revision cannot be expressed as simple operations, as they have no obvious
unique results. When trying to remove a sentence A from a closed theory K, there are
usually many maximal subsets?! of K which fail to imply A. The same holds for revision.

In the AGM work, in order to approach the problem of finding intuitive and plausible theory-
change operations, they define some contraction functions which are then tested against the
proposed rationality postulates. Further in "this section, we present the definitions of some of
those contraction functions. Notice that only contraction functions are defined, since revision
can be obtained via contraction, and vice-versa.

The relation between revision and contraction can be explicitly shown by the so-called Lev:
Identity [Lev-77], presented below, in which a revision of a knowledge set can be seen as a
composition of a contraction and an expansion. The Levi Identity is motivated by the strategy
of accomodating the new belief, by retracting from the initial belief set all the old beliefs that
contradict it.

Levi Identity K*xA = (K --A)+ A

Contractions can also be defined in terms of revisions. This view was proposed by Harper
[Har-77), known as Harper Identity, and motivated by the claim that since —-A is a logical
consequence of K *-A,then K — A should retain only the beliefs which are both elements
of K and K x-A.

Harper Identity K—-A = K (K *x-A)

Maxichoice Contraction

Maxichoice contraction functions are the ones which identify K — A with one of the maximal
subsets in I LA, where K 1A denotes the set of all belief sets that fail to imply A. This
function relies on a selection function S that picks out an element S(KL1A) of K.LA,
forany K and any A whenever K1A is nonempty.

21The notion of maximal subset for contraction defines a belief set K’ as a maximal subset of K, which
fails to imply A  and which satisfies the following conditions: 1. K' C K;2. A ¢ K'; and 3. for
any sentence B thatisin K butnotin K', B—A isin K"
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Given a belief set K, a sentence A and a selection function S, a maxichoice contraction,
K — A, is obtained as follows:

K-A S(KLA) ifnot F A;and
K-A = K otherwise.

Any maxchoice contraction function satisfies the postulates (K~1) to (K~6). It also satisfies
the following fullness condition, denoted by (K~ F):

(K-F) If Be€ K and B ¢ K-A,
then B — A € K — A for any belief set K.

From the condition above, we can see that contractions produced by the maxichoice contraction
function are in general too large, since K is maximal. This implies that either B or
=B isin K, forany B in the language.

Full Meet Contraction

The full meet contraction function is the one which assumes that K — A contains only the
propositions that are common to all the maximal subsets in K LA.

Given a belief set K and a sentence A, a full meet contraction, K — A, is obtained as
follows:

K-A = N(KLA) whenever not + A and KLA is nonempty; and
K-A = K otherwise.

Any full meet contraction function satisfies the postulates (K~1) to (K ~6). It also satisfies the
following intersection condition, denoted by (K1)

(k=) Foral A and B, K—-A&B = K-A K-B.

Notice that, due to the intersection condition, contractions produced by the full meet contraction
function results in sets that are far too small. Futhermore, when retracting A from K
with a full meet contraction operation, we are left with the sentences of K which are already
consequences of —A. If this result is carried over to theory revision, then we have that if
-A € K andifnot F -A then Kx*A = Cn({A}), which is clearly unintuitive.

Partial Meet Contraction

The partial meet contraction function defines K — A by investigating the consequences of
using some of the maximal subsets in K LA. This function uses a selection function S
which this time is assumed to pick out a nonempty subset of K LA, denoted by S(KLA),
and not a singleton as in the maxichoice contraction. In the case that K1A is empty, then
S(KLA) = K.
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Given a belief set K, a sentence A and a selection function S, a partial meet contraction,
K — A, is obtained as follows:

K-4A N S(KLA) if not F A; and
K-A= K otherwise.

Any partial meet contraction function satisfies the postulates (KA ~1) to (K ~6).

Notice that the idea of the selection function S picking out the best elements of K LA
can be made more precise by assuming that there is an ordering of the maximal subsets in
K LA, that is used in order to select the top elements. We see this notion in the contraction
function defined below.

Transitively Relational Partial Meet Contraction

This contraction function assumes a transitive and reflexive ordering relation on the union of
all the maximal subsets in K LA, that is used to pick out top elements from that set.

Assume that M(K) is the union of the family of all the sets in K LA. Assume also that
there is a transitive and reflexive ordering relation, <, operating on M(K). When K LA
is non-empty, this relation defines a selection function, denoted by S(K LA), that picks out
the top elements in the ordering, as follows:

S(KLA) = K' € KLA | K" < K' forall K" € KLA

Given a belief set K, a sentence A and a selection function S, as above, we have that
the transitively relational partial meet contraction, K — A, is obtained as follows:

K-A = [ S(KLA) if not F A; and
K-A= K otherwise.

Any transitively relational partial meet contraction function satisfies the postulates (K~1) to
(K—8).

Relational Partial Meet Contraction

A relational partial meet contraction generalizes the notion of a partial meet contraction which
involves a selection function defined by an ordering relation. The definition of the previous
contraction function is also an example of a relational partial meet contraction, in the case that
the ordering relation is transitive.
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2.1.3 Epistemic Entrenchment

The notion of epistemic entrenchment was introduced within the AGM theory??, in order to
express that some of the sentences in the belief set have greater informative or explanatory power
than others. Intuitively, this notion has the meaning that the more epistemically entrenched a
sentence is, the harder it will be to get rid of it during contraction operations. Hence, epistemic
entrenchment gives another way of modelling contractions. ’

When a belief set K is contracted or revised, the underlying idea for constructing a contraction
function is that the sentences in K that are given up are those having the lowest degrees of
epistemic entrenchment. The notation A < B is used to express that B is at least as
epistemic entrenched as A. This indicates that if we have to choose between A and B
to be retracted from a belief set, then A would be deleted. It is relevant to notice that <
is only defined w.r.t. a given knowledge set K. Different knowledge sets may be associated
with different orderings of epistemic entrenchment.

Postulates for Epistemic Entrenchment

(EE1) If A< B and B < C,then A < C.

(EE2) If A+ B,then A < B.

(EE3) Forany A and B, A < A&B or B < A&%B.

(EE4) When K # K,, A ¢ K iff A< B forall B.

(EE5) 1f B < A forall B,then + A.

Notes: The postulate (EE1) states the transitivity property of the epistemic entrenchment
ordering relation. Postulate (EE2) expresses the dominance between two sentences of a belief
set, when one entails the other. For instance, in the case of retracting B, when A + B,
A would have to be retracted as well. Postulate (EE3) states that any conjunction is at least
as epistemically entrenched as any of its components. This determines that only one of the
conjunction components should be taken away, in order to obtain the retraction of the whole

conjunction. And finally, postulates (EE4) and (EE5) indicate respectively the minimality and
the maximality conditions of the epistemic entrenchment ordering relation.

Consequences of the EE Postulates

An ordering relation that satisfies the postulates (EE1) to (EE5), also has the properties below:

(1) A< B or B < A
(i) If B&C < A,then B < A or C < A
(i1) A < B if A&B < B.

22See [GaMa-88] for more details on Epistemic Entrenchment.
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(iv) I C <A and C < B then C < A&B.
(v) If A< B then A < A&B.

Where A < B denotes the strict relation, defined as “ A < B andnot B < A7,
representing that B is epistemically more entrenched tan A.

Connections between EE, Contraction and Revision

Below we present two conditions, from [GdMa-88], which show the connections between epistemic
entrenchment and contraction and revision.

(C<) A< B if A¢ K—AYB or F ALB.
(C-) B e K-A iff Be€ K andeither A < AVB,or + A

Notes:

(C <) assures that when we contract K w.r.t. A&B wegiveup A or B, minimally
speaking. Moreover, A should be retracted just in case B is at least epistemically
entrenched as A. The limiting case for this condition, is when both A and B are
logically valid, because then, they are of equal epistemic entrenchment. (C'—) gives an explicit
definition of a contraction function in terms of the epistemic entrenchment relation.

2.1.4 Discussions

The work of AGM proposes a formalism for theory changes, which provides important insights
to belief revision. However, it does not seem to be adequate to be used in a computational
setting. Moreover, it shows some drawbacks w.r.t. the contraction functions. We list below
some of the problems encountered in the proposed formalism:

e A belief state is presented as a closed theory, and closed theories are generally far too
large to be dealt with in a computational context;

o The formalism, in general, does not allow for iterations. Considerations about what is
kept by the revision process, in the next theory, is only possible when we know exactly
what the beliefs are in the initial theory presentation.

e The problem of what to choose to give away, when contracting a belief set, is not well
resolved. By using the contraction functions, in many cases we do not know exactly what
sentences should be kept in the revised theory. Moreover, we either end up with a set
which is too large and full of unwanted information or too small, or alternatively, we
transfer the choice problem of which sentences to be kept in the revised theory to an
ordering-relation-based selection function.
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e In [GiMa-88], they show, by means of some theorem results relating epistemic
entrenchment with the conditions (C <) and (C-), and with contraction, that the
problem of constructing appropriate contraction and revision functions can be reduced to
the problem of providing an appropriate ordering to epistemic entrenchment. However,
the task of specifying which sentence in a theory is more relevant than the other, is not
an easy one. Hence, the epistemic entrenchment ordering is difficult to be determined,
besides having to be regenerated after each occurrance of a belief change.

It then becomes clear that the AGM theory provides general guidelines about the behaviour of
belief change processes. However, it does not specify much about how one should build effective
functions which correspond exactly to such processes.

A solution for dealing with closed theories, would be to have a finite representation. However, in
the general case, there seems to be no trivial ways to derive finite representations from a revised
theory. The application of the conservativity principle in the revision process, seems to be a
debatable issue, since it causes revised theory sets to be too full of unwanted information. A
solution to this problem would be to distinguish within the formalism, between an information
or belief base, and a belief set. This way, closed derivations would apply only to the belief base,
and not to the belief set. This approach would give more informational power to the application
of the conservativity principle, and would consequently decrease the number of sentences which
should be kept in the resulting revised set. The subject of modification of finite theory bases,
instead of closed theories, is dealt with in the next section.

Some proposed solutions to the problem of iteration within the revision process, have already
emerged in the literature. In [FrLe-94], for instance, they introduce new postulates to deal with
iterated Tevisions. '

We find in the literature some proposed alternatives to the problem of the epistemic entrenchment
ordering. In [Rya-92], for instance, they introduce the concept of ordered theory presentations,
which embeds an ordering within the way the theory is presented, and automatically updates
that ordering whenever a theory revision takes place.

2.2 Theory Changes x Finite Base Changes

Finite base changes seem to be an interesting alternative to the AGM work of theory changes.
In base revision, as opposed to what happens in theory revision, it is simple to accomplish the
situation in which we retract a sentence from the base, getting rid of its consequences as well.

As expected. applications such as database updates and conterfactual reasoning, perform revi-
sion and contraction operations on finite bases, and not on closed theories. Basically, for those
applications, the contraction operation determines the family of maximal subsets of the finite
base, which do not imply the sentence retracted.

Base Contraction Function (1)

Assume that B is a finite base, and A is a sentence. Then',aa base contraction operation,
denoted by B ~ A, can be obtained as follows:

B~A = (cemra) Cn(C) if A ¢ Cn(0);and
B~A = Cn(B) otherwise.

Where B.1A denotes the family of maximal subsets of the base B, not implying A.
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The base contraction operation, as defined above, does not satisfy the recovery postulate (K~5),
for theory contraction. This result comes from the fact that B ~ A is not a partial meet
contraction on closed theories. That means that, in general, we do not have:

B~ A C Cn(B) ﬂ Cn(-A)

Nevertheless, in [Neb-90], they show that base contraction is a special case of theory contraction,
via a theorem which states the equivalence between base and partial meet contraction for closed
theories. In order to obtain this result, they define a new base contraction operation by adding
Cn(B) | Cn(~A) to the right side of the one defined in 7?7, as shown below. They also
specify a choice function to select the elements of Cn(B)LA containing maximal subsets of

t23

relevant*> sentences.

Base Contraction Function (2)

Given a finite base B, and a sentence A, a base contraction operation, denoted by B =~ 4,
can be obtained as follows:

.~

B~A = Cn((NeeBLa Cn(C) U (Cn(B) N Cn(-A))) if A ¢ Cn(0);and
B~A = Cn(B) otherwise.
In [Mak-87], they show that ~ and ~ are revision-equivalent operations.

Selection Function Sp

Assume that Cn(B)LA contains all the maximal subsets of B, not implying A. A
selection function, denoted by Sp, applied to the set (Cn(B)LA), is obtained as follows:

Sp(Cn(B)LA) = C € (Cn(B)LA) | ¥C' € (Cn(B)LA) C'N B 2 CN B

Using the selection function defined above, a partial meet contraction is defined on Cn(B),
and with this definition the equivalence theorem between Cn(B)— A and B ~ A, is stated
and proved in [Neb-90].

2.2.1 Epistemic Relevance

In order to modify a knowledge base, we have to decide which sentences are more important,
i.e., which sentences are epistemically relevant w.r.t. the basis of our body of knowledge.

In the AGM theory, the notion of Epistemic Entrenchment respects the logical force of sentences
within the theory, and is strictly restricted to the contraction operations. For instance, consider
the principle below, which is derived from the Epistemic Entrenchment Postulates, about degrees
of entrenchment, (see [GaMa-88] for more details).

Be K-—A iff (AV-B)<,(AVB) or” B € Cn(0)

Where A and B are propositions, and A <, B means that A is epistemically less
entrenched than B  with entrenchment degree n.

23The notion of relevance for base elements, is similar to the notion of entrenchment for theory elements.
More details about epistemic relevance are given in section 2.2.1.
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In Nebel’s notion of Epistemic Relevance [Neb-89], the marked sentences within the base, are
the ones which are considered somehow crucial, regardless of their logical relations. Moreover, it
is not even necessary to refer to a theory base, but only choose the epistemic relevant sentences.
Epistemic Relevance does not allow for the derivation of the principle above.

Within the notion of epistemic relevance, one might not only distinguish between sentences
which are in the base and those others that are not, but also one may assign multiple degrees of
relevance to sentences in order to distinguish between, for instance, simple facts and integrity
constraints in a logical database.

2.2.2 Some Issues on Finite Base Contractions

Contracted bases represented by a finite axiomatization

In the definitions of the base contraction functions presented previously, we get as a result a
closed theory. This is definitely not what we wanted. We wanted a finite representation of

that result. However, if we use the properties of Cn, we can derive a finite representation of
B ~ A, as follows:

B~ A

Cn((NeeiLay C(C)) U (Cn(B) N Cn(-A4)))
Cn((Veesray €) N (BV-4))
Cn((Veeray € N ~A) V B)

Hence, assuming that B is finite, B~ A can be represented by a finite disjunction. This
approach provides a solution for representing contracted bases by finite axiomatizations.

New sets of sentences in contracted bases

For some application areas, like counterfactual reasoning, where only one revision operation is
needed to obtain the desired result, this problem is not of any importance. However, for logical
database updates for instance, which might require to deal with a long sequence of change
operations, we do not want to view a changed theory as just one sentence, like the one shown
above. Otherwise, it could be retracted completely by the next contraction operation. Among
the solutions to this problem, we find in the literature an attractive one in [FKUV-88], where
they view a changed theory as a collection of flocks, which are alternative theories that can be
revised further.

As in the original approach to belief revision, an underlying problem to finding solutions for
representing a changed theory base, is the point of how to determine the new set of epistemic
relevant sentences in a changed theory base. It seems then that this problem was not solved
by the consideration of theory bases rather than closed theories.

Computational limitations of finite base contractions

If we consider first-order-predicate logic, then we can not go very far, since consistency is
undecidable. However, for most applications, we consider restricted formalisms which make the
situation become more feasible. Nevertheless the problem is still difficult. If no simplication
method is applied, the base can grow exponentially after a certain number of change operations.
Even in propositional logic the problem is NP-complete.

28



2.3 A Compromised Characterization to Revision

It has already been recognized in the literature, that change operations on sets that are closed
under logical consequence are ideal as mathematical exercises, but in real life those operations
are always applied to bases for theories. The approach of using bases instead of closed theories
in belief revision, has been introduced in the literature by [Neb89] and [Han-91], and since then
has gained many followers. Here, we also consider a finite base as theory presentation, due to
our interest in simulating changes of the real world, which are always done locally within a
theory presentation. Most of the work on base belief revision, propose an alternative to the
AGM model. This is not our intention here. Our main concern is to characterize a specific
model which applies for the special case of having compromised solutions to conflicting base
updates, within the philosophy of our approach, and not to propose another general belief
revision model.

Base presentations which are constrained by a protected set of sentences are also considered
in this characterization. Such protected parts of the bases can be viewed as a set of integrity
constraints - a notion from the database context. By having this notion of protected constraints
which range over the remaining sentences of the base, we are able to account for theory changes
in a more realistic way. This is because instead of always accomodating the new input simply
because of its information novelty, we have the possibility of rejecting it, if it conflicts with the
protected part of the base.?*

In general, by compromised revision we mean that an input sentence a, which is inconsistent
with a knowledge base K, will have its consistent consequences w.r.t. K, added to K.
However, a can be either added to K, provided that the revised base is consistent, not added
to I. The addition or rejection of o depends on how it is inconsistent with K. In the case
that the base K contains a protected part of integrity constraints, the input « is rejected if it
is directly inconsistent with K. This means that « violates directly L’s integrity constraints.
And « is added to K if it is indirectly inconsistent with K. In the case that K is a
conventional base set, a is only rejected from being added to K, if it contradicts a tautology
of the logical system considered.

2.3.1 Considerations about Contraction in Compromised Revision

In order to revise a base K with a sentence a, it is often necessary to retract some old
sentences from J. Those sentences which together with « generate inconsistency. In this
case, when contracting a sentence [ from K, we are not only interested in removing from
K a minimal subset whose removal prevents what remains from entailing 3. But we are also
interested in keeping all the consistent consequences of § w.r.t. K available, provided that
they also do not interfere in the revision process.

The idea behind this contraction method comes from the fact that we want to have a compromised
solution for a conflicting input, in the sense that the minimal amount of information is lost.
Hence, we compromise between what is being added to K and what is being retracted from it.
In the case that the input sentence cannot be added to the knowledge base A’, we compromise
by allowing its consistent consequences to be added to K. Otherwise, if it can be added,
conditioned to K being revised, we compromise by allowing the consistent consequences of

24In [Han-91], they also support this point by presenting a notion of belief change, which accounts for
- the issue of receiving new information without giving it special priority due to its novelty. They call it
non-prioritized reception of epistemic input.
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the retracted sentences to be available in the revised knowledge base. By doing so, we believe
that we have less loss of information from the knowledge base in the end.

Within this method of compromised contraction of bases, we have that the retracted sentences
are only removed from the base partially, in their informative sense, since some of their logical
consequences remain available in the knowledge base.

2.3.2 The Revision Steps

Below, we state the compromised revision steps for both conventional bases, and bases with
protected integrity constraints, with relation to a particular input. We consider the bases to be
initially consistent, i.e. they are consistent prior to any modification that they may suffer. So,
if an input causes a base to become inconsistent, then the following steps are taken.

Revision Steps for Conventional Bases

¢ We add the new input to the base.

e If the base is inconsistent because the input contradicts a tautology of the logical system,
then we make the base consistent by rejecting the input.

e If the base is inconsistent because the input generates inconsistency together with some
old sentences of the base, then we make the base consistent by rejecting some old sentences
of the base. For each sentence rejected, we allow its consequences to be added to the base,
provided that they do not contradict or cause inconsistency due to the incorporation of
the new input to the base.

Example 2.1 (Compromised Revision for Conventional Bases)

Consider a base K with the following elements
K ={a, b, ¢, a&d — L, akc — q}.
If we want to update K with the input d, we end up with one of the following revised bases:

K'={b, ¢, a&d — L, akc — g, g, d}, or K" ={a, b, ¢, a&c — ¢, d}.

Revision Steps for Bases with Integrity Constraints

o We add the new input to the base.

o If the base is inconsistent because the input contradicts a tautology of the logical system,
then we make the base consistent by rejecting the input. -

o If the base is inconsistent because the input directly contradicts some of the sentences of
its protected part, then we make the base consistent by rejecting the input, but allowing
its consistent consequences to be added to the base.
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¢ If the base is inconsistent because the input either contradicts an old sentence of the
base (which is not protected), or contradicts together with some other sentences of the
base, sentences of the protected part, then we make the base consistent by rejecting some
old sentences of the base. For each sentence rejected, we allow its consequences to be
added to the base, provided that they do not contradict or cause inconsistency due to the
incorporation of the new input to the base.

Examples of Compromised Revision for Bases with Integrity Contraints

Example 2.2

Consider a base K composed of a protected subset of integrity contraints P and a non-
protected subset of sentences Ak. Assume that Pyx = {a&b&c — L, a&kq — L1} and
Ak = {b, ¢, q, a&c — d}. If we want to update K with the input a, we may end up with one
of the following revised bases:

K'={a, ¢, akec — d}, or K" ={a, b, akc — d, d}.

Example 2.3

Consider a base K = Px\JAg, where Px = {a— L} and Ag ={b, ¢, q, a&c — d}. If we
want to update K with the input a, we may end up with the following revised base:

K' ={b, ¢, q, akc — d, d}.

In terms of logical consequences, our approach is not so restrictive as the ones in conventional
base revision, and not so permissive as closed-theory revision. This is due to the fact that we
do not allow for all the consistent logical consequences of the base to be part of the revised
set. However, we do allow the incorporation of some consequences of the sentences which were
rejected from the base. As a result, our revised set loses less information than one obtained
by a standard base-revision approach. But it is still not as large as the one obtained by the
closed-theory approach. Even though a compromisingly revised set might have sentences which
a revised set obtained by the closed-theory approach does not have, i.e. it is not necessarily a
subset of the closed theory.

Below, we informally present the logical setting, the notation and the basic assumptions
considered throughout the proposed characterization.

2.3.3 Basic Assumptions & Definitions

We consider a ﬁnitary propositional language L. The underlying logic includes classical propo-
sitional logic, so that L is closed under applications of the usual boolean operators, namely
- (negation); A (conjunction); V (disjunction); and — (implication).

The knowledge base, denoted by K, is initially defined as a finite set of sentences of L, that
is not closed under logical consequence.

The derivability relation + is assumed to be compact, and to satisfy the following properties:

¢ If o is a classical tautology, then F «;
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e I is consistent;
e I is closed under modus ponens; and

o I satisfies the deduction theorem. (o + 8 iff F a — f.)

K + o denotes that the knowledge base K logically entails a, where o is a sentence of L.

We assume that K + o if either a € K; or F o; or there exists a (3, such that
B — a € Cn(K) and g € Cn(K).

Cn(K) denotes the set of logical consequences of K, such that K C Cn(k),
Cn(K)=Cn(Cn(K)),and Cn(K) C Cn(K;) whenever K; C Kj.

K is assumed to be initially consistent, i.e. K ¥ L.

In the usual way, we assume that K + L iff K + @ and K + -a or K F f and
s — L.

K| denotes the inconsistent set, which contains the set of all sentences of L.

We use the symbol 4 to denote the AGM expansion operator, such that K + o denotes the
expansion of K by o and its logical consequences. K + a = Cn(K U {a}).

K @® o denotes the knowledge base which results from the base K revised by a. ® is
a function which takes a base set K and a sentence « to another base set K @& a. The
revision operation ® is a version of the AGM revision operation *, (see appendix A), adapted
for theory-bases.

The symbol © — 7 used from here ownwards, unless differently stated, denotes difference in the
set-theoretical sense.

2.3.4 Finite Bases Revision Postulates

In the postulates below, we assume that K is a theory-base, not closed under the consequence
operation Cn,and a and J are sentences of the language L.

(K®1) K ® o is a base set.

(K¥2) o € K ® «a.

(K®3) K ® a C K U {a}.

(K®4) If K ¥ -a then KU{a} = K ® o.

(K®5) K ® o F L ifand only if F -a.

(K®6) If Fa< B then Cn(K ® a) = Cn(K & f).

(K®7) K @I a&ff C (K ® a)+p.

(K*¥8) If K @ a ¥ -f then (K ® a)+f C Cn(K & a&p).

Notes: The postulates above have similar intuitions of those defined for the AGM theory. By
the postulate (K®1), the resulting revised set is guaranteed to be a base set. For the case of
closed-theories such a postulate makes sense. However, for non-closed belief bases, it is not so

relevant. By postulate (K ®2), we have that the sentence revised is also part of the resulting set.
Postulate (Ji®3) states that the revised set of beliefs is at least a subset of the expanded set, in
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the set-theoretical sense, when both operations use the same sentence. Postulate (K®4) caters
for the case in which no old belief has to be given up from the original base set. Postulates
(K®3) and (K®4) differ from the AGM postulates (K*3) and (/*4), respectively, since in the
latter ones they consider the expanded sets as the resulting sets from the AGM expansion.
Postulate (K®5) guarantees that the revised set is consistent, unless in the case that « is an
inconsistent sentence. Postulate (K®6) ensures the equality between the closure of the revisions
of logically equivalent sentences, considering the same original set of beliefs. (K®1)-(K®6)
represents the basic set of postulates for base revision. The postulates (K®7) and (K®8) are
extra conditions for “composite” belief revision, like the postulates (K*7) and (K*8), for the
case of revision for closed theories.

2.3.5 Compromised Revision for Conventional Bases

Given an initial knowledge base K, as defined above, we assume that o is the input sentence
to revise K. We denote as “ ® ” the operator for compromised revision for conventional
bases. We define the postulates (®1)-(®9) as the basic requirements for achieving the new set
K ® a, which is the result from the compromised revision of the knowledge base K by o.
So, K ® «a is assumed to satisfy the postulates (®1)-(&9).

In the postulates (®1)-(®9) to follow, we consider the following assumptions:

e When a sentence 3 has to be retracted from K in order to accomplish the incorporation
of @ in K @ a, wesay that ( is rejected w.r.t. «. We denote by R, the set of all
sentences B € K, which are rejected w.r.t. a in order to form K & a.

o We assume that CR(R,) is the largest set of consequences of all the sentences §; € Ra,
for 1 <i<mn, wrt. K,such that CR(R,) excludes the set R, and satisfies the
following conditions: Vy € CR(R4), K F y and (K — R,) ¥ y;and VB € R,
CR(Ry) U (K - Ry) ¥ B.

o MazCR(R,) is a maximal consistent subset of CR(R4) w.r.t.
(K — R.) + «a, such that MazCR(Rs) U (K — Ra) U {a} ¥ L.

e We assume that Dggr is a set which denotes the difference

Dcr = CR(Rs) — MazCR(Ra).

Proposed Postulates

(®1) I @ a is a base set.

(®2) If ¥ -a,then a € K Q a.
(®3) If a € K then K Q a = K.
(®4) U K + a F L then K ® «a

N

K ® a.

(®5) If K +abF L thn K ® a C (K- Ra) U{a} U MazCR(R.).

N

(®6) If F —a,then K @ o = K.
(®7)  For all knowledge bases K and for all sentences o, K @ o ¥ L.
(®8) If F a— B then Cn(K @ a) = Cn(K @ B).
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(®9) For all knowledge bases K and for all sentences a, K @ a is the largest set
that satisfies (®1)-(®8), such that the set D¢g is minimal w.r.t. K & a. Hence,
Yz € Dcg, (I( X a) + z + 1.

Notes:

Postulates (®1) and (®2) are equivalent to the postulates (K®1) and (K®2), for AGM base
revision.

The postulate (®3) states the vacuity of the compromised revision.

Postulate (Q4) states that compromised revision includes the AGM base-revision, in the case
that the sentence « does not contradict any sentences in K. This postulate is also equivalent
to postulate (K®4).

Postulate (®5) caters for the case in which the revision-input sentence contradicts some sentences
of the knowledge base K. ((Q5) guarantees that the input sentence is in the resulting knowledge
base set, together with all the consistent consequences of the retracted sentences w.r.t. K, if
any.

Postulates (6) and (®7) cater for consistency in K @ «. (®6) guarantees that if the input
sentence contradicts a tautology of the logical system, then no change is made on the original
set K. And postulate (®7) claims that the resulting compromisingly-revised base is always
consistent.

Postulate (®8) is equivalent to postulate (K®7). It guarantees the equality between the closure
of the compromised revisions of logically equivalent sentences, considering the same original
sets.

Finally, postulate (®9) introduces the mazimality condition for K @ a. It ensures that
compromised-revisions satisfy our notion of “compromised reasoning”, by getting as many as
possible of the from the retracted sentences in order to accomplish the revision.

(®1)-(®9) represent the basic set of postulates for compromised-revisions for conventional
bases. These postulates should guide the construction of a compromised-revision function for
such bases.

Discussions

When comparing the set of postulates for compromised-revisions for conventional bases with
the set of AGM revision postulates for bases, we notice the following:

As expected. the postulate (K®3) is not satisfied in compromised revision, since we might add
to A ® o some consequences of retracted sentences which do not belong to A U {e}.

Compromised revision is more strict in terms of consistency than AGM revision. While AGM
revision allows the revised base to become inconsistent in the case that the input sentence
contradicts a logical tautology, the compromised revision constrains this possibility. This is
shown in postulates (A®5) and (®7), respectively.

Postulate (K ®7) is not satisfied in compromised revision, since we might add to A’ X a&p
some consequences of retracted sentences which do not belong to (K @ {a}) 4+ B. For the same
reason, (K ®8) is also not satisfied in compromised revision. We cannot guarantee that the con-
sequences of the deleted old sentences of K added to K @ o are present in Cn(K @ akfB).
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In the sequel of this paper, we deal with theory presentations which are bases containing
protected integrity constraints.

2.3.6 Compromised Revision for Bases with Integrity Contraints

The knowledge base for compromised revision of bases with integrity constraints, is initially
defined as the set K = Ag U Pk, in which Ag and Pg are assumed to be finite sets of
sentences of L, that are not closed under logical consequence. Py is a protected part of K.
Therefore, its formulae cannot be modified by any update operation in K. P represents the
integrity constraints ranging over Ag. ‘

Given an initial knowledge base K, where K = Ag |J Pk, and a sentence «, we assume
that a is the input sentence to revise K. We denote as “ ® ” the operator for compromised
revision of bases with integrity constraints. We define the postulates (®1)-(®9) as the basic
requirements for achieving the new set K ® «, which is the result from the compromised
revision of the knowledge base K by a. So, K ® a is assumed to satisfy the postulates
(®1)-(®9).

In the postulates (®1)-(®9) to follow, we consider some assumptions, given below. Some of
them were already defined for compromised revision of conventional bases.

o CI() is the largest set of consequences of « w.r.t. Ay, such that the following
conditions are satisfied: a ¢ Cl(a);
Cl(a) U Ax ¥ Land CI(a) U Ak ¥ o.

o MazCI(a) is a maximal consistent subset of ClI(a) w.r.t. K, such that
MazCI(a) U K ¥ L.

e When a sentence 3 has to be retracted from K in order to accomplish the incorporation
of @ in K ® a, we say that B is rejected w.r.t. a. We denote by R, the set of all
sentences f € K, which are rejected w.r.t. a in order to form K ® a.

e We assume that CR(R,) is the largest set of consequences of all the sentences in
R., w.rt.  Ag, such that the following conditions are satisfied: R, ¢ CR(Rq);
Vy € CR(R.), Ak + yand (Ax—R,) ¥ y;and VB € Ry, CR(Rs) U(AKx—Ra) ¥ B.

e MazCR(R,) is a maximal consistent subset of C R(R,),such that MazCR(R,) U (Ax—
Ro) U Pk U {e} ¥ L.

e We assume that Dggr is a set which denotes the difference
Dcr = CR(R,) — MazCR(R,).
And Dc; is a set which denotes the difference
Dec; = Cl(a) — MazCl(a).

Proposed Postulates for Compromised Revision ®

(®1) K ® a is a structure of the same type as K.

(®2) If a€eK orif v -a,then K ® o = K.

(®) If K + a ¥ L then K ® o C K ® a.

(®) If Pk + a ¥ L and K 4+ o + 1 then a € K ® a, and
Ax@®e S (Ak — Ry) U {a} U MazCR(R,).
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(®) If Pk + a F L anditis not the case that + -o, then K ® « k‘ @ and
Ax@a. € Ak U MazCl(a).

(®6) Px C K® o
(®7) Forall K andforall o, K® o ¥ L.
(®8) If F a o B then Cn(K ® a) = Cn(K ® B).

(®9) For all knowledge bases K and for all sentences a, K ® o is the largest set that
satisfies (®1)-(®8), such that the sets Dcr and Dcj are minimal wr.t. K a.
Hence, V& € Dcr, (K®a) + ¢ + L,and Vy € Dop, (K ® @) + y b L.

Notes:

Postulate (®1) states that the resulting revised knowledge base has the same structure of the
original base.

Postulate (®2) states the wvacuity of the compromised revision, in the case that the input
sentence to revise K is already an element of the original base K. Furthermore, in the case
that a contradicts a tautology of the system, i.e. if F -a, no change at all is applied to K.

‘By postulate (®3), the compromised revision includes the AGM base-revision, in the case that
the sentence a does not contradict any sentences in K. A simpler alternative for this postulate
would be the following: If K 4+ o ¥ L then K ® a = K U {a}. (®3) is the inclusion
postulate of our compromised revision.

Postulate (®4) caters for the case in which the revision-input sentence does not contradict the
set of integrity constraints, however it contradicts some sentences of the knowledge base K.
(®4) guarantees that the sentence which revised the base is in the resulting knowledge base
set, together with the set of integrity constraints. Also, all the consistent consequences of the
retracted sentences w.r.t. K, if any, are added to the revised set. We consider (®4) as the
success postulate.

Postulate (®5) states that if the input sentence to revise K violates some of its integrity
constraints, and does not contradict any tautology of the logical system, then the resulting
compromisingly-revised set does not entail the revision-input sentence. However, it entails all
its logical consequences, which do not generate inconsistency w.r.t. the original knowledge base.
(®5) guarantees that the resulting revised set includes the original set K, and all the consistent
consequences of a w.r.t. Af, if any. We consider (®5) as the compromise postulate.

(®6) is the integrity preservation postulate. It guarantees that all the protected sentences in Pk
which are part of the original knowledge base, remain present in the resulting compromisingly-
revised set.

Postulate (®7) is the consistency postulate. It claims that the resulting compromisingly-revised
knowledge base is always consistent.

Postulate (®8) guarantees the equality between the closure of the compromised revisions of
logically equivalent sentences, considering the same original sets.

Finally, postulate (®9) ensures that compromised-revisions satisfy our notion of “compromised
reasoning”, by getting as many as possible of the consequences of the revision-input sentence,
as well as the consequences from the sentences retracted in order to accomplish the revision.
(®9) introduces the mazimality conditions for K ® a.

(®1)-(®9) represent the basic set of postulates for compromised-revisions of bases with integrity
constraints. These postulates express the compromised nature of our method’s revision process,
and they should guide the construction of a compromised-revision function for such bases.
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2.4 Towards the Formulation of the Compromised Revision Function

The formulation of a compromised revision function for bases with integrity constraints, can
be defined based on the postulates (®1)-(®9). Since those postulates present our intuitions,
providing already specific conditions which should be satisfied, the revision function can be
constructed explicitly from them in a very straightforward way. However, there are some
notions which still remain to be defined.

The notion of how to select the elements which are rejected w.r.t. a in order to accomplish
the revision K ® a, requires a proper definition. One way to establish this notion, can be
defined by applying an ordering on K, or better saying on Apg. Intuitively, we want to be
able to know which elements of K conflict with «, so that we can build up a set containing
these elements, and then get the set R, from it. The ordering on Ag helps to determine
the elements of R,. Consequently, R, is effectively the set of sentences to be retracted from
K in order to accomplish the revision K ® a.

The strategy described above resembles the notion of safe contraction/revision introduced in
[Mak-85], [AIMa-85]. In safe contraction, an ordering ( < ) which is irreflexive and transitive,
is defined on K. In general terms, if a is the sentence to revise K, then -a should be
the sentence that one wishes to eliminate from among the consequences of K. So, an element
¢z of K is said to be safe w.rt. —a (modulo <), if and only if every minimal subset M
of K that implies —a either does not contain z, or contains at least one element y that
is less relevant, or worse, than z w.r.t. the ordering, y < z. In [Mak-85], they write as
K/-a for the set of all elements of K that are safe w.r.t. -a, modulo <. and they define
the safe contraction K = =-a as the set of all elements of A that are implied by K/-a,

K = -a = Cn(K/-a) N K.

In the case of a compromised revision K ® a for bases with integrity constraints, concerning
the sentences that we might want to eliminate from among the consequences of K, we do not
only have to consider -, but also all the other elements of Ay that together with a violate
some integrity constraints in Pk . Based on this idea, we define here a set denoted L., which
includes all the minimal subsets of Ag, with those elements.?®

Moreover, we want to be able to perform the necessary retractions, satisfying the conservativity
principle. We then define the set R,, taking into account the minimals of the subsets of 1,4,
w.r.t. the ordering of Ag.?® R, selects from the sets of L, the minimal elements which
should be retracted from Ag.

Hence, a safe-contraction-like approach can be considered, for each element 3 in the set R,.
Furthermore, according to our compromising philosophy, we have to allow for all the consistent
consequences of the elements of R, to be kept in the resulting base.?”

The notion of an ordering does not apply to both subsets of I, since Py is protected and
we are not interested in ordering it for any modification. Hence, we assume a partial order
< on the non-protected elements of K, on Ag. We also restrict the types of sentences in
Py, in order to comply with our formalization requirements. This implies that we change the
initial definition of the knowledge base K from the set K = Ap U Pk , to the structure
K = (A, Pr).

2°See Definition 2.11.

26See Definitions 2.1 and 2.13.

2"The set MazCR(Ra)a, already used in the postulates and precisely defined further in this section,
comprises this notion.
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Preliminary Definitions

Definition 2.1 ( K = (Ag, Pg))

Given a language L of propositional sentences, let K be a knowledge base given by the
structure K = (Ak, Pg), such that Pk is a protected set of sentences of L of the type

i’f a; — L, where a; is an atomic proposition or its negation, and Ak is a partially
ordered set of sentences of L, w.r.t. <.

a

Remark 2.1

When we state the union of K |J {a}, for instance, we implicitly mean that o is added
to Ak, such that K U {a} = (Ag U {a}, Px). Concerning the ordering, whenever not
explicitly stated, a receives the highest priority in Ag. Also, for the sake of notation simplicity,
we sometimes say that @ € K whenever @ € Ag or a € Px. We also sometimes write
A CK and Px C K, by abuse of notation.

.

The ordering < on Ag is supposed to give the intuitive meaning of relevance to the
elements of A, according to the requirements of the application area to which the system is
applied. Since < is a partial order, it allows a high level of expressivity on the knowledge base
representation. The user has the option to define the relevance order among the elements of
the set A, considering also that some elements might not be related by <. This means that
those elements are mathematically incomparable w.r.t. their relevance levels. If the application
requires, Ay can also be defined as a chain, i.e. as a totally ordered set, simplifying quite a
lot the revision process. But the system does not oblige the user to do that as a premise.

When we say that z, y € Ak, we mean that z and y are sentences of L ordered by
< in Ap. We say that a sentence z has at least the same relevance of another sentence y,
whenever y < z, for 2, y € Ak. Asusual, y <z means y <z and z £ y. Also, the
notations y < z and y < z, are equivalent to z > y and « > y, respectively. It is important
to notice that when we add an input sentence « to K, we mean that a is added to Ag
with highest priority w.r.t. <. (Vo € Ag, z < a).

As < is a partial order, it presents the properties of reflexivity, transitivity and antisymmetry.
So, for any sentences a, 3, v in Ax, @ < o;if a < f and B < 7,then o < ~; and
if a < f and B < a, this implies that o = B.

The definition below caters for the notion of propagation of the ordering < of the elements of
an arbitrary set X, to their consequences. This ordering propagation is necessary for the case
that we have to discard some of the compromised consequences, in order to avoid inconsistency.

Definition 2.2 (Propagation of <)

Given a consistent set of propositional sentences X, ordered under the partial order <, let the
ordering on the consequences of X be such thatif Z + y and y ¢ X, for any set Z C X
such that Z is minimal w.r.t. C, then z <y, Vo € Z.

O

Example 2.4 (< Propagation)

38



Consider an ordered set X = {a, b, ¢, c > d, a — e}, such that a <b, a<c, c<c—d,
and a < a — e. Assume that Con(X) = {a, b, ¢, c > d, a — e, d, e}. Hence, the ordering
on Con(X) is such that: a<¢, c<c—d, a<a—e c<d, c—-d<d, a<e, and
a—e<e.

Below, we state some set definitions, concerning the minimal elements of a partially ordered
set.

Definition 2.3 (min(}))

Given a set Y such that Y = {S1,82,-+,Sn}, where each S;, for i =1,---,n, is a subset of
a set S, which is ordered w.r.t. the partial order <. Let min(}) be the following set:

0 if Yy =0
min(Y) =\ (min(S;) | min(S:) C S5
and Yz € min(S;), = is minimal w.r.t < in S;}  otherwise.
a

The sets min(Y)*t and min(Y)! defined below, are subsets of min(Y), which include the
minimal sets min(S;) with more than one element, and with one element, respectively.

Definition 2.4 (min(Y)*)

Given a set Y such that 'Y = {51,852, --,Sn}, where each S;, for i« = 1,---,n, s
ordered w.r.t. the partial order <. Assume that min(}), is such that min()) =
{min(81), min(Sa), -+, min(Sn)}. Let min(Y)* be the following set:

min(Y)t = {min(S;); | min(S;); € min(Y), and |min(S;);| > 1}.
Where 1<i<mn, and j=1,---,k, for k<n.

Definition 2.5 (min(Y)!)

Given a set Y such that 'Y = {51,852, +,5.}, where each §;, for i = 1,---,n, 1is
ordered w.r.t. the partial order <. Assume that min(Y), is such that min(Y) =
{min(Sy), min(Sy),---,min(S,)}. Let min(Y)! be the following set:

min(Y)! = {z |z € min(Si)j, min(S;); € min(Y), and |min(S;);| = 1}.
Where 1<i<mn,and j=1,---,1, for 1 <m.

Definition 2.6 (Min(}))

Given a set Y such that Y = {S1,52, - -,Sn}, where each S;, for i = 1,---,n, is
ordered w.r.t. the partial order <. Assume that min(Y), is such that min(Y) =
{min(S1), min(S2), -, min(Sy)}. Let Min(Y) be the following set:
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Min(Y) = |J min(Si), s.t. min(S;) € min(Y).
Where 1 <1< mn.
O

We define now the notion of a safe mazimal subset of an arbitrary partially ordered set X,
with relation to a condition ¢ which involves X, somehow, in its premisse. The condition
¢ represents a property that needs to verified. As an example, ¢ could state that X is
consistent. We call such a set Smaz(X).. Basically, Smaz(X).is such that, if it substitutes
X in the condition ¢, ¢ succeeds. In the general case, a maximal subset of X w.r.t. the same
condition ¢, denoted as Maz(X)., has Smaz(X). as a subset. Smaz(X). = Maz(X).
only when Smaz(X). is maximal w.r.t. C, conditioned to c. That is, for any element
y € (X = Smaz(X),), if Smaz(X).U{y} substitutes X in the condition ¢, ¢ fails.

The set Smaz(X). is obtained considering the ordering <, the set-inclusion property of
minimality, and an auxiliary set called Fail(X)., as described below:

o First we get the set Fail(X)., which contains all the minimal subsets of X, such that
when they substitute X in the condition ¢, ¢ fails. Fail(X). = {S1, 2, -y Sn}.

o Then we get the set min(Fail(X).), as in Definition 2.3, which contains all the main(S;),
of minimal elements of each S; € Fail(X),, for i =1,---,n. From min(Fail(X).),
we also get Min(Fail(X).) as stated in Definition 2.6.

e Finally, we define Smaz(X). as the set X if condition ¢ is satisfied; and as
X — Min(Fail(X).) otherwise.

In order to refine the construction of the set Min()), given in Definition 2.6, so that less
elements of original ordered set are removed from it, we propose the alternative definition below,
in which we consider the common elements of the sets min(S$;) in min(Y).

Definition 2.7 (Refined Min(Y) : RMin(Y))

Given a set Y such that Y = {51,852, -+,5.}, where each S;, for i = 1,---,m, is
ordered w.r.t. the partial order <. Assume that min(Y), is such that min(Y) =
{min(S1), min(S2),---,min(S,)}. Let RMin(Y) be the following set:

RMin(Y) = min(Y)! U (Min(Y)-M") U CM.
Where: M~ = {y|y € min®, VYmin® € M}; M = {min® | Vmin® € Min(Y)}; and

min* = {5, | Sp = min(S;), Ymin(S;) € min(Y), s. t. z € min(S5;), andz € Min(Y)}.

And CM = {z |z € Min(Y), such that min® € M}.

Remark 2.2

In Definition 2.7, the set min® contains the set-elements of min(Y), which have the the
element z in common, for an element x in Min(Y). The set M contains all the sets min®,
for all = in Min(Y). The set M* is the union of all the sets min® in M. the set CM
contains the common elements = of the sets min® in M.
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Example 2.5

Assume that min(Y) = {min(S;), min(Sz), min(Ss), min(S4), min(Ss), min(Ss), min(S7),
min(Ss), min(Se), min(S10)}, where min(S1) = {a}; min(S;) = {a, d}; min(S3) = {j};
min(Sq) = {f, g}; min(Ss) = {a, €}; min(Se) = {f, b}; min(S7) = {c, h}; min(Ss) = {c, i};
min(Se) = {a, f, ¢}; and min(S10) = {I, m}. According to Definitions 2.5, 2.6 and 2.7, we
have that:

min(V)') = {a, j};

Min(Y) = {a, b, ¢, d, €, f, g, b, 1, j, I, m};

M = {min®, min®, min’};
min® = {min(S1), min(Sz2), min(Ss), min(Se)};
min® = {min(S7), min(Ss)};

mind = {min(S4), min(Se), min(Se)};
M* = {a, b, ¢, d, e, f, g, h, i};

CM = {a, c, f}; and

RMin(Y) = {a, ¢, f, g, j, I, m}.

Below, we state the Definitions 2.8 and 2.9, concerning the sets Fail(X). and Smaz(X),,
respectively. Where Smaz(X), is defined w.r.t. the refined version of the set Min(Fail(X).),
RMin(Fail(X).).

Notation 2.1

In Definition 2.8, we denote as ¢(X/S), the fact that the set S substitutes the set X in
condition c.

Definition 2.8 (Fail(X).)

Given a partially ordered set X, w.r.t. <, and a condition ¢ which involves X 1in its premisse,
let Fail(X). be the following set:

0 if ¢ 1is satisfied;

Fail(X). ={ {S]|SCX;
such that ¢(X/S) fails;

and S is minimal w.r.t. C}  otherwise.

Each set S; of Fail(X)., for i=1,---,n, is ordered by < as a subset of X.

Definition 2.9 (Smaz(X).)

Given a partially ordered set X, w.r.t. <, a condition ¢ which involves X in ils premisse,
and the set RMin(Fail(X).), let Smaz(X). be a subset of X, obtained as follows:

X if ¢ 1is satisfied,
Smaz(X). =
X — RMin(Fail(X).) otherwise.
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The set Smaz(X). is ordered by < as a subset of X.

Remark 2.3

The set Smaz(X). is classified as a safe-mazimal consistent subset of X, under condition c.
In the case that all the sets in min(Fail(X).) are unitary, Smaz(X). is also the mazimal
consistent subset of X w.r.t. set-inclusion. We call Smaz(X). safe-mazimal, because it does
not choose among the minimals, w.r.t. <, of the subsets of Fail(X).. Instead, it discards the
minimal elements, which are in RMin(Fail(X).), that fail to accomplish the condition given.
Adopting the safe-maximal subset solution, instead of a mazimal, leads us to a more impartial
position when we have to choose among some compromised consequences to discard.

Definitions for the case that Py +a - L

For this case, we have to define the set of cdnsequences of the input o w.r.t. Aj, which are
consistent with K, that will be inserted to Ag as a revision compromise.

We will denote as CI(a), the set of all consequences of the input a w.r.t. Ag. Our goal is
to define CI(e) as a finite set, such that o ¢ CI(a),and CI(a) U Ax U Pk is consistent
and does not derive a.

Remark 2.4
Some points have to be carefully dealt with, when defining ClI(a):

1. AgU{a} can also be inconsistent when PxU{a} F L, since the set of postulates
(®1)-(®Y9) does not restrict this case.

2. In the case that the condition CI(a) U Ax U Pk ¥ L is not satisfied, we have to
retract from CI(a) the minimal elements w.r.t. <, which contribute for the failure of
the condition above. If a mazimal subset of CI(a) is considered in this case, it might not
be necessarily unique.

3. In the case that the condition CI(a) U Ak ¥ a is not fulfilled, we have to retract from
CI(a) the minimal elements w.r.t. <, which make the condition above fail. Again, if a
mazimal subset of CI(«a) is considered in this case, it might not be unique.

Taking into account the problems of the remark above, we proceed by adopting the safe mazimal
subset notion, defined previously, instead of the maximal subset notion, in the following way:

e First we get a safe-maximal subset of Ag, w.r.t. condition c;, where ¢; = AxU{a} ¥ L.
We use the auxiliary sets Fail(Ag),, and RMin(Fail(Ak)c,) to create Smaz(AK)e,
as stated in Definitions 2.8, 2.7, and 2.9. We then prove that Smaz(Ay)., U{a} ¥ L.
(See Remarks 2.5, and 2.6; as well as Propositions 2.1 and 2.2).
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Preliminary Definitions:

Knowledge Base K = (Ag, Pg)

Py = {z|z¢€ L,and z is of the form /\:2? a; — 1,
where a; is a proposition or its negation}.

Ak is a partially ordered set of sentences, w.r.t. <.

Propagation of <:
If Z F y and ¥y ¢ Ag, foranyset Z C
Af, such that Z is minimal w.r.t. C, thenz <y, Vz € Z.

For any set Y = {S1,52,---,5.}, where each S;, for ¢ = 1,---,n, is
ordered w.r.t. <.

0 Y = 0;

min(Y) = {min(S;) | min(S;) C Si;
and Vz € min(S;),
z is minimal w.r.t < in S;} otherwise.

min(Y)t = {min(S;); | min(S;); € min(Y), and |min(S;);| > 1}.
min(Y)! = {z |z € min(Si);, min(S;); € min(Y), and |min(S;);| =
Min(Y) = {z |z € min(S;), Ymin(S;) € min())}.

RMin(Y) = min(Y)! U (Min(Y)- M*) U CM.

Where: M* = {y|y € min®, Vmin® € M};

M = {min® | Ymin® € Min(Y)};

min* = {S; | Sz = min(S;), Vmin(S;) € min()), such that z €
min(S;). and ¢ € Min(Y)}.

And CM = {z]|z € Min(Y), such that min® € M}.

Given an ordered set X w.r.t. <, and a condition ¢ which involves X
in its premisse,
] - if ¢ is satisfied;

Fail(X). =S {S]SCX;
such that ¢(X/S) fails;
and S is minimal w.r.t. C} otherwise.

X if ¢ 1is satisfied;
Smaz(X), =
X — RMin(Fail(X).) otherwise.

Figure 2: Summary of Preliminary Definitions for Compromised Revision
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e Then we define CI(a) in relation to Smaz(Agk),. This step allows us to eliminate

the possibility of dealing with an inconsistent set, in the case that Ax U{a} F L. (See
Definition 2.10).

e From CI(a), we get a safe-maximal subset, w.r.t. condition c;, where ¢; = Cl(a)
UAx U Px ¥ L. The auxiliary sets Fail(CI(a))e, and RMin(Fail(CI(a))c,)
are used to create Smaz(CI(a)).,- And we prove that Smaz(CI(a)),, UAx U Pk
¥ 1. (See Remarks 2.7, and 2.8; and Proposition 2.3).

e Finally, we get a safe-maximal subset of Smaz(CI(a))c,, w.r.t. the condition
es = Smaz(Cl(a)), U Ak ¥ «, denoted as Smaz(Smaz(CI(a))c,)e, - This set is
obtained using the auxiliary set Fail(Smaz(CI(a))c,)c; and the set
RMin(Fail(Smaz(CI(@))e,)e;). Smaz(Smaz(CI(@))e,)e; UAK ¥ a s also proved.
(See Remarks 2.9, and 2.10, as well as Proposition 2.4).

So, Smaz(Smaz(CI(a))s,)e, is the safe-maximal version of the set CI(a), such that the
problems of Remark 2.4 are avoided.

We state below the remarks and definitions, for the case that Px J{a} F L. In all of them,
we assume that A is ordered by <, in the knowledge base K = (A, Pr).

Remark 2.5 (Fail(Ag)e)

Given a knowledge base K = (Ag, Pk) aninput a, and the condition ¢ = Ag e} ¥ L.
By Definition 2.8, we have that Fail(Ag), 1is the following set:

0 if ¢y 1s satisfied;

Fail(Ak),, = {§]SCAk;
such that SU{a} F 1,

and S is minimal w.r.t. C}  otherwise.

Each set S; of Fail(Ag)e,, for i=1,---,1, is ordered by < asa subset of Af.

Proposition 2.1 %

Given a base K = (Ag, Py), and an input sentence «, such that Ak U{e} F L, andit s
not the case that + -a, and the set Fail(Ag)e, = {S1, S2,--+, 51}, it is sufficient to retract
one element from each S; C Fail(Ak)ey, such that (Ax — S(Fail(Ak)e,))U{e} ¥ L,
where S(Fail(Ak)e,) = {zi|VSi € Fail(Ak)e,, 3y € S;, such that z; = y}.

Remark 2.6 (Smaz(A).,)

Given a knowledge base K = (Ay, Px) aninput a, and the condition ¢; = Ag WHea} ¥ L.
By Definition 2.9, we have that Smaz(Ak)., is the following set:

Ap if ¢y 1is satisfied;
Smar(Ak)e, =
Ay — RMin(Fail(Ak).,) otherwise.

Smaz(Ak)., ts ordered by < as a subset of Ag.

28Proofs of the propositions cited in this section, are found in appendix A of this paper.
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Proposition 2.2

Given a base K = (Ag, Pg), for any input sentence a, such that AxU{a} +F L, and it
is not the case that + -a, Smaz(Ak),, +a F L.

Now we define CI(a) w.rt. Smaz(Ag)e,-

Definition 2.10 (CI(a))

Given a knowledge base K = (Ag, Pk) and an input sentence «, such that it is not the
case that F —a, let CI(a) be the set of consequences of «, w.r.t. Ak, such that:

CI(a) = {y| Smaz(Ak),, ¥ y and Smaz(Ak). U{a} F y;
y # a, and Smaz(Ak),, U {y} ¥ a},

where ClI(a) is finite, mazimal w.r.t. C, and is ordered by <, according to Definition 2.2.

a

Example 2.6

Consider a base K = (Ag, Pk), where

Ag = {bv ¢, "a, a—p, pAb—gq, p/\q—>-10},

for b<c, a—=p<-a, b<-a, a—»p<pAb—g, and pAb—g<pAg— e

Assume that Py = {a— L, eANb— L}. If we consider the update input a, by definition we
have that Px +a F L, then: Fail(Ag)., = {{-a}},

RMin(Fail(Ak),) = {—a},

Smaz(Ar)e, = {b, ¢, a—=p, pAb—q, pAg— ~c}, and

Cl(a) = {p, q}.

The motivation behind obtaining CI(a), is that we want to be able to include in Ag all
the consistent consequences of «, such that CI(a) U Ax U Pk is consistent. Moreover,
we do not want to have a available, (i.e. neither present nor derivable), from the resulting
base. However, Definition 2.10, as it stands does not satisfy these conditions. Notice that it
is not guaranteed that CI(a) U Ax ¥ a, northat CI(a) U Ax U Px ¥ L. In Example
2.6, for instance, that last condition is not satisfied. Hence, we still need to specify a subset of
CI(a), that satisfies those conditions. Such subset of CI(«a) is then obtained as a safe-maximal
subset, as stated below.

Remark 2.7 (Fail(CI(a)),)

Given a knowledge base K = (Ak, Pk), an input sentence o such that CI(«a) is non-empty,
and the condition ¢y = CI(a) U Ak ¥ L, by Definition 2.8, we have that Fail(CI(a))e,

is the following set:

0 if co 1is satisfied;
Fail(CI(«))e, =4 {S|SCCI(a);

such that SU AR F L,and

S is minimal w.r.t. C} otherwise.
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Each set S; of Fail(CI(e))e,, for i=1,---,m, is ordered by < as a subset of Cl(a).

Remark 2.8 (Smaz(CIl(a))c,)

Given a knowledge base K = (Ag, Pk), an input a such that CI(a) is non-empty, and the
condition ¢; = CI(a) U Ax U Px ¥ L, by Definition 2.9, we have that Smaz(CI(a)).,
1s the following set:

Cl(a) if cq 1s satisfied;
Smaz(Cl(a))e, =
CI(a) — RMin(Fail(CI(a))c,) otherwise.

Smaz(CI(a))., is ordered by < as a subset of CI(c).

Proposition 2.3

Given a base K = (A, Pg), for any input sentence a, such that CI(a) is non-
empty, A +a + L, and it is not the casethat + -a, Smaz(CIl(a)),, U Ax U Px ¥ L.
Remark 2.9 (Fail(Smaz(CI(a))c;)es)

Given a knowledge base K = (Ak, Pg), an input sentence o such that CI(a) s non-
empty, and the condition c¢3 = Smaz(CI(a)), U Ak ¥ a, by Definition 2.8, we have that
Fail(Smaz(CI(a))e,)e, s the following set:

0 if c3 1s satisfied;
Fail(Smaz(CI(a))e,)e, =< {5 ]85 C Smaz(Cl(a))e,;

such that S U Ak F a,and

S is minimal w.r.t. C} otherwise.

Each set §; of Fail(Smaz(CI(a))e,)e,, for i =1,---,n, is ordered by < as a subset of
Cl(a).

Remark 2.10 (Smaz(Smaz(CI(a))e,)e;)

Given a knowledge base K = (A, Pg), an input o such that ClI(a) is non-empty,
and the condition ¢z = Smaz(CI(a)), U Ak ¥ a, by Definition 2.9, we have that
Smaz(Smaz(CI(a))e,)e, s the following set:

Smaz(CI(a)).,, if c3 is satisfied;

Smaz(Smaz(Cl(e))w)es =\ grnaz(CI(a))., — RMin(Fail(Smaz(CI())e)e ),

otherwise.

Smaz(Smaz(CI(a))e,)e, is ordered by <, as a subset of Cl(a).

Proposition 2.4

Given a base K = (A, Pr), for any input sentence «, such that Cl(a) is non-empty,
and it is not the case that + —a, Smaz(Smaz(CIl(a))e,)e U Ak ¥ a.
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Definitions for the case that Px + ot L:

Given K = (Ag, Pg), and ¢ = Ag+a ¥ L,
0 if ¢; 1is satisfied;

Fail(Ag)e =% {S|SCAk;
such that SU{a} F 1,
and S is minimal w.r.t. C} otherwise.

Ak if ¢ is satisfied;
Smaz(Ar)e, =
Ag — RMin(Fail(Ak);) otherwise.

CI(a) = {y| Smaz(Ak), ¥ y and Smaz(Ak), U{e} F y;
y # a, and Smaz(Ag), U {y} ¥ a},

Given ¢ = Cl(a) U Ax ¥ L,

0 if ¢y is satisfied;
Fail(Cl(a)), =14 {S|85CCI(a);
such that SU Ak F L,and
S is minimal w.r.t. C} otherwise.
Cl(a) if cp is satisfied;

Smaz(Cl(a))e, =
CI(a) — RMin(Fail(CI(a)).,) otherwise.

Given c¢3 = Smaz(Cl(a)), U Ak ¥ a,

b
if c3 is satisfied;

Fail(Smaz(CI(a))e)es =8 {S |5 C Smaz(CI(a))e,;
such that SU Ak F a,and
S is minimal w.r.t. C},
otherwise.

Smaz(Smaz(CI())e,)ea
Smaz(CIl(@))e,, if c3 is satisfied;

Smaz(CIl(a))e,—
RMin(Fail(Smaz(CI(a))e;)es)s otherwise.

Figure 3: Summary of Definitions for the case that Py + ot L.
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Definitions for the case that Px +a¥ L and K +at L

In the case that Px + a¥ L and K +at L, we need to get the set L., which includes all
the minimal subsets of Ag, whose elements together with the input sentence « and the set
of integrity constraints Pk, generate inconsistency. So, by Definition 2.8, we obtain such a
set as shown below.

Remark 2.11 (L,)

Given a knowledge base K = (Ag, Pk), an input sentence o« such that it is not the case that
 —a, and the condition ¢4 = Ax J Pk U{a} ¥ L. Let L, bethe set Fail(Ax)c,, such that:

] if c4 1s satisfied;
Lo =9 {5 — SCcAr;: SUPkU{a}F L;
and S is minimal w.r.t. C} otherwise.

Where each set S; in Ly, for i=1,2,---,n, is ordered by <, as a subset of Af.

As stated in Definition 2.3, since < is a partial order on A, we might have more than one
minimal element in the sets .5; of the family L,.

Example 2.7
Consider a base K = (Ap, Pg), where Ag = {b,c,d,q}, for c<d, d<q, and b < d.
Assume that Py = {aAbAcAd— L,aAgq— L}. If we consider the update input a, by

deﬁnition we have that:

= {{b,c,d},{g}}, and
n(La) ={{b,c},{q}}.

The proposition below guarantees that it is sufficient to retract one only element of each subset

of La, from A U{a};, in order to achieve consistency. It is a specific case of Proposition
2.1.

Proposition 2.5

Given a base K = (Ay, Py), and an input sentence «, such that it is not the case that + -«
nor that {a} U Px + L. If {a} U K F L, then gwenaset Lo = {S1, S2y--+, Sn}, itis
sufficient to retract one element of each set S; € Lg, for i=1,--+,n, from Ag U{a} such that
(AxU{a})=5(Ls)) U Pk ¥ L, where S(Ly) = {z:|VS; € _Lo,, Jy € S;, such that z; = y}.

In order to retract a minimum number of sentences from Af, to accomplish the inclusion
of the input sentence a in the revised set K ® o, we would like to be able to define a
choice mechanism, in which only one minimal element out of each set S; of L1, could be
chosen. However, in most cases, such mechanisms are based on empiric premisses which are
often non-justified for a general framework.
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One safe option, is to retract from Ak at least one minimal element of each set S; of L,, by
obtaining a safe-maximal subset of Ag, Smaz(Ak).,, relative to the same condition of L,
as defined previously. This is not yet the ideal approach, since we throw away more sentences
than necessary in order to get rid of inconsistency. However, it plays a neutral, or impartial,
role in choosing among the minimal elements. One can argue that this option is justified by
the fact that, since the minimal elements are not related (or comparable) by the ordering <,
there is no criterium which allows us to choose a particular one among them for retraction.
Hence, the final decision is to remove at least one minimal element of each set, by adopting an
algorithm which identifies common elements among the sets, for regaining consistency. We call
this option “the impartial-choice for safe-minimal change”.

Another option would be to allow the current application to define which elements to retract
from Apg. This option is free from a non-justifiable general choice mechanism. Instead, it can
be viewed as a user-choice approach, since it allows the user to decide which minimal element
to discard from each set of minimals of S; of L., when they have more than one element. By
doing so, we can have that only one minimal element from each set of minimals of $; is going
to be retracted from Agj. This is shown in Proposition 2.5 to be a sufficient condition for
avoiding inconsistency in the revised base. Consequently, within this option, the conservativity
principle can be fully satisfied, since it suppbrts the performance of revision by maintaining as
many as possible of the old sentences in Ag. We call this option “the user-choice for minimal
change”.

Here, we adopt a combined approach, with both “the impartial-choice for safe-minimal change”
and “the user-choice for minimal change” options. We assume that the set R, selects the
minimal elements to be retracted from Ak, in order to accomplish K ® «, having “the
user-choice for minimal change” as the main option, when it applies, and “the impartial-choice
for minimal change” as default.

In order to construct the set Ry, we obtain the sets min(Ll,), min(Lls)t, min(Lla)?,
Min(L,), and RMin(Ll,), according to the general definitions 2.3, 2.4 2.5, 2.6 and 2.7,
respectively.

Then, we need to define a function which caters for the choice of retraction, combining “the
impartial-choice for safe-minimal change” and “the user-choice for minimal change”. We call
such a function Choice. It is defined, having as input parameters the option from the user and
an entry-set. And as output, it supplies the set of chosen sentences.

The intuitive idea of the parameter option of the Choice function, is that the user has to
supply an input to it, when requested. The two possible inputs for this parameter is either the
option u, or the option d; meaning that it is a user-choice or a default-choice, respectively.
Hence, when the function Choice is invoked, we assume that an option u or d is already
available from the user, via some user-interface mechanism.

When the set min(Ly)t is empty, there is no need to request the user for the choice of one
of the minimal elements of each set S;, since all the min(S;) sets of min(Ll,) are unitary.
In this case, the default-choice is applied directly.

When the user is requested the choice among the minimals of each set of min(Ly)t, he can
also decide for the default option, which is “the impartial-choice” for safe-minimal change”. In
this case the parameter option of the Choice function has d as answer. Hence, we have to
cater for this case as well.

We define below a choice request function for the user, which is performed via some user-interface
mechanism and return v or d as an answer. We call this function Req. Whenever the set
min(L,)t is non-empty, Req asks the user for a choice of how to perform the retraction
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needed for revision.

Definition 2.11 (Req )

Assume that L is a propositional language closed under the logical operators. Given a set
min(Ly)t, let Req be a function from the set In into itself, Req: In — In, where In
represents the set of all the possible user inputs to the system, such that In C L. And Set is
the set of all sets of sentences of L. When the function applies, we write Req({d, u}) = option,
where option is obtained conditined to the following:

{d} lf min(-’—a)-{- = 0;
option = (z — 2 € {d,u};
and = is chosen by the user} otherwise.
a
If the user accepts the task of making “the user-choice for minimal change”, i.e. option = {u},

he has to have the set min(L,)* available, to choose the minimal elements from. The definition
below caters for this case.

Definition 2.12 (Choice)

Given a language L, and a set L, let Choice be a function from the domain represented by the
tuple (In,Q) into Q, Choice : (In,Q) — §Q, where In is asin definition 2.11, and § is
the set of all sets of sentences of L. We write Choice(option, L,) = chosen-set, where option
is either {d} or {u}, and the resuting chosen-set of minimals is obtained in the following way:

RMin(L,) if option = {d};
chosen-set = {z; | Ymin(S;); € min(Lq)T,

Jy € min(S;);, such that z; = y;

and z; is chosen by the user} if option = {u}.

Where 1<i<n,and j=1,---,k, for k<n.?®

Remark 2.12

In Definition 2.12, we count again on a user-interface procedure which, given the set min(Lgy)t
as a family of non-unitary sets, returns a set of chosen minimals. And each of its elements is
chosen from each of the sets of the min(Ly)t  family.

Now we can define the set R,, as motivated previously.

Definition 2.13 (R,)

Given a knowledge base K = (A, Pg), an input sentence a, and the sets L, such that
Ly # 0, chosen-set and min(Ly)'. Let R, be the following set:

29The index n refers to the number of elements (sets) in Lo and min(La). And the index k refers to the
number of elements (sets) in min(La)*.
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R, = chosen-set U min(_l.a)l.

Where R, is ordered w.r.t. <, as a subset of Ak.

a
Remark 2.13
Notice that in the case that the set chosen-set is obtained with option = {d}, the set
min(Ly)! s already included in it.
[ ]

Example 2.8 (R,)

Consider a base K = (Ag, Pk), where Ax = {b, ¢, d, e f, ¢ d — e},
for b<d c¢c<d d<gqg d<d-—oe e<c and f < g Assume that
Py = {aAbAdAf — L, aANcAhe — L, aANqg — L}. If we consider the update input a,
by definition we have that:

e = {{b’fvd}’ {evc}v {Q}},

where:

min(Le) = {{b, f}, {e}, {a}};

min(L,)* = {{b, f}}; and

min(L,)! = {e, q}.

RMin(L.) = {b, € f, q}.

If option = {d}, we have that R, = {b, e, f, q}; and

if option = {u}, we have that R, is either the set {b, e, q} orthe set { e, f, q}, depending
on the user’s choice.

Now we know, from Rg, which elements to retract from Ay, in order to introduce the input
o and keep consistency in the new base. However, we still need to guarantee that retracting
R, from Aj, we cannot derive from (Ag — R,) any element of R,. In Example 2.8, for
instance, we would have that (Ax —R,) — e and e € R,. In order to formalize this notion,
we get a safe-maximal subset of (Ag — X), for a general set X, that should be retracted from
Ay . where X C Ag.

First, we obtain the set Fail(Ax — X).,, where cs is the condition (Ax —X) ¥ z, Vz € X.
Then, we get the safe-maximal subset of (Ag — X), Smaz(Ax — X)c, relative to condition
Cs.

Remark 2.14 (Fatl(Ag — X)e)

Given a knowledge base K = (A, Pg) aset X C Ak, and the condition c¢5 = (Ak -
X) ¥ z, Vz € X. By Definition 2.8, we have that Fail(Ax — X)., s the following set:

(0 if cs is satisfied ;

{S15C(Ak—X);

such that Jz € X,

(Ak —X) F z,and

| S is minimal w.r.t. C}  otherwise.

Fail(Ag — X)e, =
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Each set S; of Fail(Ag — X)e,, for i=1,---,k, is ordered by < as a subset of CR(X').

Remark 2.15 (Smaz(Ag — X)¢)

Given a knowledge base K = (Ak, Pk), a set X C Ak, and the condition ¢s = (Ag -
X) ¥ =z, Vo € X. By Definition 2.9, we have that Smaz(Ax — X)e, s the following set:

(Ag - X) if cs is satisfied;
Smaz(Ag — X)ey =
(A — X) — RMin(Fail(Ag — X).,) otherwise.

Smaz(Ag — X)., is ordered by <, as a subset of Ak.

The proposition below, guarantees that when we retract from Ag a set X,for X CAg, we
have that Smaz(Ax — X)., ¥ z, Vz € X, where Smaz(Ax — X), is a safe maximal subset
of (Ax — X), conditioned to cs. .

Proposition 2.6

Givenabase K = (Ak, Pk), foranyset X C Ay, we have that Smaz(Ax—X)., ¥ z,Vz €
X.

So, we already know which elements we have to retract when an input o conflicts with
k', and we also have guaranteed that retracting those elements from Aj will not make
them derivable from the resulting set. However, as described previously, the contraction for
compromised revision allows the consistent consequences of the sentences to be retracted, to
become available in the resulting revised base. Hence, we also have to cater for introducing the
consequences of the elements of R, w.r.t. Ag, provided that they do not conflict with the
base ((Smaz(Al\" - Ra)cs U {a})a PI\')'

We use the notion of propagation of the ordering <, as in Definition 2.2, for defining the
ordering of the set of consequences of the elements that should be retracted from Ag. We
call such a set CR(X'). In CR(X’), the set X' is the union of X, for any arbitrary set
X € Ay, and the set RMin(Fail(Ag — X)c), which contains the elements of Ag that
should be retracted from it in order to guarantee that no element of X is derivable after X
has been retracted from Ag. Considering X’ for obtaining C'R(X'), we get the consequences
of all the elements effectively retracted from Af.

Definition 2.14 (CR(X"))

Given a knowledge base K = (A, Pg) and a set X C Ak, such that X should
be retracted from Ap, together with RMin(Fail(Ax — X)c,), so that it is guaranteed that
Smazr(Ax — X)e, ¥ z, Vo € X, assume that X' = X U RMin(Fail(Ax — X)c,). Let
CR(X') be the set of consequences of the elements in X' w.r.t. A, considering b, such
that:

CR(X') = {y|Ax + y and Smaz(Ag - X)e, ¥ y;
and Yz € X', y# z, and Smaz(Ag = X)e, U {y} ¥ 2},

where CR(X') is mazimal w.r.t. C, and is ordered by <, according to Definition 2.2.
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Example 2.9 (CR(X'))

Given a base K = (Ag, Pg), where
AK:{b,c,d,q,q—>e,c—>f,d/\e——>h,h—>q},

such that b <d, ¢<d d<gq g<qg—e c<c—f d<dAe— h, and
h<h—gq. Lt X C Ak, bethe set X = {b, c, q}. By Remarks 2.14, 77, and 2.15,
Smaz(Ag — X)ey = (Axk —X) = {d, ¢ —> ¢, ¢— f, dhe — h, h — q}. By Definition
2.14, we have that X' = X, and CR(X') = {e, f}, where ¢ and f are not related by the
ordering <. :

We are interested in including the set CR(X’') in Smaz(Ax — X )., without being able to
derive any element of X from the resulting base. But with Definition 2.14, this is not yet
possible. Below, we state some points that need to be observed.

Remark 2.16

. Notice that it is not guaranteed that CR(X') U Smaz(Ax—X)., ¥ z, Yz € X'. In Ezample 2.9,
for instance, we would be able to derive g from CR(X') U Smaz(Ax — X)e,. We still need to
specify a subset of CR(X'), preferrably mazimal w.r.1. set-inclusion, that satisfies this condition.
However, we do not need to check for consistency of the base (Smaz(Ax —X)e, U CR(X"), Pxg),
since the original base, K = (A, Pg), is assumed to be consistent and as X' C Ag,

CR(X')C Cn(Ak), and Cn(Ak) # K.1.

We then state formally the subset of CR(X'), which satisfies the condition stated in Remark
9.16, by obtaining a safe-maximal subset of CR(X'), Smaz(CR(X')), relative to condition
ce = CR(X") U Smaz(Ak — X)e; ¥ z, Vz € X', and to the set Fail(CR(X'))e-

Remark 2.17 (Fail(CR(X"))s)

Given a knowledge base K = (Ag, Px) aset X' C Ay, such that CR(X') is non-empty,
and the condition ¢ = CR(X') U Smaz(Ax — X)e, ¥ z, Vo € X'. By Definition 2.8, we
have that Fail(CR(X")) is the following set:

(0 if ce 1s satisfied ;

{518 CCR(X');

such that 3z € X',

SUSmaz(Ag — X)es F <,

| and S is minimal w.r.t. C}  otherwise.

Each set S; of Fail(CR(X"))e, for i=1,---,k, is ordered by < as a subset of CR(X").

Fail(CR(X")ey =

Remark 2.18 (Smaz(CR(X')))

Given a knowledge base K = (Ag, Pk), aset X C Ak, such that CR(X'") is non-empty,
and the condition cg = CR(X')U Smaz(Ax — X)ey ¥ z, Yo € X'. By Definition 2.9, we
have that Smaz(CR(X'))c, 1is the following set:
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CR(X") if ce 1is satisfied; |
Smaz(CR(X"))ee =
CR(X') — RMin(Fail(CR(X'))s,) otherwise.

Smaz(CR(X"))e is ordered by <, as a subset of CR(X').

Proposition 2.7

Given a base K = (Ag, Px), for any set X' C Ak, such that CR(X') is non-empty,
Smaz(CR(X"))e U Smaz(Ax — X))o ¥ z, Vo € X'.

Example 2.10 (Smaz(CR(X"))e)

Considering Example 2.9, in which

Ag = {b,c,d, g, g— €, c— f, dAe—h, h— g},

such that b<d, ¢<d, d<gq, ¢<qg—e c<c—f, d<dAe—h,and h<h—g;
X = {bc, q}; X' = X and CR(X') = {e, f}, where e and f are not related by the
ordering <. We have that: Fail(CR(X"), = {{e}}, Min(Fail(CR(X")),) = {e}, and
Smas(CR(X")e = {f), ‘

Since Smaz(CR(X')), is defined for a general compromised contraction of a set X C Ag
from Ap, it is not sensible to the revision of K by an input a. By this we mean that CR(X')
and Smaz(CR(X')), refer to the consequences of a subset X which is retracted from Ag,
without any link to a compromised revision on K. Hence, consistency is not guaranteed when
we have Smaz(CR(X")e, U (Smaz((Ax — X)e U{a}) U Pk.

When we have a compromised contraction in Ap triggered by a revision w.r.t. an
input «a, we have to cater for a restricted version of Smaz(CR(X'))c, which takes into
account consistency w.r.t. the input o, and maximality w.r.t. C. Here, again, we
adopt the notion of safe-maximal subset. This time, we need a safe-maximal subset of
Smaz(CR(X'))e. where X' = R\, for R, = Ry U RMin(Fail(Ax — X)c,), since we
want to refer to the set of elements that should be retracted from Apg, relative to an
input . We then construct the set Smaz(Smaz(CR(R,))cs)e;» Where condition ¢z s
Smaz(CR(R.))ee U (Smaz((Ax — Ra)ey U{a}) U Px ¥ L.

Below we get Fail(Smaz(CR(R.))e ey, Which is the family of subsets of Smaz(CR(RG))c
that contribute to the failure of the condition c¢7.

Remark 2.19 (Fail(Smaz(CR(R,))ee)er)

Given a knowledge base K = (Ag, Py), an input sentence «, such that it is not the case
that +-a, Py U{a} ¥ L and K U{a} + L, aset Rq, asin Definition 2.13, such that
Smaz(CR(R.))e is non-empty, and the condition ¢; = Smaz(CR(R,))e, U (Smaz((Ax -
Ry, U{a}) U Px ¥ L. By Definition 2.8, we have that Fail(Smaz(CR(R,))c)er 15 the
following set:

0, if c¢7 1is satisfied;
Fail(Smaz(CR(R.))e)ey =4 {518 C Smaz(CR(R,))¢,. such that

SU(Smaz(Ax — Ro)e, U{a})U Px + L,
and S is minimal w.r.t. C}, otherwise.
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Each set S; of Fail(Smaz(CR(R,))c)ers for i =1,---,0, is ordered by < as a subset of
CR(R.).

Remark 2.20 (Smaz(Smaz(CR(R,))c)er)

Given a knowledge base K = (Ag, Pg), an input sentence «, such that it is not
the case that + -a, Px U {a} ¥ L and K U {o} F L, a set R, as in
Definition  2.13, such that Smaz(CR(R,)).; 1is non-empty, and the condition c7 1is
Smaz(CR(R.))e; U (Smaz(Ak — Ra)es U{a}) U Px ¥ L. By Definition 2.9, we have that
Smaz(Smaz(CR(RY))cs)e; 15 the following set:

Smaz(CR(R.L))es, i c7 is satisfied;
Smaz(5maz(CR(R))es)er =\ §man(CR(RL))e — RMin(Fail(Smaz(CR(RL))e)er),

otherwise.

The set Smaz(Smaz(CR(RL))e)e; is ordered by <, as a subset of CR(Ry,).

Proposition 2.8

Givenabase K = (A, Px), and an input sentence a, such that it is not the case that + —a, and
a set Ry, asin Definition 2.13, such that Smaz(CR(R))c, is non-empty. If P U{a} ¥ L
and K U {a} F L1, Smaz(Smaz(CR(R,)))e; U (Smaz(Ax — Ra)e, U{a}) U Pr ¥ L.

Definitions for Compromised Contraction & Revision

Below we define a general compromised contraction for our method. Notice that Definition
2.15 does not cater for the accomplishment of a compromised revision. It only specifies a
compromised contraction, independent from any other operation.

Definition 2.15 (Compromised Contraction K 0 X')

Given a knowledge base K = (A, Pg), and a set X', such that X' € Ay. And given
the set CR(X'), as in Definition 2.14, let © denote the compromised contraction operation,
which retracts X' from K, such that K O X', is the following:

K 0 X' = ((Smaz(Ax — X)e, U Smaz(CR(X"))e)s Pr)-
ad

From the definition above, we can construct the compromised contraction which is sensible to
a revision on the base. That is, the contraction of the elements of R, from K, in order to
accomplish the revision K ® «. Next, we formalize this notion of contraction, and we call it
compromised contraction for revision.

Definition 2.16 (Compromised Contraction for Revision)
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Definitions for the case that Px +a¥ L and K + ot L: (Part I)

Given K = (Ag, Pg), aninput o, and ¢4 = Ax U Pk U{e} ¥ L.
] if ¢4 is satisfied;

Lo =0 (S| S5CAk; SuPgU{alb L;

and S is minimal w.r.t. C} otherwise.

Req({d,u}) = option, where:
{d} if min(Ly)t = 0;
option =

{z | z € {d,u};

and z is chosen by the user} otherwise.

Choice(option, L,) = chosen-set, where:

RMin(Ly) if option = {d};
chosen-set = { {z; | Ymin(S;); € min(La)",

Jy € min(S;);,such that z; = y;

and z; is chosen by the user} if option = {u}.

R, = chosen-set U min(Ly)".

Given ¢5 = (Axy—X) ¥ z,Vz e X,
0 if c5 is satisfied ;

(S15C (A - X);
such that Jz € X,

(Axy - X) +F z,and

S is minimal w.r.t. C} otherwise.

Fail(Ag = X)e, =

(Al\' - ‘X)
if c5 is satisfied;
Smaz(Ax — X)ey =
: (A — X) = RMin(Fail(Ag — X)c,)

otherwise.

Figure 4: Summary for the case that Px + a¥ 1L and K + ot L - Part L.
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Definitions for the case that Px + a¥ L and K + « I—‘ L:  (Part II)

Given K = (Ag, Pg), an input «a, and the set X' =
XUMin(Fail(Ag — X)), where X C Ag,
CR(X') = {y|Ax + y and Smaz(Ax — X)e, ¥ y;

and Vz € X', y# z, and Smaz(Ax — X)e, U {y} F@},

Given ¢ = CR(X') U Smaz(Ax — X)e ¥ z, Vo € X,
Fail(CR(X"))es -
0 if cg is satisfied ;

{S1S5CCR(X");

such that 3z € X',

SuUSmaz(Ax — X)e, F z,and

S is minimal w.r.t. C} otherwise.

CR(X),

if cg is satisfied,;
Smaz(CR(X'))e =

CR(X') — RMin(Fail(CR(X"))c),

otherwise.

Given ¢; = Smaz(CR(R.))es U (Smaz(Ak — Ra)es U{a}) U Pk ¥ L,
Fail(Smaz(CR(RL))ce ) =
0.

if c7 is satisfied;

{S| S C Smaz(CR(R,))cs ; such that
Su (SWLCL:L‘(AK — R,;,)C5 U] {a}) U Ptk L,
and S is minimal w.r.t. C},

otherwise.

Smaz(Smaz(CR(R,))ce )er =
Smaz(CR(RL))ces if c7 is satisfied;

Smaz(CR(R,)cs —
RMin(Fail(Smaz(CR(R,))c)cr), Otherwise.

Figure 5: Summary for the case that Py + ¥ L and K + ok L - Part IL
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Given a knowledge base K = (Ag, Pk), an input sentence o, and a set R,, as in
Definition 2.13, let [ K © R. ]o be the compromised contraction of R!, from K, for the
achievement of the revision of K by «, where R, = R, U RMin(Fail(Ax — Ra)c;)- So,
(K © R.]a = (Ak-R.).> Px), and A_py), 18 obtained in the following way:

AlKoR,]a = Smaz(Ag — Ra)es U Smaz(Smaz(CR(R,))ce )cr-
a

Now, we can build up our compromised revision function. But first, we re-describe the compro-
mised revision steps, more specifically now, by taking into account the definitions of this section.

The Revision Steps Revisited

o We add the new input a to the non-protected part A of the base K = (Af, Pr),
such that z < @, Vz € Ax. The ordered set A augmented by o is then referred to
as A'K.

e If the base is inconsistent because a contradicts a tautology of the logical system, then
we make the base consistent by rejecting the input. If + -a, then K ® o = K.

o If the base is inconsistent because Px |J{a}F L, then we make the base consistent by
rejecting «, but allowing its consistent consequences to be added to the base. That is,
we get CI(a) and Smaz(Smaz(CI(a))e,)e,, and our compromised result is given by
the knowledge base
K®a = (Ax U Smaz(Smaz(CI(a))e,)es)s Prc)-

o If the base is inconsistent because A} U Px + L when Px U {a} ¥ L, then we
make the base consistent by keeping o in it and rejecting from it some old sentences.
We also take into account the consistent consequences of the retracted sentences. This is
done in the following way:

First we obtain the sets L1o; Ra; Smaz(A — Ra)e; CR(R)) and
Smaz(Smaz(CR(R,))c)er-

Then. we make the compromised contraction [ K © Rl ]oa = (A-ry)., PK), where
Aw-pr,). = Smaz(A— Ra)e, U Smaz(Smaz(CR(R.))cs)er-

Finally, we perform the compromised revision of the base K by «, such that:

I a = <(A[I\’—R;]a U {a}), P]().

We formalize now the definition of the compromised revision function considering the steps
described above.

Definition 2.17 (Compromised Revision Function)

Given a knowledge base K = (Ag, Px) and an input sentence o, let the operation
denote the compromised revision of K by «, such that the result K ® a is a new knowledge
base with the same structure of K. We denote by AK@a the resulting non-protected part of
K ® a, such that K ® a = <A1\"®a’ Pg). And AK®01 is obtained, such that one of the
following conditions holds:

(Case 1) If a € Ag or F -a, then AK@a = Ag.
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(Case 2) If K + a ¥ L3 then Ag®o = Bk U{a}.
(Case 3) If Pk + a F L, then Apgp, = A U Smaz(Smaz(CI(a))e,)e,-

(Case4) If K + a - L and Px + a ¥ L, then
AKa = Smaz(Ag — Ra)es U Smaz(Smaz(CR(R,))es)e; U {a}.

2.4.1 Some Properties of Compromised Revision

In this section, we present some properties of the compromised revision function, via proposition
and theorem statements3!.

The proposition below states that all the consistent consequences w.r.t. i’ of an input sentence
a, which violates some integrity contraints of a base K, and which were not orginally in A, are
available in K ® a. :

Proposition 2.9

Given a base K = (Ag, Pk), for any input sentence a, such that it is not the case that + -a,
and CI(a) is non-empty,if Pk + a + L, then Vo € Smaz(Smaz(CIl(a))e,)e, K ¥ =
and K ® a +F z.

The proposition to follow states that all the consistent consequences of the retracted sentences
from Ay, w.r.t. an input sentence a, in order to achieve K" ® a, are derivable from K ® o.

Proposition 2.10

Given a base K = (Ag, Pk), for any input sentence «, such that it is not the case that
F-oa,if K + a F L and Py + o ¥ L, then Vz € Smaz(Smaz(CR(R,))e)er, K F 2
and also W ® o F z.

The two propositions to follow, state important conditions concerning the elements of the base

K® a.

Proposition 2.11

Given a base K = (Ag, Pg), for any input sentence «, such that it is not the case that
F-a,if K + o F L and Px + o ¥ L, then Vz € R,, K ® a ¥ z.

Proposition 2.12

Given a base K = (Ag, Pr), for any input sentence «, such that it is not the case that
b —a, if a sentence 8 € K®a, then either 8 € Ag and-§ ¢ R;or f ¢ Ag and

«’

either B € Smaz(Smaz(CI(a))e)e, or B = a, or B € Smaz(Smaz(CR(R,))c)e;-

Below, we state the consistency theorem of the compromised revision K ® a.

.®By K + o F L, we mean that Ax |J Px U {e} ¥ L.
*I'The proofs omitted in this section are in the appendix of this paper.
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Definitions for Compromised Contraction and Revision:

e Compromised Contraction:

Given K = (Ag, Px), X', and CR(X'), such that
X' = X U RMin(Fail(Ag — X)o, ), where X € Ag,

K 0 X' = ((Smaz(Ag = X)e U Smaz(CR(X'))e), Prk)-

o Compromised Contraction for Revision:

Given K = (Ag, Pg), «a, and R, where
R, = R, U RMin(Fail(Ax — Ra)es), *

[K © Ria = (Ak-Rylar PK);

Alk-ry)a = Smaz(Ax — Ra)e; U Smaz(Smaz(CR(RL))ce)er-

o Compromised Revision Function:

Given K = (Ap, Pg), and an input sentence a,

K®a = (AK®Q, Pk),
where A,\.®a is such that one of the following conditions holds:

(Case 1) If @ € Ag or F -a, then Apg, = Ak.
(Case 2) If K + o ¥ L, then Apq, = Ax U {a}.

(Case 3) If Py + « F 1, then
Ax@e = Br U Smaz(Smaz(CI(a))e,)cs-

(Case4) If ' + o + L and Px + o F L, then
A®s = Smaz(Ax — Ry)ey, U Smaz(Smaz(CR(R,))cs)er U {}-

Figure 6: Summary of Definitions for Compromised Contraction and
Revision.
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Theorem 2.1 (Consistency )
Given a base K = (Ag, Pk), for any input sentence o, K ® o ¥ L.

Proof:

By Definition 2.17, we state that K ® o = (AKon Py ), where A]\,a
obtained conditioned to four cases.

In case 1, we have that if ¢ € Ag or F -a, then AK®Q = Apy. So, it is
guaranteed that K ® a ¥ L, since by assumption A ¥ L.

In case 2, we also guarantee that K ® o ¥ L, for AK.a = Ax UA{a},
and by hypotheses we have that K + a ¥ L.

In case 3, considering that Px + « F L1, we have that AI\’a = Ag
U Smaz(Smaz(CI(&))e,)e,- By Proposition 2.3, we have proved that Smaz(CI(a))e,
U Ax U Px ¥ L. Since by Remark 2.10, Smaz(Smaz(CI(a))c,)c, is a subset of
Smaz(CI(a))e,, and we also have that Smaz(Smaz(CI(a))e,)e U Ax U Pr ¥ L.
Hence, we guarantee that also in case 3 K®a ¥ L.

In case 4,if K + a v L and Px + o« ¥ L, then we have that AK®& =
Smaz(Ax — Ra)es U Smaz(Smaz(CR(R,))cs)e; U{a}. By Proposition 2.8, we
have proved that Smaz(Smaz(CR(RL))es)er U Smaz(Ax — Ra)es U{a} U P ¥ L.
Hence, it is already guaranteed for case 4 that K®«a ¥ L.

In conclusion, we have that for each of the four cases of Definition 2.17, we
prove that K®a ¥ L.

Persistence in Compromised Revision

Intuitively, the persistence notion - a well-established notion within belief revision approaches,
states that as much of the former base should survive a revision as possible. Hence, by revising
a base I’ with a sentence « and then retracting «, we should be able to derive from the
resulting base. all the consequences of K that do not directly contradict «.

As we would already expect, our system does not satisfy the original notion of persistence. In
our compromised approach to revision, it is not enough to say that we should be able to derive
from the revised base, all the consequences of the original base which do not contradict the
revised sentence «. Since we have extended the consistency notions of our system with the
presence of integrity constraints in the base, we should also consider them into account at this
point. We need to adjust the notion of persistence, to cater for our specific requirements of
compromised revision.

Below, we present a compromised version of the persistence notion, considering that we should
be able to derive from (K ® a) © {a} all the consequences of K that do not directly
contradict «a, and also that do not violate integrity contraints in K .
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Proposition 2.13 (Compromised Persistence)

Given a knowledge base K = (Ag, Pg) if we revise it by a sentence «, such that it is not
the case that + —a, then Yz such that K + z, (K ® a) O {a} F z, provided that
z # a andthat z ¢ R),.

Proof:
By Definition 2.17, we have that in case 1, K ® o = K. And, by
Definition 2.15, (K ® @) © {a} = K. So, in this case it is vacuously

guaranteed that Vz such that K + z, (K ® o) ©0 {a} F z. In
case 2, no sentence is retracted from the base K, to accomplish the revised base
K ® a,since Ay @, = Ax U {a}. And we have that by Definition 2.15,
(K ® a) 0 {a} = (A%, Pg), where A* = Ag U Smaz(CR({a}'))e, and no
element is retracted from the original base K. So, for case 2 also it is trivially
guaranteed that Vz suchthat K + z, (K ® a) O {a} b z,provided that z # a.
In case 3, (K ® o) = ((Ax U Smaz(Smaz(CI(a)c,)e,), Pr), where no element
is retracted from Ag,and o ¢ K ® a. So, (K ® a) © {a} = K ® «, and we
guarantee that Vz such that K F 2, (K ® @) O {a} + z. So, for the cases 1,
2 and 3 of the compromised revision function definition, we have that compromised
persistence is satisfied.3? From case 4 of Definition 2.17 and from Definition
2.15, (K ® a) 0 {a} = ((Smaz(Dp @ o — ¥es U Smaz(CR({a}))e ), Pr),
where Apq), = Smaz(Ag — Ry)es U Smaz(Smaz(CR(RL))es)e: U {a}. By
definition, the consequences of K which are not anymore available from (K ® «)
are the ones which allowed the elements of the set R, to be derivable, that is the
elements of the set R’ where R, C Apg. As proved in Proposition 2.11 Vz € R,
K®a ¥ z. So, we have that Yz such that (K ® «) © {a} F z, ¢ ¢ R, since
by retracting {a} from & ® « the elements of the set Smaz(CR({a}’))s do not
derive any element of R!,. To show that Vz such that (K ® a) O {a} F z,
¢ # a, we have that by Definition 2.15, it is guaranteed that if o was derivable
from K ® «, it is no longer derivable from (K ® a) © {a}. Hence, also for case
4 we have that compromised persistence is satisfied, and Vz such that K + z,
(K ® o) © {a} F z,under the condition that z # o and that = ¢ R, as
stated in the proposition.

Tenacity

As stated in [Han-91], the tenacity property characterizes their maxichoice internal partial meet
revision. This property can be presented in two forms, namely tenacity and eztreme tenacity.>
Below, we state both poperties’ presentations, considering a revision *.

Tenacity Vz € KL either 2 € K * «
or ~z € Cn(K * a).

Eztreme Tenacity Yz € Cn(K) either z € Cn(K * a)
or .z € Cn(K * a).

2]y, fact, for cases 1, 2 and 3, even the original notion of persistence would be satisfied.
*3In the AGM model, tenacity and extreme tenacity are logically equivalent.
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In compromised revision, the correspondent tenacity property: Vo € K either 2 € K ® «
or ~z € Cn(K ® a), does not hold.

By Definition 2.17, we have that in the cases 1, 2 and 3, no sentence is retracted from the
base K. So, Vo € K, z € K ® a. In case 4 of Definition 2.17, we can have that
¢ € K and = ¢ K® «, insofar z € Rj. This can be shown by Proposition 2.12. Iy
Proposition 2.12, we have proved that if z € K ® o, then either z € Ax and z ¢ R, or
¢ fn Ax and z € Smaz(Smaz(CR(R,))c)c;- In our case here, we know that z € Ag,
hence z ¢ Smaz(Smaz(CR(R,))cs)e;- Then, if we assume that ¢ ¢ K ® «, we can show
that = € R.. And we have also proved in Proposition 2.11 that Vz € R, K® a ¥ =z
Hence, it is already guaranteed that if z € K and z € R),then 2z ¢ K ® o and
¢ ¢ Cn(K ® a). By definition, z € R/ means that one of the three cases below holds:
Case (a): = € Rq, and the chosen-set has only one minimal element from each set min(5;)
of min(Llgy)t, such that {z,a} U Px + L.

Case (b): = € R,, and the chosen-set was obtained under the default option, such that
z€ X, for X CR,, and X is minimal w.r.t. C, such that XU {a} U Px + L.

Case (c): = € RMin(Fail(Ax — Ra)e,), and z € Y, such that ¥V + y and y € Ra.
Hence, YU {a} U Px + L, whereY is minimal w.r.t. C.

Since we defined that the elements of Py are sentences of the type ji’f w; — L1, where
w; is a proposition or its negation, we have that :

In case (a) above, when {z,a} U Px F L, we havethat z A a — L is an element in
Py. And ¢ A o — L implies that o — -z. Hence, in this case -z is a consequence of
K ® a, since when z € R, we havethat a € K ® «a.

In case (b), when XU {ae} U Po + L, forall z; € X, for j=1,---,m, we have that

£y A -+ A Zm A a— L isanelementin Pg. And z; A -+ A, A a — L implies
that @ — =-z; --- -Tp,. Analogously, in case (c), when YU {a} U Px + L, for all
y; € Y, for j=1,---,n, we have that y3 A -+ A yo A a— L is an element in Pg.
And y3 A -+ A yo A @ — L implies that @ — -y --- -Y,. For cases (b) and (c),

considering ¢ € X and =z € Y respectively, we can only say that {a} U I' + -z, where
in(b) T = X—{z} andin (¢) T = Y —{z}. For both cases @ € K ® «, but since
I C R, weknowthat R, ¢ K ® a. We also have proved that Vo € R, K ® a ¥ =.
Hence, it is already guaranteed thatif z € R,, 2 ¢ K ® o and z ¢ Cn(K ® «a). So,
we cannot have that I € K ® a, nor that T C Cn(K ® «). Hence, for cases (b) and (c)
we cannot show that -z is a consequence of K ® a.

In conclusion, for our compromised revision apporach, the tenacity property cannot be satisfied
for two basic reasons. First, our base K is not complete w.r.t. the language L, so that we
cannot assure that either z or -z € Cn(K), which would allow us to conclude that if
r ¢ Cn(Kk ® «)then -z € Cn(K ® a). Second, because of our notion of generating
inconsistency via the violation of integrity constraints, as well as via classical contradiction,
when a sentence z is retracted from the base K in order to accomplish the revision I ® a,
we know that z € R/ and we can prove that = ¢ Cn(K ® «a), as shown above, but we
cannot guarantee that -z € Cn(K ® a).

The Relationship between Revision and Contraction-

It seems plausible that we also try to establish a relationship between our notions of compromised
revision and contraction as, for instance, the Levi Idendity does in the AGM theory.

- For the AGM theory, the relation between revision and contraction is stated as follows:

K+xa = (K--a) + «
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where — and + denote the AGM contraction and expansion, respectively.

In the case of theory-bases, we can adapt this notion to:

K®a = (K-{-a}) U {a}.

For our compromised approach, we cannot simply say that K®a = (K O {-a})U {a}, since
we also have to consider the violation of integrity constraints. Moreover, our relation between
revision and contraction has to cater for the four possible cases of the input with relation to the
knowledge base, as stated in Definition 2.17. Hence, we have that the correspondence between
compromised revision and contraction is given as follows.

Definition 2.18 (Revision via Compromised Contraction)

A compromised revision of a knowledge base K = (Ak, Px) by a sentence «, can be seen

as a composition of a compromised contraction and an ezpansion, in the set theoretical sense,
such that:

K®a ='[K0 Ale U B,

where A and B are sets which are conditionally obtained as follows:

(Case1) If a € A or F-a,then A = 0 and B = 0.

(Case2) If K + o ¥ L, then A = 0 and B = {c}.

(Case3) If Pk + a - L, then A = 0 and B = Smaz(Smaz(CI(a))c,)c,-
(Cased4) If K + a + L and Py + a ¥ L, then A = R, and B = {a}.

Notes:

It is trivial to show that the substitutions of the given sets A and B in ([K 0 Al.)UB,
give the respective results for A®a, as stated in Definition 2.17.

Case 4 above, is the one that represents the success of our compromised revision, and also the
one which resembles most the relation between revision and contraction of AGM. By making
the proper substitutions for case 4, we have that K®a = [K O Ry ]« U {a}.

Remark 2.21

By [N 0 Al U B, we mean that B s included in the non-protected part Ay _y), of
[N O Ala, such that the minimal elements in B have higher priority than the magzimnal elements
of Alxv-a),. wrt. <.
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Correspondence between Postulates and Formalization Notation:

|| From Postulates [ From Formalization Simplified Form ”
Cl(a) Smaz(CIl(a))e, Cl'(a)
MazCI(a) Smaz(Smaz(CIl(a))e,)c, SmazCl'()
CR(R,) Smaz(CR(R.))cs CR'(R))
MazCR(R,) Smaz(Smaz(CR(RL))c)er || SmazCR'(R,)

Figure 7: Notation of Postulates x Formalization.

2.4.2 Correspondence between the Postulates and the Revision Function

In this section we show the correspondence between the compromised revision function
formalization and the proposed postulates for compromised revision, via some correspondence
theorems.

However, before we start with the theorem statements, some considerations concerning the
differences in notation and also in concepts, between the formalization and the proposed
postulates, need to be pointed out.

In the postulates (®1) to (®9), we have assumed that CI(a) is the largest set of consequences
of a w.rt. Ag,suchthat a ¢ Cl(a); CI(a) U Ag ¥ L and Cl(a) U Ax ¥ «a. This
set corresponds to Smaz(CI(a)), in our formalization. For simplicity of notation, we will
refer to it as CI’(a), in the theorems to follow.

In the postulates, MazCI(a) is a maximal subset of CI(a) w.r.t. K, such that
MazCI(a) J K ¥ L. In the formalization, we have adopted the safe-maximal subset notion,
instead of a maximal one. So, MazCI(c) is then restricted to Smaz(Smaz(CI(a))c,)e,. For
simplicity of notation, we will refer to it as SmazCI'(a).

In the postulates, we have assumed that. CR(R,) is the largest set of consequences of
all the sentences in Ra, w.rt. Ap, such that R, ¢ CR(R.); Vy € CR(R.),
Ax F yand (Ag — Ry) ¥ y; and VB € Ra, CR(Ry) U (Ax - Ro) ¥ B. In our
formalization, the same notion is represented by Smaz(CR(R.,)). For simplicity of notation,
we will refer to it as CR'(R.).

In the postulates, MazCR(R,) is amaximal subset of C R(R), such that MazCR(Rs) U (Ak -
R.) U Pr U{a} ¥ L. The safe-maximal subset correspondent to this one in our formalization
is Smaz(Smaz(CR(R.))e)e,- For simplicity of notation, we will refer to it as SmazCR'(Ry,).

Also in the postulates, Dgcr and D¢y were assumed to denote the differences
Der = CR(Ry,) — MazCR(R,) and D¢ = ClI(a) — MazClI(a). For our

formalization, we assume that they correspond to: Dy = CR'(R,) — SmazCR'(R;,) and
- DL, = CI'(a) — SmazCI'(a), respectively.

Since we have adopted the safe-maximal subset notion, instead of the notion of a maximal
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subset in our formalization, we cannot guarantee the maximality conditions of postulate (®9).
Therefore, the theorems below will only refer to the postulates (®1) to (®8), to make the
correspondence with the revision function.

Concerning the set of postulates for compromised revision, we have that postulates (®1),
(®6), (®7) and (®8) have to be satisfied by all the four cases of the revision function,
whereas postulates (®2), (®3), (®4) and (®5), correspond to the specific cases 1, 2, 4 and 3,
respectively, of the revision function, for obtaining the set A K®a

Theorem 2.2

If a contraction function is deﬁnéd as a compromised contraction © in Definition 2.16, then
the revision function ® obtained from Definition 2.17 satisfies the postulates (®1) to (®8).

Proof:
Considering the safe-maximality restrictions, by Definition 2.17, we have that:

In case 1, AK®U = Ag and K®a = K. So, postulate (®1) is trivially
guaranteed. Postulate (®2) is directly satisfied by case 1 of the revision function
definition. Postulates (®3), (®4) and (®5) do not apply for case 1. Postulate
(®6) is satisfied, since K®a = K and Px C K®a. Postulate (®7) holds for
case 1, as proved by Theorem 2.4.1. And Postulate (®8) trivially follows from
case 1, such that if o € Ak orif + =o,and a < f, then it is guaranteed that
Cn(K ® o) = Cn(K ® ) = Cn(K).

In case 2, Appa = Ag U {a}. So, postulate (®1) is guaranteed,
since K a = <A1\"®a’ Py). Postulate (®3) follows from case 2, where
AK®G = Ag U {a}, in the case that K + « ¥ L. So, it is guaranteed that
K ® o C K ® a in this case. Postulates (®2), (®4) and (®5) do not apply for
case 2. Postulate (®6) is satisfied, since Px C K®a. Postulate (®7) holds
for case 2, as proved by Theorem 2.4.1. And Postulate (®8) follows from case
2, such that if AI\'®a = Ag U {a} and a < p, then it is guaranteed that

Cn(K ® @) = Cn(K ® B).

In case 3, Apg, = Ak U SmazCI'(a). So, postulate (®1) is guaranteed,
since K ® a = (AK®Q, Py). Postulate (®5) is satisfied directly by case 3,
where Apg, = Ax U SmazClI'(a). Postulates (®2), (®3) and (®4) do not
apply for case 3. Postulate (®6) is satisfied, since Px C K®a. Postulate
(®7) holds for case 3, as proved by Theorem 2.4.1. And Postulate (®8) follows
from case 3, such that if « « [, then the consistent consequences introduced
by SmazCI'(e) in A @ Will correspond to the ones in SmazCI'(8), and it is
guaranteed that Cn(K ® a) = Cn(K ® B).

In case 4, AKQ = Smaz(Ak — Ra)e, U SmazCR'(R.)U{a}. So, postulate
(®1) is guaranteed, since K ® o = (Apgg FPk)- Postulate (®4) is
satisfied by case 4, from where it follows directly that a € AK®a and that
AI{@a = Smaz(Ax — Ry)e; U SmazCR/(R,) is defined according to this postu-
late, considering the restriction that Smaz(Ag — Ra)es corresponds to (Ax — R.),
under safe-maximality and condition cs. Postulates (®2), (®3) and (®5) do not
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apply for case 3. Postulate (®6) is satisfied, since Py C K®a. Postulate
(®7) holds also for case 4, as proved by Theorem 2.4.1. And Postulate (®8)
follows from case 4, such that if a < 3, then safe-maximality is considered as the
only choice. That is, provided that R, and Rg are guaranteed to have the same
chosen-set.

Hence, we have shown that the revision function ® satisfies the postulates

(®1) to (®8).

Theorem 2.3

Given a compromised contraction function O, as in Definition 2.16, for any knowledge base
K = (A, Pg), and any sentence «, a revision function is a compromised revision ®, as in
definition 2.17, if and only if it satisfies the postulates (®1) to (®S).

Proof:

In Theorem 2.2, we have shown that the revision function satisfies the
postulates (®1) to (®8). This proves the if-case of this theorem statement.
For the only-if-case, we need to show that in the cases that the safe-maximality
restrictions apply, if the postulates (®1) to (®8) are satisfied, then the revision
function is a compromised revision ®. Considering the safe-maximality restrictions,
and the four cases of Definition 2.17, we have that: Postulate (®1) is trivially
guaranteed. Postulate (®2) is directly satisfied by case 1 of the revision function
definition. Postulate (®3) follows from case 2, where Ap@, = Ax U {a}, in
the case that K 4+ a ¥ L. So, it is guaranteed that K ® a C K ® ain
this case. Postulate (®4) is satisfied by case 4, from where it follows directly that
a0 € Al®oa and that AK®a = Smaz(Ak — Ra)ey U SmazCR'(R),) is defined
according to this postulate, considering the restriction that Smaz(Ax — Ra)e,
corresponds to (A — Ra), under safe-maximality and condition ¢5. Postulate
(®5) is satisfied directly by case 3, where AI\"®a = Arg U SmazCI'(a).
Postulate (®6) follows from the general definition of compromised revision for all
the four cases, where K ® a = (AK®0, Pg). Postulate (®7) is proved to be
satisfied by Theorem 2.4.1. Postulate (®8) follows from cases 1, 2 and 3, and for
case 4 it also holds, when safe-maximality is considered as the only choice. That is,
in the case that R, and Rp are guaranteed to have the same chosen-set. This
ends our proof.

2.4.3 Summary
We have presented our compromised revision approach within a belief revision perspective, via

restricting existing revision specifications to our requirements. We have specified a base-theory
change operator ® for specific applications which allow for compromised solutions. We have
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defined a compromised contraction for revision and stated the relation betwen that contraction
and the compromised revision. Correspondence theorems and some propositions established
relevant relationships among functions, postulates and some relations of this characterization.

We re-state that the compromised revision ® presented here, does not stand as an alternative
method to the existing belief revision approaches, since it does not propose another general
belief revision model. Instead, ® proposes a specific revision method which applies some
compromise criteria for achieving the revised theory. Hence, the contribution of the ®
compromised revision re-enforces the importance of having different theory change operators
available for specific applications, in order to concieve the construction of a more realistic
framework for theory revision.

2.5 Discussions

In this section, we have reviewed the basic notions of belief revision and introduced a
compromised characterization to revision, within the philosophy of our approach.

The main results of this chapter are concentrated on the propositions and theorems of section
2.4.2. There, we have shown that compromised revision preserves consistency, and we have
established the correspondences between compromised revision and contraction, as well as
between the revision function and the proposed postulates for compromised revision.

In this formalization of our approach to conflicting updates, the compromised revision was
designed, based on a user-oriented choice for a minimal loss of information of the original base
I 3% and on an impartial solution, via the notion of safe-maximality, for the other retraction
choices among conflicting data. In most cases, those conflicting data arise when generating
candidates of compromised consequences to be added to the final revised base.3®

Our motivation to allow the user to choose a minimal element from each set of min(Ly)* to
be retracted from the set Ay, is grounded on the following arguments.

In the case that the sentences on the base Ay are not comparable by the partial ordering,
according to the application’s requirements, we lack the application background knowledge
in order to design a selection function for choosing one of the minimal elements.

By allowing the user to make the choice, we are not imposing that the contraction function
of our system is the only option to retract conflicting data.3® Instead, we are offering a
combined choice between the function and the application-oriented option, hoping for a
more adequate result.

The high persistence results that the user-option brings to our system, meets our basic goals
of contracting the former base minimally when revising it, while also catering for the
availability of the consistent consequences of either restracted sentences or conflicting
inputs. Furthermore, we gain in persistence without having to apply unjustified selection
mechanisms w.r.t. the current application.

For deciding among the minimal elements of the conflicting compromised consequences of either
o or R,, which should not be added to the revised base in order to keep consistency, we have
adopted an impartial solution via the safe-maximality notion. This notion restricts the notion

34See Definitions 2.11, 2.12 and 2.13.

3%GSee Definitions 2.9, and Remarks 2.6, 2.8, 2.10, 2.15, 2.18 and 2.20.

361, some cases where weak contraction functions, like the full meet for instance, are specified, the result
can be very restrictive.
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of a maximal subset relative to a certain condition. Instead of using a selection function, based
on an arbitrary ordering, to pick up one element of the set of minimals, we have adopted a
more impartial solution, which gets rid of the minimals which are involved in the failure of
the condition in question, by identifying the common elements among the subsets of minimal
elements.

The major adavantage of this option is that it does not present the problem of non-uniqueness
that we have with a maximal subset option, for instance. Also, it does not count with unjustified
orderings for selecting a particular minimal element to be retracted.

Moreover, if an application requires a total ordered base, instead of a partially ordered one, all
the safe-maximal sets of our system will be maximal. In this case also, the user will not be
required for any choice, since there would be only one minimal element for every subset of the
base that fails the underlying condition. Postulate (®9) would also be satisfied in this case.

A drawback of the safe-maximality solution comes when we have many elements in the base
which are not related by the ordering. In this case, such a solution could discard many more
sentences than the minimal number needed from the set of compromised consequences, to
satisfy the condition under question. Nevertheless, even in such a case, we believe that we
would not underestimate the system’s revision as a whole. Because we would be restricting
only the number of compromised consequences to be added to the revised base. In fact, this is
the special feature that our approach proposes as a compromised solution, in relation to other
revision methods, for keeping more information when retracting data, in the case of C'R'(R4),
or for allowing partial acquisition of inputs, in the case of CI'(a).

There are some important points which were not covered by this revision characterization, since
they were not central to the purpose of this chapter. Among those points, we can cite the
problem of the computational tractability of compromised revisions.

3 Final Remarks

In this paper. we have introduced the notion of compromised reasoning; and we have pointed
out some application areas, which may enjoy the benefits of compromised solutions. We
have presented the basic specification of our approach for the case of database updates,
describing the adopted policies for reconciling conflicting updates. We have also presented a
compromised characterization to revision under the perspective of belief revision, by establishing
some postulates and defining a base-theory revision function. Correspondence theorems and
some relevant propositions were presented, establishing the relationships among functions and
postulates.

Our main concern with the compromised revision formalization, was to characterize a specific
model which applies for the special case of having compromised solutions to conflicting base
updates, within the philosophy of our approach, and not to propose another general belief
revision model.

The specific revision method proposed here, re-enforces the importance of having different
theory change operators available for specific applications, in order to conceive the construction
of a more realistic framework for theory revision.
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3.1 Further Work

Under the compromised philosophy of the approach presented here, some other pieces of work
were developed by the authors. In [Dar-96b], Dargam introduces a realization of the CIU
system, using labelled databases, based on the framework of Labelled Deductive Systems [Gab-
94]. That work states formally all the concepts defined for the compromised policies of the
approach. Another formalization also studied by the author,3” addresses the problem of dealing
with inconsistency after the performance of a database transaction, within the context of
deductive databases. In this formalization, CIU is defined on the basis of the integrity-checking
method for deductive databases described in [SaKo-87].

A planned further work in this research line, is the investigation of compromised solutions for
modelling simultaneous occurrence of actions, where we have to tackle problems which arise
when reasoning about possible conflicts and combined effects of these actions. We believe that
this area can benefit much from compromising on solutions. We have studied the existing
approaches related to these aspects in the context of actions, but so far not much has been
developed on it.

.

In [Dar-96d], we made a brief comparison with Truth Maintenance Systems. But a more detailed
study on their differences, advantages and limitations, is also a planned future work.

In this paper, we have seen that compromised revision opens a lot of interesting points for
research and discussions. Among many ideas for further work on this subject, we are committed
to investigate in detail the relationship between the compromised revision and some existing
approaches to base revision, and also between the compromised revision and the update operation
introduced in [KaMe-92]. We believe that the results to be achieved through this planned work
can bring relevant contributions, concerning revision of bases which are ruled by integrity
constraints.
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A Auxiliary Proofs

This appendix presents proofs of some propositions cited in section 2 of this paper.

Proposition A.1 (Proposition 2.1)

Given a base K = (Af, Px), and an input sentence «, such that Ak W{a} F L, anditis
not the case that + -a, and the set Fail(Ak)e, = {S1, S2,--+,S1}, it is sufficient to retract

37See [Dar-96a].
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one element from each S; C Fail(Ak)c,, such that (Ax — S(Fail(Ak)e,))U{a} ¥ L,
where S(Fail(Ak)y,) = {zi| VS € Fail(Ak)c,, 3y € S;, such that z; = y}.

Proof:

By Remark 2.5, each set S; € Fail(Ag), is minimal w.r.t. C, such
that S;U{a} F L. Then, for any element y € S;, (Si— {y})U{a} ¥ L. This
is true for all S; € Fail(Ag),. S(Fail(Ag).,) is a set that contains one
element of each S; € Fail(Ak).,, for i=1,---,1. Therefore, it is guaranteed that
(Ax = S(Fail(Ak)e,)) U {a} ¥ L. '

Proposition A.2 (Proposition 2.2)

Given a base K = (Ak, Pg), for any input sentence o, such that Ay |J {a} = L, and it
is not the case that + -a, Smaz(Ag), +a ¥ L.

Proof:

By Definition 2.9 and Remark 2.6, if Smaz(Ak).,, = Ak, the statement
of the proposition is already guaranteed by condition ¢;. In the case that
Smaz(Ak)y, = Ax — RMin(Fail(Ak)., ), we have that in Proposition 2.1,
we have proved that (Ax — S(Fail(Ak)e)) U {e} ¥ L, where S(Fail(Ax)c,)
is any set which includes one element of each set S; € Fail(Af).,, for i=1,---,1.
By Definition 2.7, RMin(Fail(Ak).,) contains at least one minimal element
w.r.t. <, of each set S; of Fail(Ak).,. Hence, there exists a set S(Fail(Ax), ),
such that S(Fail(Ag),,) € RMin(Fail(Ak)., ). Then, by Proposition 2.1, we
have that (Ax — RMin(Fail(Ak),)) U {a} ¥ L. Hence, also when we have
that Smaz(Ag)e, = Axk— RMin(Fail(Ak)e, ), it is guaranteed that Smaz(Ak).,
UA{a} ¥ L.

Proposition A.3 (Proposition 2.3)

Given a base K = (Ag, Pg), for any input sentence «, such that Cl(a) s non-
empty, A + o F L, and it is not the case that + -~a, Smaz(Cl(a)), U Ax U Px ¥ L.

Proof:

By Definition 2.9 and Remark 2.8, in the case that Smaz(CI(a))., = CI(«), the
statement of the proposition is already guaranteed by condition c;. In the case that
Smaz(CI(a))., = CI(a) — RMin(Fail(CI(a)).,), we have by Definition 2.8 and
Remark 2.7, that each set S; € Fail(CI(a))., is a minimal subset of (C'I(«), such
that S;|JAx F L. Then, for any element y € S, (S; — {y}) UAx ¥ L. This is true
for all S; € Fail(CI(a))c,. By Definition 2.7, RMin(Fail(CI(a)).,) contains at
least one minimal element w.r.t. <, of each set S; of Fail(CI(a)),, for ¢ =1,---,m.
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Therefore, it is guaranteed that (CI(a) = RMin(Fail(CI(a))s,)) UAKk U Pk ¥ L,
Hence, also when Smaz(CI(a))., = CI(a)— RMin(Fail(CI(a))c,), it is guaranteed
that Smaz(Cl(a)), UAK U Pk ¥ L.

Proposition A.4 (Proposition 2.4)

Given a base K = (A, Pg), for any input sentence «, such that Cl(a) is non-empty,
and it is not the case that + -a, Smaz(Smaz(CI(a))e,)e, U Ak ¥ a.

Proof:

By Remark 2.10, in the case that Smaz(Smaz(CI(a))c,)e; = Smaz(CI(a))c,,
the statement of the proposition is already guaranteed by condition c3. In the case
that Smaz(Smaz(CI(a))e,)e; = Smaz(CI(a))e,— RMin(Fail(Smaz(CI(a))e;)es )
we have that by Definition 2.8,and Remark 2.9, each set $; € Fail(Smaz(CI(a))c,)c
is a minimal subset of Smaz(CI(a))e,, such that S;|J A F a. Then, for any element
y € Si, (Si —{y}))U Ax ¥ a. This is true for all §; € Fail(Smaz(CI(a))c,)eq- By
Definition 2.7, RMin(Fail(Smaz(CI(a))c,)c,) contains at least one minimal ele-
ment w.r.t. <, of each set S; of Fail(Smaz(CI(a))e,)cs, for ¢ = 1,---,n. Therefore,
it is guaranteed that Smaz(CI())e,— RMin(Fail(Smaz(CI(a))e,)e) U Ak
¥ «. Hence, also when we have that Smaz(Smaz(CI(a))e,)e; = Smaz(CI(a))e,—

RMin(Fail(Smaz(CI(a))e,)e ), it is guaranteed that Smaz(Smaz(CI(@))e,)e; U AK
¥ a.

Proposition A.5 (Proposition 2.5)

Given a base K = (A, Px), and an input sentence «, such that it is not the case that F -«
nor that {a} U Px + L. If {a} U K F L, then given a set Lo = {81, S2,-++, Sp}, it s
sufficient to retract one element of each set S; € Lq, for i =1,---,n, from AxU{a} such that
(Axu{a})=S(La)) U P ¥ L, where S(Ly) = {z:| V5 € Lo, Iy € 55, such that z; = y}.

Proof:

By Definition 2.8 and Remark 2.11,each S; € L, isa minimal subset of Ap,
such that S;U{a}UPr + L. Then, for any element y € 5;,if y is retracted from
S;, we have that ($; — {y})U{a}UPx ¥ L. Thisis trueforall S;€ L,. S(Lla)

is a set which contains one element of each S§; € L,. Therefore, it is guaranteed

that (Ax — S(La)) U{e} U Pk ¥ L.

Proposition A.6 (Proposition 2.6)
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Given abase K = (Ag, Pg), foranyset X C Ak, we have that Smaz(Ag—X),, ¥ z,Vz €
X.

Proof:

By Definition 2.9 and Remark 2.15, in the case that Smaz(Ax — X), =
(Ag — X), the statement of the proposition is already guaranteed by condition cs.
In the case that Smaz(Ax — X)e = (A — X) — RMin(Fail(Ag — X)), we have
that by Definition 2.8 and by Remark 2.14, each set S; € Fail(Ax — X)c, is
a minimal subset of (Ag — X), satisfying the condition (Ax — X') F z, for any
z € X. Then, for any element y € S;, (S: — {y}) ¥ z, Vz € X. This is true for
all S; € Fail(Ag — X)e. By Definition 2.3, the set min(Fail(Ax — X))
contains at least one element of each S5; € Fail(Ax — X), for i = 1,
.+« k. And by Definition 2.7, RMin(Fail(Ag — X)) contains at least one
element of each set min(S;) of min(Fail(Ax — X).). Hence, also when
Smaz(Ax — X)e = (Ax — X) — RMin(Fail(Ag — X)), it is guaranteed that
Smaz(Ax — X)e ¥z, Ve e X.

Proposition A.7 (Proposition 2.7)

Given a base K = (Ag, Pg), for any set X' C Ak, such that CR(X') is non-empty,
Smaz(CR(X'))e U Smaz(Ag — X)ey ¥ z, Vz € X'.

Proof:

By Definition 2.9 and Remark 2.18, if Smaz(CR(X')),, = CR(X'), the
statement of the proposition is already guaranteed by condition «¢s. In the
case that Smaz(CR(X"))e = CR(X') — RMin(Fail(CR(X'))e), we have that
by Definition 2.8 and Remark 2.17,each set S; € Fail(CR(X')), isa minimal
subset of CR(X'), satisfying the condition S; |J Smaz(Ax — X)., + z, for any
¢ € X'. Then, for any element y € 5; (8i—{y}) U Smaz(Ax — X)e
¥z, Vzr € X'. This is true for all S; € Fail(CR(X')),,. By Definition
2.3, the set min(Fail(CR(X')),) contains at least one element of each S; €
Fail(CR(X")es, for i = 1,---,k. By Definition 2.6, RMin(Fail(CR(X'))c)
contains at least one element of each set min(S;) of min(Fail(CR(X'))). Hence,
also when Smaz(CR(X'))e, = CR(X') — RMin(Fail(CR(X'))c ), it is guaranteed
that Smaz(CR(X"))ee U Smaz(Ax — X)), ¥z, Vo € X'

Proposition A.8 (Proposition 2.8)

Givenabase K = (Ak, Pk), and aninput sentence «, such that it is not the case that = =, and
a set R, asin Definition 2.13, such that Smaz(CR(R.)c is non-empty. If Py U {a} ¥ L
and K U {a} F L, Smaz(Smaz(CR(R,))c)e; U (Smaz(Ax — Ry)e, U{a}) U Pk ¥ L.

Proof:
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By Definition 2.20,in the case that Smaz(Smaz(CR(R,))cs)e; = Smaz(CR(RY))co
the statement of the proposition is already guaranteed by condition c¢7. When
Smaz(Smaz(CR(R.))es)e; = Smaz(CR(R.))ee— RMin(Fail(Smaz(CR(R,))e )er )
we have that by Remark 2.19, each set S; € Fail(Smaz(CR(R,))c;)c, is mini-
mal w.r.t. C, satisfying the condition S;J(Smaz(Ax — Ra)esU {a}) U Pk F L.
Then, for any y € Si, (Si—{y})U (Smaz(Ak — Ra)ey U{a}) UPr ¥ L.
This is true for all S; € Fail(Smaz(CR(R,))e)e;- By Definition 2.3, the set
min(Fail(Smaz(CR(R.))e)e;) contains at least one element of each of the sets

S; € Fail(Smaz(CR(R.))c)er, for 1=1,---,0.

And by Definition 2.7, RMin(Fail(Smaz(CR(R,))c )c;) contains at least one ele-
ment of each set min(S;) of minimal elements in min(Fail(Smaz(CR(R,))cs)er)-
Hence, also in the case that Smaz(Smaz(CR(RL))c)er = Smaz(CR(RY))e; —
RMin(Fail(Smaz(CR(R,))cs)er ), it is guaranteed that
Smaz(Smaz(CR(RL))es)er U (Smaz(Ak — Ra)es U{a}) U Pk ¥ L.

Proposition A.9 (Proposition 2.9)

Given a base K = (A, Pr), for any input sentence a, such that it is not the case that + —-a,
and CI(a) is non-empty,if P + a + L, then Vz € Smaz(Smaz(Cl(a)),)e, K ¥ =
and K ® o F =z

Proof:

By Definition 2.10, we guarantee that all the elements in CI(a) are not
originally present or derived from K. By Definition 2.9 and Remark 2.10, we
have that Smaz(Smaz(CI(a))s,)e; C CI(a). And by Definition 2.17, we state
that in the case that Py 4+ o F 1, K ® a = <A1\"®a’ Pr), where
Smaz(Smaz(Cl(a))e)es & Ag@a- Hence, Ve € Smaz(Smaz(CI(a))e,)es,
K ¥F rz,and N ® a F =z

Proposition A.10 (Proposition 2.10)

Given a base K = (A, Py), for any input sentence «, such that it is not the case that
F-a,if K + o b L and Py + o ¥ L, then Vo € Smaz(Smaz(CR(R,))c)ers K F 2
and also W ® o + z.

Proof:

By Definition 2.9 and Remark 2.20, Smaz(Smaz(CR(R,))c)e, 15 a
safe maximal subset of CR(R.), relative to conditions c¢ and c7. So,
Vy € Smaz(Smaz(CR(R.))e)ers K by, since CR(R,), is a set of consequences
of R/, and by Definition 2.13 and Remark 2.11, R, C ly,and L, C Ag. By
Definition 2.17,in the case that K + o F L and Px + a ¥ 1, we state that
K®a = (Ak@a Pi), where Smaz(Smaz(CR(R,))es)er C Apg,- Hence,
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Vz € Smaz(Smaz(CR(R,))c)ers K ® a F z. Therefore, we guarantee that
Vz € Smaz(Smaz(CR(R.,))cs)er;, both KF 2 and K ® a + z.

Proposition A.11 (Proposition 2.11)

Given a base K = (Ag, Pk), for any input sentence «, such that it is not the case that
F-a,if K + at L and Pk + a ¥ L, then Vz € R,, K ® a ¥ =z.

Proof:

By Definition 2.14, R, = R, RMin(Fail(Ag—Ry)c, ), where RMin(Fail(Ax—
R.)e;) is asubset of Ax—R, and R, ¢ Ak —Ry. By Definition 2.17, in the case
that K + a v L and Px + o ¥ L, westatethat  ® a = (A]\,®a, Py,
where Apq, = Smaz(Ak — Ra)e, U Smaz(Smaz(CR(R,))e)e; U {a}. By
Definition 2.9 and Remark 2.15, R, Q Smaz(Ag — Ra)e, and it is shown in
Proposition 2.6 that Smaz(Ag — Ra)e; ¥ z, Yz € R,y. By Definition 2.9 and
Remark 2.20, Smaz(Smaz(CR(R.))cs)e; is a subset of Smaz(CR(R,))c,, and
Proposition 2.7 has proved that Smaz(CR(R,))c U Smaz(Ax — Ra)ey ¥ =z,
Vz € R!,. Since R, contains the elements that have to be retracted from Ag
in order to accomplish the insertion of a and keep consistency, it is then also
guaranteed that AK®a ¥ z, Vz € R,. Hence, K®a ¥ z, Yz € R..

Proposition A.12 (Proposition 2.12)

Given a base K = (Ag, Pg), for any input sentence «, such that it is not the case that
F —a, if a sentence 8 € K®a, then either 3 € Ag and § ¢ R,;or f ¢ Ax and
cither 3 € Smaz(Smaz(CI(a))e,)es, or B = a, or B € Smaz(Smaz(CR(R]))cs)c;-

Proof:

By Definition 2.17, we state that K®a = (A]\-®a, Pr), where in case
1, A}\'®u = Apg. This means that V8 € K®«a, B € Ap. For case
2, A,\.®a = AgU{a}. In this case, V8 € K®a, either § € Ay or
B = a. In case 3, Ay = Ag USmaz(Smaz(CI(a))e,)e,- This means that
VB € K®a, either 8 € Ak or 8 € Smaz(Smaz(CI(«))c,)e,- Finally, for case 4,
A@®a = Smaz(Ax — Ra)es U Smaz(Smaz(CR(R,))ce)e; U{a}. By Definition
2.9 and Remark 2.15, Smaz(Ag — Ru)e, is equivalent to Ag — R, since
R, = R,URMin(Fail(Ax — Rq)c;). Then, VB € K®q, either 3 € Ax and
B ¢ R, or B € Smaz(Smaz(CR(R,))c)c;- Hence, all the four cases of Definition
2.17 satisfy the proposition statement above.
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