
1

Bounding the Attractor of an IFS

Abbas Edalat, David W.N. Sharp and R. Lyndon While1

Imperial College Research Report DoC 96/5

email: {ae, dwns}@doc.ic.ac.uk, lyndon@cs.uwa.edu.au

April 16, 1999

Keywords: Algorithms, analysis of algorithms, iterated function systems, fractals.

Abstract

Fractal images defined by an iterated function system (IFS) are specified by a finite number of
contractive affine transformations.  In order to plot the attractor of an IFS on the screen of a digital
computer, it is necessary to determine a bounding area for the attractor.  Given a point on the plane, we
obtain a formula for the radius of a circle centred on that point that contains the attractor of the IFS.
We then describe an algorithm to find the point on the plane such that the bounding circle centred on
that point has minimum radius.

1   Introduction

Iterated function system (IFS) fractal images, as popularised by Barnsley[1, 2], are constructed from

sheared, reduced, rotated and displaced copies of themselves.  For example, the curly image in Figure 1

is constructed from two transformed copies of itself: the blackened rightmost curl and the less black

remainder.  The blackened rightmost curl is a reduced, rotated and displaced copy of the whole image,

produced by applying transformation T 1
.  The remainder of the image is produced by applying

transformation T 2
, which shrinks the whole image and rotates it anti-clockwise.  The curly image is the

attractor of the IFS specified by the transformations T 1  and T 2 .

Various algorithms exist for plotting fractal images from their affine transformations[1, 4, 7, 8, 9, 10].

However, in order to plot a fractal image on the screen of a digital computer, all of these algorithms

require advance knowledge of a bounding area inside which the image is known to lie.  In this paper

we derive a formula which expresses the dimensions of a bounding circle for the attractor of an IFS in

terms of the parameters of its transformations.  Following the approach of [5], in Section 3 we derive
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an upper bound for the radius of a bounding circle centred at an arbitrary (given) point on the plane.  In

Section 4 we describe an algorithm for determining the centre at which the radius of the bounding circle

is minimum.  Section 5 describes some results and Section 6 concludes the paper.

Bounding 
area

T 1

T 2

Figure 1  The fractal image curly and its transformations.

2   Definitions

An IFS is specified by n  contractive, affine transformations T i
, 1 ≤ i ≤ n .  Each transformation T i

 has

the form 
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+ ei (1 − d i )) δ

(ci ei
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where δ = (1 − a i )(1 − d i ) − bi ci
.

The attractor of an IFS can be obtained as follows[6].  Let D  be any disk with T i ( D ) ⊆ D , 1 ≤ i ≤ n .

The attractor is given by

∩
m≥ 0 T

m
( D )

where T ( A) = ∪
i =1

n
T i ( A) .

The effect of T i
 on two points ( x1 , y1 )  and ( x2 , y2 )  is to map them to two points ( x1' , y1' )  and

( x2 ' , y 2 ' )  that are closer together than the original points.  The contractivity factor of T i
 is the least
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number s i  such that ( x1 ' −x 2 ' )
2 + (y1 ' −y2 ' )

2 ≤ s i ( x1
− x 2 )

2 + ( y1
− y2 )

2 .  It is well known that[see,

for example, 3]

s i = α +β + (α − β )
2 + γ 2

where α = (a i

2 + ci

2 ) 2 ,β = (b i

2 + d i

2 ) 2 ,γ = a ib i
+ cid i

.

3   A bounding circle for the attractor of an IFS

A bounding circle for an IFS is a circle that contains the attractor of the IFS.  Given a point u = ( x , y) ,

we shall obtain a formula for the radius of a bounding circle centred on u .  We start by considering one

transformation of the IFS and then consider the IFS as a whole.

3.1   A bounding circle for one transformation

Consider the effect of a transformation T i
 on an arbitrary point p  that lies on or inside a circle Bi

centred on u .  T i
 maps u  to the point u i

 and p  to the point p i
, as shown in Figure 2.  We denote the

radius of Bi  by RBi
(u) .

1.  Bi  is a bounding circle for T i  if p i  lies on or inside Bi , i.e. if

up i ≤ RB i
(u)

2.  By the triangular inequality, up i
≤ uu i

+ u i pi
, and we have

up i
≤ RB i

(u)   if  uu i
+ u i pi

≤ RB i
(u )

3.  As T i  is contractive, u i p i ≤ siup , and we have

uu i + u i pi ≤ RB i
(u )   if  uu i + siup ≤ RB i

(u )

4.  As p  lies on or inside Bi
, up ≤ RBi

(u) , and we have

uu i + siup ≤ RB i
(u )   if  uu i + si RB i

(u ) ≤ RB i
(u)

Solving for RBi
(u)  gives

RBi
(u) ≥

uu i

1 − si

Hence, Bi
 is a bounding circle for T i

 if RBi
(u) ≥

uu i

1 − si

.
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Note that uu i  is easily calculated from the coordinates of u .  Clearly, RBi
(u)  is minimum when the two

sides of the inequality have the same value.  Figure 2 illustrates the construction.

Bi

u
u i

p

p i

Figure 2  The circle Bi  is a bounding circle for T i  if RBi
(u) ≥

uu i

1 − si

.

3.2   A bounding circle for an IFS with n  transformations

Applying the formula for RBi
(u)  to each of the n  transformations individually gives n  concentric

circles centred on u .  Clearly, the largest of the concentric circles is a bounding circle B  for the IFS.

Its radius is given by

RB (u ) = max i =1

n uu i

1 − s i

4   Choosing an optimal centre for the bounding circle

The quality of the upper bound given by the formula for RB (u )  depends acutely on the choice of u .

We shall describe an algorithm for deriving the optimal choice of u  for a given IFS.  We start by

considering an IFS with two transformations and then extend the algorithm to the general case.

4.1   An optimal centre for an IFS with two transformations

We wish to find u = ( x , y)  where RB (u )  is minimum.  Let

zi ( x , y) = RB i

2
( x , y) =

( a i x + b i y + ei − x )2 + ( ci x + d i y + f i − y) 2

(1 − si )2
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The value of zi ( x , y)  for a transformation T i  forms an elliptic cone as ( x , y )  is varied, with the vertex

of the cone at the fixpoint of T i
.  The cones for the two transformations defining curly are shown in

Figure 3.

Figure 3  The elliptic cones for the two transformations defining curly
for zi ( x , y) ≤ 14500 .  The intersection of the two cones is clear.

The two cones meet in a conic section.  The point ( x , y , z i ( x, y ))  in the intersection that gives the

minimum value of RB ( x , y )  is the optimal centre for the bounding circle.  Using Lagrange’s multipliers,

this is obtained by minimising the function

g( x , y,λ ) = z1 ( x, y ) + λ ( z1( x , y ) − z 2 ( x , y))

with respect to x , y  and λ  and solving numerically for x  and y .

4.2   An optimal centre for an IFS with n  transformations: Algorithm Ε

In the case of three transformations, the optimal centre lies either at the intersection of the three cones

(if they meet), or at the minimum of one of the three pairwise intersections.  For each candidate centre

( x , y ) , we calculate RB ( x , y ) , and the candidate with the smallest value is the optimal centre.

This algorithm generalises to an IFS with more than three transformations in the obvious manner.  For

n  transformations, the optimal centre lies either at the intersection of any k  cones, 3 ≤ k ≤ n  (if they
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meet), or at the minimum of one of the n
C 2  pairwise intersections.  For each candidate centre ( x , y ) , we

calculate RB ( x , y ) , and the candidate with the smallest value is the optimal centre.  We call this

Algorithm Ε .

Note that if a set of k  cones, 3 ≤ k < n , does not meet, then no superset of that set meets.  Algorithm

Ε  is O (
n
C2+

n
C 3 ) , i.e. O (n3 )  in the best case and O ( nC i

i =2

n

∑ ) , i.e. O (2n )  in the worst case, for n

transformations.  The worst case is encountered rarely.

5   Results

We exercised Algorithm Ε  on a range of fractals to get an idea of the tightness of the bounding circles.

We used Algorithm Ε  to generate a bounding circle for a fractal, then plotted the fractal and

determined the tightest possible bounding circle using a search technique.

We found that, for typical fractals, Algorithm Ε  generates bounding circles that are at most 70% larger

than the tightest possible.  Some examples are illustrated in Figures 4(a)—(d).  The outer circle in each

figure is derived using Algorithm Ε  and the inner circle is the tightest possible bounding circle.

Numerical results are given in Table 1 and the parameters for the fractals are given in Appendix A.
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Figure 4(a)  Bounding circles for curly. Figure 4(b)  Bounding circles for fern.
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Figure 4(c)  Bounding circles for square. Figure 4(d)  Bounding circles for square rotated π / 4 .

Radius Centre

Curly

Fern

Square

Square + π/4

(70.2, 61.7)

Algorithm Ε Search

56.4

76.5 (61.2, 71.5)

51.4

51.4

(62.0, 62.0)

(62.0, 62.0)

51

55

Centre

(73, 60)

(58, 51)

(62, 62)

(62, 62)52

48

Diff.

11%

39%

0%

7%

Radius ( ±1)

Table 1  Bounding circles for the fractals illustrated.

The square fractal is instructive.  The basic square is specified by four transformations, each one

mapping the square to one of its quadrants.  None of the transformations rotate the square and

Algorithm Ε  is able to derive the tightest possible bounding circle exactly (within measuring error).  If

we introduce a rotation of π / 4  to each transformation, we get the attractor shown in Figure 4(d),

which clearly occupies a smaller area than the original.  However, Algorithm Ε  derives the same

bounding circle: in fact it derives the same bounding circle whatever rotation is introduced.

6   Conclusions

Plotting a fractal image from its transformations on the screen of a digital computer requires advance

knowledge of a bounding area for the image.  We have derived a formula that expresses the radius of a

bounding circle for a fractal in terms of the parameters of the transformations specifying the fractal and

described an algorithm for finding the point at which a bounding circle should be centred to minimise its
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radius.  Experiments indicate that this algorithm gives reasonable results for typical fractals.  This will

improve the effectiveness of algorithms that plot IFS fractal images.
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Appendix A

A.1   Curly

Curly is specified by two transformations with the following parameters.

a b c d e f

T 1
-0.18 0.18 -0.18 -0.18 113.46 90.52

T 2
0.89 0.33 -0.33 0.89 -13.64 27.28

A.2   Fern

Fern is specified by four transformations with the following parameters.

a b c d e f
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T 1
0.85 0.09 -0.02 0.85 0.68 3.54

T 2
0.00 0.00 0.00 0.16 67.64 86.34

T 3
0.20 -0.60 0.10 0.22 115.66 60.37

T 4 -0.15 0.64 0.11 0.24 11.50 66.89
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A.3   Square

Square is specified by four transformations.  With a rotation of θ , they have the following parameters.

a b c d e f

T 1

cos θ
2

−
sin θ

2

sin θ
2

cos θ
2

31( 2 − cos θ + sin θ ) 31( 2 − cos θ − sin θ )

T 2

cos θ
2

−
sin θ

2

sin θ
2

cos θ
2

31( 2 − cos θ + sin θ ) 31( 4 − 2 − cos θ − sin θ )

T 3

cos θ
2

−
sin θ

2

sin θ
2

cos θ
2

31( 4 − 2 − cos θ + sin θ ) 31( 2 − cos θ − sin θ )

T 4

cos θ
2

−
sin θ

2

sin θ
2

cos θ
2

31( 4 − 2 − cos θ + sin θ ) 31( 4 − 2 − cos θ − sin θ )


