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Abstract

Fractal images defined by an iterated function system (IFS) are specified by a finite number of
contractive affine transformations. In order to plot the attractor of an IFS on the screen of a digita
compuiter, it is necessary to determine a bounding area for the attractor. Given a point on the plane, we
obtain a formula for the radius of a circle centred on that point that contains the attractor of the IFS.
We then describe an agorithm to find the point on the plane such that the bounding circle centred on
that point has minimum radius.

1 Introduction

Iterated function system (IFS) fractal images, as popularised by Barnsley[1, 2], are constructed from
sheared, reduced, rotated and displaced copies of themselves. For example, the curly image in Figure 1
is constructed from two transformed copies of itself: the blackened rightmost curl and the less black
remainder. The blackened rightmost curl is a reduced, rotated and displaced copy of the whole image,
produced by applying transformation T,. The remainder of the image is produced by applying
transformation T, which shrinks the whole image and rotates it anti-clockwise. The curly image isthe
attractor of the IFS specified by the transformations T, and T, .

Various agorithms exist for plotting fractal images from their affine transformationg[1, 4, 7, 8, 9, 10].
However, in order to plot a fractal image on the screen of a digital computer, al of these algorithms
require advance knowledge of a bounding area inside which the image is known to lie. In this paper
we derive a formula which expresses the dimensions of a bounding circle for the attractor of an IFS in

terms of the parameters of its transformations. Following the approach of [5], in Section 3 we derive
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an upper bound for the radius of a bounding circle centred at an arbitrary (given) point on the plane. In
Section 4 we describe an algorithm for determining the centre at which the radius of the bounding circle

isminimum. Section 5 describes some results and Section 6 concludes the paper.
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Figure 1 Thefractal image curly and its transformations.

2 Definitions

An IFSis specified by n contractive, affine transformations T,, 1£i £n. Each transformation T, has

the form 69( & 'OEE‘O+? O. Each T. has a fixpoint 890 ot is mapped to itself under the
ec, dgeyo ' ey, o

transformation, i.e. eg ? o'§9<o +§§0. Solving the equation defining @9(00 gives
ey,g ec dgey,o efg ey, 9

6_g@nf ted- d))/do
ey, €(ce + f(1- a))/de
whered =(1- a)(@- d.) -
The attractor of an IFS can be obtained as follows[6]. Let D be any disk with T.(D)i D, 1£i £n.

The attractor is given by
ng on(D)
where T(A) =E'_T.(A).

The effect of T, on two points (x,,y,) and (x,,y,) is to map them to two points (x,',y,') and

(x,',y,") that are closer together than the original points. The contractivity factor of T, is the least



number s, such that J(xl'- x,) -y, ) £Si—\/(xl- x,). +(y,- y,)" . Itiswell known that[see,
for example, 3]

5 :Ja +b ++/(@a- b)’ +g°

wherea =(a’ +c¢*)/2,b=(b* +d’)/2,g=ab +cd,.

3 A bounding circlefor the attractor of an IFS

A bounding circle for an IFSisacircle that contains the attractor of the IFS. Given apoint u =(x,y),
we shall obtain aformulafor the radius of a bounding circle centred on u. We start by considering one

transformation of the IFS and then consider the IFS as awhole.

3.1 A bounding circlefor one transformation

Consider the effect of a transformation T, on an arbitrary point p that lies on or inside a circle B
centredonu. T, mapsu tothepoint u and p tothe point p, , asshownin Figure 2. We denote the
radiusof B by R; (u).

1. B isaboundingcirclefor T, if p, liesonorinside B, i.e. if
up, £ R, (u)

2. By thetriangular inequality, up, £ uu, +u, p , and we have
up, £ R, (u) if uu, +up £R, (u)

3. As T, iscontractive, u.p, £ sup , and we have

uu, +up £ Rg (u) If uu, +sup £R, (u)

4. As p liesonorinside B, up £ R, (u), and we have

uu, +sup £ R, (u) if uu, +sR, (U) ER; (u)

Solving for R, (u) gives

R, (u) ¥ ——=

1-5

. . . . uu.
Hence, B isabounding circlefor T, if R, (u) 3 —-.
{ 1_



Note that uu, iseasily calculated from the coordinates of u. Clearly, R, (u) is minimum when the two

sides of the inequality have the same value. Figure 2 illustrates the construction.

Figure2 Thecircle B isabounding circlefor T, if R, (u) 3 1“—“'—

3.2 A boundingcirclefor an IFSwith [n] transfor mations

Applying the formula for R, (u) to each of the n transformations individualy gives n concentric
circles centred on u. Clearly, the largest of the concentric circlesis a bounding circle B for the IFS.
Itsradiusis given by

uu,
R (u) = max i”:l—‘—_

4 Choosing an optimal centre for the bounding circle

The quality of the upper bound given by the formula for R,(u) depends acutely on the choice of u.
We shall describe an agorithm for deriving the optimal choice of u for a given IFS. We start by
considering an IFS with two transformations and then extend the algorithm to the general case.

4.1 An optimal centrefor an IFSwith two transfor mations

Wewish to find u =(x,y) where R (u) isminimum. Let
(ax+by+e- x)” +(cx+dy+1f - y)*
1-s)

z(x,y) =Rq (X,y) =



Thevaueof z(x,y) for atransformation T, forms an elliptic cone as (x,y) is varied, with the vertex
of the cone at the fixpoint of T,. The cones for the two transformations defining curly are shown in

Figure 3.
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Figure 3 The éliptic cones for the two transformations defining curly

for z(x,y) £14500 . Theintersection of the two conesis clear.
The two cones meet in a conic section. The point (x,y,z,(x,y)) in the intersection that gives the
minimum value of R (x,y) isthe optimal centre for the bounding circle. Using Lagrange’s multipliers,

thisis obtained by minimising the function
g(X! y!l ) = Zl(X!y) +I (Zl(X,y) - ZQ(X! y))
with respect to x, y and | and solving numericaly for x and y.

4.2 An optimal centrefor an IFSwith [n] transformations. Algorithm

In the case of three transformations, the optimal centre lies either at the intersection of the three cones
(if they meet), or at the minimum of one of the three pairwise intersections. For each candidate centre
(x,y), we calculate R,(x,y) , and the candidate with the smallest value is the optimal centre.

This agorithm generalises to an IFS with more than three transformations in the obvious manner. For

n transformations, the optimal centre lies either at the intersection of any k cones, 3£k £n (if they



meet), or at the minimum of one of the "c, pairwise intersections. For each candidate centre (x,y), we
caculate R,(x,y), and the candidate with the smallest value is the optimal centre. We cal this
Algorithm E.

Note that if aset of k cones, 3£ k <n, does not meet, then no superset of that set meets. Algorithm
E is 0('c,+"C,), i.e. O(n’) in the best case and O(§ "C), i.e. 0(2") in the worst case, for n

transformations. The worst case is encountered rarely.

5 Reaults

We exercised Algorithm E on arange of fractals to get an idea of the tightness of the bounding circles.
We used Algorithm E to generate a bounding circle for a fractal, then plotted the fracta and
determined the tightest possible bounding circle using a search technique.

We found that, for typical fractals, Algorithm E generates bounding circles that are at most 70% larger
than the tightest possible. Some examples are illustrated in Figures 4(a)—(d). The outer circle in each
figureis derived using Algorithm E and the inner circle is the tightest possible bounding circle.

Numerical results are given in Table 1 and the parameters for the fractals are given in Appendix A.
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Figure 4(a) Bounding circlesfor curly. Figure 4(b) Bounding circlesfor fern.
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Figure 4(c) Bounding circlesfor square. Figure 4(d) Bounding circlesfor squarerotated p / 4.
Algorithm E Search Dif.
Radius Centre Radius ( £1) Centre
Curly 56.4 | (70.2,61.7) 51 (73, 60) 11%
Fern 76.5 | (61.2, 71.5) 55 (58, 51) 39%
Square 51.4 | (62.0,62.0) 52 (62, 62) 0%
Square+ p/4 | 514 | (62.0,62.0) 48 (62, 62) 7%

Table1 Bounding circlesfor the fractalsillustrated.

The sguarefracta is instructive. The basic square is specified by four transformations, each one
mapping the square to one of its quadrants. None of the transformations rotate the square and
Algorithm E is able to derive the tightest possible bounding circle exactly (within measuring error). If
we introduce a rotation of p /4 to each transformation, we get the attractor shown in Figure 4(d),
which clearly occupies a smaller area than the original. However, Algorithm E derives the same
bounding circle: in fact it derives the same bounding circle whatever rotation is introduced.

6 Conclusions

Plotting a fractal image from its transformations on the screen of a digital computer requires advance
knowledge of a bounding area for the image. We have derived a formula that expresses the radius of a
bounding circle for a fractal in terms of the parameters of the transformeations specifying the fractal and

described an agorithm for finding the point at which a bounding circle should be centred to minimise its



radius. Experiments indicate that this agorithm gives reasonable results for typical fractals. This will

improve the effectiveness of agorithms that plot IFS fractal images.
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Appendix A
A.1 Curly

Curly is specified by two transformations with the following parameters.

a b C d e f
T, -0.18 018 -0.18 -0.18 11346 90.52
T 0.89 033 -033 089 -1364 27.28

2
A.2 Fern
Fern is specified by four transformations with the following parameters.

a b C d e f



N

w

— -4 44 -

IN

085 009 -002 08 068 354
000 000 000 016 6764 86.34
020 -060 010 022 11566 60.37

-015 064 011 024 1150 66.89



A.3 Sguare

Squareis specified by four transformations. With arotation of q, they have the following parameters.

a b c d e f

T, cozq - sinzq sir;q cozq 31(~/2 - cosq +sinQ) 31(+/2 - cosq - sinq)
. Cozq _S"‘zq S";q Cozq 31(v2- cosq +sing)  31(4- V2 - cosq - sinQ)
T, Cozq -Sinzq Sir;q Cozq 31(4- V2 - cosq+sinq)  31(v2- cosq- sinq)
T, Cozq _Sinzq S";q Cozq 31(4- 2 - cosq +sing) 31(4- +2 - cosq - sinq)

10



