Enhancements To A Pitch Detection Algorithm
Dr David Sharp

Technical Report 96/9

Dept of Computing

Imperial College of Science, Technology & Medicine
180 Queen's Gate
London SW7 2BZ

9th October 1996

Abstract

This paper describes some enhancements to a pitch detection algorithm presented in [Sharp
93]. The enhancements reduce flickering between adjacent semitones when the algorithm is
used as part of a pitch to MIDI converter. The enhancements also permit less memory space to
be used and minimise accidental octave jumping. The enhancements illustrate the use of voting
techniques for pattern recognition applications.

1 Introduction

The pitch period of a repetitive waveform is the distance between corresponding parts of the
waveform and is shown in Figure 1.

——

lJ d

Figure 1 The Pitch Period, P, of a repetitive waveform

The pitch period of a waveform is of use in a variety of applications including the following;

. musical applications - conversion of singing and instrumental playing to music
notation, real-time electronic music tutors, real-time toys that react to sound input,
enhanced Karaoke machines and other electronic musical games,

. medical applications - heart beat monitoring, electrocardiogram analysis, breathing
monitoring,

. engine monitoring applications - detecting faults that create a change in engine sound,
and

. many other applications in which there are waveforms to be analysed or conclusions to

be drawn from various pieces of evidence in which variations of the voting techniques
presented here are applicable.



In [Sharp 93] an algorithm is presented which calculates the pitch period of a repetitive
waveform using a technique that treats the waveform as if it were an image and votes for
distances at which features of the waveform repeat. These distances are candidate pitch periods
for the waveform. The voting scheme is arranged so that the candidate pitch period that
receives the most votes is the pitch period of the waveform. For a sound waveform, the pitch
period can be converted to a corresponding musical frequency or note. The musical
frequency/note information can be as the basis for pitch to MIDI conversion, transcription of
audio to music notation, feedback for a musical tutor, advanced Karaoke interactions or for
other purposes.

2 Enhancing The System

The prototype system described in [Sharp 93] samples the input waveform at 11kHz so each
sample is 91us from the previous one. Each voting bucket bj, i=0, 1, ... corresponds to a
candidate pitch period i*91us. The pitch period of the bucket that receives the most votes can
be converted to a musical semitone using a simple formula based on A4=440Hz and the fact
that you multiply frequency by 27(1/12) to go up in pitch by a semitone.

The system splits the incoming audio stream into frames of a few milliseconds, determines
candidate pitch periods and votes for them. The candidate pitch period that receives the most
votes is winning pitch period for the frame. The votes are then cleared and the next frame is
processed.

One problem with the system is that if the input pitch falls exactly between two semitones then
a similar number of votes will be cast for buckets corresponding to the upper semitone and
buckets corresponding to the lower semitone. This leads to some instability and there is a
tendency for the winning pitch period of the system to alternate between the upper and lower
semitones depending on which semitone got a few extra votes to give it a marginal win. This
can produce a trilling effect on a MIDI output from the system in response to a steady input
tone and this is undesirable. This paper shows how the voting can be organised to eliminate
this problem.

To save memory it is possible to rearrange the voting buckets so that instead of having many
buckets (one for each 91uS step), there is a voting bucket for each semitone (or quarter-tone)
of the scale. This reduces the number of buckets to 12 (or 24 for quarter-tones).

A separate set of buckets are provided to accumulate votes for the octave in which the candidate
pitch period lies and the buckets are arranged to avoid accidental octave-jumping as explained
in the next section.

For pitch to MIDI conversion, the winning pitch bucket and octave are used to calculate which
MIDI note to sound or silence at the end of each frame.

3 Enhanced Voting Strategy

The normal scale consists of 12 semitones denoted Sg = {C, C#, D, D#, E, F, F#, G, G#, A,
A#, B}. We denote a quarter-tone scale by the set of 24 quarter-tones Sq = {C, C++, C#,
C#++, D, D++, D#, D#++, E, E++, F, F++, F#, F#++, G, G++, G#, G#++, A, A++, A#,
A#++, B, B++}. Here the symbol + may be thought of as increasing the pitch by one eight of
a tone, hence ++ increases the pitch by one quarter of a tone. The note C++ may be thought of
as lying in the crack between C and C# on a piano keyboard.

We also consider a scale consisting of 48 eighths of a tone as shown in Figure 1. The note one
eighth of a tone above B is denoted B+ and note one eighth of a tone below B is denoted B-.



Similarly the note one quarter of a tone above C# is denoted C#++ and the note one quarter of a
tone below C# is denoted C++.

+#D
+HV

Figure 1 Eighth Tone Resolution

The pitch detection algorithm is arranged to detect when a vote is required for a candidate pitch
in the set S = {C-, C+, C#-, C#+, D-, D+, D#-, D#+, E-, E+, F-, F+, F#-, F#+, G-, G+,
G#-, G#+, A-, A+, A#-, A#+, B-, B+)}. However, the voting buckets are the set of quarter-
tones Sq. When a candidate pitch period in the set Se is detected, a vote is cast for each of the
two adjacent quarter-tones in the set Sg.

For example, if C- is detected as a candidate pitch period, votes are cast for the B++ below it
and the C above it. Similarly if B+ is detected as a candidate pitch period, a vote is cast for the
A#++ below it and the B above it.

Arranging the voting in this way smoothes the transition from one quarter-tone to the next and
also enables the elimination of flickering between semitones as follows: if a steady pitch, for
example F+, is input to the system then the F and F++ will receive many of the votes. It is
possible that the winning pitch will alter between F and F++ on subsequent voting iterations.
However, as F++ does not correspond to an ordinary musical semitone, the system can sound
an F continuously and there is no flicker.

If the input pitch were to subsequently rise to F#- and the winning pitch were to change to be
F#, the pitch to MIDI converter could then sound an F#. It would hold the sounding pitch at F#
even if the winning pitch lowered to F++ (in response to the input pitch dropping to F#-) as
F++ is not sufficiently below F# to switch to sounding an F. This strategy gives the system
hysteresis of a quarter-tone and considerably stabilises its output.

4 Treatment of QOctaves

It is normal to number octaves from C such that middle C is in octave 4, the C above it is in
octave 5 and the C below middle C is in octave 3. Middle C is thus written C4 and the B above
it is B4 and the B below it is B3. :

Here we count in half octaves from C and also half octaves from F#-. Middle C is in half-
octave 8 counting from C and half-octave 9 counting from F#-. Each quarter-tone is considered
to be a member of an octave starting from C and also a member of an octave starting from F#-
as shown in Figure 2.

F#- half-octave

C half-octave

I | |
C F#- C F#- B++C F middle C

Figure 2 Arrangement of Half Octaves



When a vote is cast for a quarter-tone, a vote is also cast for each of the half-octaves in which
the quarter-tone lies. For example a vote for the quarter-tone C4 (i.e. middle C, 261 Hz) is
accompanied by a vote for half-octave 8 and also a vote for half-octave 7.

The winning half-octave is the half-octave that receives the most votes. It could be an F#- half-
octave or a C half-octave that wins. The winning quarter-tone and winning half-octave always
define a unique winning pitch with no ambiguity and no accidental octave jumping.

Overlapping the half-octaves in the above manner dramatically reduces the chances of
accidentally jumping up or down an octave when the input pitch lies on the dividing line
between two octaves.

For example if the input pitch is wavering between middle C- and C+ (i.e. the pitch is
intermediate between C- and C+) then some votes will be cast for half-octave 8 and some for
half-octave 6. If only octaves from C were used it is possible that the correct quarter tone
would be consistently deduced (i.e. C) but the octave may jump between 6 and 8 accidentally
and repeatedly. By also voting for octaves from F#- this problem is eliminated: each vote cast
by C- or C+ for B++, C or C++ will be accompanied by a vote for F#- based half-octave 7.
The votes for C based half-octaves will be split between half-octaves 6 and 8. Half-octave 7
will thus be the winning octave and middle C will be correctly determined as the winning pitch.

5 Action Taken After a Winning Quarter Tone and Octave are Determined

For a real-time pitch to MIDI converter the detection of a winning pitch results in a decision to
send out appropriate MIDI information to make a synthesizer receiving the MIDI information
play appropriately-pitched notes in response to the pitch input.

To decide what action to take on each iteration we utilise the following state variables:

IncomingSound (boolean) - the user is singing/playing loud enough for a note to sound

StrongWinningPitch (boolean) - true if the number of votes for the winning pitch are
sufficient for the system to be confident it is correct. (This is a function
of the octave of the winning pitch.)

MIDISounding (boolean) - true if a note is currently being sounded. i.e. the last
message sent was a Note On message.

The algorithm's decision procedure is illustrated in Figure 3 and it is suitable for a musical
output that corrects the input pitch to the nearest semitone (based on A4=440Hz). This is
achieved by making the "if pitch has changed" decision such that only semitones are sounded
and quarter tones such as F++ are not sounded if an adjacent semitone is already sounding.

If there is silence and then the note F++ is sung then a decision needs to be made as to whether
to sound the F++ as an F or an F#. This is decided as follows: an F# is sounded if the F#
bucket has more votes than the F bucket, otherwise an F is sounded. A similar decision
procedure is used if a jump to an F++ is made starting from a pitch more than a quarter-tone
away - i.e. jumping to F++ other than from an adjacent F or Fi#.



Calculate Pitch

I

Incoming Sound? MidiSounding?
g N )I g N
StrongWinningPitch? - Turn Note Off
Y
MidiSounding?
N
Y

If pitch has changed,
Turn Off Sounding Note
Turn On New Note

Turn Note On From Silence

Figure 3 Algorithm Decision Procedure

6 Pitch Bend

If it is required that the Pitch to MIDI system exactly tracks the input audio pitch then MIDI
pitch bend messages can be sent to adjust the output pitch to the input pitch. The output pitch
can be rounded to the nearest quarter-tone or finer tuning can be obtained by interpolating
between the votes in adjacent buckets.

7 Short Term Memory

To increase the robustness of the system, instead of clearing the votes after each frame, it is
possible simply to halve them (or reduce them by some other ratio).

This gives the system some short term memory and allows the previous frame to influence the
next one. This considerably stabilises the output.

8 Extensions When Information Is Available About The "Desired" Pitch

For some musical applications there is additional knowledge about the desired output of the
system. For example the user may be singing a known song or trying to match a given pitch or
pitches. Here there is information available additional to a single audio input and it is possible
to bias the voting scheme to favour some candidate pitches over others. This can be achieved
by enhancing or weakening the strength of the votes for the candidate pitches, by redirecting
votes for some candidate pitches towards others, by adding positive or negative offsets to the



accumulator buckets or by other means. Voting is a very flexible approach through which
additional information can be used influence the response of the system.

9 Karaoke and Automatic-Accompaniment Applications

A Karaoke system which computes the pitch of the performer's singing could have a variety of
features. For example it could provide a score showing how well the performer is doing, it
could correct mistakes, add extra sounds or change the sound produced by the user, constrain
the sound produced - for example to be in tune or in key, provide visual or other feedback,
track the user's position in the song, accelerate or decelerate the playback of an accompaniment
or respond in some other way. A sophisticated system may allow multiple performers to
interact. In each case the system may use voting techniques to determine its response. One such
system uses weighted voting for automatic accompaniment and is described in [Yue 96].

10 Conclusions

We have presented an enhanced voting scheme for the algorithm in [Sharp 93]. It eliminates
flickering between adjacent notes and permits less memory to be used in the voting process.
We have also suggested extensions to the voting scheme for use in other applications.

The algorithm enhancements described here have been implemented and tested. The resulting
system provides a very good feel as you glissando upwards and downwards from one note to
another: the semitone output system changes the note it sounds at just the right time and allows
some wavering of the voice without wavering the output. For the pitch bend system the output
pitch matches the input pitch with rapid response.

We speculate that the use of well-designed voting schemes will play an increasingly important
role in systems which need to give a good "feel" when in use. Voting techniques appear to
have the capability to generate appropriate responses to human and machine generated inputs.

11 References

[Sharp 93] D.W.N. Sharp, R.L. While, Determining the Pitch Period of Speech Using No
Multiplications, Proc. ICASSP '93, Minneapolis, vol 2, pp.527-529, April 1993.

[Yue 96] M.K.Yue, Score following using a voting mechanism, MSc Thesis, Dept of Computing,
Imperial College, London, 1996.





