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Abstract

It is shown how many techniques of categorical domain theory can be expressed in the general
context of topical categories (where “topical” means internal in the category Top of Grothendieck
toposes with geometric morphisms). The underlying topos machinery is hidden by using a geometric
form of constructive mathematics, which enables toposes as “generalized topological spaces” to be
treated in a transparently spatial way, and also shows the constructivity of the arguments. The theory
of strongly algebraic (SFP) domains is given as a case study in which the topical category is
Cartesian closed.

Properties of local toposes and of lifting of toposes (sconing) are summarized, and it is
shown that the category of toposes has a fixpoint object in the sense of Crole and Pitts. This is used
to show that for a local topos, all endomaps have initial algebras, and this provides a general context
in which to describe fixpoint constructions including the solution of domain equations involving
constructors of mixed variance. Covariance with respect to embedding-projection pairs or adjunctions
arises in a natural way.

The paper also provides a summary of constructive results concerning Kuratowski finite sets,
including a novel strong induction principle; and shows that the topical categories of sets, finite sets
and decidable sets are not Cartesian closed (unlike the cases of finite decidable sets and strongly
algebraic domains).



1. Introduction

1.1 “Stone-Grothendieck mathematics”

“Always topologize!” (Stone 1938)
“A topos is a generalized topological space.” 7 (Grothendieck 1972)

Taken together, these two dicta imply a general mathematical programme of topologization in which
classes are replaced by toposes: instead of the class of widgets we consider the topos classifying
widgets (i.e. the topos whose points are widgets). The topos not only determines the class of
widgets, but simultaneously (and inseparably) embodies the generalized topological structure on the
generalized space of widgets.

This resort to toposes may seem at first sight an unacceptably burdensome technical overhead,
but in fact the practical mathematical consequences can be surprisingly unobtrusive. Toposes classify
geometric theories, and it is quite in order to treat a topos as a “space” whose points are the models of
the theory and to treat a geometric morphism as a transformation of points of one such space into ’
points of another. The required “continuity” of these transformations is guaranteed by a constructive
discipline which is in fact the mathematical core, expressed in a slogan “continuity = uniformity +
geometricity”. Our Stone-Grothendieck generalized topologization is really a matter of doing
mathematics geometrically. Introductory accounts of the ideas are in Vickers (1996, 1997a); more
technical justification is in Vickers (1997b).

However, it has to be admitted that it is not immediately evident how to do this painlessly. Ta a
great extent this is because of a dual nature of toposes: as Mac Lane and Moerdijk (1992) say right at
the outset, a topos can be considered both as a “generalized topological space” and as a “generalized
universe of sets™. But the formal definitions say that the topos is the generalized universe of sets, and
in these terms it is extremely difficult to sustain the generalized space view. Hence although this view
is a fundamental one of which experienced topos theorists are fully aware, it tends to get obscured in
the exposition.

We shall explicitly separate the two viewpoints by reserving the word fopos for the generalized
spaces. (This runs counter to the general usage, but has etymological support in that it treats toposes
as the objects of which ropology is the study.) The generalized universes of sets — specifically, those
categories (otherwise known as Grothendieck toposes) that satisfy the conditions of Giraud’s
theorem (see Johnstone (1977)) — will be called geometric universes or GUs (in Vickers (1993a,
1995a, 1995b) they are called Giraud frames or G-frames). The distinction is analogous to that
between locales and frames (in Johnstone (1982); or, in Joyal and Tierney (1984), the distinction
between spaces and locales), and indeed we hope that the techniques of spatial reasoning for locales
that are investigated in Vickers (1995) can be developed for toposes too. Similarly, a GU
homomorphism will be a functor that preserves finite limits and arbitrary colimits — hence, the inverse
image part of a geometric morphism. For a topos D, the corresponding geometric universe will be
written SD.

The present paper is in large measure a case study for this topologization programme in which it
is applied to domain theory, and one deliberate aim is to give a topos-theoretic account that looks as
much as possible just like constructive domain theory. A preliminary account in the form of lecture
slides has already appeared (Vickers 1992a).



Let us now lay down the ground rules for this geometric mathematics (technical justification is in
Vickers (1997b)).

(1) “Geometric” mathematics comprises those constructions and properties that can be
interpreted in any geometric universe and are preserved by GU homomorphisms.
(2) If a certain structures are described as being the models of a geometric theory T, that is to

say, they are specified by structure and properties within geometric mathematics, then there
is a corresponding “classifying” topos [T] of which those structures are the points.

Recall the usual notion of a geometric theory presentation — a many-sorted, infinitary, first-order
theory presentation, in which the axioms take the form ¢ I, y. Here x is a finite list of sorted
variables and ¢ and y are geometric formulae (the only connectives allowed are arbitrary disjunction,
finitary conjunction, sorted equ ity and existential quantification) whose free variables are all taken
from x. (Details can be found in Makkai and Reyes (1977); also in Johnstone (1977) and Mac Lane
and Moerdijk (1992), though for simplicity they treat the coherent theories, restricted to the finitary
logic.) We shall be more liberal and admit presentations that use geometric constructions as type
constructors, to create new types out of the given sorts (the base types). Function and predicate
symbols will be allowed to use the derived types in their arities.

(3) If such a theory in (2) is “essentially propositional”, that is to say, it has no sorts (other
than what can be constructed geometrically out of thin air), then the corresponding topos is
actually a locale. (We have no need to distinguish between locales and localic toposes,
since our notation explicitly distinguishes between frames 2D and generalised universes

SD.)

(4) Suppose D and E are two toposes. Then construction of points of E out of points of D, if it
is geometric, describes a geometric morphism (or map) from D to E.

(5) Geometric morphisms between locales are the same as continuous maps.

Consequently, we describe a locale or a topos by giving a geometric description of its points; and we
describe a continuous map or a geometric morphism by giving a geometric description of how it
transforms points to points. No discussion of topology is needed — the geometricity already covers
that —, and so locales appear as “topology-free spaces”.

We shall examine what is allowed in this geometric mathematics, but first let us mention some
things that are not allowed.

 The logic is non-classical. Intuitionistic logic is valid in geometric universes, but in general
excluded middle and choice are not valid. More subtly, intuitionistic negation is not preserved
by GU homomorphisms, and nor are implication and universal quantification — so we can’t
use them in general, though we shall on occasion use the intuitionistic formulae in proving
geometric results. The geometric logic is therefore more restricted than intuitionistic logic.
However, if we can prove or postulate that two propositions P and Q are logical complements
(PAQ I false, true  PvQ), then that fact is preserved by GU homomorphisms and so
gives an instance of a geometric negation.

* We can’t use exponentials XY, powersets PX, or the subobject classifier {2 — none of these is
preserved by GU homomorphisms.

I shall not attempt to formalize the geometric constructions, but they include finite limits, set-
indexed colimits, image factorization, monicness, epiness, inclusion between subobjects, finite



intersections and arbitrary set-indexed unions of subobjects, existential quantification, free algebra
constructions, N (natural numbers), Q (rationals), Kuratowski finiteness, finite powersets (free
semilattices), universal quantification bounded over finite objects.

A couple of specific issues worth mentioning are decidability and finiteness. Equality is part of
the geometric logic, but inequality is not (because there is no negation). Nonetheless, certain
“decidable” sets come equipped with inequality, a relation complementary to equality — two good
examples are N and Q. Finiteness is — as remarked above — Kuratowski finiteness (Johnstone 1977):
X is Kuratowski finite iff the free semilattice #X has an element T such that {x} c T for every x.
This notion can sometimes behave surprisingly. For instance, subsets of finite sets, or intersections
of finite subsets, need not themselves be finite. Section 2.1 provides a technical discussion.

Notes —

(1) If T is a geometric theory, then the corresponding geometric universe $[T] is exactly the
category that is usually referred to as the classifying topos of T. The notation can be read
either as sheaves over the topos [T], or as Sets with an adjoined generic model of T.

(i1) When we refer to the points of [T], the models of T, these models might be in an arbitrary
geometric universe SD. D is known as the stage of definition of the point, and the theory of
classifying toposes shows that points of [T] at stage D are the same as maps from D to [T].
Models in the initial GU $= S1 of sets, i.e. maps from 1 to [T], are known as global

points.
(1i1) If f and g are two maps from [T] to [T'], then a natural transformation from f to g is a
geometric construction, given a model M of T, of a homomorphism from f(M) to g(M).
(iv) Toposes, maps and natural transformations are the 0-, 1- and 2-cells of a 2-category Top.

We shall look at it more closely later, but let us note immediately that the hom-categories
Top([T], [T']) (which is equivalent to the category of models of T' in S[T]) are not

arbitrary categories — they have all filtered colimits (Johnstone 1977).

1.2 Topologizing domain theory

It has long been recognized that domains are topological spaces under their Scott topology.

Normally, they are also sober (by Johnstone (1981) this is not true of arbitrary dcpos, but it holds for
all continuous posets) and hence can be equivalently treated as locales. By the remarks above,
therefore, domains are normally also toposes. It turns out that domain theoretic constructions such as
products, coproducts and exponentials are special cases of the more general topos constructions, and
we shall prove this. In particular, the existence of least fixpoints for continuous endomaps of
domains with bottom turns out to be a special case of the existence of initial fixpoints for arbitrary
endomaps of local toposes (toposes with initial points) — in effect, local toposes are algebraically
complete in the appropriately transferred sense of Freyd (1991).

However, the methods go considerably beyond this. Nice enouéh domains can be presented by
information systems of various flavours (e.g. Larsen and Winskel 1984; Vickers 1993; or indeed the
slightly different methods of Abramsky 1991) which are the models of geometric theories, and
moreover the continuous maps between the domains are equivalent to “approximable mappings”
between information systems, which are also the models of geometric theories. Fixing a flavour of
information system, we therefore get two toposes [IS] and [AM]. (AM is the theory of two
information systems and an approximable mapping between them.) We also have maps src and tar:
[AM] — [IS] giving the source and target, a map id: [IS] = [AM] giving the identity approximable



mappings, and more that in short make an internal category in Top — a topical category. (The fact that
Top is a 2-category greatly complicates the idea of internal category in it, and a definitive account of
such things (Hyland and Moerdijk unpublished) hasn’t appeared yet. However, the topical categories
we study will all in a certain sense represent full subcategories of Top, in that the approximable
mappings correspond to arbitrary maps (as geometric morphisms) between the corresponding
domains (as toposes), and this gives us a somewhat more solid base on which to rest the internal
category structure.) We find that the topical category has, internally, much of the structure of the
corresponding category of domains, and in particular for strongly algebraic domains the topical
category is internally Cartesian closed. This is a stronger result than appears at first sight, for with
some other well-known CCCs such as Set, the Cartesian closedness is not internal in the
corresponding topical category: essentially this is because exponentiation of sets is not geometric.

The topos setting now begins to pay off more decisively. In particular, we can use the result
mentioned above on algebraic completeness of local toposes to find not only fixpoints within
domains, but also fixpoints among domains, i.e. solutions of domain equations. This is most easily
seen for domains with bottom, when [IS] is local (the singleton information system {.L} is initial)
and any map F: [IS] — [IS], i.e. any uniform, geometric construction of information systems from
information systems, has an initial algebra: this will solve the domain equation D = F(D). The key
point is that toposes automatically have all the filtered colimits that abstract categorical domain theory
has to postulate, and the uniform, geometric definitions of geometric morphisms suffice to give us
the required continuity, preservation of these filtered colimits.

Note that F is necessarily functorial, but that is with respect to the homomorphisms between |
information systems — 2-cells in Top — and not the approximable mappings. In the strongly algebraic
case, which is internally Cartesian closed,we have a map F(X) = [X=X] that is not functorial with
respect to continuous maps. However, the homomorphisms turn out to correspond to adjunctions
between the domains so that we painlessly discover the well-known technical trick from domain
theory that regains functoriality. (Actually, domain theory normally uses embedding-projection pairs,
not general adjunctions. The difference corresponds to the constructivist issue of whether the
information system order is decidable or not.)

1.3 Overview of the paper

Following this introduction, we move in Section 2 to the technical background. Much of this is
already known, and I think none of it will cause any surprise to topos theorists though perhaps some
of the detailed proofs have not been set out before. However, I do not know of convenient references
and certainly not in the “generalized space” language that I am trying to use.

In section 3 we look at some examples of topical categories, and in particular at two ways of
constructing them. An “intrinsic™ topical category captures the idea, given any topos D, of a category
whose objects are points of D and whose morphisms are homomorphisms. These are simple, but
inadequate for our domain theory. We need the slightly more complicated notion of “display” topical
category. This starts from an exponentiable map p: E — D, and captures the idea of a category whose
objects are points of D, but whose morphisms are maps between pullbacks of p.

Section 4 treats the particular case of strongly algebraic domains in some detail. Its domain-
theoretic substance is, virtually entirely, taken from Abramsky (1991). Its purpose is not so much to
present the results in a new way, different from Abramsky’s — the apparent differences are actually



ones of expositional taste rather than anything else — but to show how unobtrusive the new, topos-
theoretic foundations are. :
Section 5 addresses domain equations and their solution.

2. Technical background

This section gathers together diverse technical results under four headings:

2.1 Finite power sets

2.2 The 2-category Top of toposes
2.3 Lifting in Top

2.4 Algebraic dcpos

2.1 Finite power sets

The geometric account of finiteness (by which we mean Kuratowski finiteness (Kock et al. 1975;
Johnstone 1977) has some unexpected behaviour, a notorious example being that subsets of finite
sets need not themselves be finite (Kock et al. 1975). Nonetheless, it fits well with observational
intuitions that a set is finite iff you can give a finite list of all its elements. (But note that if equality is
not decidable then you can’t necessarily eliminate duplicates from the list.) Two finite sets are equal
iff every element of each is also an element of the other. To understand the paradox of subsets,
suppose S is finite and T = {s € S: ¢(s)}. To list all the elements of T, we also need negative
information —¢(s) in order to know which elements of S can be omitted from the list.

We recap here some basic properties and constructions relating to finite sets, and in particular the
fact that bounded universal quantification over a finite set is geometric (Johnstone and Linton 1978).
Much of this seems to be well-known folklore, but I don’t know of any convenient reference for the
ideas and shall summarize them here.

The first step is to construct the finite power set 7X over X, and this is done as the free (join)
semilattice. As it happens, by a theorem of Mikkelson this can be constructed in any elementary topos
as the U-subsemilattice of g X generated by the singletons (see Theorem 9.16 in Johnstone 1977).
However, in the context of geometric universes it is perhaps more convenient to see the construction
as a special case of the existence of free algebras for any single-sorted algebraic theory that is finitary
enough (Theorem 6.43 in Johnstone 1977). Moreover, by Lemma 6.44 there, the free algebra
construction is preserved by GU homomorphisms: in other words, free algebra constructions are
*“‘geometric”.

FX is the set of Kuratowski finite subsets of X. From now on we shall omit “Kuratowski”:
when we say finite, we mean Kuratowski finite.

We have already noted that subsets of finite sets need not be finite; here are some other
unexpected behaviours.

« Finite unions of finite sets are undoubtedly finite (just concatenate the lists of elements), but
finite intersections are not. For a start, the empty intersection of finite subsets of X is the
whole of X, which certainly need not be finite. More subtly, if S and T are finite then SNT
need not be because to discover what are all the elements of SNT you must be able to
determine the negative information of when x ¢ S (or T).



» The cardinality of a finite set is not defined in general. To know that you have counted exactly
how many elements there are in {w,X,y,z}, you need to know all the equalities and
inequalities amongst the elements, and the negative information is not always available
geometrically.

(Often the problem is one of decidability, i.e. lack of negative information. For instance, if ¢ is
decidable and S is finite then {ue S: ¢(u)} is finite; and if X has decidable equality, a binary predicate
# that’s a complement of =, then #X has binary intersections and there is a cardinality function from

FX to N.)

Definition 2.1.1 (Finitely bounded universal quantification) Let ¢(x, y) be a predicate on XxY.
Then the predicate Vxe S. ¢(x, y) on FX X Y is defined as

Vet IXps--Xpe (S = {Xq,..0Xp ) A Nj21™ 0(%;, Y))

(An alternative and perhaps more correct definition would make direct use of the free semilattice
property of 7X.) The definition makes explicit that this is a geometric construction on ¢. To show
that it really is bounded universal quantification, one shows the characterizing proof theoretic
adjunction:

Proposition 2.1.2 Let ¢(x, y) and y(y) be predicates on XXY and on Y. Then

y(y) Fsy VXeS. 0(x,y) iff Y(y) AXx € S Fgyx0(xy) ]

Note that if f: X — Y corresponds to ¢(x,y) (i.e. d(x,y) iff y € f(x)), then this extends to a
unique semilattice homomorphism from #X to 'Y under N, and this corresponds to Vxe S. ¢(x,y).
Next, we give some basic inductive and recursive tools for dealing with finite sets.

Theorem 2.1.3 (Simple F-induction)

Let &(S) be a predicate on #X such that ¢(@) (base case), and if ¢(S) then ¢({x}US) for all x:X
(induction step). Then ¢(S) holds for all S.

Proof Let M be the subset of 7X comprising those elements S for which VT: 7X. (¢(T) — ¢(SUT)).
M is a subsemilattice, and by the induction step it contains the singletons, so it is the whole of 7X.
From S € M, and the base case ¢(@), we deduce ¢(S).

Note that although the statement of this Theorem is geometric, the proof is not — it uses
intuitionistic formulae. We conjecture that there is a geometric proof. ]

(In 2.1.11 we shall prove a stronger induction principle.)

Lemma 2.1.4 ( Frecursion)
Let f: XXY — Y satisfy

(i) Vx,xLy. f(x, f(x', y)) = f(x', {(x, y))

(i1) vx,y. f(x, f(x, y)) = f(x, y)

Then there is a unique g: X XY — Y such that
Vy. g(@,y) =y

vx,y. g({x}, y) =f(x, y)
VS, T,y. g(SUT, y) = g, g(T, y))



ProofLet f: X — YY be the curried form of f. Let M, be the image of f in YY, which is a monoid
under composition, and let M be the submonoid generated by M. Conditions (i) and (ii) say that the
elements of M) are commuting idempotents. Because they commute, M is commutative, for consider
the centralizer of M in YY — the set of elements that commute with everything in M. This is a
submonoid containing My, and hence containing all of M, and so everything in M commutes with
everything in M. Therefore the centralizer of M contains M, and hence all of M, so M is

commutative. Now we can show that the set of idempotent elements of M is a submonoid containing
all of My, and hence is the whole of M, so M is a semilattice. It follows that f factors uniquely via a

semilattice homomorphism g": #X — M, which uncurries to the required g. ]

Theorem 2.1.5 Let f: XXY —» Y satisfy conditions (i) and (ii) of 2.1.4, and let y,: Y. Then there is
aunique h: X — Y satisfying

* h(@)=yp
« Vx,S. h({x}uS) = f(x, h(S))

Proof Let g be the function obtained in Lemma 2.1.4, and define h(S) = g(S, yg). Then h(@) =
2(3.,yo) = yo. and h({x}US) = g({x}US, yg) = g({x}, (S, yp)) = f(x, h(S)). Uniqueness follows
by Finduction. ]

Using Finduction, we can easily prove a number of results, all of which I should think are

already known.
Theorem 2.1.6

(1) VxeS. (0(x) v y(x)) Fs.qx ES¢,,S\V. (S= S¢ ] SW A Vxe S¢. o(x) A Vxe S\V' y(x))

(11) (Decidable subsets of finite sets are finite: Kock et al. (1975).)
If S is finite and ¢(x) is decidable, then {xe S: ¢(x)} is finite.
(Use (1) with y the complement of ¢.)

(1ii) (Johnstone 1984) Vxe S. (0(x)vy(x)) Fg.qx VX€S. 0(x) v Ixe S. y(x)
Note that the analogous deduction with S infinite is intuitionistically unsound, so this result
1s saying something about finite boundedness. It is directly analogous to the relation
“O(ovy) F O v Oy’ seen in the Vietoris powerlocale.

(iv) If ¢ is decidable, with complement y, then Vxe S. ¢(x) and Ixe S. y(x) are complements.

(V) If X has decidable equality, then on X we have that € is decidable (xy & S is equivalent
to Vxe S. x#xg), that the intersection of two finite sets is still finite (use (ii) with SNT =
{xeS. xe T}; see Acuiia-Ortega and Linton (1979)) and that each finite set has a

cardinality.
(vi) vxeS. 3y:Y. ¢(x,y) Fs.qx U AXXY). (fst(U) =S A Uco) ]

We shall now use Finduction and recursion to prove a sequence of finiteness results: that if S
and T are finite, then so are SXT, 7S and the set FT(S, T) of finite total relations from S to T. The
framework of the proof is the same in each case, and can be illustrated with SXT. For arbitrary types
X and Y, X can be treated as a function from 7XXx 7Y to AXXY). Defining the function is not too
difficult (using Frecursion, the free semilattice property and so on), but more important to us 1s its
specification, that SXT = {(x,y): x €S Ay € T} —in other words,



(x,y) € SXT —ll~:x y:Y,S: X, T:9y X€ SAYy€e T
To show that the recursive definition works correctly, i.e. that it satisfies its specification, one can
use Finduction in a routine sort of way, but in practice this amounts to an assumption that the

recursive calls work correctly and we shall make this assumption without comment. (Compare this
with the method of recursion variants as set out in Morgan (1990) or Broda et al. (1994).)

Proposition 2.1.7 (Kock et al. 1975) If S and T are finite then so is SXT.
Proof .
Let X, Y be any types. We define X: X X FY — KXXY) such that

(x,y) € SXT —llx:X,y:Y,S: X, T: 7Y XE SAy€e T

If b: Y, then there is a unique semilattice homomorphism from #X to AXXY), written S — Sx{b},
such that {a}x{b} = {(a, b)}. We have (x,y) € Sx{b} -ll-x.xy:y,s:7x X € S Ay =b, for {S: FX'|
vx:X,y:Y. (x,y) € Sx{b} &> x € S Ay =Db} is a subsemilattice of X containing the generators
{a}. (Note how we have temporarily dipped into intuitionistic logic in order to derive a geometric
result.) Now fixing S: #X, we can define T — SXT to be the unique semilattice homomorphism
from FY to AXXY) such that Sx{b} is as already defined. Then {T: 7Y | Vx:X,y:Y. (x,y) € SXT

< x € S Ay e T} is asubsemilattice of X containing the generators {b} and so contains every T.
This shows that the definition satisfies the specification. ]

Corollary 2.1.8

(1) Fs:ox, T).To: 7y S X (T1UT2) = SXT L SxT,
(i1) Fsi.S2: 9%, T: 9y (S1US2) X T = §1XT L SoxT

Proof (i) Of course, this is immediate from the construction of X in Proposition 2.1.7, but we can
also prove it from the specification: (x,y) € SX (TjUTy) @ xe SAaye (T)UTy)) & xe SA(ye
TivyeT)) = (xe SAyeT))vxe SAaye Ty) & (x,y) € SXT1 LU SXT,.

(i1) is less immediate from the construction but follows just as easily from the specification. ]
Proposition 2.1.9 (Kock et al. 1975) If S is finite, then so is 7S.

Proof

If X is any type, we desire a function % X — F#X such that T € KS) -ll-s T.9x T < S. Let Fbe
the unique function such that

RD) = (D)
F{apuS)= AS) v {{a}UTITe KAS))

({{a}UTIT e KS)} is the direct image of KS) under the function from 7X to itself that maps T to
{a}UT.) Of course, we must check the conditions for %recursion.In other words, if ¢: F7X, then
we want

(v {{a}luTITe uh)u {{bjuUIUe Uu {{a}UTITe U}}
= ... same thing with a and b interchanged

which is clear because the expression reduces to

Uu {{a}uTITe U} u {{b}uUIUe U} u {{alu{b}UTITe U}
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Also, we want that when a = b the expression reduces to Y {{a}UT I T € U}, which again is
clear.

Now we must show that the definition satisfies the specification. Te K@) -I-T=0-I-T ¢
@, and it remains to show the case for {a}US.

Te K{a}uS)--Te HS)vIUe KS).T={a}uU
N-TcSvIU:FX. (U S AT={a}ul)

(Note the assumption, justified as an Finduction hypothesis, that T € AS) -ll- T < S.) Certainly
this implies that T < {a}US. For the converse, if T  {a}\US then we can find Tj and T3 in 7X such
that T=T;UT,, Ti c {a} and T, = S.If T1 =@ then T = T, ¢ S, while if Ty is inhabited then it is
{a} and so T = {a}UTy with Tp < S. ]

We also write #(S) for the set of inhabited elements of KS), i.e. those T < S satisfying the
decidable predicate Jy. y € T (its complement is T = @).

The following proposition is included not for its general importance, but because it is used later
on (in section 4.5) at a point where one might more naturally expect to use the set of functions from S
to T. However, for finiteness of the set of functions we should require decidability of S so that single
valuedness of a relation R could be expressed as V(x,y),(x,y)eR. (x #x'vy=Yy").

Lemma 2.1.10 If S and T are finite, then so is the set FT(S, T) of finite total relations from S to T.
Proof
If X and Y are types then we desire FT: 7X X 7Y — FAXXY) such that

R e FT(S, T) -ll-r. gxxy) R < SXT A VxeS.dyeT. (x,y) e R
We define FT to be the unique function such that

FT(@. T) = {9}
FT(fa}uS, T)= {RuU {a}xT'IR e FT(S, T) A T' € F(T)}

Again, it is not hard to show that this definition satisfies the conditions for Frecursion.
When S=@ wehave R e FT(@, T) -lI-R=@ -lI-R c OXT A Vxe@. JyeT. (x,y) € Ras
required. For the other case,

Re FT({a}uS, T)-II-3R\T. (R'€ FI(S,T) AT € A(T) AR=R'"U {a}xT")
- 3R T. (R' < SXT A VxeS.dyeT. (x,y) e R'AT € A(T) AR=R" U {a}xT")

This certainly implies that R ¢ ({a}US)XT and Vxe {a}US. dyeT. (x, y) € R. For the converse,
from R < ({a}US)XT = {a}xT U SXT we deduce that there are finite R} and R; such that R =
RjUR>, Ry ¢ {a}XT and Ry ¢ SXT. We can find b € T such that (a,b) € R; let R;'= Rju{(a,b)}
c {a}xT. If T" is the direct image of R;" under the projection to T thén T' € #(T) (inhabited
because it contains b), and R;' = {a}XT'. Next, Vxe S. JyeT. (x,y) € Rand so if S = {xq, ...,
Xn} we can find {yy, ..., yn} < T such that (x;, yj) € R (1 £i<n). Let R' = Rou{(x1,y1), ..., (Xp,

yn)}. R'c ST, Vxe S. dyeT. (x,y) € R, and R =R' U {a}XT', so we have found R' and T' as
required. ]
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We finish this section by strengthening the principle of Finduction considerably, strengthening
the induction hypothesis. (The only place where we need the stronger principle is in our account of
Abramsky’s normalization result for function spaces, Section 4.5.)

Theorem 2.1.11 The principle of strong Finduction
Let P ¢ 7X be a predicate satisfying —

VxeS. JU: X. (S = {x}uU A PU)) Fs: #x P(S) *)
Then P satisfies
Fs:#x P(S)

Proof Note that the induction hypothesis Vxe S. 3Ue KS). (S = {x}UU A P(U)) implies S =@ v
Ix:X. JU: . (S = {x}UU A P(U)), which is a collected form of induction hypothesis for simple %
induction, so this is a formally stronger induction principle: any proof that uses the simple induction
principle can easily be turned into a proof using strong induction. ’

The proof of validity of the strong principle is by induction on the size n of a representation S =
{X], ..., Xn} (remember that in the absence of decidable equality we don’t have a well-defined
cardinality of S), and one role of the Theorem is to package up such induction and give a reasoning
principle that does not have to refer to the representation. I am grateful to Paul Taylor for a discussion
that led to a rigorous proof along these lines to replace a more complicated one that I originally had.

Let us write BX for the free commutative monoid over X. One should think of its elements as the
finite bags. or multisets, over X. We write + (bag sum) and O (empty bag) for the monoid operation
and its unit, and {I-1} for the injection of generators (so {Ixl} is the singleton bag containing x). We
also write #: BX — I for the monoid homomorphism with #{IxI} = 1 (so #B is the total size of B),
and o: BX — 7X for the monoid homomorphism with o{Ixl} = {x} (so 6B is the set of elements of
B).

It 1s straightforward to prove the following induction principle on BX: if P < BX is such that
P(0), and whenever P(B) then P({Ix|}+B), then P(B) holds for all B. We can now show —

(n If #B = 0 then B = O (easy by bag induction)
(2) c is onto: for the image of BX is a submonoid of #X that contains all the generators {x}.
(3) If x € oB then there is some C such that B = {IxI}+C. The base case, B = 0, is obvious —

x € 60 is impossible. If x € o({lyl}+B") = {y}UoB’, theneitherx=yorx e ocB". If x =
Yy, th¢n {lyl}+B' = {IxI}+B". If x € oB’, then by induction B' = {IxI}+C' for some C', so
{lyl}+B" = {IxI}+({lyl}+C".

Now let P be as stated in the overall theorem. It suffices to show Vn:N. Q(n), where
Q(n) =¢ef VB:BX. (#B = n — P(cB))

When n = 0, we have P(@) because the induction hypothesis (left-hand side of (*)) holds vacuously.
Otherwise, suppose #B = n+1. If x € 6B then B = {ix|}+B' for some B’, and #B' = n. By induction
on n we have P(6B'), and 6B = {x}oB'. It follows from (*) that P(6B) as required. ]
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2.2 The 2-category Top of toposes

We shall describe here some aspects of categorical structure of the category Top of toposes
(Grothendieck toposes with geometric morphisms between them) and of its slices Top/B. Though
the constructions are well known, we shall need to describe them in terms of the theories classified —
in effect, in terms of the points of the toposes.

It is worth bearing in mind that Top is in fact a 2-category: each hom-class Top(D, E) is a
category, and a large one at that (though locally small). As a consequence, it is generally too much to
expect diagrams in Top to commute “on the nose”, i.e up to equality — commuting is usually only up
to isomorphism. In broad terms, this is because in a category equality between objects is less
important that isomorphism. Moreover, universal properties should properly be described in a 2-
categorical form. For instance a product DXE is a representing object for a functor from Top to Cat,
taking a topos F to the category Top(F, D)xTop(F, E): “representing object” means that for every F
the functor Top(F, DXE) to Top(F, D)xTop(F, E), mapping f to (f;fst, f;snd), is an equivalence of
categories.

We shall need to work not only in Top itself, but also in the slice toposes Top/B. The

\ /
2-categorical laxness that we shall allow is that the morphisms, triangles of the form B , are
to commute up to a given isomorphism. An important issue will be whether the constructions we
describe are preserved by the pullback functors between slice categories: in fact, they all are.

Terminal object
The terminal topos 1 classifies the empty theory (no vocabulary, no axioms). Sl = Set.

Pullbacks
Let D and E be two toposes over a base B: in other words we are given geometric morphisms f: D —
B and g: E — B. To avoid having to name too many things, weshall use restriction map notation so
that (for instance) if x is a point of D then xIg = f(x).

The pullback D xg E classifies triples (x, y, 6) where x and y are points of D and E, and 6: xig =
ylp. .

This construction covers pullbacks and binary products in slices Top/C.

Comma squares

Again let D and E be toposes over B. The comma object D >p E classifies triples (x, y, 8) where x
and y are points of D and E, and 8: xlg — ylpg is a homomorphism. Again this covers comma squares
in slices. A particular case of this is the inserter, when a single topos D lies over B in two different
ways f, g: D — B. the comma object (D,f) >g (D,g) is the inserter for f to g.

Initial object
The initial topos @ classifies the contradictory theory (no vocabulary, axiom true | false). To see
why, suppose we have a point of @, in other words we have contradiction false. Then any
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interpretation of vocabulary will give a model for any theory, and any two interpretations will be
isomorphic. The same topos @ is initial in every slice, and is preserved by pullback.

Bagtoposes

If D is a topos, then there is also a topos By D, its lower bagtopos, whose points are pairs (S,
(x))aes) Where S is a set and (X)))e s is an S-indexed family of points of D. In terms of geometric
theory presentations, the slightly intricate construction involves adding a new sort (for S) and
functions from the old sorts to S in such a way that the fibres over elements of S are models of the
old theory. This can be universally characterized as a partial product (Johnstone 1992); it is a notable
example of a case where care is needed in giving a proper 2-categorical account of the universal
property (Johnstone 1993). We shall not go into the details here but use these construction mainly to
make geometric sense of phrases such as “set-indexed family of points”.

Coproducts

Let D and E be toposes. Then their coproduct D+E classifies tuples (I, (x))ae1, I, (Ywpes 0) where
(X))re1 is an I-indexed family of points of D, (y,,),ic ; is a J-indexed family of points of E, and 6:
I+J = 1. (Classically, of course, this is either a point of D or a point of E.)

We write it this way to make it clear using bagtoposes that we have a geometric theory, but in
practice we can use a more perspicuous notation. The subsingletons I and J with I+J = 1 are
equivalent to a Boolean value (complemented proposition) p=3A. A € I, and the I- and J-indexed
families are equivalent to a point x of D defined if p, and a point y of E if —=p. Let us therefore write
this point of D+E as a conditional if p then x else y. The injection inj;: D — D+E maps x to if true
then x else —, and inj; maps y to if false then — else y.

An important feature of the if ... then ... else ... notation is that it embodies a filtered diagram.
Consider if p then u else v, where u and v are points of a single topos. This gives a diagram whose
shape is the discrete category {*€ 1: p} + {*€ 1: =p} = 1, and whose nodes are u for each * in
{*¢ 1:p} and v for each * in {*€ 1: -p}. The diagram is filtered and hence has a colimit (another
point of the same topos). We shall write “if p then u else v” to denote this filtered colimit.

To see that D+E is a coproduct, consider maps f: D — F and g: E — F. A point u = if p then x
else y of D+E is isomorphic to the filtered colimit

if p then (if true then x else -) else (if false then — else y)
= if p then inj; x else inj, y

Because geometric morphisms preserve filtered colimits of points, the copairing [f,g] has to map
u to the colimit of the image diagram in F, namely if p then f(x) else g(y).

(The alert reader may well be worried by this recourse to preservation of filtered colimits when
the diagrams are not external ones, but in fact sense can be made of the argument.) .

If D and E are toposes over B, then D+E is still the coproduct in Top/B. Moreover, if f: C — B,
then f*(D+E) is equivalent to f*D + f*E. A point of f*D + f*E is of the form if p then (x, z', ¢)
else (y, z", y) where x and y are points of D and E, z' and z" are points of C, ¢: f(z') = xlg and y:
f(z") = ylg. If we let z = if p then z' else z", then ((if p then x else y), z, 0) is a point of f*(D+E),
B being the isomorphism

f(z) = f(if p then z' else z") = if p then f(z') else f(z")
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= if p then xIg else ylg = (if p then x else y)lg
This gives an equivalence between f*D + f*E and f*(D+E).

Exponentials

Top is not Cartesian closed. However, many of the toposes we shall be dealing with are
exponentiable, so exponentials often exist. Let us note that pullback functors between slices preserve
existing exponentials. For suppose q: E — B is a geometric morphism and that D and D, are
toposes over B such that the exponential D; =g D, in Top/B exists. If F is a topos over E, then

maps F = q*(D; =g D») over E
~ maps F—-D; =D, over B
~ maps Fxg D; = D, over B
~ maps F xg g*D; —» Dy over B (FXxg q*D; =F xg D)

1

maps F xg q*D| — q*D, over E

It follows that g*(D; =g D) is an exponential ¢*D =g q*D;.

2.3 Lifting in Top

It is convenient to summarize here general results about lifting of toposes, commonly known as
scone or Freyd cover (Johnstone and Moerdijk 1989; Johnstone 1992). Some of the coherence
questions that arise are quite intricate, and we shall defer detailed discussion of them (in more general
2-categories than Top) to a later study. Here we shall be content with sketching the concrete
constructions.

Definition 2.3.1 (Johnstone and Moerdijk 1989) A topos D is local iff the unique (up to
isomorphism) map !: D — | has a left adjoint L: 1 — X (L pronounced “bottom”). Being a left
adjoint means exactly that the global point L is initial amongst all points: if f: Y — X, then there is a
unique 2-cell from !;L to f.

(Clearly this definition can be extrapolated to general 2-categories. In particular, in poset-
enriched categories, L is indeed a bottom point of D and so we use this term rather than Johnstone
and Moerdijk’s “centre” which seems topographically wrong.)

A map between two local toposes is strict iff it preserves L (up to isomorphism).

We now have a sub-2-category LTop of Top, full on 2-cells, whose objects and morphisms are
the local toposes and strict maps.

We shall feel free to extend these definitions to slice categories Top/B by change of base, getting
the notions of toposes or maps being local or strict over B.

The essence of lifting is that it provides a left adjoint to the inclusion LTop — Top — this is
exactly what lifting of domains does in a rather simpler context. It is less straightforward in our 2-
categorical context, but Johnstone (1992) shows that the scone or Freyd cover construction has the
right properties. In Johnstone and Moerdijk (1989), £X is written K.

Definition 2.3.2 Let X be a topos over base B. (We shall use restriction notation for the map from
X to B.) The scone or lifting of X over B, Lg X, classifies triples (x, I, (y», 83)rc1) Where x is a
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point of B, I is a subsingleton, and (y;, 8))¢1 is an I-indexed family of pairs, y; a point of X and
0,.: yalg = x. This is again a topos over B, by the map that forgets everything except x. '

Over B, it has an initial point given by x = (X, @, (-,-)), and a map up: X — Lg X given by y
= (ylg, 1, (y, Id)). |

Proposition 2.3.3 Ly provides lifting in Top/B.

Proof
This and further properties of lifting (e.g. that it has coKZ properties) follow from the fact that £g X

is a cocomma object in Top:

X—p B

Id
7 A
X—Ppr X
up B

(The morphism up is the unit of the monad Lg.) ]

We now turn to discuss the axiomatization by Crole and Pitts (1992) of lift. They require a
fixpoint-object Q: Q is an “initial lift algebra” (with structure morphism o: L — ), equipped with
a global point : 1 — Q that is an equalizer for Idg and up;o: Q — Q. However, “algebra” here is
used in a sense that is weaker than that of Eilenberg-Moore algebra for lift gua monad, so let us avoid
confusion by using the word structure for the weaker sense.

Definition 2.3.4 Let F: C — Cbe an endofunctor of a category C. Then an F-structure is an object
X of Cequipped with a morphism o: FX — X.

Theorem 2.3.5 Each slice Top/B has a fixpoint-object.

(Note that in the 2-category Top even the statement of this theorem raises coherence questions that
we are neglecting for the time being.)

Proof

Let us first prove the case when B = 1. Define the locale Q to classify inhabited initial segments of I

(so Q is the ideal completion of (1Y, £)). Q is local (its initial point is {0}), and we also have a map
suc: Q = Q, suc(S) = {0}u{n+1: n € S} which, by the universal property of £, extends to ¢: L Q
- Q.

Let us note straightaway that if we define the global point @: 1 —  to be the whole of ¥, then
this is the equalizer for Id and up;o = suc. For if S = suc(S) then 0 € S and n+1 € S foreveryn e
S, so by induction S = 1. Notice that o is a final point of 2 — Q is colocal as well as local.

Now suppose F: £D — D is a structure for £. We require an essentially unique map it(F): Q —
D that is an £-structure homomorphism, in other words ;it(F) = £(it(F));F. Now an ideal S of I is
a filtered colimit of the principal ideals n such that n € S, so the action of it(F) is determined by its
action on principal ideals and the inclusions between them. We have —

it(F)(L0) = it(F)oo(L) = FoLit(F))(L) = F(L /)
it(F)L(n+1)) = it(F)osuc(dn) = it(Focoup(dn) = FoLit(F))oup(dn) = Foupoit(F)(In)
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By induction, this proves uniqueness of it(F) on principal ideals. Let us write x, for it(F)({n).

itF)0 = 11) = it@F)oo(L — up(0)) = FoL(it(F))(L — up(0)) = F(!: L — up(xg))
it(F)(n+1) e L(n+2)) = it(Focoup(dn = L(n+1)) = Foupoit(F)(dn = 4(n+1))

This proves uniqueness of it(F) on inclusions between principal ideals, and hence (taking filtered
colimits) on arbitrary points of Q. It also proves existence by allowing us to define it(F)(S) as the
filtered colimit of the corresponding diagram (over n € S) of points of D.

The argument for Top/B is similar, but parametrized by points of B. The fixpoint object in
Top/B is BXQ, and this is an Lg-structure by Idgxc: BX£LQ — BxQ (using the fact that Lg(BxQ) =
B x £Q). ]

We use the fixpoint object to prove a remarkable property of local toposes, namely that they are
the topical analogues of Freyd’s (1991) algebraically complete categories, i.e. those for which every
endofunctor has an initial structure. By considering the identity endofunctor one can prove that every
algebraically complete category has an initial object, but the converse is far from true. However, we
show that if a ropos D has an initial point (that is to say, it is local), then every endomap F has an
initial structure constructed using filtered colimits of points. To make this precise, we consider the
topos [F-Str] that classifies F-structures. (An F-structure is a point x of D equipped with a
homomorpism o: Fx — x.) This is the inserter for F to Idp.

_ We first set out some easy facts about toposes [F-Str] that are familiar from the category context
(Freyd 1991).

Proposition 2.3.6 Let F be an endomap of a topos D.

(1) Let o: Fx = x and B: Fy — y be two F-structures. Then homomorphisms from o to [ are
homomorphisms f: x — y such that o;f = Ff;3.

(11) F extends to an endomap of [F-Str], mapping o: Fx — x to Fa:: F2x — Fx. Moreover,
there is a natural transformation from this F to Id{r_syr.

(111) If [F-Str] is local, with initial point a: Fa — a, then o is an isomorphism.

Proof '

(1) This is quite obvious. (The issue is that the general notion of homomorphism between models of a

geometric theory has already been defined.)

(1) Also obvious. a itself provides the homomorphism from Fx to x.

(1i1) We briefly recall the usual argument. By initiality there is a unique F-structure homomorphism

o: a — Fa. o';o is the unique F-structure endomorphism on a, and so is equal to the identity. Then

because o' is an F-algebra homomorphism we have a;o' = Fa';Fo = F(o';a) = F(Id,) = Idg,. ]

Proposition 2.3.7 Let D and E be toposes, and F: D — E and G: E — D maps. Then [GF-Str] is
local iff [FG-Str] is. |
Proof

Suppose [GF-Str] is local, with initial point a.: GFa — a. By an obvious generalization of 2.3.6 (i1),
F and G extend to maps F: [GF-Str] — [FG-Str] and G: [FG-Str] — [GF-Str]; we show that Fa is
an initial point of [FG-Str]. Suppose that B: FGy — y is an FG-structure, and let f: a — Gy be the
unique GF-structure homomorphism. Then Ff;: Fa — y is an FG-structure homomorphism. For
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uniqueness, let g: Fa — y be another. Then o~!;Gg: a — Gy is the unique GF-structure
homomorphism and so equals f. Then Ff;p = Fa~1;FGg;p = Fa—1;Fo;g = g. ]

Theorem 2.3.8 (In Top, local < algebraically complete .)

Let D be a topos. Then D is local iff for every map F: D — D, [F-Str] is local.

Proof

(Again, in the proof here we are neglecting coherence issues.)

«: Take F = Idp, and let o: a — a be the initial point in [Id-Str]. There is a unique Id-structure
homomorphism from (a, ) to itself, i.e. a unique homomorphism f: a — a such that a;f = f;o. But
both Id, and « satisfy this, so o = Id,. Now by considering the unique Id-structure homomorphism
from (a, Id,) to (b, Idy), we see that there is a unique homomorphism from a to any point b of D.
Hence D is local with initial point a.

=: Let us write S for the topos [F-Str]. By Proposition 2.3.3, we have a unique strict map F': LD —
D, and hence it(F'): Q — D the unique L-structure homomorphism. Let a = it(F')(w). Then

a = it(F)ocoup(®) = FoLit(F'))oup(®) = Foupoit(F')(w) = F(a)

and the isomorphism makes a an F-structure A = (a: Fa — a). This will be our initial point L of S.

B f
Now let E classify diagrams of the form Fb b Y where b and y are points

of D and B and f are homomorphisms. E is a topos over S (by the map that picks out the structure :
Fb — b). and moreover it is local over S: the initial point over the algebra b has y = L. We can define
amap G: E — E over S mapping the above diagram to

B B Ff
Fb—» bw— Fh=— Fy

From G we get amap G": Lg E — E, strict over S. The forgetful map from E to S X D (forgets f) is
an Lg-structure homomorphism, and so we have a diagram of Lg-structures

SxQ
1t(G")

E Id x it(F)

Forget

\

SxD

By initiality of S x Q, it follows that for an F-structure B = (B: Fb — b), it(G")(B, ®) has the form

Fb_B>b<'g“"a

By the equalizing property of w, we have an isomorphism
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H)—bbd

so that g is an F-structure homomorphism.
To prove uniqueness, let S classify F-structures B: Fb — b equipped w1th F-structure

a
Fg

<B P - Fa

homomorphisms h: a = b, and let E; classify points of S; equipped with homomorphisms f: y — b.
E, is local over S (take y = 1). We have amap G;: E; — E; over Sy, defined just like G, and hence

G," Lg,E| — Ej. Define a map H: S$;xQ — E; by
H((B,h),n) = (B,h) with it(F')(n = w);h: it(F')(n) = it(F)(@)=a— b

We show that H is an Lg,-structure homomorphism, so we check that two maps agree on
Lg,(81XQ) = §;XLQ — they are (S1x0);H and Lg,H;Gy'". Since every point of L is a filtered
colimit of points L and points n of €, it suffices to check on these. For ((B,h), ), we find that both

images in E| have homomorphisms L — b which must be equal by initiality of L in D. For
((B,h),n), we find that the two images are

Foit(F')(n)

Foit(F')(n = w)

1t(F")(suc n)
it(F')(sucnes 0)
o Fa
E o Fa __—~ g a
a —_— a
Fh h Fh
Fh h
b bg—— P
B §

To show these are isomorphic, consider the diagram:
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it(F")osuc(n) —g- FoLit(F)oup(n) g = Foit(F')(n)

it(Fosuc(n € @) FoLit(F)oup(n = )

Foit(F')(n = w)

it(Fosuc(w )& - F oLit(F')oup( 0) <— — Foit(F")(w)
a - o Fa
h * * Fh
b g o
§

Here, the bottom part commutes because h is an F-structure homomorphism, the middle part by
definition of «, the top right because up is a natural transformation from Id to £, and the top left
because it(F') is an L-structure homomorphism.

This shows that H is a (hence the unique) Lg,-structure homomorphism from S;x€2 to E;. But
there is another H', defined by H'((B,h),n) = it(G')(B,n) with h tacked on, and so H = H'. Applying
them both to ((B,h),w), we see that h = g and hence there is a unique F-structure homomorphism.
from A to B. ]

Corollary 2.3.9 Let D be an arbitrary topos, F: LD — D a map. Then [(up;F)-Str] is local.

Proof
LD is local, so by 2.3.8 [(F;up)-Str] is local. Now apply 2.3.7. ]

2.4 Algebraic dcpos

The localic theory of algebraic dcpos is well-known, but we shall recall some of it here for three

reasons.
(1 The strongly algebraic domains that are the main concern of this paper are algebraic dcpos,
and many of the points discussed here will be needed later in the special case.
- (2) They provide a simple example to illustrate the “Display categories” in Section 3.2.
(3) We wish to illustrate the idea that a locale is a special kind of topos.

Let us first recall the localic theory of algebraic dcpos. It is constructive, and hence holds in a
general geometric universe.

Proposition 2.4.1 Let X be a poset. Then the following frames are isomorphic:
(i) Fr(Ts(se X)I  Tt<Ts (sct)

true < Vex Ts

TsATt<sV {TwwueX,seu, tcu) )

(i1) The Alexandroff topology on X (that is to say, the frame of upper-closed subsets of X)
(i) The Scott topology on Idl X. ]
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The points of the corresponding locale are in order-isomorphism with the ideals of X. We therefore
write Id] X for the locale, which is constructively spatial. There is an equivalent predicate
presentation, using a unary predicate I ¢ X satisfying —

I(t)AsethgI(s)

F ds. I(s)

IS) AI(t) Fg¢ Ju. J(u) ASsuAtcsu)
Definition 2.4.2 A locale is an algebraic dcpo iff it is homeomorphic to Id] X for some poset X.

We still have the more usual order-theoretic characterizations:

Proposition 2.4.3 A locale is an algebraic dcpo iff its frame is the Scott topology of a dcpo D
satisfying one of the following equivalent conditions:

(1) D is order-isomorphic to the ideal completion of the poset KD of its compact elements.
(i1) Every element of D is a directed join of compact elements below it.
Then its global points are in order-isomorphism with D. ]

If we do this for the generic poset (X, =) in Jposet] then its ideal completion IdI(X) is a locale
[poset][ideal] over [poset], and every algebraic dcpo (over any topos) is a pullback of it. We may
therefore consider [poset][ideal] — [poset] as the algebraic dcpo classifier. “Classifier” here has the
same sense as in “subobject classifier”, not as in “classifying topos”. In an elementary topos, the
subobjects are the pullbacks of the subobject classifier true: 1 — €2, and in the category of toposes
the algebraic posets are the pullbacks of the algebraic dcpo classifier. |

To summarize: The ideal completion of a poset can be constructed “generically”, as a geometric
morphism [poset][ideal] — [poset]. All other instances of the construction, over any topos, can be

obtained from this one as pullbacks.

An important corollary from these results is that algebraic dcpos are exponentiable (Lemma 4.1
of Johnstone and Joyal (1982)) in the category of toposes. Of course, it is better known that they are
exponentiable in the category of locales, i.e. locally compact. The corresponding property for toposes
is slightly stronger — such locales are known as “‘metastably locally compact” —, but the results of
Johnstone and Joyal are enough to show that it holds for algebraic dcpos.

If X and Y are posets, then by analysing the frame homomorphisms from Fr (Tt (te Y) ... )to
Alex X one easily sees that continuous maps from Idl(X) to IdI(Y) can be described equivalently as
. certain relations f from X to Y — explicitly, they are those relations satisfying —

e s'osftat ks ft
e FdteY.sft
e sftynsftobF dteY. (sftAatatjAtat))

Such relations are known as approximable mappings from X to Y. The identity approximable
mapping 1s =, and composition is by relational composition.

Note that the last two axioms are the nullary and binary case of a more general form that can be
proved from the special cases by induction on n:

N sk sftanl ta )
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We can state this more succinctly using finite sets: if T is a finite subset of X5, then
VteT.sft' F3t. (sftAaVteT.tat)

Note also that approximable mappings are geometric in the sense that there is a geometric theory
whose models are pairs (X, Y) of posets, together with an approximable mapping (appearing as a
binary predicate) between them. Let us write AM for this theory. There are then two posets X and

‘X; in S{AM], i.e. two geometric morphisms from [AM] to [poset], so [AM] is a topos over [poset]2.
Thinking spatially, the fibre over a given pair of posets is to be the space of continuous maps from
Id1(X;) to Id1(X), so perhaps [AM] should be the exponential (Id1(Xs) =[poset]2 Id1(X})) over

[poset]2. Indeed it is.

Theorem 2.4.4 The exponential (Idl(Xs) =[poset)2 Id1(X})) exists and classifies the theory AM.
Proof This is an application of Lemma 4.1 in Johnstone and Joyal (1982). Let us sketch the proof in

this simple case. If D is a topos over [poset]2, then let X and Y be the two corresponding posets in
SD. It can be calculated that Id1(X) classifies the theory of pairs (x, F) where x is a point of D and F
is a flat presheaf on X(x): hence by Diaconescu’s theorem, SIdl(X) is equivalent to the geometric
universe of internal X-diagrams in SD. A geometric morphism from IdI(X) to Id1(Y) is an ideal of the

constant internal X-diagram corresponding to Y, but this can be calculated to be just an approximable
mapping from X to Y. ]

This result gives us a universal characterization of the topos [AM] that does not depend on the
presentation we gave for the theory AM.

3 Examples of topical categories

3.1 Intrinsic categories

An important aspect of the 2-categorical structure of Top is that it allows us to imagine each topos D
= [T] as a category — not as its geometric universe SD, but as an idealization of pt D (i.e. Top(l, D))
that transcends the possible insufficiency of models of T in Set.

The way this works as a practical technique is that if you have an aspect of categories that can be
expressed using the 2-categorical structure of Cat, then that expression can be translated to Top. For
instance, a category C has an initial object iff the unique functor !: C — 1 has a left adjoint.
Transferring this property to Top gives a natural notion of “topos with initial point” (and these are
the local toposes of Section 2.3). C has finite coproducts iff every diagonal functor A;: C = C? has a
left adjoint, and in Top we get the notion of “topos with all finite coproducts”. A result of
Johnstone’s (1992) can then be naturally read as saying that a certain bagdomam construction freely
adjoins finite coproducts to a topos. )

This somewhat mystical category of generalized points is manifested as a topical category,
because if T is a geometric theory then the theory of two models with a homomorphism between
them is also geometric. Clearly we seek a comma square
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SRC
Hom[T] ———p» [T]

Ty /1

[Tl————— [T]
Id

Alternatively, Hom[T] can be expressed as the exponential ($ = [T]) where § is the Sierpinski
locale.

We can now make Hom(D) 3 D into a topical category. ID: D — Hom(D) corresponds to

Id

D UId D.For composition COMP, let Homy(D) be the pullback

Id

Homy(D) ————» Hom(D)

% TAR
Hom(D) p D
SRC
Then we have
/ T4R
Hom, (D) l D

and hence COMP: Homy(D) — Hom(D). By definition, ID and COMP interact correctly with SRC
and TAR. while the unit laws and associativity follow from the corresponding properties of 2-cells.
We call this topical category the intrinsic category on D.

The topical categories that we shall use to “topologize” categorical domain theory are actually not
intrinsic categories — they are examples of the display categories that we shall introduce in the next
section. However, wherever you have a topos you have an intrinsic category, and it turns out that
some of those associated with the display categories for domains have particular domain-theoretic
significance: one, for instance, corresponds to a category of domains with embedding-projection
pairs.for morphisms.
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3.1.1 “The topos of sets is not Cartesian closed”

We prove this to suggest that topical CCC’s are less common than you might expect. Of course, the
statement must be understood rather carefully. “The topos of sets” means the topos classifying sets,
i.e. [Set]. This has an intrinsic categorical structure fopically: its morphism topos is Hom([Set] =
[Fn], classifying two sets and a function between them. It is this topical category that is not Cartesian
closed, i.e. it cannot be extended with the (essentially algebraic, and hence topically meaningful)
structure of a Cartesian closed category.

The basic idea is that if [Set] were a topical CCC, then exponentiation would have to be covariant
in both arguments, and this is impossible.

Suppose we are given a topical CCC C, with toposes Cq and C; classifying objects and
morphisms, and various maps including an exponential EXP: CopZ — C. If we take global points,
then we get classes pt Cg and pt Cj of objects and morphisms, with various functions making an
ordinary (though large) CCC pt C. This includes pt EXP: (pt Cg)2 — pt Co, which is determined
uniquely up to isomorphism by the category structure of pt C. Of course, with respect to the
morphisms in pt Cy, pt EXP is contravariant in the first argument and covariant in the second. On the .
other hand, pt Cp is not just a class — it is a category in its own right, and with respect to the
morphisms there, pt EXP is covariant in both arguments.

Now consider the case of the intrinsic topical category on [Set], and suppose that it is Cartesian
closed. The global points give the category Set, and EXP(X, Y) is ordinary exponentiation YX. But
pt Cg, i.e. pt [Set], is also Set, so we have a covariant functor EXP: Set? — Set such that EXP(X,
Y) = YX. Now consider (!, Id): (@, @) — (1, @) in Set2. EXP(!, Id) is a function from @9 = 1 to
@! = @, which is impossible.

It is also instructive, under the assumption that [Set] is intrinsically a topical CCC, to consider
the GU homomorphism SEXP: $[Set] — S$[Set]2. This is defined by a single object of S[Set]?, and
one can show that it would have to be YX where X and Y are the two generic sets in $[Set]2. But one
can also calculate that YX is isomorphic to Y — essentially because the only functions that can be
defined from one generic set to another are the constant functions. The assumption that [Set] i1s
intrinsically a topical CCC implies that this exponentiation is generic, and hence that in any geometric
universe we have YX = Y for all objects X and Y — an obvious nonsense.

One might well ask whether any topos other than 1 is intrinsically Cartesian closed in this sense.

3.2. “Display” categories
We follow with another family of examples of topical categories, which we shall call “display
categories”. Hyland and Pitts (1989) use pullback-stable classes of morphisms to model dependent
types, and we shall use this idea in Top in the case where the class is generated by a single
“classifying” morphism p of which every other morphism in the class is a pullback. The paradigm
example is the way a subobject classifier t: 1 — Q classifies monics in an elementary topos — monics
are pullbacks of it. Similarly, we treat p as classifying the pullbacks of it.

The prime example in toposes is the étale classifier, the forgetful map from [Set][elt] — [Set]: a
geometric morphism f: D| — D3 is étale iff it is a pullback
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D, » [Set][elt]

[—
D2 [Set]
h

By definition of the object classifier-[Set], h corresponds to an object X of SDy, and then $Dj is
equivalent to the slice geometric universe SDy/X.

Now for the subobject classifier, the morphism along the bottom is uniquely determined by the
monic m. For the étale maps it’s defined uniquely only up to isomorphism, and in fact there are
examples where even that doesn’t hold. Hence what p classifies is really pullbacks of it equipped
with specified pullback squares and so the notion of “classifying” is somewhat weaker that with the
subobject classifier; but the comparison is still useful.

~ Let us call such pullbacks p-displays. If f: D1 — D7 (equipped with a pullback square) is a
p-display, let us call Dy a p-topos over Dj. Given a topos D, consider p-Top/D, the full subcategory
of Top/D whose objects are p-toposes. Our interest lies in devising p to capture various notions of
topos — mostly locales, actually — over (arbitrary) D as p-Top/D. We have already seen how to
capture discrete spaces (étale maps) using p = forget: [Set][elt] — [Set], and then p-Top/D = $D. A
second main example is that of algebraic dcpos: if we take p to be the forgetful map (forgets the ideal)
from [poset][ideal] to [poset], then it’s the ideal completion of the generic poset, and we have already
argued that it classifies algebraic dcpos. (Note that there is a discordance here with the way Hyland
and Pitts (1989) use the word “algebraic”. For them, an algebraic topos D is one that classifies an
essentially algebraic theory: its geometric universe SD is a presheaf category SetC for some lex
category C, and a localic algebraic topos is one for which C is a poset — hence a meet semilattice. Our
algebraic dcpos are locales D (localic toposes) for which SD is SetC for an arbitrary poset C, and it
would indeed be natural for us to define a topos to be algebraic if SD is SetC for an arbitrary
category.) Other kinds of locales that can be captured (sometimes in more than one constructively
inequivalent way) include continuous dcpos, Scott domains, strongly algebraic (SFP) domains,
Stone locales, spectral locales, etc., etc. — we shall discuss some these more fully in a later section.
The main body of the paper will be concerned with strongly algebraic domains because of their
computer science interest.

Let us fix notation for a general scheme so far: we have a theory IS of information systems (e.g.
the theory of posets), a theory IS+pt of points of information systems (e.g. ideals of posets), and a
map p: [IS][pt] — [IS]. Pullbacks of this will be called domains (though predomains would often be
a more conventional term, because we don’t usually assume bottom points). We shall assume that p
is exponentiable, and therefore have [AM] = (Ps*p =>(15)2 Pi*p), where Pg and Py are the two
projections from [IS]? to [IS].

[AM] is a topos over [IS]2, so we certainly have two geometric morphisms SRC and TAR from
[AM] to [IS] (corresponding to Pg and Py). Let us show that these form the source and target maps of
a topical category. Remember that the characterization of [AM] as an exponential over [IS]? enables
us to define maps from any D into [AM] as pairs (Ps, Py) of maps from D to [IS] together with a map
from Pg*p to Pi*p over D.
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The identity map ID: [IS] — [AM] is given by the pair (Id, Id) of maps from [IS] to itself,
together with the identity map from Id*p to Id*p.
Let [AM>] be the theory of two composable approximable mappings, in other words the pullback

[AM)] > [AM]
SRC
7
[AM] » [IS]
TAR

We have three maps from [AM3] to [IS] — or, more carefully, four maps with an isomorphism
between the middle two. Accordingly, we get four domains over [AM5]. The two maps to [AM] give
maps over [AM3] between the first two domains and between the last two, and the isomorphism
gives an equivalence between the middle two. Composing gives a map between the first and last,
corresponding to a map from [AM3] to [AM]. This is COMP, for composition.

By definition, ID and COMP interact correctly with SRC and TAR. The unit laws and
associativity follow essentially from the corresponding properties of maps, though we have
somewhat glossed over the 2-categorical aspects here. We shall call the resulting topical category the
display category obtained from p.

Example When p is the étale classifier, then its display category is equivalent to the intrinsic
category on [Set]. This is because maps between discrete locales are equivalent to functions
(homomorphisms) between the corresponding sets.

Our main aim in this paper is to show how a specific class of domains, namely the strongly
algebraic (or SFP) domains, can be put into a topical setting to exemplify an account of categorical
domain theory that in many respects works much more smoothly than the usual one. The strongly
algebraic domains are chosen for exactly the usual reason, namely that the (topical) category of them
is Cartesian closed and supports domain theoretic constructions including the Plotkin power domain.

3.2.1 Capturing extra structure on the display category
Categories of domains are usually Cartesian (finite products), and if you’re lucky they’re Cartesian
~ closed. If you don’t require bottoms, then they’re also coCartesian. All these kinds of extra structure
can be expressed using essentially algebraic (finite limit) theories, and so are meaningful for internal
categories in any category with finite limits. Unfortunately, the category of toposes is actually a 2-
category, and pullback squares commute only up to isomorphism. Because of these complications we
shall not here attempt to work with a proper 2-categorical definition of “internal category” (Hyland
and Moerdijk unpublished).

Instead, we shall show how properties of p lead to p-Top/B inheriting structure from Top/B.
For instance, p-Top/B can inherit terminal objects from Top/B as follows. Suppose there is a global
point TERM of [IS] (i.e. TERM: 1 — [IS]) that looks as though it ought to be the terminal object in
an internal category sense. For any topos B we get a corresponding p-topos over B, namely
("; TERM)*[IS][pt], and what we do is to show that this is terminal in Top/B. Similarly, p-Top/B
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can inherit binary products from Top/B. We give a map PROD: [IS]? — [IS], and show that for any
two p-toposes D; and D, over B, corresponding to f: B — [IS]2, the pullback (f;PROD)*[IS][pt] is
equivalent to the product D; Xg D, in Top/B.

3.2.2 Examples
We can now extend the negative result of 3.1.1 to cover more particular sets — specifically, finite sets
and decidable sets. These give two toposes over [Set]:

[FinSet] is presented with a constant T: #X and an axiom Fyx.x Xxe T
[DecSet] is presented with a binary relation #: g (XxX) and axioms to make it the complement of
equality:

true by y:x X=y VvX#y
X # X F.x false

These are localic over [Set], because they are presented without any new sorts. They are not
subtoposes of [Set], even though non-constructively you might think of finiteness or decidability as
particular properties of a set X (i.e. just extra axioms). Actually, they represent extra structure on X,
and this shows up in the homomorphisms. Because T or # must be preserved, homomorphisms of
finite or decidable sets must be, respectively, onto or 1-1.

It is normal to presume that the category Set of sets is Cartesian closed, but we have shown that
[Set] is not (topically). We might therefore ask whether perhaps [DecSet] is — maybe in [Set] we
omitted too much of the constructive structure. The answer is No, but let us first take care to phrase
the question properly. We are not interested in the intrinsic topical category on [DecSet], because that
corresponds to the category of sets with /-1 functions and that is certainly not Cartesian closed. (It
does not even have a terminal object, nor binary products.) To get a topical category whose
morphisms correspond to all functions between decidable sets, we take the display category arising
from the étale classifier when pulled back to [DecSet].

Let us now show that this display category is not Cartesian closed. Supposing that it is, then
taking global points just as in 3.1.1 we find that pt EXP is a covariant functor from Setmon? to
Seton, Where Setp,on 1s the category of sets with monos, and that, on objects, it takes (X, Y) to
YX. The argument is now the same as before, because the functions ! and Id used there are both 1-1.

Now let us turn to the finite sets. Classically, the category Setg,, of finite sets is Cartesian
closed. Again, we pull back the étale classifier to [FinSet] and consider the display category that
arises. We find that pt EXP is a covariant functor from Setg,? to Setg,, where Sety, is the category
of finite sets with onto functions, and that, on objects, it takes (X, Y) to YX. Now let Y be any non-
empty finite set. !: Y — 1 is onto, and so is Idy, so there is a function pt EXP(!, Id): YY - Y! = Y.
Let hy € Y be the image of Idy under this function. We show that hy:is invariant under all
permutations of Y, forlet 6: Y — Y be one. We have a diagram —
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ptEXP(!, Id) =
> Yl —p Y
1 ptEXP(0,0) ptEXP(Id, 0) c
YY p Yl——09p ¥
ptEXP(!, Id) = *)

The two unlabelled morphisms from 1 to YY both select the identity function.
We wish to show that this diagram commutes, for this will show that 6(hy) = hy are desired.
The left hand square is obvious, because both arms come to ptEXP(!,6). For the others we need to

investigate the vertical maps. We prove a Lemma that could easily be modified to cover other topical
display categories.

Lemma 3.2.2.1 Let there be a diagram as follows, in which the objects are finite sets, h, h', k and
k' are all surjective, and the two outer squares commute.

fl 0 g,
X —» X S SR ¢
h h' k k'
f2 ptEXP(h',k)(9)

Then the middle square commutes, and the bottom composite edge of the overall rectangle is equal to
ptEXP(h, k')(f1;0;g1).
Proof We prove the second part first. Consider the exponential on functions, contravariant in the first
argument and covariant in the second. This exists simply by virtue of the internal CCC structure. If
C) is the topos classifying two finite sets and a function between them, then this exponential is a map
MEXP: C;2 — Cj. This is functorial with respect to homomorphisms between points, and a
homomorphism between points of C12 is just a pair of squarés like the outer two in the given
diagram, and so we obtain a commutative square (a homomorphism between points of Cy) like this:
g 1f :

X
X > v

Y,

ptEXP(h'k) ptEXP(h,k")
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Applying the two arms of this to an element ¢ of Y X!’ gives our result.

Commutativity of the middle square follows by taking X| =X =X, fj=h =Idx; and f3 =
h';and Y1'=Y2' = Yy, k' = g2 = Idy, and g; = k. Then at the bottom we have h';ptEXP(h',k)(¢);Id
= ptEXP(1d,Id)(¢;k) = d;k. ]

Let us apply the lemma in the case when all the objects are Y and h' = k = 6. We see that
ptEXP(c, 6)(Id) = 0~1; Id; o = Id, in other words the left-hand triangle in (¥) commutes. Now if we
take X' = X3' = 1 then we see that ptEXP(Id, 6)(¢) = ¢;0 for all ¢: 1 — Y, and this translates into
commutativity of the right-hand square.

Finally, the contradiction follows by taking Y =2 and © to be the swap permutation, which has
no fixpoints.

For a more positive example, we can now describe a display category that is Cartesian closed —
that of finite decidable sets. (The argument is already present to some extent in Acufia-Ortega and
Linton (1979).) Its display map p: [FinDecSet][elt] — [FinDecSet] is the pullback along [FinDecSet]
— [Set] of the étale classifier. (Note that the intrinsic category on [FinDecSet] is not Cartesian closed
at all. Indeed, it is a topical groupoid, for a homomorphism between finite decidable sets must be 1-1
and onto, and hence an isomorphism.) The main point of difficulty lies in defining the exponentials.
If X and Y are finite decidable, then [X = Y] can be defined geometrically as

{fe AXxY)IVxeX. 3yeY. (x,y) e f A V(x1,y1), (X2, ¥2) € f. (X1 #Xp VY =Yy}

Using 2.1.6 and 2.1.9, this is finite decidable.

4. Strongly algebraic domains

The notion of strongly algebraic (or SFP) domains is due to Plotkin (1976), who gave a variety of
mathematical formulations. There are various flavours, and for our present purposes we shall assume
neither a bottom point, nor second countability (i.e. the set KD of compact points need not be
countable). v

Recall the classical definition: an algebraic dcpo D is a strongly algebraic domain iff

(1) Every finite subset S of KD has a finite, complete set MUB(S) of minimal upper bounds in
KD. Here “complete” means that every upper bound of S is greater than one of those in
MUB(S).

(i1) Given S cfp KD, define MUBg@(S) = S, and

MUB;;+1(S) = U{MUB(U): U c MUBj(S)}
MUB(S) = U; MUB (S), the MUB-closure of S

We require that MUB,(S) should be be finite for every S. |

We shall describe a geometric theory whose models are “strongly algebraic information systems”
— those posets satisfying the conditions for KD given above. However, there are certain issues raised
by the constructive constraints.

First, is the order decidable? We shall discuss the issues here later (Section 4.7) in more detail,
but let us say straight away that we shall not assume decidability. In fact, taking the order decidable
or not gives two distinct constructive theories of strongly algebraic information systems. The
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undecidable version that we present here — which is the harder one when it comes to describing
domain constructors — is essentially that given in Abramsky (1991).

Second, the requirement of minimality for the bounds in MUB(S) is problematic if the order is
undecidable. Classically, if S is a finite subset of a poset then we can discard the non-minimal
elements to obtain a subset Min(S) comprising the minimal elements of S, but constructively this is
impossible without decidability of <. If it were possible, then homomorphisms between posets —i.e.
monotone functions — would have to preserve Min. This is not so, as can be seen by considering the
monotone function from 2 (discrete poset on two elements O and 1) toI= {1, T}, with L = T.
Min{0, 1} = {0, 1}, but Min{L, T} = { L}, which is not the image of {0, 1}. When ¢ is decidable,
then homomorphisms must also preserve £ and hence are order embeddings. These do preserve
Min, and indeed Min(S) can be expressed geometrically as {te S: Vse S. (s £t v s=t)}. We shall
drop the insistence on minimality and simply require, for each finite set S, the existence of a finite set
T that is a complete set of upper bounds of S (and we write CUB(S, T) to express this).

Finite MUB closures are similar: instead of describing MUB(S) explicitly and requiring it to be
finite, we shall postulate the existence of some finite set T 2 S such that every finite subset of T has a )
complete set of upper bounds contained in T.

We express this as a geometric theory as follows:

Definition 4.1.1 The theory IS of (strongly algebraic) information systems is presented as
follows:

(1) a single sort, X (whose elements are commonly called tokens)

(2) binary predicate = ¢ XxX
(3) axioms to make c a partial order:
3.1 Fextet
3.2 SctAatzubgryxscsu
3.3 SsctAateskgrxs=t
(4) a binary predicate CUB ¢ 7X x 7X
(5) axioms to say that if CUB(S, T) then T is a complete set of upper bounds for S:
5.1 CUB(S, T) FsT:.9x VseS. Ve T.s = t
5.2 CUB(S, T) AVseS.scubgT:9x u:x JteT. tcu
(6) an axiom to say that every finite set of tokens has a finite complete set of upper bounds:

Fs.qx 3T: X. CUB(S, T)
(7) an axiom to ensure that if T is a finite complete set of upper bounds for S, then CUB(S,T):

VseS. VteT.sc t A CUB(S, T') A VteT. te T:t = t'
Fs1.1:9% CUB(S, T)

(8) an axiom to say that every finite set of tokens has a finite MUB-closure
Fs.ox 3T: 7X. (S = T A CUBcI(T))
where CUBCcI(T) =gef VU T. 3Vehn T. CUB(U, V)

Notes —
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) (6) is a consequence of (8) and hence superfluous. However, we make it explicit in order
to point out that (1)-(7) axiomatize the spectral algebraic or 2/3 SFP information systems.
(ii) CUB(S, T) @ VseS. VteT.sc=t A VYu. ((VseS.scu) - JteT. t = u)

The = direction is just a rewriting of axioms (5). For <=, choose T' such that
CUB(S,T). If t' € T', then Vse S. s = t' and so Jte T. t = t'; we can now use (7).

(i) It follows from (ii) that the axioms for CUB make it uniquely determined by =. Hence the
map [IS] — [poset] is a monomorphism of toposes, though it is not an inclusion. (If it
were, i.e. if [IS] were a subtopos of [poset], then its structure would have to be inherited
from [poset] and in particular the homomorphisms of information systems would just be
the monotone functions between posets. But we shall see later that preservation of CUB
makes them more restricted.)

(iv) Classically, this new definition is equivalent to the old one: a poset (X, =) is equivalent to
the set of compact points of a strongly algebraic domain iff it can be equipped with a
predicate CUB making it a model for IS. For the = direction we can define CUB(S, T) iff
T is a complete set of upper bounds of S, and for ¢, suppose S Cfjp X and CUB(S, T).
By taking the minimal elements of T, we get a finite complete set of minimal upper bounds
of S. Let U o S be finite and CUB-closed. The chain (MUB;(S)) can be constructed in U,
and so MUB(S) c U is finite.

(v) In practice, we don’t need to describe CUB fully. For suppose X, = and CUB satisfy
axioms (1) - (6) in Definition 4.1.1 for X, = and CUB. Then we can make a unique
spectral algebraic information system using X and = by defining

CUB(S, T) =gef VseS. Vte T.s = t A 3T FX. (CUB(S, T) A VteT. 3te T. t = t)

(vi) A discrete poset (i.e. a set X) can be equipped with the structure of a strongly algebraic
information system iff it is finite and decidable. If X is equipped with CUB, then for some
finite S we have CUB(@, S), from which we see that X = S is finite; and s # t iff
CUB({s,t}, @). Conversely, if X is finite decidable then CUB(S,T) iff S=@ and T = X,
orS={s} =T forsomes,orthereares#tinSand T = @.

Definition 4.1.2 A strongly algebraic domain is the ideal completion of a strongly algebraic
information system. More precisely, there is an obvious map from [IS] to [poset], and the pullback
along this of the algebraic dcpo classifier is the strongly algebraic classifier. We shall usually write it
as p: [IS][pt] — [IS]. A strongly algebraic domain (over a given topos) is a pullback of the classifier.

We have already mentioned that our domains without bottom might more usually be called
predomains. However, a more subtle connotation of “predomain” is “something whose lift is a
domain” so that one can move between domains and predomains by adding or removing bottom.
This is not possible for us. For instance, all flat domains (lifted sets) are strongly algebraic, but by
note (vi) above the unlifted sets are not, except when finite decidable.

From the general theory of algebraic dcpos, we know that maps between strongly algebraic
domains are given by approximable mappings. Hence we get a theory AM of strongly algebraic
approximable mappings, i.e. those for which the source and target posets are both strongly algebraic
information systems.
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Besides the continuous maps between domains, it is interesting also to consider the
homomorphisms between information systems, defined in the standard way for models of a
geometric theory.

Definition 4.1.3 Let X and Y be two strongly algebraic (or, indeed, spectral algebraic)
information systems. A homomorphism from X to Y is a monotone function f: X — Y that preserves
CUB:

CUB(S, T) = CUB(f(S), f(T))

Proposition 4.1.4 Let X and Y be strongly algebraic (or spectral algebraic) information systems.
Then there is a bijection between —

* homomorphisms from X to Y
* adjunctions between Idl(X) and IdI(Y)

Proof Let f: X — Y be a homomorphism; in preserving < it is monotone. We define approximable
mappings : X = Yand y: Y — X by

sot  iff f(s) =2t
tys iff t =2 f(s)

To see that y is indeed an approximable mapping, let S: #X with t = f(s) for all s € S, and suppose
CUB(S, T). Because f preserves CUB, we also have CUB(f(S), f(T)). t is an upper bound for f(S),
so we can find t' € T such thatt = f(t'),1.e.t yt'andt' = sforall s e S. '

If s= s thens ¢ f(s) ys',soldx = d;y. If tys ¢ t, thent = f(s) = t', so y;¢ = Idy. Hence
(6, y) 1s an adjoint pair.

Now let (¢, W) be an arbitrary adjoint pair of approximable mappings. If s: X then s = s, so we
can find t with s ¢ t W s. Moreover, this t is unique, for if t' is another thent y s ¢ t'so thatt = t',
and by symmetry t' = t. Let us write f(s) for this t. f is monotone, for if s = s'then f(s) y s =2 s'¢
f(s"), so f(s) (y;0) f(s") and so f(s) = f(s'). To show that f preserves CUB, suppose CUB(S, T): we
must show that CUB(f(S), f(T)). By monotonicity, f(T) is a set of upper bounds of f(S). To show
completeness, suppose u is an upper bound of f(S): Vse S. u = f(s). Then u y s, so S has an upper
bound s' such that u y s'. We can find t € T such thats' = t, sou y t ¢ f(t) and u = f(t).

If we start with f: X — Y and construct (¢, ¥) as above, then certainly s ¢ f(s) ¥ s, so f is
recovered from (¢, y) in the way described. The other way round, suppose we start with (¢, ) and
. construct f. Then first, s ¢ t < f(s) = t. If s ¢ t then f(s) Y s ¢ t, so f(s) = t, while if f(s) = t then s ¢
f(s)=2t.,sosdt. Next,tys et f(s). If t ysthentysof(s), sot=f(s), while if t = f(s) then t
= f(s) v s, so t ¥ s. Hence ¢ and y can be recovered from f as described above. ]

Leading on from this, one can show that, using the definitions of Johnstone [93], the strong]y'
algebraic classifier is both a fibration (homomorphism f gives map W) and an opfibration (f gives 0).
We shall now look at constructions on strongly algebraic domains — products, coproducts,
function spaces and so on. (It is worth noticing that the general techniques seen in Hyland and Pitts
(1989) indicate how to go beyond these domain constructions to the construction of terms for maps

between domains (as also appear in Abramsky (1991).) For each of these constructions we show
how to construct a new information system out of old ones, and there are usually two issues. First,
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does the new one have the right points? (Is the corresponding pullback of p the topos that we asked
for in section 3.2.1?) Second, is the constructed information system still strongly algebraic?

In fact, this work is largely indebted to that of Abramsky (1991). He gave a localic account of
SFP domains (with bottom) by describing a formal language for the compact opens that appear in
various constructions — specifically, products, coalesced sums, lifting, functions spaces, the Plotkin
power domain, and solutions of recursive domain equations. (Our treatment differs slightly, in a way
that has been suggested by Abramsky himself, in that our syntax uses the information systems — the
posets of compact points — instead of the distributive lattices of compact opens. This generally
simplifies the presentation — though perhaps not for the function spaces — but the difference is not a
deep one.)

Part of Abramsky’s method relies on certain predicates on the terms that represent compact
opens: binary predicates < and =, and unary predicates C and T (C(a) means that a is a coprime
compact open, T(a) means that a # true). Because of the presence of the recursive solutions to
domain equations, the definitions of these predicates are also recursive and so it is essential that the
predicates occur positively in the definitions. For instance, one cannot ensure merely by definitional
fiat that if =(a = true) then T(a), because the recursive nature means that one only gradually
discovers which a’s are equal to true. T must be defined by positive means, after which it is possible
to prove that T(a) & a # true.

Because of this, the requirements of positivity and constructivity called for by the use of
geometric logic were also called for on quite immediate computational grounds in Abramsky’s work,
and so essentially the work of constructivizing has already been done by him. But one can also look
at this in reverse: the use of geometric logic implied by the topologization programme automatically
1mposes strong constructive constraints that turn out to be necessary in syntactic computation.
(Compare this with the lack of constraints imposed by classical logic in Vickers (1989): the
apparently simpler treatment there sometimes uses arguments that are constructively useless in
Abramsky’s formal system. A good example is the account of strongly algebraic function spaces.)

A more significant difference is Abramsky’s restriction to local domains (i.e. with bottom). This
makes it necessary to have a different treatment of sums (because our coproducts are not local), and
to construct amalgamated sums one requires a predicate to describe the negative information of when
a token is not bottom - this appears as Abramsky’s “termination” predicate T mentioned above. This
1ssue 1s discussed further in Section 5.

Pre-information systems

In Definition 4.1.1 we defined our information systems to be partial orders. It is actually often more
convenient to work with preorders. For instance, for the Plotkin powerdomain PD, the tokens can
then be considered to be finite sets of tokens of D, under the Egli-Milner ordering, a preorder.
However, certain technical simplifications come from the partial ordering assumption. We shall now
show that in fact we can get the best of both worlds by taking the poset reflection of a preorder. The
technical point is that the axiomatization of CUB is so closely constrained by the order that it too
respects the poset reflection.

Definition 4.1.5 The theory of (strongly algebraic) pre-information systems is defined exactly as
in 4.1.1, but with the order allowed to be a preorder: the axioms = t At s g .x S =t is omitted.



33

Proposition 4.1.6 Let (Xo, =, CUB) be a pre-information system, and let (X, =) be the poset
reflection of (Xg, =) with quotient function f: Xy — X. Define

CUB(S, T) =gef 3S0, To: #Xo. S =1(So) A T = f(Tp) A CUB(So, To)

Then (X, =, CUB) is an information system.
Proof .
Straightforward. Note that if S = f(Sg) A T = f(Tp), then the intuitionistic formula

VseS.VteT.s=t A Vu. ((VseS.scsu) > 3teT.t = u)

is equivalent to the corresponding one in Xg for Sg and Tp, which is equivalent to CUB(Sq, To). ]

4.2 Products
Given two information systems, X1 and X», their product is defined as follows: the poset is X X X,
with the product order, (sy, s2) = (t1, t2) iff s; = t; and s = t).

We haven’t defined CUB yet, but already it is clear that if we can, then this is indeed the product:
for an ideal I of X X X3 is equivalent to a pair of ideals, one from each Xj: I} = {x1: Ix3. (X1, x2) €
I} and I is similar. Of course, one should check that the argument is constructive.

Next, we show that the new information system is strongly algebraic. CUB is defined as in note
(v) after 4.1.1 from CUB, defined by -

CUB(S, T) =gef 3T1: #X1,T2: #X2. (CUB(p1(S), T1) A CUB(p2(S), T2) A T = T1XT2)

where p; is the ith projection. The basic reasoning is that (sy,s72) is an hpper bound for S iff each s; is
an upper bound for p;i(S). If M; is CUB-closed containing p;(S), then M|xM3 is CUB-closed
containing S.

The terminal domain is the nullary analogue of this: the posetis 1 = {*}, and CUB(S, T) iff T =
{*}.

4.3 Coproducts

Given two information systems X and X3, their sum is defined as follows. The poset is the
coproduct (disjoint union) X = X + X with the sum order: s = t iff s and t are in the same
component Xj, and s = tin Xj.

To show that this sum gives a coproduct of toposes, we must show that ideals of X are in 1-1
correspondence with points of the coproduct (see Section 2.2). If I is an ideal of X, then we have a
complementary pair of propositions P = 3x:X. I(x) and =P = 3x:X5. I(x). Writing I; = InXj, we
get that I} or I is an ideal of X or X7 accordinag as P or =P, so if P then I; else I is a point of
IdI(X1)+IdI(X3). Conversely, given if P then I else 15, then I = I}+]I5 is an ideal of X.

Noting that AX1+X3) = FX X FX> (the free algebra functor E-Set — Semilattice preserves
all colimits, and for semilattices Cartesian product is a biproduct), we can define

CUB((Sy, Sp), (T4, Tp)) iff CUB(S;, Tj) (i=1, 2)

and if M; is CUB-closed containing Si: 7X; then (M, M) is CUB-closed containing (S, Sp).
The initial domain is the nullary analogue: the poset is @, and its unique finite subset @ is CUB-
closed.
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4.4 Lifting
If X is an information system, then its lift X is the poset { L}+X ordered by sctiff s=lorsct
in X.

If S: #X, then we shall write S = S1+S where S1: L} and S,: #X. Then we define —

CUB(S, T) =gef 3T #X. (CUB(S2, TY AT ={L: Sp =@} + {te T: S # B})

If M is CUB-closed containing Sj, then {_L}+M is CUB-closed containing S.

The proof that the points are right is somewhat similar to that for coproducts. If I is an ideal of
X1, then by taking P = {*e 1: 3x:X. I(x)} we get a P-indexed family of ideals of X, where P is a
subset of 1.

4.5 Exponentials (function spaces)

Despite the expositional differences, the mathematical substance of this section is that of Abramsky
(1991), starting from his Definition 3.4.1. We shall see how the geometric constraints automatically
impose the constructivity that Abramsky required.

Let X and X, be two information systems. We wish to define another information system
[X=X,] whose points are the approximable mappings from X to X,, and the compact points will
be the approximable mappings f that are determined by a finite amount of information U cfip f <
XxX;. (In terms of the compact open topology, any U cfp, XXX corresponds to a basic open, the
conjunction of the subbasics f(Tx) Ty for (x,y) € U.) Abramsky identified conditions on U (our
“fully summarizing”) for there to be a least approximable mapping containing it.

Definition 4.5.1 Let U Cg, XXX,.
(i) Suppose V cg, U. We shall say that W ¢, U is a summary of V in U iff —

fst(W) is a complete set of upper bounds for fst(V)
A snd(W) is a set of upper bounds for snd(V)

(11) U is fully summarizing iff every V g, U has a summary in U. (Note that this is a
geometric property of U.)
(11) The preorder = on A X xX,;) is defined by

U c U' =gef V(ug,u)e U. 3(ug',u)e U (ug 2 ug' A u' 2 uy)

(iv) The (pre-)information system [X =X,] has for its tokens the fully summarizing finite
subsets of X xXy, ordered by c.

Let us note immediately the following lemma:

Lemma 4.5.2 Let U, U’ ¢, XxX, with U fully summarizing.

(1) An approximable mapping f; can be defined by x fyy y iff 3(x', y)e U such that x = x’
and y' = y. It is the least approximable mapping containing U.

(i) U' = Uiff U' c fy.

(iii) If U also is fully summarizing, then U’ U iff fr C fy.

Proof The only part that presents any difficulty is the “ideal” condition of approximable mappings in
(). Suppose x fy y; (1 £1<n), withx 2 x;, y;'2 y; and (xj, i) € U. Let V = {(x{, y{): 1 €i<
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n}, and let W be a summary for it in U. Then since x is an upper bound for fst(V) we have x = x"
for some (x", y") in W, and then x f{; y" and y" is an upper bound for the y;’s. ]

CUB (or rather, as in note (v) after Definition 4.1.1, CUBy) is defined by what is in effect a
description in geometric logic of Abramsky’s (1991) normalization algorithm for function spaces
(which normalizes expressions representing compact opens of the function space). Of course, we
already have an intuitionistic formulation of CUB, but we require a geometric one. Because of the
positivity of the logic, that will have the flavour of attaining CUB “from below”.

Let us consider a preorder < on FHXxX,), defined intuitionistically by U < Viff

VVe?.dUeu.Uc V
A VUe U VIcXxX,. (f an approximable mapping AUCf—3Ve V.U V)

Lemma 4.5.3 If U4, Vg, [X=X,] and {U U} < 7, then Vis a complete set of upper bounds for
u.
ProofIf Ve v,then UUc VandsoUc V forall Uin U

If W: [X,=X,] is an upper bound for U, then U U c fyy and so U U= V c fy for some V in 7] so
Ve W ]

Our strategy now is as follows. We define a geometric formula ®(U;, U;) contained in <, which
is to represent a single iteration of Abramsky’s algorithm (which is non-deterministic). Since < is a
preorder, the reflexive transitive closure @* (which is still geometric) is also contained in <.
CUB(( Uy, U) is then defined as ®*({ U Uy}, U) and Lemma 4.5.3 gives us everything we need
except for existence. (In effect, the algorithm has a loop invariant {U %y} < %) We then show that
for every Uy Cpp XXX there is some U Cg,, [X=X,] such that ®*({Ug}, U) and this
corresponds to the termination proof of the algorithm (if executed judiciously enough).

Before @, we first define a geometric predicate W (U, U; V, W, W, Mg, M) as -

M, is a CUB-closed finite subset of X; and W; ¢, M; (1=, t)

v Sfin UO Sfin MsXMl

W, and W, are complete sets of upper bounds for fst(V) and snd(V)

U= {UguR: R a finite, total relation from W¢ to W,}  (finite, by Lemma 2.1.10)

If we are just given V Cg,, Ug S MgXM,, then we can certainly find W¢, Wy and U such that
YUy, WV, W, W, Mg, M)). Each finite total relation R summarizes V in UyUR, and U in effect
represents the different possible ways of extending U, to summarize V.

Lemma 4.5.4 Suppose ¥ (U, U; V, W, W, M, M) and Uy C f with f an approximable
mapping. Then Uy = U c f for some U in U.

Proof B

V Cqip f, so for each x in W we have x f y' for every (x', y') in V and hence we can find y such that
x fy and y is an upper bound for snd(V) and without loss of generality y € W,. Hence there is a
finite total relation R from W, to W, such that R c f, which is what we wanted. ]

In defining &, we shall fix Mg and M, - this is needed in order to provide finite bounds.
DUy, U>) (U, Uy Crp AMXM))) shall then mean that there are Uy, U, V, U, W, and W, such
that
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Uy = (Uglut
‘F(UO, ﬂ; V, Ws, Wt, MS’ Mt)
‘U2 = uou

In other words, we have selected from ¥, an element U and a subset V, found corresponding W,
W, and U for ¥, and replaced Uy in U; by the elements of Uto get U,. It is plain that ® is contained
in <, so @* is too. Note also that if ®(;, U) then (U UV, UyUD), and so the same goes for O*,
We can deduce that if ®*(U;, 4) (1 <i<n), then ®*(U; U, U; 1).

Finally, we must prove termination. This is quite subtle, for the algorithm is non-deterministic
and can easily go into an infinite loop by selecting unintelligent choices. Hence the proof must in
effect also show how to find a terminating branch and how to know when to terminate.

Lemma 4.5.5 Let M and M, be finite CUB-closed subsets of X and X, and suppose U Cgj,
MxM. Then there exists Wcg, [Xs=X,] such that ®*({Up}, W).

Proof

Consider the following intuitionistic predicate defined for A cg, MXM, and B Cf, AMXM,):

P(A, B) = VU cg, MoxM.
(UVA =MxM; A B RU)
AVV cgn U (Ve Bv V has a summary in U))
— IWcq, [Xs=Xi]. @*({U}, W)

We shall prove that VA, B. P(A, B), using strong %induction (Theorem 2.1.11) on A and
simple %induction (Theorem 2.1.3) on B. Effectively, the induction on Bis an induction on the
number of subsets of U not yet checked to have a summary, while that on A is induction on the
number of elements of MgxM, not in U. These “numbers of elements” do not of course exist as
genuine cardinalities (for which we would need decidable equality on the elements), but they are there
as lengths of lists representing the finite sets and this is seen explicitly in Abramsky’s account. We
have chosen to work more abstractly, without using explicit list representations, but nonetheless you
can see them in the proof of 2.1.11. For a given Uy, the result will follow from P(MxMj, AUy)).

The outer induction is on A, so let us fix A with the induction hypothesis that

Vae A. 3A' cp MxMa. (A = {a}UA' A VB, P(A', B))

We shall prove VB. P(A, B) by simple induction on B. First, P(A, @) is obvious: if U satisfies the
conditions to the left of the implication, then it is already fully summarizing, so we can take W=
{U}. Next, we assume P(A, B) and prove P(A, {V}UB). Let U satisfy the premisses of the
implication. Starting from the given V g, U, we can find U, W and W, so that (U, U; V, Wy,
W, Mg, M)). If R is a finite total relation from W to W, then R € M¢xM; = UUA, so we can find
Ry Cfn U and Rp Cpp A such that R = Ry U Ra. If Ry = @, then R ¢ U and so V has a summary
in U. Hence U also satisfies the premisses in P(A, B), so by induction we can find W as required. If
Ra # @ (remember that emptiness is decidable for finite sets) then take some a € Ra. By the
induction hypothesis, we can find A' cg, MgxM; such that A = {a}UA" and V3. P(A', B). UUR
satisfies the premisses for P(A', HAUUR)) and so we can find suitable 7. We have now shown that

VYU'e 4. IW g, IMe=M,]. ©*({U'), W)
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Now by taking the union of finitely many such #5 we can find W such that ®*(, W); and since
®({U}, U the result follows. ] '

The algorithmic content of this is as follows. A state is a finite set ¢ of triples (Uy, A, B) such
that U;UA = MxM,, Bc FU; and VVCg,U;. (Ve Bv V has a summary in U;): hence the
induction variables A and B appear explicitly in the computation. The reason for this is that in order to
know when to terminate, we must recognize when our U;’s are fully summarizing and B contains the
subsets V for which we must still check for the existence of summaries or create summaries using ‘V.
Using ¥ changes U, and so the checking must start all over again, but occurences of this are limited
by A which contains the elements not already known to be in U;. We also have the loop invariant
{Up} < {U;: (Uy, A, B) € ©}. A step in the algorithm is then —

+ select (Uy, A, B) from ¢ with B# @ (if there are none, we can stop)

» select Ve B, leaving B= {V}UB

« find U, W and W, so that ¥(U,, 4; V, Wi, W, M, My

+ for each finite total relation R from W to W, decomposed as Ry U Ry, find a corresponding
new state element (Uy, A, B) if Ry =@, or (U;UR, A", RU;UR)) if a € Ry, where A'is A
with a removed — or at least, one occurrence of a is removed from the representation of A.

» The new state is the old state ¢ with (U;, A, B) replaced by all the new state elements just
found.

We have now proved that if X and X are strongly algebraic information systems, then so is
[X,=X,] - so we have defined a geometric morphism EXP: [IS]? — [IS].

Proposition 4.5.6 The points of [X;=>X] are equivalent to approximable mappings from X to
X
Proof If 1is an ideal of [X;=X,] then we can define an approximable mapping f as the union of the
fy’s for U in I. Conversely, if f is an approximable mapping, then let I be the set {Ue [X;=X;]: U
c f}. The only point of difficulty so far is the ideal property of I. Suppose U; € [X;=X ], U; c f (]
<1< n). We can find U Cf,, [Xs=X] such that ®*({U; U;}, U), and then because {U; U;} < U
we have by Lemma 4.5.3 that the U;’s have an upper bound contained in f.

Now suppose we start with I, construct f as above, and then construct I' from f. If U € I then U
c fycf,so U e I'. On the other hand, if U € I' then for each u € U we can find U' in I such that u
€ fi, and by taking an upper bound U" in I we have eachu e fyrandsoU = U",Ue L

Finally, suppose f is an approximable mapping, let I be defined as above, and then f' from L. If x
f'y then x f; y for some U < f and so x f y. If x f y then we can find U such that ®*({{(x,y)}}, U),
and {(x,y)} e Uc fforsome Ue U, so(x,y)e fyandxfy. ]

We have now proved —

Theorem 4.5.7 If X, and X, are strongly algebraic information sytems then so is [X;=>X,], and its
points are equivalent to approximable mappings from X; to X;,. ]

It follows that, as we wanted, [AM] is a strongly algebraic domain over [IS]2.
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4.6 Power domains

Robinson (1986) showed that the well-known Hoare, Smyth and Plotkin (or lower, upper and
convex) power domains can be constructed localically, and in fact they are instances of more general
powerlocale constructions Py (lower), Py (upper) and V (Vietoris). V originated in Johnstone
(1982a), while the simpler P; and Py are folklore. A constructive account of all three can be found in
Vickers (1997). |

Definition 4.6.1 Let X be an information system. The lower, upper and convex power domains,
Py X, PyX and PcX, are defined respectively as follows: '

* They all have the same tokens, namely 7X.
* They have preorders defined as —

SeL T =VseS.dteT.sct
SeyT =VteT.JseS.sct
Scc T =Scp. TAScy T (the Egli-Milner ordering)

Note that we do not follow the common convention of excluding the empty set (though there is
no constructive problem in doing so if that is what is required). Consequently, each domain includes
an “empty” point — in Py it is bottom, in Py; it is top and in V it is isolated.

The ideal completions of these are homeomorphic to the corresponding powerlocales, and a
general proof (covering non-local domains as well as continuous domains) is in Vickers (1993). In
what remains, the hard work amounts to a proof that if a domain is spectral algebraic, then so are its
power domains. '

CUB[ and CUBy come out from the fact that =1 and =y both make #X into a join
(pre-)semilattice: SUT is the join of S and T in PLX, while in PyX it is got by taking a union of sets
Uy such that CUB({s,t}, Ug) (s€ S, te T). (We have neglected the nullary joins but they are not a
problem.) I conjecture that if we are prepared to talk about a topical order-enriched category, then
P X and PyX can be characterized as the free join- and meet-semilattices over X. (By a meet-
semilattice in an order enriched Cartesian category I mean a semilattice S for which the n-ary
semilattice operation: S® — S is right adjoint to the diagonal: S — SP, in other words a Cartesian
object, and similarly for join-semilattices but with the adjunction the other way round.)

Let us now concentrate on the convex powerdomain. Just as for the function space, the essential
working is already in Abramsky (1991), so this time we shall do no more than sketch the information
system theoretic account. If U: F#X, then we need to ask when T: #X is an upper bound for U. For
every Ue U wehave Uep T and U =y T. From the former we get that V =, T where V= U 1,
while from the latter we get that for each t in T there is some choice function ¢ on U such that t is an
upper bound for {¢(U): U € U}. Hence W =y T where W = U ¢ W, for some W¢ with
CUB({o(U): U € U}, Wg). Actually, to give a properly constructive account, we need to consider
not choice functions but choice relations on ¥, finite total relations R from % to U U such that if UR
s then s € U. One can show by techniques similar to those of Lemma 2.1.10 that the set of finite
choice relations on U is finite.

We have thus replaced U by a pair (V, W) such that the upper bounds (under =¢) of U are those
T such that Ve Tand W cy T. If we had V =W, then we’d have V c¢ T and so V would be a
least upper bound of ¥; and if we only had W =¢ V then still VUW would be a least upper bound
for 1. Of course we don’t have that in general, but our aim is to work towards a set of pairs (V, W)
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such that the upper bounds of U are those T for which V =, T and W =y T for some (V, W) in the
set. For each such pair, if we don’t yet have W =¢ V (but of course this negative statement must be
treated rather circumspectly just as for the function space) then we can replace it by a set of better
pairs.

The two cases, forming the basis for the (simple %) induction, are as follows.

« Consider (VU{s}, W). For each w € W we can find Uy, such that CUB({s,w}, Uy,); let U =
Uw Uw. Then we can replace (VU{s}, W) by {(VU{u}, W):ue U}. Forif VU{s} e T
and Wcy Tthensc somete T,andt = some we W,sot = someue Uy and Vu{u}
e T. Conversely, if Vu{u} =1 T for some u € Uy, thens = uso Vu{s} = T. Now if u
e Uy then u = w, and by iterating the process we can ensure W =y V in each pair.

« We can replace (V, WuU{s}) by {(V, W), (VU{s}, WU(s}). For if WU{s} =y T then either
W ey Tors = somete T,in which case VU{s} =1 T. Both these new pairs help to make
W = V. We might no longer have W =y V, but we can restore this by the first case.

- To complete the proof of strong algebraicity, if 2 F7X let M be CUB-closed containing U U.
Then M is CUB-closed containing 7. ‘

4.7 Decidable information systems
The information systems discussed so far have been undecidable in that the order = did not have a
complement. It is interesting that [decIS], the topos classifying decidable information systems, also
gives a topical CCC. It is genuinely different from [IS] — it does not happen that by some quirk the
general c has a complement. This is easily seen by considering the information system
homomorphisms: if = did in general have a complement, then it would have to be preserved by
homomorphisms, so the homomorphisms would have to correspond to embedding-projection pairs
rather than to the more general adjunctions that are clearly possible in the light of Proposition 4.1.4.

In [declS], the proof of Cartesian closedness can be understood as a use of classical logic: the
decidability of = enables us geometrically to bring ~ and — into order-theoretic statements, while V
is possible because the SFP axioms give finite sets with which V can be bounded. Hence one can
mimic classical proofs of the Cartesian closedness of the category of posets.

Abramsky (1991) describes his constructions inductively without ¢, and is in effect giving what
is needed to show Cartesian closedness for [IS]. However (his theorem 4.2.7), he also proves that c
is decidable. This paradox arises because he is considering only the types that arise in his inductive
system. Part of his proof shows how ¢ can be defined inductively, and in fact this provides the
ingredients for another proof that [decIS] also gives a topical CCC.

Note that if a strongly algebraic information system X has decidable order, then CUB is also
decidable: for its negation ~CUB(S,T) is the geometric formula

JseS,teT.s<dt v Ju. (VseS.s=uaAVteT. t < u)

5 Solving domain equations

Recall that Theorem 2.3.8 showed the existence of fixpoints (more precisely, initial structures) for
endomaps of local toposes (i.e. toposes with initial points). Restricting to the case of locales we get a
more elementary case, that locales with bottom points have fixpoints for endomaps. (This fact is so



40

crucial to denotational semantics — in giving meaning to recursion — that it is common to apply
Occam’s razor rather ruthlessly and define a domain as embodying (as an w-cpo) the minimal
structure needed to make this work: order, bottom, and sups of w-chains. We do not go this far — not
least, because the very assumption that a domain is a partially ordered set brings its own problems
constructively, certainly if we wish to use the arithmetic universe foundations alluded to in the
Conclusions.)

Fixpoints within domains are thus covered by the localic case of Theorem 2.3.8. We shall not
dwell on this except to note that our domains are not necessarily local and so Corollary 2.3.9 is the
appropriate form: if f: D; — D then up;f has a least fixpoint Yf (find the least fixpoint of f;up in D
in the standard way, and then apply f to it). Y can be internalized by the usual sort of CCC
manipulations (and following the techniques of Hyland and Pitts (1989)) as something of (ML-style)
polymorphic type (D; = D) = D as follows. That type corresponds to a map from [IS] to itself
(map X to [[X; = X] = X]). Pulling back the generic domain along this gives a topos E that
classifies an information system X equipped with a point of [[X; = X] = X]. Y is then a map from
[IS] to E over [IS].

For fixpoints amongst domains, solving domain equations, we need Theorem 2.3.8 in its topos
generality. This raises coherence questions but is conceptually unproblematic and relies on the feature
of geometric theories that their classes of models are closed under filtered colimits by quite concrete
constructions. We shall apply this to the solution of domain equations, and the machinery is really
that already familiar from the information system approach to domains (Larsen and Winskel 1984).

A standard approach — such as Abramsky’s (1991) — would solve a domain equation D = F(D)
by restricting to local domains, so let us briefly investigate those.

Proposition 5.1 An algebraic dcpo Idl X is local iff X has a least element.
Proof
= If L is the least element, then {1} is an ideal contained in every other.

«: Let I be the bottom ideal. It is inhabited, so it has an element x. Now I = ly for every y in X, so
x = y and x is a least element of X. ]

Amongst the strongly algebraic information systems, the ones whose ideal completion is local
form a subtopos [locIS] (an open subtopos, in fact): they are characterized by the additional axiom F
Js:X. CUB(@, {s}), for CUB(@, {s}) iff s is a bottom element of X. Since we are working with
posets, the bottom element is unique, and we write L for it as usual. (For general algebraic
information systems, the local ones do not form a subtopos because the bottom has to be specified as
extra structure.)

However, there is a small issue of constructivity here. Such local information systems are closed
under all the constructions given except — obviously — coproducts. It is usual to substitute a different
sum construction, either the coalesced sum (which identifies the bottoms) or the separated sum '
(which adjoins a new one). Abramsky uses the coalesced sum, because it is more general — the other
can be defined using it. However, in defining CUB for the coalesced sum it turns out that one needs
to know when tokens are not bottom, for one needs to say that CUB(S, @) if S contains non-bottom
elements from both summands. This information is not available in a general strongly algebraic
information system, for if it were then non-bottomness would have to be preserved by
homomorphisms. (For a counterexample, consider {L, T} mapping to {*}.) Abramsky solves the
problem by introducing a predicate T (for Termination) which would correspond in our system to an
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extra predicate T(s) on X with axioms to make it the complement of CUB(@, {s}). He then shows
how — in our terms — all the constructions yield information systems with such a predicate. However,
one should remember that these are more restricted than the general local, strongly algebraic
information sytems.

Proposition 5.2 [loclIS] is local.

Proof

The initial local information system is the singleton {_L}. For any other local information system X,
the unique homomorphism maps L to L — uniqueness arises because a homomorphism must preserve
the bottom-defining property CUB(@, {L1}). ]

Therefore let F: [locIS] — [locIS] be any endomap. By Theorem 2.3.8 [F-Str] is local; its initial
point is the canonical solution to D = F(D).

In solving D = F(D), it is a well-known fact that F ought really to have some properties of
continuity. In our topical setting it hardly makes any sense for F to be other than a geometric
morphism, and then the continuity is automatic — F will preserve filtered colimits, and this is the
categorical analogue of Scott continuity. What’s more, F does not in this setting have to be functorial
with respect to continuous maps between domains, and there is no problem in using examples such
as X — [X=X], which is a perfectly good geometric morphism. (It is the composite A;EXP.) It is,
of course, functorial with respect to homomorphisms between information systems, and, following
4.1.4, this is an interesting arrival at the usual trick of using endofunctors on the category of domains
and embedding-projection pairs. (We have a slight variant here — the homomorphisms are adjoint
pairs rather than embedding-projection pairs. The trick still works, as was pointed out by Taylor
(1986). As mentioned in 4.7, the difference corresponds to whether the order < is decidable or not.)
Let us emphasize this. The domain construction F does not need to be part of a functor on the topical
category. The very act of defining the transformation (geometrically) on objects gives us all the
functoriality and continuity that we need.

Let us also describe an approach that works in the context of our non-local domains. We show
how to solve a simple form of domain equation, namely

D = (F(D))y

where F is a construction on our domains without bottom. This is not quite as general as Abramsky’s
domain construction; it cannot, for instance, be used to construct the lifted natural numbers, because
the natural numbers do not constitute a strongly algebraic domain (see note (vi) after 4.1.1).
However, the form does cover many important domain equations, and can often be pleasantly
simple. For instance, the domain of lists over a finite decidable set A can be described by the domain
equation D = (1+ AxXD) ] where + and x are the categorical coproduct and product: there is no need to

use coalesced sum or smash product.

Theorem 5.3 Let F: [IS] — [IS] be a geometric morphism. Then F;LIFT has an initial structure.
Proof
LIFT: [IS] — [IS] factors via [loclIS], which is local, so we can use 2.3.7 and 2.3.8. ]
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6. Conclusions

From our resetting of domain theory we can draw various conclusions.

First, it serves as a test case for the programme of “geometrizing” mathematics (in the sense of
geometric logic). It shows some non-trivial mathematics that can be done in a natural framework that
automatically enforces constructivist constraints such as those that Abramsky required for his formal

system. Moreover, we see the constructive mathematics going beyond the syntactic systems to the
semantic domains (which in Abramsky (1991) were still treated classically).

Second, it shows both the possibility and benefits of putting domain theory into a securely
topological setting. It was already understood that domains were not just ordered structures, that the
(Scott) topology was important and brought its own insights; we now see that the same goes for
categories of domains, albeit that the topology is in Grothendieck’s generalized sense. When a set-
theoretic category is topologized as a topical category, the continuity needed for the solution of
domain equations becomes automatic, and we can see clearly a role of embedding projection pairs as
homomorphisms. However, an alternative role appears in the work of Pitts (1996), where domain
constructions are treated as having covariant and contravariant parts (with respect to continuous
maps), and this decomposition gives rise to an account of induction and coinduction. It would be
interesting to understand better the relationship with this work.

Let us now turn to the result of 3.1.1 (“The topos of sets is not Cartesian closed”). Cartesian
closedness of Set is such a fundamental assumption, central for instance to the theory of elementary
toposes, that our negative result calls into question the usefulness of the topical category. However,
one can also turn the question on its head and reconsider the exponentials YX. One problem with -
them is that though sets (discrete locales) are exponentiable in Loc or Top, the exponentials there are
not discrete — the natural topology is the compact-open. Hence the exponential YX in Set could be
considered as a mere approximation to a truer exponential in a broader context. This is reflected in the
fact that equality between functions cannot be directly evaluated (and functional programming
languages will refuse to try).

In view of the beauty of the theory of elementary toposes, it may seem perverse to reject
Cartesian closedness; yet there are perhaps grounds for believing that adequate mathematics
(including, I conjecture, that presented here) can be done without it. Specifically, although geometric
logic includes arbitrary set-indexed disjunctions and coproducts, it seems that in the work here such
infinities are restricted to those that can be accessed effectively through free algebra constructions.
We conjecture that the full geometric logic is unnecessary, that it suffices to have coherent logic with
assorted free algebras, and that the categories corresponding to (what we called) geometric universes
would be Joyal’s arithmetic universes (unpublished notes). It is not immediate that the mathematics
here would go through in arithmetic universes; on a number of occasions we use intuitionistic
reasoning that would certainly not be interpretable. Nonetheless, the algorithmic flavour of the
constructions gives us grounds to feel that it ought to work. If it does, then it could simplify the
foundations considerably. For whereas the notion of geometric universes is parametrized by the base
category of sets (used to index “set-indexed coproducts”), a notion of arithmetic universe as
“pretopos with selected free algebra constructions” would be a finite essentially algebraic theory and
therefore self-standing. The essential algebraicity would enable us to present arithmetic universes by
generators and relations and hence straightforwardly give classifying categories for the effectively
accessible geometric theories.
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