
A Unified Compilation Style Labelled Deductive System for

Modal and Substructural Logic using Natural Deduction.

Krysia Broda Alessandra Russo

Department of Computing
Imperial College of Science, Technology and Medicine

180 Queen’s Gate, London SW7 2BZ
email: {kb,ar3}@doc.ic.ac.uk

Technical Report DoC. 97/10

October 1997

Abstract

This paper describes a proof theoretic and semantic approach in which logics belonging to different
families can be given common notions of derivability relation and semantic entailment. This approach
builds upon Gabbay’s methodology of Labelled Deductive Systems (LDS) and it is called the compila-
tion approach for labelled deductive systems (CLDS). Two different logics are here considered, (i) the
modal logic of elsewhere (known also as the logic of inequality) and (ii) the moltiplicative fragment
of substructural linear logic. A general natural deduction style proof system is given, in which the
notion of a theory is defined as a (possibly singleton) structure of points, called a configuration, and a
“general” model-theoretic semantic approach is described using a translation technique based on first-
order logic. Then it is shown how both this proof theory and semantics can be directly applied to the
logic of elsewhere and to linear logic, illustrating also that the same technique for proving soundness
and completeness can be adopted in both logics. Finally, the proof systems for the logic of elsewhere
and for linear logic are proved to correspond, under certain conditions, to standard Hilbert axiomati-
sation and standard sequent calculus respectively. Such results prove that the natural deduction proof
systems described in this paper are proper generalisations of any proof system already developed for
these two logics.

1 Introduction

The use of logics in areas such as computer science and artificial intelligence has led to the
proliferation of a large number of various logical systems often characterised by different no-
tions of derivability relation, different sets of logical connectives as well as different underlying
semantics. Logics within the same family often differ in “small” variations either in their proof
theory or in their semantics. For example, normal modal logics differ from each other only in
the set of properties of their related semantic accessibility relation [Fit83, HC68]. A new logi-
cal approach, called Labelled Deductive System has been proposed by Gabbay [Gab92] which,
taking into account this observation, facilitates logics of the same family to have a common

1

formalisation. Results in [DG94, BFR97] have already shown that uniform labelled proof
systems can be developed for a family of substructural logics, using respectively tableaux and
natural deduction proof style. This paper takes a further step. It provides a logical approach,
based on Labelled Deductive System, in which logics belonging to different families, and thus
characterised by different notions of derivability relation and semantic entailment, can find a
uniform presentation.

Two sample logics are considered, the modal logic of inequality and the multiplicative frag-
ment of substructural linear logic. Substructural logics are logics whose derivability relations
are often described as relations between sequences of formulae (or assumptions) and single
formulae [Dôs93]. According to the type of substructural logic, assumptions can be used only
in certain specific order and a certain number of times (e.g., in linear logic assumptions are all
be used in the given order and only once, whereas in relevance logic assumptions are all used
at least once). On the other hand, classical logic and its extensions, such as the modal logic of
elsewhere [dR92], present their notion of derivability relations in terms of a relation between
sets of formulae (or assumptions) and single formula. In these cases, assumptions can be used
in any order and an arbitrary (possibly none) number of times. The approach developed in
this paper, called compilation approach to LDS (CLDS), provides a general presentation of
derivability relation which is equally applicable to both substructural and modal logics.

In the CLDS, a logical theory written in a given logical language is combined with a
labelling algebra written in a first-order labelling language. This is defined as a first-order
theory axiomatising the properties – semantic or proof theoretic – that uniquely identify
the underlying logic. In the case of the logic of elsewhere, the labelling algebra is a binary
first-order theory that axiomatises the Kripke semantic accessibility relation as the inequality
relation between “possible worlds”. In the case of substructural logic, the labelling algebra is
a binary first-order theory axiomatising standard structural rules of the underlying logic in
terms of properties on the labels. The two languages (logical language and labelling language)
are combined via the LDS’s notion of declarative unit. The declarative unit α : λ expresses
that the formula α is true or verified at the label (i.e. point) λ. Depending on the logic,
labels are interpreted in different way. In modal logic, labels are interpreted as possible
worlds, whereas in substructural logic they are interpreted as (combination of) resources.
Inference rules are defined to act on both the syntactic components of the declarative units,
logical formulae and labels, according to the desired properties of the connectives and of the
labelling algebra.

For the logic of elsewhere, this combined approach of the ECLDS system retains the ad-
vantages of both implicit (e.g. [Fit83]) and explicit (e.g. [Ohl91]) traditional formalisations.
Statements such as “necessary α” can be captured succinctly, using the modal operator 2, by
simply writing the single declarative unit Sa :2α (where Sa is the labelling algebra represen-
tation of the actual world). Like the explicit approach, the language is rich enough to allow
explicit syntactic reference to particular possible worlds and to specific inequality or equal-
ity relationships between possible worlds. As for the substructural logic, the Lclds system
facilitates an “object-level” formalisation of both the operational and structural features of
the proof theory, the former by means of the logical operators and the latter by means of the
labelling algebra. Label conditions expressed in the rules, together with the labelling algebra
properties for handling labels, provide the proof theory with the same features as the standard
structural rules of substructural logic ([Dôs93],[DG94]), but facilitating a presentation of the
derivability relation in terms of a relation between sets of formulae and formulae, as in the
case of modal logic.

2

The combined feature of ECLDS and Lclds systems has facilitated a generalisation of the
standard formalisms of substructural and modal logics. The CLDS systems are generalisations
of modal and substructural logics in that they facilitate reasoning about what is true or
verified at different points in a (possibly singleton) structure of respectively actual worlds
and actual resources. Information about points in a structure are expressed by R-literals.
These are of the form R(λi, λj) or ¬R(λi, λj), where λi and λj are labels. In the case of
modal logic they express which worlds are in relation with each other and which are not,
whereas in substructural logic they express which resources are “included” with each other
and which are not, where the notion of inclusion is with respect to interpretation of labels
as the resources needed to “verify” a formula. A CLDS theory, called configuration is thus a
set of declarative units and R-literals, where the R-literals specify a given structure of points
(actual worlds or resources) and the declarative units describe which formulae are assumed
to be verified at each point in the structure.

As mentioned before the proof system of a CLDS is a uniform natural deduction system
in that (i) most of the inference rules have a common unique format for both the logic of
elsewhere and the substructural logic – additional rules are mainly needed for the specific
additional connectives 2 and ⊗ –, (ii) for each logic the complete set of natural deduction
rules can be equally applied to other logics belonging to the same family. So, for instance
the set of inference rules for the logic of elsewhere can also be used for any other normal
modal logic, and the rules for substructural logic are equally applicable to relevance, linear
and intuitionistic1 logics. The difference between one modal logic and another or between
one substructural logic and another is captured entirely by the labelling algebra.

The paper is organised as follows. In Section 2 the language and syntax of CLDSs is
defined together with the notion of a configuration – a CLDS system’s equivalent to a theory.
A basic general natural deduction style proof system for CLDSs is given in which inference
rules are applied to configurations and a basic general model–theoretic semantics, based on
a translation method into classical logic, is described together with the notion of a semantic
entailment. In Section 3, this system is refined for the logic of “elsewhere”. Additional rules
are added for the specific modal operators, and for the ∧ and ∨ operators, and the semantics
refined to capture the meaning of the modal operators. Soundness and completeness results
of the “Elsewhere system”(ECLDS) with respect to the refined semantics are proved, and it
is shown that ECLDS is equivalent to standard Hilbert systems for the logic of elsewhere
[dR92] whenever the initial configuration is a singleton structure. Section 4 refines the proof
system and semantics given in Section 2 for the case of multiplicative linear logic. Additional
rules are included for the ⊗ operator, as well as additional first-order axioms to capture its
meaning. Soundness and completeness results of this proof system with respect to the refined
semantics are proved, using the same Henkin methodology adopted for the logic of elsewhere
in Section 3. Thus, a correspondence theorem is shown which states the conditions on the
initial configurations under which LCLDS is equivalent to a standard sequent calculus for the
fragment of linear logic considered [Dôs93]. The paper ends with a general discussion in
Section 5.

Some remarks may be helpful regarding notation. Throughout the paper constant and
predicate symbols begin with an upper-case letter, whereas variables and function symbols
begin with a lower-case letter. Greek letters meta-variables are used to refer in general to
terms and expressions in the system. Larger entities such as structures, sets, theories and

1The classical (¬¬) rule has to be dropped in Intuitionistic Logic.

3

languages are symbolised in calligraphic font, A,B, C, etc.. The power set of a given set A is
denoted by PW (A). The general system will be referred to as the CLDS system whereas its
refined versions are referred to as the ECLDS system for the logic of elsewhere and the LCLDS

system for the linear logic.

2 The CLDS Approach

In this section the CLDS approach is described formally. Basic definitions of the CLDS
language and syntax are given together with the notion of a configuration – the CLDS system’s
equivalent to a modal or substructural theory.

2.1 Languages and Syntax

A CLDS language is defined as an ordered pair 〈LP ,LL〉, where LL is a labelling language
and LP is a propositional language composed of a countable set of propositional letters,
{p, q, r, . . .}, a set of unary connectives {]1,]2, . . .} and a set of binary connectives {[1, [2, . . .}.
The labelling language LL is a binary fragment of a first-order language composed of a
countable set of constant symbols {s0, s1, s2, . . .} a countable set of variables {x, y, z, . . .}, a
binary predicate R, a (possibly empty) finite set of function symbols {f1, f2, . . .}, the set of
logical connectives {¬,∧,∨,→,↔}, and the quantifiers ∀ and ∃. The first-order language
Func(LP ,LL) is an extension of LL defined as follows.

Definition 2.1 Let LP be a propositional language and {α1, α2, . . .} be the set of all wffs
of LP . The semi-extended labelling language Func(LP ,LL) is defined as the language LL

extended with a set of skolem function symbols {skn
α1
, skn

α2
, . . .}, where n ≥ 0.

The ground terms of Func(LP ,LL), called labels, are interpreted differently according
to the family of logics which is under consideration. In the case of modal logics, they re-
fer to possible worlds, whereas in the case of substructural logics they denote “resources”.
Analogously for the binary predicate R. R represents, in the case of modal logics, the ac-
cessibility relation between possible worlds, and in the case of substructural logics, a partial
ordering of “inclusion” between resources. Labels constructed using skolem function symbols
have specific roles in the CLDS proof system. As shown in Section 3, the skolem symbols of
Func(LP ,LL) are unary function symbols of the form fα and boxα used to denote specific
possible worlds. For each wff α and possible world (label) λ, the ground term fα(λ) names a
particular possible world specifically associated with α which formalises the Kripke semantic
notion “there exists a possible world...”. In contrast, ground terms of the form boxα can be
thought of as referring to any arbitrary world specifically associated with α. These terms will
be used to express Kripke semantic notions of the form “for all possible worlds...”. In the case
of the LCLDS system, as shown in Section 4, the skolem symbols of Func(LP ,LL) are instead
constant symbols, called parameters, of the form cα. For each wff α of LP , the parameter cα
denotes the smallest resource needed to verify the formula α, and it is sometimes referred to
as the characteristic label of α.

To capture different classes of logics within the CLDS framework an appropriate first-
order theory, written in the language LL, called labelling algebra and denoted by A, needs
to be defined. For example, a standard normal modal logic can be captured by defining the
labelling algebra of the CLDS system as the first-order theory axiomatising the accessibility

4

relation [vB83]. (Examples of such CLDS systems are largely described in [Rus96].) For
the logic of elsewhere, the notion of “elsewhere” expresses that worlds are accessible from
each another if and only if they are different. This notion is captured in the ECLDS system by
defining the labelling algebra as a binary first-order theory with equality where the binary
predicate R is the inequality relation – i.e. ∀x, y(R(x, y)↔ x 6= y). In the case of linear logic,
the labelling algebra is a binary first-order theory which axiomatises (i) the binary predicate
R as a pre-ordering relation and (ii) two properties, called identity and order preserving of
a function symbol ◦ of the labelling language of the LCLDS system. Sections 3 and 4 provide
respectively formal definitions of the ECLDS and LCLDS labelling algebra.

Syntax. The CLDS language facilitates the formalisation of two types of information, (i)
what holds at particular points and (ii) which points are in relation with each other and
which are not. These two types of information are captured within the syntax of a CLDS
system by two different types of syntactic entities, the declarative units and the R-literals.
A declarative unit is defined as a pair “formula:label” expressing that a formula “holds” at
a point. The label component is a ground term of the semi-extended labelling language
Func(LP ,LL) and the formula is a wff of the language LP . An R-literal is any ground literal
in the semi-extended labelling language of the form R(λ1, λ2) and ¬R(λ1, λ2), where λ1 and
λ2 are labels, expressing that λ2 is or is not related to λ1. In the ECLDS system “related to”
is interpreted as “not equal to”, whereas in the LCLDS system “related to” is defined as “less
than or equal to”. For each R-literal ∆, the conjugate of ∆, written ∆, is the opposite in sign
of ∆ (i.e. ¬R(λ1, λ2) if ∆ = R(λ1, λ2) and R(λ1, λ2) if ∆ = ¬R(λ1, λ2)).

This combined aspect of the CLDS syntax yields a definition of a CLDS theory more
general than the traditional notion of a modal or substructural theory ([HC68], [Dôs93]).
Informally, a CLDS theory, called a configuration, is composed of two sets, a set of R-
literals and a set of declarative units. An example of a ECLDS theory is the pair of sets
{R(S0, S1), R(S0, S2),¬R(S1, fp(S1))} and {2(p → q : S0,2r : S0,3p : S1, p : fp(S1), q : S2},
whereas an example of a LCLDS configuration is the pair of sets {R(◦1(cp, cq), S1} and {p⊗ q :
S1, q : cq, p : cp}. The formal definition of a configuration is as follows.

Definition 2.2 Given a CLDS language, a configuration is a tuple 〈D,F〉 where D is a finite
set of R-literals and F is a function from the set of ground terms of Func(LP , LL) to the set
PW(wff(LP)) of sets of wffs of LP .

The D component of a configuration C = 〈D,F〉 will sometimes be referred to as a diagram
and set membership statements of the form A ∈ F(λ) will usually be written as A : λ ∈ C.
In the next section, a “basic” natural deduction style proof system for an arbitrary CLDS is
given, in which inference rules and the notion of a derivability relation are defined between
configurations. A set R of such inference rules, together with a CLDS language 〈LP ,LL〉
and a labelling algebra A, uniquely define a CLDS system (i.e. for any CLDS system S,
S = 〈〈LP ,LL〉,AS ,RS〉).

2.2 A “basic” natural deduction system

The “structural” aspect of a CLDS theory has stimulated the idea of defining deductive
processes that describe how configurations can “evolve” by reasoning within and between
the local theories associated with each point in the configuration or by reasoning about the

5

diagram of the configuration. Inference rules and derivability relation are defined between
configurations. An inference rule of a CLDS is generally defined as follows.

Definition 2.3 An inference rule I is a set of pairs of configurations, where each such pair
is written as C/C′ . If C/C′ ∈ I then we say C is an antecedent configuration of I, and C′ is an
inferred (or consequence) configuration of I with respect to C.
All the rules except one have the effect of expanding the antecedent configuration. These rules
can extend an antecedent configuration C with either a declarative unit, or with an R-literal
or with both. However, configurations equal or smaller than the antecedent one can also be
inferred. This is facilitated by an inference rule called the C-Reduction (C-R) rule. Tables 1
and 2 provide a schematic representation of the inference rules for the connectives → and ¬,
and for the R-literals respectively, and, because of space limitation, mathematical definitions
are given only for some of these rules. These rules have the same format in both the ECLDS and
the LCLDS systems, since the standard semantic difference between the classical → and ¬ and
the substructural→ and ¬ is captured by the labels included in the rules. In Sections 3.1 and
4.2 this set of rules is extended to include elimination and introduction rules for the modal
operators 2 and 3 and elimination and introduction rules for the substructural operator ⊗
respectively. For the R-literals three additional rules are defined. One of these (the (R-A)
rule) facilitates first-order derivations of relationships between points in the configuration
using the labelling algebra A. For logics of the same family (i.e. different substructural
logics or different modal logics), this rule captures entirely the difference between one CLDS
system and another, allowing all other inference rules to be equally applicable to any CLDS
system. For logics belonging to different families, such as the logic of elsewhere and linear
logic, the (R-A) rule allows different reasoning on the R-literals which capture the different
specific semantics of the logic. Most of the mathematical formalisation of the ECLDS system is
described in [Rus96] and [BR97a] includes a full mathematical formalisation of the additions
for ECLDS and LCLDS systems.

Informally, a proof is a non empty sequence of configurations,
C0, . . . , Cn, where, for each 0 < i ≤ n, Ci is obtained from Ci−1 by the application of an
inference rule. A configuration C′ is said to be derivable from a configuration C, written
C `CLDS C′ , if and only if there exists a proof C, . . . , C′ . This is formally defined below.

Definition 2.4 Given a CLDS system S, a proof is a pair 〈P,m〉, where P is a sequence of
configurations {C0, . . . , Cn}, with n > 0, and m is a mapping from the set {0, . . . , n − 1} to
RS such that for each i, 0 ≤ i < n, Ci/Ci+1 ∈ m(i).

Definition 2.5 [Derivability of a CLDS system]
Given a CLDS system S, and two configurations C and C′ , C′ is derivable from C in S, written
C `S C′ , if there exists a proof 〈{C, . . . , C′},m〉.
Notation 2.1 Let C = 〈D,F〉 be a configuration and π be either a declarative unit or an R-
literal, C `CLDS π if there exists a configuration C′ such that C `CLDS C′ and π ∈ C′. Moreover,
if π is a declarative unit of the form α : λ then C + [α : λ] is the configuration 〈D,F ′〉, such
that F ′

(λ) = F(λ)∪{α} and for any λ
′
different from λ, F ′

(λ
′
) = F(λ

′
). If π is an R-literal

∆, then C + [∆] is the configuration 〈D′
,F〉 such that D′

= D ∪ {∆}.
It is easy to show that the derivability relation `S of a CLDS system S is reflexive,

transitive and monotonic, (for a proof see [Rus96]). Notation 2.1 captures the standard notion

6

of a derivability relation between theories (configurations) and formulae (declarative units or
R-literals) in terms of the more general derivability relation given in Definition 2.5. A “vice-
versa” characterisation can be shown – a configuration C′ is derivable from a configuration C
if each unit of information (declarative units and R-literals) of C′ is derivable from C. This is
proved in the following lemma.

Lemma 2.1 Let C and C′ be two configurations of a CLDS system S, such that C′ − C is
finite. C `S C′ if and only if for each π ∈ C′ − C, C `S π, where π is a declarative unit or an
R-literal.

Proof: The “only if” part is trivial, whereas the “if” part is proved by induction on the size
of C′ − C. A formal description of this proof is given in [Rus96].

2

Two examples of formally defined inference rules for a CLDS system are now given.

Definition 2.6 For all configurations C, terms λ1,λ2 and λ3, and wffs α and β, C/C + [α→
β : λ3] is a member of the inference rule →-Introduction (sometimes written →I) if C + [α :
λ1] `CLDS β : λ2.

Definition 2.7 For all configurations C, terms λ1,λ2 and λ3 and wff α, C/C + [¬α : λ3] is a
member of the inference rule ¬-Introduction (sometimes written ¬I) if C + [α : λ1] `CLDS ⊥ :
λ2.

Before giving the schematic representation of the inference rules, some remarks are essen-
tial to clarify such representation. For any configuration C, the informal notation C〈α : λ〉
(respectively C〈∆〉) denotes that C includes a declarative unit α :λ (respectively R–literal ∆).
Declarative units and R–literals contained in square brackets (see e.g. the →I rule) are as-
sumptions introduced within a derivation that are subsequently discharged (sometimes called
temporary assumptions). The notation C′〈ψ〉 represents that the inferred configuration C′ is
C extended with the declarative unit or R–literal ψ. In the introduction rules, the C̃ and C
are the configurations derived in subderivations after adding to the antecedent configuration
C the temporary assumptions.

According to the type of logic the labels λ1, λ2 and λ3 that appear in the rules have
different characteristics. In the ECLDS system, they are defined to be the same labels, i.e.
λ1 = λ2 = λ3 = λ, for any arbitrary term λ of the extended labelling language, whereas
in the LCLDS system they are defined to be of a particular form. This is formally defined in
Section 4.1. Analogously for the symbol ⊥. The notion of contradiction (or inconsistency)
in the CLDS framework strictly depends on the type of logic. Modal logics (and therefore
the logic of elsewhere) include a classical notion of inconsistency. Thus, in the (¬I) rule
of the ECLDS system, the symbol ⊥ is a short-hand for any wff of LP of the form α ∧ ¬α.
Substructural logics instead respect a different notion of contradiction, according to which
the declarative ⊥ : λ leads to an inconsistency only when the label λ denotes a “consistent
resource”. This is further explained in Section 4.4.

In the (→I) rule, C̃ is the configuration derived after adding the assumption α : λ1 to
the antecedent configuration, to get the declarative unit β : λ3. In the ¬I rule, C̃ is the
configuration derived after adding the assumption α : λ1 to C to get a contradiction – the
declarative unit ⊥ :λ2.

7

Table 1: Natural deduction rules for → and ¬ connectives.

C〈α→β :λ1, α :λ2〉
C′〈β :λ3〉 (→E)

C〈[α :λ1]〉
:

C̃〈β :λ2〉
C′〈α→β :λ3〉 (→I)

C〈¬¬α :λ〉
C′〈α :λ〉 (¬¬)

C〈[α :λ1]〉
:

C̃〈⊥ :λ2〉
C′〈¬α :λ3〉 (¬I)

To allow reasoning about arbitrary configurations and to capture the different CLDS sys-
tems (given by the different labelling algebra), a second set of inference rules is needed to
be included as part of a propositional CLDS system. These rules facilitate reasoning about
the diagram of a configuration, using the particular labelling algebra A under consideration,
and infer R-literals and declarative units which are not implied by the logical connectives.
A schematic representation of these rules is given in Table 2. In Section 1, it has been em-

Table 2: Rules for the R-literals

(⊥E)
C〈∆, ∆〉
C′〈α :λ〉 (C-R)

C
C′

where C′ ⊆ C

(RI)

C〈[∆]〉
:

C̃〈⊥ :λ〉
C′〈∆〉 (R-A)

C
C′〈∆〉

if A ∪D `F OL ∆

phasised that different labelling algebras define different propositional CLDS systems. Proof
theoretically, these differences are imposed by the (R-A) rule. This rule facilitates the infer-
ence of new R-literals according to the properties of the underlying logic axiomatised by the
particular first-order labelling algebra A. In [Rus96] examples derivations are given for the
different labelling algebrae associated with the different normal modal logics and it is shown
how the CLDS approach (called in [Rus96] MLDS) facilitates the development of a uniform
proof system for any normal modal logic. In [BFR97] a similar approach, also based on LDS,
is described in which a common set of natural deduction rules are developed for a given fam-
ily of substructural logics. The difference between one logic and another in [BFR97], is not

8

embedded explicitly in the derivation process in terms of inference rules, but it is captured by
algorithmic processes which solve labels constraints generated by the derivation taking into
account labels properties defined by the associated labelling algebra.

In the ECLDS system, where the labelling algebra axiomatises the symmetry property of
the R predicate, the R-A rule allows, for instance, the inference of R-literals of the form
R(λ2, λ1) whenever the antecedent configuration includes R-literals of the form R(λ1, λ2),
thus embedding the symmetry property of the accessibility relation in the derivation process.
This enables the derivation of declarative units of the form α → 23α : λ, for any arbitrary
label λ. In the LCLDS system, the R-A rule allows, for instance, the inference of R-literals of the
form R(◦(λ1, λ2), ◦(λ2, λ1)) where the symbol ◦ is a binary function symbol of the language
LL in LCLDS, denoting the “composition” of resources, thus embedding the “commutativity”
property on resources [DG94, BFR97] in the derivation process. Such a property enables for
instance the derivations of declarative units of the form α⊗ β → β ⊗α : λ, for the particular
label λ = 1, which is a theorem of linear logic.

The rules (RI) and (⊥E) express additional forms of interactions between the R-literals
and the declarative units. The (⊥E) rule allows the inference of falsity (i.e. ⊥ :λ) whenever
R-literals and its negations are present in a configuration. This is necessary because since no
compound classical formulae with R-literals can be inferred in a configuration, inconsistency
of this form would not otherwise be captured. The (R-I) rule enables the derivation of R-
literals in the presence of a logical inconsistency. It is the analogue of the (¬I) rule for
R-literals. The structural rules described above and the rules given in Table 1 all have the
effect of expanding their antecedent configurations. The (C-R) rule is then included in every
propositional CLDS system to simply allow the derivation of any configuration contained in
the antecedent one.

2.3 Semantics

A propositional CLDS can be considered to be a “semi-translated” approach to a given logic
– in the case of ECLDS system for instance, a Kripke-like accessibility relation is syntactically
expressed, but without requiring the full translation of modal formulae into first-order sen-
tences. In the LCLDS system on the other hand, the CLDS facilitates the “meta-level” features
of the underlying logic to be formalised as part of the object-level proof system. This also
can be seen as a semi-translated approach to linear logic, which still preserves the concise
aspect of the logical substructural language. Therefore, a model-theoretic semantics could
be equally given in terms of the traditional semantics of the underlying logic (i.e. Kripke
semantics [HC68] for the logic of elsewhere and algebraic semantics [Dôs93, DG94, BDR97]
for linear logic) or in terms of a first-order semantics using a translation method. The latter
enables the development of model-theoretic approach which is equally applicable to any logics,
also belonging to different families, whose operators have a semantics which can be expressed
into a first-order theory.

This second approach has been chosen here. In this section, a translation method of a
CLDS system into first-order logic is defined and the notions of model, satisfiability of a
configuration and semantic entailment are then given in terms of classical semantics.

As already pointed out above, a declarative unit α :λ represents that the formula is verified
(or holds) at the point λ, whose interpretation is strictly related to the type of underlying
logic. In what follows, these notions are expressed in terms of first-order statements of the
form [α]∗(λ), where [α]∗ is a predicate symbol. The relationships between these predicate

9

symbols are constrained by a set of first-order axiom schemas which capture the satisfiability
conditions of each type2 of formula α. The extended labelling algebra Mon(LP ,LL) is an
extension of the language Func(LP ,LL) given by adding a monadic predicate symbol [α]∗ for
each wff α of LP . This is formally defined below.

Definition 2.8 Let Func(LP ,LL) be a semi-extended labelling language. Let α1, . . . , αn, . . . ,
be the ordered set of wffs of LP . The extended labelling language Mon(LP ,LL) is defined as
the language Func(LP ,LL) extended with the following set of unary predicate symbols

{[α1]∗, . . . , [αn]∗, . . .}
An extended algebra A+ is a first-order theory written in Mon(LP ,LL) which extends a

labelling algebra A with axiom schemas on the monadic predicates. These schemas strictly
depend on the underlying logic. For example, in the ECLDS system the extended labelling
algebra A+, includes the two axiom schemas ∀x([2α]∗(x) → (∀y(R(x, y) → [α]∗(y)))) and
∀x((R(x, boxα(x))→ [α]∗(boxα(x)))→ [2α]∗(x)) which together with the axiom ∀x, s(R(x, s)↔
x 6= s) capture the Kripke semantic meaning of the elsewhere 2 operator. Formal definitions
of the extended labelling algebras A+ for the ECLDS and LCLDS systems are given in Sections
3 and 4 respectively.

However, the notions of satisfiability and semantic entailment are common to any CLDS.
These are based on a translation method which associates syntactic expressions of the CLDS
system with sentences of the first-order language Mon(LP ,LL), and hence associates theories
(configurations) with first-order theories in the language Mon(LP ,LL). Each declarative
unit α :λ is translated into the sentence [α]∗(λ), and R-literals are translated as themselves.
Therefore, the first-order translation of a configuration is a first-order theory including the
R-literals, which are present in the diagram of the configuration, and the set of monadic
formulae [α]∗(λ) that correspond to the declarative units present in the configuration. A
formal definition is given below.

Definition 2.9 Let C = 〈D,F〉 be a configuration. The first-order translation of C, written
FOT (C), is a theory written in Mon(LP ,LL) and defined by the expression:

FOT (C) = D ∪ DU
where DU = {[α]∗(λ) | α ∈ F(λ), λ is a ground term of Func(LP ,LL)}.
Note that since labels can only be ground terms of the language Func(LP ,LL), the first-order
translation of a configuration is a set of ground literals of the language Mon(LP ,LL). Notions
of model, satisfiability and semantic entailment are given in terms of classical semantics using
the above definition, as follows (where “M ‖−FOLψ” signifies that the classical formula ψ is
true in the classical modelM, according to the standard definition).

Definition 2.10 Given a CLDS system S, the associated extended algebra A+
S , a declarative

unit α :λ and a R–literal ∆,

M is a semantic structure of S ⇔def M is a model of A+
S (1)

M ‖−Sα :λ ⇔def M ‖−FOL[α]∗(λ) (2)

M ‖−S∆ ⇔def M ‖−FOL∆ (3)
2The type of a wff is given by the main connective of the wff itself, e.g., the wff 3(p → q) is a 3-formula,

whereas the formulae α ⊗ (β → γ) is a ⊗-formula.

10

In the above definition, (1) defines the class of models of a CLDS system S in terms of
models of the extended algebra A+

S associated with S. (2) and (3) define the satisfiability
of declarative units and R–literals in terms of classical satisfiability of their associated first–
order translations. A semantic structure M satisfies a configuration C, written M ‖−S C, if
and only if for each π ∈ C (where π may be a declarative unit or an R–literal), M ‖−S π.
The notion of semantic entailment in a CLDS system is given here as a relation between
configurations. It is formally defined as follows.

Definition 2.11 Let S = 〈〈LP ,LL, 〉,A,R〉 be a CLDS and let A+ be the extended algebra
of S. Let C = 〈D,F〉 and C′ = 〈D′

,F ′〉 be two configurations of S and FOT (C) = D∪DU and
FOT (C′) = D′∪DU ′

their respective first-order translations. The configuration C semantically
entails C′ , written C |=S C′ , iff for each ∆ ∈ D′

, A+ ∪ FOT (C) |=FOL ∆, and for each
[α]∗(λ) ∈ DU ′

, A+ ∪ FOT (C) |=FOL [α]∗(λ).

In Sections 3.1 and 4.2 the above definition expresses the notion of semantic entailment for
the ECLDS and Lclds systems, which are respectively denoted by |=E and |=L respectively.
Soundness and completeness proofs will also be given for the specific ECLDS and LCLDS system
with respect to these two notions of semantic entailment. Although the extended labelling
algebrae associated with these two systems are different from each other (because of the
different axiom schemas) the same methodology is used to prove the above results. A general
description of this methodology is given here.

The soundness and completeness properties of the proof system of a given CLDS system
S with respect to the above semantics consists in showing that the derivability relation `S is
equivalent to the semantic entailment |=S. This means to prove that whenever there exists
a natural deduction proof of a configuration C′ from a configuration C then C semantically
entails C′ , and vice-versa.

Proving soundness. The soundness theorem is proved by using a technique that differs
from the standard technique used in the literature for proving soundness of a natural deduction
proof system. In general (see [Fit83] for an example of standard soundness proof for natural
deduction proof systems) such property is proved by induction on the number of inference
steps in the given derivation, taking into account the specific context of each inference rule.
In this paper instead we define the notions of size of an inference rule and size of a proof, and
apply induction on the size of a given derivation. In this way there is no difference (apart from
the size) between the inference rules that introduce new assumptions and those which do not
introduce new assumptions. These notions are formally defined below, using the following
additional notation.

Notation 2.2 Given a CLDS system S, its set R of inference rules is classified into four
categories. The first category denoted with I00 includes just the C-R rule, as being the only
rule which does not infer new declarative units or new R-literals. The second category, denoted
by I0, consists of the inference rules that infer new declarative units and/or new R-literals
without using any subderivations as conditions. The third category, denoted by I+, is the set
of inference rules that require one subderivation as a condition. Finally, the fourth category,
denoted by I++, is the set of inference rules that use two subderivations as conditions.

/

11

In both the ECLDS and LCLDS systems the (→E) and (¬¬) rules are examples of members of
the I0 category, whereas (→I) and (¬I) rules are examples of members of I+ category. The
I++ category instead is composed only of the (∨E) rule in the ECLDS system and it is empty
in the LCLDS system.

Definition 2.12 Let S be a CLDS system, let Ii ∈ RS and let C/C′ ∈ Ii. The size of C/C′
with respect to Ii, written l(C/C′ ,Ii), is defined as follows:

• If Ii ∈ I00 then l(C/C′ ,Ii) = 0.

• If Ii ∈ I0 then l(C/C′ ,Ii) = 1.

• If Ii ∈ I+ then l(C/C′ ,Ii) = 1 + l1, where l1 is the smallest of the sizes of all subderiva-
tions that can be used as condition of the rule.

• If Ii ∈ I++ then l(C/C′ ,Ii) = 1 + l1 + l2, where l1 and l2 are the smallest of the sizes of
all the two subderivations that can be used as conditions of the rule.

Definition 2.13 Let S be a CLDS system, the size of a proof
〈{C . . . Cn},m〉, written l(〈{C . . . Cn},m〉), is defined as follows

l(〈{C0, . . . , Cn},m〉) =
n−1∑

k=0

l(Ck/Ck+1,m(k))

Given that the semantics is based on a first-order translation method, the proof of the
soundness property of the `CLDS is based on the soundness property of the first-order classical
derivability relation `FOL. A diagrammatic representation of the soundness theorem of a
CLDS system S is given in Figure 1.

A+ ∪ FOT (C) `F OL FOT (C′
)

?
-

C `S C′ - C |=S C′

6

A+ ∪ FOT (C) |=F OL FOT (C′
)

(2)

(3)

(1)

(4)

Figure 1: Proof of the soundness property of a CLDS system C.

The soundness statement, which corresponds to the arrow labelled with (1), is proved by the
composition of three main steps, arrows (2), (3) and (4) respectively. The first step (arrow (2))
proves that the hypothesis, C `S C′ for a CLDS system S, implies that A+ ∪ FOT (C) `FOL

FOT (C′). This trivially implies (by soundness of first-order logic) that A+ ∪ FOT (C) |=FOL

FOT (C′), which gives the second step of the proof (arrow (3)). Arrow (4) is given by the
definition of the semantic entailment between configurations given in Definition 2.11. Note
that this methodology is generally applicable to any CLDS system. The first step is the only

12

C 6`S C′ - C 6|=S C′

6

A+ ∪ FOT (C) 6|=F OL FOT (C′
)

PPPPPPPPPPPPPPq

(1)

(3)(2)

Figure 2: Proof of the completeness property of a CLDS system C.

one that needs to be proved for each specific logic formalised in CLDS. Soundness of the
ECLDS and LCLDS systems are proved respectively in Sections 3.2 and 4.3 on the basis of this
methodology.

Proving completeness. The completeness property of a CLDS system with respect to the
semantics described in Section 2.3 can be proved using standard Henkin-style methodology
[HC68]. The theorem states that, given a CLDS system S and two configurations C and C′
such that C′ − C is a finite3, if C′ is semantically entailed from C then C′ is also derived from
C. C′ − C (formally defined in [Rus96]) is basically the set of declarative units and R-literals
if C′ but not in C. The methodology adopted to prove the completeness of a CLDS system is
diagrammatically represented in Figure 2 and it can be informally described as follows. The
proof is of the contrapositive statement (arrow (1)), which states that, given a CLDS S system
and two configurations C and C′ such that C′ − C is a finite, if C 6`CLDS C′ then C 6|=CLDS C′ .
This is proved by the composition of two main steps, arrows (2) and (3). Arrow (3) is already
given by Definition 2.11, while arrow (2) represents the main part of the theorem.

The proof of arrow (2) is based on the statement if C is a consistent configuration then C
is satisfiable, known as the “Model Existence Lemma” and consists of the following reasoning
steps. Note that the definition of a consistent configuration strictly depends on the CLDS
system.

• The hypothesis that C′ is not derivable from C, C 6`CLDS C′ , implies that there exists a
π ∈ C′ − C (where π is a declarative unit or an R-literal) such that C 6`CLDS π. This is
shown in Lemma 2.1.

• The above step implies that the configuration C extended with ¬π (written C + [¬π])
is a consistent configuration. This is shown by Proposition 3.1 and Lemma 4.2 for the
ECLDS and LCLDS system respectively.

• The second step implies then that the configuration C+[¬π] is satisfiable. This is proved
by means of Lemmas 3.5 and 4.12 which are respectively the model existence lemma of
the ECLDS system and the model existence lemma of the LCLDS system. Therefore, there
exists a semantic structure M of the CLDS system S which satisfies C and that also
satisfies ¬π. It is then shown thatM does not satisfy π. Thus, since π ∈ C′ , by definition

3Obviously, if the configuration difference C′ −C were infinite, an infinite proof sequence would be required
to prove C′

from C.

13

of satisfiability of a configuration, M does not satisfy C′ . Hence A+ ∪ FOT (C) 6|=FOL

FOT (C′).

3 The ECLDS system

In this section the ECLDS system is formally described, on the basis of the CLDS approach
defined in Section 2. The ECLDS language is defined as the ordered pair 〈LP ,LL〉, where LP

is a propositional language composed of a countable set of propositional letters {p, q, r, . . .},
the set of classical connectives {∨,∧,¬,→} and the set of modal operators {2,3}. The
labelling language LL is a first-order language composed of a countable set of constant symbols
{S0, S1, S2, . . .}, a countable set of variables {x, y, z, . . .}, the binary predicates R and = and
the set of logical connectives and quantifiers.

The labelling language LL is extended into a new language, the semi-extended abelling
language Func(LP ,LL), to include two sets of special unary function symbols.

Definition 3.1 Let LP be the ECLDS propositional language and let {α1, α2, . . .} be the set of
all wffs of LP . The first–order language Func(LP ,LL) is defined as the language LL extended
with the sets of unary function symbols {fα1 , fα2 , . . .} and {boxα1 , boxα2 , . . .}.

As mentioned in Section 2, terms of the form fα(λ) will be used to express Kripke semantic
notions of the form “there exists a possible world . . .”, whereas terms of the form boxα(λ)
will be used to expressed Kripke semantic notions of the form “for all possible worlds . . .”.
However, formally speaking fα(λ) and boxα(λ) are just terms of LL and within a particu-
lar model might even refer to the same possible world. The whole set of ground terms of
Func(LP ,LL) defines the set of labels of the ECLDS system. Since they denote actual and
accessible worlds, as explained in Section 2, the expressions “labels” and “possible worlds”
will be used interchangeably throughout this section.

Syntax. The predicate = is introduced in the labelling language LL in order to capture
the meaning of the Kripke semantic accessibility relation of the logic of elsewhere. Within
this logic, possible worlds are accessible from each other if and only if they are not equal
[dR92, Dem96]. This notion of accessibility relation is formalised by the labelling algebra A
defined later in this section. Syntactically, the ECLDS language facilitates the formalisation
of three types of information, (i) what holds at particular possible worlds, (ii) which worlds
are in relation with each other and which are not and (iii) which worlds are equal to each
other and which are not. Whereas the first type of information is captured by the declarative
units (defined in Section 2), the last two types of information are captured by the following
extended definition of R-literals.

Definition 3.2 [R-literals] Let 〈LP ,LL〉 be the ECLDS language. An R-literal is any literal
of the form R(λ1, λ2), ¬R(λ1, λ2), = (λ1, λ2) and ¬(= (λ1, λ2)), where λ1 and λ2 are ground
terms of the language Func(LP ,LL). The last two types of literals are often written in their
infix form λ1 = λ2 and λ1 6= λ2, where the expression 6= (λ1, λ2) is a shorthand for the wff
¬(= (λ1, λ2)).

The notion of conjugate of an R-literal, introduced in Section 2 is also extended to the R-
literals constructed from the = predicate. So, for any R-literal ∆ of the form λ1 = λ2, the

14

conjugate ∆ is equal to λ1 6= λ2 and vice-versa, for any R-literal ∆ of the form λ1 6= λ2, ∆ is
equal to λ1 = λ2.

The syntax of the ECLDS system allows arbitrary sets of modal formulae to be associated
with (different) labels, describing not only one initial set of local assumptions (as in the
implicit approach of the logic of elsewhere [dR92]) but allowing for several (distinct) local
initial modal theories to be specified. With the addition of R-literals, these local theories can
be stated to be related to the same possible world or to different possible worlds and therefore
interacting with each other. This yields a definition of a ECLDS theory more general than the
traditional notion of a modal theory given in [HC68, Fit83, dR92]. This feature contributes
towards the long term aim of this work of providing a modal formalism closer to the needs of
application (see discussions in Section 5).

A ECLDS configuration, or theory, is composed of two sets of information, (i) a set of R-
literals and (ii) a set of declarative units. Sets of declarative units having the same labels
denote local modal theories associated with that label (possible world), whereas declarative
units having different labels express modal formulae belonging to possibly different local
actual worlds. By means of the R-literals based on the = predicate, it is possible to specify
within an ECLDS theory which local actual worlds are different or equal with each other. In
the specific case of the logic of elsewhere this information is semantically equivalent to the
information of two possible worlds being accessible or not accessible from each other, which
is instead syntactically formalised by the R-literals constructed from the binary predicate
R. The semantic equivalence between these two types of R-literals, typical of the logic of
elsewhere, is syntactically captured by the labelling algebra A of the ECLDS system, which
allows the inference of inequalities between possible worlds stated to be in relation with each
other, and vice-versa, the inference of relations between possible worlds that are not equal.
The two types of R-literals are here introduced mainly to preserve the generality of the CLDS
approach (see discussion in Section 5).

So far, notions of ECLDS language, syntax and theory have been defined. These are “basic”
concepts in the sense that they are common to all CLDS propositional modal systems. (See
[Rus96] for the CLDS systems corresponding to the most well known normal modal logics.)
However, as shown in Section 2, there is an essential component which needs to be defined
to uniquely characterise the ECLDS system, the labelling algebra. The class of Kripke frames
associated with the logic of elsewhere is declaratively formalised by a first-order axiomatisa-
tion, called labelling algebra, written in the language Func(LP ,LL) including the standard
first-order logic equality theory [CL73]. This is composed of three main schemas, namely the
reflexivity axiom ∀x(x = x) and the two equality substitution axioms for terms and predicate
respectively. For the specific cases of terms constructed from the function symbol fα and of
the binary predicate symbol R the last two axiom schemas are respectively of the form (i)
∀x, y[x = y → (fα(x) = fα(y))], and (ii) ∀x, y, z[x = y → (R(x, z) → R(y, z))]. It is easy
to show that the reflexivity axiom together with equality substitution axiom for the binary
predicate = proves the symmetry and transitivity properties of the = predicate. The labelling
algebra of the ECLDS system is formally defined as follows.

Definition 3.3 [Labelling algebra AE] The labelling algebra AE is the first-order theory, writ-
ten in language Func(LP ,LL), given by the standard equality theory extended with the
following axiom:

∀x, y(R(x, x)↔ (x 6= y)) (E)

15

Axiom (E) expresses the meaning of the Kripke accessibility relation in the specific case of
the logic of elsewhere, for which only possible worlds which are different from a given possible
world are accessible from it. The ECLDS system is then defined by the tuple 〈〈LP ,LL〉,AE,RE〉
where the set of inference rules RE is defined in the following section.

3.1 Proof theory and Semantics of the ECLDS

To give a full definition of the ECLDS system it is necessary to specify the set of inference rules
for the classical and modal operators of the language LP , as well as the inference rules for
reasoning about relationships, equality and inequality between possible worlds.

In the ECLDS system, given an antecedent configuration C three types of reasoning step
can occur. Those of the first type are “classical”, and occur within any particular local modal
theory included in C, respecting standard notions of inference for classical connectives. A

Table 3: Natural deduction rules for classical connectives.

C〈α ∧ β :λ〉
C′〈α :λ〉 (∧E)

C〈α :λ, β :λ〉
C′〈α ∧ β :λ〉 (∧I)

C〈[α :λ]〉 C〈[β :λ]〉
: :

C〈α ∨ β :λ〉 C̃〈γ :λ〉 C〈γ :λ〉
C′〈γ :λ〉 (∨E)

C〈α :λ〉
C′〈α ∨ β :λ〉 (∨I)

C〈α :λ, λ = λ
′〉

C′〈α :λ
′〉 (ISub)

specialised version of the introduction and elimination rules for the → and ¬ operators given
in Table 1 are rules for the classical operators → and ¬ of the ECLDS system. This specialised
version requires that in each of these rules the labels λ1, λ2 and λ3 are all the same. The
set of rules for the ∨ and ∧ classical connectives is given in Table 3, together with a special
rule called ISub. The ISub expresses a specific form of interaction between the R-literals
constructed from the = predicate and the declarative units included in a configuration. This
interaction is similar to an equality substitution property for declarative units. Any modal
CLDS systems whose configurations include equality (and inequality) literals ought to have
this rule as part of their natural deduction system. (See [Rus96] for examples of other CLDS
systems of this kind.) Note that, with respect to the notion of length of an inference rule
given n Section 2, the ISub is a inference rule with length equal to 1 – i.e. ISub ∈ I0.

Rules of the second type are “modal” and concern the interaction between different modal
theories in C. These are given in Table 4. The 3E rule can be seen (informally) as a
“skolemization” of the existential quantifier over possible worlds which is semantically implied

16

Table 4: Natural deduction rules for modal operators.

C〈λ :3α〉
C′〈fα(λ) :α,R(λ, fα(λ))〉 (3E)

C〈λ2 :α, R(λ1, λ2)〉
C′〈λ1 :3α〉 (3I)

C〈λ1 :2α, R(λ1, λ2)〉
C′〈λ2 :α〉 (2E)

C〈[R(λ, boxα(λ))]〉
:

C̃〈boxα(λ) :α〉
C′〈λ :2α〉 (2I)

by the formula 3α in the premise. The term fα(λ) defines a particular possible world uniquely
associated with the formula α, and inferred to be accessible from the possible world λ (i.e.
R(λ, fα(λ))). It is clear from the definition that this rule has the effect of expanding both the
components (diagram and set of declarative units) of the antecedent configuration. In the 2I
rule, the temporary assumption R(λ, boxα(λ)) should be read as “given an arbitrary world
accessible from λ”, using then the term boxα(λ) not to name particular objects (possible
worlds), as normally done, but to refer to an arbitrary object. This role of boxα(λ) will
become clearer when the semantics of the ECLDS system is defined. Because of the semantic
equivalence between the predicates R and 6=, stated in the labelling algebra AE, each R-literal
of the form R(λi, λj) that appears in the rules for modal operators can be equally read as “λi

different from λj”. So for instance, the (2E) rule allows any formula α to be inferred from a
declarative unit 2α :λ1 at any possible world λ2 different from λ1. This reflects the semantic
meaning of the 2 operator in the logic of elsewhere4.

Both classical and modal reasoning steps are based on the logical (classical and modal)
information (wffs) incorporated in the declarative units that belong to C. The third type of
reasoning step is instead related to the diagram information in C and to the “interaction”
between the diagram and the declarative units. In this case, inferred configurations are often
“structural expansions” of (i.e. additions of R-literals to) the antecedent configurations.
These are identical to those given in Table 2, but with the meta-variables ∆ and ∆ referring
respectively to the notions of R-literal given in Definition 3.2 and its conjugate. The rule R-
A in particular, facilitates reasoning about the diagram of a configuration, using the specific
labelling algebra AE. For instance, from the R-A rule and the (E) axiom of the labelling
algebra AE, it is possible to prove the symmetry property of the accessibility relation R
using the symmetry property of the 6= predicate, itself given by the symmetry of the equality
predicate = included in AE. A example graphical representation of a derivation is given in
Figure 3 which shows the proof of the modal theorem α→ 23α, at the initial world S0.

Semantics. The semantics of the ECLDS system is based on the model theoretic semantics
defined in Section 2.3 for a general CLDS system. As pointed out in Section 2.3, in the ECLDS

system a declarative unit α : λ represents that the formula α holds at the possible world
4The syntactic inference of λ2 being different from λ1 (i.e. λ1 6= λ2) is given by an application of the (R-A)

rule, given in Table 2, using the (E) axiom of the labelling algebra AE.

17

C∅〈〉

C〈[α :S0]〉 (assumption)

C〈[R(S0, box3α(S0))]〉 (assumption)

C1〈S0 6= box3α(S0)〉 (R-A)

C2〈box3α(S0) 6= S0〉 (R-A)

C3〈R(box3α(S0), S0)〉 (R-A)

C4〈3α :box3α(S0)〉 (3I)

C5〈23α :S0〉 (2I)

C′〈α → 23α :S0〉 (→I)

Figure 3: Example derivation in the ECLDS system.

λ. This is expressed in terms of first-order statements of the form [α]∗(λ), where [α]∗ is a
unary predicate symbol. Here, the language Func(LP ,LL) is further extended to include the
predicate symbol [α]∗ for each wff α of LP . The resulting language is called extended labelling
language and denoted with Mon(LP ,LL).

The relationships between these unary predicates [α]∗ are constrained by a set of first-
order axiom schemas which capture the satisfiability conditions for each type of formula α.
These axiom schemas extend the labelling algebra AE of the ECLDS system into a first-order
theory called an extended algebra. A formal definition is given below. Note that, in the
extended algebra the equality substitution schema is extended to each predicate symbol [α]∗.

Definition 3.4 [Extended algebra A+
E] Given the extended labelling language Mon(LP ,LL)

and the labelling algebra A+ of the ECLDS system, the extended algebra A+
E is the first-order

theory in Mon(LP ,LL) consisting of the following axiom schemas (Ax1)-(Ax8) together with
the axiom (E) and the standard equality axioms of AE extended to the monadic predicates
[α]∗. For any wffs α and β of LP :

∀x([α ∧ β]∗(x)↔ ([α]∗(x) ∧ [β]∗(x))) (Ax1)

∀x([¬α]∗(x)↔ ¬[α]∗(x)) (Ax2)

∀x([α ∨ β]∗(x)↔ ([α]∗(x) ∨ [β]∗(x))) (Ax3)

∀x([α→ β]∗(x)↔ ([α]∗(x)→ [β]∗(x))) (Ax4)

18

∀x([3α]∗(x)→ (R(x, fα(x)) ∧ [α]∗(fα(x)))) (Ax5)

∀x(∃y(R(x, y) ∧ [α]∗(y))→ [3α]∗(x)) (Ax6)

∀x((R(x, boxα(x))→ [α]∗(boxα(x)))→ [2α]∗(x)) (Ax7)

∀x([2α]∗(x)→ (∀y(R(x, y)→ [α]∗(y)))) (Ax8)

The first four axiom schemas express the distributive properties of the logical connectives
among the monadic predicates of Mon(LP ,LL). (Ax5) and (Ax8) force the accessibility
relation R on labels generated by the application of the function symbols fα and boxα of
Mon(LL,LM) whenever their respective antecedents hold. Clearly, all the axiom schemas
(Ax1)–(Ax8) reflect the traditional Kripke semantic definition of satisfiability of modal wffs5.
The axiom schemas (Ax5)–(Ax8) together with the axiom (E) of the labelling algebra AE

express the specific semantic meaning of the modal operators 3 and 2 for the logic of else-
where. Axiom schemas (Ax5),(Ax6) and (E) together express the semantic definition of 3

operator for which a formula 3α is true at a possible world λ if and only if there exists a
possible world λ

′ 6= λ where α is true. Similarly, axiom schemas (Ax7),(Ax8) and (E) express
the semantic definition of 2 operator, for which a formula 2α is true at a possible world λ if
and only if for all possible worlds λ

′ 6= λ, α is true at λ
′
.

The notions of satisfiability and semantic entailment of the ECLDS system are as specified in
Definitions 2.10 and 2.11, but based on the extended algebra A+

E defined above. These notions
are based on the translation method defined in Section 2 which translates a configuration of
the ECLDS system into a first-order theory including the R-literals present in the diagram of
the configuration, and the set of monadic formulae [α]∗(λ) that correspond to the declarative
units α :λ present in the configuration.

3.2 Main results about the ECLDS system.

In this section it is shown that the natural deduction proof system of ECLDS is sound and com-
plete with respect to the semantics given in Section 3.1, and that, under certain restrictions,
corresponds to the standard axiomatisation of the logic of elsewhere given in [dR92].

Soundness and Completeness results.

The soundness and completeness proofs , based respectively on the two methodologies de-
scribed in Section 2.3, take advantage of the soundness and completeness of first-order logic.
Most of the theorems, lemmas and propositions used to prove the soundness and completeness
properties extend those given in [Rus96] for the class of CLDS normal modal logics systems,
with the additional cases corresponding to the equality and inequality between possible worlds
and to the special rule ISub for equality substitution in declarative units. Hence, the proofs
described in this paper will consider only these extended cases, referring the reader to [Rus96]
for the remaining full proofs.

5This is easily seen by interpreting the truth of [α]∗(x) as the truth of the modal formula α in the possible
world x.

19

Theorem 3.1 [Soundness of the ECLDS system]
Let E = 〈〈LP ,LL〉,A+

E ,RE〉 be a the ECLDS system and let C and C′ be two configurations. If
C `E C′ then C |=E C′ .

The proof of Theorem 3.1 is represented diagrammatically in Figure 1, and by exploiting the
soundness property of first-order logic, it suffices to prove that for any pair of configurations C
and C′ , if C `E C′ then A+

E , FOT (C) `FOL FOT (C′). This is captured by the following lemma.

Lemma 3.1 [Soundness with respect to translation] Let A+
E be the extended algebra of the

ECLDS system. Let C and C′ be two configurations and let FOT (C and FOT (C+) be their
respective first-order translations. If C `E C′ then A+

E , FOT (C) `FOL FOT (C′).

Proof: The proof is by induction of the smallest size of derivations of the form 〈{C0, . . . , Cn},m〉,
where C0 = C and Cn = C′ . In what follows 〈{C0, . . . , Cn},m〉 is a proof of this smallest size
with length l ≥ 0. The base case is when l = 0. This means by Definition 2.13 that C′ ⊆ C
from which the theorem trivially follows. The inductive step is proved by cases on the last
inference rule of the derivation (assuming that this is different from the C-R rule6, since the
theorem holds by inductive hypothesis for the remaining first part of the derivation. Hence,
it is sufficient to show that A+

E , FOT (Cn−1) `FOL FOT (Cn).

For Cases 1–15, corresponding to the inference rules given in Tables 1, 2, 3 and 4 except the
ISub, the reader is referred to [Rus96].

Case 16: ISub.
In this case Cn−1/Cn ∈ ISub. Then there exist a declarative unit α :λ and an R-literal of the
form λ = λ

′
such that {α : λ, λ = λ

′} ⊆ C. Therefore, the set {[α]∗(λ), λ = λ
′} ⊆ FOT (C).

This implies, by applying the equality substitution axiom of A+
E to the predicate [α]∗, that

A+
E , FOT (Cn−1) `FOL [α]∗(λ′

). Since Cn = Cn−1 + [α :λ
′
], A+

E , FOT (Cn−1) `FOL FOT (Cn).
2

Proof of Theorem 3.1:
By hypothesis C `E C′ . By Lemma 3.1 A+

E , FOT (C) `FOL FOT (C′). By soundness of
first-order logic A+

E , FOT (C) |=FOL FOT (C′). Hence, by definition of semantic entailment,
C |=E C′).

Completeness. The completeness theorem states that, given the ECLDS system and two
configurations C and C′ , if C′ is semantically entailed from C then C′ is also derived from C.
This is formally defined below.

Theorem 3.2 [Completeness of the ECLDS system]
Let E = 〈〈LP ,LL〉,A+

E ,RE〉 be a ECLDS system and let C and C′ be two configurations such
that C′ − C is a finite configuration. C `E C′ then C |=E C′ .

6Note that the lemma can trivially be proved to hold for proofs obtained by extending the one considered
here with a C-R rule on the last step.

20

As discussed in Section 2.3, the Henkin-style methodology is here adopted to prove Theo-
rem 3.2. The basic notions in this methodology are that of consistent and maximal consistent
configurations.

Definition 3.5 [Consistent configuration] Given the ECLDS system and a configuration C, C
is inconsistent if C `E ⊥ :λ for some ground term λ of Func(LP ,LL). C is consistent if it is
not inconsistent.

Definition 3.6 [Maximal Consistent Configuration] Given the ECLDS system, a configuration
Cmcc is a maximally consistent configuration of ECLDS, if (i) it is consistent and if (ii) for any
π 6∈ Cmcc (where π is a declarative unit or an R-literal), the configuration Cmcc + [π] is not
consistent.

The proof of Theorem 3.2 is then based on constructing a canonical semantic structure of the
ECLDS system to show the contrapositive statement that

C 6`E C′ implies C 6|=E C′ (4)

In standard Henkin-style proofs of completeness for modal logics, the canonical model is
obtained by progressively building maximal consistent sets (see for example [HC68]) where
consistency is locally checked according to the properties of the underlying accessibility re-
lation. In our approach, the explicit declarative representation of possible worlds and of
relationships between possible worlds facilitates the construction of a canonical model for
the ECLDS system by simply extending a given consistent configuration into a single maximal
consistent configuration where consistency is then checked globally. This is shown in the
following lemma.

Lemma 3.2 Given the ECLDS system, every consistent configuration C can be extended to a
maximal consistent configuration Cmcc.

Proof: Let C be a consistent configuration and let π1, π2, π3, . . . , πn, . . . be an ordering on
the set of all declarative units and R-literals of 〈CP ,LL〉. Starting from C0 = C a sequence of
consistent configurations Ci is constructed by inductively defining, for each element π, Ci to be

Ci = Ci−1 + [π] if Ci−1 + [πi] consistent
Ci = Ci−1 otherwise

It is easy to show that for each i ≥ 0, Ci is a consistent configuration. Now, let Cmcc be the
configuration obtained from the union of all the Ci, Cmcc = ∪i≥0Ci. It is easy to show that Cmcc

is maximal and consistent (see Proposition 3.8 in [Rus96] for a formal proof). Hence Cmcc is
a maximal consistent configuration.

2

Maximal consistent configurations are configurations whose declarative units and R-literals
satisfy particular properties. These are listed in the following lemma where only the properties
related to R-literals constructed from the = predicate are proved, referring the reader to
[Rus96] for a formal proof of the remaining cases.

Lemma 3.3 Let Cmcc be a maximal consistent configuration of ECLDS. Then for any π (where
π is a declarative unit or an R-literal) and for any wffs α and β,

21

1. π and π are not both in Cmcc.

2. Either π ∈ Cmcc or π ∈ Cmcc.

3. α ∧ β :λ ∈ Cmcc if and only if α :λ ∈ Cmcc and β :λ ∈ Cmcc.

4. α ∨ β :λ ∈ Cmcc if and only if α :λ ∈ Cmcc or β :λ ∈ Cmcc.

5. α→ β :λ ∈ Cmcc if and only if if α :λ ∈ Cmcc then β :λ ∈ Cmcc.

6. If 2α :λ ∈ Cmcc and R(λ, λ
′
) ∈ Cmcc then α :λ

′ ∈ Cmcc.

7. If ¬R(λ, boxα(λ)) ∈ Cmcc or α :boxα(λ) ∈ Cmcc, then 2α :λ ∈ Cmcc.

8. If 3α :λ ∈ Cmcc then R(λ, fα(λ)) ∈ Cmcc and α :fα(λ) ∈ Cmcc.

9. If R(λ, λ
′
) ∈ Cmcc and α :λ

′ ∈ Cmcc, then 3α :λ ∈ Cmcc.

10. R(λ, λ
′
) ∈ Cmcc if and only if λ 6= λ

′ ∈ Cmcc.

11. If λ = λ1 ∈ Cmcc and R(λ, λ
′
) ∈ Cmcc then R(λ1, λ

′
) ∈ Cmcc.

12. If λ = λ1 ∈ Cmcc and λ = λ
′ ∈ Cmcc then λ1 = λ

′ ∈ Cmcc.

13. If α :λ ∈ Cmcc and λ = λ
′ ∈ Cmcc then α :λ

′ ∈ Cmcc.

Proof:
Property (1) is proved only for the case of π equal to λ = λ

′
for arbitrary labels λ, λ

′
. Suppose

that both λ = λ
′
and λ 6= λ

′
are in Cmcc. Then by definition of the ⊥E rule Cmcc `E ⊥ :λ which

constradicts the hypothesis Cmcc being a maximal consistent configuration.

Property (2) is also proved only for the case of π equal to λ = λ
′

for arbitrary labels λ,
λ

′
. Suppose that neither λ = λ

′
nor λ 6= λ

′
is in Cmcc. Then by definition of maximality

Cmcc +[λ = λ
′
] `E ⊥ :λ and Cmcc +[λ 6= λ

′
] `E ⊥ :λ

′
. Then it is easy to show (see [Rus96]) that

there exist two configurations C1 and C2 such that C1 ⊆ Cmcc, C1 + [λ = λ
′
] `E ⊥ :λ, C2 ⊆ Cmcc

and C2 + [λ 6= λ
′
] `E ⊥ : λ

′
. By monotonicity of the ECLDS derivability relation, also the

configuration C = C1∪C2 is such that C ⊆ Cmcc, C+[λ = λ
′
] `E ⊥ :λ and C+[λ 6= λ

′
] `E ⊥ :λ

′
.

This implies that there exists a derivation which shows that C `E ⊥ :λ
′
, which, by the mono-

tonicity of `E contradicts the hypothesis that Cmcc is consistent.

Property (11) and (12), that express the deduction closure of the maximal consistent config-
uration with respect the equality substitution in R-literals are also proved by contradiction
using the (R-A) rule. Similarly for Property (10). Property (13) is proved by contradiction
using ISub rule. For all the other cases, the reader is referred to [Rus96].

2

To prove the maximal consistent lemma it is essential to define the notion of a canonical
semantic structure. This is given with respect to a maximal consistent configuration and a
notion of a canonical interpretation.

Definition 3.7 [Canonical Interpretation] Let Cmcc = 〈Dmcc,Fmcc〉. be a maximal consistent
configuration of ECLDS and let FOT (Cmcc) be its first-order translation. A canonical semantic
structure of ECLDS is the pair (U ,Imcc), where U is the Herbrand universe of the language
Mon(LP ,LL) and Imcc is an interpretation function on the language Mon(LP ,LL) defined as
follows.

• For each ground term λ,
‖ λ ‖Imcc)

= λ.

22

• For the binary predicate R,
‖ R ‖Imcc)

= {〈λi, λj〉 | R(λi, λj) ∈ FOT (Cmcc)} 7.

• For the binary predicate =,
‖=‖Imcc)

= {〈λi, λj〉 | λi = λj ∈ FOT (Cmcc)}
• For each monadic predicate [α]∗,
‖ [α]∗ ‖Imcc = {λi | [α]∗(λi) ∈ FOT (Cmcc)}

The following lemma shows that the canonical interpretation constructed in the above defi-
nition is a canonical semantic structure of the ECLDS system

Lemma 3.4 [Canonical Semantic Structure] Let Cmcc be a maximal consistent configuration
of ECLDS and let (U ,Imcc) be a canonical interpretation. Then (U ,Imcc) is a canonical semantic
structure of ECLDS.
Proof: To show that (U ,Imcc) is a canonical semantic structure of ECLDS it is needed to show,
by Definition 2.10, that (U ,Imcc) is a model of the extended algebra A+

E . This means to show
that (U ,Imcc) is a model of the axioms (Ax1)–(Ax8) as well as of the axioms of the equality
theory included in A+

E . This is easy to prove by using Lemma 3.3 and the consideration
that, by definition of the canonical interpretation, for each declarative unit and R-literal π,
(U ,Imcc)
 FOT (π) if and only if FOT (π) ∈ FOT (Cmcc).

2

It is now possible to prove the Model Existence Lemma for the ECLDS system.

Lemma 3.5 [Model Existence Lemma] Let Cmcc be a maximal consistent configuration, and
let Mmcc = (U ,Imcc) be a canonical semantic structure of ECLDS. Then for any π (where π is
a declarative unit or an R-literal) of ECLDS, Mmcc |=E π if and only if π ∈ Cmcc.

Proof: Only the case of π equal to an R-literal constructed from the = predicate is considered
here. For the other cases, the reader is referred to [Rus96]. Let π be of the form λ = λ

′
. If

λ = λ
′ ∈ Cmcc then λ = λ

′ ∈ FOT (Cmcc). This implies by Definition 3.7 thatMmcc |=E λ = λ
′
.

If λ = λ
′ 6∈ Cmcc then by Lemma 3.3 λ 6= λ

′ ∈ Cmcc, which implies that Mmcc |=E λ 6= λ
′
and

hence Mmcc 6|=E λ = λ
′
.

2

Corollary 3.1 Let C be a consistent configuration of the ECLDS system. Then C is satisfiable.

Proof: The proof trivially follows from Lemmas 3.2 and 3.5.
2

The following Proposition is the final result needed to prove the completeness theorem.

Proposition 3.1 Let C be a configuration of the ECLDS system and let π be a declarative
unit or an R-literal such that π 6∈ C. If C 6`E π then C + [π] is a consistent configuration.

Proof: Only the case of π equal to a R-literal of the form λ = λ
′
is considered. For the other

cases, the reader is referred to [Rus96]. Let π be of the form λ = λ
′
. The contrapositive of the

7Notice that FOT (Cmcc) contains only ground literals

23

proposition is proved. Suppose that C+[λ 6= λ
′
] is not consistent. Then C+[λ 6= λ

′
] `E ⊥ :λ1.

By definition of the RI, the configuration C′ = C + [λ = λ
′
] is derivable from C. Hence,

C `E λ = λ
′
.

2

The proof of Theorem 3.2 can now be given.

Proof of Theorem 3.2:

The proof is by contrapositive. Assume that C 6`E C′ . Then by Lemma 2.1 there exists
a π ∈ C′ − C, where π is a declarative unit or an R–literal, such that C 6`E π. Then by
Proposition 3.1, C+[¬π] is a consistent configuration. By Corollary 3.1, C+[¬π] is satisfiable.
Let M be the canonical semantic structure that satisfies the configuration C + [¬π]. So
M |=E C andM |=E ¬π. There are three cases to consider, according to the form of π. Only
the case of π equal to an R-literal of the form λ = λ

′
is considered here. For the other two

cases the reader is referred to [Rus96]. Let π be then of the form λ = λ
′
. By Definition 2.10,

M ‖−FOLλ 6= λ
′
, which implies that M 6 ‖−FOLλ = λ

′
. Then by Definitions 2.10 and 2.11

A+, FOT (C) 6‖−FOLλ = λ
′
. Hence C 6|=E C′ .

Correspondence result. In Section 1, it has been stated that the ECLDS system is a gen-
eralisation of the standard implicit formalisation of the modal logic of elsewhere, in that it
facilitates reasoning about structures of actual worlds, which may or may not be singleton
structures. This claim is substantiated here by showing (i) that there exists a correspondence
between the ECLDS system and the Hilbert system for the logic of elsewhere, whenever certain
restrictions are imposed on initial configurations, and (ii) that the correspondence clearly fails
if no restriction is imposed. As far as the first result is concerned, the restriction consists
of identifying a particular constant symbol in LL, say S0, and allowing initial configurations
only of the form Ci = 〈{},Fi〉 (i.e. no R-literals belong to Ci) where for any label λ, λ 6= S0,
Fi(λ) = {}. With this restriction the only initial assumptions (if any) are modal formulae
associated with the label S0. This corresponds to the traditional notion of local assumptions
in modal logic. In particular, the following two theorems shown that any declarative unit of
the form α :S0 can be derived from an (empty) initial configuration of the form Ci if and only
if its formula α is derivable, within the sound and complete axiomatic system for modal logic
given in [dR92], from the (empty) set of formulae that appear in Ci.

A definition of the axiomatic system taken into consideration is first given.

Definition 3.8 Let LP be the propositional modal logic considered in the ECLDS system. The
axiomatic system for the logic of elsewhere, written EAx, is defined as a standard propositional
logic axiomatisation [HC68] extended with the following schemas:

2(α→ β)→ (2α→ 2β) (E1)

α→ 23α (E2)

33α→ (α ∨3α) (E3)

24

together with the (MP) and (Nec) rules:

If `EAx
α then `EAx

2α (Nec)

Theorem 3.3 [Simple correspondence] Consider the ECLDS system, the axiomatic system
EAx for the logic of elsewhere, and the initial empty configuration C{} = 〈{},F〉, given by
F(λ) = {}, for any label λ. Let α be a formula of LP . Then:

`EAx
α

if and only if
for all ground terms λ ∈Mon(LP ,LL) C{} `E α :λ

Proof: (“Only if”) part: The proof is by induction on the number of steps of the shortest
derivation of α proving `EAx

α. The formal proof is given in [Rus96] but with the following
three extra cases on the base case of the induction. The base case is when there are zero
number of steps, i.e. α is an instantiation of the schemas given in Definition 3.8. It is suffi-
cient to prove that C{} `E λ :α for α equal to (E1), (E2) and (E3). Only the case of the (E3)
schema is considered here, since the proof of the (E2) is already given in Figure 3.1 and the
proof of (E1) schema is fully given in [Rus96].

Case (E3):
The contrapositive schema is considered instead, (2α ∧ α)→ 22α. Let λ be a ground term
of Mon(LP ,LL). Then C{} `E (2α ∧ α)→ 22α. See Figure 4.

(”If”) part: The proof is by showing that the contrapositive statement holds. Given the
soundness and completeness of both the systems under consideration this means to show that
if 6|=EAx

α then there exists a ground term λ such that C{} 6|=E α : λ. The formal proof is
given in [Rus96] and it informally consists of constructing a classical interpretation M from
the Kripke countermodel of α and showing that M is a model of the ECLDS system (i.e. it
satisfies the schemas of the extended algebra A+

E). This implies that there exists a ground
term λ, specifically the one corresponding to the Kripke possible world where α is false, such
that M 6|=FOL [α]∗(λ)8. Hence M 6|=E α : (λ).

2

It is easy to show that the above theorem can be generalised to global and local as-
sumptions of the logic of elsewhere using the notation introduced by Fitting in [Fit83]. (i.e.
T |=EAx

U ⇒ α denote that the formula α is derivable from the global assumptions T and
the local assumptions U .) This is achieved by considering initial configurations of the form
CTU = 〈{},FTU 〉, where FTU (S0) = T ∪ U and for each label λ 6= S0, F(λ) = T .

The above results effectively provide a translation method from a modal theory 〈T,U〉
of the logic of elsewhere into an equivalent ECLDS configuration, which preserves derivability
and semantic entailment. However, it is clear that many initial configurations are not the
translation of any modal theory. (For example, any configuration whose diagram D is not

8Note that [α]∗(λ) is proved to be false in M by the construction of M using the fact that α is false at the
Kripke possible world that corresponds to λ.

25

C∅〈〉

C1〈[2α ∧ α :λ]〉 (assumption)

C2〈2α :λ, α :λ〉 (∧E)

C3〈[R(λ, box2α(λ))]〉 (assumption)

C4〈[R(box2α(λ), boxα(box2α(λ)))]〉 (assumption)

C5〈[¬α :boxα(box2α(λ))]〉 (assumption)

C̃〈[R(λ, boxα(box2α(λ)))]〉 (assumption)

C̃1〈α :boxα(box2α(λ))〉 (2E)

C̃2〈⊥ :boxα(box2α(λ))〉 (∧I)

C6〈¬R(λ, boxα(box2α(λ)))〉 (R-I)

C7〈λ = boxα(box2α(λ))〉 (R-A)

C8〈α :boxα(box2α(λ))〉 (ISub)

C9〈⊥ :boxα(box2α(λ))〉 (∧I)

C10〈α :boxα(box2α(λ))〉 (¬I)

C11〈2α :box2α(λ)〉 (¬I)

C12〈22α :λ〉 (¬I)

C13〈(2α ∧ α) → 22α :λ〉 (→I)

Figure 4: ECLDS derivation of the (E3) axiom

26

empty or whose F differs at more than one label.) Hence, the information that such con-
figurations encode cannot be represented within the standard logic of elsewhere, making the
ECLDS system strictly more general than the standard Hilbert system.

4 The Lclds System

In this section the Lclds system is defined. Additional inference rules are defined for dealing
with the ⊗ operator and additional interactions between labels and formulas. The extended
labelling algebra A+

L is defined, which together with the notion of semantic entailment and
model given in Definitions 2.11 and 2.10 provides the model theoretic semantics for Lclds.
The soundness and completeness of the proof system with respect to this semantics is then
proved. The correspondence with a standard sequent calculus presentation for linear logic
is demonstrated, showing the Lclds system to be more general than standard presentations.
Other proof systems based on LDS for substructural logics have been described in [DG94,
Gab92] in which a tableau proof system was presented, and in [BFR97], in which a natural
deduction system was given. This case study is restricted to the multiplicative operators ⊗,
→ and ¬ of linear logic and extensions to other substructural logics can be developed. In
Section 5 the extensions necessary for additive operators of linear logic are indicated.

Language of Lclds. The language of the Lclds system is the pair 〈LP ,LL〉, where LP
is a standard propositional language restricted to the substructural operators {→,⊗,¬} and
including the two propositions > and ⊥. The proposition > is the identity of ⊗ and ⊥ is
equivalent9 to ¬>. The labelling language LL is composed of a countable set of symbols
{a, b, . . . , f, a1, b1, . . . , f1, . . .} called constants, a countable set of variables {x, y, z . . .}, a bi-
nary function symbol ◦ and a binary relation � both usually written in infix form. The
language LL is extended into Func(LP ,LL) by adding for each wff α of LP different from
> the symbol cα called parameter. For the wff > the parameter 1 is included. Terms of
the semi-extended labelling language Func(LP ,LL) are defined inductively, as consisting of
1, constants, parameters and variables, together with expressions of the form x ◦ y where x
and y are terms. Ground terms are called labels. Note that all parameters have a special role
in the proof theory and semantics, especially c⊥. As mentioned in Section 2 parameters cα
represent the smallest label verifying α. The declarative unit ⊥ : x ◦ y is introduced into a
proof as a result of deriving any pair of declarative units of the form α : x and ¬α : y. The
label c⊥ is therefore smaller than any label x ◦ y such that α : x and ¬α : y hold for any α.

In a (substructural) configuration C the R-literals in the diagram are referred to as con-
straints. Any pair of constraints ∆ and ∆ in a configuration will be denoted by the shorthand
notation ⊥. Note that the two uses of this symbol (i.e. ⊥ in the language LP and ⊥ in con-
figurations are distinguishable by the presence of a label in the first case.

The labelling algebra A is a set of FOL axioms, which express the properties of the
function symbol ◦ with respect to the pre-ordering relation �.

Definition 4.1 (Labelling Algebra AL)

The labelling algebra AL written in Func((LP ,LL)) is the first order theory given by the
following axioms

9This is easy to show using the ND rules for Lclds .

27

1. (identity) ∀x[1 ◦ x � x ∧ x � 1 ◦ x]
2. (order-preserving) ∀x, y, z[x � y → x ◦ z � y ◦ z ∧ z ◦ x � z ◦ y]
3. (pre-ordering) � is reflexive and transitive:

∀x[x � x] and ∀x, y, z[x � y ∧ y � z → x � z]
4. (commutativity) ∀x, y[x ◦ y � y ◦ x]
5. (associativity) ∀x, y, z[(x ◦ y) ◦ z � x ◦ (y ◦ z)]

2

A Lclds system consists of a labelling algebra A and a set of inference rules to generate
one configuration from another.

4.1 A Natural Deduction System for Lclds

The operator rules (→E), (→I), (⊗E), (⊗I), (¬I), (¬E), (¬¬), together with various rules
describing the interaction between constraints and declarative units are introduced next. They
are all defined mathematically. Note that the rules (⊗E) and (⊗I) belong to the category
I0. Each of the operator rules incorporates the idea of combining resources in order to derive
new declarative units. For example, the →I rule expresses how resources λ and λ′, verifying
α→ β and α respectively, are combined into λ ◦ λ′ to verify β.

The characteristic rule (ch) and unit rule (unit) respectively reflect the notions that there
is a smallest resource verifying a formula and that any increase of resource maintains veri-
fiability. In linear logic two combinations of resources are only related if they comprise the
same resources, but possibly combined in different orders, or if one resource is the smallest
that verifies a particular formula. The constraint rule (R-A) in Table 2 is used to derive rela-
tionships between labels. The (unit) rule often interacts with the (R-A) rule in the following
way: first the (R-A) rule is used to deduce that a resource λ′ is greater than another λ, and
then the (unit) rule is used to deduce α : λ′ from α : λ. These three rules are all in category
I0. The effect of the (ch) rule is seen in the fact that a derivation from an initially empty
configuration contains declarative units with characteristic labels only. Initial configurations
are discussed later in this section.

An additional derived rule, the (pc) rule, which is equivalent to the double negation (¬¬)
rule could also be included as it is so often used in proofs and can make them slightly shorter.
However, for simplicity it is omitted here. Example derivations in Lclds using the rules are
given in Figures 5 and 6, where a derivation of the (¬¬) rule from the (pc) rule and vice versa
is shown, as well as a derivation of A⊗B → ¬(A→ ¬B) : 1. A slightly different presentation
of the natural deduction system was first described in [BDR97] and developed in [BFR97].
In both of those papers the semantics was in terms of a particular lattice framework. In this
paper the necessary properties are expressed in FOL.

The Lclds Rules Let C = 〈D,F〉 be a (substructural) configuration. The set of natural
deduction rules is now defined as follows:

(→E) If α→ β : λ ∈ C and α : λ′ ∈ C then C′ = C + [β : λ ◦ λ′].
(→I) If C + [α : cα] `L β : λ ◦ cα then C′ = C + [α→ β : λ] .

(⊗E) If α⊗ β : λ ∈ C then C′ = C + [α : cα] + [β : cβ] + [cα ◦ cβ � λ].

(⊗I) If α : λ1 ∈ C and β : λ2 ∈ C, then C′ = C + [α⊗ β : λ1 ◦ λ2].

28

(¬I) If C + [α : cα] `L ⊥ : λ ◦ cα then C′ = C + [¬α : λ].

(¬E) If α : λ1 ∈ C and ¬α : λ2 ∈ C, then C′ = C + [⊥ : λ1 ◦ λ2].

(¬¬) If ¬¬α : λ ∈ C then C′ = C + [α : λ].

characteristic rule (ch) If α : λ ∈ C then C′ = C + [α : cα] + [cα � λ],

new unit rule (unit) If α : λ ∈ C and λ � λ′ ∈ C. then C′ = C + [α : λ′].

rule for ⊥ (base) The declarative unit ⊥ : c⊥ may be introduced into any configuration,
that is, C′ = C + [⊥ : c⊥].

The next four rules are from Table 2 adapted for Lclds.

constraint rule (R-A) If C, A `fol ∆, where ∆ is a constraint then C′ = C + [∆].

reduce rule (C-R) If C′ ⊆ C then C′ can be derived from C.
contradiction rule (⊥I) If ∆ ∈ C and ¬∆ ∈ C then C′ = C+[α : λ], where ∆ is a constraint

and α and λ are any wff and label.

RI If C + [∆ `L ⊥ then C′ = C + [∆].

1 C1〈[¬α : c¬α]〉
2

... (proof p)
3 Cn〈[⊥ : c¬α ◦ λ]〉
4 Cn+1〈[¬¬α : λ]〉 ¬I (1-3)
5 C′〈[α : λ]〉 ¬¬

1 C〈[¬¬α : λ]〉 (given)
2 C1〈[¬α : c¬α]〉
3 Cn〈[⊥ : c¬α ◦ λ]〉 ¬E (1,2)
4 C′〈[α : λ]〉 pc (2-3)

Figure 5: Equivalence of the (pc) and (¬¬) rules

In Figure 5 it is shown how the (pc) rule can be derived given the (¬¬) rule, and also
how, given ¬¬α : λ and the (pc) rule the (¬¬) rule can be derived. Henceforth, only the
(¬¬) rule will be considered.

1 C1〈[α⊗ β : cα⊗β)]〉 (assumption for →I line 10)
2 C2〈[α→ ¬β : cα→¬β]〉 (assumption for ¬I line 9)
3 C3〈[α : cα]〉 (⊗E (1))
4 C4〈[β : cβ]〉 (⊗E (1))
5 C5〈[cα ◦ cβ � cα⊗β]〉 (⊗E (1))
6 C6〈[¬β : cα→¬β ◦ cα]〉 →E (2,3)
7 C7〈[⊥ : cα→¬β ◦ cα ◦ cβ]〉 ¬E (4,6)
8 C8〈[⊥ : cα→¬β ◦ cα⊗β]〉 (unit) rule (7)
9 C9〈[¬(α→ ¬β) : cα⊗β]〉 ¬I (2-8)
10 C′〈[α⊗ β → ¬(α→ ¬β) : 1]〉 →I (2- 9)

Figure 6: Derivation of α⊗ β → ¬(α→ ¬β) : 1

29

4.2 A First Order Semantics for Lclds

The extended labelling language Mon(LP ,LL), is defined by adding to Func(LP ,LL) monadic
predicates [α]∗, for each wff α in LP . The atom [α]∗(x) can be read as x verifies α. The
extended algebra A+

L for Lclds, written in Mon(LP ,LL) expresses relationships between the
monadic predicates and constraints according to the semantic meaning of the substructural
operators and the (unit), (ch) and (base) rules.

The Axiom Schema for Lclds The axiom schema for Lclds are Skolemised versions of the
basic axiom schema given in Table 5. The first axiom (Ax1) characterises the (unit) rule and
the second axiom (Ax2) characterises the (ch) rule. The others, (Ax3) - (Ax5) characterise the
operators →, ¬ and ⊗ respectively, whilst axiom (Ax6) characterises the (¬¬) rule. Axiom
(Ax7) characterises the (base) rule and (Ax8) the (RI) rule.

Table 5: Basic Axioms for Lclds

Ax1: ∀x∀y(x � y ∧ [α]∗(x)→ [α]∗(y))
Ax2: ∀x([α]∗(x))→ ∃y([α]∗(y) ∧ ∀z([α]∗(z)→ y � z)))
Ax3: ∀x([α→ β]∗(x)↔ ∀y([α]∗(y)→ [β]∗(x ◦ y)))
Ax4: ∀x([¬α]∗(x)↔ ∀y([α]∗(y)→ ⊥ : x ◦ y))
Ax5: ∀w([α⊗ β]∗(w)↔ ∃u∃v([α]∗(u) ∧ [β]∗(v) ∧ (u ◦ v � w)))
Ax6: ∀x([¬¬α]∗(x)→ [α]∗(x))
Ax7: [⊥]∗(c⊥)

Table 6: The Extended Algebra A+
L

Ax1: ∀x∀y(x � y ∧ [α]∗(x)→ [α]∗(y))
Ax2: ∀x([α]∗(x)→ [α]∗(cα) ∧ cα � x)
Ax3a: ∀x∀y([α→ β]∗(x) ∧ [α]∗(y)→ [β]∗(x ◦ y)))
Ax3b: ∀x([α→ β]∗(x)← ([α]∗(cα)→ [β]∗(x ◦ cα)))
Ax4a: ∀x∀y([¬α]∗(x) ∧ [α]∗(y)→ ⊥ : x ◦ y))
Ax4b: ∀x([¬α]∗(x)← ([α]∗(cα)→ ⊥ : x ◦ cα))
Ax5a: ∀x([α⊗ β]∗(x)→ ([α]∗(cα) ∧ [β]∗(cβ) ∧ cα ◦ cβ � x))
Ax5b: ∀u∀v([α]∗(u) ∧ [β]∗(v)→ [α⊗ β]∗(u ◦ v))
Ax6: ∀x([¬¬α]∗(x)→ [α]∗(x))
Ax7: [⊥]∗(c⊥)

The extended algebra A+
L is the first order theory given by the set of axioms shown in

Table 6. These are sub-axioms derived from the basic axioms which are used to form a
theory corresponding to a given initial structure and those structures derived from it. The
sub-axioms, given in Table 6, are derived from the basic axioms by taking each half of the ↔
in turn. The axioms (Ax1) and Ax2) relate declarative units to constraints. Several of the
sub-axioms can be simplified by use of parameters and the characteristic and new unit rules

30

(effectively applying Skolemisation). Declarative units including a parameter in the label
can only arise during a derivation in this application; they will never be part of an initial
configuration. The parameters play the same role as Skolem constants and functions in FOL
and are the semantic counterpart of a syntactic wff.

In (Ax2), for example, the label y is specified to be the smallest label that verifies α.
(Notice that, if ↔ is used in place of the first → then (Ax1) follows from the (if)-half as a
theorem.) (Ax2) can be Skolemised to give

∀x([α]∗(x)→ ([α]∗(cα) ∧ ∀w([α]∗(w)→ cα � w)))

The parameter cα is associated with the formula α and is also called the α-characteristic
label. It is the smallest label to verify α. (The parameter 1 is the >-characteristic label and
the parameter c⊥ is the ⊥ characteristic label.) (Ax2) can also be simplified to the equivalent
version10 (also called (Ax2))

∀x([α]∗(x)→ ([α]∗(cα) ∧ cα � x))

As an example of derivations of other sub-axioms, consider (Ax3). To derive (Ax3b) from
(Ax3), first of all

∀x[α→ β]∗(x) ∨ ∃y[α]∗(y)

is obtained from the ← direction of (Ax3). It is easy to show, using (Ax2), that this is
equivalent to ∀x[α → β]∗(x) ∨ [α]∗(cα)). Similar considerations apply to the other axioms.
Note that the axioms in Table 6 are of quite simple forms; they can be reduced further to yield
either Horn clauses or simple disjunctions, in which one disjunct is always ground, having the
form [α]∗(cα). This feature will be discussed further in Section 5.

Initial Substructural Configuration There are several possible assumptions that may
be made about an initial configuration Si. Some examples of simple derivations from possible
initial configurations are given next. First, suppose cβ � cα and β : λ hold in a configuration,
then `L α → β : 1. For suppose α : cα then it is required to show that β : cα, or β : cβ ,
since cβ � cα. But β : λ implies β : cβ by the (ch) rule. Second, suppose the two declarative
units α : cβ and β : cα were present in an initial configuration. Then, `L α → β : 1 and
`L β → α : 1, so α and β would be considered equivalent to one another. Since α and β
may be any sentences in the language this additional implication may not reflect the standard
linear logic. This is because the Lclds is a proper extension of standard linear logic. As shown
in the correspondence theorem the set of standard linear logic theorems are provable in Lclds

only under the condition that the initial configuration is empty.

Notation 4.1 (Empty Initial Configuration) The term C∅ denotes a particular initial config-
uration in which there are no declarative units or constraints.

/

Note that declarative units α : 1 derivable from an empty configuration are called theorems.
In Sections 4.3 and 4.4 it is shown the natural deduction rules are sound and complete

with respect to the semantics. In Section 4.5 it is also demonstrated that the rules correspond
to a standard presentation of substructural logics.

10Note that in this form it cannot be used to derive (Ax1).

31

4.3 Soundness Result

Recall from Section 2.3 that C |=L C′ iffA+
L , FOT(C) |= FOT(C′). The soundness property that

is proved in this section is the following: for configurations C and C′, if C `L C′, then C |=L C′
and the proof follows the pattern used for Eclds. The proof is in three steps: first of all the
faithfulness of the translation is shown, namely if C `L C′ then A+, FOT (C) `fol FOT (C′).
Next the soundness of first order logic is used to derive A+, FOT (C) |=fol FOT (C′) and
finally, the definition of semantic entailment is used to obtain C |=L C′. The soundness
property then follows by transitivity of implication.

The first proof (faithfulness of the translation) is made using induction on the length of
natural deduction proofs.

Lemma 4.1 (Faithfulness of the Translation)

Let C and C′ be configurations, then if C `L C′ then A+, FOT (C) `fol FOT (C′).
Proof:
Base Case:

Suppose the proof has length 0. The only step is therefore one that reiterates an element
of C. Clearly the property of the theorem holds in this case.
Induction step:

Suppose that the statement of the theorem holds for all proofs of length k, k ≥ 0, and
consider a proof of length k + 1 and the last step in such a proof, from Ck to Ck+1, where
C′ = Ck+1.

Each possibility for this step is considered in turn and for each case it is shown that
A+

L , FOT(Ck) `fol FOT(Ck+1). By inductive hypothesis A+
L , FOT(C) `fol FOT (Ck), which

implies that A+
L , FOT(C) `fol A+

L , FOT (Ck). Hence, by transitivity of `, A+
L , FOT(C) `fol

FOT (C′).
(unit) rule: λ � λ′ ∈ Ck and α : λ ∈ Ck, then [α]∗(λ) ∈ FOT(Ck) and λ � λ′ ∈ FOT(Ck)

and, by (Ax1), A+
L , FOT(Ck) `fol [α]∗(λ′).

(C-R) rule: Since Ck+1 ⊆ Ck, FOT(Ck+1)⊆ FOT(Ck) and henceA+
L , FOT(Ck) `fol FOT(Ck+1).

(R-A) rule: The result is immediate since the steps are already first order and use the axioms
of A which are included in the A+

L algebra.

(ch) rule α : λ ∈ Ck, then [α]∗(λ) ∈ FOT(Ck). Hence, by using (Ax2), A+
L , FOT(Ck)

`fol [α]∗(cα) and A+
L , FOT(Ck+1) `fol cα � λ by Ax2.

(→E): There exist α : λ and α → β : λ′ in Ck and Ck+1 = Ck + [β : λ′ ◦ λ]. Hence FOT(Ck)
⊇ {[α]∗(λ), [α → β]∗(λ′)} and FOT (Ck+1) = FOT(Ck) ∪{[β]∗(λ′ ◦ λ)}. It remains to
show that A+

L , FOT(Ck) `fol [β]∗(λ′ ◦ λ). Using (Ax3a) this follows straightforwardly.

(→I): There exists a proof of β : λ ◦ cα from Ck + [α : cα]. By the induction hypothesis A+
L ,

FOT(Ck)∪{[α]∗(cα)} `fol [β]∗(λ◦cα). Using (Ax3b) and the deduction theorem of FOL
[α→ β]∗(λ) can be derived from A+

L , FOT(Ck).
(⊗E): α ⊗ β : λ ∈ Ck. So [α ⊗ β]∗(λ) ∈ FOT(Ck). Using (Ax5a) all of the new elements

[α]∗(cα), [β]∗(cβ) and cα ◦ cβ � λ of FOT(Ck+1) are derivable from A+
L , FOT(Ck).

(⊗I): Ck+1 = Ck + [α ⊗ β : λ ◦ λ′])]. α : λ and β : λ′ are in Ck , then FOT(Ck) ⊇
{[α]∗(λ), [β]∗(λ′)}. Using (Ax5b) [α⊗ β]∗(λ ◦ λ′) can be derived from A+

L , FOT(Ck).

32

¬E: There exist α : λ and ¬α : λ′ in Ck and Ck+1 = Ck + [⊥ : λ′ ◦ λ]. Hence FOT(Ck)
⊇ {[α]∗(λ), [¬α]∗(λ′)} and FOT (Ck+1) = FOT(Ck) ∪{[⊥]∗(λ′ ◦ λ)}. It remains to show
that A+

L , FOT(Ck) `fol [⊥]∗(λ′ ◦ λ). Using (Ax4a) this follows straightforwardly.

(¬I): There exists a proof of ⊥ : λ ◦ cα from Ck + [α : cα]. By the induction hypothesis A+
L ,

FOT(Ck) ∪ {[α]∗(cα)} `fol [⊥]∗(λ ◦ cα). Using (Ax4b) and the deduction theorem of
FOL [¬α]∗(λ) can be derived from A+

L , FOT(Ck).
(¬¬): This is proved using (Ax6).

(⊥I): ∆ ∈ Ck and ¬∆ ∈ Ck, then FOT(Ck) `fol α : λ and hence [α]∗(λ).

(RI): There exists a proof of ⊥ from Ck + [∆]. By the induction hypothesis A+,FOT(Ck)∪
{∆) `fol ⊥. By FOL ∆ can be derived.

(base): Ax7 proves the soundness of the rule immediately.

2

Together, this suffices to prove Theorem 4.1.

Theorem 4.1 (Soundness of Lclds) Let 〈〈LP ,LL〉,A+
L ,RL〉 be a Lclds system and let C and

C′ be configurations such that C′ − C is finite, then, if C `L C′ then C |=L C′.

4.4 Completeness Result

In this section it is shown that, for configurations C and C′, if C |=L C′ then C `L C′. In fact,
as for the Eclds case, it is the contrapositive statement that is proved, namely, if C 0L C′ then
C 2L C′. Because of the definition of semantic entailment between configurations, it suffices
to show that if C 0L C′ then A+

L , FOT(C) 2 FOT(C′). In other words, given C 0L C′, it is
enough to construct a model of A+

L and FOT(C) that is not a model of FOT(C′).

Definition 4.2 (Inconsistency of a Substructural Configuration)

Let C be a configuration. Then C is inconsistent iff there exists a configuration C′ such that
C `L C′ and {∆,∆} ⊆ C′. This will be written in a shorthand notation as C `L ⊥. A
configuration C is consistent if it is not inconsistent.

2

Notice that the following configuration,

{α : λ,¬α : λ′, α⊗ ¬α : λ ◦ λ′,⊥ : λ ◦ λ′, c⊥ � λ ◦ λ′}
is not inconsistent. It is only so in the presence of the additional constraint c⊥ � λ ◦ λ′.
This is to be expected since in linear logic the formula α ⊗ ¬α does not allow a derivation
of all formulas as in classical logic and so the configuration above should not be considered
inconsistent.

The proof of completeness has the following, now familiar, overall structure. First it is
shown how a consistent configuration can be expanded into a maximally consistent configu-
ration (Imcc) and various useful properties of such a structure are proved. Next is described
how a Herbrand model for any Imcc can be given that is also a model of the axioms A+

L .

Lemma 4.2 (Consistency Lemma) Let C be a consistent configuration, then, if C 0L α : λ
then C + [c⊥ � λ ◦ c¬α] + [¬α : c¬α] is consistent, and if C 0L λ � λ′ then C + [¬λ � λ′] is
consistent.

33

Proof:
Suppose C + [c⊥ � λ ◦ c¬α] + [¬α : c¬α] is not consistent, then C + [¬α : c¬α] + [c⊥ �

λ ◦ c¬α] `L ⊥ and hence, C + [¬α : c¬α] `L c⊥ � λ ◦ c¬α. By the (base) rule, ⊥ : c⊥, and then
by the (unit) rule ⊥ : λ ◦ c¬α. But then C `L α : λ by the (¬I) rule, which contradicts the
initial assumption C 0L α : cα.
Suppose next that C + [λ � λ′] `L ⊥ then C `L λ � λ′, by (RI), a contradiction.

2

Definition 4.3 (Maximally Consistent Configuration (Imcc)) A configuration Imcc is a maxi-
mally consistent configuration if it is consistent and if for any π /∈ Imcc, where π is a declarative
unit or constraint, the configuration Imcc + [π] is not consistent.

Let C be a consistent configuration. A maximally consistent configuration is constructed
in the same way as described for ECLDS in Lemma 3.2. The configuration Imcc has various
properties as stated and proven next. These properties will be used to show that a particular
Herbrand model constructed from Imcc satisfies the axioms A+

L . In all Lemmas 4.3 – 4.11
Imcc will name a maximally consistent substructural configuration.

Note that most of the lemmas below use the following reasoning steps. Firstly, if π /∈ Imcc

for some declarative unit π, then Imcc + [π] is not consistent and Imcc + [π] `L ⊥. If it
is then shown that Imcc `L Imcc + [π] then Imcc `L ⊥. This is usually used to derive
a contradiction from the assumption that Imcc is consistent. Secondly, the monotonicity
property of derivations if a maximal configuration Imcc satisfies Imcc `L α : λ then there is
a configuration C1 ⊆ Imcc such that C1 `L α : λ. Moreover, if C1 ⊆ Imcc and C1 `L α : λ
then Imcc `L α : λ. The transitivity of the entailment relation `L is also used throughout the
proofs.

Lemma 4.3 (Properties of Imcc w.r.t. the Labelling Algebra AL)
If λ � λ′ ∈ Imcc and λ′ � λ′′ ∈ Imcc then λ � λ′′ ∈ Imcc.

Proof:
If λ � λ′′ /∈ Imcc then Imcc + λ � λ′′ `L ⊥. By the (R-A) rule using the transitivity

property of �, Imcc `L Imcc + λ � λ′′ and so Imcc is inconsistent, a contradiction.
2

Similar properties of Imcc are proved in a similar way for the remaining axioms of AL.

Lemma 4.4 (Characteristic property for Imcc) If α : λ ∈ Imcc then α : cα ∈ Imcc and
cα � λ ∈ Imcc.
If λ � λ′ ∈ Imcc and α : λ ∈ Imcc then α : λ′ ∈ Imcc.
⊥ : c⊥ ∈ Imcc.
> : 1 ∈ Imcc.

Proof: Suppose α : λ ∈ Imcc for an arbitrary label λ, but α : cα /∈ Imcc. Then Imcc +[α : cα]
is inconsistent. But then, since Imcc `L Imcc + [α : cα], Imcc is inconsistent, a contradiction.
Similarly, cα � λ ∈ Imcc. On the other hand, suppose α : λ ∈ Imcc and λ � λ′ ∈ Imcc, but
α : λ′ /∈ Imcc. Then Imcc + [α : λ′] is inconsistent. Since Imcc `L α : λ′ this means Imcc is
inconsistent, a contradiction. So α : λ′ ∈ Imcc

If ⊥ : c⊥ were not in Imcc then Imcc + [⊥ : c⊥] `L ⊥, but from the (base) rule this would
imply Imcc was inconsistent, a contradiction.

34

> : 1 ∈ Imcc follows trivially from the fact that > is equivalent to ¬⊥ and the (¬I) rule.
2

The characteristic property will be used many times in the following lemmas and will not
be explicitly given every time.

Lemma 4.5 (A Consistency property of Imcc)
For any constraint x � y, either x � y /∈ Imcc or x � y /∈ Imcc.
Let α be a wff, then, if c⊥ � cα ◦ c¬α ∈ Imcc , then either, for each label λ, α : λ /∈ Imcc, or
for each label λ, ¬α : λ /∈ Imcc.
Let α be a wff, then, if cα � λ ∈ Imcc then α : λ /∈ Imcc

Proof: In the first place, if x � y ∈ Imcc and x � y ∈ Imcc, then by the (R-A) rule Imcc `L ⊥
and is inconsistent.
Secondly, suppose c⊥ � cα ◦c¬α and that the conclusion is not the case, then ∃λ′′, λ′ such that
α : λ′′ ∈ Imcc and ¬α : λ′ ∈ Imcc. Then α : cα ∈ Imcc and ¬α : c¬α ∈ Imcc (by Lemma 4.4).
Hence by the (¬E) rule Imcc `L ⊥ : cα ◦ c¬α and hence c⊥ � cα ◦ c¬α. But then Imcc `L ⊥ by
the (R-A) rule (since c⊥ � cα ◦ c¬α) and Imcc is inconsistent, a contradiction. In particular,
α : cα /∈ Imcc or ¬α : c¬α /∈ Imcc for every α, so if α : cα ∈ Imcc, then ¬α : c¬α /∈ Imcc (under
the condition c⊥ � cα ◦ c¬α). Also, if α : λ ∈ Imcc then ∀y.¬α : y /∈ Imcc as ∀x.α : x /∈ Imcc

must be false.
Finally, suppose α : λ ∈ Imcc, then cα � λ ∈ Imcc and hence Imcc would be inconsistent, a
contradiction.

2

Lemma 4.6 (Maximal nature of Imcc) For any wff α, either α : cα ∈ Imcc or ¬α : c¬α ∈ Imcc.
For any constraint either λ � λ′ ∈ Imcc or λ � λ′ ∈ Imcc.

Proof: Suppose that α : cα /∈ Imcc and ¬α : c¬α /∈ Imcc then Imcc + [α : cα] `L ⊥ and
Imcc + [¬α : c¬α] `L ⊥. Hence Imcc + [α : cα] `L c⊥ : cα ◦ c¬α (by (⊥I) rule) and and
Imcc `L ¬α : c¬α by the (¬I) rule. Hence Imcc is inconsistent, a contradiction. Notice that
as a consequence, if α : cα /∈ Imcc then ¬α : c¬α ∈ Imcc.
Similarly, for the case of constraints.

2

There are several lemmas proved next that will be used in proving that a particular model
of Imcc satisfies the axioms in A+

L . Use is made of the facts proved in Lemmas 4.4 and 4.6,
that if α : λ ∈ Imcc then α : cα ∈ Imcc and if α : cα /∈ Imcc then ¬α : c¬α ∈ Imcc.

Lemma 4.7 (Property of ⊗)
α⊗ β : λ ∈ Imcc iff α : cα ∈ Imcc, β : cβ ∈ Imcc and cα ◦ cβ � λ.

Proof: Suppose α ⊗ β : λ ∈ Imcc but α : cα /∈ Imcc. Then Imcc + [α : cα] `L ⊥ and hence,
since Imcc `L Imcc + [α : cα], Imcc is inconsistent, a contradiction. Similarly for β : cβ and
cα ◦ c¬α � λ.

For the other direction suppose α : cα ∈ Imcc, β : cβ ∈ Imcc and cα ◦ cβ � λ ∈ Imcc.
Suppose also that α⊗β : cα ◦cβ /∈ Imcc. Then Imcc +[α⊗β : cα ◦cβ] `L ⊥. But since Imcc `L

α⊗ β : cα ◦ cβ , this implies Imcc is inconsistent, a contradiction. Thus α⊗ β : cα ◦ cβ ∈ Imcc

and α⊗ β : λ ∈ Imcc since cα ◦ cβ � λ ∈ Imcc (by Lemma 4.4).
2

35

Lemma 4.8 (Property of → (part (i)))
If α→ β : λ ∈ Imcc and α : λ′ ∈ Imcc then β : λ ◦ λ′ ∈ Imcc.

Suppose β : λ ◦ λ′ /∈ Imcc, then Imcc + [β : λ ◦ λ′] is inconsistent and by the (→E) rule
Imcc `L β : λ ◦ λ′, so Imcc is inconsistent, a contradiction. Hence β : λ ◦ λ′ ∈ Imcc.

2

Lemma 4.9 (Property of → (part (ii)))
If α : cα ∈ Imcc implies that → β : λ ◦ cα ∈ Imcc, then α→ β : λ ∈ Imcc

Proof: Suppose that either α : cα /∈ Imcc or β : λ ◦ cα ∈ Imcc. and that β : λ ◦ cα /∈ Imcc and
so Imcc + [α→ β : λ] is inconsistent.

First, if β : λ ◦ cα ∈ Imcc then Imcc `L α→ β : λ by the (→I) rule, Imcc is inconsistent,
a contradiction.

On the other hand, suppose α : cα /∈ Imcc. Then Imcc + [α : c¬α] `L ⊥. Hence, by the
(⊥I) rule, Imcc + [α : cα `L β : λ ◦ cα, and Imcc `L α→ β : λ and Imcc is again inconsistent.

2

Together, Lemmas 4.8 and 4.9 show that α → β : λ ∈ Imcc iff forall x if α : x ∈ Imcc then
β : λx ∈ Imcc.

Lemma 4.10 (Property of ¬¬)

Proof: Suppose ¬¬α : λ ∈ Imcc, but α : λ /∈ Imcc. Then Imcc + [α : λ] is inconsistent. By
the (¬¬) rule Imcc is inconsistent.

2

Lemma 4.11 (Property of ¬) If ¬α : λ ∈ Imcc and α : λ′ ∈ Imcc then ⊥ : λ ◦ λ′ ∈ Imcc and
if α : cα ∈ Imcc implies that ⊥ : cα ◦ λ ∈ Imcc, then ¬α : λ ∈ Imcc.

Proof: First, if ⊥ : λ ◦ λ′ /∈ Imcc, then Imcc + ⊥ : λ ◦ λ′ `L ⊥. But if ¬α : λ ∈ Imcc and
α : λ′ ∈ Imcc then Imcc `L ⊥ : λ ◦ λ′. But then Imcc is inconsistent.
Second, suppose either α : cα /∈ Imcc or ⊥ : λ ◦ cα ∈ Imcc and ¬α : λ /∈ Imcc, so Imcc + [¬α :
λ] `L ⊥. There are then two subcases: either ⊥ : λ ◦ cα ∈ Imcc or α : cα /∈ Imcc. If ⊥ :
λ ◦ cα ∈ Imcc, then Imcc `L ¬α : λ and Imcc is inconsistent, a contradiction. If α : cα /∈ Imcc,
then Imcc + [α : cα] `L ⊥ and Imcc + [α : cα] `L ⊥ : cα ◦ λ. Hence Imcc `L ¬α : λ and Imcc is
inconsistent. Both cases lead to a contradiction.

2

The above lemmas are now used to prove a Model Existence Lemma for Lclds. If Imcc is a
maximally consistent set of declarative units and constraints, then a Herbrand interpretation
HA can be constructed that is a model of the axioms A+

L . HA is defined as in Definition 3.7.
According to this definition [α]∗(x) = T iff α : x ∈ Imcc. HA is shown to be a model of the
axioms A+

L by utilising the Lemmas 4.4 to 4.11.

Lemma 4.12 (Model Existence Lemma) The Herbrand interpretation HA is a model of the
extended algebra A+

L .

Proof:

Ax1 This follows directly from Lemma 4.4.

36

Ax2 This also follows from Lemma 4.4.

Ax3a This follows from Lemma 4.8.

Ax3b This follows from Lemma 4.9.

Ax4a,4 b These follow from Lemma 4.11.

Ax5a, 5b These follow from Lemma 4.7.

Ax6 This follows from Lemma 4.10.

Ax7 This follows from Lemma 4.4.

Properties (1 - 4) of ◦ These follow from Lemma 4.3.

2

Theorem 4.2 (Completeness of Lclds) Let C, C′ be two configurations such that C′ − C is a
finite configuration. If C `L C′ then C |=L C.

Proof: Let C be a configuration such that C 0L C′. Then there is a declarative unit or
constraint π, where π is either α : λ or λ � λ′, such that π ∈ C′ and C 0L π. There
are two cases. In both cases a model for A+, FOT(C) is obtained that is not a model for
FOT(C′). (Case 1) If π is λ � λ′ then C + [λ � λ′] is consistent by Lemma 4.2 and there is a
model that makes A+, FOT(C) true but λ � λ′ false. (Case 2) On the other hand, if π is
α : λ,then C + [¬α : c¬α] + c⊥ � λ ◦ c¬α] is consistent and can be expanded into a maximally
consistent configuration Imcc from which a model HA is constructed that makes ¬α : c¬α and
c⊥ � λ ◦ c¬α both true. Hence Imcc makes α : λ false, because if not, and α : λ were true,
⊥ : λ ◦ cα and c⊥ � λ ◦ cα would be true. But the latter yields a contradiction, hence α : λ is
false.

2

4.5 Correspondence of Lclds with a Standard Sequent Calculus Presenta-
tion

In order to show that the natural deduction CLDS presented here for linear logic (LL) does
indeed correspond to a standard sequent calculus presentation it is necessary to show that
theorems in the two systems correspond. It is shown constructively in Theorem 4.4 that
theorems in LL obtained from a standard sequent presentation of LL are also theorems in the
natural deduction system and in Theorem 4.5 it is shown that theorems in the ND system
are also theorems in LL.

A single conclusion presentation of the sequent calculus for LL, presented in Table 7, is the
most appropriate version to use in this work since it mirrors the natural deduction rules most
closely. See [Gol90] for a study of the relationship between various sequent presentations.
The rule for ¬¬ on the right is derivable from the ¬R and ¬L1 rules given The two sides of a
sequent X =⇒ Y will be called Left and Right respectively. The upper part(s) of a sequent
rule is(are) called the antecedent(s) and the lower part(s) is(are) called the conclusion.

The atoms ⊥ and > also play a special role in a sequent, namely, Γ =⇒ ∅ is equivalent to
Γ =⇒ ⊥ and ∅ =⇒ ∆ is equivalent to > =⇒ ∆. In a single-conclusion sequent calculus for
LL the only sequent involving > or ⊥ that is not trivial is included in the table as rule (id1).
In Theorem 4.5 the (cut) rule is used in the sequent proof derived from a ND proof. Since
(cut) is admissible in the sequent calculus this is not a problem. Because the exchange rule
is present, the cut rule can be written as

37

Γ1 =⇒ α α,Γ2 =⇒ β
Γ1,Γ2 =⇒ β

(cut)

(id1)
Γ =⇒ δ

Γ,> =⇒ δ

(ax)
α =⇒ α

(¬R)
Γ, α =⇒ ⊥
Γ =⇒ ¬α

(⊗R)
Γ1 =⇒ α Γ2 =⇒ β

Γ1, Γ2 =⇒ α ⊗ β

(→R)
Γ, α =⇒ β

Γ =⇒ α → β

Γ1, β, α, Γ2 =⇒ δ

Γ1, α, β, Γ2 =⇒ δ
(exchL)

Γ =⇒ α

Γ,¬α =⇒ ⊥ (¬L1)

Γ, α =⇒ δ

Γ,¬¬α =⇒ δ
(¬¬L)

Γ, α, β =⇒ δ

Γ, α ⊗ β =⇒ δ
(⊗L)

Γ1 =⇒ α Γ2, β =⇒ δ

Γ1, Γ2, α → β =⇒ δ
(→L)

Table 7: Single Conclusion Sequent Rules for linear logic

The proof of correspondence is similar in spirit to that used in [DG94] to prove Propositions
4 and 5. However, the details are different due to the different approach being taken here
with respect to the semantics.

Theorem 4.3 (Translation of Sequents into Lclds) Let P be a sequent calculus proof in
LL of the sequent δ1, δ2, . . . , δn =⇒ α, n ≥ 0, then there exists a corresponding ND proof of
α : λ1 ◦ . . . ◦ λn from δ1 : λ1, δ2 : λ2, . . . , δn : λn, where λ1, . . . , λn are arbitrary labels.

Proof:
The proof is by induction on the number of sequents in P . The sequent proof P is assumed

to be linearised, such that all sequents required as the antecedent for a step occur before the
conclusion of a step. For each type of sequent rule it is shown how to construct a proof of
the conclusion sequent from a proof of the antecedent sequent. The notation Γ : λ is used
to represent the data δ1 : λ1, . . . , δn : λn, where λ = λ1 ◦ . . . ◦ λn. Most of the steps are
illustrated in Tables 8 and 9. The notation used for configurations is the same as that used
in Section 2. Each configuration Ck+1 is the configuration Ck with the additional identified
declarative units or constraints. The notation C + [declarative unit] indicates an assumption
that will be discharged.

Base case A sequent calculus proof with one sequent must consist just of an instance
of the (axiom) rule α =⇒ α. The corresponding translation uses a special case of the (unit)
rule, in particular using the fact that λ � λ, for any λ.

Induction Step Suppose as induction hypothesis that for any sequent proof with m
steps, 1 ≤ m ≤ k, such that if the last sequent is δ1, δ2, . . . , δn =⇒ α, n ≥ 0, then there is
a corresponding ND proof of α : λ1 ◦ . . . λn from δ1 : λ1, δ2 : λ2, . . . , δn : λn, where the {λi}
are arbitrary labels. It is shown that any sequent proof with k+ 1 steps satisfies the theorem
as follows: First, the induction hypothesis is applied to give a ND proof(s) P1(P2) of the
antecedent sequent(s); second, some substitutions are possibly made, in a systematic way, to

38

some of the labels in P1(P2) so that P1 (and P2 if it exists) may be used to give a proof of
the conclusion sequent. The substitution stage uses the Substitution Lemma, Lemma 4.13.

¬R: ND rule is ¬I

C0〈Γ : λ1〉
C0 + [α : λ2]

:
C2〈⊥ :λ1 ◦ λ2〉

(cα for λ2)

C0〈Γ : λ1〉
C0 + [α : cα]

:
C2〈⊥ :λ1 ◦ cα〉

C3〈¬α : λ1〉 (¬I)

⊗R: ND rule is ⊗I

C0〈Γ1 : λ1〉
:

C1〈α : λ1〉

C2〈Γ2 : λ2〉
:

C3〈β : λ2〉

C4〈Γ : λ1, Γ2 : λ2〉
:

C5〈α : λ1〉
:

C6〈β : λ2〉
C7〈α ⊗ β : λ1 ◦ λ2〉 (⊗I)

→R: ND rule is →I

C0〈Γ : λ1〉
C0 + [α : λ2]

:
C2〈β : λ1 ◦ λ2〉

(cα for λ2)

C0〈Γ : λ1〉
C0 + [α : cα]

:
C2〈β : λ1 ◦ cα〉

C3〈α → β : λ1〉 (→I)

Table 8: ND translation of sequent rules

Each sequent rule is next considered in turn and the appropriate substitutions (if any)
and transformation is given. In most cases Tables 8 and 9 give both of these, in which the
derivation on the left represents the proof given by the inductive hypothesis and the derivation
on the right represents the proof obtained by means of the label substitution indicated.

id1 Given a ND proof P1 of δ : λ from Γ : λ, the addition of the data > : 1 will still give
a proof of the conclusion sequent since 1 ◦ λ = λ. (Formally, the (unit) rule deduces
δ : 1 ◦ λ from δ : λ.)

ax The required proof is simply an instance of the (unit) rule, as described for the base case.

exchL The assumption yields a proof from Γ1 : λ1, β : λ2, α : λ3,Γ2 : λ4 of δ : λ1 ◦λ2 ◦λ3 ◦λ4.
The effect of this rule is an application of the (unit) rule from δ : λ1 ◦ λ2 ◦ λ3 ◦ λ4 to
δ : λ1 ◦ λ3 ◦ λ2 ◦ λ4. This is sanctioned by the commutative and associative properties.

¬¬L A proof of δ : λ1 ◦ λ2 from Γ : λ1 and α : λ2 can be turned into a proof of δ : λ1 ◦ λ2

from Γ : λ1 and ¬¬α : λ2 by deriving α : λ2 from ¬¬α : λ2 by the (¬¬) rule.

¬R, ¬L1, ⊗R, ⊗L, →R, →L These steps appear in Tables 8 and 9.

2

39

¬L1: uses ¬E

C0〈Γ1 : λ1〉
:

C1〈α : λ1〉

C4〈Γ : λ1, ¬α : λ3〉
:

C5〈α : λ1〉
C6〈⊥ : λ3 ◦ λ1〉 (¬E)

⊗L: ND rule is ⊗E

C0〈Γ1 : λ1〉
C1〈α : λ2〉
C3〈β : λ3〉

:
C3〈δ : λ1 ◦ λ2 ◦ λ3〉

(cα for λ2)
(cβ for λ3)

C4〈Γ : λ1, α ⊗ β : λ4〉
C5〈α : cα, β : cβ , cα ◦ cβ � λ4〉 (⊗E)

:
C6〈δ : λ1 ◦ cα ◦ cβ〉
C7〈δ : λ1 ◦ λ4〉 ((unit) rule)

(λ1 ◦ cα ◦ cβ � λ1 ◦ λ4)

→L: uses →E

C0〈Γ1 : λ1〉
:

C1〈α : λ1〉

C2〈Γ2 : λ2, β : λ3〉
:

C3〈δ : λ2 ◦ λ3〉

(λ4 ◦ λ1 for λ3)

C4〈Γ1 : λ1, Γ2 : λ2, α → β : λ4〉
:

C5〈α : λ1〉
C6〈β : λ4 ◦ λ1〉 (→E)

:
C7〈δ : λ2 ◦ λ4 ◦ λ1〉

Table 9: ND translation of sequent rules (continued)

Lemma 4.13 (Substitution Lemma)

If the sequence of configurations P is a Lclds derivation from a configuration C〈δ1 : λ1, δ2 :
λ2, . . . , δn : λn〉, where the {λi} are arbitrary labels then the sequence of configuration P ′

obtained by making none or more substitutions of the form “substitute λ′ for λi” in P , where
λi is not of the form cδi

, and λ′ is any label, then P ′ is a Lclds derivation.
Outline Proof

The restriction on the label λi, which is replaced by λ′, is necessary, for the only allowed
label in such a case is δi : cδi

so it cannot be replaced. The replacements are made in a
systematic way in that all are considered to be made simultaneously and to all uses of the λi

label to derive P ′ from P . The ND proof P ′ is still correct as the changes are syntactic. 2

As a special case of Theorem 4.3, when n = 0, λ1 ◦ . . . ◦λn = 1 as 1 is the identity element
of ◦. This proves the following Theorem.

Theorem 4.4 (Correspondence Part I) Let P be a sequent calculus proof in LL of the the-
orem α, i.e. =⇒ α, then there exists a corresponding ND proof of α : 1 i.e. C∅ `L α : 1.

In ND the structural rule (exchL) is most easily accommodated by allowing permutations
of the atomic labels in a composite label. It is not difficult to show that the structural rules
can be accumulated and applied just before an application of the (unit) rule.

40

When only constructing a ND proof without the initial sequent proof, the particular
distribution of data into Γ1 and Γ2 (where required) is not known, nor are the required
applications of structural rules. To avoid having to guess these steps, free variable ND rules
can be formulated. For a full description of a free variable approach see [BFR97], in which an
algorithm is given that enables the particular applications of the new unit rule used in place
of structural rules to be found.

Theorem 4.5 (Correspondence Part II)

If there exists a ND proof in Lclds of the declarative unit α : 1 from an empty initial config-
uration then there is a LL sequent calculus proof of the theorem =⇒ α, that is

=⇒ α if C∅ `L α : 1

Proof:
Suppose C∅ `L α : 1. It is required to show =⇒ α. By the soundness of natural deduction
C∅ |=L α : 1, so A+

L , FOT(C∅) |= [α]∗(1), (or A+
L |= [α]∗(1)). Hence any model of A+

L is also
a model of [α]∗(1). If a model of A+

L can be constructed such that [α]∗(1) = T iff =⇒ α,
then this will yield =⇒ α as required. Such a model does exist, it is based on the canonical
interpretation first introduced in [DG94]. Lemma 4.14 shows there is a suitable model that
is a model of A and Lemma 4.15 shows it is also a model of A+1.

Definition 4.4 (Canonical Interpretation)

Let 〈LP ,LL〉 be a Lclds. A canonical interpretation is an interpretation from Mon(LP ,LL)
defined as follows:

• each characteristic label cα is interpreted as {z|α =⇒ z}.
• each constant label λ is interpreted as ∅.
• ||λ ◦ λ′|| = {z|α ⊗ β =⇒ z, where α ∈ ||λ|| and β ∈ ||λ′||}.
• is interpreted as {z| =⇒ z}
• x � y is interpreted as ||x|| ⊆ ||y||
• ||[α]∗|| = {||x|| : α ∈ ||x||}

2

On the basis of the above interpretation, an atom [α]∗(x) = T iff α ∈ ||x||. This means,
in particular, that if [α]∗(1) = T then α ∈ ||1|| and hence =⇒ α. In Lemma 4.15 it is shown
that the above interpretation is a model of the extended algebra A+

L .
Notice that ||c⊥|| = {z|⊥ =⇒ z} and so ||c⊥|| = {⊥}. Therefore (Ax 7) is satisfied

immediately.
In the following lemmas the interpretation notation || || will be omitted for simplicity.

Lemma 4.14 (General properties of the canonical interpretation)
The interpretation of ◦ as given by the canonical interpretation forms a monoid operation

with identity 1 and is order preserving, and ⊆ is a preorder.

Proof:

41

commutativity and associativity : Taking commutativity first, suppose δ ∈ λ ◦ λ′ then
there is a sequent calculus proof of δ from α ⊗ β, where α ∈ λ and β ∈ λ′. That is,
α⊗ β =⇒ δ Since β ⊗ α =⇒ α⊗ β, by the (cut) rule β ⊗ α =⇒ δ and δ ∈ λ′ ◦ λ.

The proof for associativity of ◦ is similar.

identity : Suppose δ ∈ 1 ◦ λ then β ⊗ α =⇒ δ, where =⇒ β and γ =⇒ α for γ ∈ λ. Using
the sequent rule ⊗R the sequent γ =⇒ β ⊗ α is derived and hence γ =⇒ δ by the (cut)
rule.

For the other direction, suppose δ ∈ λ, so γ =⇒ δ for some γ ∈ λ. Then >⊗ γ =⇒ δ by
the ⊗L rule and (id1) and δ ∈ 1 ◦ λ, since > ∈ 1.

order-preservedness : Suppose λ ⊆ λ′ and δ ∈ λ ◦λ′′. Then α⊗β =⇒ δ, where α ∈ λ and
β ∈ λ′′. Hence α ∈ λ′ and α⊗ β =⇒ δ and δ ∈ λ ◦ λ′.

pre-order This follows immediately as ⊆ is reflexive and transitive.

2

Lemma 4.15 (Herbrand model) The Canonical Interpretation given in Definition 4.4 is a
model of the axioms in Table 6.

Proof: Let 〈LP ,LL〉 be a substructural CLDS and HA be the Herbrand model based on the
canonical interpretation. In each of the cases below the definitions [α]∗(x) = T iff α ∈ x and
x � y iff x ⊆ y are used implicitly. Notice also that if α ∈ x for some α and x, then γ =⇒ α
for some γ ∈ x. The (exchangeL) rule of sequent calculus is also used freely.

Ax1 Suppose α ∈ x and x ⊆ y, then α ∈ y as required.

Ax2 Suppose α ∈ x, then γ =⇒ α for some γ ∈ x. Notice that α ∈ cα since α =⇒ α. But
also, if δ ∈ cα then α =⇒ δ and hence γ =⇒ δ, so δ ∈ x and cα � x.

Ax3a Suppose α → β ∈ x and α ∈ y, hence γ =⇒ α → β and δ =⇒ α for some γ ∈ x and
δ ∈ y. Therefore γ, α =⇒ β and by the (cut) rule γ, δ =⇒ β, hence γ ⊗ δ =⇒ β and
β ∈ x ◦ y.

Ax3b Since α ∈ cα, suppose β ∈ x ◦ cα. Then γ ⊗ α =⇒ β, where γ ∈ x. Hence, since
γ, α =⇒ γ ⊗ α, by the (cut) rule γ, α =⇒ β and γ =⇒ α→ β. Therefore α→ β ∈ x as
required.

Ax4a Suppose ¬α ∈ x and α ∈ y, then γ =⇒ ¬α and δ =⇒ α , where γ ∈ x and δ ∈ y.
Hence the sequents δ,¬α =⇒ ⊥ and then γ, α =⇒ ⊥ can be derived by the rules (¬L1)
and (cut) and then also the sequent γ =⇒ ¬δ. Therefore ¬δ ∈ x and so ⊥ ∈ x ◦ y since
δ ⊗ ¬δ =⇒⊥.

Ax4b Since α ∈ cα, suppose ⊥ ∈ x ◦ cα, that is γ, α =⇒ ⊥ for some γ ∈ x (recall c⊥ = {⊥}).
Hence γ =⇒ ¬α and ¬α ∈ x as required.

Ax5a The proofs are similar to that for Ax2.

Ax5b Suppose α ∈ x and β ∈ y, hence γ1 =⇒ α and γ2 =⇒ β, where γ1 ∈ x and γ2 ∈ y.
Hence γ1, γ2 =⇒ α⊗ β and α⊗ β ∈ x ◦ y.

Ax6 Suppose ¬¬α ∈ x. Then γ =⇒ ¬¬α for some γ ∈ x and γ,¬α =⇒ so γ =⇒ α and
α ∈ x.

2

42

5 Conclusions

This paper illustrates a new method, based on Labelled Deductive Systems [Gab96] for pro-
viding logics, belonging to different families, with a uniform presentation of their derivability
relations and semantic entailments. Section 2 provides the basic definitions of a CLDS frame-
work and describes the main features of a CLDS natural deduction system and of a CLDS
model theoretic semantics. The notion of a configuration in a CLDS system (and therefore in
both the ECLDS and LCLDS systems) generalises the standard notion of a theory. Configurations
can be used to describe domains containing not just one, but an explicit structure of local
theories. Correspondence results shown in Sections 3.2 and 4.5 show that there is a one-way
translation of standard (modal and linear) theories into configurations, which preserves both
the derivability and semantic entailment relations. The CLDS notions of derivability rela-
tion and semantic entailment are generalised to relations between structured theories. The
CLDS model-theoretic semantics is given in terms of a translation approach into first-order
logic. This facilitates a uniform formalisation for standard semantics of different existing
logics. Sections 3 and 4 illustrate how the CLDS general approach can be applied to logics
of different families, such as the logic of elsewhere and linear logic.

The presentations of the two systems ECLDS and LCLDS are both extensions and refinements
of the general CLDS system given in Section 2. New inference rules are only included for the
specific logical operators. Rules for reasoning about structures of configurations are instead
common to both the two logics. The different standard semantics of the logic of elsewhere
and of linear logic are captured by appropriately refining the axiomatisation of the extended
algebra to the specific meaning of their associated logical operators and by axiomatising the
semantic properties of the structures that compose the configurations. For each of these two
CLDS systems, ECLDS and LCLDS, results on the soundness and completeness of their proof
theories with respect to their respective semantics are proved. The methodology adopted in
these proofs is also uniform to both these two systems. This uniformity makes the CLDS
framework an ideal framework not only for facilitating technical studies of existing logics and
their combinations, but mainly for providing a technical methodology for the development
and investigation of new logics.

From an applicative point of view, the CLDS approach provides a logic with reasoning
which is closer to the needs of computing and A.I. These are in fact application areas with
an increasing demand for logical systems able to represent and to reason about structures of
information (see [Gab96]).

As for the logic of elsewhere, Hilbert-style proof systems have alreday been developed
[dR92, Seg81] and a first tableaux system has been described in [Dem96]. The ECLDS is a first
example of a natural-deduction proof system for this type of enriched classical modal logics.
This natural deduction proof system is uniform also with respect to the natural deduction
systems developed for the standard family of modal logics [Rus96]. The set of rules for the
elsewhere modal operators, denoted in the literature by <6=> and [6=], is identical to the set of
rules for the standard normal modal operators. No additional modal rules need to be included
to capture the specific semantic meaning of the elsewhere modalities. This is entirely due to
the explicit syntactic formalisation of the accessibility relation’s properties by means of the
labelling algebra, and to its use in reasoning with possible worlds and with relations between
possible worlds as part of the modal system. This differs from the tableaux system for the

43

logic of elsewhere described in [Dem96] where specific tableaux rules are introduced for the
elsewhere modal operators. Note that a more specific formalisation of the ECLDS system could
be defined in which R-literals are only of the form λ 6= λ

′
and λ = λ

′
. Modal operators as

well as axioms (Ax6)–(Ax8) of the extended algebra would have needed to refer only to these
R-literals, making axiom (E) irrelevant. This approach has not been chosen here for its lack
of generality; generality which is instead preserved by the ECLDS system described in Section 3
as discussed above.

The combined approach of the ECLDS system (syntactic representation of the possible
worlds and accessibility relation) facilitates also an easy extension of the ECLDS system to
systems which combine the elsewhere operator with other modal operators, such as the “uni-
versal” modal operator. Such systems could be achieved by extended the labelling language
with binary relations Ri for each modality 2i (and 3i) and extending the labelling algebra
AE with sets of schemas which respectively axiomatise the properties of the added accessi-
bility relatons Ri and then duplicating modal and structural inference rules for each added
modality.

The ECLDS natural deduction system described in Section 2 is similar to Fitting’s prefixed
tableaux [Fit83] and to Sympson natural deduction system [Sym93] in that, in both cases,
modal formulae are labelled. However, neither of these two systems has ever been extended
to the logic of elsewhere. Other work related to the CLDS approach described in this paper
can be found in [FS91], [Gen93], [Mas94] and [Bor93]. From an applicative point of view, it
seems likely that a message passing system can be represented as configurations, where each
constant label is associated with a part of a system and permitted message passing connec-
tions are described by R-literals. This is subject of future investigations.

As for linear logic, the LCLDS is a proper generalisation of the standard approachs to this
logic in that it facilitates explicit assumptions, and reasoning, about relationships between
resources. The labelled natural deduction proof system described in Section 4 is in its rules
similar, apart from the labels, to the standard sequent calculus for linear logics. Alternative
natural deduction rules could have been defined for the (¬I) and (⊥I) but these would have
made the system less related to standard linear logic sequent calculus. Note that the other
multiplicative operator (called par and denoted with ℘) is defined as ¬α→ β. Furthermore,
the LCLDS proof system can be extended to the additive (& and ∨) and exponential operators.
For example, the semantic meaning of the additive connectives can be captured by including
the following axiom schemas in the extended algebra of LCLDS.

∀x([α&β]∗(x)↔ ([α]∗(x) ∧ [β]∗(x)

∀x([α ∨ β]∗(x)← [α]∗(x)

∀x([α ∨ β]∗(x)← [β]∗(x)

∀x, y([α ∨ β]∗(x)→
(([α]∗(cα)→ γ∗(y ◦ cα)) ∧ ([β]∗(cβ)→ γ∗(y ◦ cβ))→ [γ]∗(x ◦ y))

One of the benefits of the LDS approach to substructural logic is its uniformity. This
is the same for the CLDS system. Only the case of linear logic has been considered here,
but other different substructural logics could be equally defined by considering appropriate

44

labelling algebrae. Labelling algebrae for Lambek, Relevance and Intuitionistic logics are
defined by incrementally adding the axioms shown in Table 10 to the basic properties (i.e
order-preserving, identity and associative) of AL. The (R-A) rule uses the appropriate la-
belling algebra to differentiate one logic from another in the uniform LCLDS proof theory. (See
[BFR97] and [DG94] for a full discussion of this issue.) Note that in the case of intuitionistic

1 x ◦ y � y ◦ x commutativity Lambek Calculus = { }
2 x ◦ x � x contraction Linear Logic = { 1 }
3 x � x ◦ x expansion Relevance Logic = { 1,2}
4 x � x ◦ y monotonicity Intuitionistic Logic = {1,2,4}

Table 10: Properties of ◦ in different logics

logic, the (¬¬) rule of LCLDS needs to be replaced by a rule which allows a deduction of α : λ
from ⊥ : λ for any α and λ, and by not rewriting ¬A→ B into A℘B.

Other uniform proof systems based on the LDS methodology have been developed for
substructural logics. Examples are the LKE system described in [DG94] and the natural
deduction system described in [BFR97], where complete lattices are used to implement the
labelling algebra of the LCLDS sytsem. However, as shown in [BFR97, BDR97], a ND system
similar to that described in the LCLDS system yields proofs that are sound and complete with
respect to the LKE-system. Another difference between the LCLDS and the LKE systems
regards the rules for the ¬ operator. In [DG94] a new lattice operator is introduced, called
the “star” operator, which satisfies the basic property that, for any label λ, λ ◦ λ∗ � 1∗, or
equivalently, that ⊥ is false at λ ◦ λ∗. This yields a slightly more uniform system than the
LCLDS. In LCLDS one extra axiom has to replace the ¬¬ axiom (Ax6) in order to capture the
intuitionistic logic semantics, namely ∀x[c⊥ � x]. The extended LCLDS system could have
used the “star” operator approach by adding to the extended algebra the following axiom
stating that the star operator exists and is the largest label “consistent” with x:

∀x(c⊥ � x ◦ x∗ ∧ ∀z(c⊥ � x ◦ z → z � x∗))
The resulting negation rules in this system can then be shown to be equivalent to the negation
rule in LKE.
For the automated theorem proving point of view, the translation method described in Section
3 facilitates the use of first-order therem provers for deriving theorems of the underlying logic.
In fact, the first order axioms of a CLDS extended algebra A+

S can be translated into clausal
form, and so any clausal theorem proving method might be appropriate for using the axioms
to automate the process of proving theorems. The clauses resulting from the translation
of a particular configuration represent a partial coding of the data. A resolution refutation
that simulates the application of natural deduction rules could be developed. Procedural
tableau methods such as those described in [Bro91] can be adapted here. By using some
form of resolution the choice of labels to provide appropriate instantiations of the axioms, is
transferred to the unification algorithm. For example, for LL an appropriate algorithm could
be one which uses AC-unification with identity [Sti85]. A free-variable tableau-based theorem
prover using this idea is described in [BF95] or a standard Model Elimination prover could be
adapted, by incorporating a specialised unification algorithm, for example the one described
in [BF95]. Notice also that the clauses obtained from the axioms are quite specific, in that

45

the R-literals are only used together with the properties of the labelling algebra. In the case
of the logic of elsewhere, these are the properties of an equality theory and for linear logic
these are properties such as order-preserving and transitivity of �. A general theorem prover
method in which these properties are separated from the main derivation process, such as
theory resolution ([Sti85] [Bau92]) would also be appropriate.

In the case of substructural logics, there is another alternative [BR97b]. This is because
the clauses of the extended algebra are nearly all Horn clauses (one positive literal at most).
The only exceptions are disjunctions with exactly two positive literals. One of these always
has the form [α]∗(cα) for some wff α and the other has the form [γ]∗(x). A theorem prover
which uses an adaptation of the Davis Putnam method [CL73] has been built in Prolog for
the subcase of wffs using just the → and ¬ operators. Wffs A⊗B involving ⊗ are rewritten
as ¬(A → ¬B). The inclusion of further operators such as the additive operators and the
exponential operator of LL is currently being investigated. In the case of intuitionistic logic
the adapted Davis Putnam method turns out to be particularly simple due to the presence
of monotonicity. For in this case 1 � x for any label x, and so an assumption [α]∗(x) can be
replaced by [α]∗(1) making the whole set of clauses ground.

In the case of modal logics, the clauses resulting from the translation of the extended
algebra include, in general, terms involving function symbols as well as non-Horn clauses.
Adapting Davis Putnam is therefore not appropriate, but the general theorem prover Otter
[McC90], which uses hyper-resolution and also paramodulation, can be used. An example
of using Otter to prove the axiom (2p ∧ p) → 22p, is illustrated in Figure 7. In this
example, the translation into standard clauses uses the holds(x,y) predicate, in which x is a
wff and y is a label. The functors i, a and b represent →, ∧ and 2 respectively. The functor
box(x, y) represents the term boxx(y). Clauses (1) and (2) arise from the axiom for implication
introduction, clauses (3) and (4) come from the axiom for 2 introduction and (5) and (6) arise
from the axiom for conjunction elimination. Clause (7) defines the R relation, whilst (8) is the
axiom for 2 elimination. Clause (9) is the negated conclusion. Prolog style variables (capital
letters) are used. The proof is made with the unit-resulting and binary resolution options and
the reader can see that it mirrors the proof given in the text very closely and generated 53
clauses. Other options generated slightly different proofs. Further investigation is necessary
on the automated theorem provering aspect of the CLDS approach. However the little results
obtained from the above initial investigation makes this line of research promising.

6 Acknowledgements

The authors acknowledge Marcello D’Agostino for helpful and insightful discussions.

References

[Bau92] P. Baumgartner. A model elimination calculus with built-in theories. In Proceedings of GWAI-92,
Lecture Note in Artificial Intelligence 671. Springer Verlag, 1992.

[BDR97] K. Broda, M. D’Agostino, and A. Russo. Transformation methods in LDS. In Logic, Language and
Reasoning. An Essay in Honor of Dov Gabbay. Kluwer Academic Publishers, To appear 1997.

[BF95] K. Broda and M. Finger. KE-tableaux for a fragment of linear logic. Technical report, 4th Work-
shop on Theorem Proving with Analytic Tableaux and Related Methods, Ed. Peter Baumgartner,
University of Koblenz, 1995.

[BFR97] K. Broda, M. Finger, and A. Russo. LDS-Natural Deduction for Substructural Logics. Technical
Report DOC. 97/11, Imperial College, Department of Computing, 1997.

46

list(usable).

1 [] holds(A,X) | holds(i(A,B),X).

2 [] -holds(B,X) | holds(i(A,B),X).

3 [] r(X,box(A,X)) | holds(b(A),X).

4 [] -holds(A,box(A,X)) | holds(b(A),X).

5 [] -holds(a(A,B),X) | holds(A,X).

6 [] -holds(a(A,B),X) | holds(B,X).

7 [] r(X,Y) | (X = Y).

8 [] -holds(b(A),X) | -r(X,Z) | holds(A,Z).

end_of_list.

list(sos).

9 [] -holds(i(a(b(p),p),b(b(p))),s).

end_of_list.

---------------- PROOF ----------------

12 [ur,9,2] -holds(b(b(p)),s).

13 [ur,9,1] holds(a(b(p),p),s).

17 [ur,12,4] -holds(b(p),box(b(p),s)).

20 [ur,13,6] holds(p,s).

21 [ur,13,5] holds(b(p),s).

37 [ur,17,4] -holds(p,box(p,box(b(p),s))).

45 [ur,37,8,21] -r(s,box(p,box(b(p),s))).

49 [ur,45,7] (box(p,box(b(p),s)) = s).

52 [para_from,49,37] -holds(p,s).

53 [binary,52,20] .

Figure 7: An automated proof using Otter

47

[Bor93] T. Borghuis. Interpreting modal natural deduction in type theory. In Maarten de Rijke, editor,
Diamonds and Defaults, pages 67–102. Kluwer Academic Publishers, 1993.

[BR97a] K. Broda and A. Russo. A compilation style LDS in a natural deduction framework. Tech-
nical report, Imperial College, Department of Computing, 1997. Available by ftp from
ftp.theory.papers.Broda.SLDS.ps.Z.

[BR97b] Krysia Broda and Alessandra Russo. Theorem proving in LDS - a compilation approach. Proceedings
of Workshop on Automated Reasoning, Manchester, 1997.

[Bro91] K. Broda. The Application of Semantic Tableaux with Unification to Autmated Deduction. PhD
thesis, Department of Computing. Imperial College of Science, Technology and Medicine., 1991.

[CL73] C. Chang and R. Lee. Symbolic Logic and Mechanical Theorem Proving. Academic Press, 1973.

[Dem96] S. Demri. A simple tableaux system for the logic of elsewhere. In LNAI 1071, Tableaux 96, Palermo,
Italy, pages 177–192, 1996.

[DG94] M. D’Agostino and D. Gabbay. A generalization of analytic deduction via labelled deductive sys-
tems.Part I: Basic substructural logics. Journal of Automated Reasoning, 13:243–281, 1994.

[Dôs93] K. Dôsen. A historical introduction to substructural logics. In P. Schroeder Heister and Kosta Dôsen,
editors, Substructural Logics, pages 1–31. Oxford University Press, 1993.

[dR92] M. de Rijke. The modal logic of inequality. Journal of Symbolic Logic, 57(2), 1992.

[Fit83] M. Fitting. Proof methods for modal and intuitionistic logics. Dordrecht, Reidel, 1983.

[FS91] A. M. Frisch and R. B. Scherl. A general framework for modal deduction. In 2nd Conference on
Principles of Knoledge Representation and Reasoning. Morgan-Kaufmann, 1991.

[Gab92] D. Gabbay. How to Construct a Logic for Your Application. In Proceedings of German AI Conference,
GWAI’92, Lecture Notes on AI, volume 671, pages 1–30. Springer, 1992.

[Gab96] D. Gabbay. Labelled Deductive Systems, Volume 1 - Foundations. Oxford University Press, 1996.

[Gen93] I. Gent. Theory matrices (for modal logics) using alphabetical monotonicity. Studia Logica,
52(2):233–257, 1993.

[Gol90] D. Goldson. Techniques for Theorem Proving and Proof Transformation. PhD thesis, QMW, Uni-
versity of London, 1990.

[HC68] G. Hughes and M. Cresswell. An Introduction to Modal Logics. Methuen, London, 1968.

[Mas94] F. Massacci. Strong analytic tableaux for normal modal logics. In Proceedings of CADE-12, Lecture
Note in Artificial Intelligence 814. Springer Verlag, 1994.

[McC90] W. McCune. Otter 2.0 user guide. tech report ANL -90/9. Technical report, Argonne National
Laboratory, Argonne, IL, 1990.

[Ohl91] H.J. Ohlbach. Semantics–based translation methods for modal logics. Journal of Logic and Compu-
tation, 1(5):691–746, 1991.

[Rus96] A. Russo. Modal Logics as Labelled Deductive Systems. PhD thesis, Department of Computing.
Imperial College of Science, Technology and Medicine., 1996.

[Seg81] K. Segerberg. A note on the logic of elsewhere. Theoria, 47:183–187, 1981.

[Sti85] M. Stickel. Automated Deduction by Theory Resolution. JAR, 1(4), 1985.

[Sym93] A. Sympson. The Proof Theory and Semantics of Intuitionistic Modal Logics. PhD thesis, University
of Edinburgh, 1993.

[vB83] J. van Benthem. Correspondence theory. In D. Gabbay and F. Guenthner, editors, Handbook
of Philosophical Logic - Extensions of Classical Logics, volume II. D. Reidel Publishing Company,
1983.

48

