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Chapter 1

Introduction

1.1 Introduction

This book is about goal directed proof theoretical formulations of non-classical logics. It evolved from

a response to the existence of two camps in the applied logic (computer science/arti�cial intelligence)

community. There are those members who believe that the new non-classical logics are the most impor-

tant ones for applications and that classical logic itself is now no longer the main workhorse of applied

logic and there are those who maintain that classical logic is the only logic worth considering and that

within classical logic the Horn clause fragment is the most important one.

The book presents a uniform Prolog-like formulation of the landscape of classical and non-classical

logics, done in such a way that the distinctions and movements from one logic to another seem simple

and natural; and within it classical logic becomes just one among many. This should please the non-

classical logic camp. It will also please the classical logic camp since the goal directed formulation makes

it all look like an algorithmic extension of Logic Programming. The approach also seems to provide

very good compuational complexity bounds across its landscape.

The spectacular rise in non-classical logic and its role in computer science and arti�cial intelligence

was fuelled by the fact that more and more computational `devices' were needed to help the human at

his work and satisfy his needs. To make such a `device' more e�ective in an application area, a logical

model of the main feature of human behaviour in that area was needed. Thus logical analysis of human

behaviour became part of applied computer science. Such study and analysis of human activity is not

new. Philosophers and pure logicians have also been modelling such behaviours, and in fact, have already

produced many of the non-classical logics used in computer science. Typical examples are modal and

temporal logics. They have been applied extensively in philosophy and linguistics as well as in computer

science and arti�cial intelligence.

The landscape of non-classical logics applications in computer science and arti�cial intelligence

is very wide and varied. Modal and Temporal logics have been pro�tably applied to veri�cation and

speci�cation of concurrent systems [Manna and Pnueli 81], [Pnueli 81]. In the area of Arti�cial Intelli-

gence as well as of distributed systems, the problem of reasoning about knowledge, belief and action has

received much attention; modal logics [Turner 85], [Halpern and Moses 90] have been seen to provide

the formal language to represent this type of reasoning. Relevance logics have been applied in natural

language understanding and database updating [Martins and Shapiro 88]. ` Lambek's logic [Lambek 58]

and its extensions are currently used for natural language processing. Another source of interest in non-
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classical logics, and in particular in so-called substructural logics (with the prominent case of linear logic

[Girard 87]) has originated from the functional interpretation provided by the Curry-Howard's isomor-

phism between formulas and types in functional languages [Gabbay and DeQueiroz 92],[Wansing 90].

In parallel with the theoretical study of the logics mentioned above and their applications, there

has been a considerable amount of work on their automation. The area of non-classical theorem proving

is growing very rapidly, although it is yet not as developed as classical theorem proving.

Although there is a wide variety of logics, we can group the existing methodologies for automated

deduction in few categories. Most of the ideas and methods for non-classical deduction have been

derived from their classical counterpart. We have analytic methods such as tableaux, systems based on

Gentzen's calculi, methods which extend and reformulate classical resolution, translation based methods,

and goal-directed methods.

We can roughly distinguish two paradigm of deduction: human-oriented proof-methods versus

machine-oriented proof methods. We can call a deduction method human-oriented if in principle, the

formal deduction follows closely the way a human does it. In other words, we can understand how a

deduction goes on and, more precisely, how each intermediate step is related to the original deductive

query. With machine-oriented proof methods this requirement is not mandatory: the original deduc-

tive task might be translated and encoded even in another formalism. The intermediate steps of a

computation might have no directly visible relationship with the original problem.

According to this distinction, natural deduction, tableaux and Gentzen calculi are examples of

the human-oriented paradigm, whereas resolution and translation based methods are better seen as

examples of the machine oriented paradigm. In particular resolution methods require us to transform

the question "does Q follow from �?", into the question "is �� [ fQ�g consistent?", where �� and

Q� are preprocessed normal forms of � and Q. Stepping from � and Q to �� and Q� one may loose

information involved in the original � and Q. Moreover, the normal forms may be natural only from

the machine implementation point of view, and not supported by human way of reasoning.

Machine oriented methods are more promising from the point of view of e�ciency than human-

oriented proof methods. After all, e�ciency, uniformity and reduction of the search space was the main

motivation behind the introduction of resolution.

The basic features of goal-directed methods are that

� they are human oriented;

� they are a generalization of logic programming style of deduction.

Goal-directed methods can be seen as an attempt to �ll the gap between the two paradigms, on

one hand, they maintain the perspicuity of human-oriented proof methods, on the other hand, are not

too far from an e�cient implementation. There is another reason of interest in goal-directed proof search.

Although we generally speak about deduction, there are namely several di�erent tasks/problems which

can be quali�ed as deductive. These di�erent tasks might be theoretically reducible one to each other,

but a method or an algorithm to solve one does not necessarily apply well to another. To make this

point more concrete, assume we are dealing with a given logical system L (say classical, or intutionistic

logic, or modal logic S4), we use the symbol ` to mean both theoremhood and consequence relation in

that logic. Compare the following problems:

1. given a formula A we want to know whether ` A, that is whether A is a theorem of L.

2. We are given a set � containing 100.000 formulas and a formula A and we want to know whether

� ` A.
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3. We are given a set of formulas � and we are asked to generate all atomic propositions which are

entailed by �.

4. We are given a formula A and a set of formulas � sucht that � 6` A. We are asked to �nd a set of

atomic propositions S such that � [ S ` A.

The list of problems tasks might continue. We call the �rst problem 'Theorem-proving'. The second

problem is close to deductive-database query answering. The third problem/task may occur when we

want to revise a knowledge-base or a state description as an e�ect of some new incoming information. The

fourth problem is involved in abductive reasoning and in practice one would impose various constraints

on possible solution sets S. It is not di�cult to see that the second, third and fourth problem are

reducible to the �rst one. An algorithm to determine theoremhood can be used to solve the other

problems as well. Suppose we have an e�cient theorem prover P. Problem 2. can be reduced to check

the theorem
V

� ! A. Thus, we can feed P with this huge formula, run it and get an answer. However

it might be that the formulas of � have a particular simple format and most importantly only a very

small subset of them (say 10 formulas) are relevant to get the proof of A. Even if our theorem prover P

has an optimal complexity in the size of the data (� +A), we would rather prefer a deduction method

which is in princible capable of concentrating on the data in � which are relevant to the proof of A and

ignore the rest.

The theorem prover can be used to solve also Problem 3: just enumerate all atomic formulas pi,

check whether
V

� ! pi, give as output the atomic formulas for which the answer is yes. It is very likely

that there are better methods to accomplish this task! For instance in the case that � is a set of Horn

clauses, one can use a bottom-up evaluation; more generally, one would try to incrementally generate

this set by a saturation procedure.

The theorem prover can be used to solve Problem 4 in a non deterministic way: guess a set

S and check by the theorem prover whether � ^
V
S ! A. Again, no matter how it is e�cient our

theorem-prover, it is obvious that there are better methods of performing this task, for instance one

attempts a proof of A from � and determine as far as the proof proceeds what should be added to �

(i.e. a solution S) to make the proof succeed. To perform this task one would prefer a method by which

the extraction of such solution sets S from derivations is easy.

All these considerations, shows that the theorem-proving perspective is not the only possible way

of looking at deduction. Another well-known example is proof-search: one might be interested not only

in determining whether a formula is a theorem, but to �nd out a proof of the formula with certain

features (this interest is intrinsic type-inhabitation problems).

The goal-directed paradigm we follow in this work is particularly well suited for deduction which

involves a great amount of data (that is what we have quali�ed as deductive database perspective).

Moreover goal-directed deductive procedures can be used to design abductive reasoning procedures

[Eshghi89], although we will not develop this point further in the present work.

The goal-directed paradigm we adopt is the same as the one underlying logic programming. The

deduction process can be described as follows: we have a structured collection of formulas (called a

database) � and a a goal formula A, and we want to know whether A follows from � or not, in a

speci�c logic. Let us denote by

� `? A

the query "does A follows from �?" (in a given logic). The deduction is goal-directed in the sense that

the next step in a proof is determined essentially by the form of the current goal: the goal is stewpwise

decomposed, according to its logical structure, until we reach its atomic constituents. An atomic goal q

5



is then matched with the \head" of a formula G0 ! q (if any, otherwise we fail) in the database, and its

\body" G0 is asked in turn. This is what happens with the logic programming approach to Horn-clause

computation in intuitionistic or classical logic, namely a Horn-clause can be read as a procedure

�; a1 ^ a2 ! c `? c

reduces to

�; a1 ^ a2 ! c `? a1 ^ a2

A call to c reduce to a call to a1 and to a2. This procedural way of looking at clauses is equivalent

to the declarative way namely to ` provability (which for Horn-clauses coincides for classical and for

intuitionistic logics). We ask ourselves, can we extend this backward reasoning, goal directed paradigm

to all of classical and neighbouring logics? In other words, can we have a logic programming like proof

system presentation for classical, intuitionistic, relevance and other logics? In this book we try to give

a positive answer to this question.

As we will see, in order to provide a goal-oriented presentation of a large family of non-classical

logics, we will have to re�ne this simple model of deduction in two directions: in a few words

� we may put constraints on use and \visibility" of database formulas, so that not necessarily all of

them are available to match an atomic constituent.

� we may allow to re-ask a goal previously occurred in the deduction.

In the next section we will show a variety of examples of goal directed computations.

The concept of goal directed computation we adopt can also be seen as a generalization of the no-

tion of uniform proof as introduced in [Miller et al. 91]. As far as we know, a goal-directed presentation

have been given of (fragments of) intuitionistic logic [Gabbay and Reyle 84],[Miller 89], [McCarty 88a],

[McCarty 88b], higher order logic [Miller et al. 91] and of some substructural logics, namely linear logic

[Hodas and Miller 91], [Harland and Pym 91], relevant logic [Bollen 91]. In [Gabbay 92],[Gabbay and Kriwaczek 91],

goal-directed procedures for classical and some intermediate logics are presented. In most of the liter-

ature, goal-directed procedures have been investigated for some speci�c logics but always thinking of

them as a re�nement of pre-existing deduction methods. This is for instance the case of the uniform

proof paradigm promoted by Miller and others. In the uniform-proof framework, goal-directed proofs

are proofs in a given Gentzen system (for a speci�c logic), which satisfy some additional constraint. It

is the analysis of provability within the Gentzen formulation which allows one to identify what fragment

of a logic, if any, admit a goal-directed procedure. In this sense the goal-directed proof procedure is

a re�nement of Gentzen formulation, it gives a discipline on how to �nd a proof in a given Gentzen

calculus. A uniform proof system is called \an abstract logic programming" [Miller et al. 91]. The

essence of a uniform-proof systems, or as we call it, a goal-directed system is that the proof-search is

driven by the goal and that the connectives can be interpreted directly as search insturctions.

However, we do not have to necessaryly rely on a Gentzen calculus for developing a goal-directed

system. It may even happen for speci�c systems that a proper formalization of provability by means of

a Gentzen calculus is not known, or if known is not natural. Still a goal-directed formulation might be

easily obtainable. We think that Gentzen calculi and goal-directed proof-metlods are related, but distinct

concepts. We will not attempt at the beginning to provide a general de�nition of goal-directedness, (see

next section for examples). It would be rather arti�cial, as to give a de�nition of \Tableaux" procedures,

or Gentzen calculus. We will try to develop a uniform family of calculi for several types of logics. To

this purpose, we consider mainly a minimal fragment of the logics we study, (namely the implicational
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fragment); this will make our presentation uniform, and will allows us to compare logics through their

goal-directed procedure.

We develop goal-directed procedures for a variety of logics, stretching from modal, to relevance

and intermediate logics. By means of the goal-directed formulation, one can prove cut elimination and

other properties. >From a practical point of view, a goal-directed formulation of a logic may be used

to design e�cient, Prolog-like, deductive procedures (and even abductive procedures) for each logic. In

this work we will mainly concentrate on implicational logics. One reason is the uniformity of treatment

of all logics, the other is that as we regard implication as the basic connective of most logics. The

prominence we give to implication is justi�ed by the connection between the consequence relation of a

logic (in the case it is de�ned) and its implication connective, through the deduction theorem. If a logic

L contains an implication connective, then it is always possible to de�ne a form of consequence relation

`L by letting

A1; : : : ; An `L B , A1 ! (A2 ! : : :! (An ! B) : : :) is valid in L:

For instance, we will de�ne as above a form of consequence relation for modal logics, where the connective

! is read as strict implication.

A further motivation to restrict our investigation, (at least at a �rst stage), to implicational logics,

is the observation that most logics di�er on their implication connective, whereas they coincide in the

treatment of the other connectives.

1.2 A survey of goal-directed methods

To explain what we mean by goal-directed deduction style, we begin by recalling standard propositional

Horn deductions. This type of deduction is usually interpreted in terms of classical resolution, but it is

not the only possible interpretation 1 The data are represented by a set of propositional Horn clauses,

which we write as

a1 ^ : : : ^ an ! b.

The ai are just propositional variables and n � 0. In case n = 0, the formula reduces to b. This formula

is equivalent to:

:a1 _ : : : _ :an _ b.

Let � be a set of such formulas, we can give a calculus to derive formulas, called \ goals" of the form

b1 ^ : : : ^ bm. The rules are something of the form:

- � `? b succeeds if b 2 �;

- � `? A ^ B is reduced to � `? A and � `? B;

-� `? q is reduced to

� `? a1 ^ : : : ^ an, if there is a clause in � of the form a1 ^ : : : ^ an ! q.

The main di�erence from the traditional logic programming convention is that in the latter conjuction is

eliminated and a goal is kept as a sequence of atoms b1; : : : ; bm. The computation does not split because

of conjunction, all the subgoals bi are kept in parallel, and when some bi succeeds (that is bi 2 �) it

is deleted from the sequence. To obtain a real algorithm we should specify in what order we scan the

database when we search for a clause whose head matches the goal. Let us see an example.

1For a survey on foundation of logic programming, we refer to [Lloyd 84] and to [Gallier 87].
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Example 1.2.1 Let � contain the following clauses

1. a ^ b! g,

2. t! g,

3. p ^ q ! t,

4. h! q,

5. c! d,

6. c ^ f ! a,

7. d ^ a! b,

8. a! p,

9. f ^ t! h,

10. c,

11. f .

A derivation of g from � can be displyed in the form of a tree and it is displayed in Figure 1.1.

The number in front of every non-leaf node indicates the clause of � which is used to reduce the atomic

goal in that node.

(1) � `? g

(6) � `? a

� `? c
�� @@

� `? f

!!
!! aaaa

(7) � `? b

� `? d
,, ll

(6) � `? a

� `? c
�� @@

� `? f

Figure 1.1:

We can make a few observations. First, we do not need to consider the whole database, it might

be even in�nite, and the derivation would be exactly the same; irrelevent clauses, those whose \head"

do not match with the current goal are ignored. The derivation is driven by the goal, in the sense that

each step in the proof simply replaces the current goal with the next one.

Notice also that in this speci�c case there is no other way to prove the goal, and the sequence of

steps is entirely determined.

Two weak points of the method can also be noticed. Suppose that when asking for g we use the

second formula, then we continue asking for t, then asking for h, and then we ask for t again. In other

words, we are in a loop. An even simpler situation is the following

p! p `? p,

We can go on asking for p without realizing that we are in a loop. To deal with this problem we should

add a mechanism which ensures termination.
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Another problem which bears on the e�ciency of the procedure is that a derivation may contain

redundant subtrees. This happens if the same goal is asked several times. In the previous example it

happens with the subgoal a. In this case, the global derivation contains multiple subderivations of the

same goal. It would be better to be able to remember whether a goal has already been asked (and

succeeded) in order to avoid the duplication of its derivation. Whereas the problem of termination is

crucial in the evaluation of the method (if we are interested in getting an anwer eventually), the problem

of redundancy will not be considered in this work. However, avoiding the type of redundancy we have

described has a dramatic e�ect on the e�ciency of the procedure, for redundant derivations may grow

exponentially in the size of the data.

Although the goal directed procedure does not necessarily produce the shortest proofs, nor does

it always terminate, still it has the advantage that proofs, when they exist, are easily found. Making

precise this notion of \easyness" in terms of proof-search space is admittedly rather di�cult and we will

not try do it here2.

Let us see if we can extend this goal-directed approach to a broader fragment. We still consider

the database as before but we allow to ask also clauses as goals. How we eveluate the following goal?

� `? a1 ^ : : : ^ an ! b

This can be read as an hypothetical query. We can think of using the deduction theorem as a deduction

rule:
�; A ` B

� ` A! B

The above query is hence reduced to

� [ fa1; : : : ; an)g `? b

This step can be also justi�ed in the traditional refutational interpretation of deduction. To show that

� [ f:(a1 ^ : : : ^ an ! b)g

is not satis�able, means to show that �[fa1; : : : ; an;:b)g is unsatis�able. If we are capable of treating

clauses as goals, why don't we allow clauses as bodies of other clauses? We are therefore lead to consider

a hypothetical extension of Horn deductive mechanism. This means that we can handle arbitrary

hypothetical goals through the rule:

from � `? A! B, step to

� [ fAg `? B.

This straightforward extension of Horn logic captures exactly intuitionistic provability for this fragment,

but not classical provability. In other words, the embedded implication behaves as intutionistic implica-

tion, but not as classical implication. This kind of implicational extension based on intuitionistic logic is

part of many extensions of logic programming we have recalled above, ([Gabbay and Reyle 84],[Miller 89],

[McCarty 88a], [McCarty 88b]).

But we can do more, suppose we label data to keep track of the way it is used in derivations.

One may want to put some control on the way the data is used. Now the database is a labelled set of

formulas xi : Ai and it provides some additional information on the labels.

2The property of uniformity (in the sense of Miller's uniform proof paradigm) might be the base of a possible answer:

goal-directed (uniform) proofs are, or correspond, to a very restricted kind of proof in a given sequent calculus. When we

search for a a uniform proof we hence explore a restricted search space of possible derivations in the sequent calculus.
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To give an example, a label may represent a position (or a state) and the database itself speci�es

which positions are accessible from any other. This information is expressed as a relational theory about

a predicate R(x; y) which can be interpreted as `x sees y', or `y is accessible from x'. This correspond

to a modal reading of the data, the implication behaves as atrict implication in modal logic. Goals are

proved relatively to a speci�c prosition, so that we will write a query as

� `? x : G,

where x is a position. To keep the things simple, we consider here only Horn-clauses, and we put the

following constraints:

� (success rule) � `? x : q succeeds if x : q 2 �;

� (reduction rule) From � `? x : q step to � `? x : G if there is y : G! q 2 � such that R(y; x).

A similar modal reading of clauses is at the base of the modal-logic programming language elaborated

by Giordano, Martelli and Rossi [Giordano et al. 92],[Giordano and Martelli 94]. Modal operators are

used to govern visibility rules within logic programs. In this way, it is possible to introduce structuring

concepts, such as modules and blocks in logic programs, basing on logic.

Example 1.2.2 Consider the following database � with the data

x : b! c,

x : d! c,

y : a,

z : a! b,

z : d

Moreover, we know that R(x; y); R(y; z) and that R is symmetric. Suppose, we want to check if �

proves c at position y, that is � `? y : c. This con�guration can be displayed as in Figure 1.2

x : b! c; d! c

y : a `? c

z : a! b; d

Figure 1.2:

The query succeeds:

� `? y : c

� `? y : b, since x : b! c 2 � and R(x; y),

� `? y : a, since z : a! b 2 � and R(z; y), by simmetry from R(y; z).

The last query immediately succeeds, as y : a 2 �. Notice however that neither � `? x : c, nor

� `? z : c succeeds.
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This example may seem arbitrary, but the restrictions on succeess and reduction have a logical

meaning. If we interpret ! as modal strict implication ), that is (A) B) =def 2(A! B), the above

con�guration is (essentially) what is built in a proof of the formula

[(b) c) ^ (d) c) ^ ((a) b) ^ d) ) e)] ) (a) c) 3.

This formula happens to be a theorem of modal logic K5.

Another interpretation of the labels is that they represent resources and the deduction process

put some constraint about their usage. Example of constraints about usage are:

� we may require that we use all data (or a speci�ed subset of the data).

� we may require that we use the data no more than once.

� we may require that we use the data in a given order.

These constraints correspond to well-known logics, namely the so-called substructural logics [Gabbay 96],[Anderson and Be

In this case, a query will have the form

� `? � : G,

where � is an ordered set of atomic labels representing resources. Con�ning ourself to the Horn-case,

we can put, as an example, the following constraints

� (success rule) � `? � : q succeeds if � = fxg ^ x : q 2 �;

� (reduction rule1) From � `? � : q step to � `? ��fyg : G if there is y : G! q 2 � and y 2 �.

� (and rule1) From � `? � : A ^ B step to � `? �1 : A and � `? �2 : B, provided �1 \ �2 = ;

and �1 [ �2 = �.

Another example of constraints is the following, we denote by max(�) the maximal label in � and we

set:

� (reduction rule2) From � `? � : q step to � `? �0 : G if there is y : G! q 2 � such that

y 2 � ^ y � max(�0) ^ �0 [ fyg = �.

� (and rule2) From � `? � : A ^ B step to � `? �1 : A and � `? �2 : B, provided

max(�1) � max(�2) and �1 [ �2 = �.

Example 1.2.3 Let us call P1 the proof system with restrictions 1 and P2 the proof systems with

restrictions 2. Let �1 be the following database:

x1 : d

x2 : a ^ b! c

x3 : d! a

x4 : b.

Figure 1.3 shows a succeesful derivation of �1 `? fx1; x2; x3; x4g : c according to procedure P1. We

omit the database since it is �xed. This query fails under procedure P2, step (*) violates the constraint

in the reduction rule2 rule.

On the other hand, let �2 be the following database:

3The con�guration above is simpli�ed, because we do not want to handle implicational goals in this example. The

actual con�guration generated in the proof of this formula contains also x : ((a) b) ^ d)) e.
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`? fx1; x2; x3; x4g : c

`? fx1; x3; x4g : a ^ b

(�) `? fx1; x3g : a

`? fx1g : d

�
� Q

Q
`? fx4g : b

Figure 1.3:

x1 : a ^ b! c

x2 : d! a

x3 : d! b

x4 : d.

Figure 1.4 shows a succeesful derivation of �2 `? fx1; x2; x3; x4g : c according to procedure P2. We

omit the database since it is �xed. This query fails under procedure P1, step (*) violates the constraint

in the (and rule1) rule.

`? fx1; x2; x3; x4g : c

(�) `? fx2; x3; x4g : a ^ b

`? fx2; x4g : a

`? fx4g : d

�
� Q

Q
`? fx3; x4g : b

`? fx4g : d

Figure 1.4:

As in the case of modal logic, the restrctions we have put in the rules may seem arbitrary, but they

correspond to well-known logic. If we interpret ! as the linear implication �� and ^ as the intensional

conjucntion 
, procedure P1 is complete for a (Horn) ��;
-fragment of linear logic, and the success of

the former query shows the validity in linear logic of the formula

[d
 (a
 b� �c)
 (d� �a)
 b]� �c.

In a similar way, if we interpret ! as relevant implication and ^ as the relevant conjunction �, procedure

P2 is complete for a (Horn) !; �-fragment of relevant logic T (Ticket Entailment), and the success of

the latter query shows the validity in T of the formula

[(a � b! c) � (d! a) � (d! b) � d] ! c.
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The methodology of controlling the deduction process by labelling data and then putting con-

straints on the propagation and the composition of labels is very powerful, it is extensively studied in

[Gabbay 96].

We have started from Horn deduction, we have added intuitionistic implication and then we have

turned to strict implication modal logic and substructural logics. We still do not know what is the

place of classical logic in this framework. If we con�ne ourself to Horn clauses, the basic deduction

procedure we have described is complete for both intutionistic and classical provability. If we allow

nested implications, this is no longer true.

For instance, let us consider Peirce's law:

(a! b) ! a `? a reduce to

(a! b) ! a `? a! b, which reduce to

(a! b) ! a; a `? b.

In intuitionistic logic we fail at this point because b does not unify with the head of any formula/clause.

We know that in classical logic, this formula must succeed since it is a tautology. What can we do? The

answer is simple, we carry on the computation by re-asking the original goal:

(a! b) ! a; a `? a

We immediately succeed. To get classical logic, we just need a rule which allows to replace the current

(atomic) goal by a previous one. To this purpose, the structure of queries must be enriched to record

the history of past goals, a query will have the form

� `? G;H

where H is the sequence of past goals. In case of classical logic, we can limit to record atomic goals,

and we record them when we perform a reduction step. With this book-keeping the previous derivation

becomes:

(1) (a! b) ! a `? a; ;

(2) (a! b) ! a `? a! b; fag

(3) (a! b) ! a; a `? b; fag

(4) (a! b) ! a; a `? a; fag by restart

In case of classical logic this simple restart rule can be easily understood in terms of standard Gentezen

calculi. It correspond to allowing both weakening and contraction on the right. A sequent derivation

corresponding to the above one is as follows:

(4) a ` a

(3) a ` a; b

(2) ` a! b; a a ` a

(10) (a! b) ! a ` a; a

(1) (a! b) ! a ` a

It can be seen that both weakening (to get (3) from (4)) and contraction on right (to get (1) from (1'))

are required. In other words, the formula we restart from is connected by a disjunction to the current
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goal. The idea of restart has been �rst proposed by Gabbay in his lecture notes in 1984 [Gabbay 84]

and the theoretical results published in [Gabbay 85]. The lecture notes have evolved into the book

[Gabbay 98].

A similar idea to restart has been exploited by Loveland [Loveland 91],[Loveland 92], in order

to extend conventional logic programming to non-Horn databases; In Loveland's proof-procedure the

restart rule is a way of implementing reasoning by case-analysis.

In case of classical logic it is simple to give a translation of the restart rule in terms of the rules

of a sequent claculus. In some other cases, restart rules may take into account not only previous goals,

but also the relative databases (or the positions) from which they were asked. In these cases, there may

be no counterpart of restart rules in terms of sequent rules. This for instance the case of Dummett's

logic LC presented in chapter 3.

1.3 Goal-directed Analysis of Logics

Goal directed procedures are analytic and cut-free. One can often prove a cut admissibility property of

computations and to establish further properties such as interpolation. The general form of cut is the

following: if the two queries

�[A] `? B;

� `? A

succeed in the goal directed procedure than also

�[A=�] `? B

succeeds. Thus, the notion of cut depends on the notion of substitution. For each logic, the speci�c

property of cut is determined by the conditions on the substitution operation �[A=�] which might be

di�erent for each logic, even if the structure of databases is the same 4. To see an example, let us

consider the pure strict implicational fragment of modal logics K and S4, for more details see chapter 4.

In this case, the database can be assumed to be a list of formulas. given

� = C1; : : : ; Ci�1; A; Ci+1; : : : ; Cn

we can replace A by � if

� = C1; : : : ; Ci�1;B

and the result of the substitution is

�[A=�] = C1; : : : ; Ci�1;B; Ci+1; : : : ; Cn.

Thus, if

� = C1; : : : ; Ci�1;A; Ci+1; : : : ; Cn `? D and � = C1; : : : ; Ci�1;B `? A both succeed

then we can cut and obtain that

� = C1; : : : ; Ci�1;B; Ci+1; : : : ; Cn `? D succeeds too.

In case of S4, we are more liberal: substitution and hence cut is also allowed whenever

4For a discussion on cut and structural consequence relations we refer to [Gabbay 93] and [Avron 91b].
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� = C1; : : : ; Ci�1;B1; : : : ;Bt, with t � 0.

If � = C1; : : : ; Ci�1;A; Ci+1; : : : ; Cn `? D, we get now that

� = C1; : : : ; Ci�1;B1 : : : ;Bt; Ci+1; : : : ; Cn `? D succeeds too.

Other examples of constrained cut occur int the case of substructural logics. In this case the

goal and the database are labelled and we will have to impose speci�c conditions on the label of the

cut-formula, the labels of the goal, and the database.

The reason why cut elimination process works well with the goal-directed style of deduction is

that the deduction rules strongly constraint the form of derivations: there is no other way to prove a goal

than decomposing it until we reach its atomic constituents which are then matched against database

formulas. Moreover, unlike Gentzen systems, in goal-directed procedures there are no separate structural

rules. These rules are, so to say, incorporated in the other computation rules.

The cut-admissibility property turns out to be the essential step needed to prove the completeness

of the procedure. Namely, in most of the cases, the speci�c cut admissibility property for each logic is

equivalent to the completeness of the procedure with respect to the canonical model for that logic as it is

determined by the deduction procedure itself. This relation between cut-elimination and completeness

has been pointed out by Miller in [Miller 92].

On the other hand, we can reverse the relation between semantics and proof procedure. Given a

proof-procedure P , we can always de�ne

� `P A , � `? A succeeds in P .

Usually, the goal-directed procedure P satis�es some form of cut elimination and hence it de�nes a

consequence relation `P which is closed under cut, and may have other properties (such as some form

of identity and monotonicity). Instead of asking if `P is complete with respect to an already-known

semantics, we may ask whether there is a closely-related \semantic counterpart" for the consequence

relation `P de�ned as above. We will see an example in chapter 4, where we have some particular

deduction procedures for which cut is admissible de�ne some intuitionistic modal logics.

1.4 Outline of the book

� In chapter 2 we de�ne goal-directed procedures for intuitionistic and classical logics. We start

with the implicational fragment. Then, we study how to optimize the procedure by avoiding re-use

of data. This is also needed to make it terminating. We start with the implicational fragment,

and then we consider richer propositional fragments and �nally the implication-universal quanti�er

fragment of intuitionistic logic.

� In chapter 3, we treat some implicational intermediate logics. We �rst consider the logics of

Kripke models with bounded height. The we treat one of the most important intermediate logic:

G�odel-Dummett's logic LC. This logic is complete with respect to linear Kripke models of intu-

itionistic logic and has also a natural many-valued semantics.

� In chapter 4, we de�ne goal directed procedures for strict implication as determined by several

modal logics. By strict implication, we intend the connective ) de�ned by A) B = 2(A! B),

where the modality is understood according to each speci�c modal system. Our proof systems

covers uniformly strict implication of well-known modal logics K, T, K4, S4, K5, K45, and S5. We
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also explore some intutionistic variants, and we �nally give a procedure for G�odel modal logic of

provability G.

� In chapter 5 we de�ne goal directed procedures for the most important implicational substruc-

tural logics, namely R, Linear Logic, Lambek calculus, and other relevant logics such as Ticket

Entailment and E. For logics without contraction, these procedures are also decision procedure,

whereas for those logics which allow contraction they are not. We show how to turn the procedure

for implicational R into a decision procedure by adding a loop-checking mechanism.

� In chapter 6 we highlight possible directions of further research, listing a number of open problems

which we are going to deal in future work.

1.5 Notation and basic notions

In this section we introduce some basic notations and notions we will use thoughout the book. Other

notions will be introduced when needed in their proper place.

Formulas

By a propositional language L, we denote the set of propositional formulas built out from a denumerable

set V ar of propositional variables by applying the propositional connectives :;^;_;!.

Unless stated otherwise, we denote propositional variables (also called atoms) by lower case letters,

and arbitrary formulas by upper case letters.

We assign a complexity cp(A) to each formula A (as usual):

cp(q) = 0 if q is an atom,

cp(:A) = 1 + cp(A),

cp(A �B) = cp(A) + cp(B) + 1, where � 2 f^;_;!g.

(Formula substitution) We de�ne the notion of substitution of an atom q by a subformula B within a

formula A. This operation is denoted by A[q=B].

p[q=B] =

�
p if p 6= q

B if p = q

(:A)[q=B] = :A[q=B]

(A � C)[q=B] = A[q=B] ! C[q=B] where � 2 f^;_;!g

Implicational formulas

In great part of the work we will be concerned with pure implicational formulas. These formulas are

generated from a set of atoms by the only connective !. We adopt some speci�c notations for them.

We sometimes distinguish the head and the body of an implicational formula. The head of a formula A

is its rightmost nested atom, whereas the body is the list of the antecedents of its head. Given a formula

A, we de�ne Head(A) and Body(A) as follows:

Head(q) = q, if q is an atom,

Head(A! B) = Head(B).
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Body(q) = [ ], if q is an atom,

Body(A! B) = (A) �Body(B),

where A �Body(B) denotes the list beginning with A followed by Body(B).

Dealing with implicational formulas, we assume that implication associates on the right, i.e. we write

A1 ! A2 ! : : :! An�1 ! An,

instead of A1 ! (A2 ! : : :! (An�1 ! An) : : :).

It turns out that every formula A can be written as

A1 ! A2 ! : : :! An ! q;

where we obviously have.

Head(A) = q and Body(A) = (A1; : : : ; An)

Multisets

A (�nite) multiset is a function � from a (�nite) set S to N , the set of natural numbers. We denote

multisets by greek letters �; �:::. We de�ne the following operations:

(Union) � t � = 
 i� 8x 2 S 
(x) = �(x) + �(x).

(Di�erence) �� � = 
 i� 8x 2 S 
(x) = �(x) � �(x), where \�" is subtraction on natural numbers.

The support of a multiset �, denoted by �� is the set of x 2 S, such that �(x) > 0.

In order to display the elements of a multiset �, we use the notation

� = [x; x; y; z; z; z], or equivalently [x2; y; z3],

which means that �(x) = 2; �(y) = 1; �(z) = 3, and �� = fx; y; zg.

(Weak containment) We de�ne � � � as follows

� � � to hold i� 8x 2 S �(x) � �(x).

(Strong containment) We de�ne the relation � �j � as follows

� �j � i� � � � and �� = ��.

We use the notation � � � and � �j �, for the corresponding strict versions of the relations de�ned

above.
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Chapter 2

Intuitionistic and Classical logics

COMMENT: WE MUST ADD SOMETHING HERE TO MOTIVATE THE IMPORTANCE OF IN-

TUITIONISTIC LOGIC

In this chapter we present a goal-directed proof system for intuitionistic logic. The chapter

proceeds to discover the algorithmic system. We start from the implicational fragment and we stepwise

re�ne and extend it. Each new step will follow naturally from the previous steps. We further modify it

and get classical logic. In the next section we present intuitionistic logic giving an axiom system and a

model-theory.

[ADD STANDARD REFERENCES ON INTUITIONISTIC LOGIC]

2.1 Alternative presentations of Intuitionistic Logic

There are many ways of presenting intuitionistic logic. We begin giving an Hilbert style axiomatization

of the propositional calculus using the following set of axioms, we denote by I:

(1) Implication group:

1. A! A,

2. (A! B) ! (C ! A) ! C ! B,

3. (A! B) ! (B ! C) ! A! C,

4. (A! B ! C) ! B ! A! C,

5. (A! A! B) ! A! B,

6. (A! B ! C) ! (A! B) ! A! C,

7. A! B ! A.

(2) Conjunction group:

1. A! B ! (A ^ B),

2. A ^ B ! A,

3. A ^ B ! B.
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(3) Disjunction group:

1. (A! C) ! (B ! C) ! (A _ B ! C),

2. A! A _ B,

3. A! B _ A.

(4) Falsity:

1. ? ! A,

(5) Negation group:

1. :A! A! ?,

2. (A! :B) ! B ! :A,

3. :A! A! B.

It contains in addition Modus Ponens Rule:

` A ` A! B

` B ;

This axiom system is separated, that is to say, any theorem containing ! and a set of connectives

S � f^;_;:;?g can be proved by using the implicational axioms together with the axiom groups

containing just the connectives in S.

Furthermore, the implicational axioms are not independent. For instance, the axiomsA! B ! A

and (A ! B ! C) ! (A ! B) ! A ! C are su�cient to prove the remaining implicational

axioms. However without anyone of the two, we can get various weaker systems (some of them known

as substructural logics, see chapter 5) by dropping some of the other axioms. Another redundancy are

negation and falsity axioms, as this two logical constants are interde�nable. One can adopt the axiom

for falsity and de�ne :A as A ! ?. Or the other way around, one can adopt the axioms for negation

and consider ? as de�ned by, for instance :(p0 ! p0), or p0 ^ :p0, where p0 is any atom. If we adopt

both the axioms for negation and for ?, we can prove their interde�nability, namely

:A$ (A! ?)

is a theorem of the above axiom system. We leave to check it to the reader.

HOWEVER THE PROOF OF THE HALF (A ! ?) ! :A IS NOT TRIVIAL !! SHALL WE

PUT IT?

If add to Iany of the axioms below we get classical logic:

(Peirce's law) ((A! B) ! A) ! A

(double negation) ::A! A,

(excluded middle) :A _ A,

(what name???) [(A! (B _ C)] ! [(A! B) _ C].

In particular, the addition of Peirce's law to the implicational axioms of intuitionistic logic give us an

axiomatization of classical implication.

We introduce a standard model-theoretic semantics of intuitionistic logic, called Kripke semantics:
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De�nition 2.1.1 A Kripke model is a structure of the form M = (S;�; a; V ), where S is a non-empty

set, � is a re
exive and transitive relation on S, a 2 S, V : S ! Pow(V ar), that is maps each element

of S to a set of propositional variables. We assume the following conditions:

(1) a � x, for all x 2 S;

(2) x � y implies that V (x) � V (y);

(3) ? 62 V (x), for all x 2 V .

Truth condition are given through the following clauses:

� M;x j= q i� q 2 V (x)l;

� M;x j= A ^B i� M;x j= A and M;x j= B;

� M;x j= A _B i� M;x j= A or M;x j= B;

� M;x j= A! B i� for all y � x, if M; y j= A then M; y j= B;

� M;x j= :A i� for all y � x, if M; y 6j= A.

We say that A is true in M if M;a j= A and we denot it by M j= A. We say that A is valid

if it is true in every Kripke model M . We also de�ne a notion of entailment between sets of formulas

and formulas. Let � = fA1; : : : ; Ang be a set of formulas and B be a formula, we say that � entails B

denoted by � j= B i�

M;a j= Ai for all Ai 2 �, then M;a j= B.

One can think of a Kripke model M as above as a tree with root a. The de�nition of entailment is by

no means restricted to �nite �'s. Whenever � is �nite, � j= A holds i�
V

� ! A is valid. It is easy

to prove that condition (2) implies that in every model M , for any x; y, if x � y and M;x j= A, then

M; y j= A. By this property, we immediately obtain:

M;a j= A i� for all x 2 S M; x j= A

By this fact we can equally de�ne truth in a model as truth in every point of the model.

A standard argument shows that the propositional calculus given above is sound and complete

with respect to Kripke models.

Theorem 2.1.2 (REFERENCES???) for any formula A, A is a theorem of I i� is valid in every

Kripke model.

This completeness theorem can be sharpened to �nite Kripke models (�nite trees), that is models

M = (S;�; a; V ), where S is a �nite set.

Theorem 2.1.3 (REFERENCES???) for any formula A, A is a theorem of I i� is valid in every

�nite Kripke model.
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Classical interpretations can be thought as degenerated Kripke models M = (S;�; a; V ), where

S = fag.

We give a third presentation of intuitionistic logic in terms of consequence relation. Let � denote

a set of formulas. We write

� ` A

to say that � proves A, where A is a formula. We will often use "," to denote set-theoretic union, i.e.

we write �; A and �;� to denote � [ fAg and � [�.

De�nition 2.1.4 [Consequence relation for intuitionistic logic] Let � ` A be de�ned as the smallest

relation which satisfy:

� (identity) if A 2 � then � ` A;

� (monotony) if � ` A and � � � then � ` A;

� (cut) � ` A and �; A ` B imply � ` B;

Plus the following conditions for the language containing f^;_;!;?g

1. Deduction theorem �; A ` B i� � ` A! B

2. Conjunction rules

(a) A ^ B ` A

(b) A ^ B ` B

(c) A;B ` A ^ B.

3. Falsity Rule ? ` B.

4. Disjunction rules

(a) A ` A _ B

(b) B ` A _ B

(c) �; A ` C and �; B ` C imply �; A _B ` C.

The above closure rules de�ne the intuitionistic propositional consequence relation. In the fragment

without ?, the other rules (1), (2), and (4) su�ce to de�ne intuitionistic logic for that fragment. In the

above characterization, we negation is not mentioned. We can either consider negation as de�ned by

:A = A! ?, or add the rules:

A;:A ` B

�; A:B

�; B ` :A

Classical logic can be obtained as the smallest consequence relation satisfying (1){(4) and an additional

condition such as (5) below:
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6. Strong deduction theorem

�; A ` B _ C i� � ` (A! B) _ C:

IT IS CLEAR THAT THERE ARE OTHER WAYS OF OBTAINING CLASSICAL CONSE-

QUENCE RELATION, FOR INSTANCE BY ADDING:

�; A ` B and �;:A ` B implies � ` B

SHALL WE MENTION IT???

Theorem 2.1.5 (REFERENCES???) Let ` be the smallest consequence relation satisfying (1) - (4)

above. Then � ` A holds i� � j= A.

2.2 Rules for intuitionistic implication

We want to give computation rules for checking � ` A, where all formulas of � and A are implicational.

Our rules manipulates queries Q of the form:

� `? A,

We call � the database and A the goal of the query Q. We use the symbol `? to indicate that we do

not know whether the query succeeds or not, on the other hand the success of Q means that � ` A

according to intuitionistic logic. Of course this must be proved and it will in the due course, in the

meanwhile here are the rules.

De�nition 2.2.1 � (success) � `? q succeeds if q 2 �. We say that q is used in this query.

� (implication) from � `? A! B step to

�; A `? B

� (reduction) from � `? q

if C 2 �, with C = D1 ! D2 ! : : :! Dn ! q

(that is Head(C) = q and Body(C) = fD1; : : :Dng) then step to

� `? Di, for i = 1; : : : ; n.

We say that C is used in this step.

A derivation D of query Q is a tree whose nodes are queries. The root of D is query Q, and the successors

of every non-leaf query are determined by exactly one applicable rule (implication or reduction) as

described above.

We say that D is successful if success rule may be applied to every leaf of D.

We �nally say that a query Q succeeds if there is a successful derivation of Q.

By de�nition, a derivation D might be an in�nite tree, however if D is successful , then must

be �nite. This is easily seen from the fact that, in case of success, the height of D is �nite and every

non-terminal node of D has a �nite number of successors, because of the form of the rules. Moreover,

the databases involved in a deduction need not be �nite. In a successful derivation only a �nite number

of formulas from the database will be used in the sense mentioned above.
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A last observation: the success of a query is de�ned in a non-deterministic way; a query succeeds

if there is a successful derivation. To transform the proof rules in a deterministic algorithm one should

give a method to search a successful derivation tree. In this respect we agree that when we come to an

atomic goal we try to apply �rst the success rule and if it fails we try the reduction rule. Then the only

choice is which formula of the database whose head matches the current atomic goal we use to perform

a reduction step, if there are more than one. Thinking the database as a list of formulas, we can choose

the �rst one and remember the point up to which we have scanned the database as a backtracking point.

This is exactly as in conventional logic programming [Lloyd 84].

Example 2.2.2 We check that

b! d; a! p; p! b; (a! b) ! c! a; (p! d) ! c ` b

Let � = fb ! d; a ! p; p ! b; (a ! b) ! c ! a; (p ! d) ! cg, a successful derivation of � `? b is

shown in Figure 2.1. A quick explanation: (2) is obtained by reduction wrt. p ! b, (3) by reduction

wrt. a ! p, (4) and (8) by reduction wrt. (a ! b) ! c ! a, (6) by reduction wrt. p ! b, (7) by

reduction wrt. a ! p, (9) by reduction wrt. (p ! d) ! c, (11) by reduction wrt. b ! d, (12) by

reduction wrt. p! b.

(1) � `? b

(2) � `? p

(3) � `? a

(4) � `? a! b

(5) �; a `? b

(6) �; a `? p

(7) �; a `? a

�
� Q

Q
(8) � `? c

(9) � `? p! d

(10) �; p `? d

(11) �; p `? b

(12) �; p `? p

Figure 2.1:

We state some simple properties of the deduction procedure de�ned above.

Proposition 2.2.3 (a) � `? G succeeds if G 2 �;

(b) � `? G implies that �;� `? G succeeds;
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(c) � `? A! B succeeds i� �; A `? B succeeds.

Proof.

(a) is proved by induction on the complexity of G. If G is an atom q, it follows immediately by the

success rule. If G = A1 ! : : :! An ! q, then from � `? G, we step, by repeated application of

the implication rule to

�; A1; : : : ; An `? q.

Since G 2 �, we can apply reduction and step to

�; A1; : : : ; An `? Ai, for i = 1; : : : ; n.

By induction hypothesis, each of the above queries succeeds.

(b) is proved by induction on the height of a successful computation. If G succeeds by the success rule,

then G is atomic and G 2 �; hence G 2 �;�, thus �;� `? G succeeds. If G is an implication

A! B, then from � `? A! B, we step to �; A `? B. In the same way from �;� `? A! B,

we step to �;�; A `? B, which succeeds by induction hypothesis. Let G be an atom q, suppose

we proceed by reduction with respect to a formula, say, C = A1 ! : : : ! An ! q in �, so that

we step to

� `? Ai, for i = 1; : : : ; n,

then from �;� `? q, we can perform the same reduction step with respect to C, and step to

�;� `? Ai, which succeed by induction hypothesis.

(c) is obvious, as there are no other rules, but the implication rule, which can be applied to an

implicational goal.

2

We have called property (b) monotony of . It is clear from the proof that the height of derivations

is preserved, that is if � `? G succeeds by a derivation of height h, then also �;� `? G succeeds by

a derivation of height h.

2.2.1 Soundness and Completeness

Since we are dealing with the pure implicational fragment, by theorem 2.1.3, it is enough to show that

the consequence relation de�ned by:

� `p A $ � `? A succeeds

coincides with the intuitionistic consequence relation. Let ` denotes intuitionistic provability.

Theorem 2.2.4 If � `p A then � ` A.

Proof. By induction on the height h of a successful derivation of � `? A. Let h = 0. If � `? A

succeeds by a derivation of height 0, then A is an atom and A 2 �, thus � ` A follows by re
exivity.

Let h > 0, if A = B ! C, then � `? A succeed by the implication rule and �; B `? C succeeds by a

derivation of height < h, hence by induction hypothesis, �; B ` C holds, and by the deduction theorem

also � ` B ! C holds. If A is an atom q, then the derivation proceeds by reduction with respect to a

formula C = A1 ! : : :! An ! q; then for i = 1; : : : ; n, each query
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� `? Ai succeeds by a derivation of height < h.

By induction hypothesis, for i = 1; : : : ; n,

(ai) � ` Ai holds.

On the other hand, since C 2 �, by re
exivity we have that

� ` A1 ! : : :! An ! q holds,

so that, by deduction theorem also

(b) �; A1; : : : ; An ` q holds.

By repeatedly applying cut to (ai) and (b), we �nally obtain that � ` q holds. 2

In order to prove completeness it is su�cient to show that `p satis�es the conditions of intuition-

istic consequence relationship, namely identity, monotonicity, deduction theorem and cut. That the �rst

three properties are satis�ed is proved in proposition 2.2.3. So, the only property we have to check is

cut. We prove closure under cut in the next theorem.

Theorem 2.2.5 (Admissibility of Cut) If

(1) �; A `p B and (2) � `p A then also

�;� `p B.

Proof. The theorem is proved induction on lexicographically- ordered pairs (c; h), where c = cp(A),

and h is the height of a successful derivation of (1), that is �; A `? B. Suppose �rst c = 0, then A is an

atom p, and we proceed by induction on h. If h = 0, B is an atom q and either q 2 � or q = p = A. In

the �rst case, the claim trivially follows by proposition 2.2.3. In the second case it follows by hypothesis

(2) and proposition 2.2.3.

Let now h > 0, then (1) succeeds either by implication rule or by reduction. In the �rst case,

we have that B = C ! D and from �; A `? C ! D we step to �; A; C `? D, which succeeds by a

derivation h0 shorter than h. Since (0; h0) < (0; h), by induction hypothesis we get that �;�; C `? D,

succeeds, whence �;� `? C ! D succeeds too. Let (1) succeeds by reduction with respect to a clause

C 2 �. Since A is an atom, C 6= A. Then B = q is an atom. We let C = D1 ! : : : ! Dk ! q. We

have that for i = 1; : : : ; k

�; A `? Di succeeds by a derivation of height hi < h.

Since (0; hi) < (0; h), we may apply the induction hypothesis and obtain that

(ai) �;� `? Di succeeds, for i = 1; : : : ; k.

Since C 2 � [ �, from �;� `? q we can step to (ai) and succeed. This concludes the case of (0; h).

If c is arbitrary and h = 0 the claim is trivial. Let c > 0 and h > 0. The only di�erence with the

previous cases is when (1) succeeds by reduction with respect to A. Let us see that case. Let

A = D1 ! : : :! Dk ! q and B = q.

Then we have that for i = 1; : : : ; k �; A `? Di succeeds by a derivation of height hi < h. Since

(c; hi) < (c; h), we may apply the induction hypothesis and obtain that
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(bi) �;� `? Di succeeds for i = 1; : : : ; k.

By hypothesis (2) we can conclude that

(3) �; D1; : : : ; Dk `? q succeeds by a derivation of arbitrary height h0.

Notice that each Di has a smaller complexity than A, that is cp(Di) = ci < c. Thus (c1; h
0) < (c; h),

and we can cut on (3) and (b1), so that we obtain that

(4) �;�; D2; : : : ; Dk `? q succeeds with some height h00.

Again (c2; h
00) < (c; h), so that we can cut (b2) and (4). By repeating the same argument up to k we

�nally obtain that

�;� `? q succeeds:

This concludes the proof. 2

We can now easily prove completeness of our procedure with respect to intuitionistic consequence

relation.

Theorem 2.2.6 If � ` A, then � `p A.

Proof. We know that ` is the smallest consequence relation satisfying (identity), (monotonicity),

(deduction theorem) and (cut). By proposition 2.2.3 and theorem 2.2.5, `p satis�es these properties as

well. Then, the claim follows by the minimality of `. 2

2.2.2 Interpolation

The meaning of the interpolation property is that whenever we have � ` A, we can �nd an intermediate

formula B which does not contain any "concept" that is not involved either in � or in A, such that both

� ` B and B ` A:

B is called an interpolant of A and �. The interpolation property is a strong analytic property of

deductions and it says that we can simplify a proof of � ` A in intermediate steps which involve only

non-logical constants (here propositional variables) which are present both in A and in �. In the pure

implicational fragment, the interpolant cannot be assumed to be a single formula, consider for example

a; b ` (a! b! q) ! q,

there is no pure implicational formula A containing only the atoms a and b such that

a; b ` A and A ` (a! b! q) ! q.

We must allow the interpolant to be a database itself. The right notion is hence the one of interpolant

database, and the property of interpolation must be restated as follows: if � ` A, then there is a database

�, which contains only propositional symbols common to A and �, such that

� `� � and � ` A:

The relation `� denotes provability among databases; in this case it can be simply de�ned as

� `� � , 8C 2 � � ` C:
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Obviously � `� fAg is the same as � ` A.

Before we prove this property, we warn the reader that the stated property is not true in general.

It may happen, that � ` A but A and � do not share any propositional symbol, it is the case for instance

of

p ` q ! q

where p 6= q. In this case, A (here q ! q) is a theorem by itself. It is clear that here � should be the

empty set of formulas, or the empty conjunction. We add a symbol to the language > to denote truth.

We assume that > is in the language of any formulas. Actually > may be de�ned as p0 ! p0, where p0
is a �xed atom; we have that

� ` >, and hence

�;> ` A i� � ` A.

Thus the constant > represents the empty database in the object language. We can regard > as an

atom which immediately succeeds from any database.

We can now de�ne the language of a formula and of a database as follows: we let

L(A) = fp : p is an atom and p occurs in Ag [ f>g

L(�) =
S
A2�L(A).

We also write L(A;B) for L(fA;Bg), and L(�; A) for L(� [ fAg).

The interpolation property is a simple consequence of the following lemma.

Lemma 2.2.7 Let � and � be databases. If �;� ` q there is a database � such that the following hold:

1. � `� �,

2. �;� ` q,

3. L(�) � L(�)
T
L(�; q).

Proof. We proceed by induction on the height h of a successful derivation of (1) �;� `? q.

Let h = 0, then either q = > or q 2 � [ �. If q = > or q 2 � � �, then we take � = f>g,

otherwise we take � = fqg.

Let h > 0, then any successful derivation proceed by reduction of q either with respect to a

formula of � (case a), or with respect to a formula of � (case b).

(Case a) let C = D1 ! : : : ! Du ! q 2 �. The computation steps, for i = 1; : : : ; u, to

�;� `? Di. Let us assume that Di = Bi
1 ! : : : ! Bi

ki
! ri, (it might be ki = 0, that is Di = ri),

then, by the implication rule, the computation steps to

�;�; fBi
1; : : : ; B

i
ki
g `? ri.

All the above queries succeed by a shorter derivation, thus by induction hypothesis, for each i there are

databases �i such that

1. � `� �i,

2. �i;�; fBi
1; : : : ; B

i
ki
g ` ri,

3. L(�i) � L(�)
T
L(�; Bi

1; : : : ; B
i
ki
; ri; ).

27



Since Di is part of C 2 �, we have that L(�i) � L(�) \ L(�). Let � =
S
i �i, then we have that

� `� � and for i = 1; : : : ; u

(�) �;�; fBi
1; : : : ; B

i
ki
g `? ri succeeds

and also that L(�i) � L(�)
T
L(�). (�) implies that for each i �;� `? Di succeeds; since C 2 � we

can apply the reduction rule to q so that �;� `? q succeeds. This concludes (case a).

(Case b) let C = D1 ! : : :! Du ! q 2 �. The computation step for i = 1; : : : ; u to �;� `? Di,

and then to �;�; fBi
1; : : : ; B

i
ki
g `? ri, where we assume Di = Bi

1 ! : : : ! Bi
ki
! ri, (it might be

ki = 0, that is Di might be an atom). All the above queries succeed by a shorter derivation, thus by

induction hypothesis, for each i there are databases �i such that

1. � `� �i,

2. �i;�; fBi
1; : : : ; B

i
ki
g ` ri,

3. L(�i) � L(�)
T
L(�; Bi

1; : : : ; B
i
ki
; ri; ).

Since Di is part of C 2 �, the last fact implies that L(�i) � L(�)
T
L(�). As in (case a) we let

� =
S
i �i = fE1; : : : ; Eng,

and we get that

(4) � `� �, and for all i = 1; : : : ; u

(5) �;�; fBi
1; : : : ; B

i
ki
g ` ri, and also that

(6) L(�) � L(�)
T
L(�).

We now let G = E1 ! : : :! En ! q. From (4) we obtain that G;� ` q, and from (5), we get that

(7) �;� ` Di.

Since C 2 �, we can conclude that �;� ` q, and hence � ` G. Finally from (6), since q occurs in �, we

have that L(G) � L(�) \ L(�; q). This concludes the proof. 2

Theorem 2.2.8 (Interpolation) If � ` A, then there is a database � such that

� `� � and � ` A, and

L(�) � L(�) \ L(A).

Proof. We proceed by case according to the form of A. If A is an atom, then we take � = A. If A is a

complex formula, let

A = F1 ! : : : Fu ! p.

By hypothesis, we have that �; fF1; : : : Fug `? p succeeds. By the previous lemma there is a database

� such that

(1) � `� �

(2) �; fF1; : : : Fug ` p, and

(3) L(�) � L(�) \ L(F1; : : : ; Fu; p).

From (2) we immediately conclude that � ` A and from (3) that L(�) � L(�) \ L(A). 2
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2.3 Bounded resource deduction for Implicational Logic

In the previous section, we have introduced a goal-directed proof method for the intuitionistic logic

with pure implication. We want now to re�ne it further towards an automated implementation. We

will be guided by key examples. The examples will show us di�culties to overcome in order to achieve

an implementable system. We will respond to the di�culties by proposing to do the most obvious

optimizations at hand. Slowly the computation steps will evolve and we will most naturally be led to

consider new logics, which correspond to various optimizations. We will be happy to note that the new

logics thus obtained are really logics we already know, and we thus realize that we have stumbled on

proof systems for other well-known logics.

Consider the data and query below:

q ! q `? q

Clearly the algorithm has to know it is looping. The simplest way of loop checking is to record the

history of the computation. This can be done as follows: Let � `? G;H represent the query of the

goal G from data � and history H . H is the list of past queries, namely pairs of the form (�; G0). The

computation rules become:

Historical rule for !

� `? A! B;H succeeds

if � [ fAg `? B;H � (�; A! B) succeeds and (�; A! B) is not in H .

Thus (�; A! B) is appended to H .

Historical Reduction

� `? q;H succeeds,

if for some B = C1 ! C2 ! : : : Cn ! q in � we have that for all i

� `? Ci; H � (�; q) succeeds and that (�; q) is not in H .

Thus the computation for our example above becomes:

q ! q `? q; ;

q ! q `? q; (q ! q; q)

fail.

Note that the historical loop checking conjunct in the rule for ! is redundant as the loop will be

captured in the rule for reduction. Also note that in this case we made the decision that looping means

failure. The most general case of loop checking may �rst detect the loop and then decide that under

certain conditions looping implies success.

One way to perform loop-checking in a more e�cient way has been described by Seyfried and

Huerding in [Seyfried and Huerding 97]. The idea is to avoid repeated insertions of the same formula

in the database, taking advantage of the fact that the database is a set of formulas. One simply records

the history of the atomic goals asked from the same database; the history is cleared when a new formula

is inserted in the database. This idea is implemented in a terminating proof system for full intuitionistic
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propositional logic in the form of a sequent calculus. We reformulate here this variant of loop checking

adapted to our context.

An improved Historical loop-checking

Here H is the list of past atomic goals. The computation rules become:

Rule 1 for !

� `? A! B;H succeeds

if A 62 � and �; A `? B; ; succeeds.

Rule 2 for !

� `? A! B;H succeeds

if A 2 � and � `? B;H succeeds.

Reduction Rule

� `? q;H succeeds,

if q 62 H and for some C1 ! C2 ! : : : Cn ! q in � we have that for all i

� `? Ci; H � q succeeds.

Example 2.3.1 `? ((p! q) ! q) ! (q ! p) ! p; ;,

(p! q) ! q `? (q ! p) ! p; ;,

(p! q) ! q; q ! p ` p; ;,

(p! q) ! q; q ! p ` q; (p),

(p! q) ! q; q ! p ` p! q; (p; q),

(p! q) ! q; q ! p; p ` q; ;,

(p! q) ! q; q ! p ` p! q; (q),

(p! q) ! q; q ! p ` q; (q),

fail

In this way one is able to detect a loop (the same atomic goal repeats from the same database), without

having to record each pair (database goal). We will use a similar idea to give a terminating procedure

for the implicational fragment of relevance logic R in chapter 5.

However, loop-checking is not the only way to ensure termination. Trying to think constructively,

in order to make sure the algorithm terminates, let us ask ourselves what is involved in the computation.

There are two parameters; the data and the goal. The goal is reduced to an atom via the rule for !

and the looping occurs because a data item is being used by the rule for reduction again and again.

Our aim in the historical loop checking is to stop that. Well, why don't we try a modi�ed rule for

reduction which can use each item of data only once? This way, we will certainly run out of data and

the computation will terminate. We have to give a formal de�nition of the computation, where we keep

track on how many times we use the data.

Let us adopt the point of view that each database item can be used at most once. Thus our rule

for reduction becomes
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from � `? q,

if there is B 2 �, with B = C1 ! C2 ! : : : Cn ! q , step to

�� fBg `? Ci for i = 1; : : : ; n

The item B is thus thrown out as soon as it is used.

Let us call such a computation locally linear computation (bounded resource computation) where

each formula can be used at most once in each path of the computation. That is why we are using the

word `locally'. One can also have the notion of (globally) linear computation, in which each formula

can be used exactly once in the entire computation tree.

Before we proceed, we need to give a formal de�nition of these concepts. We give De�nition 2.3.2

below and it should be compared with De�nition 2.2.1 of the previous section.

Since we take care of usage of formulas, it is natural to regard multiple copies of the same formula

as distinct. This means that databases can now be considered as multiset of formulas. In order to keep

the notation simple, we use the same notation as in the previous section. From now on, �;�, etc. will

range on multisets of formulas, and we will write �;� to denote the union multiset of � and �, that is

� t�. To denote a multiset [A1; : : : An], if there is no risk of confusion we will simply write A1; : : : An

(see chapter 1, for formal de�nitions of multiset and relative notions).

De�nition 2.3.2 [Goal directed computation, locally linear goal directed computation and linear goal

directed computation] We present three notions of computation by de�ning their computation trees.

These are:

1. The goal directed computation for intuitionistic logic.

2. Locally linear goal directed computation (LL computation).

3. Linear goal directed computation.

We give the computation rules for a query: � `? G, where � is a multiset of formulas and G is a

formula.

� (success) � `? q immediately succeeds if the following holds:

1. for intuitionistic and LL computation, q 2 �,

2. for linear computation � = q.

� (implication) From � `? A! B, we step to

�; A `? B.

� (reduction) If there is a clause B 2 � with

B = C1 ! : : :! Cn ! q

then from � `? q, we step, for i = 1; : : : ; n to

�i `? Ci,

where the following holds

1. in the case of intuitionistic computation, �i = �;
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2. in the case of locally linear computation, �i = �� [B];

3. in the case of linear computation ti�i = �� [B].

COMMENT: I HAVE DELETED THE CONDITION �i \�j = ;, SINCE THE INTERSECTION OF

MULTISETS DOES NOT MAKE SENSE AND IT IS IMPLICIT IN THE CONDITION ti�i = ��[B]

THAT THE ELEMENT OF �� [B] ARE PARTITIONED IN THE �i's.

The question is now: do we retain completeness? Are there examples for intuitionistic logic where

items of data essentially need to be used locally more than once?

It is reasonable to assume that if things go wrong, they do so with formulas with at least two

nested implications, i.e. formulae with the structure X ! Y ! Z or (X ! Y ) ! Z. Namely, by adding

new atoms and renaming implicational subformulas by the new atoms, we can reduce any database to

an equivalent database with only two levels of nested implication.

Sooner or later we will discover the following examples.

Example 2.3.3 1. c! a; (c! a) ! c `? a

The clause (c! a) has to be used twice in order for a to succeed. This example can be generalized.

2. Let A0 = c

An+1 = (An ! a) ! c.

Consider the following query:

An; c! a `? a

The clause c! a has to be used n+ 1 times (locally).

Example 2.3.4 Another example in which a formula must be used locally more than once is the

following: the database contains

(b1 ! a) ! c
...

(bn ! a) ! c

b1 ! b2 ! : : : bn ! c

c! a

the goal is `a'.

It is easy to see that c! a has to be used n+ 1 times locally to ensure success.

Example 2.3.5

a! b! c; a! b; a `? c

Let us do the full LL-computation:

Here a has to be used twice globally, but not locally on each branch of the computation. Thus

the locally linear computation succeeds. On the other hand, in the linear computation case, this query

fail, as a must be used globally twice.
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a! b! c; a! b; a `? c

a! b; a `? a
�
� Q

Q
a! b; a `? b

a `? a

Figure 2.2:

The example above shows that that the locally linear proof system of 2.3.2 is not the same as the

linear proof system. First we do not require that all assumptions must be used, condition on success

rule, we only ask that they be used no more times than speci�ed. A more serious di�erence is that

we do our `counting' of how many times a formula is used separately on each path of the computation

and not globally for the entire computation. The counting in the linear is global, as can be seen by the

condition in reduction rule.

Another example, the query A;A! A! B `? B will succeed in our locally linear computation

because A is used once on each of two parallel paths. It will not be accepted in linear computation

because A is used globally twice. This is ensured by condition in reduction rule.

With respect to the notion of intuitionistic consequence relation introduced at the beginning of

the chapter, we can notice that that linear computation does not does not satisfy all the properties

involved in the de�nition. Monotonicity does not hold. Re
exivity holds in the restricted form A ` A.

The cut rule holds in the form
� ` A �; A ` B

�;� ` B

holds. On the other hand, as a di�erence with respect to the intuitionistic case, the cut rule does not

hold in the form
� ` A �; A ` B

� ` B

The two form of cut are easily seen to be equivalent in intuitionistic logic, whereas they are not for

globally linear computation. A counterexample to the latter form is the following:

a; a `? (a! b) ! (a! b! c) ! c succeeds, and

a `? a succeeds.

Therefore, by cut we should get

a `? (a! b) ! (a! b! c) ! c succeeds,

which, of course, does not hold. Linear computation as de�ned in 2.3.2 corresponds to linear logic

implication, [Girard 87], in the sense that the the procedure of linear computation is sound and complete

for the implicational fragment of linear logic, this will be proved in chapter 6, within the broader context

of substructural logics. Linear logic has the implication connective �� and A1; : : : ; An ` B in linear

logic means that B can be proved from Ai using each Ai exactly once. A deduction theorem holds,

namely that A1; : : : ; An ` B is equivalent to ` A1 � �(A2 � � : : : (An � �B) : : :).
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In case of LL computation (that is, locally linear computation), the properties of re
exivity and

monotonicity are satis�ed, but cut is not, here is a counterexample: letting A = (a! b) ! (a! b) ! b,

we have

A; a! b `? b succeeds, and

(a! b) ! a `? A succeeds.

On the other hand, as we have seen

(a! b) ! a; a! b `? b fails.

The above examples show that we do not have completeness with respect to intuitionistic prov-

ability for locally linear computations. Still the locally linear computation is atractive, because if the

database is �nite it is always terminating and it is e�cient. It is natural to wonder whether we can

compensate for the use of the locally linear rule (i.e. for throwing out the data) by some other means.

Moreover, even if the locally linear computation is not complete for the full intuitionistic implicational

fragment, one may still wonder whether it works in some particular and signi�cant case. A signi�cant

case is shown in the next proposition.

Proposition 2.3.6 The locally-linear procedure is complete for Horn databases.

2.3.1 Bounded restart rule for intuitionistic logic

Let us now go back to the notion of locally linear computation. We have seen that the locally linear

restriction does not retain completeness with respect to intuitionistic provability. There are examples

where formulae need to be used locally several times. Can we compensate? Can we at the same time

throw data out once it has been used and retain completeness for intuitionistic logic by adding some

other computation rule? The answer is yes. The rule is called the (linear) bounded restart rule and is

used in the context of the notion of locally linear computation with history.

Let us examine more closely why we needed in Example 2.3.3 the clause c! a several times. The

reason was that from other clauses, we got the query ` `? a' and we wanted to use c ! a to continue

to the query ` `? c'. Why was not c ! a available ?; because c ! a has already been used. In other

words, `? a as a query, has already been asked and c! a was used. This means that the next query

after ` `? a' in the history was ` `? c'.

If H is the history of the atomic queries asked, then somewhere in H there is ` `? a' and

immediately afterwards ` `? c'.

We can therefore compensate for the re-use of c ! a by allowing ourselves to go back in the

history to where ` `? a' was, and allow ourselves to ask all queries that come afterwards. Let us see

what happens to our example 2.3.3
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(c! a) ! c [1] `? a

c! a [1]

We use the second clause to get

(c! a) ! c [1] `? c; (a)

c! a [0]

we continue

(c! a) ! c [0] `? c! a; (a; c)

(c! a) [0]

we continue

(c! a) ! c [0] `? a; (a; c)

c! a [0]

c [1]

The `1'(`0') annotate the clause to indicate it is active (inactive) for use. The history can be seen as the

right hand column of past queries.

We can now ask any query that comes after an `a' in the history, hence

(c! a) ! c [0]

(c! a) [0] `? c; (a; c; a)

c [1]

Success.

The previous example suggests the following new computation with bounded restart rule. For

technical reasons, from now on we regard again databases as sets of formulas rather than multisets.

However, the results which follows hold indi�erently for databases which are either sets or multiset of

formulas. To this concern we observe that, whereas for the locally linear computation without bounded

restart it makes a great di�erence whether the database is regarded as a set or as a multiset, once that

bounded restart is added the di�erence is no longer signi�cant.

De�nition 2.3.7 [Locally linear computation with bounded restart] In the computation with bounded

restart, the queries have the form � `? G;H , where � is a set of formulas and the history H is a

sequence of atomic goals. The rules are as follows.

� (success) � `? q;H succeeds if q 2 �.

� (implication) from � `? A! B;H step to

�; A `? B;H

� (reduction) from � `? q;H if C = D1 ! D2 ! : : :! Dn ! q 2 �, then we step to

�� fCg `? Di; H � (q) for i = 1; : : : ; n.

� (Bounded restart) from � `? q;H step to

� `? q1; H � (q),

provided for some H1, H2, H3, it holds H = H1 � (q)�H2 � (q1)�H3, where each Hi may be empty.
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Note that the databases involved in a computation need not be �nite. In a successful computation

tree only a �nite number of clauses from the database will be used in the sense mentioned above.

Both soundness and completeness of this procedure with respect to intuitionistic provability may

not be evident. Consider the following two databases:

�1 = f(c! a) ! bg and �2 = fc; a! bg

If we ask the query �1 `? b and �2 `? b, using the linear bounded restart computation, we get that

both queries reduce to c `? a; (b). Thus we see that one cannot reconstruct the original database from

the history1. This problem has bearing upon soundness.

However, the procedure with bounded restart is sound and complete with respect to intuitionistic

provability, and this is what we are going to show next.

Lemma 2.3.8 The following hold in intuitionistic logic:

1. If �; A;B ! C ` B

Then �; (A! B) ! C ` A! B

2. (A! C) ! A; (B ! C) ! B ` (A! B ! C) ! (A ^ B).

Proof. Left to the reader. 2

Theorem 2.3.9 (Soundness of locally linear computation with bounded restart) For the com-

putation of 2.3.7 we have that: if � `? G; (p1; : : : ; pn) succeeds then �; G! pn; pn ! pn�1; : : : ; p2 !

p1 ` G holds. 2

Proof. By induction on the height h of a successful proof of (1). If h = 0 then G = q 2 � and the

result follows immediately. Let h > 0. Let G = A! B. The computation steps to

�; A `? B; (p1; : : : ; pn)

by induction hypothesis we have that

�; A;B ! pn; pn�1; : : : ; p2 ! p1 ` B:

By lemma 2.3.8(1), we have that

�; (A! B) ! pn; pn�1; : : : ; p2 ! p1 ` A! B:

Let G be an atom q. Suppose that reduction rule is applied to q, then � = �0; C, with C = D1 !

: : :! Dk ! q, and the computation steps for i = 1; : : : ; k to

�0 `? Di; (p1; : : : ; pn; q)

by induction hypothesis, we have that

�0; Di ! q; q ! pn; pn ! pn�1; : : : ; p2 ! p1 ` Di;

by lemma 2.3.8(2), for i = 1; : : : ; k, we get

1A similar reduction is embodied in the contraction-free calculi for intuitionistic logic by Dickho� [Dyckho� 92] and by

Hudelmaier [Hudelmaier 90] ADD REFERENCE TO JLC PAPER.
2This theorem is a correct version of theorem 5.0.8, pag. 351 of [Gabbay 92], which contained a mistake.
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�0; D1 ! : : :! Dk ! q; q ! pn; pn ! pn�1; : : : ; p2 ! p1 ` Di;

and hence,

�0; C; q ! pn; pn ! pn�1; : : : ; p2 ! p1 ` q:

Finally, suppose bounded restart rule is applied to q. Then from

� `? q; (p1; : : : ; q : : : ; pj ; : : : ; pn)

the computation steps to

� `? pj ; (p1; : : : ; q : : : ; pj ; : : : ; pn; q)

that is, it must be q = pi, with i < j � n. By induction hypothesis, we have that

�; pj ! q; q ! pn; pn ! pn�1; : : : ; p2 ! p1 ` pj ;

but since q = pi precedes pj , we have

q ! pn; pn ! pn�1; : : : ; p2 ! p1 ` pj ! q;

and hence we obtain

�; q ! pn; pn ! pn�1; : : : ; p2 ! p1 ` q:

2

We now turn to completeness We �rst prove that if � ` G then � `? G; ; succeeds.

To this purpose we introduce an intermediate procedure, we call it Pi. In Pi, data are regarded

as sets and each formula can be used locally more than once, but after its �rst use it is removed from

the database, say �, and recorded in a separate part, �, \the storage"; the data in the storage are listed

according to usage. The storage � only contains non-atomic formulas and the sequence of their heads

forms the history of the procedure with bounded restart. For technical reasons, we allow in Pi the rule

of bounded restart in a restricted form. It should be clear that this rule is redundant. Queries for Pi
have the form

� j � `? G,

where � is a set of formulas and � is a list of non-atomic formulas. The rules of Pi are as follows:

� (success) � j � `? q succeeds if q 2 �;

� (implies) from � j � `? A! B step to � [ fAg j � `? B;

� (reduction)if there is a formula C = B1 ! : : : ! Bn ! q 2 � [ �, then from � j � `? q step to

�0 j � � C `? Bi, for i = 1; : : : ; n, where �0 = �� fCg if C 2 � and �0 = � if C 2 �.

� (bounded restart) if � = �1 � C1 � C2 � �2, with Head(C1) = q and Head(C2) = r, then from

� j � `? q step to

� j � � C1 `? r
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As one can see, formulas of � are moved to � the �rst time they are used. In case C occurs in both �

and � one can choose to apply reduction with respect to either one or the other occurrence of C and the

database �0 is determined accordingly. Notice that in Pi, the storage � plays a double role, as history

for bounded restart and as database for reduction steps. We will show how to simulate reduction steps

with respect the same formula along one branch (that is reduction steps with respect to formulas in the

storage) by bounded restart steps.

One can easily prove that Pi is equivalent to the procedure for intuitionistic provability.

Lemma 2.3.10 A query � `? G succeeds in the basic intuitionistic procedure i� the query � j ; `? G

succeeds in Pi.

We need the following lemma. Let Atom(�), N Atom(�) respectively denote the set of atomic

and non-atomic formulas in �.

Lemma 2.3.11 If � [ � j � `? G succeeds in Pi and Atom(�) � �, N Atom(�) � � [ �, then the

query Q = � j � `? G succeeds in Pi by a derivation of no greater size (number of nodes).

Proof. The proof of this lemma is by induction on the height of a successful derivation of the query

of the hypothesis. The cases of (success), (implication) and (bounded restart) are straightforward. We

only consider the relevant case of reduction. Suppose, from � [� j � `? q we step to Qi = (� [�)0 j

� � C `? Bi, for i = 1; : : : ; n, for some C = B1 ! : : : ! Bn ! q 2 � [ � [ �, where the precise

form of (� [ �)0 depends on which database contains C.We have several cases. If C 2 �, we step to

(��fCg)[ (��fCg) j � �C `? Bi, It is obvious that ��fCg satis�es the hypothesis of the lemma,

hence we can apply the induction hypothesis, that is for i = 1; : : : ; n, Q0
i = � � fCg j � � C `? Bi

succeeds, so that we can apply reduction wrt. C 2 � and step, from � j � `? q, to Qi and succeed.

If C 2 �, we proceed as before by applying the induction hypothesis and performing a reduction step

w.r.t. C 2 �. Finally, if C 2 � ��, then C 2 �, and we are back to the previous case. Since there is

one-to-one mapping it is clear that the size of the derivation of Q is not greater than that of the original

query. 2

We are now in the position of proving the completeness of bounded restart computation. We

show that every reduction step with respect to a formula of � can be simulated by a bounded restart

step. Let D be a derivation of a query Q0 = �0 j ; `? G0. Given a query Q = � j � `? q, we say

that a reduction step is \bad" if it is performed with respect to a formula of �. A derivation without

\bad" reduction steps is a derivation according to the procedure 2.3.7, with the small di�erence that in

the latter we just record the head of the formulas of the storage part �.

Lemma 2.3.12 If Q0 = �0 j ; `? G0 succeeds by a derivation in Pi, then it succeeds by a derivation

which does not contain \bad" reduction steps, that is a locally linear derivation with bounded restart.

Proof. Let D0 be a Pi-derivation of Q0. Working from the root downwards, we replace every \bad"

reduction step by a bounded restart step. Let Q = � j � `? q be a query in D0, suppose that the

successors of Q in D0 are obtained by a bad reduction step, that is a reduction step with respect to a

formula C1 2 �; let � = �1 � C1 � �2 and C1 = B1 ! : : :! Bn ! q, then the successors of Q are

Qi = � j � � C1 `? Bi, for i = 1; : : : ; n.

Since C1 2 �, C1 must have already been used at a previous step on the same branch, that is there is a

query Q0 = �0 j �1 `? q, and for some i, say i = 1, there is a successor of Q0
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Q0
1 = �0 j �1 � C1 `? B1,

on the same branch. In the most general case, let B1 = D1 ! : : : ! Dk ! r , with r > 0 and

�1 = fD1; : : : ; Dkg. Then, under Q0
1 on the same branch there is a query

Q�
1 = �0 [ �1 j �1 �C1 `? r.

It is clear that in case B1 is atomic, �1 = ; and Q�
1 = Q0

1. We can assume that Q is a descendent

of Q�
1. If it were Q�

1 = Q, then q = r and the reduction step performed on Q would just be an

immediate repetition of the reduction step performed on Q0. We can assume that D0 does not contain

such immediate repetitions. The query Q1 will have a descendant corresponding to Q�
1, that is

Q��
1 = � [ �1 j � � C1 `? r.

To sum up, the sequence of the queries along the branch (from the root downwards) is as follows: Q0,

Q0
1, Q

�
1, Q, Q1, Q

��
1 , where it might be Q0

1 = Q�
1 and Q1 = Q��

1 . Since Q is a descendent of Q�
1, it

must be � = �1 � C1 � �2, with �2 6= ;, that is �2 = C2 � �02 and Head(C2) = r, no matter whether

the successors of Q�
1 are determined by reduction or bounded restart. Moreover, since Q follows Q�

1,

Atom(�1) � �, and N Atom(�1) � � [ �. Thus, we can apply the previous lemma so that we have

that

Q00
1 = � j � � C1 `? r.

succeeds by a derivation, say D�
1 of size no greater than the size of the subderivation D1 of Q��

1 . Now,

we can replace the subderivation with root Q (and successors) Qi, by the following:

Q

#

Q00
1

D�
1

and we can justify the step from Q to Q00
1 by bounded restart. We have described one transformation

step. Proceeding downwards from the root, each transformation step reduces by one the number of bad

reductions at maximal level (closest to the root), without increasing the derivation size (the number of

nodes), thus the entire process must terminate and the �nal derivation does not contain bad reductions.

2

Theorem 2.3.13 (Completeness of locally linear computation with bounded restart) For the

computation of 2.3.7 we have that: if �; G ! pn; pn ! pn�1; : : : ; p2 ! p1 ` G holds, then � `?

G; (p1; : : : ; pn) succeeds.

Proof. It is su�cient, in view of the deduction theorem, to assume that G = q is atomic. Let

�0 = � [ fq ! pn; pn ! pn�1; : : : ; p2 ! p1g then if �0 ` q then � `? q; (p1; : : : ; pn) succeeds .

By the previous lemma, we have that

�; q ! pn; pn ! pn�1; : : : ; p2 ! p1 `? q; ; succeeds:

Let D be a derivation of the above query. For each node t 2 D let Qt = �t; `? Gt; Ht. Let X be

the sequence (p1; : : : ; pn). Let H 0
t = X � Ht. Let Q0

t = �t; `
? Gt; H

0
t. Let D0 be a derivation for

� [ fq ! pn; : : : ; p2 ! p1g `? q;X, obtained by replacing each Qt by Q0
t. All uses of the bounded

restart rule in D0 are still valid because we have appended X at the beginning of Ht. Moreover we can

use the bounded restart rule to perform any step of the form
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t

s

`? pi+1

`? pi

rather than using the formulas since X is appended at the beginning of H 0
t. Thus, D0 is also a successful

derivation of �; fq ! pn; pn ! pn�1; : : : ; p2 ! p1g `? q;X. In D0, the clauses of fq ! pn; pn !

pn�1; : : : ; p2 ! p1g are never used. Thus these can be taken out of the database and D0 is a successful

derivation of � `? q;X succeeds. 2

2.3.2 Restart rule for classical Logic

We now introduce a new rule, the restart rule. It is a variation of the bounded restart rule obtained

by cancelling any restrictions and simply allowing us to ask any earlier atomic goal. We need not keep

history as a sequence but only as a set of atomic goals. The rule becomes

De�nition 2.3.14 [Restart rule in the LL-computation] If a 2 H , from � `? q;H step to � `?

a;H [ fqg.

The formal de�nition of locally linear computation with restart is De�nition 2.3.7 with the additional

restart rule above in place of the bounded restart rule.

Example 2.3.15

(a! b) ! a `? a; ;

use the clause and throw it out to get:

; `? a! b; fag

and

a `? b; fag

restart

a `? a; fa; bg

success.

The above query fails in the intuitionistic computation. Thus, this example shows that we are

getting a logic which is stronger than intuitionistic logic. Namely, we are getting classical logic. This

claim has to be properly proved, of course.

If we adopt the basic computation procedure for intuitionistic implication 2.2.1 rather tan the

LL-computation, we can restrict the restart rule to always choose the initial goal as the goal with which

we restart. Thus, we do not need to keep the history, but only the initial goal and the rule becomes

more deterministic. On the other hand, the price we pay is that we cannot throw out the formulas of

database when they are used.
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De�nition 2.3.16 [Simple computation with restart] We have that queries have the form

� `? G; (G0);

where G0 is a goal. The computation rules are the same as in the basic computation procedure for

intuitionistic logic 2.2.1 plus the following rule

(Restart) from

� `? q; (G0)

step to

� `? G0; (G0):

It is clear that the initial query of any derivation will have the form � `? A; (A).

It is natural to wonder what we get if we add the restart rule of de�nition 2.3.14 to the basic

procedure for intuitionistic logic of 2.2.1. In the next lemma we show that given the underlying compu-

tation procedure of 2.2.1, restarting from an arbitrary atomic goal in the history is equivalent to restart

from the initial goal. To this purpose, let `?RI and `?RA be respectively the deduction procedure of

2.3.16 and the deduction procedure of 2.2.1 extended by the restart rule of de�nition 2.3.14.

Lemma 2.3.17 For any database � and formula G, we have

(1) � `?RA G; ; succeeds i� (2) � `?RI G; (G) succeeds.

Proof. Let G = A1 ! : : : Ak ! q, with k � 0 and let �0 = � [ fA1; : : : ; Akg. By (1) we have

(1)� `?RA G; ; succeeds i� (1') �0 `?RA q; ; succeeds.

On the other hand, by (2) and the fact that �0 is a set and it never decreases, we have

(2) � `?RI G; (G) succeeds i� (2') �0 `?RI q; (G) succeeds i� �0 `?RI q; (q) succeeds.

(() Unless q 2 �0, in such a case both (1) and (2) immediately succeed, (2') will step by reduction

to some query �0 `?RI Ai; (q); we can perform the same reduction step from (1'), and the resulting

queries will contain q as the �rst element of the history and we are done.

()) Let (1') succeeds, consider a successful derivation of (1'). Suppose restart rule is applied to

a query Q0 by re-asking an atomic goal p which is the goal of an ancestor query Q of Q0, it su�ces to

show that we still obtain a successful derivation if we restart by re-asking an atomic goal which comes

from any ancestor query Q0 of Q. This fact implies what we have to prove, namely it is more general.

To show the fact above, suppose the following situation occurs: in one branch of a given derivation D

we have

(1) �1 `?RA q1; H1

...

(2) �2 `?RA q2; H2

...

(3) �3 `?RA q3; H3
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The branch goes on by restart using q2 2 H3, that is we step to

(4) �3 `?RA q2; H3 [ fq3g:

Since q1 2 H2 � H3, we can build an alternative derivation D0, which coincides with D up to (3) and

goes on by restart using q1; that is after (3) we step to

(40) �3 `?RA q1; H3 [ fq3g:

Since �1 � �2 � �3, by the monotony property, from (4') we can reach (4), by the same steps we have

done to reach (2) from (1). 2

As it is clear from the proof of the above lemma, we can further restrict restart from initial goal

G0 to restart from the �rst initial goal q0 = Head(G0).

In the following we prove completeness with respect to classical logic of two proof procedures:

one is the basic procedure for intuitionistic logic with the additional rule of restart from initial goal, and

the other one is the locally linear-computation procedure where the databases are considered as sets of

formulas, with the additional rule of restart from any previous atomic goal.

Soundness and Completeness of Restart from the initial goal

We show that the proof-procedure obtained by adding the rule of restart from the initial goal to the

basic procedure for intuitionistic logic de�ned in 2.2.1 is sound and complete with respect to classical

provability.

We de�ne the notion of complement of a goal which works as its negation.

De�nition 2.3.18 Let A be any formula. Then the complement of A, denoted by Cop(A) is the

following set of formulas:

Cop(A) = fA! p j p any atom of the languageg

We show that we can replace any application of the restart rule by a reduction step using a

formula in Cop(A).

Lemma 2.3.19 (1) � `? A succeeds by using restart rule i� (2) � [ Cop(A) `? A succeeds with out

using restart, that is by the intuitionistic procedure 2.2.1.

Proof. We can easily establish a mapping between derivations of (1) and derivations of (2), each query

� `? G; (A) corresponds to a query Cop(A) [ � `? G and vice-versa: let � `? r; (A) be any

step in a derivation of (1), where restart is used, so that the next step will be � `? A; (A), since

A ! r 2 Cop(A), from the corresponding query Cop(A) [ � `? q, we can step to Cop(A) [ � `? A,

by reduction with respect to A ! r. On the other hand, whenever we step from Cop(A) [ � `? q to

Cop(A) [ � `? A by reduction with respect to A ! q 2 Cop(A), we can achieve the same result by

restarting from A. 2

We will prove �rst that � ` A in classical implicational logic i� � [ Cop(A) `? A succeeds by

the procedure de�ned in 2.2.1.
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Lemma 2.3.20 For any database � and formulas G such that � � Cop(G), and for any goal A, con-

ditions (a) and (b) below imply condition (c):

(a) � [ fAg `? G succeeds

(b) � [ Cop(A) `? G succeeds

(c) � `? G succeeds.

Proof. Since � [ Cop(A) `? G succeeds and computations are �nite, only a �nite number of the

elements of Cop(A) are used in the computation. Assume then that

(b1) �; A! p1; : : : ; A! pn `? G succeeds.

We use the cut rule. Since � � Cop(G) we have G ! pi 2 � and hence by the computation rules

� [ fAg `? pi succeeds . Now by cut on (b1) we get � `? G succeeds . 2

Theorem 2.3.21 For any � and any A, (a) is equivalent to (b) below:

(a ) � ` A in classical logic

(b) � [ Cop(A) `? A succeeds by the intuitionistic procedure de�ned in 2.2.1

Proof.

1. Show (b) implies (a):

Assume �[Cop(A) `? A succeeds Then by the soundness of our computation procedure we get

that � [ Cop(A) ` A in intuitionistic logic, and hence in classical logic. Since the proof is �nite

there is a �nite set of the form fA! pi; : : : ; A! png such that

(a1) �; A! p1; : : : A! pn ` A (in intuitionistic logic).

We must also have that � ` A, in classical logic, because if there were an assignment h making �

true and A false, it would also make A! pi all true, contradicting (a1).

The above concludes the proof that (b) implies (a).

2. Show that (a) implies (b).

We prove that if � [ Cop(A) `? A does not succeed then � 6` A in classical logic. Let

�0 = � [ Cop(A). We de�ne a sequence of databases �n; n = 1; 2 : : : as follows:

Let B1; B2; B3; : : : be an enumeration of all formulas of the language.

Assume �n�1 has been de�ned and assume that �n�1 `? A does not succeed. We de�ne �n:

If �n�1 [ fBng `? Adoesnotsucceed, let �n = �n�1 [ fBng. Otherwise from lemma 2.3.20 we

must have:

�n�1[ Cop (Bn) `? A does not succeed.

and so let �n = �n�1 [ Cop(Bn).

Let �0 =
S
n �n

Clearly �0 `? A does not succeed.
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De�ne an assignment of truth values h on the atoms of the language by

h(p) = true i� �0 `? p succeeds . We now prove that

for any B; h(B) = true i� �0 `? B succeeds,

by induction on B.

(a) For atoms this is the de�nition.

(b) Let B = C ! D. We prove the two directions by simultaneous induction.

(b1) Suppose �0 `? C ! D succeeds. If h(C) = false, then h(C ! D) = true and we are done.

Thus, assume h(C) = true. By induction hypothesis, it follows that � `? C succeeds.

Since, by hypothesis we have that �; C `? D succeeds, by cut we obtain that � `? D

succeeds, and hence by induction hypothesis h(D) = true.

(b2) If �0 `? C ! q does not succeed, we will show that h(C ! D) = false. Let Head(D) = q.

we get

(1) � `? D does not succeed

(2) �; C `? q does not succeed.

Hence by induction hypothesis on (1) we have that h(D) = false. We show that �0 `? C

must succeed. Suppose on the contrary that �0 `? C does not succeed. Hence C 62 �0. Let

Bn = C in the given enumeration. Since Bn 62 �n, by construction, it must be Cop(C) � �0.

In particular C ! q 2 �0, and hence �; C `? q succeeds, against (2). We have shown that

�0 `? C succeeds, whence h(C) = true, by induction hypothesis. Since h(C) = false, we

obtain h(C ! D) = false.

We can now complete the proof. Since �0 `? A does not succeed, we get h(A) = false. On the

other hand, for any B 2 � [ Cop(A), h(B) = true (since � [ Cop(A) � �) and h(A) = false.

This means that � [ Cop(A) 6` A in classical logic. This complete the proof.

2

From the above theorem and lemma 2.3.19 we immediately obtain completeness of the proof procedure

with restart from the initial goal.

Theorem 2.3.22 � ` A in classical implicational logic i� � `? A; (A) succeeds using the restart rule

from the initial goal, added to the procedure of 2.2.1.

Soundness and Completeness of the LL-procedure with restart from any previous goal

We now examine completeness for locally linear computation de�ned in 2.3.7 with the restart rule from

any previous goal. As the next example shows, we cannot restrict the application of restart to the �rst

atomic goal occurred in the computation.

Example 2.3.23 The following query succeeds:

(p! q) ! p; p! r `? r; ;,
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by the following computation:

(p! q) ! p; p! r `? r; ;;

(p! q) ! p `? p; frg;

`? p! q; fr; pg;

p `? q; fr; pg;

p `? p; fr; pg; restart from p:

Ir is clear that restarting from r, the �rst atomic goal would not help.

Theorem 2.3.24 [Soundness and completeness of locally linear computation with restart]

� `? G;H succeeds i� � ` G _
W
H in classical logic.

Proof.Soundness. We prove soundness by induction on the length of the computation.

1. Length 0

In this case G = q is atomic and q 2 �.

Thus � ` q _
W
H .

2. Length k + 1

(a) G = A! B

� `? G;H succeeds if � [ fAg `? B;H succeeds and hence � [ fAg ` B _
W
H by the

induction hypothesis and hence � ` G _
W
H .

(b) G = q and for some B = B1 ! : : :! Bn ! q 2 �, (�� fBg) `? Bi; H [ fqg succeeds for

i = 1; : : : ; n.

By the induction hypothesis �� fBg ` Bi _ q _
W
H for i = 1 : : : n.

However in classical logic
Vn
i=1(Bi _ q) � (B1 ! : : : ! Bn ! q) ! q. Hence � � fBg `

(B ! q) _
W
H and by the deduction theorem � ` q _

W
H .

(c) The restart rule was used, i.e. for some a 2 H

� `? a;H [ fqg succeeds:

Hence � ` a _ q _
W
H and since a 2 H we get � ` q _

W
H

I FINALLY FOUND A FORM OF INDUCTION WHICH WORKS, IN THE PREVIOUS VER-

SION IT DID NOT WORK.

Completeness. We prove completeness by induction on the complexity of the query, de�ned as

follows.

Let Q = � `? G;H , we de�ne cp(Q) as the multiset of the complexity values of non-atomic

formulas in � [ fGg if any, and the empty multiset otherwise, i.e.

cp(Q) =

�
[cp(A1); : : : ; cp(An)] if N Atom(� [ fGg) = fA1; : : : ; Ang

; if N Atom(� [ fGg) = ;

We now consider the following relation on integer multisets: given � = [n1; : : : ; np] and � = [m1; : : : ;mq ],

we write � � � if the following holds:
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either � � �, or � is obtained from � by replacing some occurrence of mi 2 � by a multiset

of numbers strictly smaller than mi.

It may be proved that the relation � is a well-order on integer multisets (REFERENCES??? I THINK

DERSHOWITZ-MANNA []).

We are ready for the completeness proof. Let Q = � `? G;H , we show that if � ` G _
W
H in

classical logic then Q succeeds by induction on cp(Q).

1. The base of the induction, cp(Q) = ;, occurs when G and the database � are all atoms; this case

is clear, because it must be � \ (fGg [H) 6= ;.

2. Let cp(Q) 6= ;. If G is of the form A! B, then we have

(*) � ` (A! B) _
W
H i� �; A ` B _

W
H .

Let Q0 be the query �; A `? B;H ; since cp(A); cp(B) < cp(A ! B), we easily obtain that

cp(Q0) � cp(Q); thus by (*) and by induction hypothesis, we obtain that Q0 succeeds, whence Q

succeed by the implication rule.

3. Let cp(Q) 6= ; and let G be an atom q. If � ` q _
W
H there must be a formula C 2 � such that

Head(C) 2 fqg[H , otherwise we can de�ne a countermodel (by making false all atoms in H[fqg

and true all heads of formulas of �). Assume C is such a formula and Head(C) = p1. If Body(C)

is empty then the computation succeeds either immediately, or by the restart rule (according to

p1 = q or p1 2 H). Otherwise, let C = A1 ! : : :! An ! p1, with n > 0. Then in classical logic

we have

(**) � ` q _
W
H i� �� fCg ` Ai _ q _

W
H , for i = 1; : : : ; n.

Let Qi = � � fCg `? Ai; H [ fqg, for i = 1; : : : ; n. Since cp(C) = �n
i=1cp(Ai) + n, we have

cp(Ai) < cp(C). So that each cp(Qi) � cp(Q). By hypothesis, (**) and the induction hypothesis,

each Qi succeeds. We can now show that Q succeeds as follows. First, if p1 6= q we use restart

with p1 2 H and ask

� `? p1; H [ fqg

Then, in any case, we proceed by reduction with respect to C and ask Qi, for i = 1; : : : ; n, which

succeed by the induction hypothesis.

2

2.3.3 Some e�ciency consideration

The procedures based on locally linear computation are a good starting point for designing e�cient

automated-deduction procedures; on the one hand proof search is guided by the goal, on the other

hand derivations have a smaller size since when a formula has to be reused does not create further

branching. We want now to remark upon termination of the procedures. The basic LL procedure

obviously terminate, since formulas are thrown out as soon as they are used in a reduction step, every

branch of a given derivation eventually ends with a query which either immediately succeeds, or no

further reduction step is possible from it. This indeed was the starting motivation of the LL procedure

as an alternative to a loop-checking mechanism. Does the (bounded) restart rule preserve this property?

As we have stated it, it does not, in the sense that a silly kind of loop may be created by restart. Let us
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consider the following example, we give here the computation for intuitionistic logic, but the example

works as well for the classical case:

a! b; b! a `? a; ;

a! b `? b; (a)

`? a; (a; b)

`? b; (a; b; a)

`? a; (a; b; a; b)

...

This is a loop created by restart. It is clear that continuing the derivation by restart does not

help, as no one of the new atomic goal matches the head of any formula in the database.

In case of classical logic, we can hence modify the restart rules as follows. From

� `? q;H ,

step to

� `? q1; H [ fqg, provided there exists a formula C 2 �, with q1 = Head(C), and q 2 H .

It is obvious that this restriction preserves completeness.

In case of intuitionistic logic, the situation is slightly more complex. The requirement that the

atom from which we restart must match the head of some formula is too strong as the next example

shows.

Example 2.3.25 Let � contain the following formulas:

A1 = s! r,

A2 = q ! s,

A3 = (b! r) ! q,

A4 = b! a! r,

A5 = (s! q) ! a.

Then, we have the following deduction:

� `? r; ;

A2; A3; A4; A5 `? s; (r);

A3; A4; A5 `? q; (r; s);

A3; A4; A5 `? b! r; (r; s; q);

A4; A5; b `? r; (r; s; q);

Then we get

A5; b `? b; (r; s; q; r) and A5; b `? a; (r; s; q; r).

The �rst query succeeds, the latter is reduced to
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b `? s! q; (r; s; q; r; a),

b; s `? q; (r; s; q; r; a),

we then apply bounded restart, the only options are r and a, the latter would not help, so that we

choose r even if it does not match the head of any formula in the database

b; s `? r; (r; s; q; r; a; q),

we now apply bounded restart on s,

b; s `? s; (r; s; q; r; a; q; r)

success.

It should be clear that the atom with which we �nally restart must match the head of some

formula of the database in order to make any progress. But this atom might be reachable only through

a sequence of restart steps which goes further and further back in the history. To handle this situation,

we require that the atom chosen for restart matches some head, but we \collapse" several restart steps

into a single one. In other words, we allow restart from a previous goal q which is accessible from the

current one through a sequence of bounded restart steps.

Given a history H = (q1; q2; : : : ; xn), we de�ne the relation \qj is accessible from qi in H", for qj
in the sequence, denoted by Acc(H; qi; qj), as follows:

Acc(H; qi; qj) � 9qk 2 H (k < j ^ qk = qi) _ 9qk 2 H(Acc(H; qi; qk) ^ Acc(H; qk; qj)).

The modi�ed bounded restart rule for intuitionistic logic becomes: from

� `? q;H ,

step to

� `? q0; H � q, provided

1. there exists a formula C 2 �, with q0 = Head(C), and

2. Acc(H; q; q0) holds.

It is easy to see that the above rule ensures the termination of the procedure without spoiling its

completeness.

Another issue which is important from the point of view of proof search is whether backtracking

is necessary or not when we are searching a derivation. The next lemmas shows that in case of classical

logic, backtracking is not necessary, that is, it does not matter which formula we choose to match an

atomic goal in a reduction step.

Lemma 2.3.26 Let

A = A1 ! A2 ! : : :! An ! q

and

B = B1 ! B2 ! : : :! Bm ! q:

Then (a) is equivalent to (b):
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(a) �; A `? Bi; H [ fqg succeeds for i = 1; : : :m.

(b) �; B `? Ai; H [ fqg) succeeds for i = 1; : : : ; n.

Proof. By theorem 2.3.24, conditions (a) and (b) are equivalent, respectively, to (a0) and (b0) below:

(a0) �; A ` Bi _ q _
W
H , for i = 1; : : : ; n,

(b0) �; B ` Ai _ q _
W
H , for i = 1; : : : ; n.

By classical logic (a0) and (b0) are equivalent to (a00) and (b00) respectively:

(a00) �; A ` (
Vm
i=1Bi) _ q _

W
H

(b00) �; B ` (
Vn
i=1 Ai) _ q _

W
H

Which are equivalent to (a000) and (b000) respectively:

(a000) �; A ` ((
Vm
i=1 Bi ! q) ! q) _

W
H

(b000) �; B ` ((
Vn
i=1Ai ! q) ! q) _

W
H

Both (a000) and (b000) are equivalent to (c) below by the deduction theorem for classical logic.

(c) �; A;B ` q _
W
H

This concludes the proof 2.3.26. 2

By the previous lemma we immediately have.

Proposition 2.3.27 In the computation � `? q;H with restart, no backtracking is necessary. The

atom q can match with the head of any A1 ! : : :! An ! q 2 � and success or failure does not depend

on the choice of such a formula.

The parallel property to 2.3.26, 2.3.27 does not hold for the intuitionistic case. Let A = A1 !

: : :! An ! q, B = B1 ! : : :! Bm ! q

Then (a) is not necessarily equivalent to (b):

(a) �; A `? Bi; H � (q) succeeds

for i = 1; : : : ;m

(b) �; B `? Ai; H � (q) succeeds

for i = 1; : : : ; n.

To this regard, let

� = fag; A = a! q; B = b! q

Then �; A `? b; (q) is

c; a; a! q `? b; (q)

while �; B `? a; (q) is

a; b! q `? a; (q)

The �rst computation fails (we cannot restart here) and the second computation succeeds. It is easily

seen that fc; a; a ! q; b ! qg does not prove b, whereas it does prove a. We thus see that in the

intuitionistic computation � `? q;H , with bounded restart, backtracking is certainly necessary. The

atom q can unify with any formula A1 ! : : :! An ! q and success or failure may depend on the choice

of the formula. This gives an intuitive account of the di�erence of complexity between the intuitionistic

and the classical case.
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2.4 Conjunction and negation

The addition of conjunction to the propositional language does not change the system much. As we

have seen at the beginning of the chapter, ^ can be fully characterized by the following two conditions

on the consequence relation:

1. ^-Elimination rule

A ^ B ` A

A ^ B ` B

2. ^-Introduction rule

A;B ` A ^B.

Let ` be the smallest consequence relation for the language of f!;^g closed under the deduction

theorem and the ^ elimination and introduction rules.

We want to characterize ` computationally. This we do using the following lemmas.

Lemma 2.4.1 1. A! B ! C ` A ^ B ! C

2. A ^ B ! C ` A! B ! C

3. A! B ^ C ` (A! B) ^ (A! C)

4. (A! B) ^ (A! C) ` A! (B ^ C).

Proof. Exercise. 2

Lemma 2.4.2 Every formula A with conjunctions is equivalent in intuitionistic logic to a conjunction

of formulae which contain no conjunctions.

Proof. Use the equivalences of 2.4.1 to pull the conjunctions out. 2

De�nition 2.4.3 1. With any formulaA with conjunctions we associate a unique (up to equivalence)

set C(A) of formulas as follows: given A, use 2.4.2 to present it as ^Ai, where each Ai contains

no conjunctions. Let C(A) = fAig.

2. Let � be a set of formulae. De�ne C(�) =
S
A2� C(A).

3. We can now de�ne � `? A, for � and A containing conjunctions. We will simply compute

C(�) `? C(A), that is

C(�) `? B 8 B 2 C(A):

4. The computation rule for conjunction can be stated directly: � `? A ^ B succeeds i� � `? A

succeeds and � `? B succeeds .

We now turn to negation. As we have seen negation can be introduced in classical and intuition-

istic logic by adding a constant symbol ? for falsity and de�ning the new connective :A for negation

as A ! ?.We will adopt this de�nition. However, we have to modify the computation rules, because

we have to allow for the special nature of ?, namely that ? ` A holds for any A.
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De�nition 2.4.4 [Computations for data and goal containing ? for intuitionistic and classical logic]

The basic procedure is that one de�ned in 2.2.1, (plus the restart rule for classical logic), with the

following modi�cations:

1. Modify (success) rule to read: � `? q immediately succeeds, if q 2 � or ?2 �.

2. Modify (reduction rule) to read: from � `? q step, for i = 1; : : : ; n to

� `? Bi

if there is C 2 � such that Head(C) = q or Head(C) = ?, and Body(C) = (B1; : : : ; Bn).

In 2.4.4 we have actually de�ned two procedures one is the computation without the restart

rule for intuitionistic logic with ?, and the other is the computation with the restart rule for classical

logic. We have to show that indeed the two procedures correctly capture the intended fragment of

the respective systems. This is easy to see. The rule ? ` A is built into the computation via the

modi�cations in 1. and 2. of 2.4.4 and hence we know we are getting intuitionistic logic. To show that

the restart rule yields classical logic, it is su�cient to show that the computation

(A! ?) ! ? `? A

always succeeds with the restart rule. This can also be easily checked.

To complete the picture we show in the next proposition that the computation of � `? A with

restart is the same as the computation of � `? (A ! ?) ! A without restart. This means that the

restart rule (with original goal A) can be e�ectively implemented by adding A! ? to the database and

using the formula A! ? and the ?-rules to replace uses of the restart rule. The above considerations

correspond to the known translation from classical logic to intuitionistic logic, namely:

� ` A in classical logic i� � ` :A! A in intuitionistic logic.

The proof is similar to that one of lemma 2.3.19, namely Cop(G) is a way of representingG! ? without

using ? 3.

Proposition 2.4.5 For any database � and goal G:

� `? G succeeds with restart i� � [ fG! ?g `? G succeeds without restart.

The above lemma can be used to prove that the restart rule can generalized to allow restart at

any time, not only when we reach an atomic goal i.e.

from � `? A; (G0) step to � `? G0; (G0)

for any formula A. The soundness of this generalization may be easily derived from 2.4.5. Details are

left to the reader.

3Recently, this result appears in [Nadathur 98] where a uniform proof system for classical logic is given.
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Example 2.4.6 We check:

(a! b) ! b `? (a! ?) ! b

We use rule for implication

(a! b) ! b; a! ? `? b:

we have two choices here. One is to use the reduction rule with a ! ? and the second to use the rule

for atoms with (a! b) ! b. You can guess that the �rst case loops, so we use the second case:

(a! b) ! b; a! ? `? a! b

(a! b) ! b; a! ?; a `? b

We use the reduction rule with a!?

(a! b) ! b; a!?; a `? a

success.

Example 2.4.7 We check:

(q !?) ! q `? q; (q)

rule for reduction

(q !?) ! q `? q !?; (q)

rule for implication

(q !?) ! q; q `? ?; (q)

Note that the rule for reduction involving ? can be used only when ? is in the database, i.e. in

q !? `? a we can ask for q but not in the case of q ! a `? ?. We cannot use the rule for reduction

here. So, we fail in intuitionistic logic. In classical logic we can use restart to obtain:

(q !?) ! q; q `? q; (q)

and terminate successfully.

Example 2.4.8

(((a!?) ! b) !?) ! c `? (a!?) ! (b!?) ! c

rule for implication

(((a!?) ! b) !?) ! c; a!? `? (b!?) ! c

rule for implication

(((a!?) ! b) !?) ! c; a!?; b!? `? c

The rule for reduction can be used with each of the three assumptions. If you want to use the system

automatically try all three. Otherwise try the �rst one because it will make you add to the data and

thus increase the chances of success.

((a!?) ! b) !?) ! c; a!?; b!? `? ((a!?) ! b) !?
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rule for implication

(((a!?) ! b) !?) ! c; a!?; b!?; (a!?) ! b `? ?

rule for reduction with b!?

(((a!?) ! b) !?) ! c; a!?; b!?; (a!?) ! b `? b

rule for reduction with (a!?) ! b

(((a!?) ! b) !?) ! c; a!?; b!?; (a!?) ! b `? a!?

rule for implication

(((a!?) ! b) !?) ! c; a!?; b!?; (a!?) ! b; a `? ?

rule for reduction using a!?

(((a!?) ! b) !?) ! c; a!?; b!?); (a!?) ! b; a `? a

success.

2.5 Disjunction

The handling of disjunction is much more di�cult than the handling of conjunction and negation.

Consider the formula a ! (b _ (c ! d)). We cannot rewrite this formula in intuitionistic logic to

anything of the form B ! q, where q is atomic (or ?).

We therefore have to change our computation procedures to accommodate the general form of an

intuitionistic formula with disjunction.

In classical logic disjunctions can be pulled out to the outside of formulas using the following

rules:

1. (A _B ! C) � (A! C) ^ (B ! C)

2. (C ! A _ B) � (C ! A) _ (C ! B).

Where � denotes logical equivalence (in our case logical equivalence in classical logic). (1) is valid

in intuitionistic logic but (2) is not valid. In fact, if we add (2) as an axiom schema to intuitionistic

logic we get a stronger logical system known as Dummett's LC (see chapter 4).

In intuitionistic logic we have the disjunction property, namely `I A _ B i� `I A or `I B. This

is not true in classical logic C. Thus for example ` A _ (A ! B) but 6`C A and 6`C A ! B. We have

seen at the beginning of the chapter that the consequence relation rules de�ning disjunction are In view

of the above we may want to adopt the computation rule below for disjunction in the goal.

R1: from � `? A _ B step to � `? A or to � `? B.

This corresponds to the consequence relation rules A ` A _ B and B ` A _B.

In case we have disjunction in the data, the rule is clear:
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R2: from �; A _ B `? C step to �; A `? C and to �; B `? C.

This corresponds to the consequence relation rule

�; A ` C �; B ` C

�; A _ B ` C

Let us adopt the above two rules for computation.

Example 2.5.1 A _ B `? A _ B. Using R1 we get

A _B `? A

or

A _ B `? B

which fail. However using R2, we get

A `? A _ B and B `? A _ B

which succeed using R1.

We can try to encorporate the two rules for disjunction within a goal-directed proof procedure for full

intuitionistic logic. We tentatively propose the following de�nition.

De�nition 2.5.2 Computation rules for full intuitionistic logic with disjunction.

1. The propositional language contains the connectives ^;_;!;?. Formulae are de�ned inductively

as usual.

2. We de�ne the operation �+A, for any formula A =
V
i Ai, as follows: �+A = �[fAig provided

Ai are not conjunctions.

3. The computation rules are as follows.

(suc) � `? q succeeds if q 2 � or ?2 �;

(conj) from � `? A ^ B step to � `? A and to � `? B;

(g-dis) from � `? A _ B step to � `? A or to � `? B;

(imp) from � `? A! B step to � +A `? B;

(red) from � `? G if G is an atom q or G = A _ B, for any C 2 �, with C = A1 ! : : : An ! B

step to

i. � `? Ai, for i = 1; : : : ; n; and to

ii. � +B `? G.

IT IS NOT CLEAR WHAT IS B IN THE ABOVE FORMULA: IS IT THE LAST CONSE-

QUENT OF C WHICH IS NOT AN IMPLICATION???

(c-dis) from �; A _ B `? C step to � +A `? C succeeds andto � +B `? C.
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Notice that we must be allowed to perform a reduction step not only when the goal is atomic, but also

when it is a disjunction, as in the following case

A;A! B _ C `? B _ C

Similarly, even if the goal is an atom q we cannot require that B is atomic and B = q. Moreover, if

there are disjunctions in the database, at every step we can choose to work on the goal or to split the

database by (c-dis) rule. Moreover, if there are n formulas a systematic application of (c-dis) rule yields

2n branches. All of this means that if we handle disjunction in the most obvious way we loose the

goal-directedness of deduction and the computation results very ine�cient. Can we do better? In the

following we give an intuitionistic goal-directed procedure for data containing disjunction.

What makes di�cult to de�ne a goal-directed procedure in the intuitionistic case is that we must

be prepared to switch the goal with another goal coming from another side of a disjunction, but at

the same time we must keep the dependency between a goal and the database from which it is asked.

In the proof procedure de�ned below we use labels to account for the dependency of a goal from the

database it was asked and we use restart to handle disjunction. The labels in the database are partially

ordered, that is they form a tree. This way of using labels is clearly reminiscent of the Kripke semantics

of intuitionistic logic. The deduction-procedure de�ned below retains the goal-directness of the non-

disjunctive case; in particular does not su�er of the two drawbacks of the nave-procedure we have seen

above:

� we apply the reduction rule only when we meet an atomic goal;

� we split a disjunction A_B in the database only if The "head" of A or B (to be de�ned properly)

matches the current atomic goal.

At the end of the section, we will see how to obtain, as a particular case, a proof-procedure for classical

logic with disjunctive formulas. However, in principle it is not even necessary as we can eliminate

disjunction by translating A _ B as (A ! B) ! B, or (A ! ?) ^ (B ! ?) ! ?, although this

translation may be not very e�cient.

To simplify the proof procedure, we rewrite the formulas in a inessential way, by introducing the

notion of D-formula, then we de�ne a proof procedure for D-formulas.

De�nition 2.5.3 A D-formulas is de�ned as

D = ? j q j
V
D !

W
D

where
V
D and

W
D are respectively �nite conjunctions and disjunctions of D-formulas.

It is easy to see that every formula is equivalent to a set (or conjunction) of D-formulas.

When we consider a D-formula, we distinguish the following cases: either D is an atom, or it is

?, or has the form
Vm
i=1Di !

Wn
j=1 Ej , where Di and Ej are D-formulas and we assume that n > 0

and either m > 0 or n > 1. Thus, we can distinguish two subcases of non-atomic D-formulas:

(i) D =
Vm
i=1Di ! D0 with m > 0 and D0 is a D-formula, and

(ii) D =
Wn
j=1 Ej , with n > 1.

We need to de�ne the Head of a D-formula in this context:

Head(q) = fqg,

Head(
Vm
i=1Di !

Wn
j=1 Ej) =

Sm
j=1Head(Ej).

55



De�nition 2.5.4 A query has the form

� `? x : E;H

where E is a D-formula, � is a labelled set of D-formulas and constraints of the form x � y, (x; y are

labels), H the history is a set of pairs of the form

f(x1; D1); : : : ; (xn; Dn)g,

where xi are labels and Di are D-formulas.

The proof rules for constraints are the following

� (� 1) � ` x � x;

� (� 2) � ` x � y, if x � y 2 �;

� (� 3) � ` x � y, if for some z, � ` x � z and � ` z � y.

The computation rule are the following.

� (success-atom) � `? x : q;H immediately succeeds if y : q 2 � or y : ? 2 � and � ` y � x.

� (implication)

from � `? x :
Vm
i=1Di !

Wn
j=1 Ej ; H

step to

�; y : D1; : : : ; y : Dm; x � y `? y :
Wn
j=1 Ej ; H , where y 62 �.

� (disjunction)

from � `? x :
Wn
j=1 Ej ; H step to

� `? x : El; H [ f(x;
Wn
j 6=l El)g for some l = 1; : : : ; n

� (reduction) from � `? x : q;H , if there is a formula y : D 2 �, such that q 2 Head(D) or

? 2 Head(D), with D =
Vm
i=1Di !

Wn
j=1 Ej and � ` y � x, then for some z such that � ` y � z

and � ` z � x we step to

� `? z : Di; H [ f(x : q)g for i = 1; : : : ;m and

�; z : Ej `? x : q;H for j = 1; : : : ; n.

� (restart) from

� `? x : q;H , with q atomic

if (y;D0) 2 H step to

� `? y : D0; H [ f(x; q)g:

� (success-false) � `? x : q;H immediately succeeds if y : ? 2 �.
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Notice that the success-rule is a degenerate case of the reduction rule, (we have kept it distinct by

imposing the constraints on the number of antecedents and consequents). Notice the presence of the

success-false rule.

This is necessary in cases like the following (if we allow them):

x : a; y : ?; x � y `? x : c,

here the success rule does not help. However, we do not need the success-false rule, if the starting

database does not prove x : ? for any x. This is stated in lemma 2.5.8.

The proof system can be extended with a rule for conjunction.

from (conjunction) � `? x :
Vm
i=1Di step to

� `? x : Di, for i = 1; : : : ;m.

Slight variants of the procedure are possible. For instance, we can make more goal-oriented the

reduction rule. Rather than asking

�; z : Ej `? x : q;H for j = 1; : : : ; n,

we can go on decomposing those Ej such that q or ? is in Head(Ej). To this purpose we de�ne a

function which determines what are the next goals, or better the next queries in the case of reduction.

This function NEXT just applies the standard decomposition of sequent calculi, but it keeps the goal

focused. The function NEXT (�; x : q;H; y : D), where D is a D-formula, � `? x : q;H is a query,

and � ` y � x, is de�ned as follows:

NEXT (�; x : q;H; y : D) = � `? x : q;H if fq;?g \Head(D) = ;

NEXT (�; x : q;H; y : D) = f� `? z : Di; H[f(x; q)g j i = 1; : : : ;mg[
S
j NEXT (�[fz :

Ejg; x : q;H; z : Ej),

for one z such that � ` y � z and � ` z � x if D =
Vm
i=1Di !

Wn
j=1Ej .

Then the reduction rule becomes

from � `? x : q;H , if there is a formula y : D 2 �, such that q 2 Head(D) or ? 2 Head(D),

and � ` y � x, step to every Q 2 NEXT (�; x : q;H; y : D).

It can be proved that the reduction rule using NEXT is equivalent to the more general reduction rule.

Example 2.5.5 Let � = fx : A1; : : : ; x : A5g where:

A1 = a! (b! c) _ (d! e),

A2 = c! p,

A3 = (b! p) ! t,

A4 = q ! d,

A5 = (q ! e) ! s.

In �gure 2.3 it is shown a derivation of

� `? x : a! t _ s; ;

which correspond to check A1 ^ : : : ^ A5 ` a ! (t _ s) in intuitionistic logic. We adopt the follwing

abbreviations: we omit � and in each node we only show the additional data whenever is introduced

in the database (thus, the complete database in each query is given by � plus the formulas in each
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database on the branch from the root to that query). Moreover we omit the history as it is clear from

the structure of the tree, we make an exception for (y : t) which is used in the (unique) restart step.

If we use the formulation with the function NEXT, from (*) we immediately step to (i),(ii), and (iii)

without any intermediate step.

When we apply the reduction rule as � `? x : q;H with respect to a formula y : D 2 �,

D =
Vm
i=1Di !

Wn
j=1 Ej , we have to choose a label z such that � ` y � z and � ` z � x and we must

step to

(1) � `? z : Di; H [ f(x : q)g for i = 1; : : : ;m and to

(2) �; z : Ej `? x : q;H for j = 1; : : : ; n.

In general we cannot �x this z in advance. It must be a minimal z such that (1) succeeds. In speci�c

cases we can determine z in advance: if n = 1 and En is atomic, we can always take z = x. If m = 0, we

can always take z = y. The correctness of these choice follows from the the property of monotonicity

stated in lemma 2.5.8.

In order to prove the soundness of the procedure, we need to introduce the notion of realization

of a database.

De�nition 2.5.6 Given � as above, let M = (W;�M ; a0; V ) be a Kripke model. A realization of � is

a mapping � : A !W , such that

� x � y 2 � implies �(x) � �(y);

� x : D 2 � implies M;�(x) j= D.

Given a query Q = � ` x : E;H , we say that Q is valid i� for all M and all realization � of � in M , we

have:

either M;�(x) j= E, or for some (y; F ) 2 H , M;�(y) j= F .

Theorem 2.5.7 (Soundness) If � ` x : E;H is derivable then is valid.

Proof. By induction on the length of computations. Details are left to the reader. 2

In order to prove completeness we need to show that the cut-rule, suitably formulated, is admis-

sible. By �[x : D], we denote that x : D 2 �. The proof makes use of some (almost) obvious properties

of the deduction procedure which are stated in the following lemma.

Lemma 2.5.8 � (i) (Monotony) if � `? x : D;H succeeds and � � �, � ` x � y, H � H 0, then

also � `? y : D;H 0 succeeds.

� (ii) � `? x : D;H [ f(y : E)g succeeds i� � `? y : E;H [ f(x : D)g succeeds.

� (iii) if � `? x : D;H [ f(x : D)g succeeds then also � `? x : D;H succeeds.

� (iv) if � `? x : D;H succeeds and for no label y � `? y : ?; H succeeds, then � `? x : D;H

succeeds without using the success-false rule.
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� (v) if � `? x : ?; H succeeds, then for any D � `? y : D;H succeeds.

Theorem 2.5.9 If �[x : D] `? y : D1; H1 and � `? z : D;H2 succeed,then also

�[x : D=�; z] `? y[x=z] : D1; H1[x=z] [H2 succeed,

where �[x : D=�; z] = (�� fx : Dg)[x=z] [�.

Proof. The proof of this theorem is similar to the one of theorem 2.2.5 and proceeds by induction on

pairs (c; h), where c is the complexity of D and h is the height of a derivation of a successful derivation

of �[x : D] `? y : D1; H1. The precise de�nition of complexity does not matter, we only need

that the atoms have a minimal complexity and that given D of the form
Vk
i=1Di !

Wn
j=1 Ej , the

complexity of Di and of Ej is smaller than that of D. We only consider the most di�cult case, when

�[x : D] `? y : D1; H1 succeeds by recution with respect to D. In this case D1 is an atom, say q and

either q 2 Head(D) or ? 2 Head(D), � ` x � y, and for some u such that � ` x � u and � ` u � y we

step to

� `? u : Di; H1 [ f(y : q)g for i = 1; : : : ; k and

�; u : Ej `? y : q;H1 for j = 1; : : : ; n.

which succeed with a smaller height. By induction hypothesis, we get that

(ai) �[x : D=�; z] `? u[x=z] : Di; (H1 [ f(y : q)g)[x=z] [H2 for i = 1; : : : ; k and

(bj) (� [ fu : Ejg)[x : D=�; z] `? y[x=z] : q;H1[x=z] [H2 for j = 1; : : : ; n.

By the second premise, we get that for some v 62 �, we have that

(c) �; z � v; v : D1; : : : ; v : Dk `? v :
Wn
j=1 Ej ; H2 succeeds.

Since each Di has a smaller complexity than D, by induction hypothesis we can repeatedly cut (ai) and

(c), so that we get that

�[x : D=�; z] `? u[x=z] :
Wn
j=1 Ej ; (H1 [ f(y : q)g)[x=z] [H2

succeeds. But this implies that also

(d1) �[x : D=�; z] `? u[x=z] : E1; H1[x=z][ f(y[x=z] : q); (u[x=z];
Wn
j=2Ej)g [H2 succeeds.

Since E1 has a smaller complexity than D, again by induction hypothesis we can cut (d1) and (b1) so

that we get

�[x : D=�; z] `? y[x=z] : q;H1[x=z] [ f(y[x=z] : q); (u[x=z];
Wn
j=2 Ej)g [H2 succeeds.

By the previous lemma, we get that also �[x : D=�; z] `? u[x=z] :
Wn
j=2 EjH1[x=z][f(y[x=z] : q); g[H2

succeeds, whence

(d2) �[x : D=�; z] `? u[x=z] : E2; H1[x=z] [ f(y[x=z] : q); (u[x=z];
Wn
j=3 Ej)g [H2 succeeds

By induction hypothesis, we can cut (d2) and (b2). By repeating this argument up to n we �nally get

that

�[x : D=�; z] `? y[x=z] : q;H1[x=z] [ f(y[x=z] : q)g [H2 succeed,

so that by the previous lemma the claim follows. 2
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Theorem 2.5.10 If � `? x : D;H is valid then it succeeds.

Proof. We prove the contrapositive, i.e. if � `? x : D;H does not succeed then it is not valid. We

construct a Kripke model by extending the database, through the evaluation of all possible formulas

at every world (each represented by one label) of the database. Since such evaluation may lead, for

implication formulas, to create new worlds, we must carry on the evaluation process on these new

worlds. For this reason we consider in the construction an enumeration of pairs (xi; Di), where xi is a

label and Di is a D-formula.

Assume � `? x : D;H fail. We let A be a denumerable alphabet of labels and L be the

underlying propositional language. Let (xi; Di), for i 2 ! be an enumeration of pairs of A�L, starting

with the pair (x;D) and containing in�nitely many repetitions, that is

(x0; D0) = (x;D),

8y 2 A;8E 2 L;8n 9m > n (y; E) = (xm; Dm).

Given such enumeration we de�ne i) a sequence of databases �n, ii) a sequence of histories Hn, iii) a

new enumeration of pairs (yn; En), as explained below. The construction, will depend at each stage on

the form of the formula En under examination. We refer to the notation for D-formulas introduced at

the beginning of the section, i.e. either D is an atom, or it is ?, or D =
Vm
i=1 Fi ! D0 with m > 0, or

D =
Wn
j=1 Fj , with n > 1, where Fi; Gj ; D

0 are D-formulas.

� (step 0) Let �0 = �, H0 = H , (y0; E0) = (x;D).

� (step n+1) Given (yn; En), we let

- �n+1 = �n,

- (yn+1; En+1) = (xk+1; Dk+1), where k = maxt�n9s�n(ys; Es) = (xt; Dt),

- Hn+1 = Hn

The above de�nition is modi�ed as shown when yn 2 Lab(�n) and we are in one of the following

cases:

{ En = q (q is an atom) or En =
Wm
j Gj , and �n `? yn : En; Hn fails, in this case we let

Hn+1 = Hn [ f(yn; En)g.

{ En =
Vm
j=1 Fj ! D0 and �n `? yn : En; Hn fails, we let

�n+1 = �n [ fyn � xs; xs : F1; : : : ; xs : Fmg,

(yn+1; En+1) = (xm; D
0),

where xs = minfxt 2 A j xt 62 Lab(�n)g.

{ En =
Wm
j Gj , and �n `? yn : En; Hn succeeds, but

for j = 1; : : : ;m, �n `? yn :
Wm
j 6=lGj ; Hn fails.

we let Hn+1 = Hn [ f(yn;
Wm
j 6=lGj)g for one 1 � l � m.

Each stage of the construction de�nes, so to say, a new query. Intuitively, we follow the enumeration

(xn; Dn) in order to determine what is the formula and world to consider at the next stage, unless the

formula currently evaluated is a conditional (and it fails). In such a case, we evaluate its consequent

at a new-created world. When we come to an atomic formula, or to a disjunction. we go back to the

enumeration (xn; Dn) to pick the next pair. The proof of the theorem is composed be the next lemmas.

2
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Lemma 2.5.11 8k 9n � k (xk; Dk) = (yn; En).

Proof. By induction on k. If k = 0, the claim hold by de�nition. Let (xk; Dk) = (yn = En).

� (i) if either yn 62 Lab(�n), or �n; �n `? yn : En; Hn succeeds, or En is atomic, or it is a

disjunction, then (xk+1; Dk+1) = (yn+1; En+1).

� (ii) Otherwise, let En =
Vm
j=1 Fj ! G1 ! : : :! Gt ! K, where K is not an implication (t � 0),

then

(xk+1; Dk+1) = (yn+t+1; En+t+1).

2

Lemma 2.5.12 In the hypothesis �0 `? x0 : D0; H0 fails, the following holds: for all n � 0, if

(y; E) 2 Hn, or E = ?, then �n `? y : E;Hn fails.

Proof. By lemma 2.5.8 we consider only the case of (y : E) 2 H . We proceed by induction on n.

Suppose it does not hold, let n be the minimum stage for which it does not hold. By hypothesis and

lemma 2.5.8, we can assume n > 0. Let n = m+ 1 and suppose the property holds up to m. We need

only to consider the cases when �m 6= �m+1 or Hm 6= Hm+1.

� Let Em be an atom or a disjunction, and Hm+1 = Hm [ f(ym; Em)g. Then �m `? ym : Em; Hm

fails. Suppose for some (y; E) 2 Hm+1, �m `? y : E;Hm+1 succeeds. By lemma 2.5.8(ii) it

must be (y : E) 6= (ym; Em), thus (y; E) 2 Hm, then by hypothesis and lemma 2.5.8(iii), we get a

contradiction.

� Let Em =
Vk
j=1 Fj ! D0 and �m `? ym : Em; Hm fails, then

�m+1 = �m [ fym � xt; xt : F1; : : : ; Fkg,

(ym+1; Em+1) = (xt; D
0),

where xt = minfxs 2 A j xs 62 Lab(�m)g. Suppose for some (y; E) 2 Hm+1 = Hm,

(*) �m+1 `? y : E;Hm+1 succeeds,

consider the following computation of �m `? ym : Em; Hm. Start with

�m `? ym
Vk
j=1 Fj ! D0; Hm,

step by the implication rule to

�m+1 `? ym+1 : D0; Hm+1,

go on with the computation until we reach an atomic goal, let us say � `? z : q;H 0. Since

Hm+1 � H 0, we can step by restart to

� `? y : E;H 0 [ f(z : q)g.

Since �m+1 � �, by (*) and monotony, the above query succeeds, whence �m `? ym : Em; Hm

succeeds, contradicting the hypothesis.
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� Em =
Wt
j Gj , and �m `? ym : Em; Hm succeeds, but for j = 1; : : : ; t, �m `? ym :

Wt
j 6=lGj ; Hm

fails, then Hm+1 = Hm [ f(ym;
Wt
j 6=l0

Gj)g for one 1 � l0 � t. Suppose for some (y : E) 2 Hm+1

�m+1 `? y : E;Hm+1 succeeds, by lemma 2.5.8(ii), we get

�m+1 `? ym :
Wt
j 6=l0

GjHm+1 succeeds,

so that by lemma 2.5.8(iii), since �m+1 = �m, we get that �m `? ym :
Wt
j 6=l0

Gj ; Hm succeeds,

against the hypothesis.

2

Lemma 2.5.13 For all n � 0, if �n `? yn : En; Hn fails, then:

8m � n �m `? yn : En; Hm fails.

Proof. By induction on the complexity of En. If En = ? or En = q, or En is a disjunction, the claim

immediately follows by construction and the previous lemma, without actually using the induction

hypothesis. Let En =
Vm
j=1 Fj ! D0 and �n `? yn : En; Hn fails, then

�n+1 = �n [ fyn � xt; xt : F1; : : : ; xt : Fkg, ,

where xt = minfxs 2 A j xs 62 Lab(�n)g. By the computation rules, �n+1 `? yt : D0; Hn+1 fails; since

(yn+1; En+1) = (xt; D
0), by induction hypothesis, we have that

(*) for all m � n+ 1, �m `? yn+1 : D0; Hm fails.

Suppose for some m > n, �n `? yn :
Vk
j=1 Fj ! D0; Hn succeeds, then for some label u 62 Lab(�m),

(1) �m [ fyn � u; u : F1; : : : ; u : Fkg `? u : D0; Hm succeeds.

On the other hand by monotony, being �n+1 � �m, we easily get that

(2) �m `? yn+1 : Fj ; Hm succeeds for j = 1; : : : ; t.

Since yn � yn+1 2 �m, By cutting (1) and (2), we get that �m `? yn+1 : D0; Hm succeeds, against (*).

2

Lemma 2.5.14 8m;�m `? x : D;Hm fails.

Proof. Immediate by the previous lemma. 2

Lemma 2.5.15 If En =
Vt
j=1 Fj ! D0 and

�n `? yn :
Vt
j=1 Fj ! D0 ,Hn fails,

then there is a y 2 A, such that for k � n, y 62 Lab(�k) and 8m > n:

(i) yn � y 2 �m,

(ii) �m `? y : Fj ; Hm succeeds for j = 1; : : : ; t,

(iii) �m `? y : D0; Hm fails.

Proof. By construction, we can take y = yn+1, the new point created at step n+ 1, so that (i),(ii),(iii)

hold for m = n+ 1. In particular,
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(*) �n+1 `? yn+1 : D;Hn+1 fails.

Since the �m are not decreasing by monotonicity, we immediately have that (i) and (ii) also hold for

every m > n+ 1. By construction, we know that En+1 = D0, whence by (*) and lemma 2.5.13, (iii) also

holds for every m > n+ 1. 2

Lemma 2.5.16 If for some n �n `? y :
Wt
j Gj ; Hn succeeds, then there is an m > n, such that for

some Gl, with 1 � l � t, �m `? y : Gl; Hm succeeds.

Proof. Let �n `? y :
Wt
j Gj ; Hn succeeds, and let k � n, such that (y;

Wt
j Gj) is considered at step k,

that is (y;
Wt
j Gj) = (yk; Ek), then �k `? yk : Ek; Hk succeds. If (a) for some Gl, �k `? yk : Gj ; Hk

succeeds, we are done. On the other hand if (b) for every l, �k `? yk :
W
j 6=lGj ; Hk fails, then it is

easy to see �k+1 `? yk : Gl; Hk+1 for some l succeeds, and we are done again. Otherwise, �k `? yk :W
j 6=lGj ; Hk succeeds for some l. Then, as before, there is h � k, such that (yk;

W
j 6=lGj) = (yh; Eh) is

considered at step h, we can repeat the argument (at most t � 2 times) until we fall in case (a) or in

case (b). 2

Construction of the Canonical model

We de�ne an intuitionistic Kripke-model as follows M = (W;u0;�; V ), such that

- W =
S
n Lab(�n) [ fu0g, where u0 62

S
n �n;

- x � y � x = u0 _ 9n �n ` x � y,

- V (u0) = ;,

-V (x) = fq j 9n x 2 Lab(�n) ^ �n `? x : q;Hn succeedsg for x 6= u0.

It is easy to see that � is re
exive and transitive and that V is monotonic with respect to �.

Lemma 2.5.17 for all x 2W;x 6= u0 and D-formulas E,

M;x j= E , 9n x 2 Lab(�n) ^ �n `? x : E;Hn succeeds.

Proof. We prove both directions by mutual induction on cp(E). If E is an atom then the claim holds

by de�nition, if E is ? it follows by lemma 2.5.12. Assume E =
Vt
j=1 Fj ! D0.

(() Suppose for some m �m; �m `? x :
Vt
j=1 Fj ! D0; Hm succeeds. Let x � y and M; y j=

Vt
j=1 Fj ,

for some y. Then, M; y j= Fj for j = 1; : : : ; t. By de�nition of � we have that for some n1, �n1 ` x � y

holds. Moreover, by induction hypothesis, for some mj , j = 1; : : : ; t, �nj `? y : Fj ; Hmj
succeeds. Let

k = maxfm1; : : : ;mt; n1;mg, then we have

(1) �k `? x :
Vt
j=1 Fj ! D0; Hk succeeds,

(2) �k `? y : Fj ; Hk succeeds for all j = 1; : : : ; t,

(3) �k ` x � y.

So that from (1) we also have:

(1') �k [ fx � z; z : F1; : : : ; z : Ftg `? z : D0; Hk succeeds, (with z 62 Lab(�k)).

We can cut (1') and (2), and obtain that:

�k `? y : D0; Hk succeeds.
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and by induction hypothesis, M; y j= D.

()) Suppose by way of contradiction that M;x j=
Vt
j=1 Fj ! D0, but for all n, if x 2 Lab(�n),

then �n `? x :
Vt
j=1 Fj ! D0; Hn fails. Let x 2 Lab(�n), then there are m � k > n, such that

(x;
Vt
j=1 Fj ! D0) = (ym; Em) is considered at step m+ 1, so that we have:

�m `? ym :
Vt
j=1 Fj ! D0; Hm fails.

By lemma 2.5.15, there is a y 2 A, such that (a) for t � m, y 62 Lab(�t) and (b):

8m0 > m

(i) �m0 ` ym � y,

(ii) �m0 `? y : Fj ; Hm0 succeeds for all j = 1; : : : ; t

(iii) �m0 `? y : D0; Hm0 fails.

By (b)(i) we have x � y holds, by (b)(ii) and induction hypothesis, we have M; y j=
Vt
j=1 Fj . By (a)

and (b)(iii), we get that

8n if y 2 Lab(�n), then �n; �n `? y : D0; Hn fails.

Hence, by induction hypothesis, we have M; y 6j= D0, and we get a contradiction.

Let E =
Wt
j=1Gj . (() Let �n `? x :

Wt
j=1Gj ; Hn succeeds, then by lemma 2.5.16, there is

some m � n such that �m `? x : Gl; Hm succeeds for l = 1; : : : ; t. By induction hypothesis, we have

M;x j= Gl. ()) If M;x j= E, then for some j, M j= Gj , then we simply apply the induction hypothesis

and conclude. 2

Proof of Completeness Theorem 2.2.6. We are able now to conclude the proof of the completeness

theorem. Let �(z) = z, for every z 2 Lab(�), where � is the original database. It is easy to see that

� is a realization of �0 in M and if u : C 2 �, then by identity and the previous lemma we have

M;�(u) j= C. On the other hand, by lemmas 2.5.14,2.5.12, 2.5.17 we have M;�(x) 6j= D and for all

(y; E) 2 H , M;�(y) 6j= E. This concludes the proof.

We end the section with a remark on the treatment of disjunction in classical logic. To have

classical disjunction we can adopt the procedure for intuitionistic logic and ignore the constraints on

the labels (whence the labels themselves). In case of classical logic, we can think that there is a single

world, so that for any pair of labels x; y, the constraint x � y is satis�ed.

Example 2.5.18 Let us check a _ (b ! c) ` (b ! a) _ c in classical logic. The derivation is shown

in Figure 2.4. Let � = fx : a _ (b ! c)g. Query (�) fails in intuitionistic logic as y 6� x, whereas it

succeeds in classical logic since b is in the database, regardless of the label.

The procedure for classical logic can be further simpli�ed in many ways according to the syntax of the

formulas we want to treat (or the amount of rewriting we are willing to perform). One radical reduction

is the following: any formula can be classically transformed into a set of clauses C of the form

C = p1 ^ : : : pn ! q1 _ : : : _ qm, where m > 0 or m = 1 and q1 = ?

We assume that goals are just atoms. This restricted pattern of clauses and goals is however su�cient to

encode any tautology problem in classical logic. We can even further eliminate ? introducing new atoms,

although we will not do it. For database and goals of this format, the restart rule can be restricted

to the initial goal (the proof is similar to the one of proposition 2.3.17). Thus, we may write a query

as � `? q; (q0). For database and goal of the above form the rules of de�nition 2.5.4 simplify to the

following:

64



� (success) � `? q; (q0) immediately succeeds if q 2 �;

� (reduction) from � `? q; (q0), if there is a clause p1 ^ : : : ^ pn ! q1 _ : : : _ qm 2 � such that

q = qi or m = 1 and q1 = ? step to

(1) � `? pj ; (q0) for j = 1; : : : ; n and to (2) �; qj `? q; (q0) for j = 1; : : : ; n ^ j 6= i.

If m = 1 and q1 = ? step only to (1).

� (restart) from � `? q; (q0) step to � `? q0; (q0).

This rules are almost identical to the propositional version of the rules given recently by Nadathur

[Nadathur 98] (for �rst-order classical logic).

2.6 The 8;!-fragment of intuitionistic logic

In this last section we present a goal-directed procedure for the 8;! fragment of intuitionistic logic. This

procedure is in the style of a logic programming proof-procedure which use uni�cation and computes

answer-substitutions, that is the outcome of successful computation of

� `? G[x],

where G[x] stands for 9xG[x] is not only 'yes', but is a most general substitution x=t, such that

� ` G[x=t] holds in intuitionistic logic. In the literature [Miller et al. 91],[Miller 92] similar exten-

sions have been proposed, but with the exception of [Gabbay and Reyle 93] and [Gabbay 92] the answer

computation mechanism is never discussed in detail. We consider it inherent to the extension of the logic

programming paradigm, rather than part of the implementation details which come as an afterthought.

Although a broader extension of our methodology to �rst-order languages, is out of the scope of

the present work, yet what we present in this section may give some hint on how to extend the goal-

directed methods to the �rst-order language for other logics. We assume known standard notions and

notations relative to �rst-order languages, (we refer the reader to any standard textbook as [Gallier 87]).

We will however reformulate the Kripke semantics of intuitionistic logic for the �rst-order case.

In classical logic one can always put formulas in prenex form, replace existential quanti�ers by

Skolem functions, and use the uni�cation mechanism to deal with so-obtained universal sentences. In

intuitionistic logic, as well as in modal logics one cannot skolemize at the beginning of computation. The

process of eliminating existential quanti�ers by Skolem functions must be carried on in parallel with goal

reduction. This process has been called "run-time skolemization" in [Gabbay 92, Gabbay and Reyle 93]

and adopted in N-Prolog [Gabbay and Reyle 93] 4.

The consequence-relation rules for the universal quanti�cation are the following:

(8-I) :
� ` A[c]

� ` 8xA[x];

provided c is a new constant which does not occur neither in � nor in A.

(8-E) 8xA[x] ` A[x=t], where t is any term.

4A similar idea for classical logic is embodied in Free-Variable tableaux originally proposed by Fitting for classical �rst

order logic [] IS IT RIGHT THIS CONNECTION????.
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ARE THESE TWO RULES (ADDED TO THE CONSEQUENCE RULES FOR THE IMPLI-

CATIONAL FRAGMENT) SUFFICIENT TO CHARACTERIZE THE 8;! FRAGMENT OF INTU-

ITIONISTIC LOGIC???

When used backwards the (8-I) rule says that, in order to prove 8xA[x], one has to prove A[c]

for a new constant c. To incorporate this rule soundly within the goal-directed proof procedure for

intuitionistic logic requires some care.

Example 2.6.1 The formula

8x((p(x) ! 8yp(y)) ! q) ! q

is not a theorem of intuitionistic logic, but we if we apply the rule (8-I) naively we succeed as shown in

Fig 2.5.

In the shown derivation, c is a new constant, we succeed since we can unify p(x) and p(c). We should

block the uni�cation of x with c. The rule should prevent the uni�cation of a free variable with a

constant which is introduced later. This might be done by supplying information on when a constant

has been introduced (a sort of "time-stamping" of constants).

We will follow the alternative approach of run-time skolemization. The idea is to eliminate the

universal quanti�ers by introducing a new Skolem function c(x) which depends on all free-variables

occurring in the database and in the goal 5. In the example above, we block uni�cation, since c(x) and

x cannot unify by the occur-check.

Before we de�ne the proof procedure, we �x some notation. We consider formulas of a �rst-order

language containing the logical constants 8;!, and constant, function and predicate symbols of each

arity. We assume known the notion of term. The notation V ar(t) denotes the set of variables occurring

in a term t.

De�nition 2.6.2 We simultaneously de�ne formulas, and the set of bounded (BV AR) and free vari-

ables (FV AR) occurring in a formula.

� If R is a n-ary predicate symbol and t1; : : : tn is a tuple of terms, then R(t1; : : : ; tn) is a formula; we

call R(t1; : : : ; tn) an atom. We let BV AR(R(t1; : : : ; tn)) = ; and Fvar(R(t1; : : : ; tn)) = V ar(t1)[

: : : [ V ar(tn).

� If A and B are formulas, and

BV AR(A) \ BV AR(B) = FV AR(A) \ BV AR(B) = BV AR(A) \ FV AR(B) = ;;

then A! B is a formula, and we let BV AR(A! B) = BV AR(A)[BV AR(B) and FV AR(A!

B) = FV AR(A) [ FV AR(B).

� if A is a formula and x 2 FV AR(A) then 8xA is a formula; we let BV AR(8xA) = BV AR(A)[fxg

and FV AR(8xA) = FV AR(A)� fxg.

5By analogy with tableaux (see the previous footnote), one may study more re�ned skolemization techniques which

minimize the free variables on which the skolem function depends [] WE MUST FIND THE REFERENCES.
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It is easy to see that for all formulas A, FV AR(A) \BV AR(A) = ;, and each universal quanti�er acts

on a di�erent variable, that is we do not allow formulas such as 8x(p(x) ! 8xp(x)).

Every formula of the language can be displayed as

8 �x1(A1 ! 8 �x2(A2 ! : : :8 �xk(Ak ! 8�yq) : : :);

where Ai are arbitrary formulas, �xi and �y are (possibly empty) sequences of variables, and q is an atomic

formula. According to the de�nition, variables �y cannot occur in Ai and variables �xi cannot occur in Aj

for j < i. The restrictions involved in our de�nition of formulas do not cause any loss of generality, as

we can always rename bound variables. A formula A0 which is obtained from a formula A by renaming

some or all bound variables of A is called a variant of A.

Given a formula A we extend the de�nition of Body(A) and Head(A) formulas of the form 8xA:

Body(8xA) = Body(A) and Head(8xA) = Head(A).

Thus, in a formula A = 8 �x1(A1 ! 8 �x2(A2 ! : : :8 �xk(Ak ! 8�y q) : : :), he have that

Body(A) = fA1; : : : ; Akg and Head(A) = q.

We assume that the usual notions regarding substitutions (composition, empty substitution, mgu ecc...)

are known (the reader is referred to [Lloyd 84]). A substitution may act only on the free variables of a

formula, hence if � = fx=a; y=bg, then

(8yp(x; y))� = 8yp(a; y).

Given two substitutions �; 
, we de�ne

� � 
 (� is an instance of 
) i� there is a substitution �, such that � = 
�.

As usual a database is a �nite set of formulas.

The proof procedure we present below manipulates queries N which are �nite sets of basic queries

of the form (� `? A), where � is database A is a formula. As in conventional logic languages, the

proof procedure described below compute answer substitutions in case of success.

De�nition 2.6.3 A derivation of a query N is a sequence of queries N0; N1; : : : ; Nk, together with

a sequence of substitutions �1; : : : ; �k, such that N0 = N , and for i = 0; : : : ; k Ni+1, and �i+1 are

determined according to one of the following rules:

� (Success) if Ni = N 0 [ f(� `? q)g, where q is an atom, and there is a formula C 2 � and a

variant C 0 of C such that BV AR(C 0) \ FV AR(� [ fqg) = ;, Body(C 0) = ;, and there exists

� = mgu(Head(C 0); q), then we can put

Ni+1 = N 0�; �i+1 = �:

� (Implication) if Ni = N 0 [ f(� `? A! B)g, then we can put

Ni+1 = N 0 [ f(� [ fAg `? B)g; �i+1 = �:

� (For all) if Ni = N 0 [ f(� `? 8A)g, �u = fu1; : : : ; ung = FV AR(� [ fAg), and f is a function

symbol not occurring in � [ fAg, then we can put

Ni+1 = N 0 [ f(� `? A[x=f(�u)])g; �i+1 = �:
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� (Reduction) if Ni = N 0 [ f(� `? q)g, where q is an atom, and there is a formula C 2 � and a

variant C 0 of C such that BV AR(C 0) \ FV AR(� [ q) = ;, Body(C 0) = fA1; : : : ; Ang, and there

exists � = mgu(Head(C 0); q), then we can put

Ni+1 = N 0� [ f(�� `? A1�); : : : ; (�� `? An�)g

and

�i+1 = �:

A successful derivation of N is a derivation D = N0; : : : ; Nk, �1; : : : ; �k, such that Nk = ;. The answer

substitution � computed by D is de�ned as the composition of �i restricted to the free- variables of N ,

that is

� = (�1�2 : : : �k)jFV (N):

We conventionally assume that dom(�) = FV (N) 6. We say that N succeeds with answer � if there is

a successful derivation of N computing answer �.

Example 2.6.4 Let � be the following set of formulas:

8x(p(x) ! r(x))

8y(r(y) ! q(y))

8v(s(v) ! [8zp(z) ! 8uq(u)] ! a(v))

8w([s(w) ! a(w)] ! t)

In Fig.2.6, we show a derivation of � `? t. To lighten notation, we omit the parentheses around each

basic query.

The following propositions state some basic properties of the computation.

Proposition 2.6.5 Let N be a query then we have

1. if N has a successful derivation of length h with computed answer �, then N� has a successful

derivation of length � h with computed answer �;

2. if N has a successful derivation of length h with computed � and � � �, then N� has a successful

derivation of length � h with computed answer �.

3. if N� has a successful derivation of length h with computed answer �, then there is a substitution


 such that �� � 
 and N has a successful derivation of length � h with computed answer 
;

4. if N = N 0 [ f(� `? 8yA)g, and N has a successful derivation of length h with computed �, then

for any term t, the query

N 0 [ f(� `? A[y=t])g

has a successful derivation of length � h with computed answer �.

Proof. All claims can be proved by induction on the length of the derivations. We omit the details. 2

Proposition 2.6.6 (Property of monotonicity) If (� `? A) succeeds with answer � and height h, then

(� [� `? A) succeeds with answer � and height � h.

6This can always be achieved by extending � with dummy bindings fx=xg, for variables x 2 FV (N) which have no

proper bindings in �.
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Proposition 2.6.7 Given two queries N1; N2, we have:

(1) if N1 and N2 both succeed with answer �, then the query N1 [N2 succeeds with answer �;

(2) if N1 [ N2 succeeds with �, then there exists �1; �2 � �, such that N1 succeeds with �1 and N2

succeeds with �2.

Proof.

1. Let D be a successful derivation of N1, starting from N1 [N2 we perform the same steps as in the

D, this will leave us at the end with N2�. By hypothesis and proposition 2.6.5(1), N2� succeeds

with answer �, thus from the initial query N1 [N2, we get the answer �� = �.

2. Let N1 [N2 succeeds with �, then (N1 [N2)� succeeds with �, (proposition 2.6.5(1)); this implies

that both N1� and N2� succeed with �; now we can conclude by proposition 2.6.5(3).

2

Proposition 2.6.8 (Identity) For all �; A,

� [ fAg `? A succeeds with �:

In order to prove the completeness of the procedure (proved at the end of the section), we need

to show that computation are closed with resoect to the cut-rule, i.e. the cut-rule is adimissible. This

property might be of interest by itself. First, we must de�ne what we intend by cut in this context. In

order to formulate the cut property, we must remember that the proof-procedure checks the success and

simultaneous answers for conjunctions or sets of basic queries. The computed answer must be taken

into account. For instance

(1) p(x) `? p(a) succeeds with answer x=a, and

(2) q(b);8z(q(z) ! p(z)) `? p(x) succeeds with x=b,

by cutting (1) and (2) on p(x) we otain

q(b);8z(q(z) ! p(z)) `? p(a),

which obviously fails. In order to perform a cut the computed answers of the two premises must be

compatible. We say that two substitution � and � are compatible if they have a common instance �. If

� `? A succeeds with answer � and �; A `? B succeeds with answer �,

and � and � are compatible, that is there is a common instance � � and �, we are able to cut on A. We

expect that the resulting query �;� `? B succeeds with a substitution 
 which is at least as general

as the common instance �. We need to de�ne cut on queries, which are sets of basic queries. Given a

query N = (�1 `? B1); : : : ; (�n `? Bn), a formula A, and a database �, we denote by

N [A=�] = (�0
1 `? B1); : : : ; (�

0
n `? Bn)

the query obtained from N by replacing A in �i by �, that is

�0
i =

�
(�i � fAg) [ � if A 2 �i

�i otherwise
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Theorem 2.6.9 If the following conditions hold:

(1) � `? A succeeds with answer �,

(2) N succeeds with answer �,

(3) there exist some substitutions �1; �2, such that ��1 = ��2,

then there exists a substitution 
 such that ��2 � 
 and

N [A=�] succeeds with answer 
.

Proof. By induction on pairs (c; h) where c is the complexity of A, and h is the length of a successful

derivation of (2). The complexity cp(A) of a formula A is de�ned as in chapter 1, with the additional

stipulation that cp(8xA) = cp(A) + 1. Let c = 0, we consider the case when h � 0, and N 6= ;. Suppose

�rst N = N 0 [ f(� [ fAg `? q)g and success rule is applied to N on (� [ fAg `? q). This means

that from N we step to N 0�, which succeeds with height < h, where � = mgu(Head(C 0); q), for some

variant C 0 of a formula C 2 �, whose body is empty, and � = ��0. If h = 0 the proof below simpli�es,

since N 0 = ;, and we do not need to apply the inductive hypothesis. Let A = q1.

Suppose C 6= A then, since ��1 = ��0�2 � �, we have that

���0�2 `? A��0�2 succeeds with �.

By proposition 2.6.5, �� `? q1� succeeds with some � such that �0�2 � � and height < h. Since for

some �, �0�2 = ��, by induction hypothesis, we get

N 0�[A�=��] = N 0[A=�]� succeeds with some 
 � �0�2.

Since C 6= A, we obtain, by monotonicity, that

N 0[A=�] [ f(� [ � `? q)g succeeds with �
, and ��2 = (��0)�2 � �
.

If C = A = q1, let � = mgu(q1; q), then N 0� succeeds with height < h and � = ��0. Let � = ��0�2.

Using proposition 2.6.5 we have that

(�) �� `? q1� and N 0� both succeeds with �.

Moreover, by the proposition 2.6.5 N 0� succeeds with height < h. Then we can apply the inductive

hypothesis and conclude that

N 0�[q1=��] = N 0[q1=�]� succeeds with �.

Since q1� = q�, we can combine the above conclusion with (*) (proposition 2.6.7), and by monotonicity

we have that

(N 0[q1=�]� [ f(� [ � `? q)g)� succeeds with �.

By the proposition we have that for some � � �,

N 0[q1=�]� [ f(� [ � `? q)g succeeds with answer �.

But since ��2 = ��0�2 = � � �, we have obtained the desired conclusion.

Next we consider the cases when c = 0, h > 0, N has the form
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N = N 0 [ f(� [ fAg `? B)g

and the next query in the derivation is obtained by applying either implication rule or the rule for

universal quanti�cation to (� [ fAg `? B). Since these two rules do not modify bindings, we can just

apply the inductive hypothesis to the next queries and conclude. We omit the details.

We now consider the case when c = 0, h > 0, N has the form

N = N 0 [ f(� [ fAg `? q)g

and the next query in the derivation is obtained by applying reduction to the basic query (�[fAg `? q).

Since cp(A) = c = 0, q is reduced with respect to C 2 � di�erent from A. Then, for some variant

C 0 of C such that BV AR(C 0) \ FV AR(� [ fA; qg) = ;, Body(C 0) = fD1; : : : ; Dng, there exists

� = mgu(Head(C 0); q), and we step to

(i) N 0� [ f(�� [ fA�g `? D1�); : : : ; (�� [ fA�g `? Dn�)g

which suceeds with �0 such that � = ��0, and with height < h. Since ��1 = ��0�2 � �, we have that

���0�2 `? A��0�2 succeeds with �.

By proposition 2.6.5,

(ii) �� `? A� succeeds with some � such that �0�2 � � and height < h.

We have that, for some �, �0�2 = ��; we can apply the induction hypothesis to (i) and (ii), and obtain

that N 0�[A�=��] [ f(�� [ �� `? D1�); : : : ; (�� [ �� `? Dn�)g that is

(iii) N 0[A=�]� [ f((� [ �)� `? D1�); : : : ; ((� [ �)� `? Dn�)g succeeds with some


 � �0�2.

Thus, we can reduce the query N 0[A=�] [ f(� [ � `? q)g to (iii) and succeed with �
. Since

��2 = (��0)�2 � �
, we have obtained the desired result.

Suppose now that cp(A) = c > 0. It is easily seen that there is only one additional case: that one

in which N = N 0 [ f(� [ fAg `? q)g and the next query in the derivation is obtained by reduction of

q with respect to A. Let

A = 8 �x1(D1 ! 8 �x2(D2 ! : : :8 �xk(Dk ! 8�yq1) : : :)

and let A0 be a variant of A such that BV AR(A0) \ FV AR(�; q) = ;. Then we have that Body(A0) =

fD0
1; : : : ; D

0
kg and Head(A0) = q01. Then, there exists � = mgu(q01; q) and we step to

(i) N 0� [ f((�� [ fA�g `? D0
1�); : : : ; (�� [ fA�g `? D0

k�)g

which succeeds with �0 such that � = ��0, and with height < h. We can proceed as before: since

��1 = ��0�2 � �, we have that ���0�2 `? A��0�2 succeeds with �. By proposition 2.6.5,

(ii) �� `? A� succeeds with some �1 such that �0�2 � �1 and height < h.

We have that, for some �, �0�2 = �1�; we can apply the induction hypothesis to (i) and (ii), and obtain

that
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(iii) N 0[A=�]�[f((�[�)� `? D0
1�); : : : ; ((�[�)� `? D0

k�)g succeeds with some 
 � �0�2.

From (ii), by proposition 2.6.8, we get

�� `? D0
1� ! (8 �x2(D2 ! : : :8 �xk(Dk ! 8�yq1) : : :)� succeeds with �1, and hence also

�� [ fD0
1�g `

? (8 �x2(D2 ! : : :8 �xk(Dk ! 8�yq1) : : :)�.

We can proceed by proposition 2.6.5 and implication rule and conclude that:

�� [ fD0
1�;D

0
2� : : :Dk�g `? q01� succeeds with �1.

But since q01� = q�, we also get

(iv) �� [ fD0
1�;D

0
2� : : :Dk�g `? q� succeeds with �1.

On the other hand from (iii) by propositions 2.6.5 and 2.6.7 we get that

(a) N 0[A=�]��0�2 succeeds with �,

and for i = 1; : : : ; k

(bi) (�� [ �� `? D0
i�) succeeds with answer 
i such that �0�2 � 
i.

We have that for some �1 and  1 �1�1 = �0�2 = 
1 1, Furthermore, it holds that cp(D0
1) < cp(A), we

can hence apply the induction hypothesis to (iv) and (b1) and obtain that:

(v) �� [ �� [ fD0
2� : : :Dk�g `? q� succeeds with some �2, such that �0�2 � �2.

We can repeat the same argument, now using (v) and (b2). At the end we obtain that �� [ �� `? q�

succeeds with some �k+1 such that �0�2 � �k+1. By proposition 2.6.5, we get that

(c) ���0�2 [ ���0�2 `? q��0�2 succeeds with �.

By proposition 2.6.7, we can combine (a) and (c) and conclude that (N 0[A=�] [ f(� [ � `? q))g��0�2
succeeds with �. Finally, by proposition 2.6.5, we obtain that for some � such that ��0�2 � �,

N 0[A=�] [ f(� [ � `? q))g succeeds with answer �.

Since it holds that ��2 = (��0)�2 � �, we have obtained the desired conclusion. 2

Corollary 2.6.10 (a) If � `? A succeeds with � and � [ fAg `? B succeeds with � and for some

substitutions �1; �2 ��1 = ��2, then there is a substitution 
 � ��2 such that

� [ � `? B succeeds with 
.

(b) In particular, if � `? A and � [ fAg `? B both succeed with � then �;� `? B succeeds with �.

We now prove the soundness and completeness of the the proof procedure. To this aim we

introduce the Kripke semantics for the �rst-order fragment L(8;!;^) of intuitionistic logic, which is

su�cient to interpret our queries. For the fragment we deal with, it is su�cient to consider constant

domain Kripke models. We also assume that the denotations of terms are rigid, i.e. do not depend on

worlds.

De�nition 2.6.11 A structure M for a language L(8;!;^) is a quadruple M = (W;D; I �) where D

and W are non empty sets, � is a re
exive-transitive relation, and I , (called the interpretation function),

maps

72



� every n-ary function symbol f on a n-ary function I(f) : Dn ! D,

� every n-ary predicate symbol p on a function I(p) : W ! 2Dn , that is I(p)(w) for w 2 W is an n-

ary relation on W ,

� every variable x on an element of D.

I is assumed to be increasing on the interpretation of predicates:

w � w0 ) I(w)(p) � I(w0)(p).

The interpretation of terms is de�ned as in �rst-order classical structures. To de�ne truth in a structure,

we assume that the language is expanded with names (constants) for all elements of D; we will not

distinguish between an element of D and its name. We de�ne M;w j= A, which is read as "A is true in

M at world w", as follows:

M;w j= p(�t) i� �t 2 I(p)(w);

M;w j= A ^ B i� M;w j= A and M;w j= B;

M;w j= A! B i� for all w0 such that w � w0 M;w0 j= A impliesM;w0 j= B;

M;w j= 8xA i� 8d 2 D M;w j= A[x=d]7

Validity in a structure M (i.e. M j= A) is de�ned as truth in every world of M , and logical validity (i.e.

j=I A) is de�ned as validity in any structure.

HERE I HAVE DEFINED MODELS WITHOUT A LEAST WORLD, DO WE CHANGE THE

DEFINITION? IS TRUTH IN THE LEAST WORLD EQUIVALENT TO TRUTH IN EVERY WORLD???

The next theorem states the soundness of the procedure with respect to intuitionistic logic.

Theorem 2.6.12 (Soundness) Let N = (�1 `? A1); : : : ; (�n `? An) be a query. If N succeeds

with answer �, then 8
�Vn

i (
V

�i ! Ai)�
�
is valid in intuitionistic logic.

Proof. By induction on the height of a successful derivation of N . We omit the details. 2

We prove the completeness of the procedure by a canonical model construction which makes an

essential use of the cut-admissibility theorem 2.6.9.

Canonical Model construction

We consider a language L which contains in�nitely many function symbols of each-arity, and we de�ne

a structure M = (W;D;�; I), where W is the set of databases (�nite sets of formulas) on L, D is the

set of terms on L, and I is the identity on terms, and for every � 2W , and predicate p

�t 2 I(p)(�) , � `? p(�t) succeeds with �:

By monotonicity of deduction it is easily seen that I is increasing on the interpretation of predicates.

Proposition 2.6.13 For any �; A we have:

M;� j= A , � `? A succeeds with �.

7Notice that, in the case of 8 we do not need to consider truth in upper worlds; this because we are dealing with

constant domain Kripke models.
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Proof. We prove the two directions simultaneously by induction on the complexity of A. If A is an

atomic formula, the claim holds by de�nition of I .

Let A = B ! C.

()) Suppose that M;� j= B ! C. By identity we have that � [ fBg `? B succeeds with �. Let

� = � [ fBg, by induction hypothesis we have M;� j= B; since � � �, by hypothesis we can conclude

that M;� j= C, so that by induction hypothesis � [ fBg `? C succeeds with �; this implies that

� `? B ! C succeeds with �.

(() Suppose that � `? B ! C succeeds with �. By implication rule, it must be that

(i) � [ fBg `? C succeeds with �.

Now let � be a database such that � � � and M;� j= B. By induction hypothesis we get that

(ii) � `? B succeeds with �.

From (i) and (ii) by cut (corollary 2.6.10), we obtain � [� `? C succeeds with �, that is the same as

� `? C succeeds with �, since � � �. By induction hypothesis we �nally get M;� j= C.

Let A = 8xB.

()) Suppose that M;� j= 8xB, then, for any term t we have that M;� j= B[x=t]. Let fu1; : : : ukg =

�u = FV (� [ fBg) and let f be a k-ary function symbol not occurring in � [ fBg, then we have in

particular that M;� j= B[x=f(�u)], and by induction hypothesis we get that � `? B[x=f(�u)] succeeds

with �. By the for-all rule this implies that also � `? 8xB succeeds with �.

(() Suppose that � `? 8B succeeds with �; by proposition 2.6.5, we have that for every term t,

� `? B[x=t] succeeds with �. By induction hypothesis we get that, for all t M;� j= B[x=t] and hence

M;� j= 8xB. 2

From theorem 2.6.13 we easily obtain the completeness of the proof procedure. As in conventional

Horn logic programming, we cannot expect that for every �, if j=I (� ! A)�, then � `? A succeeds

with �, but only that there is some substitution 
 at least as general as � such that � `? A succeeds

with 
. For instance, for any �, (p(x) ! p(x))� is valid, but ; `? p(x) ! p(x) succeeds with � only.

Theorem 2.6.14 (Completeness) LetN = (�1 `? A1); : : : ; (�n `? An) be a query. If 8
�Vn

i (
V

�i !

Ai)�
�
is valid in intuitionistic logic, then N� succeeds with � and N succeeds with 
 such that � � 
.

Proof. Suppose that 8
�Vn

i (
V

�i ! Ai)�
�

is valid then it is valid in the canonical model M de�ned

above. Thus, in each world � of M , we have M;� j=
Vn
i (
V

�i ! Ai)�. Since for every i, �i� 2 W , so

that, in particular, M;�i� j=
V

�i� ! Ai�. Since M;�i� j=
V

�i�, we get that M;�i� j= Ai�. By the

previous proposition, we obtain that

�i� `? Ai� succeeds with �, for i = 1; : : : ; n.

This implies that N� succeeds with � and N succeeds with 
 such that � � 
 by proposition 2.6.5. 2
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`? x : a! t _ s

x � y; y : a `? y : t _ s

`? y : t; (y : s)

`? y : b! p

y � z; z : b `? z : p

(�) `? z : c

(i) `? y : a
��
� HHH

y : (b! c) _ (d! e) `? z : c

y : b! c `? z : c

(ii) y : b! c `? z : b

��
� HHH

(iii) y : d! e `? z : c

`? y : s (restart)

`? y : q ! e

y � u; u : q `? u : e

`? u : d

`? u : q

Figure 2.3:
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� ` x : (b! a) _ c; ;

� ` x : b! a; f(x; c)g

x � y;�; y : b ` y : a; f(x; c)g

x � y;�; y : b; x : a ` y : a; f(x; c)g
��
�� PPPP

x � y;�; y : b; x : b! c ` y : a; f(x; c)g

x � y;�; y : b; x : b! c ` x : c; f(x; c); (y; a)g restart

(�)x � y;�;y : b; x : b! c ` x : b; f(x; c); (y; a)g

Figure 2.4:

; `? 8x((p(x) ! 8yp(y)) ! q) ! q

8x((p(x) ! 8yp(y)) ! q) `? q

8x((p(x) ! 8yp(y)) ! q) `? p(x) ! 8yp(y)

8x((p(x) ! 8yp(y)) ! q); p(x) `? 8yp(y)

8x((p(x) ! 8yp(y)) ! q); p(x) `? p(c)

Figure 2.5:
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� `? t

� `? s(w0) ! a(w0)

�; s(w0) `? a(w0)

�s(w0) `? s(w0); ((�; s(w) `? 8p(z) ! 8uq(u))

�; s(w0);8zp(z) `? 8uq(u)

�; s(w0);8zp(z) `? q(f(w0))

�; s(w0);8zp(z) `? r(f(w0))

�; s(w0);8zp(z) `? p(f(w0))

success, as mgu(p(z); p(f(w0))) = fz=f(w0)g

Figure 2.6:
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Chapter 3

Intermediate logics

We have seen in the previous chapter that intuitionistic logic is complete with respect to the class of

�nite Kripke models. Given a Kripke model M = (S;�; a; V ), we can consider the structure (S;�; a),

which is a �nite tree, forgetting about the evaluation function V for atoms. Changing the terminology

a bit, we will speak about models based on a given �nite tree (S;�; a), since varying V we will have

several models based on it. The completeness result can be restated as follows: intuitionistic logic is

complete with respect to the class of �nite trees, that is to say, with respect to Kripke models based on

the class of �nite trees. This change of terminology matters as we can consider subclasses of �nite trees

and ask what axioms we can add to obtain a characterization of valid formulas in these subclasses. Let

us consider two such subclasses.

(1) For any k, the class of �nite trees of height � k; a �nite tree T = (S;�; a) is in this class if there

are not k + 1 di�erent elements a; t1; : : : ; tk, such that

a � t1 � : : : � tk holds.

This means that all chains are of length � k. Valid formulas in these subclasses are axiomatized

by the axioms BHk of the next section.

(2) For any k, the class of �nite trees of width � k; a �nite tree T = (S;�; a) is in this class if there are

not k + 1 di�erent elements which are pairwise incomparable. Valid formulas in these subclasses

are axiomatized by taking the axiom schema

(A1 ! A2) _ (A2 ! A3) _ : : : _ (Ak ! A1).

for �nite width trees of width � k. Notice that for k = 2, we have the axiom

(A1 ! A2) _ (A2 ! A1)

which gives the well known logic LC introduced independently by Dummett [Dummett 59] and

G�odel REFERENCE??? that we have already mentioned in the previous chapter. This axiom

corresponds to the property of linearity: the models are �nite ordered sequence of worlds.

In this chapter, we begin the study of these classes of intermediate logics, and we give a goal-

directed formulation for the logics of bounded height Kripke models and for Dummett logic LC .
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3.1 Intermediate logics of bounded height Kripke models

We treat here the sequence of intermediate logics between intuitionistic logic and classical logic of

bounded height Kripke models. To formalize logics them, we consider the following axioms

BH1 = ((A1 ! A0) ! A1) ! A1

...

BHn = ((An ! An�1) ! An) ! An.

where An�1 is an instance of BHn�1. Axiom schema BH1 is nothing else than Peirce's axiom, thus

adding it to intuitionistic logic we get classical logic. The axiom BHn+1 is strictly weaker than BHn.

Let BHn denote the logic obtained by adding to intuitionistic logic I the axiom schema BHn. Then

we have the following facts.

Proposition 3.1.1 (REFERENCE???) (a) BHn � BHn+1;

(b) I =
T!
n=1BHn;

(c) A is a theorem of BHn i� A is valid in all models of height � n.

The proof systems for BHn are a simple extension of the labelled procedure we have seen in

chapter 2 for intuitionistic logic with disjunction. For brevity, we give it here for the pure implicational

fragment, but it is possible to extend it to the full propositional language exactly as shown in de�nition

2.5.4. We recall the rules of the basic implicational system.

De�nition 3.1.2 A query has the form � `?n x : A;H , where � is a labelled set of formulas and

constraints of the form x � y where x; y are labels. H , called the history, is a set of pairs of the form

f(x1; q1); : : : ; (xn; qn)g

where xi are labels and qi are atoms. The rules for proving constraints are as follows:

� (� 1) � ` x � x;

� (� 2) � ` x � y, if x � y 2 �;

� (� 3) � ` x � y, if for some z, � ` x � z and � ` z � y.

For each n � 1, we de�ne the proof system `?n as follows. The logical rules are the following

� (success) � `?n x : q;H immediately succeeds if y : q 2 � and � ` y � x;

� (implication) from � `?n x : A! B;H we step to

�; y : A; x � y `?n y : B;H ,

where y 62 Lab(�) [ Lab(H) [ fxg.

� (reduction) from � `?n x : q;H if there is a formula y : C 2 �, with C : A1 ! : : :! Ak ! q such

that � ` y � x we step to

� `?n x : Ai; H [ f(x; q)g, for i = 1; : : : ; k.
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� (n-shifting restart) from � `n x : r;H if there are

(x1; q1); : : : ; (xk; qn) 2 H , such that

� ` x1 � x2 : : :� ` xn � x

we step to

� ` x2 : q1; H [ f(x; r)g,
...

� ` xn : qn�1; H [ f(x; r)g,

� ` x : qn; H [ f(x; r)g.

We have called the last rule \shifting" restart as each goal qi is re-asked from a point xi+1 which

is, so to say, above the point xi from which it was asked the �rst time (the condition is xi � xi+1);

the goal qi is hence shifted from xi to xi+1. Notice that in case of n = 1, the 1� shifting-restart rule

just prescribes to \shift" a previous goal to the current point, that is it prescribes to reask any previous

atomic goal from the current database. The 1� shifting-restart is therefore restart for classical logic.

If we want a proof system for the whole propositional language we must add the rules of section 2.5, in

this extension the histories will contain arbitrary formulas rather than atoms.

Example 3.1.3 In Fig. 3.1, we show a derivation of the following atomic instance of BH2

((a2 ! ((a1 ! a0) ! a1) ! a1) ! a2) ! a2

Database � and �0 are respectively as follows:

� = fx1 : ((a2 ! ((a1 ! a0) ! a1) ! a1) ! a2g,

�0 = � [ fx1 � x2; x2 � x3; x3 � x4; x2 : a2; x3 : (a1 ! a0) ! a1; x4 : a1g.

At step (*) we apply the special 2-shifting-restart rule (i.e. the one for BH2). At this step, the history

is f(x1; a2); (x3; a1)g and the current position is x4, thus, by restart, we \shift" a2 to x3 and a1 to x4.

The queries on the leaves of the tree immediately succeed.

We now prove the soundness and completeness of this family of goal-directed procedures with

respect to BHn. We recall the notion of realization we have already introduced in section 2.5.

De�nition 3.1.4 Given a Kripke structure M = (W;w0;�; V ), a realization of a database � in M is a

mapping � : A !W , such that

� x � y 2 � implies �(x) � �(y);

� x : A 2 � implies M;�(x) j= A.

Given a query Q = � ` x : G;H , we say that Q is valid in BHn i� for all M and all realization � of �

in M , we have:

either M;�(x) j= G, or for some (y; r) 2 H , M;�(y) j= r.
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`2 x0 : ((a2 ! ((a1 ! a0) ! a1) ! a1) ! a2) ! a2; ;

x1 : ((a2 ! ((a1 ! a0) ! a1) ! a1) ! a2 `2 x1 : a2; ;

� `2 x1 : a2 ! ((a1 ! a0) ! a1) ! a1; f(x1; a2)g

�; x1 � x2; x2 : a2 `2 x2 : ((a1 ! a0) ! a1) ! a1; f(x1; a2)g

�; x1 � x2; x2 � x3; x2 : a2; x3 : (a1 ! a0) ! a1 `2 x3 : a1; f(x1; a2)g

�; x1 � x2; x2 � x3; x2 : a2; x3 : (a1 ! a0) ! a1 `2 x3 : a1 ! a0; f(x1; a2); (x3; a1)g

(�)�; x1 � x2; x2 � x3; x3 � x4; x2 : a2; x3 : (a1 ! a0) ! a1; x4 : a1 `2 x4 : a0; f(x1; a2); (x3; a1)g

�0 `2 x3 : a2; f(x1; a2); (x3; a1)g
��
�� PPPP

�0 `2 x4 : a1; f(x1; a2); (x3; a1)g

Figure 3.1:

Theorem 3.1.5 (Soundness) If � `?n G;H succeeds then it is valid in BHn.

Proof. We proceed by induction on the derivation of the query in the hypothesis. We only consider

the case when the query � `?n x : G;H succeeds by n-shifting restart. In this case G is an atom q and

there are (x1; q1); : : : ; (xn; qn) 2 H , such that

� ` x1 � x2 : : :� ` xn � x,

and from (*) � `?n x : r;H we step to

(h1) � ` x2 : q1; H [ f(x; r)g,
...

(hn�1) � ` xn : qn�1; H [ f(x; r)g,

(nn) � ` x : qn; H [ f(x; r)g.

Since each of the queries above succeeds by a shorter derivation, we can apply the induction

hypothesis and assume that (h1)��(hn) are valid. Suppose now that (*) is not valid in BHn, then for

some model M = (W;w;�; V ) and some realization � of � in M , we have

(1) M;�(xn+1) 6j= r, where xn+1 = x,

(2) for all (y; q) 2 H; M; �(y) 6j= q,

(3) �(xi) � �(xi+1) for i = 1; : : : ; n.

In particular from (2) we have that

(4) M;�(xi) 6j= qi for every i = 1; : : : ; n.
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On the other hand by the validity of (h1)��(hn), (1) and (4), we must have that

(5) M;�(xi+1) j= qi for every i = 1; : : : ; n.

By (3) we have �(x1) � �(x2) � : : : � �(xn) � �(xn+1), but by proposition 3.1.1 every chain in M as

length at most n, thus it must be

(***) �(xi) = �(xi+1) for some xi, with i = 1; : : : ; n.

By (4) and (5) we have a contradiction. 2

We now turn to completeness, we �rst notice that for the axiomatization of BHn, it is su�cient

to add to the Hilbert system for intuitionistic logic only the atomic instances of BHn. To this regard

let �n be the set of atomic instances of BHn.

Lemma 3.1.6 (REFERENCES???) We have

j=BHn
A i� �n ` A in intuitionistic logic.

Proposition 3.1.7 Let �n 2 �n, the query

`?n x0 : �n; ; succeeds in the proof system for BHn.

Proof. We can assume that �n = ((qn ! �n�1) ! qn) ! qn, where q0; q1; : : : ; qn are distinct proposi-

tional variables, and �i = ((qi ! �i�1) ! qi) ! qi 2 �i, for i = 1; : : : ; n.

We show a derivation of the above query:

`?n x0 : �n; ;

x1 : (qn ! �n�1) ! qn; x0 � x1 `?n x1 : qn; ;,

x1 : (qn ! �n�1) ! qn; x0 � x1 `?n x1 : qn ! �n�1; f(x1 : qn)g,

and after two implication steps

x1 : (qn ! �n�1) ! qn; x2 : q1; x3 : (qn�1 ! �n�2) ! qn�1; x0 � x1; x1 � x2; x2 � x3 `?n
x3 : qn�1; f(x1 : qn)g

x1 : (qn ! �n�1) ! qn; x2 : q1; x3 : (qn�1 ! �n�2) ! qn�1; x0 � x1; x1 � x2; x2 � x3 `?n
x3 : qn�1 ! �n�2; f(x1 : qn); (x3 : qn�1)g

Proceeding this way we arrive to

� `?n x2n : q0; H ,

where

H = f(x1 : qn); (x3 : qn�1); : : : ; (x2n�1; q1)g and

� = fx2(i+1) : qn�i; x2i+1 : (qn�i ! �n�(i+1)) ! qn�i; xi � xi+1 j i = 1; : : : ; n� 1g

Since � ` x1 � x3 : : :� ` x2n�1 � x2n, we can apply n-shifting-restart and step to

� `?n x3 : qn; H [ f(x2n; q0)g

� `?n x5 : qn�1; H [ f(x2n; q0)g
...

� `?n x2n : q1; H [ f(x2n; q0)g
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Each one of the above queries succeeds by the success rule. 2

The completeness of the procedure is an easy consequence of the admissibility of cut.

Theorem 3.1.8 (Closure under Cut) If �[x : D] `?n y : D1; H1 and � `?n z : D;H2 succeed,then

also

�[x : D=�; z] `?n y[x=z] : D1; H1[x=z] [H2 succeed,

where �[x : D=�; z] = (�� fx : Dg)[x=z] [�.

Proof. As in the previous cases, we proceed by double induction on the complexity of the cut formula

and on the length of the derivation. The proof is very similar to the one of theorem 2.5.9 and details

are left to the reader. 2

Theorem 3.1.9 (Completeness) Let A be valid in BHn, then `?n x : A; ; for any label x succeeds.

Proof. By proposition 3.1.6 if A is valid in BHn, then �0
n `i A holds, where �0

n is a �nite set of

atomic instances of �n, by the completeness of the proof procedure for intuitionistic logic, we have that

�n `? A succeeds. The proof system for BHn is an extension of the intuitionistic one. It is easy to

see that letting �0
n = fx0 : B j B 2 �ng, we have

(i) �0
n `?n x0 : A; ; succeeds.

But by proposition 3.1.7, we also have that

(ii) `?n x0 : B; ; succeeds for every B 2 �0
n.

Since the computation are closed under cut (3.1.8), From (i) and (ii) we get that

`?n x0 : A; ; succeeds.

2

3.2 Dummett-G�odel logic LC

In this section we show how we can give a goal-directed procedure for one of the most important

intermediate logics, namely Dummett logic LC [Dummett 59]. The system LC extends intuitionistic

logic by the axiom

(A! B) _ (B ! A):

Semantically, this axiom restricts the class of Kripke models of intuitionistic logic, to those which are

linearly ordered. This logical system was previously introduced by G�odel [?] to show that intuitionistic

logic does not admit a characteristic �nite matrix.

IS IT RIGHT THIS HISTORICAL REMARK?

G�odel formulated a particularly simple many-valued semantic for LC , that we recall below. For-

mulas are interpreted in the real interval [0; 1]; let v : V ar ! [0; 1] be an evaluation of the propositional

variables, v can be extended to any formula in the language (!;^;:;_) according to the following

clauses:
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v(A! B) =

�
1 if v(A) � v(B)

v(B) otherwise

v(A ^B) = min(v(A); v(B))

v(A _B) = max(v(A); v(B))

v(:A) =

�
1 if v(A) = 0

0 otherwise

We say that a formula A is valid if v(A) = 1 under any v on [0; 1]. Because of its many-valued

semantic, logic LC is nowadays considered as one of the fundamental fuzzy logics (see [Hajek 98]).

An alternative axiomatization of LC can be given by adding to the propositional fragment of

intuitionistic logic one of the following:

(A! B _ C) ! (A! B) _ (A! C)

(A ^ B ! C) ! (A! C) _ (B ! C):

The �rst axiom allows one to carry out a disjunction from the consequent of an implication. It is easily

seen that the converse of each axiom above is provable in intuitionistic logic.

The implicational frag ment of LC can be axiomatized by adding to the implicational fragment

of intuitionistic logic the following axiom:

((A! B) ! C) ! ((B ! A) ! C) ! C:

We can formulate a proof procedure for LC similar to the one for systems BHn of the previous

section, which makes use of labelled databases and constraints. To this purpose we replace shifting

restart by the following two rules

� (backtracking) from � `? x : q;H , with q atomic if (y; r) 2 H step to

� `? y : r;H [ f(x; q)g:

� (linear restart) from � `? x : q;H , with q atomic if (y; r) 2 H step to

�; y � x `? x : q;H and �; x � y `? y : r;H

The proof system can be extended to the full propositional language as shown in section 2.5, in this

case the history of a query will contain arbitrary formulas rather than atoms. The linear restart rule

performs a restricted form of case analysis enforced by linearity. We give an example of computation

when we have disjunction handled as in section 2.5.

Example 3.2.1 We show (�gure 3.2) that ` x : (a! b) _ (b! a); ; succeeds. Step (1) is obtained by

the rule for disjunction, step (3) by the backtracking rule. We have abbreviated f(x : b ! a); (y : b)g

by H . Finally steps (5) and (6) are obtained by the linear restart rule, as (y; b) 2 H .

The above procedure can be shown to be sound and complete for LC . To this regard we can

develop a syntactic proof as we did in the previous section for BHn in three steps: (1) for the axiom-

atization of LC , it is enough to add the atomic instances of the axiom (A ! B) _ (B ! A) to I ;
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`? x : (a! b) _ (b! a)

(1) `? x : a! b; f(x : b! a)g

(2) x � y; y : a `? y : b; f(x : b! a)g

(3) x � y; y : a `? x : b! a; f(x : b! a); (y : b)g

(4) x � y; x � z; y : a; z : b `? z : a;H

(5) x � y; x � z;y � z; y : a; z : b `? z : a;H
���

�� XXXXX
(6) x � y; x � z; z � y; y : a; z : b `? y : b;H

Figure 3.2:

(2) every such atomic instance succeeds in the proof system for LC , (3) derivations are closed under

cut. We leave the details to the reader. We will rather show that we can get rid of labels and obtain a

simple procedure for the implicational fragment of LC . The unlabelled procedure we de�ne in the next

section has a strong relation with the hypersequent calculus for LC developed by Avron [Avron 91a],

as we will show at the end of the chapter.

I AM NOT SURE THAT THE CLAIM (1) ABOVE IS TRUE, IS IT???

We give an intuitive argument which shows that we can eliminate the labels. To this regard, let

us de�ne for any labelled database � and label x.

�x = fy : A j y : A 2 � ^ y � xg [ fu � v j u � v 2 � ^ v � xg

�x represent the set of formulas of � which can be used from point x. Moreover, if we start a computation

from the empty database, we see that each database � occurring in the computation grows like a tree and

�x corresponds to the path of formulas from the root to point x. The idea of the unlabelled procedure

is to consider at each step only a single path of formulas. Notice that if we restrict our attention to the

intuitionistic implicational fragment (namely, success, implication, and reduction rule), we obviously

have:

� `? x : A succeeds i� �x `? x : A succeeds.

In case of LC , we can switch from one point to another by backtracking or linear restart. We must

reformulate these two rules when we take care only of paths of formulas. For backtracking we expect a

rule like the following: from �x `? x : q;H , with q atomic if (y; r) 2 H step to

�y `? y : r;H [ f(x; q)g:

For linear restart, we expect the rule: from � `? x : q;H , if (y; r) 2 H step to

(1) (� [ fy � xg)x `? x : q;H and (2) (� [ fx � yg)y `? y : r;H
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We can observe that the set of formulas in (� [ fy � xg)x is the same as the set of formulas in

(� [ fx � yg)y and is exactly the set of formulas in

�x [ �y.

These are the formulas of � which can be used in the subderivation of (1) and (2). Since given � # x

and � # y we can say which formulas can be used in the subderivation of (1) and (2) without making

use of the constraints, we can get rid of the constraints themselves. By this observation, we can hence

reformulate the entire procedure, restricting our consideration to databases which are path of formulas,

we do not need the constraints (whence the labels) anymore.

3.2.1 Unlabelled procedure for the implicational fragment of LC

We give here a simpli�ed procedure for the implicational fragment of LC . The procedure can be

extended to the !;^;?-fragment as shown in the previous chapter. This procedure is also inspired by

Avron's hypersequent formulation of LC [Avron 91a] as we will see at the end of the chapter.

A query has the form

� `? G;H

where � is a set of formulas, G is a formula, and H (the history) is a set of pairs of the form (�; q),

where � is a database and q is an atomic query. Here below are the rules

� (success) � `? q;H succeeds if q 2 �.

� (implication) from � `? A! B;H we step to

�; A `? B;H

� (reduction) from � `? q;H if there is a formula C 2 � with C : A1 ! : : : Ak ! q, then we step

to

� `? Ai; H [ f(�; q)g for i = 1; : : : ; k

� (backtracking) from � `? q;H if (�; r) 2 H , we step to

� `? r;H [ f(�; q)g.

� (linear restart) from � `? q;H if (�; r) 2 H , we step to

� [� `? q;H and � [� `? r;H:

The linear restart rule allows to combine a previous database with the current database in order to

prove both the old goal and the current one. Whereas the backtracking rule does not add any power, it

is the linear restart rule which really lead out from intuitionistic logic.

Example 3.2.2 We show that

((a! b) ! c) ! ((b! a) ! c) ! c

succeeds. Here is a derivation:
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; `? ((a! b) ! c) ! ((b! a) ! c) ! c; ;

(a! b) ! c `? ((b! a) ! c) ! c; ;

(a! b) ! c; (b! a) ! c `? c; ;

Let � = f(a! b) ! c; (b! a) ! cg, we go on by reduction wrt. the �rst formula

� `? a! b; f(�; c)g,

� [ fag `? b; f(�; c)g.

We apply backtracking and we step to:

� `? c; f(�; c); (� [ fag; b)g

We go on by reduction on the second formula of �

� `? b! a; f(�; c); (� [ fag; b)g

� [ fbg `? a; f(�; c); (� [ fag; b)g,

Now we apply linear restart and we step to:

� [ fa; bg `? a; f(�; c); (� [ fag; b)g and � [ fa; bg `? b; f(�; c); (� [ fag; b)g:

Both of them immediately succeed.

We prove next some properties of the computation for LC First, we have monotonicity of deduc-

tion on both databases and histories.

Proposition 3.2.3 For every database �;�, formula A, and histories H;H 0 we have:

Q = � `? A;H succeeds implies �;� `? A;H 0 [H 00 succeeds;

where H 00 = f(� [�; c) : (�; c) 2 Hg.

Proof. By induction on the height of a successful derivation of the query Q. We only exemplify the

case of restart. Suppose Q succeeds by restart, then A is an atom q for some (�; r) 2 H , the following

queries succeed by a derivation of smaller height:

�;� `? q;H and �;� `? r;H .

By induction hypothesis,

�;�;� `? q;H 0 [H 00 and �;� [� `? r;H 0 [H 00

succeed; but (� [�; r) 2 H 00, whence the query �;� `? A;H 0 [H 00 succeeds. 2

Proposition 3.2.4 Let A = A1 ! : : :! Ak ! q, and B = B1 ! : : :! Bh ! r, then for any �;�; H

we have

(i) � `? A;H [ f(� [ fB1; : : : Bhg; r)g succeeds

if and only if

(ii) � `? B;H [ f(� [ fA1; : : : Akg; q)g succeeds:
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Proof. Since the claim is symmetric it su�ces to show one half. We start from the query (ii)

� `? B;H [ f(� [ fA1; : : : Akg; q)g

and we step to

� [ fB1; : : : ; Bhg `
? r;H [ f(� [ fA1; : : : Akg; q)g

then we apply backtracking and step to

(iii) � [ fA1; : : : Akg `
? q;H [ f(� [ fB1; : : : Bhg; r); (� [ fA1; : : : Akg; q)g:

By the implication rule, every successful derivation of (i) contains a successful derivation of

� [ fA1; : : : Akg `
? q;H [ f(� [ fB1; : : : Bhg; r)g;

thus (iii) succeeds by monotonicity on histories. 2

The following property shows that we can restrict the application of both backtracking and restart

to the case when we cannot proceed by a successful reduction.

Proposition 3.2.5 Suppose that N = � `? q;H succeeds by a derivation D and there is a clause

C 2 � such that C is used to reduce q in some descendant of N . Then there is a successful derivation

D0 of N such that the �rst step is the reduction of q with respect to C.

The following proposition states a sort of "idempotency" (or contraction) property.

Proposition 3.2.6 For all � and H, we have: � `? q;H [ f(�; q)g succeeds implies � `?

q;H succeeds:

Proof. Let D be a successful derivation of the query (call it N) in the hypothesis. If the �rst step

in D is a reduction step or a backtracking step (using (�; r) 2 H) then the claim immediately follows:

starting from � `? q;H we go on the same as in D, (�; q) will be added to H after the �rst step.

Suppose that the �rst step of D is a restart step through (�; r) 2 H ; that is from N we step to

�;� `? q;H [ f(�; q)g and �;� `? r;H [ f(�; q)g:

Then, from � `? q;H we step to � `? r; ;H [ f(�; q)g, by backtracking, and then by restart, we

generate the same queries as above. 2

In order to prove completeness we need to prove that cut is admissible. Since the current database

may switch with another database a which occurs in the history, we must take into account the occur-

rences of the the cut-formula in databases in the history, and thus the proof of the cut property is

slightly more di�cult than in the previous cases. We must carefully formulate the cut property in its

right generality in order to make a working inductive proof. After some re
ection, we arrive to the

following formulation.

Theorem 3.2.7 Suppose that

(1) � `? B;H1 succeeds, and

(2) � `? A;H2 succeeds.
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Then �� `? B;H�
1 [ H2 succeeds, where �� = � or �� = �[A=�], and H�

1 = f((��; r) : (�; r) 2

H1 ^ (�� = � _ �� = �[A=�])g.

Proof. As usual, we proceed by double induction on cp(A) and the height h of a successful derivation

of (1). We only consider the cases which are not a straightforward reformulation of the corresponding

ones for intuitionistic logic, namely the cases in which the query (1) is obtained by backtracking, or it

is obtained by restart, or cp(A) > 0 and query (1) is obtained by reduction with respect to A.

� Suppose that B is an atom q and (1) succeeds by backtracking. Then from (1) we step to

� `? p;H1 [ f(�; q)g, (where (�; p) 2 H1) which succeeds by a shorter derivation. By induction

hypothesis we obtain that

(�) �� `? p;H�
1 [ f(�

�; q)g [H2 succeeds:

Since (��; p) 2 H�
1 , then from �� `? q;H�

1 [H2, we can step to (�) and succeed.

� Suppose that B is an atom q and (1) succeeds by restart. Then from (1) we step to

� [� `? p;H1 and � [ � `? q;H1

(where (�; p) 2 H1), and both queries succeed by a shorter derivation. We can apply the induction

hypothesis and obtain that

(� [ �)� `? p;H�
1 [H2 and (� [ �)� `? q;H�

1 [H2 both succeed.

Since (� [ �)� � �� [ ��, by monotonicity we obtain that

�� [ �� `? p;H�
1 [H2 and �� [ �� `? q;H�

1 [H2

both succeed. As (��; p) 2 H�
1 , from �� `? q;H�

1 [H2, we can step to the two queries here above

and succeed.

� Suppose that cp(A) > 0, B is an atom q and (1) succeeds by reduction with respect to A. Let

A : D1 ! : : :! Dk ! q in �; from (1) we step to

� `? Di; H1 [ f(�; q)g,for i = 1; : : : ; k

which succeed by a shorter derivation. By induction hypothesis we obtain that for i = 1; : : : ; k to

(ci) �� `? Di; H
�
1 [ f(�

�; q)g [H2

succeed. We have two cases: if �� = �, we can still reduce with respect to A and the result easily

follows. If �� 6= �, then A 2 � and �� = �[A=�]. From the hypothesis (2) we have that

(3) � [ fD1; : : : ; Dkg `
? q;H2 succeeds:

Since cp(Di) < cp(A) we can repeatedly apply the induction hypothesis, cutting (3) with (c1) and

the result with (c2), and so on. For instance at the �rst step we get

�1 [ fD2; : : : ; Dkg [ �� `? q;H�
1 [ f(�

�; q)g [H2 succeeds;
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where �1 = �� fD1g if D1 2 � and �1 = � otherwise. Notice that we do not modify H2 (that

is we can let H�
2 = H2). At the end we obtain that

�k [ �� `? q;H�
1 [ f(�

�; q)g [H2 succeeds;

where �k � �, and hence �k � �� = �[A=�]. We hence have that �� `? q;H�
1 [ f(�

�; q)g [

H2 succeeds; so that by proposition 3.2.6 we �nally obtain that �� `? q;H�
1 [H2 succeeds.

2

Proposition 3.2.8 Suppose that (i) �; A! B `? C;H succeeds and (ii) �; B ! A `? C;H succeeds.

Then also � `? C; ; succeeds.

Proof. To simplify notation we let

A = A1 ! : : : An ! q and � = fA1; : : : ; Ang,

B = B1 ! : : : Bm ! p and � = fB1; : : : ; Bmg,

C = C1 ! : : : Ck ! r and � = fC1; : : : ; Ckg.

It is easy to see that the following succeeds:

(1) � `? A! B; f(� [� [ fBg; q)g.

To see this, from (1) we apply the implication rule and then restart. From (i) and (1) by cut we get

� `? C;H [ f(� [ � [ fBg; q)g succeeds;

and hence also that �;� `? r;H [ f(� [ � [ fBg; q)g succeeds; by proposition 3.2.4, we have that

�;�; B `? q;H [ f(� [ �; r)g succeeds;

that implies

� `? B ! A;H [ f(� [ �; r)g succeeds:

From (ii) and the last query, by using cut we obtain

� `? C;H [ f(� [ �; r)g succeeds;

that implies

�;� `? r;H [ f(� [ �; r)g succeeds:

By proposition 3.2.6 we have �;� `? r;H ; succeeds so that we �nally have � `? C;H succeeds. 2

3.2.2 Soundness and Completeness

As we mentioned at the beginning of the section LC is complete with respect to the class of linear

Kripke models i.e. models M = (W;w;�; V ) where � is a linear order on W :

8w;w0 2 W w � w0 _ w0 � w.

We �rst show soundness.
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Theorem 3.2.9 (Soundness) Let � = fB1; : : : ; Bng, H = f(�1; q1); : : : ; (�k; qk)g, where �i = fCi;1; : : : ; Ci;rig.

Let
V

� denote the conjunction of formulas of � (and similarly,
V

�i of �i).

Suppose that � `? A;H succeeds, then

(
V

� ! A) _ (
V

�1 ! q1) _ : : : _ (
V

�k ! qk) is valid in LC .

Proof. The proof proceeds by induction on the length of derivations. All cases are left to the reader,

except for (restart). Let � `? A;H succeeds by restart, then A is an atom r, and for some (�i; qi) 2 H ,

the derivation steps to

� [�i `
? r;H � [�i `

? qi; H:

Both queries succeed by derivations of smaller height. Let

W
H 0 = (

V
�1 ! q1) _ : : : _ (

V
�i�1 ! qi�1) _ (

V
�i+1 ! qi+1) _ : : : _ (

V
�k ! qk).

Then, by induction hypothesis, the following are valid in LC:

(1) (
V

� ^
V

� ! r) _
W
H 0 _ (

V
�i ! qi),

(2) (
V

� ^
V

� ! qi) _
W
H 0 _ (

V
�i ! qi).

We must show that also

(
^

� ! r) _
_
H 0 _ (

^
�i ! qi)

is valid in LC . Suppose it is not valid, let M = (W;w;�; I), be a linear Kripke model which falsi�es

the above formula. Then, in the initial world w, we have:

(3) M;w 6j=
V

� ! r,

(4) M;w 6j=
W
H 0,

(5) M;w 6j=
V

�i ! qi.

On the other hand, since (1) and (2) are valid in M , we must have

(6) M;w j=
V

� ^
V

� ! r, and

(7) M;w j=
V

� ^
V

� ! qi.

From (3) and (5), it follows that there are w0; w00 � w such that

(8) M;w0 j=
V

� and M;w0 6j= r,

(9) M;w0 j=
V

�i and M;w0 6j= qi.

By linearity, w0 � w00 or w00 � w0. Thus, if we let w� = max(w0; w00), we have w� = w0 or w� = w,

whence by monotony

M;w� j=
V

� ^
V

�, so that (by (6) and (7))

M;w� j= r ^ qi,

which contradicts either (8) or (9). 2

We give a semantical proof of the completeness of the procedure by means of a canonical model

construction.

Before presenting the completeness proof, we notice that the computation procedure is well de�ned

even in the case the involved databases are in�nite. Since a successful derivation is a �nite tree, only a

�nite number of formulas can be involved in it. We thus have an immediate compactness property:
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� `? A; ; succeeds if and only if there is a �nite subset �0 of � such that �0 `? A; ;

succeeds.

We use this property in the completeness proof.

Theorem 3.2.10 [Completeness] If �0 ! G is valid in LC then �0 `? G; ; succeeds.

Proof. We prove that if �0 `? G; ; does not succeed, then there is a linear model M = (W;w;�; I)

and an x 2 W such that

M;x 6j= �0 ! G:

Suppose that �0 `? G; ; does not succeed. Let (Ai; Bi) for i = 1; 2; : : : ; n; : : :, be an enumeration

of all pairs of distinct formulas of the language. We de�ne an increasing sequence of databases �0 �

�1 : : :�i : : :.

Step 0 We let �0 = �0.

Step i+1 We consider the pair (Ai+1; Bi+1) and we proceed as follows:

� if �i; Ai+1 ! Bi+1 `? G0; ; does not succeed, then we let �i+1 = �i [ fAi+1 ! Bi+1g;

� else if �i; Bi+1 ! Ai+1 `? G0; ; doe not succeed, then we let �i+1 = �i [ fBi+1 ! Ai+1g;

� else we let �i+1 = �i.

We �nally let �� =
S
i �i.

Claim 1 for all i, �i `? G; ; does not succeed. This is easily proved by induction on i.

Claim 2 �� `? G; ; does not succeed. Suppose it succeeds, then there is a �nite subset � of �� such

that � `? G; ; succeeds. But it must be � � �i for some i, and we have a contradiction with Claim 1.

Claim 3 For all formulas A, B either ��[fAg `? B; ; succeeds, or ��[fBg `? A; ; succeeds. This is

an easy consequence of the fact either A! B 2 �� or B ! A 2 ��, what we prove now. Let A = Ai+1

and B = Bi+1, then the pair (Ai+1; Bi+1) is considered at step i + 1. If neither Ai+1 ! Bi+1 2 �i+1,

nor Bi+1 ! Ai+1 2 �i+1, then, by de�nition, both

�i; Ai+1 ! Bi+1 `? G and �i; Bi+1 ! Ai+1 `? G succeeds.

By proposition 3.2.8 we get that �i `? G; ; succeeds. against Claim 1.

We now de�ne for arbitrary formulas

A ��� B if and only if �� [ fBg `? A; ; succeeds;

A ��� B i� A ��� B and B ��� A.

We can easily check that:

Claim 4 ��� is a congruence on formulas.

We consider the quotient W of the language with respect to ��� :

W = f[A]��� : A 2 Lg:

We still denote by ��� the relation between equivalence classes: [A]��� ��� [B]��� i� A ��� B. Using

Claim 3 we can easily check that:

Claim 5 ��� is a linear order on W .
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To simplify notation we omit ��� from equivalence classes, that is we simply write [A] instead of

[A]��� . We now de�ne a model M by putting

M = (W; [A0];��� ; V );

where where A0 is, say p0 ! p0, for some atom p0, V : W ! Pow(V ar) is de�ned as follows

p 2 V ([A]) , �� [ fAg `? p; ; succeeds.

It is easily seen that the de�nition is independent from the choice of the representative A, and that V

is monotonic, that is:

if [A] ��� [B] then I([A]) � I([B]).

Claim 6 For all formulas B, and [A], we have

M; [A] j= B , �� [ fAg `? B; ; succeeds:

Proof If B is an atom the claim holds by de�nition. Let B = C ! D.

()) Suppose M; [A] j= C ! D. Either (a) [A] ��� [C], or (b) [C] ��� [A]. In case (a) we have

that �� [ fCg `? C; ; succeeds, so that by induction hypothesis M; [C] j= C, and by hypothesis and

(a) we have M; [C] j= D. By induction hypothesis we obtain �� [ fCg `? D; ; succeeds whence also

�� [ fAg `? C ! D; ; succeeds.

In case (b), by de�nition we have that �� [ fAg `? C; ; succeeds, and hence by induction hypothesis

M; [A] j= C. Since [A] ��� [A], by hypothesis we have M; [A] j= D. so that by induction hypothesis we

may conclude �� [ fAg `? D; ; succeeds, and therefore �� [ fAg `? C ! D; ; succeeds.

(() Suppose that �� [ fAg `? C ! D; ; succeeds, and let (1) [A] ��� [E] and (2) M; [E] j= C. By

(1) we have

(3) �� [ fEg `? A; ; succeeds;

by (2) and the induction hypothesis we have that

(4) �� [ fEg `? C; ; succeeds

By hypothesis we have

(5) �� [ fA;Cg `? D; ; succeeds

Now cutting (5) with (3), and then with (4) we get �� [ fEg `? D; ; succeeds, so that by induction

hypothesis we can conclude M; [E] j= D.

To conclude the proof of the theorem, let A be any formula in ��. Since �0 � ��, and, on the

other hand, �� `? G does not succeed, by Claim 6, we get

M; [A] j= B for all B 2 �0, but

M; [A] 6j= G.

Thus �0 ! G is not true in M . 2
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3.3 Relation with Avron's hypersequents

Avron has presented a sequent calculus for LC [Avron 91a]. His method is based on hypersequents,

a generalization of ordinary Gentzen's methods in which the formal objects involved in derivations are

disjunctions of ordinary sequents. Hypersequents are denoted by

�1 ` A1 j : : : j �n ` An

and can be interpreted as

(�1 ! A1) _ : : : _ (�n ! An):

(Here we are only concerned with single-conclusion hypersequents, although for speci�c logics it is

required a multi-conclusion version [Avron 87]) Rules for LC -hypersequents (as well as for other logics)

are divided in two groups: external rules which govern whole hypersequents, and internal rules which

govern formulas within components �i `i Ai of one or more hypersequents. We will not give a complete

description of Avron's calculus for LC . It su�ces to know that some external rules force hypersequents

to be interpreted as disjunctions. For example we have external weakening, permutation and contraction,

the last being:
H j � ` A j � ` A j H 0

H j � ` A j H 0

(here H and H 0 abbreviate hypersequents). Internal rules are a straightforward generalization of stan-

dard rules for intuitionistic logic. In addition there is a speci�c (external) structural rule, called com-

munication rule for LC , namely:

H1 j �1;�2 ` A H2 j �1;�2 ` B

H1 j H2 j �1;�1 ` A j �2;�2 ` B

We want to show an intuitive mapping between the goal-directed procedure for LC and hypersequent

calculus. To this purpose, a query

� `? A; f(�1; q1); : : : ; (�n; qn)g

corresponds to the hypersequent

� ` A j �1 ` q1 j : : : j �n ` qn:

Given this mapping, we might show that derivations in the goal-directed procedure correspond to a sort

of "uniform proofs" according to the terminology of [Miller et al. 91] in Avron's calculus, once we had

adapted and extended the notion of uniform proof to this setting. Although we will not develop this

correspondence formally here, we point out the main connections. In particular, we want to understand

what is the role of backtracking and restart rules in terms of Avron's calculus. The application of

backtracking corresponds to an application of external contraction rule. Suppose that we have a part of

a derivation as shown in �g.3.3. To simplify the matter, we suppose that only implication and reduction

rules are applied on the branch from � `? q;H to � `? r;H . A corresponding hypersequent derivation

will contain the branch:
� ` r j � ` q j H 0

...

� ` q j � ` q j H

� ` q j H
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� `? q;H

...

� `? r;H 0

#

� `? q;H 0 [ f(�; r)g

Figure 3.3:

Notice that the direction of the derivation is inverted.

We come to the restart rule, we can argue that this rule is equivalent to Avron's communication

rule. To see this, one can easily observe that:

1. The communication rule in Avron's calculus can be restricted to A, B atoms.

2. The communication rule is equivalent to

H j �;� ` q H j �;� ` r

H j � ` q j � ` r

This follows from the fact that we have weakening and contraction (both internal and external)

This rule is clearly similar to our restart rule, once that we interpret H as the history. Notice in passim

that the above formulation of the communication rule is much more deterministic in backward proof

search than Avron's original one: in the above rule once we have �xed the components of the lower

sequent (to which apply the rule) the premises are determined, in contrast by Avron's rule, we have an

exponential number of choices for the premises.

The relationship with hypersequents may be a source of inspiration for discovering goal-directed

formulations of other logics. For example, another well-known intermediate logic (weaker than LC )

is the so-called logic of weak excluded-middle LQ [Hosoi 88] which is obtained by adding to IL the

following axiom:

:A _ ::A.

An equivalent implicational axiom is

((A! ?) ! B) ! (((A! ?) ! ?) ! B) ! B.

The logic LQ is complete with respect to the class of bounded Kripke models (or, equivalently the class

of Kripke models with a top element). To obtain a goal-directed proof-system for LQ , we consider the

basic proof system for I (for the fragment (!;?), enriched by the history book-keeping mechanism and

the backtracking rule of LC , then we add the following restart rule:

if (�;?) 2 H , then from � `? ?; H step to

�;� `? ?; H .
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We conjecture that the resulting proof system is sound and complete with respect to LQ , we will leave

to the interested reader to check it (see [Ciabattoni et al.] for an hypersequent calculus for LQ).

I AM ALMOST SURE THAT IT IS COMPLETE, SHALL WE SAY MORE??

The restart rule for LC is connected to the one for classical logic that we have seen in the

previous chapter. The connection can be explained in terms of hypersequent calculi by examining

Avron's communication rule. We can strengthen the communication rule by discarding one premise:

H j �;� ` A

H j � ` B j � ` A

The calculus obtained by replacing the communication rule by the above one is cut-free and allows to

derive for instance A _ (A! B). It is easy to see we have got a calculus for classical logic.

In the goal-directed proof system, the corresponding version of restart would be obtained from

the one for LC by by discarding one branch:

if (�; q) 2 H , then from � `? r;H step to

�;� `? q;H:

Let us call this rule last "modi�ed restart". Modi�ed restart rule is equivalent to the restart rule for

classical logic. That is to say, the proof system given by the rules for I plus modi�ed restart gives

classical logic. To see this, we simply observe that in this proof system databases never get smaller

along a computation, that is: if � `? q precedes � `? r in a branch of a derivation, then � � �.

Thus, there is no longer need of keeping track of the databases in the history, and the modi�ed restart

rule simpli�es to

if q 2 H , then from � `? r;H step to � `? q;H .

which is the restart rule for classical logic.

In the literature there are other proposals of calculi for LC and other intermediate logics.

In [Avellone et al.98] duplication-free tableau and sequent calculi are de�ned. On the same line, in

[Dickho� 98] terminating calculi for theorems and non-theorems of propositional LC are presented.

These calculi do not go bejond the format of standard Gentzen calculi and contain global rules (similar

to the standard calculi for modal logic [Gore 99]) which may act on several formulas at once 1.

A rather di�erent calculus for LC is presented in [Baaz and Ferm�uller 99], where LC is considered

a prominent example of projective logic.

1The characteristic rule for LC has this form:

�; A1 ` B1;�1 : : :�; An ` Bn;�n

� ` �

where A1 ! B1; : : : ; An ! Bn are all the implicational formulas of � and �i is fA1 ! B1; : : : ; Ai�1 ! Bi�1; Ai+1 !

Bi+1; : : : ; An ! Bng. In [Dickho� 98] the application of this rule is restricted to so-called irreducible sequents.
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Chapter 4

Modal Logics of Strict Implication

The purpose of this chapter is to extend the goal directed proof methods to strict implication logics. We

consider this as a �rst step in order to extend the goal-directed paradigm to the realm of modal logics.

Strict-implication, denoted by A ) B is read as "necessarily A implies B". The notion of necessity

(and the dual notion of possibility) are the subject of modal logics. Strict implication can be regarded

as a derived notion: A ) B = 2(A ! B), where ! denotes material implication and 2 denotes

modal necessity. However, strict implication can also be considered as a primitive notion, and has been

considered as such already at the beginning of the century in many discussions about the paradoxes of

material implication.

PLEASE ADD COMMENTS

The extension of the goal-directed approach to strict implication and modal logics relies upon the

possible-world semantics of modal logics which is due to Kripke. As we have already done in the case of

intuitionistic and intermediate logics, we regard a database as a set of labelled formulas xi : Ai equipped

by a relation � giving connections between labels. The labels represent worlds, states, positions. Thus,

xi : Ai means that Ai holds at xi. The goal of a query is always asked with respect to a position/world.

The form of databases and goals determine the notion of consequence relation

fx1 : A1; : : : ; xn : Ang; � ` x : A

whose intended meaning is that if Ai holds at xi (for i = 1; : : : ; n) and the xi are connected as �

prescribes, then A must hold at x.

For di�erent logics � will be required to satisfy di�erent properties such as re
exivity transitivity

etc, depending on the property of the accessibility relation of the system under consideration.

In most of the chapter we will be concerned with implicational modal logics whose language L())

contains all formulas built out from a denumerable set V ar of propositional variables by applying the

strict implication connective, that is, if p 2 V ar then p is a formula of L()), and if A and B are

formulas of L()), then so is A) B. Let us �x an atom p0, we de�ne the constant true � p0 ) p0 and

2A � true) A.

Semantics

We review the standard Kripke semantics for L()).

A Kripke structure M for L()) is a triple (W;R; V ), where W is a non empty set (whose

elements are called possible worlds), R is a binary relation on W , and V is a mapping from W to sets

of propositional variables of L. Truth conditions for formulas (of L())) are de�ned as follows:

97



Name Re
exivity Transitivity Symmetry Euclidean Finite chains

K

T *

K4 *

S4 * *

K5 *

K45 * *

KB *

KTB * *

S5 * * * *

G * *

Figure 4.1:

� M;w j= p i� p 2 V (w);

� M;w j= A) B i� for all w0 such that wRw0 and M;w0 j= A, it holds M;w0 j= B.

We say that a formula A is valid in a structure M , denoted by M j= A, if 8w 2 W; M;w j= A. We say

that a formula A is valid with respect to a given class of structures K, i� it is valid in every structure

M 2 K, we sometime use the notation j=K A. Let us �x a class of structures K, given two formulas A

and B, we can de�ne the consequence relation A j=K B as

8M 2 K 8w 2W if M;w j= A then M;w j= B.

Di�erent modal logics are obtained by considering classes of structures whose relation R satisfy

some speci�c properties. We will take into consideration strict implication ) as de�ned in systems K,

T, K4, S4, K5, K45, KB, KBT, S5 and G1.

Properties of accessibility relation R in Kripke frames, corresponding to these systems are shown

in Fig.5.2.1

Hilbert-style axiomatizations of fragments of strict implication has been given in [Prior 61, Prior 63,

Meredith and Prior 64, Corsi 87]. Letting S be one of the modal systems above, we use the notation

j=S A (and A j=S B) to denote validity in (and the consequence relation determined by) the class of

structures corresponding to S.

4.1 Proof Systems

In this section we present proof methods for all modal systems mentioned above with the exception of

G�odel Logic G.

De�nition 4.1.1 Let us �x a denumerable alphabet A = fx1; : : : ; xi; : : :g of labels. A database is a

�nite graph of formulas labelled by A. We denote a database as a pair (�; �), where � is a �nite set of

labelled formulas � = fx1 : A1; : : : ; xn : Ang and � = f(x1; x01); : : : ; (xn; x
0
n)g is a set of links; Denoting

by Lab(E) the set of labels x 2 A occurring in E, we assume that (i) Lab(�) = Lab(�), and (ii) if

x : A 2 �; x : B 2 �, then A = B 2.

1We do not consider systems containing D : 2A ! 3A, which corresponds to seriality in Kripke frames. The reason

is that seriality cannot be expressed in the language of pure strict implication; moreover, it cannot be expressed in any

modal language, unless : or 3 is allowed.
2We will drop this condition in section 4.6 when we extend the language by allowing conjunction.
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A trivial database has the form (fx0 : Ag; ;).

The expansion of a database (�; �) by y : C at x, with x 2 Lab(�), y 62 Lab(�) is de�ned as

follows:

(�; �)
x (y : C) = (� [ fy : Cg; � [ f(x; y)g).

De�nition 4.1.2 A query Q is an expression of the form:

Q = (�; �) `? x : G;H

where (�; �) is a database, x 2 Lab(�), G is a formula, and H , called the history, is a set of pairs

H = f(x1; q1); : : : ; (xm; qm)g,

where xi 2 Lab(�), and qi are atoms. We will often omit the parentheses around the two components

of a database and write Q = �; � `? x : G;H . A query from a trivial database fx0 : Ag will be written

simply as:

x0 : A `? x0 : B;H ,

and if A = true, we sometime write just `? x0 : A;H .

De�nition 4.1.3 Let � be a set of links, we introduce a family of relation symbols AS�(x; y), where

x; y 2 Lab(�). We consider the following conditions:

(K) (x; y) 2 � ) AS�(x; y),

(T) x = y ) AS�(x; y),

(4) 9z(AS�(x; z) ^AS�(z; y)) ) AS�(x; y),

(5) 9z(AS�(z; x) ^AS�(z; y)) ) AS�(x; y),

(B) AS�(x; y) ) AS�(y; x).

For K 2 S � fK;T;4;5;Bg, we let AS be the least relation satisfying all conditions in S. Thus, for

instance, AK45 is the least relation such that:

AK45� (x; y) , (x; y) 2 �_

_ 9z(AK45
� (x; z) ^ AK45� (z; y))_

_ 9z(AK45
� (z; x) ^ AK45� (z; y))

We will use the standard abbreviations (i.e. AS5 = AKT5 = AKT45).

De�nition 4.1.4 [Deduction Rules] For each modal system S, the corresponding proof system, denoted

by P(S) , comprises the following rules, parametrized to predicates AS.

� (success) �; � `? x : q;H immediately succeeds if q is an atom and x : q 2 �.

� (implication) from �; � `? x : A) B;H , step to

(�; �) 
x (y : A) `? y : B;H ,

where y 62 Lab(�).
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� (reduction) if y : C 2 �, with C = B1 ) B2 ) : : :) Bk ) q, with q atomic, then from

�; � `? x : q;H

step to

�; � `? u1 : B1; H [ f(x; q)g; : : : ; �; � `? uk : Bk; H [ f(x; q)g;

for some u0; : : : ; uk 2 Lab(�), with u0 = y, uk = x, such that

for i = 0; : : : ; k � 1, AS�(ui; ui+1) holds.

� (restart) if (y; r) 2 H , then, from �; � `? x : q;H , with q atomic, step to

�; � `? y : r;H [ f(x; q)g

Since most of the results which follows do not depend on the speci�c properties of the predicates

AS, involved in the de�nition of a proof system P(S), we will often omit the reference to P(S). The

following proposition states easy properties of the deduction procedure.

Proposition 4.1.5 � (Identity) If x : A 2 �, then �; � `? x : A;H succeeds.

� (Monotony) If Q = �; � `? x : C;H succeeds and � � �, � � �, H � H 0, then also

Q0 = �; � `? x : C;H 0 succeeds.

Moreover, any derivation of Q can be turned uniformly into a derivation of Q0 by replacing � with

�, � with �, and H with H 0.

� (Increasingness) Let D be any derivation of a given query; if Q1 = �1; �1 `? x1 : A1; H1 and

Q2 = �2; �2 `? x2 : A2; H2 are two queries in D, such that Q2 is a descendant of Q1, then

�1 � �2, �1 � �2, H1 � H2.

Restricted restart

Similarly to the case of classical logic, in any deduction of a query Q of the form �; � `? x : G; ;,

the restart rule can be restricted to the choice of the pair (y; r), such that r is the uppermost atomic

goal occurred in the deduction and y is the label associated to r (that is, the query in which r appears

contains : : : `? y : r). Hence, if the initial query is Q = �; � `? x : G; ; and G is an atom q, such

a pair is (x; q), if G has the form B1 ) : : : ) Bk ) r, then the �rst pair is obtained by repeatedly

applying the implication rule until we reach the query : : : `? xk : r, with xk 62 Lab(�). With this

restriction, we do not need to keep track of the history anymore, but only of the �rst pair. An equivalent

formulation is to allow restart from the initial goal (and its relative label) even if it is implicational, but

the re-evaluation of an implication causes a redundant increase of the database, that is why we have

preferred the above formulation.

Proposition 4.1.6 If �; � `? x : G; ; succeeds then it succeeds by a derivation in which every

application of restart is restricted restart.
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(1) `? x0 : ((p) p)) a) b)) (b) c)) a) c

(2) x1 : (p) p)) a) b; � `? x1 : (b) c)) a) c

(3) x1 : (p) p)) a) b; x2 : b) c; � `? x2 : a) c

(4) x1 : (p) p)) a) b; x2 : b) c; x3 : a; � `? x3 : c

(5) x1 : (p) p)) a) b; x2 : b) c; x3 : a; � `? x3 : b; (x3; c)

(6) x1 : (p) p)) a) b; x2 : b) c; x3 : a; � `? x2 : p) p; (x3; c)

(7) x1 : (p) p)) a) b; x2 : b) c; x3 : a; x4 : p; � [ f(x2; x4)g `? x4 : p; (x3; c)

((((
( hhhhh

(8) x1 : (p) p)) a) b; x2 : b) c; x3 : a; � `? x3 : a; (x3; c)

Figure 4.2:

Proof. It su�ces to show the following fact: whenever in a successful derivation we restart from a pair

(x; p) coming from a query Q preceding the current one, we still obtain a successful derivation if we

restart from any pair (y; q) coming from a query Q0 preceding Q. This fact implies that, if the initial

query succeeds, then there is a successful derivation in which every restart application makes use only

of the �rst pair. The proof of this fact is essentially identical to the one of the ) half of proposition

2.3.17. We omit the details. 2

Example 4.1.7 Here below we show a derivation of

((p) p) ) a) b) ) (b) c) ) a) c.

in P(K). By proposition 4.1.6, we only record the �rst pair for restart, which however it is not used in

the following derivation. Here is an explanation of the steps: in step (2), � = f(x0; x1)g, in step (3)

� = f(x0; x1); (x1; x2)g, in step (4) � = f(x0; x1); (x1; x2); (x2; x3)g, since AK� (x2; x3), by reduction wrt.

x2 : b ) c we get (5), since AK� (x1; x2) and AK� (x2; x3), by reduction wrt. x1 : (p ) p) ) a ) b we

get(6) and (7) which immediately succeeds, since x3 : a 2 �; from (6) we step to (8) which immediately

succeeds.

Example 4.1.8 We show the a derivation of

((((a) a) ) p) ) q) ) p) ) p

in P(KBT), we use restricted restart according to proposition 4.1.6. In step (2), � = f(x0; x1)g. Step

(3) is obtained by reduction wrt. x1 : (((a ) a) ) p) ) q) ) p, as AKBT� (x1; x1). In step (4)

� = f(x0; x1); (x1; x2)g; step (5) is obtained by restart; step (6) by reduction wrt. x2 : (a) a) ) p, as

AKBT� (x2; x1); in step (7) � = f(x0; x1); (x1; x2); (x1; x3)g and the query immediately succeeds.
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(1) `? x0 : ((((a) a) ) p) ) q) ) p) ) p

(2) x1 : (((a) a) ) p) ) q) ) p; � `? x1 : p

(3) x1 : (((a) a) ) p) ) q) ) p; � `? x1 : ((a) a) ) p) ) q; (x1;p)

(4) x1 : (((a) a) ) p) ) q) ) p; x2 : (a) a) ) p; � `? x2 : q; (x1;p)

(5) x1 : (((a) a) ) p) ) q) ) p; x2 : (a) a) ) p; � `? x1 : p; (x1;p)

(6) x1 : (((a) a) ) p) ) q) ) p; x2 : (a) a) ) p; � `? x1 : a) a; (x1;p)

(7) x1 : (((a) a) ) p) ) q) ) p; x2 : (a) a) ) p; x3 : a; � `? x3 : a; (x1;p)

Figure 4.3:

4.2 Admissibility of Cut

In this section we prove the admissibility of the cut rule. The cut rule states the following: let x : A 2 �,

then if (1) � ` y : B and (2) � ` z : A succeed, we can "replace" x : A by � in � and get a

successful query from (1). There are two points to clarify. First we need to de�ne the involved notion

of substitution, and this we do in the next de�nition. Furthermore the proof systems P(S) depend

uniformly on predicate AS, we expect that the admissibility of cut on the properties of predicate AS.

It will turn out that the admissibility of cut (proved in theorem 4.2.3) will hold for every proof system

P(S) , such that AS satisfy the following conditions:

� (i) AS is closed under substitution,

� (ii) AS�(x; y) implies AS�[�(x; y);

� (iii) AS�(u; v) implies 8x y (AS�[f(u;v)g(x; y) $ AS�(x; y)).

De�nition 4.2.1 [Substitution] Given a (set of) labelled expression(s) E, we denote by E[u=v] the (set

of) expression(s) obtained by replacing all occurrences of a label u by the label v.

We say that two databases (�; �), (�; �) are compatible for substitution 3, if

for every x 2 Lab(�) \ Lab(�), for all formulas C, x : C 2 � , x : C 2 �;

If (�; �) and (�; �) are compatible for substitution, x : A 2 �, and y 2 Lab(�), we denote by

(�; �)[x : A=�; �; y] = (�� fx : Ag [�; �[x=y] [ �).

the database which results by replacing x : A in (�; �) by (�; �) at point y.

We say that a predicate AS is closed under substitution if,

3We will drop this condition in section 8, when we add conjunction.
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whenever AS�(x; y) holds, then also AS�[u=v](x[u=v]; y[u=v]) holds.

Proposition 4.2.2 � (a) If AS satis�es condition (i) above and �; � `? x : C;H succeeds, then

also

�[u=v]; �[u=v] `? x[u=v] : C;H [u=v] succeeds.

� (b) If AS satis�es condition (iii) above, then AS�(x; y) and �; � [ f(x; y)g `? u : G;H succeeds,

implies �; � `? u : G;H succeeds.

Proof. By induction on derivation lenght. 2

Theorem 4.2.3 (Admissibility of cut) Let predicate AS satisfy the conditions (i),(ii),(iii) above. If

the following queries succeed in a proof system P(S) :

(1) �[x : A] `? u : B;H1

(2) �; � `? y : A;H2.

and (�; �) and (�; �) are compatible for substitution, then also

(3) (�; �)[x : A=�; �; y] `? u[x=y] : B;H1[x=y] [H2 succeeds in P(S) .

Proof. As usual, we proceed by double induction on pairs (h; c), where h is the height of a derivation

of (1) and c = cp(A). We only show the most di�cult case, namely when h; c > 0 and the �rst step in a

derivation of (1) is by reduction with respect to x : A. In such a case, letting A = D1 ) : : :) Dk ) q;

then from (1) we step to

�[x : A]; � `? ui : Di; H1 [ f(u; q)g;

for some u0; : : : ; uk 2 Lab(�), with u0 = x, uk = u, such that

(*) for i = 0; : : : ; k � 1, AS�(ui; ui+1) holds.

By induction hypothesis, we get for i = 0; : : : ; k � 1,

(Qi) (�[x : A]; �)[x : A=�; �; y]

`? ui[x=y] : Di; (H1[x=y] [ f(u; q)[x=y]g [H2 succeeds.

By (2), we get

(�; �)
y (z1 : D1)
z1 : : :
zk�1 (zk : Dk) `? zk : q;H2 succeeds,

where we can assume z1; : : : ; zk 62 Lab(�) [ Lab(�) and the zi are all distinct. That is to say,

(Q') � [ fz1 : D; : : : ; zk : Dkg; � [ 
 `? zk : q;H2 succeeds,

with 
 = f(y; z1); : : : ; (zk�1; zk)g. Notice that (i), cp(Di) < cp(A), for i = 1; : : : ; k and (ii) (Q') and

(Q1) are compatible for substitution, whence we can apply the induction hypothesis and get that the

following query succeeds:

(� [ fz1 : D; : : : ; zk : Dkg; � [ 
)[z1=(�; �)[x=(�; �; y)]

`? zk : q;H2[z1=u1[x=y]] [H1[x=y] [H2.
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By the hypothesis on zi, we also have zi 62 Lab(H2), thus by de�nition of substitution, we have that:

(Q0
1) (�� fx : Ag) [� [ fz2 : D2; : : : ; zk : Dkg; �[x=y] [ � [ 
[z1=u1[x=y]]

`? zk : q;H1[x=y] [H2 succeeds.

The compatibility constraint is satis�ed by Q0
1 and Q2, and since cp(D2) < cp(A) we can apply the

induction hypothesis again. By repeating this argument up to Dk, we �nally get:

(�� fx : Ag) [�; �[x=y] [ � [ 
[z1=u1[x=y]; : : : ; zk=uk[x=y]]

`? uk[x=y] : q;H1[x=y] [H2 succeeds,

so that by de�nition of 
, since u0 = x and uk = u,

(Q") (�� fx : Ag) [�; �[x=y] [ � [ f(y; u1[x=y]); : : :,

(uk�1[x=y]; u[x=y])g `? u[x=y] : q;H1[x=y] [H2 succeeds.

By (*) and conditions (i) and (ii) on AS, we get:

AS�[x=y][�(y; u1[x=y]),

...

AS�[x=y][�(uk�1[x=y]; u1[x=y]).

Hence, by repeatedly applying proposition 4.2.2(b) to query (Q"), we get that

(�� fx : Ag) [�; �[x=y] [ � `? u[x=y] : q;H1[x=y] [H2;

that is (3), succeeds. 2

Corollary 4.2.4 At the same conditions as above, if x : A `? x : B succeeds and x : B `? x : C

succeeds then also x : A `? x : C succeeds.

Corollary 4.2.5 If K 2 S � fK;4;5;B;Tg, then in the proof system P(S) cut is admissible.

Proof. One can easily check that the predicate AS satis�es the conditions of the previous theorem. 2

4.3 Soundness and Completeness

We need to give a semantic meaning to queries. We do this by introducing a suitable notion of realization,

similarly to what we did in the cases of intuitionistic and intermediate logic (see de�nition 2.5.6, 3.1.4)

De�nition 4.3.1 [Realization] Let AS be an accessibility predicate, given a database (�; �) and a

Kripke model M = (W;R; V ), a mapping f : Lab(�) ! W is called a realization of (�; �) in M with

respect to AS, if the following hold

� (a) AS�(x; y) implies f(x)Rf(y);

� (b) if x : A 2 �, then M; f(x) j= A.

We say that a query Q = � ; � `? x : G;H is valid if for every S-model M and every realization f of

(�; �), we have either M; f(x) j= G, or for some (y; r) 2 H , M; f(y) j= r.
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Theorem 4.3.2 (Soundness) Let Q = �; � `? x : G;H succeeds in the proof system P(S) , then it

is valid.

Proof. Let M = (W;R; V ) be an S-model and f be a realization of (�; �) in M , we proceed by induction

on the height h of a successful derivation of Q. For the base case, we have that Q immediately succeeds,

G is atomic, and x : q 2 �; by hypothesis M; f(x) j= q.

In the induction step, we have several cases. Let the �rst step in the derivation be obtained by

implication, then G = A ) B. Suppose by way of contradiction that M; f(x) 6j= A ) B and for all

(y; r) 2 H , M; f(y) 6j= r. We have that for some w 2 W , such that f(x)Rw, M;w j= A, but M;w 6j= B.

From Q we step to

Q0 = (�; �)
x (u : A) `? u : B;H , with u 62 Lab(�),

which succeeds by a derivation of smaller height. Let f 0(z) = f(z), for z 6= u and f 0(u) = w. Then, f 0 is

a realization of (�; �)
x (u : A), and by induction hypothesis, either M; f 0(u) j= B, whence M;w j= B,

or for some (y; r) 2 H , M; f 0(y) j= r, whence M; f(y) j= r; in both cases we have a contradiction.

Let the �rst step in the derivation be obtained by reduction, then G is an atom q, there is

z : C 2 �, with C = B1 ) : : :) Bk ) q, and from Q we step to

�; � `? u1 : B1; H [ f(x; q)g; : : : ; �; � `? uk : Bk; H [ f(x; q)g;

for some u0; : : : ; uk 2 Lab(�), with u0 = z, uk = x, such that

for i = 0; : : : ; k � 1, AS�(ui; ui+1) holds.

By hypothesis, we have

(1) M; f(z) j= B1 ) : : :) Bk ) q, and

(2) f(ui)Rf(ui+1), for i = 0; : : : ; k.

By induction hypothesis, either (a) for some (y; r) 2 H , M; f(y) j= r, or (b) for i = 1; : : : ; k, M; f(ui) j=

Bi. In case (a) we are done. Suppose (b) holds. From u0 = z, (1) and (2), we get

M; f(ui) j= Bi+1 ) : : :) Bk ) q, for i = 1; : : : ; k � 1,

and �nally M; f(uk) j= q, that is M; f(x) j= q.

If the �rst step in the derivation be obtained by restart, then the claim immediately follows by

the induction hypothesis. 2

Corollary 4.3.3 If x0 : A `? x0 : B; ; succeeds in P(S) , then A j=S B holds. In particular, if

`? x0 : A; ; succeeds in P(S) , then A is valid in S.

Theorem 4.3.4 (Completeness) Given a query Q = �; � `? x : A;H If Q is valid then Q succeeds

in the proof system P(S) .

By contrapposition, we prove that if Q = �; � `? x : A;H does not succeeds in one proof system

P(S) , then there is an S-model M and a realization f of (�; �), such that M; f(x) 6j= A and for any

(y; r) 2 H , M; f(y) 6j= r. The proof is very similar to the one of theorem 2.5.10 for the completeness of

the procedure of intuitionistic logic with disjunction.

As usual, we construct an S-model by extending the database, through the evaluation of all

possible formulas at every world (each represented by one label) of the database. Since such evaluation
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may lead, for implication formulas, to create new worlds, we must carry on the evaluation process on

these new worlds. For this reason we consider in the construction an enumeration of pairs (xi; Ai),

where xi is a label and Ai is a formula.

Assume �; � `? x : A;H fail in P(S) . We let A be a denumerable alphabet of labels and L

be the underlying propositional language. Let (xi; Ai), for i 2 ! be an enumeration of pairs of A � L,

starting with the pair (x;A) and containing in�nitely many repetitions, that is

(x0; A0) = (x;A),

8y 2 A;8F 2 L;8n 9m > n (y; F ) = (xm; Am).

Given such enumeration we de�ne i) a sequence of databases (�n; �n), ii) a sequence of histories Hn,

iii) a new enumeration of pairs (yn; Bn), as follows:

� (step 0) Let (�0; �0) = (�0; �0), H0 = H , (y0; B0) = (x;A).

� (step n+1) Given (yn; Bn), if yn 2 Lab(�n) and �n; �n `? yn : Bn; Hn fails then proceed

according to (a) else to (b).

{ (a) if Bn if atomic, then we set

Hn+1 = Hn [ f(yn; Bn)g,

(�n+1; �n+1) = (�n; �n),

(yn+1; Bn+1) = (xk+1; Ak+1),

where k = maxt�n9s�n(ys; Bs) = (xt; At),

else let Bn = C ) D, then we set

Hn+1 = Hn,

(�n+1; �n+1) = (�n; �n)
yn (xm : C),

(yn+1; Bn+1) = (xm; D),

where xm = minfxt 2 A j xt 62 Lab(�n)g.

{ (b) We set

Hn+1 = Hn,

(�n+1; �n+1) = (�n; �n),

(yn+1; Bn+1) = (xk+1; Ak+1),

where k = maxft � n j 9s�n(ys; Bs) = (xt; At)g,

Lemma 4.3.5 8k 9n � k (xk; Ak) = (yn; Bn).

Proof. By induction on k. If k = 0, the claim hold by de�nition.

Let (xk ; Ak) = (yn = Bn).

� (i) if yn 62 Lab(�n), or �n; �n `? yn : Bn; Hn succeeds, or Bn is atomic, then (xk+1; Ak+1) =

(yn+1; Bn+1).

� (ii) Otherwise, let Bn = C1 ) : : :) Ct ) r, (t > 0), then

(xk+1; Ak+1) = (yn+t+1; Bn+t+1).

2
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Lemma 4.3.6 For all n � 0, if �n; �n `? yn : Bn; Hn fails, then:

8m � n �m; �m `? yn : Bn; Hm fails.

Proof. By induction on cp(Bn) = c. if c = 0, that is Bn is an atom, say q, then we proceed by induction

on m � n+ 1.

� (m = n+1) we have �n; �n `? yn : q;Hn fails, then also �n; �n `? yn : q;Hn [ f(yn; q)g fails,

whence, by construction,

�n+1; �n+1 `? yn : q;Hn+1 fails.

� (m > n+1) Suppose we have proved the claim up to m � n+1, and suppose by way of contradiction

that �m; �m `? yn : q;Hm fails, but

(i) �m+1; �m+1 `? yn : q;Hm+1 succeeds.

At step m, (ym; Bm) is considered; it must be ym 2 Lab(�m) and

(ii) �m; �m `? ym : Bm; Hm fails.

We have two cases, according to the form of Bm. If Bm is an atom r, as (yn; q) 2 Hm, from query

(ii) by a restart we can step to

�m; �m `? yn : q;Hm [ f(ym; r)g,

that is the same as �m+1; �m+1 `? yn : q;Hm+1, which succeeds and we get a contradiction.

If Bm = C1 ) : : :) Ct ) r, with k > 0, then from query (ii) we step in k steps to

�m+k; �m+k `? ym+k : r;Hm+k,

where (�m+k; �m+k) = (�m; �m) 
ym (ym+1 : C1) 
ym+1
: : : 
ym+k�1

(ym+k : Ck), and Hm+k = Hm,

and then, by restart, since (yn; q) 2 Hm+k, to:

(iii) �m+k; �m+k `? yn : q;Hm+k [ f(ym+k; r)g,

Since query (i) succeeds, by monotony we have that also query (iii) succeeds, whence query (ii) succeeds,

contradicting the hypothesis.

Let cp(Bn) = c > 0, that is Bn = C ) D. By hypothesis

�n; �n `? yn : C ) D;Hn, fails.

Then by construction, and computation rules

�n+1; �n+1 `? yn+1 : D;Hn+1, fails,

and hence, by induction hypothesis, 8m � n+ 1,

�m; �m `? yn+1 : D;Hm, fails.

Suppose by way of contradiction that for some m � n+ 1,

�m; �m `? yn : C ) D;Hm, succeeds.
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This implies that, for some z 62 Lab(�m),

(1) (�m; �m)
yn (z : C) `? z : D;Hm, succeeds.

Since yn+1 : C 2 �n+1 � �m, �n+1 � �m, Hn+1 � Hm, by monotony, we get

(2) �m; �m `? yn+1 : C;Hm, succeeds.

The databases involved in queries (1) and (2) are clearly compatible for substitution, hence by cut we

obtain that:

�m; �m `? yn+1 : D;Hm succeeds,

and we have a contradiction. 2

Lemma 4.3.7 (i) 8m;�m; �m `? x : A;Hm fails;

(ii) 8m,if (y; r) 2 Hm, then �m; �m `? y : r;Hm fails.

Proof. (i) is immediate by the previous lemma. To prove (ii), suppose it does not hold for some m and

(y; r) 2 Hm, i.e. �m; �m `? y : r;Hm succeeds. But then we can easily �nd a successful derivation of

�m; �m `? x : A;Hm against (I); such derivation makes use of restart (y; r) 2 Hm. 2

Lemma 4.3.8 If Bn = C ) D and

�n; �n `? yn : C ) D;Hn fails,

then there is a y 2 A, such that for k � n, y 62 Lab(�k) and 8m > n:

(i) (yn; y) 2 �m,

(ii) �m; �m `? y : C;Hm succeeds,

(iii) �m; �m `? y : D;Hm fails.

Proof. By construction, we can take y = yn+1, the new point created at step n+ 1, so that (i),(ii),(iii)

hold for m = n+ 1. In particular

(*) �n+1; �n+1 `? yn+1 : D;Hn+1 fails.

Since the (�; �m) are not decreasing (wrt. inclusion), we immediately have that (i) and (ii) also hold

for every m > n + 1. By construction, we know that Bn+1 = D, whence by (*) and lemma 4.3.6, (iii)

also holds for every m > n+ 1. 2

Construction of the Canonical model

We de�ne an S-model as follows M = (W;R; V ), such that

- W =
S
n Lab(�n);

- xRy � 9nAS�n(x; y),

-V (x) = fq j 9n x 2 Lab(�n) ^ �n; �n `? x : q;Hn succeedsg.

Lemma 4.3.9 The relation R as de�ned above has the same properties of AS, e.g. if S=S4, that is AS

is transitive and re
exive, then so is R and the same happens in all other cases.
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Proof. One easily verify the claim in each case. For instance, we verify that if AS is euclidean (condition

5), then so is R. Assume xRy and xRz hold; by de�nition, there are n and m, such that AS�n(x; y) and

AS�m(x; z). Let k = maxfn;mg, since AS is monotonic, we have both AS�k (x; y) and AS�k (x; z), and by

property (5), also AS�k (z; y), whence zRy holds. 2

Lemma 4.3.10 for all x 2W and formulas B,

M;x j= B , 9n x 2 Lab(�n) ^ �n; �n `? x : B;Hn succeeds.

Proof. We prove both directions by mutual induction on cp(B). If B is an atom then the claim holds

by de�nition. Thus, assume B = C ) D.

(() Suppose for some m �m; �m `? x : C ) D;Hm succeeds. Let xRy and M; y j= C, for some

y. By de�nition of R, we have that for some n1, A�n1
(x; y) holds. Moreover, by induction hypothesis,

for some n2, �n2 ; �n2 `? y : C;Hn2 succeeds. Let k = maxfn1; n2;mg, then we have

(1) �k; �k `? x : C ) D;Hk succeeds,

(2) �k; �k `? y : C;Hk succeeds,

(3) AS�k (x; y).

So that from (1) we also have:

(1') (�k; �k)
x (z : C) `? z : D;Hk succeeds, (with z 62 Lab(�k)).

We can cut (1') and (2), and obtain that:

�k; �k [ f(x; y)g `? y : D;Hk succeeds.

Hence, by (3) and proposition 4.2.2(b) we get

�k; �k `? y : D;Hk succeeds,

and by induction hypothesis, M; y j= D,

()) Suppose by way of contradiction that M;x j= C ) D, but for all n if x 2 Lab(�n),

then �n; �n `? x : C ) D;Hn fails. Let x 2 Lab(�n), then there are m � k > n, such that

(x;C ) D) = (xk ; Ak) = (ym; Bm) is considered at step m+ 1, so that we have:

�m; �m `? ym : C ) D;Hm fails.

By lemma 5.4.5, there is a y 2 A, such that (a) for t � m, y 62 Lab(�t) and (b):

8m0 > m

(i) (yn; y) 2 �m0 ,

(ii) �m0 ; �m0 `? y : C;Hm0 succeeds,

(iii) �m0 ; �m0 `? y : D;Hm0 fails.

By (b)(i) we have xRy holds, by (b)(ii) and induction hypothesis, we have M; y j= C. By (a) and

(b)(iii), we get that

8n if y 2 Lab(�n), then �n; �n `? y : D;Hn fails.

Hence, by induction hypothesis, we have M; y 6j= D, and we get a contradiction. 2
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Proof of The Completeness Theorem 4.3.4. We are able now to conclude the proof of the com-

pleteness theorem. Let f(z) = z, for every z 2 Lab(�), where (�; �) = (�0; �0) is the original database.

It is easy to see that f is a realization of (�; �) in M :

if AS�(u; v) then AS�0(u; v), hence f(u)Rf(v).

If u : C 2 � = �0, then by identity and the previous lemma we have M; f(u) j= C. On the other hand,

by lemma 4.3.7, and the previous lemma we have M; f(x) 6j= A and M; f(y) 6j= r for every (y; r) 2 H .

This concludes the proof.

Corollary 4.3.11 If A j=S B holds, then A `? x0 : B; ;, succeeds in P(S) . In particular, if A is valid

in the modal system S, then `? x0 : A; ;, succeeds in P(S) .

4.4 Simpli�cation for speci�c systems

In this section we show that for most modal logics we have considered, the use of labelled databases is

not necessary and we can simplify either the structure of databases, either the deduction rules. We point

out that the main results we have obtained for the general formulation with labels (cut-admissibility,

completeness, restriction of the restart rule etc.) can be proved directly for each simpli�ed system.

If we want to check the validity of a formula A, we evaluate A from a trivial database `? x0 : A; ;.

Restricting our attention to computations from trivial databases, we observe that we can only generate

database which have the form of trees.

De�nition 4.4.1 A database (�; �) is called a tree database if the set of links � forms a tree.

Let (�; �) be a tree database and x 2 Lab(�), we de�ne the subdatabase Path(�; �; x) as the

list of labelled formulas lying on the path from the root of �, say x0, up to x, that is: Path(�; �; x) =

(�0; �0), where:

�0 = f(x0; x1); : : : ; (xn�1; xn) j xn = x and for i = 1; : : : ; n; (xi�1; xi) 2 �g

�0 = fy : A 2 � j y 2 Lab(�0)g:

Proposition 4.4.2 If a query Q occur in any derivation from a trivial database, then Q = �; � `? z :

B;H, where (�; �) is a tree database.

From now on we restrict our consideration to tree-databases.

4.4.1 Simpli�cation for K,K4,S4,T: databases as lists

We show that for systems K, K4, S4,T, the proof procedure can be simpli�ed in the sense that: (i) the

databases are lists of formulas, (ii) restart rule is not needed.

Given a successful query Q = �; � `? z : B;H and a successful derivation D of Q, let

R(Q;D) = number of applications of the restart rule in D.

Proposition 4.4.3 If Q = �; � `? x1 : A1; fx2 : A2; : : : ; xk : Akg succeeds (with A2; : : : ; Ak atoms)

by a derivation D such that R(Q;D) = m, then, for some i = 1; : : : ; k, the query
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Qi = Path(�; �; xi) `? xi : Ai; ; succeeds,

by a derivation Di with R(Q;Di) � m.

Proof. Fix a derivation D, with R(Q;D) = m; we proceed by induction on the height h of D.

If h = 0, then A1 is atomic and x1 : A 2 �; since also x1 : A 2 Path(�; �; x1), we have that

Q1 = Path(�; �; x1) `? x1 : A1; ; succeeds by a one-step derivation D1, with R(Q1;D1) = 0 and we

are done.

Let h > 0. We have several cases according to what is the �rst deduction step of D. Let

H = fx2 : A2; : : : ; xk : Akg.

� (implication) In this case A = B ) C and the only child of Q is

(Q0) �0; �0 `? y : C;H ,

where (�0; �0) = (�; �)
x1 (y : B), for y 62 Lab(�). We have that Q0 succeeds by a subderivation

D0, with R(Q0;D0) = m, hence by induction hypothesis we have that either

(Q00) Path(�0; �0; y) `? y : C; ; succeeds by a derivation D00, R(Q00;D00) � R(Q0;D0),

or

(Q0
i) Path(�0; �0; xi) `? xi : Ai; ; succeeds by a derivationD0

i, R(Q0
i;D

0
i) � R(Q0;D0).

In the former case, it is su�cient to append

(Q1) Path(�; �; x1) `? x1 : B ) C; ;

on the top of D00 to get the conclusion, since Path(�0; �0; y) = Path(�; �; x1)
x1 (y : C). In the

latter case, we immediately conclude as Path(�0; �0; xi) = Path(�; �; xi).

� (restart) In this case A1 is atomic and the only child of Q is

(Q0
i) �; � `? xi : Ai; H [ f(x1; A1)g,

which succeeds by a subderivation D0
i of D. Hence, by induction hypothesis, for some j = 1; : : : ; k,

Qj = Path(�; �; xj) `? xj : Aj ; ; succeeds by a derivation Dj , with

R(Qj ;Dj) � R(Q0
i;D

0
i) < R(Q;D).

� (reduction) In this case, A1 is an atom q and there is one z : C 2 �, with C = B1 ) : : :) Bt ) q,

then Q has t children Q0
j , j = 1; : : : ; t:

(Q0
j) �; � `? zj : Bj ; H [ f(x1; A1)g,

such that AS�(z; z1); : : : ; A
S
�(zt�1; zt) hold, with zt = x1. Every Q0

j succeeds by a shorter derivation

D0
j , with

R(Q;D) = �t
jR(Qj ;Dj):

By induction hypothesis, for each j = 1; : : : ; t, we have either

(i) Path(�; �; zj) `? zj : Bj ; ; succeeds, or

(ii) Path(�; �; xi) `
? xi : Ai; ; (i > 1) succeeds, or

(iii) Path(�; �; x1) `? x1 : q; ; succeeds
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by a derivation D�j whose R degree is no greater than the one of Q0
j . Clearly, if for some j either

(ii) or (iii) holds we are done. Thus, suppose, that j = 1; : : : ; t, always (i) holds. Call, for each j,

Q00
j the query involved in (i).

We show that z; z1; : : : ; zt�1 are on the path from the root x0 to x1. Let z0 = z; zt = x1. It is

su�cient to prove that for j = 0; : : : ; t � 1, zt�j�1 is on the path from x0, to zt�j . Remember

that it holds AS�(zt�j�1; zt�j). Since � is a tree, this means that either (a) zt�j�1 is the parent

of zt�j , or (b) zt�j�1 = zt�j , or (c) zt�j�1 is an ancestor of zt�j , (for K we have (a), for T (a)

+ (b), for K4 (c), for S4 (b) +(c)). In all cases, the claim follows as the path from the root to

zt�j is unique.

An immediate consequence of what we have shown is that for j = 1; : : : ; t, Path(�; �; zj) �

Path(�; �; x1), so that by monotony, for j = 1; : : : ; t,

(Q00
j ) Path(�; �; x1) `? zj : Bj ; ; succeeds,

and it is easy to see that it does so by a derivation D00
j with a R-degree no greater than that of

D�j . Since, z : C 2 Path(�; �; x1), we obtain a derivation D1 of Q1 = Path(�; �; x1) `? x1; q; ;

by making a tree with root Q1 and appending to Q1 each D00
j . We observe that

R(Q1;D1) = �t
jR(Q00

j ;D
00
j) � �t

jR(Qj ;Dj) = R(Q;D):

2

Proposition 4.4.4 Let Q = �; � `? x : A; ;. If Q succeeds by a derivation D with R(Q;D) = k, then

there is a successful derivation D0 of Q with R(Q;D) < k.

Proof. Suppose k > 0, inspecting D from the root downwards, we can �nd a query Q1 = �; � `?

y : q;H1, such that (y; q) is used in a restart step at some descendant, say Q0, of Q1. We say that Q0

"makes use" of Q1. Moreover, we can choose Q1, such that no query in D makes use of an ancestor of

Q1 in a restart step. Let Q2 be a descendant of Q1 which makes use of it, and let Q3 be the child of Q2

obtained by restart, we have

Q2 = �; 
 `? z : r;H2,

Q3 = �; 
 `? y : q;H2 [ f(z; r)g.

Let Di, (i = 1; 2; 3), be the subderivation of D with root Qi. Since no query in D1 makes use of

an ancestor of Q1, in a restart step, we obtain that the query Q0
1 = �; � `? y : q; ;, succeeds by

a derivation D0
1 obtained by removing history H1 from any node of D1; Derivation D0

1 will contain

queries Q0
2 and Q0

3 corresponding to Q2 and Q3:

Q0
2 = �; 
 `? z : r;H2 �H1,

Q0
3 = �; 
 `? y : q; (H2 �H1) [ f(z; r)g.

Let D0
3 be the subderivation of D0

1, with root Q0
3. We have that

(*) R(Q0
3;D

0
3) = R(Q3;D3) < R(Q2;D2) � R(Q1;D1).

By the previous proposition, one of the following (a), (b), (c) holds:

� (a) Query Qa = Path(�; 
; y) `? y : q; ; succeeds by a derivation Da, such that R(Qa;Da) �

R(Q0
3;D

0
3).
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� (b) Query Qb = Path(�; 
; z) `? z : r; ; succeeds by a derivation Db, such that R(Qb;Db) �

R(Q0
3;D

0
3).

� (c) For some (uj ; pj) 2 H2�H1, query Qc = Path(�; 
; uj) `? uj : pj ; ; succeeds by a derivation

Dc, such that R(Qc;Dc) � R(Q0
3;D

0
3). Moreover, there exists a query of the form

Q0
j = �j ; 
j `? uj ; pj ; Hj in D0

in the branch from Q0
1 to Q0

2 and there exists a corresponding query

Qj = �j ; 
j `? uj ; pj ; Hj [H1

occurring in D along the branch from Q1 to Q2.

In case (a) we have that Path(�; 
; y) � (�; �), hence by monotony, Q1 succeeds by a derivation

D0
a, such that (by (*)),

R(Q1;D0
a) = R(Qa;Da) < R(Q1;D1).

In case (b) we obviously have that Path(�; 
; z) � (�; 
), hence by monotony, Q2 succeeds by a

derivation D0
b, such that (by (*)),

R(Q2;D0
b) = R(Qb;Db) < R(Q2;D2).

In case (c) we have that Path(�; 
; uj) � (�j ; 
j), hence by monotony, Qj succeeds by a derivation

D0
c, such that R(Qj ;D0

c) = R(Qc;Dc). If we call Dj the subderivation of D with root Qj , we have

R(Qj ;Dj) > R(Q3;D3), and hence (by (*)),

R(Qj ;D0
c) = R(Qc;Dc) � R(Q0

3;D
0
3) = R(Q3;D3) < R(Qj ;Dj).

According to the case (a), (b), (c), we obtain a successful derivation D0, with R(Q;D0) < R(Q;D), by

replacing in D, either D1 by D0
a, or D2 by D0

b, or Dj by D0
c. 2

By repeatedly applying the previous proposition, we get

Theorem 4.4.5 If �; � `? x : A; ; succeeds, then Path(�; �; x) `? x : A; ; succeeds without using

restart.

By virtue of this theorem we can reformulate the proof system for logics from K to S4 as follows. A

database is simply a list of formulas A1; : : : ; An, which stands for the labelled database (fx1 : A1; : : : ; xn :

Ang; �), where � = f(x1; x2); : : : (xn�1; xn)g. A query has the form:

A1; : : : ; An `? B

which stands for fx1 : A1; : : : ; xn : Ang; � `? xn : B. The history has been omitted since restart is

not needed. Letting � = A1; : : : ; An, we reformulate the predicates AS as relations between formulas

within a database AS(�; Ai; Aj), in particular we can de�ne:

AK(�; Ai; Aj) � i+ 1 = j

AT (�; Ai; Aj) � i = j _ i+ 1 = j

AK4(�; Ai; Aj) � i < j

AS4(�; Ai; Aj) � i � j
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The rules become as follows:

� (success) � `? q succeeds if � = A1; : : : ; An, and An = q;

� (implication) from

� `? A) B

step to

�; A `? B;

� (reduction) from

� `? q

step to

�i `? Di, for i = 1; : : : ; k,

if there is a formula Aj = D1 ) : : : ) Dk ) q 2 �, and there are integers j = j0 � j1 � : : : �

jk = n, such that

i = 1; : : : ; k, AS(�; Aji�1 ; Aji) holds and �i = A1; : : : ; Aji .

Example 4.4.6 We show that ((b) a) ) b) ) c) (b) a) ) a is a theorem of S4.

`? ((b) a) ) b) ) c) (b) a) ) a

(b) a) ) b `? c) (b) a) ) a

(b) a) ) b; c `? (b) a) ) a

(b) a) ) b; c; b) a `? a reduction wrt. b) a (1)

(b) a) ) b; c; b) a `? b reduction wrt. (b) a) ) b (2)

(b) a) ) b; c; b) a `? b) a

(b) a) ) b; c; b) a; b `? a reduction wrt. b) a

(b) a) ) b; c; b) a; b `? b

This formula fails in both T and K4, whence in K: reduction on step (1) is allowed in T but

not in K4; on the contrary, reduction on step (2) is allowed in K4 but not in T.

Disjunction Property

To conclude this section, we observe that the previous results and in particular proposition 4.4.3 can

be used to prove a disjunction property for modal logics S ranging from K to S4. The property is the

following: let A;B 2 L()), then we have:

if j=S A _ B, then either j=S A or j=S b.

This property holds for modal logics from K to S4, but it does not for the other systems we have

considered so far (for instance in S5, we have j= (p ) q) _ ((p ) q) ) r), but 6j= p ) q and

6j= (p ) q) ) r). To show this property, we �rst observe that both the completeness theorem and
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proposition 4.4.3 can be extended without any e�ort to more general queries in which the history may

contain non-atomic formulas of L()), rather than mere atoms. The only change in the rules is that

in a restart step, we are allowed to select a pair (x;C) from the history H even if C is non-atomic.

The semantic meaning of a query remains the same as before. With this extension, we can show the

disjunction property as follows. If j=S A _ B, then by completeness we have that the query

`? x0 : A; f(x0; B)g succeeds in P(S).

By proposition 4.4.3 either `? x0 : A; ;, or `? x0 : B; ; succeeds. By the soundness of the proof-

procedure, we get that either j=S A or j=S B.

4.4.2 Simpli�cation for K5, K45, S5: databases as clusters

In this section we give an unlabelled formulation of logics K5, K45, S5. In the following proposition

by S we intend K5, or K45.

Proposition 4.4.7 Let Q = �; � `? x : G;H be any query which occurs in a deduction from a trivial

database x0 : A `? x0 : B;H0, then

8z 2 Lab(�);:AS�(z; x0).

Proof. We give the proof for K5 only, for K45 is very similar. By proposition 4.4.2, � is a tree with

root x0, thus if (x0; v) 2 �, then for all descendant z of x0 (that is for all z 2 Lab(�)), we have

(*) (z; x0) 62 �.

By de�nition, we know that AK5 is the least euclidean closure of �. By a standard argument, we have:

AS�(x; y) , 9nASn;�(x; y), where

AS0;�(x; y) � (x; y) 2 �,

ASn+1;�(x; y) � ASn;�(x; y) _ 9z(ASn;�(z; x) ^ ASn;�(z; y)).

Now, we show by induction on n, that 8n :ASn;�(z; x0). For n = 0, it holds by (*). Assume the claim

holds for n; if ASn+1;�(y; x0) held for some y, then by induction hypothesis, we would get that there

exists one z such that ASn;�(z; x0) ^ ASn;�(z; y)), contrary to the induction hypothesis. 2

Proposition 4.4.8 Let Q = �; � `? x : G;H be any query which occurs in a deduction from a trivial

database x0 : A `? x0 : B;H0,

if (x0; y1); (x0; y2) 2 �, then y1 = y2.

Proof. The proof is the same for both K5 and K45. Fix a deduction D. Assume by way of

contradiction that (x0; y1); (x0; y2) 2 �, but y1 6= y2, for some query Q = �; � `? x : G;H appearing

in D. Since at the root of D the graph is empty, points y1, y2, or better, links (x0; y1); (x0; y2) have been

created because of the evaluation of some queries which are ancestors of Q. Without loss of generality

we can assume that y1 has been introduced before y2. That is, above Q, in the same branch, there is a

query

Q0 : �; �01 `? x0 : C ) D;H 0,

whose child is
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Q00 : (�; �0)
x0 (y2 : C) `? y2 : D;H 0,

with (x0; y1) 2 �0 and �0 [ f(x0; y2)g � �. Query Q is Q00 or is one of its descendants. Since �0 6= ;,

Q0 cannot be the root of D; it is easy to see that Q0 cannot be obtained neither by the implication

rule (x0 is not a new point), nor by restart (C ) D is not atomic). Hence the only possibility is that

Q0 has been obtained by reduction wrt some z : C 2 �, with C = F1 ) : : : ) Fk ) q, from a query

Q0 = �; �01 `? u : q;H 00. Thus, there are some ui, for i = 1; : : : ; k � 1, such that letting u0 = z, and

uk = u, AS�(ui�1; ui) holds, and it must be uj = x0 and Fj = C ) D, for some 1 � j � k. But this

implies that AS�0(uj�1; x0) holds, contradicting the previous proposition. 2

Proposition 4.4.9 Let Q = �; � `? x : G;H be any query which occurs in a P(K5) deduction from

a trivial database x0 : A `? x0 : B;H0. Let R
K5
� (x; y) be de�ned as follows:

RK5� (x; y) � (x = x0 ^ (x0; y) 2 �) _ (x; y 2 Lab(�) ^ x 6= x0 ^ y 6= x0)

Then we have RK5� (x; y) � AK5� (x; y).

Proof. ()) By induction on j � j, we show that RK5� (x; y) ! AK5� (x; y). If � = ;, then RK5� (x; y) does

not hold and the claim trivially follows. Let � = f(x0; v)g with v 6= x0, then

RK5� (x; y) � (x = x0 ^ y = v) _ (x = y ^ y = v)

In the �rst case, (x = x0 ^ y = v), we conclude that AK5� (x; y), since (x; y) 2 � ! AK5� (x; y); in the

latter case, by AK5� (x0; v) and the euclidean property we get AK5� (v; v).

Let j � j> 1, so that � = �0 [ f(u; v)g, with u 6= x0, notice that it must be also v 6= x0. It is easy

to see that

RK5� (x; y) � RK5�0 (x; y) _ (x; y) = (u; v).

Thus, if RK5�0 (x; y) holds, then by induction hypothesis, we get AK5�0 (x; y), and by monotony also

AK5� (x; y); if (x; y) = (u; v), we conclude by the fact that (x; y) 2 �! AK5� (x; y).

(() First we check that if (x; y) 2 �, then RK5� (x; y). To this regard let (x; y) 2 �, if x = x0,

and (x0; y) 2 �, then RK5� (x; y), otherwise if x 6= x0, then by proposition 4.4.7, y 6= x0, and hence by

de�nition RK5� (x; y). Next we check that RK5� (x; y) and RK5� (x; z) imply RK5� (x; z). To this purpose,

assume x = x0, then by the previous propositions, we get y = z 6= x0, and hence by de�nition RK5� (x; z);

if x 6= x0, then by proposition 4.4.7, we get y 6= x0, and z 6= x0, and hence by de�nition RK5� (x; z).

Then we conclude by the minimality of AK5. 2

Corollary 4.4.10 At the same conditions as the last proposition, we have:

RK5� (x0; x) ^ RK5� (x0; y) ) x = y.

Proposition 4.4.11 Let Q = �; � `? x : G;H be any query which occurs in a P(K45) deduction

from a trivial database x0 : A `? x0 : B;H0. Let R
K45
� (x; y) be de�ned as follows:

RK45� (x; y) � x; y 2 Lab(�) ^ y 6= x0.

Then we have RK45� (x; y) � AK45� (x; y).

Proof. Similar to that one of the previous proposition, and hence left to the reader. 2
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Proposition 4.4.12 Let Q = �; � `? x : G;H be any query which occurs in a P(S5) deduction from

a trivial database x0 : A `? x0 : B;H0. Let R
S5
� (x; y) be de�ned as follows:

RS5� (x; y) � x; y 2 Lab(�)

Then we have RS5� (x; y) � AS5� (x; y).

Proof. We observe that AS5 is the equivalence relation which contains just one class, that one of the

labels which are descendant of x0, that is all labels occurring in �. 2

By virtue of the previous propositions we can reformulate the proof systems for K5, K45 and

S5 without making use of labels. For K5 the picture is as follows, either a database contains just

one point x0, or there is an initial point x0 which is connected only to another point x1, and any point

excluding x0 is connected with any other including itself. In case of K45, x0 is connected also to

any other point di�erent from x0. Thus, in order to get a concrete structure without labels we must

distinguish, the initial world, represented by x0, the only point to which it is connected, say x1 (in case

of K5), and the current point in which the goal formula is evaluated.

A non-empty database has the form:

� = B0 j j or � = B0 j B1; : : : ; Bn j Bi, where 1 � i � n,

and B0; B1; : : : ; Bn are formulas. We also de�ne

Actual(�) =

�
B0 if � = B0 j j;

Bi if � = B0 j B1; : : : ; Bn j Bi

This rather odd structure is forced by the fact that in K5 and K45 we have re
exivity in all worlds,

but in the initial one, whence di�erently from all other systems we have considered so far, the success of

`? x0 : A) B, which means that A) B is valid,

does not imply the success of

x0 : A `? x0 : B, which means that A! B is valid (material implication) 4.

The addition operation is de�ned as follows:

�
A =

�
B0 j B1; : : : ; Bn; B j A if � = B0 j B1; : : : ; Bn j Bi

true j A j A if � = ;

A query has the form

� `? G;H , where H = f(A1; q1); : : : ; (Ak; qk)g, with Aj 2 �.

De�nition 4.4.13 [Deduction Rules for K5 and K45] Given � = B0 j B1; : : : ; Bn j B, let

A5(�; X; Y ) � (X = B0 ^ Y = B1) _ (X = Bi ^ Y = Bj ^ i; j > 0) and

A45(�; X; Y ) � (X 2 � ^ Y = Bj with j > 0)

� (success) � `? q;H succeeds if Actual(�) = q.

4In this two systems the validity of 2C does not imply the validity of C, as it holds for all the other systems considered

in this chapter.
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� (implication) From � `? A) B;H step to �
A `? B;H .

� (reduction) if � = B0 j B1; : : : ; Bn j B and C = D1 ) : : :) Dk ) q 2 �, then from � `? G;H

step to

B0 j B1; : : : ; Bn j Ci `? Di; H [ f(B; q)g, for i = 1; : : : ; k,

provided, letting C0 = C, and Ck = Bn, A5(�; Ci�1; Ci) (respectively A45(�; Ci�1; Ci)) holds.

� (restart) If � = B0 j B1; : : : ; Bn j Bi and (Bj ; r) 2 H , with j > 0, then from � `? q;H , step to

B0 j B1; : : : ; Bn j Bj `? r;H [ f(Bi; q)g,

According to the above discussion, we observe that the check of the validity of j= A ) B, corresponds

to the query

; `? A) B; ;,

which (by the implication rule) is reduced to the query

true j A j A `? B; ;.

This is di�erent from checking the validity of A! B (! is the material implication), which corresponds

to the query

A j j `? B; ;.

The success of the latter query does not imply the success of the former. For instance the in K5,

6j= (true) p) ! p and indeed true) p j j `? p; ; fails.

On the other hand we have

j= (true) p) ) p and indeed true j true) p j true) p `? p; ; succeeds.

The reformulation of the proof system for S5 is similar, but simpler. In case of S5, there is no

need to keep separate the �rst formula/world from the others. Thus, we may simply de�ne a non-empty

database as a pair � = (S;A), where S is a set of formulas and A 2 S. If � = (S;A), we let

Actual(�) = A, and �
B = (S [ fBg; B).

For � = ;, we de�ne ;
A = (fAg; A). With this de�nitions the rules are similar to those for K5 and

K45, with the following simpli�cations:

� (reduction) if � = (S;B) and C = D1 ) : : :) Dk ) q 2 �, then from � `? G;H step to

(S;Ci) `? Di; H [ f(B; q)g, where Ci 2 �, for i = 1; : : : ; k,

provided Ck = B.

� (restart) If � = (S;B) and (C; r) 2 H , then from (S;B) `? q;H , step to

(S;C) `? r;H [ f(B; q)g,
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Example 4.4.14 In Figure 4.4 we show a derivation of the following formula in S5

((a) b) ) c) ) (a) d) c) ) (d) c)

In the derivation we make use of restricted restart, according to proposition 4.1.6. A brief explanation

of the derivation: step (5) is obtained by reduction wrt (a ) b) ) c, step (7) by restart, steps (8) and

(9) by reduction with respect to a) d) c, and they both succeed immediately.

(1) ; `? ((a) b) ) c) ) (a) d) c) ) d) c

(2) f(a) b) ) cg; (a) b) ) c `? (a) d) c) ) (d) c)

(3) f(a) b) ) c; a) d) cg; a) d) c `? d) c

(4) f(a) b) ) c; a) d) c; dg; d `? c

(5) f(a) b) ) c; a) d) c; dg; d `? a) b; (d; c)

(6) f(a) b) ) c; a) d) c; d; ag; a `? b; (d; c)

(7) f(a) b) ) c; a) d) c; d; ag; d `? c; (d; c)

(8) f(a) b) ) c; a) d) c; d; ag; a `? a; (d; c)
���

�� XXXXX
(9) f(a) b) ) c; a) d) c; d; ag; d `? d; (d; c)

Figure 4.4:

4.5 An intuitionistic version of K5, K45, S5, B, BT

We have seen that if we remove the restart rule from the proof systems for K,T,K4, and S4, the

relative proof system retains its completeness. The same does not hold for the other systems: if we

remove the restart rule we obtain weaker proof systems and fewer theorems. On the other hand, the

proof procedures even without restart are well-de�ned. From a proof-theoretical point of view they

make sense and they enjoy several properties, the most important of them is the admissibility of cut

as formulated in section 4.2. It is natural to wonder if there is a `logic' which corresponds to these

proof-systems. Here by a logic, we intend a semantical characterization of the set of successful formulas

under each proof system. What we show in this section is that what we get, by removing the restart

rule is essentially an intuitionistic version of the respective classical modal logics K5, K45, S5, KB,

KBT.

We begin with a semantical presentation of the intuitionistic modal logics we take into account.

The construction we present falls under the general methodology for combining logic presented in
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[Gabbay 96]. A similar construction, for tense logics has been presented by Ewald in [Ewald 86]. The

semantic structure introduced in the next de�nition can be seen as a generalization of the possible-world

semantics of intuitionistic and modal logic.

De�nition 4.5.1 Let S be any modal system, a model M for its intuitionistic version SI, has the form

M = (W;�; Sw; Rw; hw)

where W is a non-empty set whose element are called states, � is a transitive-re
exive relation on W ,

for each w 2W , the triple (Sw; Rw; hw) is a Kripke model, that is Sw is a non-empty set, Rw is a binary

relation on Sw having the properties of the accessibility relation of the corresponding system S, hw map

each x 2 Sw into a set of propositional variables. We assume the following monotony conditions:

1. if w � w0 then Sw � Sw
0

;

2. w � w0 then Rw � Rw0

;

3. if w � w0 and x 2 Sw then hw(x) � hw
0

(x).

Truth conditions for L()) are de�ned as follows:

Sw; x j= p if p 2 hw(x);

Sw; x j= A) B if for all w0 � w and for all y 2 Sw
0

, such that Rw0

(x; y) it holds:

Sw
0

; y j= A implies Sw
0

; y j= B:

We can easily see that for every formula A and x 2 Sw:

if Sw; x j= A and w � w0 then Sw
0

; x j= A,

We say that A is valid in an SI-model M = (W;�; Sw; Rw; hw) if 8w 2 W , 8y 2 Sw Sw; y j= A. As

usual, a formula is called SI-valid if it is valid in every SI-model.

As we have said, that the above semantical speci�cation generalizes the possible-world semantics

of both intuitionistic and modal logic. The structures introduced in the previous de�nition can be seen

as models of intuitionistic logic in which single worlds are replaced by Kripke models. Thus, if for any

w, Sw contains only one world, say fxwg and Rw = f(xw; xw)g, then we have a standard Kripke model

of intuitionistic logic (see de�nition 2.1.1); on the other hand if W contains only one state, we have a

standard Kripke model of modal logics as de�ned at the beginning of the chapter.

It can be shown that the proof procedures without restart are sound and complete for each

SI 2 fK5I;K45I;S5I;KBI;KBTIg.

Theorem 4.5.2 A is valid in SI i� `? x0 : A; ; succeeds in the proof system for P (S), without using

restart.

Proof. The soundness is proved as usual by induction on the lenght of successful derivations. We leave

the details to the reader.

With regard to the completeness, we can de�ne a canonical model MSI as follows:

MSI = (W;Sw; hw; Rw;�),
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where W is the set of �nite non-empty databases (�; �), for w = (�; �) 2 W , � is �, Sw is Lab(�),

Rw(x; y) � AS�(x; y) and hw is de�ned as follows: for x 2 w,

hw(x) = fq : w `? x : q succeedsg.

Notice that M satis�es all the monotony conditions involved in the semantics. We can easily prove that

MSI satis�es the property:

for all w 2W;x 2 Sw, and formulas C, we have

w; x j= C , w `? x : C succeeds:

By this fact completeness follows immediately. 2

We conclude this section with an observation on the relationship between the classical modal

logics and their respective intuitionistic version. Let us identify any system with the set of its valid

formulas. We may observe that although the semantic of the intuitionistic modal logic is a combination

of the modal and the intuitionistic possible-world semantics, each intuitionistic modal logic is strictly

weaker than the intersection of intuitionstic logic I and the corresponding classical modal logic.

Proposition 4.5.3 Let S be any one of K5, K45, S5, KB, KBT, and let SI be its intuitionistic

version as de�ned above, we have

SI � I \ S:

Proof. The claim SI � I \ S easily follows from the previous theorem. To show that the inclusion is

proper, consider the formula:

(((p) q) ) q) ) q) ) p) q.

One can check that this formula is a theorem of I and of any S; however it is not a theorem of S5I,

whence it is not theorem of any of the other (weaker) SI. 2

4.6 Extending the language

In this section we extend the proof procedures presented to a broader fragment. We �rst consider a

simple extension allowing conjunction, then we consider a richer fragments containing `local clauses'

and (^;_)-combinations of goals. We do not have the pretence of �nding a maximal fragment of modal

logics which allows a goal-directed treatment and we just suggest a straightforward extension of the

proof-methods we have described, which does not need any additional machinery.

4.6.1 Conjunction

To handle conjunction in the labelled formulation, we simply drop the condition that a label x may be

attached to only one formula, hence formulas with the same label can be thought as logically conjuncted.

In the unlabelled formulation, for those systems enjoying such a formulation, the general principle is to

deal with sets of formulas, instead of single formulas. Databases will be structured collection of sets of

formulas, rather than collection of formulas. The structure is always the same, but the constituents are
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now sets. Thus, in case of K, T, K4 and S4, databases will be lists of sets of formulas, whereas in case

of K5, K45 and S5, will be clusters of sets of formulas.

A conjunction of formulas is interpreted as a set, so that queries may contain sets of goal formulas.

A formula A of language L(^;)) is in normal form if it is an atom or has form:
^
i

[Si1 ) : : :) Sini ) qi]

where Sij are conjunctions of formulas in normal form. In all modal logics considered in this chapter

(formulated L(^;))) it holds that every formula has an equivalent one in normal form.

Proposition 4.6.1 Let A be a formula in L(^;)) then there is a formula NF (A) in normal form such

that j=K A$ NF (A).

Proof. By a straightforward induction on the structure of A. 2

We simplify the notation for NF formulas and replace conjunctions with sets. For example the

NF of

(b) (c ^ d)) ) (e ^ f)) ^ ((g ^ h) ) (k ^ u))

is the set containing the following formulas:

�
fb) c; b) dg ) e; fb) c; b) dg ) f; fg; hg ) k; fg; hg ) u

	
:

For the deduction procedures all we have to do is to handle sets of formulas. We de�ne, for x 2 Lab(�),

y 62 Lab(�) and �nite set of formulas S = fD1; : : : ; Dtg,

(�; �)
x y : S = (� [ fy : D1; : : : ; y : Dtg; � [ f(x; y)g),

then we change the (implication) rule in the obvious way:

from �; � `? x : S ) B;H ,

step to

(�; �)
x y : S `? y : B;H ,

where S is a set of formulas in NF and y 62 Lab(�), and we add a rule for proving sets of formulas:

from (�; �) `? x : fB1; : : : Bkg; H

step to

(�; �) `? x : Bi; H for i = 1; : : : ; k.

Regarding to the simpli�ed formulations without labels, the structural restrictions in the rules (reduc-

tion, success) must be globally applied to sets of formulas which are the constituents of databases,

considered as a whole; the history H , when is needed, becomes a set of pairs (Si; Ai), where Si is a set

and Ai is a formula. The property of restricted restart still holds for this formulation.

Example 4.6.2 We show that the following is a theorem of K5, using the unlabelled formulation:

2(b! c) ^ 2(2(2(a! b) ! d) ! c) ! 2(a! c):

Letting S0 = fb) c; ((a) b) ) d) ) cg, the initial query is
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S0 j j `? a) c

In the derivation below, we make use of restricted restart.

S0 j j `? a) c

S0 j fag j fag `? c; (fag; c)

S0 j fag j fag `? (a) b) ) d; (fag; c) by reduction wrt. ((a) b) ) d) ) c 2 S0

S0 j fag; fa) bg j fa) bg `? d; (fag; c)

S0 j fag; fa) bg j fag `? c; (fag; c) by restart

S0 j fag; fa) bg j fag `? b; (fag; c) by reduction wrt. b) c 2 S0

S0 j fag; fa) bg j fag `? a; (fag; c) by reduction wrt. a) b

success:

4.6.2 Extension with local clauses

We can extend this language further in a similar way to [Giordano and Martelli 94], by allowing local

clauses of the form

G! q,

where ! denotes ordinary (material) implication. We call them `local', since x : G ! q can be used

only in world x to reduce the goal x : q and it is not usable/visible in any other world. It is `private'

to x. The extension we suggest may be signi�cant in developing logic programming languages based on

modal logic [Giordano et al. 92, Giordano and Martelli 94]. To this purpose, we can introduce a sort of

modal Harrop fragment distinguishing database (D-formulas) and goal formulas (G-formulas).

We de�ne below D-formulas i.e. the ones which may occur in the database and G-formulas i.e.

the one which may occur in goal position. The former are further distinct in modal D-formulas (MD)

and local D-formulas (LD).

LD := G! q,

MD := true j q j G)MD,

D := LD jMD,

CD := D j CD ^ CD;

G := true j q j G ^G j G _G j CD ) G.

We also use 2G and 2D as syntactic sugar for true ) G and true ) D. Notice that atoms are both

LD- and MD-formulas (as true ! q � q); moreover, any non-atomic MD-formula can be written as

G1 ) : : : ) Gk ) q. Finally, CD formulas are just conjunction of D-formulas. We could have put a

more general clause in the de�nition of MD-formulas, namely G) D, rather than the more restrictive

G)MD. This extension would have allowed

G1 ) (G2 ! q),

which is not accepted. But it is easily seen that we have

G1 ) (G2 ! q) � 2(G1 ! (G2 ! q)) � G1 ^G2 ) q.
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The last formula is a legal MD-formula, thus the more liberal de�nition is not really needed.

For D- and G-formulas as de�ned above we can easily extend the proof-procedure. We give it

in the most general formulation for labelled databases. It is clear that one can give an unlabelled

formulation for system which allows it, as explained in the previous section. In the labelled formulation,

we add the following rules:

� (true) (�; �) `? x : true;H immediately succeeds.

� (local-reduction) from (�; �) `? x : q;H

step to

(�; �) `? x : G;H [ f(x : q)g

if x : G! q 2 �.

� (and) from (�; �) `? x : G1 ^G2; H

step to

(�; �) `? x : G1; H and (�; �) `? x : G2; H .

� (or) from (�; �) `? x : G1 _G2; H

step

to (�; �) `? x : G1; H or to (�; �) `? x : G2; H .

Example 4.6.3 Let � be the following database

x0 : [(2p) s) ^ b] ! q,

x0 : ([(p) q) ^ 2a] ) r) ! q,

x0 : a! b.

We show that �; ; `? x0 : q; ; succeeds in the proof system for KB and this shows that the formula

V
� ! q is valid in KB.

A derivation is shown in �gure 4.5. The property of restricted restart still holds, thus we do not need

to record the entire history, but only the �rst pair (x0; q). A quick explanation of the steps: step (2)

is obtained by local reduction wrt. x0 : ([(p ) q) ^ 2a] ) r) ! q, step (4) by restart, steps (5) and

(10) by local reduction wrt. x0 : [(2p ) s) ^ b] ! q, step (7) by restart, step (8) by reduction wrt.

x1 : p) q since

RKBf(x0;x1);(x0;x2)g(x1; x0) holds,

step (9) by reduction wrt. x2 : 2p since

RKBf(x0;x1);(x0;x2)g(x2; x0) holds,

step (11) by local reduction wrt. x0 : a! b, step (12) by reduction wrt. x1 : 2a since

RKBf(x0;x1);(x0;x2)g(x1; x0) holds.
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(1) � `? x0 : q; ;

(2) � `? x0 : [(p) q) ^ 2a] ) r; (x0; q)

(3) �; x1 : p) q; x1 : a; f(x0; x1)g `? x1 : r; (x0; q)

(4) �; x1 : p) q; x1 : a; f(x0; x1)g `? x0 : q; (x0; q)

(5) �; x1 : p) q; x1 : a; f(x0; x1)g `? x0 : 2p) s; (x0; q)

(6) �; x1 : p) q; x1 : a; x2 : 2p; f(x0; x1); (x0; x2)g `? x2 : s; (x0; q)

(7) �; x1 : p) q; x1 : a; x2 : 2p; f(x0; x1); (x0; x2)g `? x0 : q; (x0; q)

(8) �; x1 : p) q; x1 : a; x2 : 2p; f(x0; x1); (x0; x2)g `? x0 : p; (x0; q)

(9) �; x1 : p) q; x1 : a; x2 : 2p; f(x0; x1); (x0; x2)g `? x0 : true; (x0; q)

   
    ``````̀

(10) �; x1 : p) q; x1 : a; f(x0; x1)g `? x0 : b; (x0; q)

(11) �; x1 : p) q; x1 : a; f(x0; x1)g `? x0 : a; (x0; q)

(12) �; x1 : p) q; x1 : a; f(x0; x1)g `? x0 : true; (x0; q)

Figure 4.5:

The soundness and completeness result of section 4.3 can be extended to this fragment; to this

regard let the validity of a query be de�ned as in that section.

Theorem 4.6.4 � `? G;H succeeds in P(S) if and oly if it is valid.

Proof.(Sketch) The soundness part is proved by induction on the height of derivations, we omit the

details.

In order to prove the completeness we need the following properties:

1. Suppose that

(a) � [ fu : G! qg; � `? y : G1; H succeeds and

(b) �; � `? u : G;H succeeds implies �; � `? u : q;H succeeds,

then �; � `? y : G1; H succeeds.

2. Suppose that

(a) � [ fu : G1 ) : : :) Gk ) qg; � `? y : G1; H succeeds and

(b) for every u = x0; x1; : : : ; xk , if AS�(xi�1; xi) and �; � `? xi : Gi succeeds for

i = 1; : : : ; k then also �; � `? xk : q;H succeeds,

then �; � `? y : G1; H succeeds.
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The proof of this properties is by a simple induction on the lenght of a derivation of hypothesis (a) in

both cases.

Then the completeness part is proved by contrapposition. If a query does not succeed, we build

a model in which it is not valid; the construction is the same as the one in theorem 4.3.4. To this

regard, we start with an enumeration with in�nite repetitions of pairs of the form (xi; Gi) where Gi are

G formulas which are neither conjunctions, nor disjunctions. The construction then proceeds exactly

as in theorem 4.3.4 leading to the de�nition of a canonical model M = (W;R; V ). We then prove by

mutual induction the following claims:

� (i) for all x 2 W and G-formulas G, M;x j= G , 9n x 2 Lab(�n) ^ �n; �n `? x : G;Hn

succeeds.

� (ii) for all x 2W and D-formulas D, if D 2 �n then M;x j= D.

From these facts the theorem follows immediately. 2

Further extensions might be interesting: one may think of taking the computation for classical

logic we have seen in chapter 2 and combine it with the modal procedures of this chapter. By means of a

simple translation the resulting procedure could handle the full propositional modal logic. We conjecture

that the procedure is complete, although we have not checked it. In any case, handling formulas of the

form 3A by translating them into 2(A ! ?) ! ?, (or equivalently into (A ) ?) ! ?), is probably

not be the most e�ective way of extending the goal-directed computation.

4.7 A Further case study: modal Logic G

In this section we give a goal directed procedure for the implicational fragment of modal logic G. Modal

logic G was originally introduced as a modal interpretation of the notion of formal provability in Peano

Arithmetic (see [Boolos 79]).

Semantically, Gis characterized by the following conditions on the accessibility relation R: (i) R

is transitive, and (ii) R does not have in�nitely increasing chains w0Rw1; : : : ; wiRwi+1; : : :.

To deal with G we adopt our deduction system for K4 and we modify the rule for implication

goal in order to take care of the �niteness condition. To explain the idea intuitively, suppose we want

to show that A ) B holds in a world w, we can argue by reduction ab absurdum as follows: assume

that A ) B is false at w. Then there is a world w0 such that wRw0, in which A ^ :B is true. By the

�niteness condition, we can assume that there is a last world w� in which A ^ :B is true. In w�, A

holds, B does not hold, but also A) B holds, since every world w00 accessible from w� will not satisfy

A ^ :B. We have then to show that B cannot be false in w�.

According to the above argument, we can modify the rule for implication in the following way:

to evaluate a goal A) B, from a database �, we add to � the formula A ^ (A) B), and we ask B 5.

We show that this rule is sound and complete for G.

We work with the unlabelled formulation of the implicational fragment of K4, and we further

notice that we do not need to introduce conjunction, but only to take pairs of formulas as the unit

elements of databases. A database � is a sequence of pairs of formulas:

S1; : : : ; Si,

5Our modi�ed implication rule closely corresponds to the rule for necessity in G, within tableau formulation: if :2A

is in a branch then create a new world with :A and 2A. [Fitting 83]
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where each Si is a pair of formulas (Ai; Bi). For implication we have the following:

� (implication) from � `? A) B step to �; (A;A) B) `? B.

The other two rules reduction and success, are the same as in the unlabelled version of P(K4), that is

K4 with conjunction, whose rules we review below for clarity:

� (success) S1; : : : ; Sn `? q succeeds if q 2 Sn.

� (reduction) From S1; : : : ; Sn `? q step to

S1; : : : ; Sji `
? Di, for i = 1; : : : ; k

if there is a formula A = D1 ) : : :) Dk ) q 2 Sj , for some j, and integers j < j1 < : : : < jk = n.

Example 4.7.1 We show a derivation of

F = ((b) a) ) a) ) b) a

which is equivalent (in K) to L�ob's axiom: 2(2A! A) ! 2A

`? ((b) a) ) a) ) b) a (4.1)

((b) a) ) a; F ) `? b) a (4.2)

((b) a) ) a; F ); (b; b) a) `? a (4.3)

((b) a) ) a; F ); (b; b) a) `? b) a (4.4)

((b) a) ) a; F ); (b; b) a); (b; b) a) `? a (4.5)

((b) a) ) a; F ); (b; b) a); (b; b) a) `? b (4.6)

success (4.7)

On step (3) a can match only with (b) a) ) a; on step (5) a can match with b) a in the second pair

from the left.

Proposition 4.7.2 Let A1; : : : ; An, B1; : : : ; Bn, C be any formulas; if (A1; B1); : : : ; (An; Bn) `? C

succeeds, then the formula (A1 ^B1) ) (A2 ^B2) : : :) (An ^ Bn) ) C is valid in G. In particular, if

; `? A succeeds, then A is valid in G.

Proof. The proof of the theorem is based on the following fact: for every A and B:

j=G A) B $ (A ^ (A) B)) ) B.

To see this, we have

j=G A) B $ 2(A! B)

j=G A) B $ 2(2(A! B) ! (A! B))

j=G A) B $ 2((A ^ 2(A! B)) ! B)

j=G A) B $ (A ^ (A) B)) ) B

Then, the proof of the proposition proceeds by induction on the height of a successful derivation, using

the previous fact when A is an implication. 2
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In order to prove completeness we make use of the translation of G in K4 proposed by Balbiani

and Herzig [Balbiani and Herzig 94], that we adapt to the language L()), and then we can rely on the

completeness of our proof system for K4. The translation is the following:

p+ = p� = p, for any atom p,

(A) B)+ = (A� ^ (A) B)) ) B+)

(A) B)� = (A+ ) B�).

Notice that the translation of (A) B)+ clearly resembles the way we deal with strict implication of G.

In [Balbiani and Herzig 94] it is proved the following fact.

Proposition 4.7.3 ([Balbiani and Herzig 94]) For any formula A, A is a theorem of G i� A+ is

a theorem of K4.

Lemma 4.7.4 For all databases �, �, sets S, and formulas H in L();^), for all formulas A 2 L())

the following are true:

1. if �; S [ fA+g;� `? H succeeds in P(K4), then also �; S [ fAg;� `? H succeeds in P(K4);

2. if �; S [ fAg;� `? H succeeds in P(K4), then also �; S [ fA�g;� `? H succeeds in P(K4);

3. if � `? A succeeds in P(K4), then also � `? A+ succeeds in P(K4);

4. if � `? A� succeeds in P(K4), then also � `? A succeeds in P(K4).

Moreover, if the query in the hypothesis of each claim (1) - (4) has a successful derivation of height h,

then the query in the thesis has a successful derivation of height no more than h.

Proof. Claims (1) - (4) are proved by a simultaneous induction on pairs (c; h) lexicographically ordered,

where c = cp(A), and h is the height of a derivation of the query in the hypothesis of each (1) - (4). We

omit the details. 2

Now we can easily prove the completeness of P(G). We show that the deduction rules for G com-

pute, so to say, the run time translation of a query in K4.

Lemma 4.7.5 for any formulas A1; : : : ; An, B1; : : : ; Bn, C of the language L()), the following holds:

if fA�1 ; B1g; : : : ; fA�n ; Bng `? C+ succeeds in P(K4), then (A1; B1); : : : ; (An; Bn) `? C succeeds in

P(G). In particular, if `? A+ succeeds in P(K4), then `? A succeeds in P(G).

Proof. By induction on the height h of a succeeding derivation of the query in the hypothesis.

� h = 0, then C must be an atom, so that C+ = C and either C = A+
n = An, or C = Bn, in both

cases the result follows immediately.

� c > 0, we distinguish two cases: C = X ) Y , or C is an atom. In the former case we have: if

fA�1 ; B1g; : : : ; fA�n ; Bng `? C+ succeeds (in P(K4)) with height h, C+ = fX�; X ) Y g ) Y +,

we have that

fA�1 ; B1g; : : : ; fA�n ; Bng; fX�; X ) Y g `? Y + succeeds (in P(K4)) with height h� 1;

thus by inductive hypothesis, we have that
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(A1; B1); : : : ; (An; Bn); (X;X ) Y ) `? Y succeeds in P(G),

and therefore also (A1; B1); : : : ; (An; Bn) `? X ) Y succeeds in P(G).

Suppose now that C is an atom q, we have two subcases: (a) q uni�es with a formula A�i , or (b)

q uni�es with a formula Bi. In case (a) let Ai = D1 ) : : :Dk ) q, then A�i is D+
1 ) : : : D+

k ) q.

Then there are j1; : : : ; jk, with i < j1 < j2 < : : : < jk = n, such that for l = 1; : : : ; k

fA�1 ; B1g; : : : ; fA
�
jl
; Bjlg `

? D+
l

succeeds in P(K4) with height hl < h. By inductive hypothesis, we may conclude that

(A1; B1); : : : ; (Ajl ; Bjl) `
? Dl succeeds in P (G), for l = 1; : : : ; k,

so that also

(A1; B1); : : : ; (An; Bn) `? q succeeds in P (G).

In case (b) let Bi = E1 ) : : : Ez ) q. Then there are j1; : : : ; jz , with i < j1 < j2 < : : : < jz = n,

such that for l = 1; : : : ; z fA�1 ; B1g; : : : ; fA
�
jl
; Bjlg `? El succeeds in P(K4) with height hl < h.

By the previous lemma, we have that also

fA�1 ; B1g; : : : ; fA
�
jl
; Bjlg `

? E+
l succeeds in P(K4) with height h0l � hl < h.

We may apply the inductive hypothesis, and conclude that (A1; B1); : : : ; (Ajl ; Bjl) `
? El succeeds

in P (G), for l = 1; : : : ; z, so that also (A1; B1); : : : ; (An; Bn) `? q succeeds in P(G).

2

Theorem 4.7.6 If A is valid in G, then ; `? A succeeds in P(G).

Proof. Let A = X1 ) X2 ) : : :) Xn ) q. We have that

A+ = fX�
1 ; F1g ) fX�

2 ; F2g ) : : : fX�
n ; Fng ) q;

where Fn = Xn ) q; Fi = Xi ) Fi+1. If A is a theorem of G, we have that A+ is a theorem of K4.

Thus, ; `? A+ succeeds in P(K4). From lemma 4.7.5 we �nally get that ; `? A succeeds in the proof

system P(G). 2

4.8 Extension to Horn Modal logics

The goal-directed proof procedure can be easily generalized to a broader class of logics. We call Horn

modal logics the class of modal logics which are semantically characterized by Kripke models in which

the accessibility relation is de�nable by means of Horn conditions. This class has been studied in

[Basin et al. 97a]. All previous examples, with the exception of G�odel logic G, fall under this class. To

show how to obtain this generalization, we have to change a bit the presentation of the proof procedure.

In the presentation we have given, a database is a set of labelled formulas together with a set of links

(pairs of labels) �. For each speci�c system, we have introduced predicates AS� which specify closure

conditions (re
exive, transitive, etc.) of the relation �. This predicates are external to the language

and we have supposed to have an external mechanism which allows us to prove statements of the form

A�(x; y). Following [Basin et al. 97a], we now de�ne a database as a pair � = h�F ;�Ri, where �F is

a set of labelled formulas as before and �R is a set of Horn formulas in the language L(A; R). A Horn

formula has the form
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8(R(t1; t
0
1) ^ : : : ^ R(tn; t

0
n) ! R(t; t0))

where each ti ie either a variable Xi, or a constant xi 2 A; the notation 8 denotes the universal closure,

that we will omit henceforth 6. The idea is clearly that the formulas of �R de�ne the accessibility

relation. By

�R ` R(t1; t2).

we denote standard provability in classical logic for Horn clauses. We rephrase the reduction and

implication rule as follows. Let � = h�F ;�Ri.

� (implication) from h�F ;�Ri `? x : A) B;H , step to

h�F [ fy : Ag;�R [ fR(x; y)gi `? y : B;H ,

where y 2 A ^ y 62 Lab(�).

� (reduction) if y : C 2 �F , with C = B1 ) B2 ) : : :) Bk ) q, with q atomic, then from

h�F ;�Ri `? x : q;H

step to

h�F ;�Ri `
? u1 : B1; H [ f(x; q)g; : : : ; h�F ;�Ri `

? uk : Bk; H [ f(x; q)g;

for some u0; : : : ; uk 2 Lab(�), with u0 = y, uk = x, such that

for i = 0; : : : ; k � 1, �R ` R(ui; ui+1) holds.

Soundness and completeness can be easily extended to the class of Horn modal logics. Completeness

relies on the cut-admissibility property which holds also in this case. To this concerning, let us de�ne,

given � = h�F ;�Ri

A�R
= f(x; y) j x; y 2 A ^ �R ` R(x; y)g.

It is almost trivial to see that A�R
satis�es the conditions (i)-(iii) of theorem 4.2.3 reformulated in this

new setting, i.e.

(i) A�R
[u=v] = A�R[u=v], where A�R

[u=v] is the image of A�R
under the mapping �(u) = v

and �(x) = x, for x 6= u;

(ii) A�R
� A�R[�0

R
,

(iii) (x; y) 2 A�R
, then A�R[fR(x;y)g = A�R

.

Notice that the above conditions hold even if �R is an arbitrary set of �rst-order formulas containing

the relational symbol R. The reason why the restriction to Horn matters is that A�R
as de�ned above

determines one model of �R. More precisely, let us de�ne a �rst-order structure M�R
for a language

which includes the relational symbol R (namely a Herbrand model), with

M�R
(R) = A�R

,

6We can introduce a further distinction between an extensional part of �R corresponding to the old � and an intensional

part containing the Horn formulas; the former varies for each database, whereas the latter is �xed for each modal logic.
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then we have that M�R
j= �R. This means that the relation A�R

satis�es the properties of each modal

systems (which are expressed by the non-atomic non-closed Horn formulas in �R). In general, this fact

does not hold unless �R is equivalent to a set of Horn formulas. To see this, consider the property of

linearity

L � 8XY (R(X;Y ) _ R(Y;X)).

Let �R = fL;R(u1; u2); R(u1; u3)g, then

�R ` R(u2; u3) _ R(u3; u2), but �R 6` R(u2; u3) and �R 6` R(u3; u2).

If in the database we have u2 : A) q and u3 : A and R(u2; u3) holds, we can conclude u3 : q, otherwise

we cannot. In other words, we must embody in the computation some form of case-analysis to make it

work. Notice that in this case A�R
= ; and clearly M�R

6j= �R.

Let us go back to the completeness for Horn modal logics. If we inspect the completeness proof

of (theorem 4.3.4), we only need to check one condition, namely that the properties of the accessibility

relation are preserved under countable unions of chains of relations. Given a sequence of databases

�i = h�F;i;�R;i, i 2 !i such that �i � �i+1, we de�ne

AR =
[
i2!

A�R;i
�R =

[
i2!

�R;i;

and a structure MR with M(R) = AR. Then we can easily prove that MR j= �R. That is to say, the

limit (or union) of A�R;i
satis�es the properties of each modal system. This fact is not ensured unless

each �R is Horn.

IS IT RIGHT OR IT HOLDS FOR A MUCH BIGGER CLASS??

4.9 Related work

Many authors have developed sequent calculi for modal logics, (see seminal works by Fitting [Fitting 83],

and [Gore 99] for a recent survey). We cannot give a full account of the research in this area. We limit

our consideration to proof systems which have some relation with ours.

Cerrato in [Cerrato 94] gives a Fitch-style natural deduction formulation of the 15 basic modal

systems, where strict implication is the main connective. The central notion is that one of strict subproof,

which is a proof of a formula whose main connective is strict implication. Strict implication represents

the deducibility link between the hypothesis and the conclusion of a strict subproof. The elimination

rule for strict implication in the basic system Kis as follows: if A ) B occur in the parent proof,

one can import A ! B (material implication) in any immediate strict subproof. Stronger systems are

obtained by allowing categorical strict subproof (system T), and by adding some suitable reiteration

rules (for importing a formula from a proof to its strict subproofs) and contrapposition rules (systems

with D and B). For instance, in K4 one can reiterate any strict implication formula from a proof to its

strict subproofs. In case of K, to give an example, a proof of A1; : : : ; An `? B in our calculus seems

to correspond to a natural deduction proof of B in the n-times nested subproof with strict hypothesis

An, (the nested strict subproof at level i has hypothesis Ai). A more precise mapping is still to be

investigated.

Masini [Masini92] develops a cut-free calculus for modal logic KD based on 2-dimensional se-

quents, each side of a sequent is a vertical succession of sequences of formulas (1-sequences), such a
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�

�;A ` B

�

� ` A) B

�

�

� ` A

�

�

�; B

�0 ` C

�

�; A) B

�

�0 ` C

Figure 4.6:

vertical sequence is called a 2-sequence; �nally, a sequent is a pair of two 2-sequences; we refer to

[Masini92] for further terminology. Modal rules act on di�erent levels of the 2-sequences, whereas

propositional rules act on formulas on the same level of the 2-sequences which constitute a sequent.

Masini also presents an intuitionistic version of his calculus (for logic KD). There is some connection

with our systems. If we restrict our consideration to the language K();^), an unlabelled query of the

form S1; : : : ; Sn `? A corresponds to an (intuitionistic) 2-sequent of the form

S1
... ` �n�1

Sn A

Namely, one can develop a 2-sequent calculus for K();^), containing, for strict implication, the rules of

Fig.4.6 7. Axioms and the rules for conjunction are as in Masini's formulation. It is not di�cult to prove

that (a) the above calculus is sound, and (b) every successful derivation of a query S1; : : : ; Sn `? A in

our proof system K();^) can be mapped into a (cut-free) derivation of

S1
...

Sn ` A

in the above calculus. Thus, the calculus is also complete. Although Masini has not developed calculi for

other modal systems, and for strict implication language, we conjecture that the above considerations

(2-sequent calculus and the mapping with our proof system) can be extended to some other modal

systems.

Giordano, Martelli and Rossi [Giordano et al. 92], [Giordano and Martelli 94] have developed

goal-directed methods for fragments of �rst-order (multi-)modal logics. Their extension is motivated by

several purposes: introducing scoping constructs (such as blocks and modules) in logic programming,

representing epistemic and inheritance reasoning. The spirit of their work is very close to the material

presented in this chapter. In particular in [Giordano and Martelli 94] they have de�ned a family of

7The following calculus makes another simpli�cation wrt. the original formulation, the only formula in the consequent

is always at the same level as maximum level of the 2- sequence in the antecedent, thus we can omit �k in the consequent.
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�rst-order logic programming languages, based on modal logic S4 to represent a variety of scoping

mechanism. If we restrict our consideration to the propositional level, their languages are strongly related

to the one de�ned in section 4.6.2 in the case the underlying logic is S4. The richer (propositional)

fragment of S4they consider is the language L4 which contains

G := true j 2q j G ^G j 2(D ! G),

D := 2(G! 2q) j G! 2q j D ^D,

where q ranges on atoms, D on database formulas (D-formulas), and G on goal formulas (G-formulas).

This language is very close to the one de�ned in section 4.6.2, although neither one of the two in contained

in the other. The (small) di�erence is that in L4 D-formulas of the form G! 2q are allowed, and they

are not in the language of section 4.6.2; on the other hand D-formulas of the form 2(G1 ! 2(G2 ! q))

are allowed in the latter, but not in L4. Of course it would not be di�cult to join the languages. The

proof procedure they give (at the propositional level) is essentially the same as the unlabelled version

of P(S4) we have seen in section 4.6.2.

Basin, Mattews and Vigano have developed a proof-theory for modal logics, based on the

labelled mechanism [Basin et al. 97a, Basin et al. 99]. A much related approach, along somewhat dif-

ferent lines was presented in [Gabbay 96] and [Russo 96]. The authors have developed both sequent

and natural deduction systems for several modal logics which are completely uniform. Database are

distinguished into a relational part �R and into a logical part �F as explained in section 4.8. The class

of modal logics they consider is larger than the one considered in this chapter (with the exception of G),

they are able to develop proof system for full modal logics including the case of seriality and convergency.

In further work [Basin et al. 97b], they have studied labelled sequent calculi to obtain space-complexity

bounds for modal logics. The relation between our and their work might be established by giving sequent

calculi for strict implication fragment as we have exempli�ed above for Masini's formulation. Once we

had de�ned labelled sequent calculi based on strict implication, one might wonder if our goal-directed

proofs correspond to uniform proof (according to the de�nition by Miller [Miller et al. 91]) in these

calculi. We think so, although we have not investigated this issue further.

SHALL WE PUT WHAT FOLLOWS???

The use of labels to represent worlds for modal logics is rather old and goes back to Fitting. In

the seminal work [Fitting 83] formulas are labelled by string of atomic labels (world pre�xes), which

represents paths of accessible worlds. The rules for modalities are the same for every system: for instance

if a branch contain � : 2A, and �0 is accessible from �, then one can add �0 : A in the same branch. For

each system, there are some speci�c accessibility conditions on pre�xes which constraint the propagation

of modal formulas.

Wansing [Wansing 90] develops sequent calculi in the framework of Belnap's display logic for the

basic 15 systems. Sequents are pair of structures generated from formulas by means of some operators

(namely, I , �, �, �, together with the boolean constants). This framework is very general and uniform

and, in particular, the rules for modalities are the same for all systems. To obtain the minimal system K,

a certain number of structural rules have to be postulated; the other systems are obtained by postulating

additional structural rules.
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Chapter 5

Substructural Logics

5.1 Introduction

In this chapter we consider substructural implicational logics. These logics, as far as the implicational

fragment is concerned, put some restrictions on the use of formulas in deductions. The restrictions may

require either that every formula of the database must be used, or that it cannot be used more than

once, or that it must be used according to a given ordering of database formulas. The denomination sub-

structural logics can be explained by the fact that, these logical systems restrict (some of) the structural

rules of deduction, that is to say the contraction, weakening and permutation rules which are allowed

both by classical and intuitionistic provability. Substructural logics have received an increasing interest

in computer science community because of their potential applications in a number of di�erent areas,

such as natural language processing, database update, logic programming, type-theoretic analysis by

means of the so called Curry-Howard isomorphism, and, more generally the cathegorical interpretation

of logics. We refer to for a survey [?]. Recently, Routley-Meyer semantics for substructural logics has

been re-interpreted as modelling agent-interaction [].

We give a brief survey of the implicational systems we consider in this chapter. The background

motivation of relevance logics is the attempt to formalize an intuitive requirement on logical deductions:

in any deduction the hypotheses must be relevant to the conclusion. Relevant means that the hypotheses

must be actually used to get the conclusion. The �rst intuition behind relevance logics is thus to reject

the weakening rule:
� ` A

�; B ` A;

since B may have nothing to do with the proof of A from �. In the object language this rule is re
ected

by the theorem (of classical, likewise intuitionistic logic)

(Irrelevance) A! (B ! A).

The implicational fragment of Rcan be axiomatized by dropping Irrelevance from the axiomatization of

intuitionistic implication. A sequent calculus for the implicational fragment of R can be easily obtained

from the sequent formulation of (the implicational fragment of) intuitionistic logic, by restricting the

identity axiom to single formulas A ` A, and by dropping the above weakening rule. Whereas system

R takes into account the basic concern about use, other systems such as E and T put some further

restriction on the order in which formulas can be used in any deduction. These restriction can be
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expressed in a sequent formulation as restrictions on the rule of permutation (see below), although in a

less natural way1. None of these systems put any control on the number of times in which a formula

can be used within a deduction, what only matters is that it is used at least once.

On the other hand, a few systems we consider pay attention to the number of times a formula

is used in a deduction. In some logics, such as BCKand L, a formula cannot be used more than once.

From the point of view of a sequent system formulation, this constraint about the use of a formula, can

be expressed by removing the rule of contraction:

�; A;A;� ` B

�; A;� ` B ;

from the standard sequent system for intuitionistic logic. In this context, formulas may be thought as

representing resources which are consumed through a logical deduction. This motivates an alternative

denomination of substructural logics as bounded resource logics []. In more detail, BCKis the logic

which result from intuitionistic logic by dropping contraction, L(linear logic) reject both weakening and

contraction 2.

The weakest system we consider is CL, which corresponds to the right implicational fragment of

(associative ???) Lambek calculus, proposed by Lambek in 1958 [?] as a calculus of syntactic categories

in natural language. This system reject all substructural rules, in particular, in addition to weakening

and contraction, it rejects the law of permutation:

�; A;B;� ` C

�; B;A;� ` C;

As we have seen in the Introduction, we ccan ontrol the use of formulas by labelling data and

putting constraints on the labels. In this speci�c context by labelling data, we are able to record whether

they have been used or not and to express the additional conditions needed for each speci�c systems.

The use of labels to deal with substructural logics is not a novelty, it has been introduced by Anderson

and Belnap [Anderson and Belnap 75] to develop a natural-deduction formulation of most relevance

logics. Our proof systems are similar to their natural deduction systems in this respect: we do not have

explicit structural rules. The structural rules are internalized as resctrictions in the logical rules.

5.2 Proof Systems

De�nition 5.2.1 Let us �x a denumerable alphabet A = fx1; : : : ; xi; : : :g of labels. We assume that

labels are totally ordered as shown in the enumeration, v0 is the �rst label. A database is a �nite set of

labelled formulas � = fx1 : A1; : : : ; xn : Ang. We assume that

if x : A 2 �; x : B 2 �, then A = B 3.

We use the notation Lab(E) for the set of labels occurring in an expression E, and we �nally assume

that v0 62 Lab(�). Label v0 will be used for queries from the empty database.

1Belnap, Wansing, Dozen (rigth quotations) [] have extensively studied sequent calculi for substructural logics. They

propose to structure sequent by non-associative operators in the style of Belnap Display logic.
2In linear logic, these rules are re-introduced in a controlled way by special operators called exponentials.
3This restriction will be lifted in section 5.1 where conjunction is introduced in the language.
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De�nition 5.2.2 A query Q is an expression of the form:

�; � `? x : G

where �, is a database, � is a �nite set of labels not containing v0; moreover if x 6= v0, then x 2 Lab(�),

and G is a formula.

A query from the empty database has the form:

`? v0 : G.

By convention, we stipulate that if � = ;, then max(�) = v0. The set of labels � may be thought as

denoting the set of resources that are available to prove the goal. Label x in front of the goal has a

double role as "a position" in the database from which the goal is asked and a as available resource.

5.2.1 Goal-directed proof procedures

The rules for success and reduction are parametrized to some conditions SuccS and RedS which will be

de�ned below. Here below are the deduction rules for a query of the form:

�; � `? x : G:

� (success)

�; � `? x : q; succeeds;

if x : q 2 � and SuccS(�; x).

� (implication) from

�; � `? x : C ! G

we step to

� [ fy : Cg; � [ fyg `? y : G;

where y > max(Lab(�)), (hence y 62 Lab(�));

� (reduction) from

�; � `? x : q;

if there is some z : C 2 �, with

C : A1 ! : : :! Ak ! q;

and there are �i, and xi for i = 0; : : : ; k such that:

1. �0 = fzg, x0 = z,

2.
Sk
i=0 �i = �.

3. RedS(�0; : : : ; �k; x0; : : : ; xk;x)

then for i = 1; : : : k, we step to

�; �i; `
? xi : Ai:

The conditions for success are either (s1) or (s2) according to each system:
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Condition (r0) (r1) (r2) (r3) (r4) (Success)

CL * * (s2)

T-W * * * (s2)

T * * (s2)

E-W * * * (s2)

E * * (s2)

L * (s2)

R (s2)

BCK * (s1)

� (s1) SuccS(�; x) � x 2 �,

� (s2) SuccS(�; x) � � = fxg.

The conditions RedS are obtained as combination of the following clauses:

� (r0) xk = x;

� (r1) for i; j = 0; : : : ; k, �i \ �j = ;;

� (r2) for i = 1; : : : ; k, xi�1 � xi and max(�i) � xi;

� (r3) for i = 1; : : : ; k, xi�1 � xi and max(�i) = xi;

� (r4) for i = 1; : : : ; k, xi�1 < xi, max(�i�1) = xi�1 < min(�i) and max(�k) = xk.

The conditions RedS are then de�ned according to the table in �gure 5.2.1

Notice that

(r4) ) (r3) ) (r2), and

(r4) ) (r1).

We give a quick explanation of the conditions SuccS and RedS . Remember that � are resources

which must/can be used.

For success rule, in all cases but BCK, we have that we can succeed if x : q is in the database, x

is the only resource left, and q is asked from position x; in case of BCK, x must be among the available

resources, but we do not require that x is the only one left.

The conditions for reduction can be explained as follows: resources � are split in several �i, for

i = 1; : : : ; k and each part �i must be used in a derivation of a subgoal Ai.

In case of logics without contraction we cannot use a resource twice, that is why, by restriction

(r1), the �i's must be disjointed and z, the label of the formula we are using in the reduction step, is no

longer available.

Restriction (r2) impose that successive subgoals are to be proved from successive positions in

the database: only positions y � x are \accessible" from x; moreover each xi must be accessible from

resources in �i. Notice that the last subgoal Ak must be proved from x, the position from which the

atomic goal q is asked.

Restriction (r3) is similar to (r4) but it further requires that the position xi is among the available

resources �i.
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Restriction (r4) forces the goal Ai to be proved by using successive disjointed segments �i of �.

Moreover, z which labels the formula we are using in reduction, must be the �rst resource among the

available ones.

It is not di�cult to see that intuitionistic (implicational) logic is obtained by considering success

condition (s1) and no other constraint. More interestingly, to make a connection with the previous

chapter, we can see that S4 strict implication is given by considering success condition (s1) and

restrctions (r0) and (r2) on reduction. We leave to the reader to prove that the above formulation

coincide with the database-as-list formulation of S4 we have seen in the previous chapter. We can

consider S4, as a substructural logic, which is obtained by imposing a restriction on the weakening and

the permutation rules. On the other hand, S4 is strongly related to relevance logic E, which is regarded

as a logic of relevance and necessity [?].

We introduce some notational convention which we will use later on. We use the notation

Q)Red
z Q1; : : : ; Qn,

to denote that query Q may generate queries Q1; : : : ; Qn, by reduction wrt some

z : D1 ! : : :! Dn ! q 2 �.

Similarly, let Q = �; 
 `? x : A! B, if from Q we step to Q0 by the implication rule, where:

Q0 = � [ fy : Ag� [ fyg `? y : B,

for some y > max(Lab(�)), (whence y 62 Lab(�)), we write

Q)Imp
y Q0.

Given a resource set 
 and a label u, let us de�ne:

pred(
; u) =

�
maxfz 2 
 j z < ug

" if :9z 2 
 z < u:

succ(
; u) =

�
minfz 2 
 j z > ug

" if :9z 2 
 z > u:

By convention, we assume that every inequality in which pred(
; u) (succ(
; u)) is one of the two

terms trivially holds if pred(
; u) =" (succ(
; u) ="); similarly, we assume that an inequality such as

maxfpred(
; u); xg < y reduce to x < y, whenever pred(
; u) is unde�ned.

5.3 Properties

In this section we list some properties of the computation procedure which allow some simpli�cation.

The proofs are simple by induction on the height of successful computation and will be mostly omitted.

Proposition 5.3.1 If �; 
 `? x : B succeeds, u : A 2 �, but u 62 
, then

�� fu : Ag; 
 `? x : B succeeds.

By this proposition is apparent that 
 speci�es usage. Resources which are not included in 
 are

not relevant for the computation and the formulas they label can be omitted.
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Proposition 5.3.2 If �; 
 `? x : B succeeds, then 
 � Lab(�)

By the previous proposition, when we are concerned with successful queries, we can assume that


 � Lab(�), and hence max(
) � max(Lab(
)).

The following proposition generalizes the success rule to the identity property.

Proposition 5.3.3 If x : A 2 �, and SuccS(
; x), then �; 
 `? x : A succeeds.

Proof. By induction on the complexity of A. if cp(A) = 0, that is A is an atom, the one above is just

the success rule. Let

A = B1 ! : : :! Bn ! q

A derivation of A, will start with:

�; 
 `? x : A

#

(Q) � [ fz1 : B1; : : : ; zn : Bng; 
 [ fz1; : : : ; zng `
? zn : q

where max(Lab(�)) < z1 < : : : zn. Let �0 = � [ fz1 : B1; : : : ; zn : Bng and 
0 = 
 [ fz1; : : : ; zng. We

simply de�ne


0 = fxg and z0 = x,


1 = (
 � fxg) [ fz1g


i = fzig, for i > 1.

We can easily see that SuccS(
i; zi), hence, by induction hypothesis we have that

all (Qi) �0; 
i `? zi : Bi succeed.

If we can apply reduction wrt. x : A to (Q), step to queries (Qi), and we are done. But, by de�nition

z0 = x, 
0 = fxg, and
Sn
i=0 
i = 
0. Moreover, we leave to the reader to check that

RedS(
0; : : : ; 
k; z0; : : : ; zn; zn)

holds, so that we can perform the above reduction step. This complete the proof. 2

Proposition 5.3.4 If �; 
 `? x : B succeeds, � � �, then

�; 
 `? x : B succeeds.

In case of BCK if 
 � � also

�; � `? x : B succeeds.

Moreover, the height of a successful derivation does not increase.

Proposition 5.3.5 � For R, L, BCK, if �; 
 `? x : B succeeds, then

for every y 2 
, �; 
 `? y : B succeeds.

� For R, L, BCK, E, E-W, if �; ; `? x : B succeeds, then

for every y, �; ; `? y : B succeeds.
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� For E, E-W, if �; 
 `? x : B succeeds and x 62 
, then,

for every y � max(
), �; 
 `? y : B succeeds.

Moreover, the height of a successful derivation does not increase.

Because of the previous proposition, in case of R, L, and BCK we can omit the label x in front

of the goal. However, we do not make use of this and other possible simpli�cation at this stage since we

want to carry on an uniform development.

For some technical reasons, connected with the proof of cut-admissibility theorem in the next

section, we restrict our consideration to a certain type of queries, namely queries which can be generated

asking an initial goal from the empty database.

De�nition 5.3.6 We say that a query

�; 
 `? x : A

is S-regular, where S in one of the logic under consideration if the following holds:

� for R, L, BCK, if 
 6= ;, then x 2 
;

� for E, E-W, max(
) � x,

� for T,T-W, CL, max(
) = x (thus if 
 = ;, then x = v0).

An S-regular derivation is a derivation in which every query is S-regular.

In particular, notice that a query from the empty database is S-regular, for every system S.

Without loss of generality, we can to restrict our attention to regular queries and regular derivations.

Proposition 5.3.7 Let Q be an S-regular query, if Q succeeds, then it succeeds by an S-regular deriva-

tion.

We conclude this section by showing that successful queries are closed under formula substitution.

Here by formula substitution we mean the simultaneous substitution of all occurrences of an atom q

whithin a formula A[q], by an arbitrary formula B. The result of the substitution is denoted by A[q=B].

Similarly, we denote by �[q=B], the substitution of q by B in every formula of a database �. The property

of closure under substitution is not to be taken for granted, as the deduction rules pay attention to the

form of the formulas, that is whether they are atomic or not.

Theorem 5.3.8 If Q = �; 
 `? x : A succeeds, then also Q0 = �[q=B]; 
 `? x : A[q=B] succeeds.

Proof. By induction on the height h of a successful derivation of the query Q. If h = 0, then the query

immediately succeeds. If A 6= q, the claim is trivial, if A = q, then x : B 2 �[q=B], and the claim follows

by proposition 5.3.3.

Let h > 0 if A = C ! D, then we apply the implication rule and we step to

� [ fz : Cg; 
 [ fzg `? z : D,

for a suitable z. By induction hypothesis, we have that

(� [ fz : Cg)[q=B]; 
 [ fzg `? z : D[q=B] succeeds.
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and we can conclude by applying the implication rule to Q0 that is �[q=B]; 
 `? x : A[q=B] as A[q=B]

is C[q=B] ! D[q=B] and (� [ fz : Cg)[q=B] is �[q=B] [ fC[q=B]g.

Let A be an atom r and the �rst rule applied be reduction with respect to z : C 2 �, where C = D1 !

: : :! Dn ! r, so that we step to

Qi = �; 
i `? xi : Di

for some suitable 
i and xi such that 
 =
S
i 
i and RedS(
0; : : : ; 
n; x0; : : : ; xn;x) holds; if r 6= q, we

simply apply the induction hypothesis to Qi and we get that

�[q=B]; 
i `? xi : Di[q=B] succeed.

We can apply reduction to Q0 wrt. z : C[q=B] and succeed. If r = q, letting B = B1 ! : : :! Bm ! p,

we have that C[q=B] is

D1[q=B] ! : : :! Dn[q=B] ! B1 ! : : :! Bm ! p:

Then from Q0, we step by the implication rule to

Q00 = �[q=B] [ fz1 : B1; : : : ; zm : Bmg; 
 [ fz1; : : : ; zmg `? zm : p

where max(Lab(�[q=B])) < z1 < : : : < : : : zm. Let �0 = �[q=B] [ fz1 : B1; : : : ; zn : Bmg and 
0 =


 [ fz1; : : : ; zmg. Let 
n+j = fzjg, and xn+j = zj for j = 1; : : : ;m. It is easy to see that


0 =
Sn+m
i=0 
i, and also RedS(
0; : : : ; 
n+m; x0; : : : ; xn+m; zm) holds,

by the hypothesis that RedS(
0; : : : ; 
n; x0; : : : ; xn;x) holds. Thus, from Q00 we can step to

Q0
i = �0; 
i `? xi : Di[q=B], for i = 1; : : : ; n and

Q0
n+j = �0; 
n+j `? xn+j : Bj , for j = 1; : : : ;m

Since the queries Qi succeed, by induction hypothesis and proposition 5.3.4 also the queries Q0
i succeed.

On the other hand SuccS(
n+j ; xn+j) hold, and xn+j : Bj 2 �0, thus by proposition 5.3.3, we have that

queries Qn+j succeed as well, thus query Q00 succeed and so does query Q0. 2

5.4 Admissibility of Cut

In this section we prove the admissibility of cut for all the logics under consideration. We �rst have to

deal with the notion of substitution of formulas and labels by databases. In this case, the proof of the

admissibility of cut is more complex than in the cases we have seen in the previous chapters. The reason

is that the deduction rules are more constrained than in the previous cases. In particular we have to

take into account the ordering of formulas in the databases involved in a cut inference step.

Since we treat in this section the pure implicational case, we need the notion of compatibility

with respect to substitution, that we have already met in the previous chapters.

De�nition 5.4.1 Given two databases �, with u : A 2 � and �, we say that � and � are compatible

for substitution if z 2 Lab(�)\Lab(�), then z : C 2 � i� z : C 2 �, and whenever they are compatible

for substitution, we let:

�[u : A=�] = (�� fu : Ag) [�.
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Given two sets of resources 
 and � and a label u we de�ne:


[u=�] =

�
(
 � fug) [ � if u 2 



 otherwise:

By cut we mean the following inference rule: If

�[u : A]; 
 `? x : B and �; � `? y : A

succeed, then also

�[u : A=�]; 
[u=�] `? x[u=y] : B

succeeds.

However, unless we put some constraint on 
 and � the above rule does not hold. To give a simple

example, let us consider the case of L (linear implication), we have:

(1) fx2 : p! q;x3 : pg; fx2; x3g `? x3 : q and

(2) fx1 : (p! q) ! p; x2 : p! qg; fx1; x2g `? x2 : p both succeed, but

(3) fx1 : (p! q) ! p; x2 : p! qg; fx1; x2g `? x2 : q fails.

Here we want to replace x3 : p occurring in (1) by the database in (2). Since the database shares

resource x2, x2 : p! q must be used twice in a deduction of (3), and this is not allowed by the condition

for L-computation. In this case, the restriction we must put is that the two resource sets (in the two

premises of the cut) 
 and � be disjointed. For other logics, for instance, where the order matters, we

must ensure that the substitution of � in 
 respects the ordering of the labels in 
. However, we can

always ful�ll these compatibility constraints by renaming the labels in the proper way. In the previous

example, for instance, we can rename the labels in the �rst query, and get

(1') fy2 : p! q;y3 : pg; fy2; y3g `? y3 : q

by cut we now obtain:

(3') fx1 : (p! q) ! p; x2 : p! q; y2 : p! qg fx1; x2; y2g `? x2 : q

which succeeds.

We hence have two alternatives, either we accept the above formulation of the cut rule, but we

restrict its applicability to queries which satisfy speci�c coditions for each system, or we �nd a more

general notion of cut which hold in every case. As we will see, we can de�ne the more general notion of

cut as well by incorporating the needed re-labelling. However, we will prove the admissibility of the cut

in the restricted form, since in some sense is more informative. For instance, from the premises (1) and

(2) above , we can legitamately infer the conclusion (3) in R, T, E, and not only the weaker (3').

We introduce some notation to simplify the following development. Given two queries Q, Q0,

with Q = �[u : A]; 
 `? x : A and Q0 = �; � `? y : A, no matter whether they are compatible or

not, the result of cutting Q by Q0 on u : A is uniquely determined, and we denote it by the query

Q00 = CUT (Q;Q0; u).

De�nition 5.4.2 [Compatibility for Cut] Given two queries

Q = �[u : A]; 
 `? x : A and Q0 = �; � `? y : A,
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we say that Q and Q0 are compatible for cut on position/resource u in system S, denoting this fact by

COMPS(Q;Q0; u) 4, if the following holds:

� � and � are compatible for substitution;

� the following combinations of the conditions (1)-(3) below hold.

1. 
 \ � = ;;

2. pred(
; u) < min(�) and max(�) < succ(
; u);

3. pred(
; u) � y, and if u < x, then y � minfsucc(
; u); xg.

{ for R: nothing;

{ for L, BCK: (1);

{ for CL: (2);

{ for T, E: (3);

{ for T-W, E-W: (1) and (3).

Some explanation of these conditions helps: condition (1) says that the resources of the two premises

are disjointed and this condition must be assumed for systems without contraction. Condition (2) is

stronger and requires that � seen as an ordered sequence of labels must �t in between the predecessor

and the successor of the label u that we replace by cut; in other words, u can be replaced by the entire

`segment' � without mixing 
 and �. Condition (3) is a weakening of (2) allowing merging of 
 and � up

to the successor of the cut formula label u. The condition say exactly this, whenever succ(
; u) exists,

whence succ(
; u) � x), and y = max(�). It is stated in more general terms, since succ(
; u) may not

exist, and in the cases of E and E-W it may be y � max(�). For instance, let x1 < x2 < : : : < x9, two

queries with 
 = fx2; x4; x6; x8; x9g, u = x6, and x = x9, � = fx1; x3; x6; x7g, y = x7, satisfy condition

(3), whereas if � = fx1; x3; x6; x9g, they do not satisfy it.

It should also be clear that, if y = max(�) then condition (2) implies both condition (1) and

condition (3).

The compatibility conditions preserve the regularity of the queries.

Proposition 5.4.3 If Q and Q0 are S-regular and COMPS(Q;Q0; u) holds, then the query Q00 =

CUT (Q;Q0; u) is S-regular.

Proof. We proceed by cases, let �rst assume 
[u=�] 6= ;.

� Case of R, L, BCK, we must show that x[u=y] 2 
[u=�]. By regularity of Q and Q0, we have

x 2 
 and y 2 �. If x = u, then x[u=y] = y 2 � � 
[u=�].

If x 6= u, then x = x[u=y] 2 
 � fug � 
[u=�].

� Case of E, E-W, we must show that max(
[u=�]) � x[u=y]. We have the following cases:

1. Let 
[u=�] = 
 and x[u=y] = x, then it follows by the regularity of Q.

4As can be seen from the conditions below, that compatibility is a relation on (sets of) labels which occur in a query,

the formulas do not play any role, we will use later on the notation CompS(�; 
; x; u;�; �; y).
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2. Let 
[u=�] = (
 � fug) [ � and x[u=y] = x. We have that max(
[u=�]) = max(
 � fug) or

max(
[u=�]) = max(�). In the former case we conclude by regularity of Q. In the latter case

since u 2 
 and x 6= u, by regularity of Q it must be u < x, so that by COMPS(Q;Q0; u),

and by regularity of Q0 we have

max(�) � y � minfsucc(
; u); xg � x.

3. 
[u=�] = 
 and x[u=y] = y, that is x = u. We have u 62 
. It must be pred(
; u) #, for

otherwise, by regularity of Q we would have max(
) < u, and hence 
 = ; against the

hypothesis. Since pred(
; u) #, we have max(
) = pred(
; u) � y, by COMPS(Q;Q0; u).

4. Let 
[u=�] = (
�fug)[ � and x[u=y] = y, that is x = u. Then max(
[u=�]) = max(
�fug)

or max(
[u=�]) = max(�). In the former case, we have max(
 � fug) = pred(
; u) � y, by

COMPS(Q;Q0; u). In the latter case we conclude by the regularity of Q0.

� For all the other systems we checks in a similar way that max(
[u=�]) = x[u=y]. Details are left

to the reader.

� For T, T-W, CL, we check that if 
[u=�] = ;, then x[u=y] = v0. If 
[u=�] = ;, then either 
 = ;

or 
 = fug and � = ;. In the former case, we have x = v0, so that it must be v0 6= u, since

v0 62 Lab(�), and the result follows. In the latter case, it must be x = u, so that x[u=y] = y = v0,

as � = ;.

2

The proof of the admissibility of cut relies on the lemmas below, which state properties and

relations of COMPS , RedS , SuccS.

We give an intuitive explanation of the lemmas. Lemma 5.4.4 deals with the case when the

cut formula is an atom and it is used for immediate success. Lemmas 5.4.5 and 5.4.6 ensures the

permutability of cut by the implication rule and the reduction rule, respectively. Lemma 5.4.8 deals

with the case when the cut formula is used in a reduction step, that is it is the principal formula. To

explain the role of lemmas 5.4.6 and 5.4.8, we illustrate the cut elimination process in some detail in

this last case; we do not mention the labels, but we focus on the inference steps. Let us have

(1) �; D ! q `? q and (2) � `? D ! q

From (1) we step to

(3) �; D ! q `? D.

By cutting (2) and (3) we obtain

(4) �;� `? D succeeds.

By (2), we get:

(5) �; D `? q succeeds.

Now we cut (5) and (4) on D and obtain:

(6) �;� `? q succeeds.
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Since, we have labels and constraints, we cannot freely perform cut, we must ensure that compatibility

constraints are satis�ed. The meaning of the lemmas is that: by 5.4.6 if (1) and (2) are compatible for

cut, then so are (3) and (2); by 5.4.8 if (1) and (2) are compatible for cut, then so are (5) and (4). The

structure of cut elimination process is �xed and it is exactly the same as in the previous chapters. Much

of the e�ort is due to ensure the right propagation of compatibility constraints. To simplify, we assume

that the query are S-regular. Success always mean success with respect to a system S.

Lemma 5.4.4 If �; � `? y : q succeeds and SuccS(
; u) holds, then �; 
[u=�] `? y : q succeeds.

Proof. Easy and left to the reader. 2

Lemma 5.4.5 If Q )Imp
z Q1, and COMPS(Q;Q0; u), then there exist a label z0, such that Q )Imp

z0

Q1[z=z
0], COMP (Q1[z=z

0]; Q0; u), and

CUT (Q;Q0; u) )Imp
z0 CUT (Q1[z=z

0]; Q0; u).

Proof. Let Q = �; 
 `? x : C ! D, choose z0 such that maxfmax(
);max(�); x; u; yg < z0, and let

Q1 = � [ fz0 : Cg� [ fz0g `? z0 : D, we have that CUT (Q1; Q
0; u) is the query

(� [ fz0 : Cg)[u : A=�]; (� [ fz0g)[u=�] `? z0[u=y] : D.

By the choice of z0, z0 6= u and z0 62 
 [ �, we have that the above query is the same as:

�[u : A=�] [ fz0 : Cg); �[u=�] [ fz0g `? z0 : D.

Thus, it is clear that

CUT (Q;Q0; u) )Imp
z0 CUT (Q1; Q

0; u).

We have still to check that COMPS(Q1; Q
0; u). As far as condition (1) is concerned, if 
 \ � = ;, also

(
 [ fz0g) \ � = ; holds, since z 62 �.

For condition (2), the only non-trivial check is that y < succ(
[fz0g; u) when succ(
[fz0g; u) =

z0, but this is ensured by the choice of z0 > y.

Smilarly, for condition (3), the only non-trivial check is y � minfsucc(
 [ fz0g); z0, which holds

again as z0 > y. 2

Lemma 5.4.6 Suppose Q)Red
z Q1; : : : ; Qn, where

Q = �[u : A]; 
 `? x : q

Qi = �[u : A]; 
i `? xi : Di, and Q
0 = �; � `? y : A.

If COMPS(Q;Q0; u) then

� (a) COMPS(Qi; Q
0; u);

� (b) z 6= u implies CUT (Q;Q0; u) )Red
z CUT (Q1; Q

0; u); : : : ; CUT (Qn; Q
0; u)

Proof. We �rst show that we can assume that xi 2 
 or xi = x. For all systems, but E and E-W,

this is obvious: by regularity, xi 2 
i � 
, unless 
i = ; (and this is allowed in some systems). But if


i = ; is allowed (and it is so in systems R, BCK), whatever is the choice of xi, by proposition 5.3.5

the query succeeds with the same height; thus we may chose a proper xi 2 
 or let xi = x.

In case of E and E-W, if xi 62 
i � 
, by property 5.3.5, we have that for every w � max(
i),

�; 
i `? w : Di succeeds, so that again we can chose a proper xi 2 
 or take xi = x.

We turn to prove (a), for each group of systems.
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� (Condition c1) We must check that 
i\� = ;. But this trivially follows from the fact that 
\� = ;

and 
i � 
.

� (Condition c2) We must check that pred(
i; u) < min(�) and max(�) < succ(
i; u). Notice that

there is only one i0 such that u 2 
i0 and by (r4), if pred(
i0 ; u) #, then pred(
i0 ; u) = pred(
; u),

and the same holds for succ(
i0 ; u).

� (Condition c3) We must check that

(*) pred(
i; u) � y and if u < xi, then y � minfsucc(
i; u); xig.

Notice that since 
i � 
, we have

(1) if pred(
i; u) #, then pred(
; u) # and pred(
i; u) � pred(
; u);

(2) if succ(
i; u) #, then succ(
; u) # and succ(
i; u) � succ(
; u).

Then, (*) easily follow from (1), (2), COMP (Q;Q0; u), and the regularity of Qi, which implies by

(2), succ(
i; u) � xi.

We now turn to (b) We must show that if u 6= z, then the following hold:

1. 
0[u=�] = fzg and x0[u=y] = x0,

2. 
[u=�] =
Sn
i=0 
i[u=�],

3. RedS(
0[u=�]; : : : ; 
n[u=�]; x0[u=y]; : : : ; xn[u=y];x[u=y0)

Condition 1. is obvious by u 6= z. For 2., we know that 
0 = fzg. Let u 2 
 (otherwise the claim is

trivial), then for some i it must be u 2 
i. Let J = fj : 1; : : : ; n j u 2 
jg, and let Jc = f1; : : : ; ng � J .

Then we have:


[u=�] = (
[
i=0


i)[u=�] = (
[
i2J


i)[u=�] [ (
[
j2Jc


j [u=�]);

then the result easily follows from the fact that

for j 2 Jc,
j [u=�] = 
j and (
S
i2J 
i)[u=�] =

S
i2J(
i[u=�]).

For 3., we have to check (r0){(r4). We give the details of the cases (r2) and (r4), the proof of the others

are similar or straightforward.

� (r2) max(
i[u=�]) � xi[u=y] follows by proposition 5.4.3. We must prove xi�1[u=y] � xi[u=y], for

i = 1; : : : ; n.

{ Let xi�1[u=y] = xi�1, and xi[u=y] = y, that is xi = u; then xi�1 < u, we know that xi�1 2 
,

(it cannot be xi�1 = x, for otherwise, we would have x < u). Hence pred(
; u) #, so that, by

COMPS(Q;Q0; u), we have:

xi�1 � pred(
; u) � y.

{ Let xi�1[u=y] = y and xi[u=y] = xi, that is xi�1 = u, By part (a), we have COMP (Qi; Q
0; u),

so that, being u < xi, we have

y � minfsucc(
i); xig � xi.

� (r4) Only one 
i and xi, say for i = i0 are a�ected by substitution by � and y (i.e. for only one i,

u 2 
i), and since z 6= u, i0 > 0. In light of 5.4.3, we must prove only that:
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max(
i0�1) < min(
i0 [u=�]) and

max(
i0 [u=�]) < min(
i0+1)

The �rst claim is not trivial in the case u = min(
i0), but in such a case, by COMP (Q;Q0; u) we

have:

max(
i0�1) = pred(
; u) < min(�) = min(
i0 [u=�]).

Similarly, the second claim is not trivial in case u = max(
i0 ), but in such a case, by COMP (Q;Q0; u)

we have:

max(
i0 [u=�]) = max(�) < succ(
; u) = min(
i0+1).

2

Remark 5.4.7 Notice that the proof of xi�1[u=y] � xi[u=y] for (r2) and (r3) does not depend on the

assumption of z 6= u, that is the claim hold even if u = z. This fact will be useful in the proof of lemma

5.4.8.

Lemma 5.4.8 Let the following hold:

(i) Q = �[u : D1 ! : : :! Dk ! q]; 
 `? x : q;

(ii) Q0 = �; � `? y : D1 ! : : :! Dk ! q;

(iii) Q)Red
u Q1; : : : ; Qn,

(iv) COMPS(Q;Q0; u),

(v) Q0
i = CUT (Qi; Q

0; u) for i = 1; : : : ; n,

(vi) Q00
0 = � [ fz1 : D1; : : : ; zn : Dng� [ fz1; : : : ; zng `? zn : q, where

maxfmax(
);max(�); x; y; ug < z1 < z2 < : : : < zk;

(vii) Q00
i = CUT (Q00

i�1; Q
0
i; zi) for i = 1; : : : ; n,

then, COMPS(Q00
i�1:Q

0
i; zi) holds for i = 1; : : : ; n.

Proof. Let A = D1 ! : : :! Dk ! q. We de�ne:

�i = � [ fzi+1; : : : ; zng [
Si
j=1 
j [u=�]

(so that �0 = � [ fz1; : : : ; zng). Thus, we have:

Q0
i = �[u : A=�]; 
i[u=�] `? xi[u=y] : Di, and

Q00
i = (�� fu : Ag) [� [ fzi+1 : Di+1; : : : ; zn : Dng; �i `? zn : q,

(for the sake of uniformity, by proposition 5.3.4, we can replace � by (��fu : Ag)[� in Q00
0), We must

prove COMPS(Q00
i�1:Q

0
i; zi), for i = 1; : : : ; n, checking each condition involved in COMPS .

� (condition c1) for systems with (r1). We have that u 62 
i, hence for all i, 
i[u=�] = 
i; since

� \ 
i = ;, by the choice of zi, we also get that for i = 0; : : : ; n� 1

(� [ fzi+1; : : : ; zng [
Si
j=1 
j [u=�]) \ 
i+1 = ;,

� (condition c2) Observe that u = min(
) and u 62 
i, whence for all i, 
i[u=�] = 
i. We must check

that
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pred(�i; zi+1) < min(
i+1) and max(
i+1) < succ(�i; zi+1).

The second inequality holds by the choice of zi. For the �rst inequality, in case of i = 0, we have

that

pred(�0; z1) = max(�) < succ(
; u) = min(
1),

by COMPS(Q;Q0; u). In case of i > 0, we have

pred(�i; zi+1) = max(� [
Si
j=1 
j) = max(
i) < min(
i+1).

� (condition c3) We must check that

pred(�i; zi+1) � xi+1[u=y] and

if zi+1 < zn, then xi+1[u=y] � minfsucc(�i; zi+1)); zng.

The second inequality holds by the choice of zi's. We prove the �rst one in case of system E; for

the other systems the proof is almost the same. Let i = 0, then we have

pred(�0; z1) = max(�) � y.

We know that u � x1, thus if u = x1, we are done. Let u < x1, then x1[u=y] = x1. By

COMPS(Q;Q0; u) and by proposition 5.4.6, we have COMPS(Q1; Q
0; u), whence

max(�) � y � minfsucc(
1; u); x1g � x1.

Let i > 0, then we have:

pred(�i; zi+1) = max(� [
Si
j=1 
j)[u=�]).

By remark 5.4.7, we know that x1[u=y] � : : : � xn[u=y]. Then we have that either:

max(� [
Si
j=1 
j)[u=�]) = max(�),

so that max(�) � x1[u=y] � xi+1[u=y], or

max(� [
Si
j=1 
j)[u=�]) = max(
j [u=�]), for some j � i.

But by proposition 5.4.3 max(
j [u=�]) � xj [u=y] � xi[u=y].

2

Theorem 5.4.9 (Admissibility of Cut) Let Q = �[u : A]; 
 `? x : B and Q0 = �; � `? y : A be

regular queries. If Q and Q0 succeed and COMPS(Q;Q0; u), then also

Q� = CUT (Q;Q0; u) = �[u : A=�]; 
[u=�] `? x[u=y] : B succeeds.

Proof. Let Q and Q0 be as in the statement of the theorem. As usual, we proceed by double induction

on pairs (c; h), where c is the complexity of the cut formula A and h is a successful derivation of Q. We

give the details for the case of immediate success (c = h = 0), and for the case of reduction with respect

to u : A (c; h > 0). The other cases follow by induction hypothesis using lemma 5.4.5 if the �rst step is

by the implication rule), and using lemma 5.4.6 if the �rst step is by the reduction rule.

Let c = 0 and h = 0, then Q immediately succeeds, that is B is an atom q, x : q 2 � and

SuccS(
; x) holds. If x 6= u, then x : q is also in �[u : A=�], moreover x[u=y] = x and 
[u=�] = 
. By
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propositions 5.3.1 and 5.3.4 we have that Q� = � � fu : Ag [ �; 
[u=�] `? x[u=y] : B succeeds. If

x = u, then x[u=y] = y, since Q0 succeeds by lemma 5.4.4, we get that Q�, succeeds.

Let c; h > 0 and Q succeeds by reduction with respect to u : A. Let A = D1 ! : : : !

Dn ! q. We have Q )Red
u Q1; : : : ; Qn,which succeed with smaller height; by lemma 5.4.6 we have

COMPS(Qi; Q
0; u), hence by induction hypothesis we get that Q0

i = CUT (Qi; Q
0; u) succeeds. Now let,

Q�
0 = � [ fz1 : D1; : : : ; zn : Dng; � [ fz1; : : : ; zng `? zn : q, where

maxfmax(
);max(�); x; y; ug < z1 < z2 < : : : zk;

by lemma 5.4.8 we have COMP (Q�
0; Q

0
1; z1), notice that cp(D1) < cp(A) = c, thus we may apply the

induction hypothesis and obtain that Q�
1 = CUT (Q�

0; Q
0
1; z1) that is

�� fu : Ag [� [ fz2 : D2; : : : ; zn : Dng; 
1[u=�] [ � [ fz2; : : : ; zng `? zn : q

succeeds. By lemma 5.4.8 also COMP (Q�
1; Q

0
2; z2), and since cp(D2) < cp(A), we can cut again Q�

1 and

Q0
2 on z2 : D2 and obtain that

Q�
2 : �� fu : Ag [� [ fz3 : D3; : : : ; zn : Dng; 
1[u=�] [ 
2[u=�] [ � [ fz2; : : : ; zng `? zn : q

succeeds. by repeating this argument up to n (using lemma 5.4.8), we �nally get that

Q�
n : �� fu : Ag [�; 
1[u=�] [ : : : [ 
1[u=�] [ � `

? zn[zn=xn[u=y]] : q

succeeds. Since xn = x and u 2 
, we have


[u=�] = (

n[
i=0


i)[u=�] =

n[
i=0


i[u=�] [ �:

Hence Q�
n is Q� and we are done. 2

Corollary 5.4.10 (Modus Ponens) If

`? v0 : A! B and `? v0 : A succeed,

then also

`? v0 : B succeeds.

Proof. If `? v0 : A ! B succeed, then also Q = u : A; fug `? u : B (with u > v0) succeeds by the

implication rule. It easily seen that Q and Q0 = `? v0 : A are compatible for cut, in every system.

Thus, by cut we get that `? v0 : B succeeds. 2

A general form of Cut

We have proved the admissibility of cut under speci�c compatibility conditions for each system. It

is easily seen that we can always rename the labels in a query in order to match the compatibility

constraints.

But we can do more: we can incorporate the needed re- labellings in the de�nition of cut in

order to achieve a formulation which holds for every system without rstrictions. To this purpose, given

Q1 = �[u : A]; 
 `? x : B and Q2 = �; � `? y : A let us call the pair ( 1;  2) of label substitutions

suitable for cutting Q1 by Q2 on u if:
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�  1 and  2 are order-preserving on 
 [ fu; xg and on � [ fyg, respectively5;

� pred(
 1;  1(u)) < min(� 2);

�  2(y) < minfsucc(
 1;  1(u));  1(x)g.

Now the cut rule becomes

if Q1 = �[u : A]; 
 `? x : B and Q2 = �; � `? y : A succeed

then also

� 1[ 1(u) : A=� 2]; 
[ 1(u)=� 2] `?  1(x)[ 1(u)= 2(y)] : B suceeds,

where ( 1;  2) is any pair of label substitution suitable for cutting Q1 by Q2 on u. Given any query

Q = �; 
 `? x : A and a label substitution  , Q is � ; 
 `?  (x) : A, thus the formula in the

conclusion is nothing else that what is obtained by cutting (in the sense of theorem 5.4.9) Q1 1 by

Q2 2 on  1(u). It is easy to see that this rule is admissible by theorem 5.4.9. We simply observe that

if ( 1;  2) are suitable for cutting Q1 by Q2 on u then

� Qi succeeds implies Qi i succeeds for i = 1; 2;

� COMPS(Q1 1; Q2 2;  1(u)) holds for any system S.

Then the result follows by theorem 5.4.9.

5.5 Soundness and Completeness

We prove �rst the completeness of the proof procedure with respect to the Hilbert axiomatization of

each system.

De�nition 5.5.1 [Axiomatization of implication] We consider the following list of axioms:

1. A! A;

2. (B ! C) ! (A! B) ! A! C;

3. (A! B) ! (B ! C) ! A! C;

4. (A! A! B) ! A! B;

5. (A! B) ! ((A! B) ! C) ! C;

6. A! (A! B) ! B;

7. A! B ! A.

Together with the following rules:

(MP )

` A! B ` A

` B

5We say that a label substitution  is order-preserving on a set I if z1; z2 2 I and z1 < z2 implies  (z1) <  (z2).
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Logic Axioms

CL (1), (2), (Su�)

T-W (1), (2), (3)

T (1), (2), (3), (4)

E-W (1), (2), (3), (5)

E (1), (2), (3), (4), (5)

L (1), (2), (3), (6)

R (1), (2), (3), (4), (6)

BCK (1), (2), (3), (6), (7)

(Suff)

` A! B

(B ! C) ! A! C

Each system is axiomatized by taking the closure under modus ponens (MP) and under substitution of

the following combinations of axioms/rules

In the above axiomatization, we have not worried about the minimality and independence of the group

of axioms for each system. For some systems the corresponding list of axioms given above is redundant,

but it quickly shows some inclusion relations among the systems. We just remark that in presence of (5),

(3) can be obtained by (2). Moreover, (5) is a weakening of (6). The rule of (Su�) is clearly obtainable

from (3) and (MP). To have a complete picture we have included also intutionistic logic I. In �gure ??

It is shown the lattice formed by these systems.

PUT A PROPER PICTURE

We prove that each system is complete with respect to the respective axiomatization. By corollary

5.4.10 and theorem 5.3.8, all we have to prove is that any atomic instance of each axiom succeeds in the

relative proof- system. In addition, we need to show the admissibility of (Su�) rule for CL.

Theorem 5.5.2 (Completeness) For every system S, if A is a theorem of S, then ` v0 : A succeeds

in the corresponding proof system for S.

Proof. We show a derivation of an arbitrary atomic instance of each axiom in the relative proof

system. In the case of reduction, the condition 
 =
S

i, will not be explicitly shown, as its truth will

be apparent by the choice of 
i. Moreover, we assume that the truth of the condition for the case of

immediate success is evident and we do not remark on that.

� (1) In all systems:

`? v0 : a! a

we step to

u : a; fug `? u : a;

which immediately succeeds in all systems.

� (2) In all systems:

`? v0 : (b! c) ! (a! b) ! a! c:
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three steps of the implication rule leads to:

x1 : b! c; x2 : a! b; x3 : a; fx1; x2; x3g `? x3 : c

x1 : b! c; x2 : a! b; x3 : a; fx2; x3g `? x3 : b since RedS(fx1g; fx2; x3g; x1; x3;x3)

x1 : b! c; x2 : a! b; x3 : a; fx3g `? x3 : a since RedS(fx2g; fx3g; x2; x3;x3):

� (3) In all systems, but CL:

`? v0 : (a! b) ! (b! c) ! a! c:

three steps of the implication rule leads to:

x1 : a! b; x2 : b! c; x3 : a; fx1; x2; x3g `? x3 : c

(�) x1 : a! b; x2 : b! c; x3 : a; fx1; x3g `? x3 : b; RedS(fx2g; fx1; x3g; x2; x3;x3)

x1 : a! b; x2b! c; x3 : a; fx3g `? x3 : a; RedS(fx1g; fx3g; x1; x3;x3):

the step (*) is allowed in all systems, but those with (r4), namely CL.

� (4) In all systems, but those with (r1) or (r4):

`? v0 : (a! a! b) ! a! b:

two steps of the implication rule leads to:

x1 : a! a! b; x2 : a; fx1; x2g `
? x2 : b

By reduction we step to:

x1 : a! a! b; x2 : a; 
1 `? x2 : a and x1 : a! a! b; x2 : a; 
2 `? x2 : a

since RedS(fx1g; fx2g; fx2g; x1; x2; x2;x2) holds in all systems without (r1) and (r4).

� (5) In all systems, but those with (r3) or (r4):

`? v0 : (a! b) ! ((a! b) ! c) ! c:

two steps of the implication rule leads to:

x1 : a! b; x2 : (a! b) ! c; fx1; x2g `? x2 : c

(�) x1 : a! b; x2 : (a! b) ! c; fx1g `? x2 : a! b RedS(fx2g; fx1g; x2; x2;x2)

x1 : a! b; x2 : (a! b) ! c; x3 : a; fx1; x3g `? x3 : b

x1 : a! b; x2 : (a! b) ! c; x3 : a; fx3g `? x3 : a RedS(fx2g; fx1g; x2; x2;x2)

The step (*) is allowed by (r2), but not by (r3) or (r4) since max(fx1g) = x1 < x2.

� (6) In L,R,BCK:

`? v0 : a! (a! b) ! b:

two steps of implication rule leads to:
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x1 : a; x2 : a! b; fx1; x2g `? x2 : b

x1 : a; x2 : a! b; fx1g `? x1 : a since RedS(fx2g; fx1g; x2; x1;x2).

� (7) In BCK we have:

`? v0 : a! b! a:

two steps by implication rule leads to:

x1 : a; x2 : b; fx1; x2g `
? x2 : a

which succeeds by the success condition of BCK. In no other system this formula succeeds.

� As a last point, we prove the admissibility of (Su�) rule in CL. Let `? v0 : A ! B succeed.

Then for any formula C, we have to show that

`? v0 : (B ! C) ! A! C succeeds.

Let C = C1 ! : : :! Cn ! q. Starting from

`? v0 : (B ! C1 ! : : :! Cn ! q) ! A! C1 ! : : :! Cn ! q

by the implication rule, we step to

�; fx1; : : : ; xn+2 ` xn+2g : q;

where

� = fx1 : B ! C1 ! : : :! Cn ! q; x2 : A; x3 : C1; : : : ; xn+2 : Cng

From the above query we step by reduction to:

Q0 = �; fx2g `? x2 : B and Qi = �fxi+2g `? xi+2 : Ci for i = 1; : : : ; n.

since the condition for reduction are satis�ed. By hypothesis, `? v0 : A ! B succeeds, which

implies, by the implicational rule, that x2 : A; fx2g `? x2 : B succeeds, but then Q0 succeeds by

monotony. Queries Qi succeed by proposition 5.3.3.

2

5.5.1 Soundness with respect to Fine's semantics

We prove now the soundness of the proof procedure with respect to a possible-world semantics. for

substructural impicational logics. The �rst proposal of a possible world semantics is due to Urquhart.

His proposal has been then elaborated by Fine, Routley, Meyer and Dozen in several directions. The

intuitive idea of Urquhart semantics is to consider possible worlds equipped by a composition operation,

i.e. forming an algebraic structure. We can consider the elements of the algebraic structure as resources

which can be combined along a deduction. Urquhart considers the semilattice strucure as the underlying

algerbaic structure. The semilattice semantics by Urquhart is a metalevel codi�cation of the bookkeeping

mechanism used to control natural deduction proofs in relevance logics. His semantical construction

works well for the implicational fragment of a few systems, �rst of all R, but it cannot cover uniformly

all the systems we are considering in this chapter. For instance in case of E we need consider two-

dimensional models. Another problem of Urquharts semantics although we will not be a�ected in
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this section, is that this somantics does no longer work for the fragment of the language containing

disjunction. The semantic we adopt here is a simpli�cation of the one proposed by Kit Fine [] and

elaborated more recently by Dozen[] 6. There are, however, alternative semantics, as the one developed

by Routley and Meyer based on a three-place accessibility relation on possible worlds. In the next section

we will introduce it to prove the completeness of our procedures for a broader fragment. Although

semantics is not our main concern, we observe that all these semantical variations are related; we refer

to [] for more details.

De�nition 5.5.3 Let us �x a language L, a structure M is a tuple of the form:

M = (W;�; �; 0; V );

where W is a non empty set, � is a binary operation on S, 0 2 S, � is a partial order relation on W , V

is a function of type W ! Pow(V ar). In all structures the following properties are assumed to hold:

0 � x = x,

x � y implies x � z � y � z,

x � y implies V (x) � V (y).

The structures may satisfy the following conditions:

(1) x � (y � z) � (x � y) � z;

(2) x � (y � z) � (y � x) � z;

(3) x � (x � y) � x � y;

(4) (x � y) � y � x � y;

(5) x � x � x;

(6) x � 0 � x;

(7) x � y � y � x;

(8) 0 � x.

Truth conditions for x 2 W , we de�ne

� M;x j= p if p 2 V (x);

� M;x j= A! B if

8y 2 W (M; y j= A ) M;x � y j= B).

We say that A is true in M (denoted by M j= A) if M; 0 j= A.

Each logic is characterized by a class of structures which satisfy some of the above conditions.

The mapping of logics{ group of conditions is shown in �gure 5.5.3. We have included also intutionistic

logic I to show its proper place within this framework. As in the axiomatization, the group of conditions

for each system is deliberately redundant, it is given in this way to quickly show the inclusion relations

of the systems. For instance, given (5) and (7), the condition (3) and (4) immediately follows.

We assume that � associates to the left, that is we write:

6Dealing only with the implicational fragment, we have simpli�ed Fine's semantics: we do not have prime or maximal

elements. The main di�erence with Dozen's grupoids models is that we do not assume an underlying semilattice structure.
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Logic (1) (2) (3) (4) (5) (6) (7) (8)

CL

T-W * *

T * * * * *

E-W * * *

E * * * * * *

L * * * *

R * * * * * * *

BCK * * * * *

I * * * * * * * *

x � y � z = (x � y) � z.

The following lemma, (whose proof is left to the reader), shows that the hereditary property

extends to all formulas.

Lemma 5.5.4 Let M = (S;�; �; 0; V ) be an S-structure, let x; y 2 S, then for any formula A:

if M;x j= A and x � y, then M; y j= A.

The axiomatization of de�nition 5.5.1 is sound and complete with respect to this semantics.

Theorem 5.5.5 [REFERENCES????] j=S A if and oly if A is derivable in the corrsponding axiom

system of De�nition 5.5.1.

In order to proof the soundness of our procedure, we need to interpret databases and queries in

this semantics. As usual, we introduce the notion of realization of a database.

De�nition 5.5.6 [Realization] For each system S, given a database �, and a set of resources of 
, an

S-realization of �; 
) in an S-structure M = (S; �;�; 0; V ), is a mapping

� : A ! S

such that:

1. �(v0) = 0;

2. if y : B 2 � then M;�(y) j= B.

In order to de�ne the notion of validity of a query, we need to introduce some further notation.

Given an S-realization �, 
 and x, we de�ne

�(
) = 0 if 
 = ;,

�(
) = �(x1) � : : : � �(xn) if 
 = fx1; : : : ; xng, where x1 < : : : < xn
�(< 
; x >) = �(
) if x 2 
,

�(< 
; x >) = �(
) � 0 if x 62 
.

Moreover, if 
 = fx1; : : : ; xng, � = fy1; : : : ; ymg (ordered as shown) we write
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�(
) � �(�) = �(x1) � : : : � �(xn) � (�(y1) � : : : � �(ym))

De�nition 5.5.7 [Valid query] Let Q = �; 
 `? x : A be an S-regular query, we say that Q is S-valid

if for every S-structure M , for every realization � of � in M , we have

M;�(< 
; x >) j= A.

We prove the soundness of the proof-systems with respect to the semantics we have just intro-

duced. To this purpose, we need to relate the conditions involved in the reduction rule to the algebraic

properties of � as de�ned above. This is the purpose of the following lemma.

Lemma 5.5.8 Given an S-regular query �; � `? x : G, let �i and xi, for i = 0; : : : ; k, such that

1. �0 = fzg, x0 = z, for some z 2 �

2.
Sk
i=0 �i = �.

3. RedS(�0; : : : ; �k; x0; : : : ; xk;x)

For every S-structure M and every realization � of (�; �) in M , we have

�(< �0; x0 >) � �(< �1; x1 >) � : : : � �(�k; xk >) � �(< �; x >)

Proof. Each system S requires a separate consideration.

The easiest cases are those of R, L, and BCK. By regularity, we have that x 2 �i, and x 2 �,

which implies that �(< �i; xi >) = �(�i) and �(< �; x >) = �(�). In the cases of R, L, BCK, (S; �; 0) is

a commutative monoid, thus the order of composition of elements does not matter. Hence, for L and

BCK, the conditions
Sk
i=0 �i = � and �i \ �j = ; imply that

�(�0) � �(�1) � : : : � �(�k) = �(�):

In case of R, we can regard �(�), for any �, as denoting a multiset, then the condition
Sk
i=0 �i = �

imply that

(�) �(
) �j �(
0) � : : : � �(
k);

(considering � as multiset union). But (*), by condition (5) implies that

�(�0) � �(�1) � : : : � �(�k) � �(�):

With regard to the other cases, we give a proof of the claim for E, the other cases are similar, but

simpler. We prove that there are �0; : : : ; �k, such that �0 = �0, �k = �, and for i = 1; : : : ; k, it holds

that:

(*) �(�i�1) � �(< �i; xi >) � �(�i).

To this purpose we need the notion of ordered merge of two resource sets �; �. We can consider � and

� as ordered sequence of labels without repetitions. We use the notation � � x to denote the sequence

� followed by x, whenever x does not occur in � and max(�) < x. We denote by � the empty sequence.

The ordered merge of �; �, denoted by mo(�; �) is de�ned as follows:
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mo(�; �) = mo(;; �) = �,

mo(� � x; � � y) = mo(�; � � y) � x if y < x,

mo(� � x; � � y) = mo(� � x; �) � y if x < y,

mo(� � x; � � y) = mo(�; �) � x if x = y.

Going back to what we have to show, we let �i = mo(�i�1; �i) and we split the proof of (*) into two

cases according to whether xi 2 �i or not.

(1) If xi 2 �i, then we prove that �(�i�1) � �(�i) � �(�i).

(2) If xi 62 �i, then we prove that �(�i�1) � (�(�i) � 0) � �(�i).

� Case (1). It is easy to see that max(�i�1) � xi, hence we get max(�i�1) � max(�i). We prove

the claim by induction on j�i�1j+ j�ij. Assume both �i�1 and �i are 6= � (otherwise the argument

below simpli�es), so that �i�1 = �0 � u and �i = �0 � xi.

(Subcase a) u = xi, then we have:

ro(�0 � xi) � �(�0 � xi) = �(�0) � �(xi) � (�(�0) � �(xi))

� (�(�0) � (�(�0) � �(xi)) � �(xi))

� �(mo(�0; �0 � xi) � �(xi); by induction hypothesis

= (�(mo(�0; �0) � �(xi)) � �(xi)

� �(mo(�0; �0) � �(xi) by property (4)7

= �(mo(�0 � xi; �
0 � xi):

(Subcase b) let max(�0) = u < xi. We have two further subcases, according to max(
0) � u or

max(
0) > u. In the former case we proceede similarly to (subcase a). In the latter case, we have:

�(�0 � u) � �(�0 � xi) � (�(�0) � �(u) � (�(�0)) � �(xi))

� �(mo(�0 � u; �0)) � �(xi) by induction hypothesis

= �(mo(�0 � u; �0)) � �(xi):

� Case (2) If �i�1 = �, then we have �(�i�1) = 0, whence

�(�i�1) � (�(�i) � 0) = 0 � (�(�i) � 0)

= �(�i) � 0

� �(�i) by property (6)

= �(mo(�i�1; �i)):

If � 6= �, let �i�1 = �0 � u; we have two cases: if u � max(�i), then

�(�0 � u) � (�(�i) � 0) � (�(�0) � �(u) � (�(�i)) � 0

� �(�0) � �(u) � (�(�i) by property (6)

then we can conclude by case (1).

If max(�i) < u, then

�(�0 � u) � (�(�i) � 0) � (�(�i) � (�(�0) � �(u))) � 0

� �(�i) � (�(�0) � �(u)); by property (6)

again we can conclude by case (1).
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2

Theorem 5.5.9 Let Q = �; 
 `? x : A be an S-regular query, if Q succeeds in the proof-system S,

then Q is S-valid.

Proof. By induction on the height h of a successful derivation of Q.

� If h = 0, then the query immediately succeeds, x : q 2 � and SuccS(
; x) holds. Let M be an

S-structure and � an S-realization of � in M . We have M;�(x) j= q. In case of BCK, we have

that x 2 
; it easily seen that �(x) � �(< 
; x >), whence the result follows by the hereditary

property; in all the other cases, we have 
 = fxg, thus the claim follows by �(x) = �(< 
; x >).

� Let h > 0 and the implication rule is applied to derive Q, that is, A = B ! C and from Q, we

step to Q0:

Q0 = � [ fz : Bg; 
 [ fzg `? z : C,

where z > max(Lab(�). Q0 succeeds by a derivation of smaller height. Suppose that Q is not

S-valid, let M be an S-structure and � a realization of �, such that M;�(< 
; x >) 6j= B ! C.

Let �(< 
; x >) = a, then there is some b 2 S, such that M; b j= B, but M;a � b 6j= C. Let

Q0 = �0 = � [ fz : Cg, 
0 = 
 [ fzg. By induction hypothesis Q0 is S-valid. We can de�ne a

realization �0 for , �0, by letting �0(z) = b, and �0(u) = �(u), for u 6= z. Notice that

�0(
0) = �(
) � �0(z) = a � b.

We have that

M;�0(
0) 6j= C,

which contradicts the induction hypothesis on Q0.

� Let h > 0 and suppose the �rst step in a derivation of Q is by reduction. Then A is an atom q,

there is z : C 2 �, with C : D1 ! : : :! Dk ! q, and from Q we step to

Qi : �; 
i `
? xi : Di;

for some �i, and xi for i = 0; : : : ; k such that:

1. x0 = z, 
0 = fzg, and
Sk
i=0 
i = 
.

2. RedS(
0; : : : ; 
k; x0; : : : ; xk;x)

Let M be an S-structure and � be a realization of � in M . We show that M;�(< 
; x >) j= q

holds. Since each Qi succeeds by a derivation of smaller height, by induction hypothesis, we get

that

M;�(< 
i; xi >) j= Di.

On the other hand, being � a realization of � we have:

M;�(< 
0; x0 >) j= D1 ! : : :! Dk ! q.

Thus, we obtain that
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M;�(< 
0; x0 >) � �(< 
1; x1 >) � : : : � �(< 
k; xk >) j= q.

By lemma 5.5.8, we have

�(< 
0; x0 >) � �(< 
1; x1 >) � : : : � �(
k; xk >) � �(< 
; x >),

Thus, by the hereditary property we obtain:

M;�(< 
; x >) j= q.

2

5.6 Extending the language to Harrop formulas

In this section we show how we can extend the language by other connectives. We expand our language

by allowing certain occurrences of lattice or extensional conjunction (^) , disjunction (_) and intensional

conjunction, called tensor, (
). The distinction between ^ and 
 is typical of substructural logics and

it comes from the rejection of some of the structural rules: ^ is the usual lattice connective, 
 is the

residual operator with respect to !8. This fragment might be interesting as a base of a family of a sort

of logic-programming languages based on substructural logics.

This connectives are governed by the following axioms and rules (we take the axiomatization by

Dozen [],[]).

De�nition 5.6.1 [Axioms for ^;
;_]

� (
)

(1) ((A! B)
A) ! B,

(2) A! (B ! (A
B)),

(3) ` A! A1 ` B ! B1
` (A
 B) ! (A1 
B1)

.

� (^)

(1) A ^ B ! A,

(2) A ^ B ! B),

(3) ` C ! A C ! B
` C ! A ^ B .

� (_)

(1) A! A _ B,

(2) B ! A _ B,

(3) ` A! D ` B ! D
` A _ B ! D

,

(4) ` C ! A! D ` C ! B ! D
` C ! (A _ B) ! D

.

We will however limit our consideration to a frament of the language, de�ned below. We justify the

need of this restriction immediately after. As usual we distinguish D-formula which are the constituents

of databases and G-formulas which can be asked as goals.

8An alternative terminology which has become popular after Girard's linear logic is: ^ is the addittive conjunction and


 is the multiplicative conjunction.
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De�nition 5.6.2 We de�ne D-formulas and G-formulas as follows:

D := q j G! q,

CD := D j CD ^ CD;

G := q j G ^G j G _G j G
G j CD ! G.

A database � is a �nite set of labelled sets of D- formulas.

Notice that CD formulas are just conjunction of D-formulas.

The idea of the previous de�nition is that a database corresponds to a 
 -conjunction of ^-

conjunction of D-formulas. Notice that each D-formula either is atomic, or is an implication, or is a

^-conjunction of D-formulas. Within a database, CD formulas are therefore decomposed into sets of D-

formulas. We have imposed another (inessential) restriction on D-formulas: we do not allow D-formulas

of the type:

G1 ! G2 ! q, where G1 and G2 are G-formulas.

But the above formula can be rewritten as

G1 
G2 ! q

which is accepted.

The extent of this fragment is shown by the following propositions.

Lemma 5.6.3 Every formula on (^;_;!;
) without positive occurrences of 
 and _ and without

occurrences of 
 within a negative occurrence of ^ is equivalent to a conjunction (set) of D-formulas.

We have a dual result for G-formulas. The reason why we have put the restriction on nested

occurrences of 
 within ^ is that, on the one hand, we want to keep the simple labelling mechanism

we have used for the implicational fragment, on the other hand we want to identify a common fragment

for all systems to which the computation rules are easily extended. The labelling mechanism does no

longer work if we relax this restriction. For instance, how could we handle A^ (B
C) as a D-formula?

We should add x : A and x : B 
 C, in the database. The formula x : B 
 C cannot be decomposed,

unless we use complex labels: intuitively we should split x into some y and z, add y : B and z : C, and

remember that x; y; z are connected (in terms of Fine's semantics the connection would be expressed

as x = y � z). We prefer to accept the above limitation and postpone the investigation of a broader

fragment to future work 9.

The computation rules can be extended to this fragment without a great e�ort.

De�nition 5.6.4 [Proof system for the extended language] A query has the form

�; � `? x : G,

where � is a set of D-formulas and G is a G-formula.

� (success)

9In some logics, such as L, we don't need this restriction since we have: �; A ^ B ` C implies �; A ` C or �; B ` C.

Thus, we can avoid to introduce extensional conjunctions atall into the database, by introducing only one of the two (at

choice), this approach is followed by Harland []. Howevern this property does not hold for R and other logics
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�; � `? x : q; succeeds;

if x; q 2 � and SuccS(�; x).

� (implication) from

�; � `? x : CD ! G

if CD = D1 ^ : : : ^Dn, we step to

� [ fy : D1; : : : ; y : Dng; � [ fyg `? y : G

where y > max(Lab(�)), (hence y 62 Lab(�));

� (reduction) from

�; � `? x : q

if there is z : G0 ! q 2 � and there are �1, x1 such that:

1. � = �1 [ fzg.

2. RedS(fzg; �1; z; x1;x)

then we step to

�; �1; `? x1 : G0.

� (conjunction) from

�; � `? x : G1 ^G2

step to

�; � `? x : G1 and �; � `? x : G2.

� (disjunction) from

�; � `? x : G1 _G2

step to

�; � `? x : Gi for i = 1 or i = 2.

� (tensor) from

�; � `? x : G1 
G2

if there are �1, �2, x1 and x2 such that

1. � = �1 [ �2,

2. RedS(�1; �2; x1; x2;x),

step to

�; �1 `? x1 : G1 and �; �2 `? x2 : G2.
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Notice that in case of reduction, the conditions grouped in the predicate RedS , become as follows:

� = �1 [ fzg and

1. z 62 �1,

2. �1 6= ;,

3. z � x1 ^ z1 = max(�1),

4. z � x1 ^ z1 � max(�1),

5. z < min(�1) ^ x1 = max(�1).

Example 5.6.5 Let � be the following database:

x1 : e ^ g ! d,

x2 : (c! d)
 (a _ b) ! p,

x3 : c! e,

x3 : c! g,

x4 : (c! g) ! b.

In �gure 5.1, we show a successful derivation of

�; fx1; x2; x3; x4g `? x4 : p,

in relevance logic E (and stronger systems). The success of this query corresponds to the validity of

the following formula in E:

�
(e ^ g ! d)
 ((c! d)
 (a _ b) ! p)
 [(c! e) ^ (c! g)]
 ((c! g) ! b)

�
! p:

We turn now to prove the soundness and the completeness of the procedure for the extended

language. To this purpose we will use the alternative, but related, semantics for substructural logics

elaborated by Routley and Meyer. It is a Kripke-possible world semantics which makes use of a three-

place accessibility relation on possible worlds. The intuitive meaning of this ternary relation Rxyz

has been subject to discussion. If we interpret x; y; z as pieces of information, one can read Rxyz as

something of the sort `the combination of x and y is included in z'. With this interpretation, there is

an obvious connection with Fine and Dozen semantics presented in section ??. Given x; y; z 2 W , we

can de�ne the ternary relation x � y � z. Thus, every S-structure determine a Routley-Meyer structure.

But not vice versa.

Another reading of Rxyz is relative inclusion:

y �x z `y is included in z, from the point of view of x.

The reason why we introduce Routley-Meyer semantics is simply that it is easier to proof the complete-

ness (via a canonical model construction) with respect to this semantics, rather than with respect to

Fine's model as de�ned in sextion ??. Moroever, the correspondence of our deduction procedure with

the Routley-Meyer semantics might be of interest by itself.
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�; fx1; x2; x3; x4g `? x4 : p

�; fx1; x3; x4g `? x4 : (c! d)
 (a _ b)

�; fx1; x3g `? x3 : c! d

�; x5 : c; fx1; x3; x5g `? x5 : d

�; x5 : c; fx3; x5g `? x5 : e ^ g

�; x5 : c; fx3; x5g `? x5 : e

�; x5 : cfx5g `? x5 : c

!!
!! aaaa

�; x5 : c; fx3; x5g `? x5 : g

�; x5 : c; fx5g `? x5 : c

���
�� XXXXX

�; fx3; x4g `? x4 : a _ b

�; fx3; x4g `? x4 : b

�; fx3g `? x4 : c! g

�; x6 : c; fx3; x6g `? x6 : g

�; x6 : c; fx6g `? x6 : c

Figure 5.1:

De�nition 5.6.6 Let us �x a language L, an S-structure M for L is a tuple of the form:

M = (W;R; 0; V );

where W is a non empty set, R is a ternary relation on W , 0 2 W , V is a function of type W !

Pow(V ar). We will de�ne also the relation � by stipulating:

a � b � R0ab.

In all structures the following properties are assumed to hold:

(i) � is transitive and re
exive.

(ii) x0 � x and Rxyz implies Rx0yz

(iii) x � y implies V (x) � V (y).

The structures may satisfy additional properties. To this purpose we introduce some more notation.

R2(xy)zu � 9a(Rxya ^Razu)

R2x(yz)u � 9a(Rxau ^ Ryza).

The conditions are the following:

(1) R2(xy)zu ! R2x(yz)u

(2) R2(xy)zu ! R2y(xz)u

(3) Rxyz ! R2(xy)yz

(4) 8x9y(Rxyx ^ 8u8v(Ryuv! R0uv))

(5) Rxyz ! Ryxz.

(6) R00a.

Truth conditions for x 2 W , we de�ne
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Logic (1) (2) (3) (4) (5) (6)

CL *

T-W * *

T * * *

E-W * * *

E * * * *

L * * * *

R * * * * *

BCK * * * * *

� M;x j= p if p 2 V (x);

� M;x j= A! B if

8y; z 2 W (Rxyz ^M; y j= A ) M; z j= B):

� M;x j= A ^B i� M;x j= A and M;x j= B;

� M;x j= A
B i� there are x; y 2 S, such that Ryzx and M; y j= A and M; z j= B;

� M;x j= A _B i� M;x j= A or M;x j= B.

We say that A is true in M (denoted by M j= A) if M; 0 j= A. We say that A is S-valid if for all

S-structures M; 0 j= A and it is denoted by j=S A.

The mapping between logic and conditions is shown in Figure 5.6.6.

The proof of the soundness is similar to the one of theorem 5.5.5, namely one proceeds by induction

on the length of computations. Alternatively, one can extend the proof of the soundness with respect

to Fine's semantics of theorem 5.5.9 to this fragment. An then, one can rely upon the equivalnce of

Routley-Meyer semantics and Fine semantics for this fragement (see [?] for details10).

Theorem 5.6.7 Let �; 
 `? x : G succeeds in the system S, 
 = fx1; : : : ; xkg (ordered as shown) and

i = 1; : : : ; k let Si = fA j xi : A 2 �g; then

j=S (
V
S1 
 : : :


V
Sk) ! G.

In order to prove the completeness, we need to ensure some closure under cut. Since we have

made a distinction between D-formulas and G-formulas, we must be pay attention to what formulas we

cut. In general, one can prove the cut admissibility property for formulas which are simultaneously G

and D-formulas. But this is not enough the completeness. What we need is a sort of `closure under cut'

with respect to D-formulas. The point is that our proof-procedure cannot prove D-formulas. Thus, we

must express it rather indirectly. The property is given in the next proposition and its meaning will be

apparent in the completeness proof.

10When disjunction is present the simpli�ed Fine semantics of section�nesem cannot longer be adopted. Models have

to be enriched by a subset of special worlds which correponds to `prime' theories. Fine shows that every Rutley-Meyer

model which satisfy the additional property Rxyz ^ z � u! Rxyu determines a Fine model with the enriched structure.

In our case, we can assume that Routley-Meyer models satisfy this further property without loss of generality. This is

shown by the proof of the completeness theorem, namely the canonical model built in that proof satis�es this condition.
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The cut theorem required a compatibility constraint on the queries which was denoted by CompS .

We need it again. It can be seen that this predicate only depends on the labels, but not on the formulas

of the involved databases, so that given �; 
; x; u 2 Lab(�), where u is the position of the cut-formula and

x the current position on �, and similarly, �, �, y 2 Lab(�), we can write CompS(�; 
; x; u; �; �; y) to

denote the same set of conditions as in de�nition 5.4.2. This is an abuse of notation, but it is necessary,

as we do not have two queries to cut.

Proposition 5.6.8 Let (1) �[u : D1; : : : ; u : Dk]; 
 `? x : G succeed. Let �; �; y such that the following

condtion holds

1. CompS(�; 
; x; u; �; �; y),

2. for i = 1; : : : ; k,

� if Di = qi atomic, then �; � `? y : qi succeeds;

� if Di = Gi ! qi, then for all �; �; z such that RedS(�; �; y; z; z) and �; � `? z : Gi succeeds,

� [ �; � [ � `? z : qi succeeds.

Then �[u : D1; : : : ; u : Dk=�]; 
[u=�] `? x[u=y] : G succeeds.

Proof. By induction on the length of a derivation of (1). 2

The completeness can now be proved by a canonical model construction.

De�nition 5.6.9 Let M = (W;R; 0; V ) be the structure de�ned as follows:

� 0 = (;;v0),

� W is the set of pairs (�; x) (including 0) such that � is a database and x is a label, with the

following restrictions:

-for R, L, BCK, if � 6= ;, then x 2 Lab(�),

-for T, T-W, CL, x = max(Lab(�)) (thus, if � = ;, then x = v0),

-for E, E-W, x � max(Lab(�)).

� The relation R

R(�; x)(�; y)(�; z)

holds i� the following conditions (1) and (2) (or (1) and (2') for BCK) hold

(1) RedS(��; ��; x; y; z)

(2) � [� = � for all systems, but BCK,

(2')� [� � � for BCK.

� V (�; x) = fp : atom j �; �� `? x : p succeedsg.

We now prove that the structure we have just de�ned satis�es all properties of de�nition 5.6.9.

Proposition 5.6.10 The relation (�; x) � (�; y) � R0(�; x)(�; y) satis�es the conditions (i)-(iii) of

de�nition 5.6.9.
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Proof. For condition (i), i.e. � is a re
exive and transitive relation, we use the fact that for every

(�; x), we have RedS(;; ��;v0; x;x). Condition (ii) is easy too, since (�; x) � (�; y) implies �� = ��,

(or �� � �� for BCK) and x = y, in the cases where it matters (i.e. all cases, except L, R, BCK).

We get that, given any (�; z),

RedS(��; ��; y; z; z) implies RedS(��; ��; x; z; z).

From this (ii) easily follows. For (iii), let �; �� `? x : p succeed and (�; x) � (�; y). In case of T,

T-W and CL we have that � = � and x = y, thus the result is obious. In all other cases, we conclude

by propositions 5.3.4 and 5.3.5. 2

Proposition 5.6.11 For each system S, the relation R satis�es the speci�c conditions for S.

Proof. One has to check all properties for each speci�c system. As an example, we check properties

(1) and (4). The others are similar and left to the reader.

For (1), let R2((�; x)(�; y))(�; z)(�; u) (We omit the indication of S from RS). Then there is

(�; v) such that

R(�; x)(�; y)(�; v) and R(�; v)(�; z)(�; u).

We have to show that there is (	; w) such that

R(�; y)(�; z)(	; w) and R(�; x)(	; w)(�; u).

Among the several cases, we consider the one of E and E-W, the others are similar, perhaps simpler.

By hypothesis we have

� [� = � and � [ � = �,

Red(��; ��; x; y; v), Red(��; ��; v; z;u), which implies y = v and z = u.

Let us take (	; w) = (� [ �; z). Since Red(��; ��; v; z; u), we have v � z, whence y � z. Thus

max(�	) � z and (	; z) is well- de�ned. Clearly,

(*) � [ � = 	 and

(**) � [	 = �.

From Red(��; ��; v; z;u), �� � ��, y = v, z = u, we get Red(��; ��; y; z; z), which together with (*)

shows R(�; y)(�; z)(	; z).

By Red(��; ��; x; y; v), we get x � y and hence x � z = u. For the case of E-W, by hypothesis,

we also have that

�� \ �� = ; and (�� [ ��) \ �� = �� \ �� = ;,

so that �� \ �	 = �� \ (�� [ ��) = ;. Thus, we can conclude that

Red(��; �	; x; z;u).

which, together with (**), shows R(�; x)(	; z)(�; u).This concludes the proof.

Let us proof property (4) for E and E-W. Let (�; x) be any world, let us consider the world

(;; x); we have

� [ ; = �, Red(��; ;; x; x;x).
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This shows that R(�; x)(;; x)(;; x) holds. Moreover, for any (�; y), (�; z), if R(;; x)(�; y)(�; z), holds

then,

; [� = �, Red(;; ��; x; y; z), which implies y = z.

Since v0 � x, we also have Red(;; ��;v0; y; z). We have shown that R(;;v0)(�; y)(�; z), that is

R0(�; y)(�; z). 2

Proposition 5.6.12 For each (�; x) 2 W , and goal G, we have:

� (a) M; (�; x) j= G i� �; �� `? x : G succeeds.

� (b) If � = fu : D1; : : : ; u : Dmg, then M; (�; u) j=
Vm
i=1Di.

Proof. We prove both directions of (a) and (b) by simultaneous induction on the structure of G. Let

us consider (a) �rst. If G is an atom, then the claim holds by de�nition. The cases of ^ and _ are easy

and left to the reader. We consider the cases of 
 and !, for all systems except for BCK. We leave to

the reader to modify (easily) the proof to cover the case of BCK. Let G � G1 
G2.

� ())) Suppose M; (�; x) j= G1
G2, then there are (�; y) and (�; z), such that R(�; y)(�; z)(�; x)

and

M; (�; y) j= G1 and M; (�; z) j= G2.

By de�nition of R, we have:

(*) � [� = �, whence �� = �� [ �� and

(**) Red(��; ��; y; z;x).

By induction hypothesis we get:

�; �� `? y : G1 and �; �� `? z : G2.

So that from (*), by monotony we obtain:

(***) �; �� `? y : G1 and �; �� `? z : G2.

By de�nition, from (*), (**), (***), we have �; �� `? z : G. Since either x = z, or z 2 �� in case

of R, L, by Proposition 5.3.5, we obtain

�; �� `? x : G.

� (() Let �; �� `? x : G1 
 G2 succeed; by de�nition there are 
1, 
2, x1 and x2, such that

�� = 
1 [ 
2, and

(1) Red(
1; 
2; x1; x2;x),

(2) either x2 2 
2 (in case L, R), or x = x2 (in all other cases),

(3) �; 
i `? xi : Gi succeed, for i = 1; 2.

Let �i = fx : D 2 � j x 2 
ig, with i = 1; 2, so that 
i = ��i and

(4) � = �1 [ �2;

then by proposition 5.3.1, we have
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�i; 
i `? xi : Gi, for i = 1; 2.

From (2), we get that, according to each system, either x 2 
i (R,L), or max(
i) = xi (CL, T-W,

T) , or max(
i) � xi (E, E-W). Thus, (�i; xi) 2W and by induction hypothesis, we have

(5) M; (�1; x1) j= G1 and M; (�2; x2) j= G2.

From (1), (2), (4), we can conclude that R(�1; x1)(�2; x2)(�; x) holds, whence by (5) we get

M; (�; x) j= G1 
G2.

Let us see the case of !.

� ()) Suppose M; (�; x) j= (D1 ^ : : : ^Dm) ! G. Let � = fu : D1; : : : ; u : Dmg, with u > x, and

let � = � [�. For all systems, we have:

(*) R(�; x)(�; u); (�; u).

By (b), we know that

(**) M; (�; u) j=
Vm
i=1Di.

From the hypothesis of ()), by (*) and (**), we get that M; (�; u) j= G, whence by induction

hypothesis,

� [ fu : D1; : : : ; u : Dmg; �� [ fug `? u : G, succeeds,

since � = � [ fu : D1; : : : ; u : Dmg. Thus, �; �� `? x : (D1 ^ : : : ^Dm) ! G succeeds.

� (() Let �; �� `? x : (D1 ^ : : : ^Dm) ! G succeed. Let u > x, from the hypothesis, we have

(1) � [ fu : D1; : : : ; u : Dmg; �� [ fug `? u : G succeeds.

Now let R(�; x)(�; y)(�; z) and M; (�; y) j=
Vm
i=1Di. Thus M; (�; y) j= Di, for i = 1; : : : ;m. It

easy to see that

(2) CompS(�; ��; x; u; �; �; y) holds.

(3) Let Di is an atom qi, then by induction hypothesis we have:

�; �� `? y : qi succeed.

(4) Let Di = Gi ! qi. By hypothesis we have M; (�; y) j= Gi ! qi. Let 	; �	 `? v : Gi succeed

and RedS(��; �	; y; v; v). We easily get that

R(�; y)(	; v)(� [	; v) holds.

By induction hypothesis of (a), we have M; (	; v) j= Gi, whence M; (�[	; v) j= q, so that by the

induction hypothesis of (a) again, we can conclude that

� [	; �� [ �	 `? v : qi succeeds.

By (1)-(4) all hypotheses of Proposition 5.6.8 are satis�ed, thus we obtain that

(5) � [�; �� [ �� `? y : G succeeds.
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By hypothesis, we have � = �[�, and whenever it matters y = z, thus by the induction hypothesis

on (5), we �nally obtain

M; (�; z) j= G.

This concludes the proof of (a).

Now we prove (b). Let � = fu : D1; : : : ; u : Dmg, then we show that M; (�; u) j= Di for each

Di. If Di is an atom, then we have �; �� `? u : Di succeeds, then the claim follows by induction

hypothesys of (a). Let Di be of the form Gi ! qi. We want to show that M; (�; u) j= Gi ! qi. To this

purpose, let R(�; u)(�; v)(	; w) and M; (�; v) j= Gi. We can apply the induction hypothesis of (a) and

get that

�; �� j= w : Gi succeeds.

By hypothesis, we also have that u : Gi ! qi 2 	, moreover we have Red(��; ��; u; v) (and v = w, in the

cases it matters). Since, �	 = �� [��, we easily obtain that the conditions for applying reduction wrt.

u : Gi ! qi are matched. Thus we can conclude that 	; �	 `? w : qi succeeds, whence M; (	; w) j= qi,

by the induction hypothesis of (a). This concludes the proof.

2

Theorem 5.6.13 (Completeness) Let � be a labelled set of D-formulas with labels �� = fx1; : : : ; xkg

ordered as shown. Let Si = fD j xi : D 2 �g for i = 1; : : : ; k, x = max(��), and let G be a G-formula,

then we have

if j=S (
V
S1 
 : : :


V
Sk) ! G, then �; �� `? x : G succeeds.

Proof. By contraposition, suppose that �; �� `? x : G does not succeed. Then by proposition 5.6.12,

we have that

(1) M; (�; x) 6j= G.

Let us consider the following databases �i � � corresponding to Si:

�1 = fx1 : D j x1 : D 2 S1g; : : :�k = fxk : D j D 2 Skg,

then we have: (�i; xi) 2 W , for i = 1; : : : ; n. By lemma 5.6.12, we also have that

M; (�i; xi) j= D for each D 2 Si and for i = 1; : : : ; k, whence

(*) M; (�i; xi) j=
V
Si, for i = 1; : : : ; k.

It is easy to see that RedS(
�1 ; 
�2 ; x1; x2;x2) holds and that (�1 [ �2; x2) 2W , so that also

R(�1; x1)(�2; x2)(�1 [ �2; x2) holds.

By (*), we can conclude that

M; (�1 [ �2; x2) j=
V
S1 


V
S2.

We can repeat the same argument and show that

R(�1 [ �2; x2)(�3; x3)(�1 [ �2 [ �3; x3) holds,

so that we get M; (�1 [ �2 [ �3; x3) j=
V
S1 


V
S2 


V
S3 holds. Proceeding in this way, we �nally get
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(2) M; (�; x) j=
V
S1 
 : : :


V
Sk.

Since R(;;v0)(�; x)(�; x), by (1) and (2), we get that

M; 0 6j= (
V
S1 
 : : :


V
Sk) ! G,

which completes the proof. 2

5.7 A decision procedure for R

In case of logics without contraction, namely, CL, T-W, E-W, L, and BCK, the proof procedure we

have de�ned give decision procedure for the respective systems. It can be easily seen that they always

terminate. This is no longer true for the other systems, R, E, T. The implicational fragment of R and

E is decidable, whereas the same fragment of T is not known to be decidable. In this section we

modify the previous proof-procedure for R presented in the previous section in order to turn it into a

decision procedure. The implicational fragment of R was shown decidable by Kripke [] in a seminal

work going of 1958. This result can be generalized to the whole propositional R, without distribution

of the lattice connectives. It has been proved by Urquhart [] that R with distributive conjunction and

disjunction is undecidable.

We �rst reformulate the procedure for R with the following modi�cations:

1. we insert each formula in the database only once, but we keep track of how many copies of each

formula are present; those a database is still a set of labelled formulas, with 1-1 relation beween

formulas and labels. On the other hand we keep track in the goal label of the multiplicity of the

formulas by using multisets of labels.

2. we add a loop-checking mechanism which ensure termination of the deduction procedure. The

loop-checking mechanism is the same as the one described in chapter 2 for intutionistic implication

(see ??).

3. when we perform a reduction step, we are allowed to reduce the atomic goal wrt. a formula, say

z : A1 ! : : : ! An ! q, even if z is not in the goal label, say �, we cancel one occurrence of z

from the goal label, and we do require that the �i be disjointed. This gives a better control of the

splitting of the labels, although it is not strictly necessary to get termination.

By this modi�cation, the set of resources � in a query does not record the available resources anymore,

it records what resources we have still to use in a proof.

We hope that the loop-checking method we employ in the case of R can be applied to the other

systems, and in particular to solve the problem of the decidability of the pure implicational fragment of

T, which is still open.

We �rst notice that for R, (and for all other systems, except for the cases of E and E-W), the

structure of a query can be simpli�ed: in a regular query

�; � `? x : G.

the occurrence of x is not necessary, as x can be chosen arbitrarily in �11. Thus, we will write a query

as

11The same simpli�cation can be done in all other systems, but E and E-W, since either x can be chosen arbitrarily

in �, or x is uniquely determined as the maximum label in �, thus in both cases, we do not need to keep track of it.
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� `? � : G.

De�nition 5.7.1 A query has the form:

�; `? � : G;H ,

where � is a multiset of labels, H is a set of pairs f(�1; q1); : : : ; (�n; qn)g, each �i is a multiset of labels

and each qi is an atomic goal. H is called the history. Deduction rules are as follows:

� (success)

� `? � : q;H

immediately succeeds if � � [x], and x : q 2 �;

� (implication1) from

� `? � : A! B;H

we step to

� [ fx : Ag `? � t [x] : B; ;

where x 62 Lab(�) if for no label y, y : A 2 �.

� (implication2) from

� `? � : A! B;H

we step to

� `? � t [y] : B;H

if for some label y, y : A 2 �.

� (reduction) from

� `? � : q;H

if there is some y : C 2 �, with C : A1 ! : : :! Ak ! q, we step, for i = 1; : : : k, to

� `? �i : Ai; H [ f(�; q)g;

provided the following conditions hold:

1. there is no (�; q) 2 H , such that � �j �;

2. (
Fk
i=1 �i) = �� [y].

The loop-checking condition is expressed in condition (1) of reduction rule. The idea of loop-

checking is the following: we stop the computation when we perform a reduction step and we re-ask

the same atomic goal from a database, which (possibly) contains more copies of some formulas than the

database in the query in which the atomic goal was asked the previous time. Intuitively, if the latter

query succeeds (with the bigger label), then the former succeeds, because of contraction; thus, there is

no reason to carry on such a branch.

We show some examples of loop detection.
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Example 5.7.2 Let

x : p! p `? [x] : p; ;:

We step to:

x : p! p `? ; : p; f([x]; p)g;

and then to:

x : p! p `? ; : p; f([x]; p); (;; p)g;

at this point the computation is stuck by condition (1) on reduction.

Example 5.7.3 Let

x : (q ! p) ! p `? [x] : p; ;:

We step to:

x : (q ! p) ! p `? ; : q ! p; f([x]; p)g

and then to:

x : (q ! p) ! p; y : q `? [y] : p; ;;

then to:

x : (q ! p) ! p; y : q `? [y] : q ! p; f([y]; p)g;

and then to:

x : (q ! p) ! p; y : q `? [y; y] : p; f([y]; p)g;

now the computation is stuck since [y] �j [y; y].

Example 5.7.4 We show that the following formula is a theorem of R:

(a! b! b) ! a! a! b! b:

we start with

; `? ; : (a! b! b) ! a! a! b! b;

after a few steps by implication rule, we arrive to

� `? [x1; x
2
2; x3] : b;

where

� = fx1 : a! b! b; x2 : a; x3 : bg;

then we go on by reduction wrt. x1 : a! b! b. Notice that no other rule is applicable. We generate

(1) � `? [x2] : a; (2) � `? [x2; x3] : b

query (1) immediately succeeds; we reduce query (2) wrt. x1 : a ! b ! b again (no other rule is

applicable), and we get:

(3) � `? [x2] : a; (4) � `? [x3] : b:

Both queries immediately succeeds.

This formula was considered as an e�ciency test for proof systems for Relevant logic (see [Thistlewaite et al. 88])12.

As we have mentioned in the introduction, the di�culty is that some non-atomic data has to be used

twice. In a naive implementation of sequent systems one has to use contraction to duplicate the formula

a! b! b, and this must be done at the beginning of the proof.

12A proof of the above formula by the theorem prover presented in [Ohlbach and Wrighston 83], based on a semantical

translation of relevance logic in classical logic, took about 10 minutes of CPU time!
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It is not true that the �rst time the goal repeats in one branch, we are in a loop, but what we

can prove is that: if there is a loop (that is a branch which can be continued forever), then eventually,

we will �nd a (�; q) and a successive (�; q) with � �j �.

Let us call P1 the procedure without loop-checking, that is the procedure in which the condition

1 in reduction rule is ignored. In P1 the presence of the history is clearly immaterial. Let us call P2 the

proof procedure with loop-checking.

Theorem 5.7.5 The procedure P1 is sound and complete for R.

Proof. Let P old be the proof system of section 2 (with the obvious simpli�cation introduced in this

section). We prove that P1 is equivalent to P old. It helps to simplify the proof by introducing an

intermediate proof system called P int. P int works the same as P old, but the conditions on success

and on reduction are changed as follows (the �'s are sets in this context):

(Success) � � fxg, and x : q 2 �;

(Reduction) (
Sk
i=1 �i) = �� fyg, �i \ �j = ;, and we do not require y 2 �.

We �rst prove the equivalence of P old and P int.

(() We show that:

If Q = � ` � : G succeeds in P old, then it succeeds in P int.

This claim is proved by induction on the height of a successful derivation of Q in P old. The only

non-trivial case is that one of reduction: We need the following fact on P int, whose proof is by an easy

induction on derivations and is left to the reader:

(fact) If � `? � : G succeeds and � � �, then also � `? � : G succeeds.

Now let a successful derivation of Q proceed by reduction, then G is an atom q, there is some y : C 2 �,

with C : A1 ! : : :! Ak ! q, there are �i, and xi for i = 0; : : : ; k such that:

1. �0 = fyg,

2.
Sk
i=0 �i = �.

and for i = 1; : : : k, we step to

Qi = �; `? �i : Ai.

By induction hypothesis, Qi succeed in P int. Now let

�0i = �i �
S
0�j<i �j , for i = 1; : : : ; k.

We have that �0i � �i, �i \ �j = ; and (
Sk
i=1 �i) = �� fyg. Moreover, by the (fact) above, each

Q0
i = �; �0i; `

? xi : Ai succeeds.

Hence, according to procedure P int from Q we may step to Q0
i and succeed.

(() We show that:

if Q = � `? � : G succeeds in P int, then there is a set �, such that Q0 = � � � � Lab(�)

such that � `? � : G succeeds in P old. In particular, if � = Lab(�) and � `? � : A

succeeds in P int, then it succeeds also in P old.

173



Again the proof is by induction on derivation, we only show in some detail the case of reduction. Let

a successful derivation of Q proceed by reduction, then G is an atom q, there is some y : C 2 �, with

C : A1 ! : : :! Ak ! q, there are �i, for i = 0; : : : ; k such that (
Sk
i=1 �i) = � � fyg and �i \ �j = ;,

for all i; j, and for i = 1; : : : k, we step to

Qi = � `? �i : Ai.

By induction hypothesis, there are some �i, with �i � �i � Lab(�), such that

Q0
i = � `? �i : Ai

succeed in P old, we take � =
S
i �i [ fyg, and from Q0 we step to Q0

i and succeed.

Now we show the equivalence between P int and P1, we omit the history, since it does not play

any role. Let � be a database for P int, de�ne

x �� y i� for some formula A, x : A 2 � and y : A 2 �.

Given a set of labels �, let m�(�) be the multiset, whose support is �=�� (the quotient of � wrt. ��) and

such that, for all x, m�(�)(x) = the cardinality of [x]�� in �. We also let m(�) be the set of formulas of

� relabelled by labels of Lab(�)=�� . Since there is a 1-1 mapping between formulas of m(�) and labels,

we can subscribe labels with the formulas they label. For example, let � = fx : A; y : A; z : B; u : Cg

and � = fx; y; zg, then m�(�) = [x2A; xB ], and m(�) = fxA : A; xB : B; xC : Cg.

()) It is an easy exercise to show that:

If � `? � : G succeeds in P int, then m(�) `? m�(�) : G succeeds in P1.

The proof proceedes by induction on the height of a derivation of the �rst query in P int. In the case

of an implication goal A ! B we distinguish the two cases when a copy of A is already present in �

from that one in which it is not, and we apply rules implication1 or implication2 accordingly in the

corresponding derivation in P1. In case of reduction, we can esily conclude from the facts that, since

for all i; j �i \ �j = ;, we have

m�(
S
i �i) =

F
i(m�(�i)), and also

m�(�� fyg) = m�(�)�m�(y).

(() Conversely, let Q = � `? � : G be a query in P1, we turn � into a set s(�) by re-

naming each copy of a label in � by a distinct label, e.g. let � = [x2; y3; z], then we may take

s(�) = fx1; x2; y1; y2; y3; zg. We call s a set- mapping. Then, given s and �, we expand � to a

new database s�(�), by inserting �(x) copies of x : A 2 �, renamed with the labels drawn from s(�).

For instance, let � as above and � = fx : A; y : B; z : C; u : Dg, then

s�(�) = fx1 : A; x2 : A; y1 : B; y2 : B; y3 : B; z : C; u : Dg.

The way we rename the elements of the multiset is arbitrary, what matters is that the cardinality of the

resulting set is the same as the cardinality of the multiset (counting repetitions). Again it is an easy

exercise to show that:

If � `? � : G succeeds in P1, then there is a set-mapping s, such that s�(�) `? s(�) : G

succeeds in P int.
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As before, the proof proceedes by induction on the height of a derivation of the �rst query in P1. We

only give some details of the case of reduction. Let Q = � `? � : q be derived by reduction, then

for some y : C 2 �, with C : A1 ! : : : ! Ak ! q, there are multiset �i, for i = 0; : : : ; k such that

(
Fk
i=1 �i) = �� [y] and for i = 1; : : : k, we step to

Qi = � `? �i : Ai.

By induction hypothesis there are set-mappings si, such that

si�i(�) `? si(�i) : Ai succeeds in P int.

We can �nd a set mapping s such that:

- s(�i) \ s(�j) = ; and

-
S
i s(�i) = s(�)� s([y]).

Since renaming labels does not matter and s(�i) and si(�i) are just renaming of the same variables, we

get that:

s�i(�) `? s(�i) : Ai succeeds in P int,

but then, by monotony, also

Q0
i = s�(�) `? s(�i) : Ai succeeds in P int,

succeeds in P int. Hence from s�(�) `? s(�) : q we can step to Q0
i and succeed.

2

We are going to show that the proof procedure with loop- checking is sound and complete for R.

Soundness is obvious, given the soundness of the more liberal proof procedure without loop-checking

(the previous theorem). We need a few lemmas, whose proofs are easy and hence omitted.

Lemma 5.7.6 If Q = � `? � : G;H succeeds in P1 by a derivation D, and H 0 � H, then also

� `? � : G;H 0 by an isomorphic derivation.

De�nition 5.7.7 Given two derivations D and D0, we say that D is embeddable in D0 if

1. for each query Q = � `? 
 : G;H in D0, there is a corresponding query e(Q) = � `? 
0 : G;H 0

in D0, such that 
 � 
0, and for each (�; r) 2 H there is (�0; r) 2 H 0, with � � �0.

2. if Q0 is a child of Q in D, then e(Q) is a child of e(Q0) in D0.

In other words, D is isomorphic to a subtree of D0, and the label and the histories of the corresponding

queries are related as shown in item (1).

Lemma 5.7.8 If Q = � `? � : G;H succeeds in P1 by a derivation D and � � �, then also

Q0 = � `? � : G;H succeeds in P1 by a derivation D0 embeddable in D.

Given a derivation D in P1, we say that a query Q in D is a violation if reduction rule is applied

to Q without respecting the loop-checking condition (1) in reduction rule. Let v(D) be the number of

violations in D.
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Theorem 5.7.9 The procedure with loop-checking is sound and complete for R.

Proof. We prove completeness. We show how to turn a successful P1-derivation D of a query Q:

� `? � : G; ;.

into a successful P2-derivation D� of Q, that is, into a successful P1-derivation D� such that v(D�) = 0.

Let us de�ne the rank of a derivation D, denoted by r(D), as the pair (h(D); v(D)). We consider ranks

lexicographically ordered, and we prove, by induction on r(D), that if Q succeeds by a derivation D of

rank (h; v), then it succeeds by a derivation D� embeddable in D, of rank r(D0) = (h0; 0), (with h0 � h).

The case of r(D) = (h; 0) is trivial and the case r(D) = (0; v) is impossible. Thus, we are left

with the case r(D) = (h; v), with h; v > 0.

Inspecting D from the root downward, choose a query Q0 which violates the loop-checking con-

straint. Let

Q0 = � `? � : q;H 0.

If Q0 is a violation, then there is (�; q) 2 H 0, such that � �j �. This means that above Q0, on the path

from Q to Q0 in D, there occurs a query:

Q00 = � `? � : q;H 00.

Let D1 be the subtree rooted in Q0 and D2 be the subtree rooted in Q00; let r(D1) = (h1; v1) and

r(D2) = (h2; v2). We have h1 < h2 � h, moreover v1 < v2, whence:

r(D1) < r(D2) � r(D).

Since (�; q) 2 H 0, the history has not been cleared (because of the implication1 rule) along the path

from Q00 to Q0; but this entails that no new formulas have been introduced in �, that is � = � and

H 00 � H 0. By the previous lemmas, we have that the query

Q� = � `? � : q; ;

succeeds by a derivation D0
1 embeddable in D1 of height h01 � h1 < h, whence

r(D0
1) < r(D).

We may apply the induction hypothesis on Q� and obtain that Q� succeeds by a derivation D�
1 of rank

(h�1; 0), with h�1 � h01 � h1 < h2; moreover, D�
1 is embeddable in D0

1, and hence in D1. Now let D�
2 be

obtained from D�
1 by inserting H 00 in Q�, that is the top query of D�

2 is Q00, and the history is propagated

accordingly. We have that also D�
2 is embeddable in D1, since H 00 � H 0. Obviously, derivation D�

2 is

successful.

We have that r(D�
2) = (h�1; v

�
2), for some v�2 . It is su�cient to show that it must be v�2 < v2.

By hypothesis, we have that v1 < v2. We show that v�2 � v1. To this aim, let Qt be a violation in

D�
2 . Since D�

1 does not contain violations, Qt must be a violation because of the history H 00 which has

been inserted in Q00 and propagated in accordance with the deduction rules. It must be that Qt has the

following form:

Qt = � `? � : r;Ht,

where H 00 � Ht and there is (
; r) 2 H 00, with 
 �j �. Notice that the database must be �, otherwise

the history would have been cleared. Since D�
2 is embeddable in D1, there is a corresponding query Q0

t

in D1 of the form:
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Q0
t = � `? �0 : r;H 0

t,

with H 00 � H 0
t and � � �0. We show that Q0

t must be a violation in D1, that is 
 �j �0. Suppose it is

not the case. First observe that since (
; r) 2 H 0
t, it must be

(*) ��0 � �
,

this follows from the fact that, if new labels had been introduced in �0, the history would have been

cleared, and this is not the case. Suppose that 
 6�j �0; by (*), we then have

either ��0 � �
 or �0 �j 
.

In the former case we have �(�0) � �
 = ��, against the fact that � � �0. In the latter case, we have

�0 �j 
 �j �, and hence �0 �j �, contradicting again the fact that � � �0. We have shown that, for each

violation in D�
2 there is a corresponding violation in D1, hence v�2 � v1.

We obtain a new successful derivation D� of the original query Q, by replacing D2 by D�
2 in D.

Since h�1 < h2 and v�2 < v2, we have that h(D�) � h and v(D�) < v, whence r(D�) < r(D). To conclude

the proof, we apply the induction hypothesis to D�.

2

Remark 5.7.10 Notice that, the transformation never increases the size of a derivation. This means, as

expected, that loop-free derivations are usually shorter than derivation in which violations are allowed.

We are going to prove that the procedure with loop- checking always terminates. To this purpose

we need a proeperty of sequences of multisets (Kripke's lemma). Let �1; �2; : : : ; �i; �i+1 : : : be a sequence

of multisets on a �nite set S, we say that the sequence is irredundant if, whenever i < j, it is not the

case that �i �j �j .

Lemma 5.7.11 (Kripke) Any irredundant sequence of multisets �1; �2; : : : ; �i; �i+1 : : : on a �nite set

is �nite.

Theorem 5.7.12 (Termination) Procedure P2 always terminates.

Proof. Let Q = � `? � : G; ; be a query, we show that any derivation tree D with root Q in P2 is

�nite. We argue by absurdity. Suppose D is in�nite. Since D is a �nitely-branching tree, (by K�onig's

lemma), it has an in�nite branch B. Let Q0 = � `? 
 : G0; H be any query in B. Since the number of

subformulas of � and G is �nite, say k, no more than k distinct labels, say S = fx1; : : : ; xkg, can occur in


. That is to say, 
 is a �nite multiset on S. Moreover, we can assume also that Lab(�) � Lab(�) � S.

There must be a query Qi = �i `? �i : Gi; Hi on B, such that

For all Qj = �j `? 
j : Gj ; Hj on B with j � i, �j = �i.

This follows from the fact that, for every �j , Lab(�j) � S, and from the fact that

if � `? � : G;H precedes �0 `? �0 : G0; H 0, then � � �0.

But this implies that, from Qi onwards on B, the history will never be cleared, that is:

(*) for all j � i, Hj � Hj+1.
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Since B is in�nite, after Qi, there must be in�nitely many queries Q0
j with the same atomic goal q0. Let

us consider the in�nite subsequence of such queries Q0
j = � `? 
0j : q0; H 0

j . Now we are ready to derive

a contradiction. By Kripke's lemma, the in�nite sequence of multisets (on S) 
0i; 

0
i+1; : : : must contain

some 
0l and 
0k such that l < k and 
0l �j 

0
k; they come from two queries:

Q0
l = � `? 
0l : q0; Hl and Q0

k = � `? 
0k : q0; Hk.

The query Q00
l+1 = � `? 
0l+1 : Gl+1; H

00
l+1 which follows Q0

l in B must be obtained from Q0
l by reduction

(it may be Q00
l+1 = Q0

k), hence by (*) we have:

H 00
l+1 = H 0

l [ f(

0
l ; q

0)g � H 0
k.

But this implies that (
0j ; q
0) 2 H 0

k, and hence, by the loop-checking condition, branch B must end with

Q0
k. 2

Although the procedure for implicationalRterminates, its complexity is still under investigation. Urquhart

[] has proved an exponential-space lower bound and un upper bound which is primitive-recursive in the

Ackermann function for the pure implicational fragment. The latter bound is essentially also a lower

bound for the fragment with !;^. �There is therefore a huge gap between the lower bound and the

upper bound for the implicational fragment.

SHALL WE PUT R-MINGLE???? THE FOLLOWING SECTION SHOULD BE DEEPLY RE-

VISED OR OMITTED

5.8 A further case study: the system RM0

The system RM0 is an extension of R which formalize a more liberal discipline on use of formulas. In

Rwe have that � ` A if there is a derivation in which every hypothesis in � is used. In RM0we demand

less: for every hypothesis in � there must be a derivation of A which uses it. It may happen that

no derivation is capable of exhausting all formulas of the database, but if we take together alternative

derivations they jointly exhaust all formulas. Let us consider the following example:

(a! c) ! (b! c) ! a! b! c:

Suppose we try a derivation of this formula, using the procedure for R, we have:

; `? ; : (a! c) ! (b! c) ! a! b! c:

#

...

(1) x : a! c; y : b! c; z : a; u : b `? fx; y; z; ug : c

we can use the �rst formula and step to:

(2) x : a! c; y : b! c; z : a; u : b `? fy; z; ug : a

and we fail according to the procedure for R. Alternatively at step (1) we can choose y : b! c and step

to

x : a! c; y : b! c; z : a; u : b `? fx; z; ug : b

178



and we fail again. The above formula is not a theorem of R. According to RM0, we can say "ok the

goal a in (2) succeeds (consuming the label z), provided we can consume the remaining labels to prove

the original goal, or more generally, any previous goal involved in the derivation. Thus after (2) we can

restart by asking:

x : a! c; y : b! c; z : a; u : b `? fy; ug : c;

and then step to

x : a! c; y : b! c; z : a; u : b `? fug : b;

which succeeds. The principle of RM0 can be informally stated as follows: if the current goal suc-

ceeds, but leaves some resources unused, then restart the computation from any previous goal and the

corresponding database, trying to consume the unused data.

We �rst give a procedure which extends that one for R by allowing to restart the computation

in the above sense. Then, we present an equivalent procedure which use an explicit rule to partition the

available resources, rather than the restart rule. This rule which partitions the resources is the Mingle

rule, from which the system takes its name.

A remark on terminology, RM0 is the system obtained by adding to the implicational fragment

of R the axiom:

A! A! A;

or equivalently, the axiom

(A! C) ! (B ! C) ! A! B ! C:

If we add these axioms to the whole system R we obtain a system called R-Mingle (RM), whose

implicational fragment is strictly stronger than RM0, and will not be treated here.

WE HAVE TO CHECK THIS

Database and labels are de�ned as in the previous sections. A query has the form:

� `? � : A;H;

where �, and � are as in the case of R, and H , called the history, is a list of triplets of the form

H = (�1; �1; q1); : : : ; (�n; �n; qn);

where �i are databases, �i are labels, and qi are atoms. We use the append notation and write:

H = (�1; �1; q1) � : : : � (�n; �n; qn);

We adopt a similar policy to the one of section 5.7, i.e. when we perform a reduction step, we are

allowed to reduce the atomic goal wrt. a formula, say z : A1 ! : : : ! An ! q, even if z is not in the

goal label, say �, then we cancel z from the goal label and we do require that the �i be disjointed. This

makes more e�cient the control of the labels. We limit our duscussion to the implicational fragment.

The rules are as follows:

� (success)

� `? � : q;H;

succeeds, if for some x, x : q 2 � and � = x or � = ;;
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� (implication) from

� `? � : C ! G;H

we step to

� [ fx : Cg `? � [ fxg : G;H 0

where x is a new label, that is not occurring neither in �, nor in �, nor in H , and H 0 = H �

(�; � [ fxg; G) if G is an atom, and H 0 = H otherwise.

� (reduction) from

� `? � : q;H

if there is some y : C 2 �, with

C : A1 ! : : :! Ak ! q;

then we step, for i = 1; : : : k, to

� `? �i : Ai; Hi;

where

1. �i \ �j = ;, for i 6= j;

2.
Sk
i=1 �i = �� fyg.

3. Hi = H � (�; �i; Ai) if Ai is an atom, and Hi = H otherwise.

(Notice that we do not require that y 2 �).

� (Restart) from from

� `? � : q;H

if H = H1 � (�; �; r) �H2 � (�; � : q), and the following conditions hold:

1. for some x, x : q 2 �,

2. letting �0 = �� fxg, we have �0 � �

then we step to

� `? �0 : r;H 0

where H 0 = H1 � (�; �0; r).

The �rst condition ensures that q succeeds if we ignore the label. The second condition may be explained

by saying that if we select (�; �; r) in the history, we commit to "consume" �. That is why the current

label �0 must be included in �, otherwise we would re-try the goal r with extraneous resources not

occurring when it was asked before (represented by �).

Example 5.8.1 We reconsider the previous example:

; `? ; : (a! c) ! (b! c) ! a! b! c; ;:

#

...

� `? fx; y; z; ug : c; (�; fx; y; z; ug; c)

180



where � = fx : a! c; y : b! c; z : a; u : bg we reduce wrt. x : a! c:

� `? fy; z; ug : a; (�; fx; y; z; ug; c) � (�; fy; z; ug; a)

since z : a 2 � and fy; ug � fx; y; z; ug, we can restart by asking:

� `? fy; ug : c; (�; fy; ug; c)

and then step to

� `? fug : b; (�; fy; ug; c) � (�; fug; b)

which immediately succeeds.

Another simpler example is

; `? ; : a! a! a; ;

x : a `? x : a! a; ;

x : a; y : a `? fx; yg : a; (fx : a; y : ag; fx; yg; a)

we can apply restart and step to

x : a; y : a `? fyg : a; (fx : a; y : ag; fyg; a)

which immediately succeeds.

As we have seen in the example above, the query to which we apply the restart rule may be

identical to the query from which we restarted, that is if x : q 2 �, then from

� `? � : q;H � (�; �; q);

we can step to

� `? �� fxg : q;H � (�; �� fxg; q):

We call this limit type of restart self-restart. We will see at the end of this section that we can eliminate

this type of restart by changing the label discipline.

From the viewpoint of Gentzen's systems, RM0 can be obtained by adding to the Gentzen

system for the implicational fragment of R the following rule:

� ` A � ` A

�;� ` A :

This rule can be easily reformulated in our context as follows:

(Mingle) From

� `? � : A;H

step to

� `? �1 : A;H1 and � `? �2 : A;H2

where � = �1 [ �2, �1 \ �2 = ;, and Hi = H � (�; �i; A), if A is an atom, and Hi = H

otherwise.
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That is we can split the label � in two labels and carry on two computations one consuming �1 and

the other consuming �2. Our restart rule can be seen as a linearization of the Mingle-rule. As we prove

below, the Mingle rule is equivalent to the restart rule. To this aim we let P1 be the procedure which

use mingle rule and does not use restart, and let P2 be the procedure which use restart and does not

use mingle. Technically, we need to consider also a (redundant) derivation procedure P1 + P2 in which

both Mingle and restart are allowed. We show how to gradually replace all applications of one of the

two rules by the other one, in any given successful derivation. We thereby obtain that that either one

or the other rule can be avoided, so that a P1-derivation can be converted into a P2-equivalent one and

viceversa.

Proposition 5.8.2 [Monotonicity] If � � �, then � `? � : G succeeds with height h implies � `?

� : G succeeds with height h0 � h.

Proposition 5.8.3 Let � and � be two labels such that � � �, then for any formula �, G, and H

� `? � : G;H; with height h implies � `? � : G;H with height h0 � h.

Proposition 5.8.4 If � `? � : A;H succeeds in P1, then it has a successful derivation in which Mingle

rule is restricted to atoms.

Theorem 5.8.5 Let D be a successful derivation in P1(i.e. which uses Mingle) of the query K = � `?

 : A;H, then there is a successful P2-derivation D0 of K.

Proof. Let us consider a successful derivation D in P1 of K. We show how to replace every application

of the mingle rule by an application of the restart rule. By proposition 5.8.4, we can assume that every

application of mingle is restricted to atomic queries. At intermediate steps the derivation built so far will

contain application of both restart and mingle (formally, a derivation in P1 + P2). But the intermediate

derivation will satisfy the property that no application of restart precedes any application of mingle.

More precisely, if restart is applied to N using a previous N 0, and mingle is applied to N 00, then N 00

cannot be equal to N 0, or be a descendant of N 0. The initial derivation D trivially satisfy this property.

We stepwise transform the initial derivation by replacing any application of mingle by an application of

restart in such a way that the above property is preserved.

We say that an application of mingle to a query Q in D is maximal if there are no applications

of mingle to any descendant of Q. Even if the transformed derivation is longer, every transformation

step decreases the number of maximal applications of mingle, without introducing new applications of

the rule. Thus, the process terminates in a �nite number of steps.

We describe a generic transformation step. Suppose D has the form shown in Fig.5.2.

In the shown derivation, � = �1 [ �2, and the subtree T1 and T2 do not contain any application

of the mingle rule. Moreover, if restart is applied in Ti, then the query used by restart must be a

descendant of

N0 : � `? � : q;H � (�; �; q):

We let

N = � `? �1 : q;H � (�; �1; q):

T1 must have a leaf of the form

Ni = � `?  : r;H�
1 ;

182



K

.#&

: : :
... : : :

� `? � : q;H � (�; �; q)

. &

� `? �1 : q;H � (�; �1; q) � `? �2 : q;H � (�; �2; q)

T1 T2

Figure 5.2:

such that for some x, x : r 2 � and  = ; or  = x. Notice that in the latter case x 62 �2. Moreover

we have

H�
1 = H � (�; �; q) �H 0

1 � (�;  ; r);

where � = �1 or � = �1 � fzg, since the successor of N in T1 might be obtained by self- restart.

Let T 01 be obtained from T1 as follows: �rst add �2 to the goal-label of every query Q occurring

in the path leading from N (included) to Ni, and to the label occurring in triplet corresponding to Q

in the history. We have that the root of T 01 is

N0 : � `? � : q;H � (�; �; q);

and the leaf corresponding to Ni is

N 0
i = � `? �2 [  : r;H1;

with

H1 = H � (�; � [ �2; q) �H
00
1 � (�; �2 [  ; r);

where H 00
1 is obtained by adding �2 to the label of each triplet in H 0

1. Since x : r 2 � and 
 =

(�2 [ )�fxg � �[ �, we can go on by restart from N 0
i by using N0 or its immediate successor (in the

case it is obtained by self-restart) and step to

Q = � `? 
 : q;H � (�; 
; q):

We have that either 
 = �2 or 
 = �2�fxg. To query Q we append the tree T 02, which is T2, if 
 = �2,

or it is obtained by deleting the atomic label x from goal labels (and history) of queries of T2. Here

below (Fig.5.3) the resulting derivation is displayed. In this way we have obtained a new derivation D0,

which has one (maximal) application of mingle less than the original D. The only di�erence between

the two derivations is below N0. But the only di�erence between T1 and T 01 is that the �rst one has a

branch ending by Ni, whereas the latter has a branch going on with N 0
i and then T 02. If D is successful,

then T1 and T2 are successful subtrees. By proposition 5.8.3, T 02 is successful, and hence so is T 01; we

can conclude that D0 is successful. 2

Theorem 5.8.6 Let D be a successful derivation in P2 (i.e. which uses Restart) of the query K =

� `?  : A;H, then there is a successful P1-derivation D0 of K (which uses only Mingle).
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K

.#&

: : :
... : : :

� `? � : q;H � (�; �; q):

( � `? �2 [ � : q;H � (�; �2 [ �; q)) )

(in case of self restart)

T 01

� `? �2 [  : r;H1

� `? 
 : q;H � (�; 
; q)

T 02

Figure 5.3:

Proof. Let us consider a successful derivationD in P2 of K. We show how to replace every application of

restart rule by an application of mingle rule. At intermediate steps the derivation built so far will contain

application of both restart and mingle (formally, a derivation in P1 + P2). As before, the intermediate

derivation will satisfy the restriction that no application of restart precedes any application of mingle.

An application of the restart rule is called minimal if it is done to a query N by using a previous query

N 0, and no application of restart to any query on any branch going through N 0 uses a query which

precedes N 0. The application is minimal wrt N 0 in the sense no other else application of restart uses

a query "older" than N 0. The transformation described below replace a minimal application of restart

by an application of mingle, and it yields a derivation of no greater height, in which there is at least

one minimal application of restart less than the original one, and no new application of restart. If the

starting derivation is successful then it is �nite, and by iterating the transformation we replace every

application of restart by mingle.

We describe a generic transformation step. Suppose D has the form shown in Fig.5.4.

In the shown derivation, �0 = � � fxg � �, x : r 2 �, and (1) the subtrees T1 and T2 do not

contain any application of the mingle rule, (2) there is no application of restart using a query which is

an ancestor of

� `? � : q;H � (�; �; q):

Let � = �0 [ 
. Then, we obtain a transformed derivation D0 from D as shown in Fig.5.5. In the shown

derivation, T 01 is obtained from T1 by deleting �0 on any node on the path in T1 leading from the root

(the query � `? 
 : q;H � (�; 
; q)) to

� `? � : r;H � (�; �; q) �H1 � (�; �; r)

which now becomes

N = � `? � : r;H � (�; 
; q) �H 0
1 � (�; �; r);

where � = x or � = ;. (H 0
1 is obtained from H1, by deleting �0). Notice that, by the splitting condition

in the reduction rule, � can only be on that path. We know that x : r 2 �, and hence N succeeds. The
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.#&

: : :
... : : :

� `? � : q;H � (�; �; q)

T1

� `? � : r;H � (�; �; q) �H1 � (�; �; r)

� `? �
0 : q;H � (�; �0; q)

T2

Figure 5.4:

K

.#&

: : :
... : : :

� `? � : q;H � (�; �; q)

. &

� `? �0 : q;H � (�; �0; q) � `? 
 : q;H � (�; 
; q)

T2 T 01

Figure 5.5:

subderivation T 01 di�ers from T1 only for the path from the root that is now

� `? 
 : q;H � (�; 
; q)

to N it is easy to see (by proposition 5.8.3) that if T1 is successful, then so is T 01. We can therefore

conclude that if D is successful, so is D0. But D0 contains a minimal application of restart less than D.

2

By the previous results, restart and mingle are equivalent. We now show the soundness and

completeness of the procedure P1 which makes use of mingle rule, because is technically simpler. In P1,

we no longer need to record the history of the computation, thus we will drop the parameter H from

queries.

We adopt a semantics for RM0similar Fine's semantics of section 5.5.1. In addition to the

condition of de�nition 5.5.3 (1) - (6) satis�ed by R, we postulate, that

(*) x � x � x

and that the evaluation fuction satis�es
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V (x) \ V (y) � V (x � y).

Since � is a paratial ordering, the condition (5) x�x � x and (*) make � an idempotent operation which

can be thought as a semilattice operation [ with identity 0. However neither x � x [ y, nor x [ y � x

is assumed.

De�nition 5.8.7 A model structure M for L(!) is a tuple

M = (S;[; 0; V );

where

� (S;[; 0) is a semi-lattice with zero (the element 0), and

� V is a function of type S ! Pow(V ar), satisfying the following condition (M): for all p 2 V ar,

x; y 2 S

p 2 V (x) ^ p 2 V (y) ! p 2 V (x [ y):

Truth and validity are de�ned as in the case of R, we refer to section ??.

We notice that condition (M) implies that for any formula A,

M;x j= A and M; y j= A implies M;x [ y j= A.

We we only sketch the proofs of the and completeness. With respect to soundness, we observe that we

have to state it in a more general form, since the label x of some formula x : A 2 � actually used in a

derivation of � `? � : G need not be in �.

Theorem 5.8.8 Let � be a database, for any � and A, if � `? � : A succeeds in P1, then there is a

database � � � such that

(a) � `? �� : A succeeds;

(b) � � �� � ��;

(c) letting � = fy1 : B1; : : : ; yk : Bkg, we have that

B1 ! B2 ! : : :! Bk ! A is valid in RM0.

Proof. By induction on the heigth h of a successful derivation of � `? � : A. We sketch the case of

reduction and Mingle.

(Reduction) Let h > 0 and A = q is an atom. Suppose that the reduction rule is applied, then

for some y : C 2 � with C : A1 ! : : :! Ak ! q, from � `? � : q, we step to

� `? �i : Ai;

which succeed with height hi < h, for i = 1; : : : k, and it holds that:

1. �i \ �j = ;, for i 6= j;

2.
Sk
i=1 �i = �� fyg.

By induction hypothesis, there are �i � �, for i = 1; : : : ; k, such that letting ��i
= 
i, we have:
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�i `? 
i : Ai succeeds with height h0i � hi, and

�i � 
i � ��;

and assuming �i = fxi;1 : Ci;1; : : : ; xi;ri : Ci;rig; we have:

j= Ci;1 ! : : :! Ci;ri ! Ai.

We can de�ne

- � =
S
i �i [ fy : Cg; and,

- �i = (
i � fyg)�[kj=i+1
j ; for i = 1; : : : ; k

- 
 =
S
i �i [ fyg.

It is immediate to check that (1) y 62 �i, (2) 
 = [i
i[fyg, (3) �i � 
i, (4) �i\�j = ;, (5)
S
i �i = 
�fyg.

Since �i � �, and (3), we have � `? �i : Ai succeeds with height h00i � h0i, so that by (4) and (5),

by reduction rule we can conclude that � `? 
 : q; succeeds. Since �i � �, and y : C 2 �, we have

� � �. It is also clear that 
 = �� � ��. We have still to check that � � 
. It holds [i�i = � � fyg;

so that we have:

� �
[
i

�i [ fyg �
[
i


i [ fyg = 
:

This concludes (a) and (b).

(Part (c)). We know that for i = 1; : : : ; k

(i) j= Ci;1 ! : : :! Ci;ri ! Ai:

If y : C 62
S

�i, we show that

E = C1;1 ! : : :! C1;r1 ! : : :! Ck;1 ! : : :! Ck;rk ! C ! q is valid.

Suppose it is not. Then there is a model M = (S;[; 0; V ) such that M; 0 6j= E then, there are

x1;1; : : : ; x1;r1; : : : ; xk;rk ; y 2 S, such that

(ii) M;xi;j j= Ci;j ;

for j = 1; : : : ; ri, i = 1; : : : ; k, and

(iii) M; y j= A1 ! : : :! Ak ! q;

and, letting si = xi;1 [ : : :[ xi;ri it holds that: M; s1 [ : : :[ sk [ y 6j= q. By (i) and (ii) we can conclude

that

(iv) M; si j= Ai:

By a simple inductive argument it is easy to see, using (iii) and (iv) that for i = 1; : : : ; k � 1 we get:

M; s1 [ : : : [ si [ y j= Ai+1 ! : : :! Ak ! q,

so that we �nally get M; s1 [ : : : [ sk [ y j= q. against the hypothesis.

If y : C 2
S

�i, we show in a similar way that

C1;1 ! : : :! C1;r1 ! : : :! Ck;1 ! : : :! Ck;rk ! q;

is valid.
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(Mingle) Suppose that the mingle rule is applied to � `? � : q so that we step to

(�)� `? �1 : q and � `? �2 : q;

with �1[�2 = �. Since (*) succeeds with height hi < h, we can apply the inductive hypothesis and obtain

that there are �i (for i = 1; 2) such that �i � �, �i � ��i
� ��, �i `? ��i

: q succeeds with h0i � hi,

and letting �i = fAi;1; : : : ; Ai;kig, we have that in RM0is valid

Ai;1 ! : : :! Ai;ki ! q:

We let � = �1 [�2 = fA1;1; : : : ; A1;k1 ; A2;1; : : : ; A2;k2g, so that we easily have that � � �� � ��, and

A1;1 ! : : :! A2;k1 ! A2;1 ! : : :! A2;k2 ! q is valid in RM0,

and by Propositions 5.8.2, 5.8.3 the two queries

� `? ��1
: q and � `? (��2

� ��1
) : q succeed.

Thus, from � `? �� : q, we can step to the above two queries and succeed. 2

Completeness can proved by showing �rst the admissibility of the cut-rule and then by providing

a canonical model construction. The proof of this theorem is similar to the one of theorem ??, but

acutally simpler.

Theorem 5.8.9 Let � = fx1 : A1; : : : ; xn : Ang, and � = fy1 : B1; : : : ; yk : Bng, and let � = ��,

� = ��, u 62 � [ �, if

�[u : C] `? � : D and � `? � : C succeed in P1

then also

�[u=�] `? �[u=�] : D succeeds in P1.

The canonical model M = (W;[; ;; V ) is de�ned as follows: [ is set-union, ; is the emptyset,

and V is the evaluation function of type W ! Pow(V ar), de�ned by the condition below: for � 2 W ,

p 2 I(�) , � `? �� : p.

It is easy to see that M satis�es all the conditions of de�nition ?? and that for every formula C:

M;� j= C i� � `? �� : C succeeds;

from which the completeness easily follows.

Theorem 5.8.10 If A is valid in RM0, then ; `? ; : A succeeds in P1.

At the beginning of the section, we have seen that self restart is needed to consume several copies

of an atomic formula which immediately succeeds. Self-restart can be avoided if we change the label

discipline of formulas. It is easy to see that if a formula occurs in a database, its number of copies is

immaterial, in the sense that:

(1) �; x : A `? � [ fxg : B;H succeeds i�
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(2) �; x1 : A; : : : ; xk : A `? � [ fx1; : : : xkg : B;H succeeds;

(it is k > 0). To see this, take a successful derivation of (1), this could be also a derivation of (2),

apart from some copies of A (witnessed by their labels) which remain unused in some node; in order to

consume them we restart and attach below any such node another copy of the derivation of (1). Self

restart is needed to deal with the above situation when B = A is atomic, whence the query immediately

succeeds. The above fact means that we can economize labels and eliminate self restart by labeling with

the same label all copies of A in the database. That is, a database contains at most one occurrence

of any formula. To this purpose we �rst modify the implication rule, so that we no longer introduce

a formula in the database if it already occurs in it. We can also add a loop-checking mechanism, as

de�ned in section 5.7 and make it terminating. We leave to the reader to work out the details of such

a procedure.

5.9 Relation with other approaches

WHAT SHALL WE PUT IN THIS SECTION???

Relevance logics In principle a proof procedure for relevance logic (at least for R witout distri-

bution and with an intuitionistic negation [?]) can be easily obtained: adopt any proof- method for intu-

itionistic logic adding a mechanism to check the usage of formulas. This checking can be done by marking

formulas as long as they are used. Every time we use a formula we mark it; if the proof succeeds accord-

ing to the method for intuitionistic logic, we check that every formula in the database has been marked.

If it is so, we succeed, otherwise we fail. This idea has been employed in [McRobbie and Belnap 79] to

de�ne tableau procedures for many relevance logics. If we adopt this strategy in a goal-directed proce-

dure, we encounter a problem. A derivation may split in branches or subderivations. A formula might

be used (and marked) in one branch but not in another. Therefore, we cannot say whether a query in

a derivation tree is successful or not, unless we inspect the whole derivation tree. This situation is not

very very satisfactory: whether a query in a leaf of a derivatoin tree is to be regarded as successful or

not, will come to depend on what there is on other branches of the derivation. We would like instead

that � `? A being provable or not only depends on the subtree whose root is � `? A. Bollen has

developed a goal-directed procedure for a fragment of R [Bollen 91]), which does not have this problem.

His idea is to avoid splitting derivations in branches. We can formulate a proof procedure, in which we

maintain a global proof-state (� `? [A1; : : : ; An]), where all A1; : : : An have to be proved (they can be

thought as linked by a relevant conjunction). For example, from

a! b! c; a; b `? c;

we step to

(a! b! c)�; a; b `? a; b

and we succeed by marking both a and b

(a! b! c)�; a�; b� `? a; b:

However, if we want to keep all subgoals together, we must take care that di�erent subgoals Ai may

happen to be evaluated in di�erent contexts. For instance in

C `? D ! E;F ! G;
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according to the implication rule, we must evaluate E from fC;Dg, and G from fC;Fg. Bollen ac-

commodates this kind of context-dependency by indexing subgoals with a number which refers to the

part of the database that can be used to prove it. More precisely, in the implicational fragment, the

database is regarded as a tree of formulas (corresponding to the nesting of subderivations), and the

index of each goal denotes the path of formulas in the database tree which can be used to prove the

goal. Furthermore, a list of numbers is maintained to remember the usage; in a successful derivation

the usage list must contain the numbers of all formulas of the database.The whole mechanism, though

e�cient, is not very terse from the proof-theoretical perspective. However, Bollen's proof system is more

extended than ours, it is a logic programming language and it is de�ned for a fragment of �rst-order R.

Linear logic

Many people have developed goal-directed procedures for fragments of linear logic, leading to the def-

inition of logic programming languages based on linear logic. We notice that relevant logic can be

encoded in linear logic by replacing A ! B by !(A� �B). The several proposals di�er in the fragment

of the language they chose as primitive. Much emphasis is given to the treatment of the operator !, the

exponential operator, which is needed for having a meaniningful language (we want some resources to

be permanent). Some proposals as [?] and [?] take as basis the multiple sequent version of linear logic.

We notice, however, that the exponential-free (propositional) fragment of linear logic is perhaps the

simplest of the substructural logics. A detailed comparison is out of the scope of the present chapter.

Other Approaches - APPROACHES BASED ON DISPLAY LOGIC

- LABELLED CALCULI (Gabbay, D'Agostino, Russo and Broda, Vigano et al.)
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Chapter 6

Conclusions an Further work

6.1 A procedural interpreation of logics

THIS SECTION SHOULD BE REVISED I AM NO LONGER CONVINCED ABOUT THE THREE

STAGE PRESENTATION OF A LOGIC. IN PARTICULAR, THE CONCEPT OF ALGORITHMIC

PROOF SYSTEM IS TOO GENERAL, ANY PRESENTATION OF A LOGIC IS ALGORITHMIC

(IN THE SENSE OF BEING R.E.) IF THE LOGIC IS R.E. ITSELF!

This book underlies a procedural interpretation of logical systems. In the traditional view, a

logical system can be mathematically presented either as a consequence relation satisfying certain prop-

erties, or as a set of axioms in some language, or, �nally, through its semantics, as a class of mathematical

structures. Usually one starts with such a mathematical presentation of a system and later on studies

the problem of deduction in that logical system. Suppose we have �xed a logical system S, with its

mathematical presentation and we have de�ned some notion of consequence relation relative to S. Here

by consequence relation we simply mean a notion of \following according to S", so that we can make

statements of the form \information (formula) A follows from information (data) � according to S",

denoted by

� `S A.

The consequence relation `S is expected to satisfy certain properties to be considered a logic, namely,

re
exivity, transitivity and cut.

It is convenient to refer to the presentation of a system as described above as the mathematical

stage in de�ning a logic. We mean that `S is de�ned mathematically, but not necessarily algorithmically.

We do not necessarily provide an algorithm to check given � and A whether � ` A holds or not, nor

can we necessarily recursively generate all pairs (�; A) for which � ` A holds. For example, how do we

check, in the case of intuitionistic logic, presented through its Kripke semantics, whether:

fA; ((B ! A) ! B) ! Bg `? B

We have no algorithm to use.

We regard the second stage in the presentation of a logic as the algorithmic proof stage. This

means that we actually have an algorithm for generating pairs (�; A) such that � ` A holds. We

mean here an algorithm in the mathematical sense, i.e. some given procedure for checking whether

� ` A holds. In logical terms this means that the set of pairs (�; Q) such that � ` Q, is recursively
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enumerable. It need not be a practical automated algorithm which is actually implemented. So, for

example, a recursive function generating the pairs (�; Q) such that � ` Q, is a mathematical algorithm

in our sense. On the other hand, a program which implements a decision procedure for checking whether

� `? Q holds is the automated practical algorithm. It is quite possible that the set of pairs (�; Q)

such that � ` Q, is actually recursive. For reasons of convenience the system may initially be presented

as an algorithmic proof system where it is not immediately clear that it is indeed recursive. In such a

case we may obtain an e�ective decision procedure from the algorithmic proof system via optimization.

Of course some logics can be presented directly in their algorithmic stage. We can give a recipe for

checking whether � `? A holds or not, and provided we show that the relation: `The procedure for

checking � `? A terminates with answer yes' is a consequence relation, we have properly de�ned a

logic.

For some logics ` (i.e. consequence relations) which can be de�ned mathematically, there are

no algorithms for enumerating the cases when � ` A holds. So, for these non-recursively enumerable

(some are even not arithmetical) logics there is no algorithmic stage (there may be though a trans�nite

proof procedure).

What about the automated stage? This stage is a practical implementation of an algorithmic

stage. It should be sound (i.e. if the automated stage says that � ` A should hold then it does indeed

hold) and possibly complete (i.e. if � ` A does hold then the automated stage can con�rm that). We say

`possibly' complete because we do not necessarily require completeness. We can regard the algorithmic

stage as a proof checker stage and the automated stage as a proof �nder stage. The reason for this

terminology is that an algorithmic proof system is generally recursive enumerable and can e�ectively be

used in general mainly to verify, for a given proof, if it is correct in the system. On the other hand, an

e�ective (recursive in polynomial time on average) proof system can be used for �nding proofs.

Here is how these stages might look for the case of classical logic.

Mathematical stage: � ` A is de�ned according to the classical truth tables, in the usual traditional

manner.

Algorithmic stage: A Gentzen system for classical implication.

Automated stage: A machine implementation of the Gentzen system.

Note that in this example the truth table method can serve as the algorithmic stage as well.

For any one consequence relation there can be more than one mathematical presentation and many

algorithmic presentations. Each algorithmic presentation may have many machine implementations.

The theme of the three-stage presentation of logics is important not only from the classi�cation

point of view but also from the theoretical point of view.

Consider an algorithmic proof system for a logic L1. Let us call it S1. Thus whenever � `L1 A

holds, the algorithmic procedure S1 would succeed when applied to � `? A. S1 contains manipulative

rules. These rules can be tinkered with, changed, modi�ed and made more e�cient. It happens in

many practical cases that by making natural changes in S1 we get a new algorithmic system S2 which

de�nes a new logic L2. L2 may be a well- known logic already mathematically de�ned, with completely

di�erent motivation. The insight that S2, the result of tinkering with S1, is an algorithmic system for

L2 can deepen our understanding of L2.

We thus can obtain a network of logics interconnected on many levels, mathematical and algo-

rithmic, where di�erent logics can be obtained in di�erent ways from other logics in the network by

making some natural changes.
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Thus our view of logic is procedural. The declarative nature is only a component in the formulation

of the logic. This is a somewhat departure from the traditional point of view. We intuitively de�ne the

notion of a recursively enumerable logical system L as a pair L = (`;S), where ` is a mathematically

de�ned consequence relation and S is an algorithmic proof system for `. The algorithmic system is

sound and complete for `. Thus di�erent algorithmic systems for the same ` give rise to di�erent logics,

according to our de�nition.

To make this new notion more intuitively acceptable, consider the following example. Take a

Gentzen style formulation for intuitionistic logic. A minor change in the rules will yield classical logic.

Another minor change will yield linear logic. Thus from the point of view of the algorithmic proof

system (i.e. Gentzen proof theory) linear logic, intuitionistic logic and classical logic are neighbours or

brother and sister.

Now consider classical logic from the point of view of the two-valued truth table. It is easy to

generalize from two-values to  Lukasiewicz n-valued logic Ln. From the truth table point of view, classical

logic and Ln are neighbours. However, there is no natural Gentzen formulation for Ln and so it cannot

be directly related to intuitionistic logic.

Now consider a Hilbert style presentation of classical logic, intuitionistic logic and  Lukasiewicz

n-valued logics. Such axiomatizations exist. Through the Hilbert presentation, the relationship between

the three systems is very clear. Some axioms are dropped and/or added from one to obtain the other.

Our view is that di�erent algorithmic proof presentations of a logic (in the old sense, i.e. the set

of theorems) gives us di�erent logics (in the new sense). Thus we have three distinct logics (all versions

of classical logic) namely:

� Classical logic truth table formulation;

� Classical logic Hilbert system formulation;

� Classical logic Gentzen formulation.

These are di�erent also from the point of view of the kind of information on the logic they highlight.

A Gentzen system and a Hilbert system can give us a rather di�erent type and style of information

about classical logic (old sense). The same can be said for other logics. We can look at di�erent

styles of algorithmic systems as (algorithmic) proof methodologies. This book introduce another style

of presentation of logics, the goal-directed one. We can re-interpret old concepts and distinctions in this

new perspective. To make the argument more concrete let us discuss an example at from chapter 2.

The di�erence between classical implicational logic and intutionistic implicational logic boils down

to the fact that the �rst allows unbounded restart, whereas the latter only bounded restart. As an

immediate consequence backtracking is necessary for intutionistic logic, whereas it is not needed for

classical logic (see chapter 2). In our opinion, this gives a very intuitive and "computational" picture of

their di�erence even from the point of view of complexity.

On the other hand, their di�erent behaviour with respect to the goal-directed computation may

also be "explained" by mapping goal-directed derivations into derivations in a multiple-conclusion se-

quent calculus. We can notice that unbounded restart corresponds to keep side formulas in the conclu-

sions even when we change context, and we are not allowed to do so in case of intutiotionistic logic1.

1Moreover the restrictions we must put on the rules in the case of intuitionistic logic causes the loss of permutability

of derivation steps. This latter observation "explain" the need of backtracking in terms of sequent calculi. Of course a

similar explanation works directly in the goal-directed case and it is made precise by proposition ???.
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Although this type of analysis is signi�cant and we intend to carry it on, as we explain the next

section, we do not think that it conveys a deeper "understanding" of a logical system than the goal-

directed presentation itself. It just another presentation and it is useful to observe the same object from

di�erent perspectives.

6.2 Future Work

There are a number of issues which deserve to be studied further. We list a number of open problems

which will be addressed in future work.

Relation with other proof systems

It is important to compare the goal-directed methodology with other methodologies to the purpose

of understanding the relative merits and de-merits of each one. For calculi for which there are well-

known proof-systems (like sequent of tableaux) the purpose is to see how goal-directed analysis helps

in proof-search for these systems. To this aim we should be able to de�ne a formal mapping between

goal-directed proofs and and proofs with the other systems. For other systems for which the proof-

theoory is not well-understood yet, the goal directed approach can suggest how to develop traditional

proof methods such as tableaux or sequent calculi (it is the case of strict implication modal logics,

their intuitionistic variants and of intermediate logics BHn). Some natural concepts in the context

goal-directed computation seems to have a relation, but they do not have an exact counterpart in other

systems. This is the case of the restart rule. Another example is the notion of "diminishing resource"

computation. The latter corresponds to some limitation of duplication or contraction in sequent systems,

but the exact corresponding notion in other proof systems has still to be found.

Interpolation and other properties

We can use goal-directed methods to prove and de�ne properties of logics; To this regard, we have seen

in Chapter 2 that we can constructively prove an interpolation property for intitionitic implicational

logic. Can a corresponding interpolation property be obtained in a similar way for other logical systems?

An important property of the goal-directed proof procedures is that the cut-rule, suitably formulated,

is admissible. This property has the same import as cut-elimination property in Gentzen System. It

would be interesting to calculate an upper bound on the cut-elimination process and compare it with

what is known in case of sequent calculi.

Decidability and Complexity bounds

Goal-directed proof procedures help in proof-search. The search of a proof is driven by the goal and

only when we reach atomic constistuents we really have a non-deterministic step (reduction or restart).

However, the simple goal-directed proof-procedures are subject to two problems: the �rst one is the

possible non-termination and the other is that the computation may contain repeated subproofs. We

have already remarked upon the �rst problem. In this book we have exempli�ed two methodologies

to deal with non termination: the �rst one is to adopt "diminishing resource policy", the other is to

augment the system by a loop-checking mechanism. We experimented both strategies for intuitionistic

logic. There are logics which are known to be decidable for which we have not devised yet any mechanism

of the either two kinds. This is the important case, for instance, of the modal strict implication logics.

Once that we have a terminating procedure we can ask what optimizations we can make. This can lead

to improvements in both space and time complexity. In [?] it is shown that a simple re�nment of the

goal-directed procedure produce an n logn-space procedure for intuitionistic logic. We hope to develop
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a similar analysis further.

One way of handling the problem of repeated subproofs is to store every partial results, this

correspond to keep a sort of a table of intermediate results and correpond to apply a form of analytic

cut:

from �; A! B ! q ` q, we step to � ` A and �; A ` B.

That is to say, we remember when we try B (the second subgoal) that A has already succeeded.

Proof-extraction

The goal-directed procedures can be used to show type-inhabitation, see [?] for the case of intutionistic

logic. We wonder whether one can use similar algoritm for other logics. It might be also worth investi-

gating if, by means of Curry-Howard isomorphism, there class of �-terms which represent goal-directed

proofs can be characterized in any way.

Extensions of the language

We have concentrated on the implicational fragment. For the case of intutionistic logic, we have extended

our procuderes to the full propositional calculus and to the 8;! fragment, can we make the same

extensions for other systems? Here there are a number of problems. It must be noticed that we could

obtain an extension with disjunction for intutionistic logic only by making use of labels. Thus, we are

expected to need such machinery for other logics. The other problem is that in some cases (such as

the one of relevance logics) the mere addition of the usual distributive lattice connectives makes the

respective systems undecidable ( actuallt Tis not known to be decidable even in its pure implicational

fragment). Thus, we do not expect the extension be easy and computationally favourable.

Starting with the implicational fragment, we have seen that one can easily extend the methods

to a broader class of formulas, for instance Hereditary-Harrop formulas. On the other hand, it might

be interesting to study subclasses of the implicational fragment, for instance to isolate a notion of Horn

database and optimize our procedures for this case.

In case of modal logic, the most prominent extension is to allow in the database formulas with

3-operator in their head. This in not expected to be easy, one has similar problem as the one of allowing

existentially quanti�ed data in the database.

Another prominent extension is the one to �rst-order languages. Following the line of logic

programming (as we did in chapter 2, for intutionistic logic), we want to get mechanisms which actually

compute answer-substituions. In general in most non-classical logics there are several options in the

interpretation of quanti�ers and terms according to the intendended semantics (tipically one several

options: constant-domain, increasing domains etc.); moroever one may adopt either rigid, or non-rigid

interpretation of terms. It is likely that in order to develop the �rst-order extensions we will need to label

the data as we did in several cases. We would like to represent the semantic options we have mentioned

by tinkering the uni�cation and the skolemization mechanism. The restrictions on uni�cation and

skolemization might depend on the labels associated with the data. The treatment of 8� !-fragment

will be the initial objective.

Deductive databases in NonClassical Logics

The idea is to use non-classical logics as a representation language and implement a goal-directed

procedure as a conventional query-answering mechanism. Of course this enterprise presupposes we

have in mind some areas in which the non-classical logics we have studied in this book may �nd an

application. However, the entire battery of logic programming concepts and methods may be imported
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in our goal-directed procedures. For instance one can de�ne non-monotonic extensions of the basic

procedures, such as the concept of negation by failure. One can also de�ne abductive extensions of the

basic proof-mechanism to compute abductive explanations of given data. Examples of developed systems

so far includes the use of intuitionistic logic, classical, linear, relevant, modal and multimodal S4. In

this respect our proof procedures might be considered as "abstract inference engines" for implementing

some non-classical logic programing languages. The usefulness of such non-classical logic programming

languages (either extensions or alternatives to classical Horn one) as speci�cation and representation

languages has not fully been investigated yet, with the exception of intutionistic logic, linear logic and

temporal logic. We believe that these examples do not exhaust the interest in developing non-classical

logic programming languages.

Extension to other Logics

Although our methods seem to cover a broad family of logics there are some important holes in the

landscape of logics which we have been able to treat. More than capturing speci�c (and exotic) systems,

families of logics are important here. Perhaps the most important class of logic which we have been

unable to capture so far is the class of many-valued logics. The only exception has been Dummett's logic

LC, that has we have seen in Chapter 3, can be interpreted as many-valued logic. All the other systems,

notably the in�nite-vaued ones such as  Lukasiewicz and product logic (which are consider together with

LC the main fuzzy logics, see[Hajek 98]) are out of our reach for the moment.

There is a much work to be done in this respct also on extensions of classical logic. For instance

multi-modal logic and contitional logics which have recently received a strong interest for their appli-

cation in a numebr of areas: reasoning about actions, distributed knowledge, and agent communication

(multi-modal logics), hypothetical, couterfactual reasoning, reasoning about belief change and theory

update (conditional logics). All these systems are worth studying for their goal-directed formulation.

The above list of topics is by no means concluded. We plan to carry on this research in a latter

volume.
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