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Abstract

This paper presents a primal-dual interior point algorithm for solving gen-

eral constrained non-linear programming problems. The initial problem is trans-

formed to an equivalent equality constrained problem, with inequality constraints

incorporated into the objective function by means of a logarithmic barrier func-

tion. Satisfaction of the equality constraints is enforced through the incorporation

of an adaptive quadratic penalty function into the objective. The penalty param-

eter is determined using a strategy that ensures a descent property for a merit

function. It is shown that the adaptive penalty does not grow inde�nitely. The al-

gorithm applies Newton's method to solve the �rst order optimality conditions of

the equivalent equality problem. Global convergence of the algorithm is achieved

through the monotonic decrease of a merit function. Locally the algorithm is

shown to be quadratically convergent.
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1 Introduction

Since Karmarkar's seminal work [14], there has been substantial interest in interior

point algorithms for linear programming (LP). These algorithms consider LP as a spe-

cial case of non-linear programming (NLP). Among di�erent interior point approaches,

primal-dual algorithms have attracted most interest. Computational experiments (eg,

[16], [18]) and theoretical developments (eg, [1], [24]) have shown that they perform

much better than other interior point algorithms and outperform the simplex method

in many large-scale LP problems. Primal-dual methods basically apply Newton's algo-

rithm directly to the primal-dual system of equations for both feasibility and approxi-

mate (or perturbed) complementarity conditions. A rigorous treatment of primal-dual

methods in LP can be found in Wright [12].

Motivated by the computational success of primal-dual methods in LP, the in-

vestigation has focussed on possible extensions to NLP. The bulk of the e�ort has

concentrated on convex quadratic (eg, [10], [19]) and convex NLP problems (eg, [17],

[13], [11]), showing that primal-dual methods provide an e�cient solution framework.

However, only recently general (non-convex) NLP problems have been the subject of

research in this area. El-Bakry et al. [22], McCormick and Falk [20], and Yamashita

[7] have developed globally convergent primal-dual algorithms for that class of prob-

lems. Also Lasdon et al. [15] have considered various primal-dual formulations of those

problems and presented their computational experience.

In this paper, we discuss a primal-dual interior point algorithm for general NLP

problems. Our approach basically derives from the premise that the solution of the �rst

order optimality conditions of any NLP problem, which exists in the core of interior

point algorithms, is not su�cient to guarantee the convergence to an optimum solution,

unless the problem is convex. In other words, the algorithm, applied for example on

a minimization problem, may converge to a local maximum or even worse to a saddle

point, since the �rst order optimality conditions are also satis�ed in those points. To

avoid such cases a merit function is incorporated within the primal-dual interior point

algorithm. This is achieved by using an Armijo rule to determine the step-size, which

guarantees the monotonic decrease of our merit function.

The algorithm is partially motivated by two di�erent approaches. The �rst is the

augmented Lagrangian sequential quadratic programming (SQP) framework for gen-

eral constrained optimization problems, discussed in Rustem [2]. The SQP algorithms

possess good theoretical and practical properties and are very e�cient for solving gen-

eral NLP problems [4]. The second approach is the primal-dual interior point method,

where a barrier function and a damped Newton framework are used in order to solve

NLP problems. This is closely related to the SQP framework, since after the initial

incorporation of the inequality constraints into the objective function an equivalent

equality constrained problem is obtained. The latter is solved by applying Newton's

method to the �rst order optimality conditions. Although our algorithm is related to

the approaches proposed by El-Bakry et at. [22] and Yamashita [7], it di�ers in signif-

icant aspects, such as the choice of the merit function, the adaptive penalty selection

rule and the step-size rules. Recently, it has come to our attention that Vanderbei and
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Shanno [9] and Gajulapalli and Lasdon [21] report very encouraging numerical results

with algorithms which also use an adaptive penalty. The present paper, however, pro-

vides the full analysis of an algorithm which substantially di�ers from [9] and [21], in

the adaptive penalty term, discussed in Rustem [2], the barrier parameter, the merit

function and the step-size rules.

In section 2 we introduce the basic features of the augmented Lagrangian methods,

used in this paper. In section 3 we present the basic algorithmic framework of primal-

dual methods for NLP problems. Section 4 describes the primal-dual interior point

algorithm. In section 5 we establish the global convergence of the algorithm. In

section 6 we examine the local behaviour of the algorithm and show that it converges

quadratically to the optimum solution, provided that the standard conditions associated

with the Newton method hold.

2 Augmented Lagrangian Methods

Penalty methods are mainly used for equality constrained optimization problems. The

aim is to eliminate the constraints and augment the cost function with a penalty term

that associates a high cost to infeasible points. The severity of the penalty is determined

by a parameter, denoted by c. As c takes higher values feasibility is increasingly

ensured.

Consider the equality constrained problem

min f(x)

ST g(x) = 0;

(1)

where f : <n ! <, and g(x) : <n ! <q are given functions. The Lagrangian function of

this problem is L(x; y) = f(x)� yT g(x). Augmenting L(x; y) with a quadratic penalty

term yields the augmented Lagrangian function given by

Lc(x; y) = f(x)� yT g(x) +
c

2
k g(x) k2;

which can be considered the Lagrangian function of

min f(x) + c
2 k g(x) k2

ST g(x) = 0

(2)

Problem ( 2) has the same local minima as problem ( 1). The gradient and the Hessian

of Lc with respect to x are

rxLc(x; y) = rf(x) +rg(x)T (cg(x) � y);
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r2
xxLc(x; y) = r2f(x) +

mX
i=1

r2gi(x)(cgi(x)� yi) + crg(x)rg(x)T : (3)

In particular, if x� and y� satisfy the �rst order optimality conditions, thenrxLc(x�; y�) =

rL(x�; y�) = 0 and r2
xxLc(x�; y�) = r2

xxL(x�; y�) + crg(x�)rg(x�)T . For a detailed

treatment of penalty and augmented Lagrangian methods we refer to [3] and [4].

3 Basic Iteration in Primal-Dual Methods

Consider the following constrained problem

min f(x)

ST g(x) = 0; x � 0;

(4)

where x 2 <n, f : <n ! < and g(x) : <n ! <q.

In barrier methods, (4) is approximated by augmenting the objective with the

logarithmic barrier function B(x;�) : <n ! <, B(x;�) = ��Pn
i=1 log(x

i). Thus, the

initial problem is approximated by

min f(x)� �
Pn

i=1 log(x
i)

ST g(x) = 0;

(5)

where x > 0 and the barrier parameter � is a given su�ciently small and strictly

positive constant [23], [4]. The optimality conditions of ( 5) are

rf(x)�rg(x)T y � �X�1e = 0

g(x) = 0;

(6)

where X is the diagonal matrix given by X = diag(x1; :::; xn). Also e 2 <n is the vector

of all ones. Introducing of the non-linear transformation z = �X�1e, ( 6) becomes

rf(x)�rg(x)T y � z = 0

g(x) = 0

XZe = �e;

(7)

where x; z > 0 and Z = diag(z1; :::; zn). The introduction of z is essential to the

numerical success of the barrier methods (see for example [22]).
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Consider the Lagrangian function of the equality and inequality constrained prob-

lem ( 4)

L(x; y; z) = f(x)� yT g(x) � zTx; (8)

where y 2 <q and z 2 <n
+ � fv 2 <n : v � 0g are the Lagrange multiplier vectors of

the equality constraints g(x) = 0 and non-negativity constraints x � 0, respectively.

The KKT conditions of ( 4) are given by the nonlinear system of equations

F (x; y; z) =

0
BBBBBBB@

rxL(x; y; z)

g(x)

XZe

1
CCCCCCCA
= 0; (9)

where x; z � 0 and the gradient of the Lagrangian with respect to x is

rxL(x; y; z) = rf(x)�rg(x)T y � z = rf(x)�
mX
i=1

rgi(x)yi � z:

The perturbed KKT conditions are taken by introducing a positive perturbation to

the third equation of ( 9), namely to the complimentarity equation. Hence, for x; z � 0

the perturbed KKT conditions are

F (x; y; z;�) =

0
BBBBBBB@

rxL(x; y; z)

g(x)

XZe� �e

1
CCCCCCCA
= 0: (10)

A point (x(�); y(�); z(�)) is said to belong to the central path C, if it is the solution

of the perturbed KKT conditions ( 10), for a �xed value of �. Conditions ( 10) approx-

imate the KKT conditions ( 9) increasingly accurately as �! 0. Hence, as �! 0, the

sequence f(x(�); y(�); z(�))g of converges to the solution of the KKT conditions ( 9),

of the initial constrained problem ( 4).

The perturbed KKT conditions of the initial problem ( 4), given by ( 10), are equiv-

alent to the KKT conditions of the logarithmic barrier function problem ( 5), given by

( 6). El-Bakry et al., in [22], have proved that the perturbed KKT conditions ( 10) are

not the KKT conditions ( 6) of the logarithmic barrier function problem. Furthermore,

the iterates of the Newton method applied to the perturbed KKT conditions ( 10) are

not the same as the iterates of the Newton method applied to the KKT conditions ( 6)

of the logarithmic barrier function problem. In other words systems ( 10) and ( 6) have

the same solutions (i.e., they are equivalent) but they are not Newton algorithmically

equivalent.

Furthermore, primal-dual methods solve approximately the perturbed KKT condi-

tions ( 10), for a �xed value of �. Therefore, the �rst order change of the above system
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needs to be found. The k-th Newton iteration for solving ( 10) can be written as
0
BBBBBBB@

r2
xxL(xk; yk; zk) �rg(xk)T �I

rg(xk) 0 0

Zk 0 Xk

1
CCCCCCCA

0
BBBBBBB@

�xk

�yk

�zk

1
CCCCCCCA
= �

0
BBBBBBB@

rxL(xk; yk; zk)

g(xk)

XkZke� �ke

1
CCCCCCCA

or in matrix-vector form

J(wk)�wk = �r(wk); (11)

where wk = (xk; yk; zk)
T , and �wk = (�xk;�yk;�zk)

T . The solution of ( 11) gives

a direction vector �wk which is used to �nd the next approximation of the solution

of ( 10). That is, the next iterate is wk+1 = wk + Ak�wk, where Ak is the diagonal

matrix Ak = diag(�xkIn; �ykIq; �zkIn) and In, Iq are the n-th and q-th order identity

matrices respectively. The step-lengths �xk, �yk, and �zk belong to the interval (0; 1]

and may all be equal to or di�erent from each other.

A unit step along the Newton direction is often not allowed because it violates the

non-negativity constraints on x and z in ( 10). To avoid this violation, the step-sizes

�xk and �zk are selected such that the new iterates xk+1 and zk+1 are strictly positive

for all k. When an approximation of the central point corresponding to the value where

� is �xed is found, the barrier parameter � is �xed onto a strictly smaller value and

the iterations proceed until � becomes zero.

4 Description of the Algorithm

The algorithm discussed below solves problem ( 4) and is based on a sequence of

optimization problems characterized by a penalty c � 0 and a barrier � � 0 parameter.

The following assumptions are used throughout the paper.

Assumptions:

A1: The second order derivatives of the objective function f and the constraints g

are Lipschitz continuous at the optimum x�.

A2: The columns of the matrix [rg(x); ei : i 2 I0xg are linear independent, where

I0x = fi : lim infk!1 xik = 0; i = 1; 2; :::; ng and ei represents the i-th column of

the n� n identity matrix. Also the sequence fxkg is bounded.
A3: Strict complementarity of the solution w� = (x�; y�; z�) is satis�ed, that is if

zi� > 0 then xi� = 0, for i = 1; 2; :::; n and vice versa.

A4: The second order su�ciency condition for optimality is satis�ed at the solution

point, i.e., if for all vectors 0 6= v 2 <n such that rgi(x�)T v = 0, i = 1; 2; :::; q,

and eTi v = 0, for i 2 I0x, then vTrxxL(x; y; z)v > 0. Also, the matrix 
k =

Hk +X�1
k Zk is invertible, with Hk = r2

xxLc de�ned in ( 3).
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The original equality and inequality constrained optimization problem ( 4) is ap-

proximated by

min f(x) + c
2 k g(x) k22 ��

Pn
i=1 log(x

i)

ST g(x) = 0;

(12)

for c; � � 0. The objective in ( 4) is augmented by the penalty and the logarithmic

barrier functions. The penalty is used to enforce satisfaction of the equality constraints

by adding a high cost to the objective function for infeasible points. The barrier is

needed to introduce an interior point method to solve the initial problem ( 4), since

it creates a positive singularity at the boundary of the feasible region. Thus, strict

feasibility is enforced, while approaching the optimum solution. Both the penalty and

the barrier functions are continuous and di�erentiable, since f and g are assumed to

possess these properties.

Penalty-barrier methods involve outer and inner iterations [5]. Outer iterations are

associated with decreasing the barrier parameter �, such that � approaches zero. Inner

iterations determine the penalty parameter c and then solve the optimization problem

( 12) for the corresponding values of � and c.

The Lagrangian associated with the optimization problem ( 12) is given by

L(x; y; c; �) = f(x) +
c

2
k g(x) k22 ��

nX
i=1

log(xi)� g(x)T y;

while the �rst order optimality conditions are the system of nonlinear equations0
BBB@
rf(x)� �X�1e+ crg(x)T g(x)�rg(x)T y

g(x)

1
CCCA = 0;

for x > 0. By invoking the nonlinear transformation z = �X�1e the above conditions

become

F (x; y; z; c; �) =

0
BBBBBBB@

rf(x)� z + crg(x)T g(x)�rg(x)T y

g(x)

XZe� �e

1
CCCCCCCA
= 0; (13)

with x; z > 0. For � �xed, system ( 13) is solved by using the Newton method. At the

k-th iteration, the Newton system is0
BBBBBBB@

Hk �rgTk �I

rgk 0 0

Zk 0 Xk

1
CCCCCCCA

0
BBBBBBB@

�xk

�yk

�zk

1
CCCCCCCA
= �

0
BBBBBBB@

rfk � zk + ckrgTk gk �rgTk yk

gk

XkZke� �e;

1
CCCCCCCA

(14)
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where

Hk = r2fk +
mX
i=1

r2gik(ckg
i
k � yik) + ck

mX
i=1

rgik(rgik)T � r2
xxLc(xk; yk)

is the Hessian of the augmented Lagrangian de�ned in ( 3). In matrix-vector form ( 14)

can be written as

J(wk; ck)�wk = �F (wk; ck; �k); (15)

where wk = (xk; yk; zk)
T , �wk = (�xk;�yk;�zk)

T , and J(wk; ck) is the Jacobian

matrix of the vector function F (wk; ck; �k). Equation ( 15) is di�erent from the corre-

sponding equation ( 11) due to the introduction of the penalty term in the objective

function.

The solution of ( 14) is given by

�xk = 
�1k rgTk�yk � 
�1k (rfk � zk + crgTk gk �rgTk yk)

�yk = �[rgk
�1k rgTk ]�1(gk �rgk
�1k (rfk � zk + crgTk gk �rgTk yk))

�zk = �zk + �X�1
k e�X�1

k Zk�xk;

where 
k = Hk + X�1
k Zk is assumed to be invertible. The algorithm uses di�er-

ent step-sizes for the primal and dual variables. Hence, the next iterate wk+1 =

(xk+1; yk+1; zk+1) is de�ned as

xk+1 = xk + �xk�xk; yk+1 = yk + �zk�yk; zk+1 = zk + �zk�zk;

where �xk and �zk are the step-lengths for the primal variables x and the pair of dual

variables y and z, respectively.

To initiate the algorithm, a strictly interior starting point is needed, that is a point

w0 = (x0; y0; z0), with x0, z0 > 0. By controlling the step lengths �xk and �zk, the

algorithm ensures that the generated iterates remain strictly in the interior of the

feasible region. Moreover, the algorithm moves from one inner iteration to another

inner iteration (i.e., with � �xed) by seeking to minimize the merit function

�(x; c; �) = f(x) +
c

2
k g(x) k22 ��

nX
i=1

log(xi); (16)

which is basically the objective function of problem ( 12). This is achieved by properly

selecting the values of the penalty parameter c at each inner iteration. As shown later,

the monotonic decrease of ( 16) and the rules for determining the primal and dual step-

sizes, guarantee that the inner iterates converge to the solution of ( 12), for � �xed.

Subsequently, by reducing �, such that f�g ! 0, the optimum of the initial problem

( 4) is reached.

The primal-dual interior point algorithm is given in Figure 1. Throughout the

algorithm, subscript k indicates variables changed in inner iterations (i.e., while � is

�xed) and superscript l indicates variables changed in outer iterations (i.e., when �

decreases). Superscript i denotes elements of vectors.
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Algorithm 1

STEP 0: Initialization: Given ~x0; ~z0 2 <n and ~y0 2 <q, such that ~x0, ~z0 > 0, penalty

and barrier parameters c0 > 0, �0 > 0 and parameters: 
; �; � 2 (0; 1), � > 0.

For l = 0; 1; 2; ::: do the following steps:

STEP 1: Test for convergence of outer iterations:

If k F (~xl; ~yl; ~zl; c�; �l) k� �0, then Stop.

STEP 2: Start of inner iterations: (� is �xed to �l throughout)

Set (x0; y0; z0) = (~xl; ~yl; ~zl)

For k=0,1,2,... do the following steps:

Step 2.1: Test for convergence of inner iterations:

If k F (xk; yk; zk; ck; �l) k� ��l then

Set (~xl; ~yl; ~zl) = (xk; yk; zk) and GoTo step 3

Step 2.2: Solve Newton system ( 14) to obtain (�xk;�yk;�zk)

Step 2.3: Penalty parameter selection:

If �xTkrfk � ck k gk k22 ��l�xTkX�1
k e+ k �xk k2Hk

� 0 then ck+1 = ck.

Else set

ck+1 = maxf�xT
k
rfk��

l�xT
k
X�1
k

e+k�xkk
2

Hk

kgkk
2

2

; ck + �g
Step 2.4: Step-length selection rules:

Set �max
xk = min1�i�n f�x

i
k

�xi
k

: �xik < 0g and �̂xk = minf
�max
xk ; 1g.

Let �xk = ���̂xk, where � is the smallest non-negative integer such that

�(xk+1; ck+1; �
l)� �(xk; ck+1; �

l) � � �xkr�(xk; ck+1; �l)T�xk,
with xk+1 = xk + �xk�xk.

Set LBi
k = minf12m�; xik+1zikg and UBi

k = maxf2M�;xik+1z
i
kg, m;M > 0

For i = 1; 2; :::; n �nd: �izk = maxf�i : LBi
k � xik+1(z

i
k + �i�z

i
k) � UBi

kg
Set �zk = minf1;min1�i�nf�izkgg
Set yk+1 = yk + �zk�yk and zk+1 = zk + �zk�zk.

Step 2.5: Set k = k + 1 and GoTo Step 2:1

STEP 3: Reduction of barrier parameter: Set �l+1 = (1� �)�l, where 0 < � < 1.

STEP 4: Set l = l + 1 and GoTo Step 1.

Figure 1

9



4.1 Penalty parameter selection rule

The penalty parameter c plays an important role in the algorithm. At each iteration,

its value is determined such that a descent property is ensured for the merit function

�(x; c; �). For � �xed, the gradient of � at the k-th iteration is

r�(xk; ck; �) = rfk + ckrgTk gk � �X�1
k e: (17)

The direction �xk is a descent direction for �, at the current point xk, if

�xTkr�(xk; ck; �) � 0: (18)

By considering the second equation of the Newton system ( 14), the directional deriva-

tive �xTkr�(xk; ck; �) can be written as

�xTkr�(xk; ck; �) = �xTkrf(xk)� ck k gk k2 ���xTkX�1
k e; (19)

where ck is the value of the penalty parameter at the beginning of the k-th iteration.

Since the barrier parameter � is �xed throughout the inner iterations, we can deduce

from ( 19) that the sign of �xTkr�(xk; ck; �) depends on the value of the penalty

parameter. If ck is not large enough then the descent property ( 18) may not be

satis�ed. Thus, a new value ck+1 > ck must be determined to guarantee the satisfaction

of the descent property. The next lemma shows that Algorithm 1 chooses the value of

the penalty parameter in such a way that ( 18) holds.

Lemma 1 Let f and g be di�erentiable functions and let gk 6= 0. If �xk is calculated

by solving the Newton system ( 14) and ck+1 is chosen as in step 2:3 of Algorithm

1 then �xk is a descent direction for the merit function � at the current point xk.

Furthermore

�xTkr�(xk; ck+1; �) � � k �xk k2Hk
� 0: (20)

Proof In step 2:3, Algorithm 1 initially checks the inequality

�xTkrfk � ck k gk k22 ���xTkX�1
k e+ k �xk k2Hk

� 0: (21)

If ( 21) is satis�ed then by setting ck+1 = ck and re-arranging ( 21) we obtain ( 20).

On the other hand if ( 21) is not satis�ed, by setting

ck+1 �
�xTkrfk � ��xTkX

�1
k e+ k �xk k2Hk

k gk k22
;

and substituting it into ( 19) it can be veri�ed that ( 20) also holds. �
In the previous lemma it is assumed that gk 6= 0. The next lemma demonstrates

that �xk remains a descent direction for the merit function � when gk = 0, i.e., when

feasibility of the equality constraints has been achieved.
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Lemma 2 Let f and g be di�erentiable functions and let �wk = (�xk;�yk;�zk)

be the Newton direction taken by solving system ( 14). If for some or all iterations

k, gk = 0, then the descent property ( 20) is satis�ed for any choice of the penalty

parameter ck 2 [0;1).

Proof If gk = 0 then ( 19) yields

�xTkr�(xk; ck; �) = �xTkrfk � ��xTkX
�1
k e (22)

and the second equation of the Newton system ( 14) becomes

rgk�xk = 0: (23)

Furthermore, solving the �rst equation of ( 14) for �zk we have

�zk = �X�1
k Zk�xk � zk + �X�1

k e:

Substituting �zk into the �rst equation of ( 14) yields

rfk � ckrgTk gk + �X�1
k e = �(Hk +X�1

k Zk)�xk +rgTk (yk +�yk): (24)

Pre-multiplying ( 24) by �xTk yields

�xTkrfk�ck�xTkrgTk gk+��xTkX�1
k e = ��xTk (Hk+X

�1
k Zk)�xk+�x

T
krgTk (yk+�yk):

Using ( 23), the above equation becomes

�xTkrfk + ��xTkX
�1
k e = ��xTk (Hk +X�1

k Zk)�xk; (25)

and from ( 22), equation ( 25) yields

�xTkr�(xk; ck; �) = ��xTk (Hk +X�1
k Zk)�xk: (26)

From the fact that xk and zk are strictly positive and Assumption (A4), we have

��xTk (Hk +X�1
k Zk)�xk < ��xTkHk�xk: (27)

From ( 26) and ( 27) it is derived that ( 20) holds for every ck 2 [0;1). �

Lemma 3 Let the assumptions of the previous lemma hold and let gk = 0, for some

k. Then the algorithm chooses ck+1 = ck, in step 2:3. Also, �xk is still a descent

direction for the merit function � at xk.

Proof In the previous lemma it was proved that the descent property ( 20) is satis�ed

for gk = 0. This basically means that the condition in step 2:3 of Algorithm 1 is always

satis�ed. Consequently, the algorithm does not need to increase the value of the penalty

parameter and simply sets ck+1 = ck. For this choice of the penalty parameter it can

be veri�ed that the descent property ( 20) still holds �
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Lemma 4 Let f and g be continuously di�erentiable functions. Then for � �xed and

for all iterations k � 0,

(i) there always exists a constant ck+1 � 0, satisfying step 2:3 of Algorithm 1.

(ii) assuming that the sequence fxkg is bounded, there exists an iteration k� � 0, such

that if, for all iterations k � k�, the values of the penalty parameters ck = c� 2
[0;1), then the descent property ( 20) is always satis�ed, where c� is the value

of the penalty parameter corresponding to iteration k�.

Proof Part (i) is a direct consequence of Lemmas 1 and 2, since a value ck+1 � 0 is

always generated, in step 2:3. To show part (ii), we note that at each iteration, step

2:3 generates a value ck+1 � 0, such that the descent property ( 20) holds. If ck is

increased in�nitely often, then fckg ! 1. As there exists ck+1 � 0 that Algorithm

1 can choose at every iteration, then there exists c� � 0 such that step 2:3 is always

satis�ed if ck = c�, for all iterations k � k�. �

4.2 Primal step-size rule

In step 2:4 of the algorithm we adopt Armijo's rule to determine the new iterate xk+1.

The maximum allowable step-size is determined by the boundary of the feasible region

and is given by

�max
xk = min

1�i�n
f xik
��xik

: �xik < 0g:

This is indeed the maximum allowed step, since �max
xk gives an in�nitely large value to

at least one term of the logarithmic barrier function
Pn

i=1 log(x
i
k+1). However, if the

step-size is in the interval [0; �max
xk ) then the next primal iterate xk+1 is strictly feasible

and none of the logarithmic terms becomes in�nitely large.

We take as initial step �̂xk a number very close to �max
xk and we ensure that it is

never greater than one, i.e., �̂xk = minf
k�max
xk ; 1g, with 
k 2 (0; 1). The �nal step

is �xk = ���̂xk, where � is the �rst non-negative integer for which Armijo's rule is

satis�ed and the factor � is usually chosen in the interval [0:1; 0:5], depending on the

con�dence we have on the initial step �̂xk. The value of the parameter � is chosen in

the interval [10�5; 10�1].

4.3 Dual step-size rule

In this section we discuss the determination of the step-size of the dual variables z.

The strategy uses the information provided by the new primal iterate xk+1, in order to

�nd the new iterate zk+1. It is a modi�cation of the strategy suggested by Yamashita

[7] and Yamashita and Yabe [8].

12



While the barrier parameter � is �xed, we determine a step �izk along the direction

�zik, for each dual variable zik, i = 1; 2; :::n, such that the box constraints are satis�ed

�izk = maxf� > 0 : LBi
k � (xik + �xk�x

i
k)(z

i
k + ��zik) � UBi

kg: (28)

The lower bounds LBi
k and upper bounds UBi

k, i = 1; 2; :::; n are de�ned as

LBi
k = minf1

2
m�; (xik + �xk�x

i
k)z

i
kg and UBi

k = maxf2M�; (xik + �xk�x
i
k)z

i
kg; (29)

where the parameters m and M are chosen such that

0 < m � minf1; (1� 
k)(1 � 
k
2� )minifxikzikg
�

g; (30)

and

M � maxf1; maxifx
i
kz

i
kg

�
g > 0; (31)

with 
k 2 (0; 1). These two parameters are always �xed to constants, while � is �xed.

These constants satisfy inequalities ( 30) and ( 31) for k = 0. The values of m and M

change when the barrier parameter � is decreased.

The common dual step length �zk is the minimum of all individual step lengths �izk
with the restriction of being always not more that one, namely

�zk = minf1; min
1�i�n

f�izkgg:

The step-size for the dual variables y can be either �yk = 1 or �yk = �zk. The

convergence results mentioned in the following sections hold for both choices.

The dual step-size rule is similar to the one that Yamashita and Yabe [8] proposed.

The dual step-size rule of Algorithm 1, however, uses di�erent lower and upper bounds

in the box constraints de�ned in ( 28). It is shown in section 6 that both the lower

and upper bounds of Algorithm 1 are smaller than the ones used in [8]. As a result,

the dual steps of Algorithm 1 are greater than those determined in [8].

5 Global Convergence

In this section we show that the algorithm is globally convergent, because it always

guarantees progress towards a solution from any starting point. El-Bakry et al. [22]

and Yamashita [7] have also shown global convergence for their primal-dual algorithms.

In [22] the global convergence is achieved by determining a single step-size for all the

variables. The Armijo rule is used to guarantee that the Euclidean norm of the KKT

conditions, which plays the role of a merit function, is reduced at each iteration.

Algorithm 1 is closely related to that in [7], since both algorithms use the same

strategies to determine di�erent step-sizes for the primal and dual variables. They

13



use, however, di�erent merit functions to guarantee global convergence. In [7], the

non-di�erentiable merit function

�(x; �̂; �) = f(x) + �̂
qX

i=1

jgi(x)j � �
nX
i=1

log(xi)

is used, while we have chosen the merit function de�ned by ( 16), which has the useful

property to be continuously di�erentiable. An advantage of the di�erentiability of the

merit function � is that the adaptive strategy, developed by Rustem in [2], is used to

determine the penalty parameter c, to ensure a descent property for �, leading to the

global convergence of the algorithm.

We show that, while the barrier parameter is �xed to a value �l, the algorithm

produces iterates wk(�
l) = (xk(�

l); yk(�
l); zk(�

l)), for k = 1; 2; :::, which are bounded

and converge to a w�(�
l) = (x�(�

l); y�(�
l); z�(�

l)) such that

k F (x�(�l); y�(�l); z�(�l); c�; �l) k= 0;

where F (x; y; z; c; �) is the vector of the perturbed KKT conditions, de�ned in ( 13).

In other words, we show that the inner iterations (2.1) - (2.5) of Algorithm 1, converge

to a solution of the perturbed KKT conditions. For simplicity we suppress the index

l, and we use wk instead of wk(�
l) to denote the iterates produced while � = �l.

The basic result of Lemmas 1 to 4 is that the direction �xk, taken from the

solution of the Newton system ( 14), is a descent direction for the merit function � at

the current point xk, that is inequality ( 20) holds. In the next theorem we show that

the sequence f�(xk; c�; �)g is monotonically decreasing if the barrier parameter � is

�xed. We also show that the step �xk, chosen in step 2:4 is always positive.

Theorem 1 Assume that the following conditions hold

i. the objective function f and the constraints g are twice continuously di�erentiable,

ii. the Hessian matrix Hk = r2fk+
Pm

i=1r2gik(ckg
i
k�yik)+ckrgTkrgk, is such that, for

every iteration k and for every vector v 2 <n there exist constants M 0 > m0 > 0,

such that

m0 k v k22� vTHkv �M 0 k v k22;

iii. for each iteration k, there exists a triple (�xk;�yk;�zk), as a solution to the

Newton system ( 14),

iv. there exists an iteration k� and a scalar c� � 0, such that the penalty parameter

restriction in step 2:3

�xTkrfk � ck k gk k22 ���xTkX�1
k e+ k �xk k2Hk

� 0
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is satis�ed for all k � k� with ck+1 = ck = c�.

Then the step-size computed in step 2:4 is such that �xk 2 (0; 1] and hence the sequence

f�(xk; c�; �)g is monotonically decreasing, for k � k� and � �xed.

Proof Consider the �rst order approximation with remainder of the function �(x; c�; �)

around the point xk+1 = xk + �xk�xk
�(xk+1; c�; �)� �(xk; c�; �) =

�xk�x
T
kr�(xk; c�; �) + �2xk

Z 1

0
(1 � t)�xTkr2

x�(xk + t�xk�xk; c�; �)�xk dt:

The above equation, after adding and subtracting the Hessian matrix Hk in the re-

mainder, yields

�(xk+1; c�; �)� �(xk; c�; �) � �xk�x
T
kr�(xk; c�; �) + 1

2�
2
xk�x

T
kHk�xk

+�2xk

Z 1

0
(1� t) j�xTk (r2

x�(xk + t�xk�xk; c�; �)�Hk ) �xk j dt: (32)

We note that for every symmetric matrix A (eg, [6])

k A k2 = max eigenvalue of A:

Hence inequality ( 32) can take the form

�(xk+1; c�; �) � �(xk; c�; �) �

�xk�x
T
kr�(xk; c�; �) +

�2xk
2
�xTkHk�xk + �2xk k k �xk k22; (33)

where

 k =

Z 1

0
(1� t) k r2

x�(xk + t�xk�xk; c�; �)�Hk k2 dt:

Furthermore, from assumption (ii) we have

k �xk k22�
1

m0
�xTkHk�xk; (34)

and from Lemmas 1 and 2

�xTkHk�xk � ��xTkr�(xk; c�; �): (35)

Substituting ( 34) and ( 35) into ( 33) yields

�(xk+1; c�; �)� �(xk; c�; �) � �xk�x
T
kr�(xk; c�; �)(1� �xk(

1

2
+
 k
m0

)): (36)

The scalar � in Armijo's rule in step 2:4 determines a step-length �xk such that

� � 1� �xk(
1

2
+
 k
m0

) � 1

2
:
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Since from Lemmas 1 to 4 we always have �xTkr�(xk; c�; �) � 0, there must exist

�xk 2 (0; 1], to ensure ( 36) and Armijo's rule in step 2:4. Assume that �0 is the largest

step in the interval (0; 1] satisfying both ( 36) and Armijo's rule. Consequently for every

� � �0, inequality ( 36) and Armijo's rule are also satis�ed. Hence the strategy in step

2:4 always selects a step-length �xk 2 [��0; �0], where 0 < � � 1. From the above

analysis, it follows that the sequence f�(xk; c�; �)g is monotonically decreasing. �

Remark 1 The results of the above theorem can be proved to hold before the penalty pa-

rameter ck achieves a constant value c�. This can be done by considering the di�erence

�(xk+1; ck+1; �)��(xk; ck+1; �) and the Taylor expansion of the function �(x; ck+1; �)

instead of �(x; c�; �). In the above theorem we chose to prove the case where ck = c�

has been achieved, in order to show that asymptotically, � is monotonically decreasing

and the strategy in step 2:4 selects a step-length �xk 2 (0; 1].

An immediate consequence of the above theorem is that the sequence fxkg is

bounded away from zero. This is established in the following corollary.

Corollary 1 The sequence fxkg of primal variables generated by Algorithm 1, with �

�xed, is bounded away from zero.

Proof Assume to the contrary that the sequence fxkg ! 0. Then the sequence

f�Pn
i=1 log(x

i
k)g ! 1. From the assumption that the feasible region is bounded

we conclude that the sequences ff(xk)g and fk g(xk) kg are also bounded. Hence

f�(xk; c�; �)g ! 1 which contradicts the monotonic decrease of �. �
The following lemma, proved by Yamashita in [7], shows that the dual step-size

rule, used by the Algorithm 1, generates iterates zk which are also bounded above and

away from zero.

Lemma 5 While � is �xed, the lower bounds LBi
k and the upper bounds UBi

k, i =

1; 2; :::; n, of the box constraints in the dual step-size rule, are bounded away from zero

and bounded from above respectively, if the corresponding components xik, of the iterates

xk are also bounded above and away from zero.

Proof The proof can be found in [7]. �
Having established that the sequences of iterates fxkg and fzkg are bounded above

and away from zero, we show that the iterates fykg; k � 0 are also bounded. In

particular Lemma 7 shows that if at each iteration of the algorithm we take a unit step

along the direction �yk, then the resulting sequence fyk+�ykg is bounded. In addition
to this, Lemma 7 also shows that the Newton direction �wk = (�xk;�yk;�zk) is

bounded, while � is �xed. We �rst establish the following technical result.
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Lemma 6 Let wk is a sequence of vectors generated by Algorithm 1 for � �xed. Then

the matrix sequence f��1k g is bounded, where

�k =

0
B@ 0 rgk
�rgTk Hk +X�1

k Zk

1
CA :

Proof The inverse of the partitioned matrix �k is

��1k =

0
BBB@

[rgk
krgTk ]�1 �[rgk
krgTk ]�1rgk
k


krgTk [rgk
krgTk ]�1 
k � 
krgTk [rgk
krgTk ]�1rgk
k

1
CCCA ;

where 
k = (Hk+X
�1
k Zk)

�1. According to Assumption (A4), Corollary 1 and Lemma

5, the matrices 
k and [rgk
krgTk ]�1 exist and are bounded. Hence the matrix ��1k
is bounded, since all matrices involved in it are bounded. �

Lemma 7 Let wk is a sequence of vectors generated by Algorithm 1 for � �xed. Then

the sequence of vectors f(�xk; yk +�yk;�zk)g is bounded.

Proof Solving the third equation of the Newton system ( 14) for �zk yields

�zk = �zk + �X�1
k e�X�1

k Zk�xk: (37)

Substituting ( 37) into the �rst equation of ( 14) and re-arranging the �rst two equa-

tions, yields the following reduced system
0
BBB@

0 rgk

�rgTk Hk +X�1
k Zk

1
CCCA

0
BBB@

y0k

�xk

1
CCCA = �

0
BBB@
gk

rfk + ckrgTk gk � �X�1
k e

1
CCCA (38)

where y0k = yk+�yk. From the previous lemma we have that the inverse of the matrix

in the left side of ( 38) exists and is bounded. Hence the sequences f�xkg and fy0kg are
also bounded. Considering now ( 37), we can easily deduce that the sequence f�zkg
is bounded, since it is a sum of bounded sequences. �

Lemmas 8 and 9 provide the necessary results needed by Theorem 2, which shows

that the sequence of fwkg converges to a point w� = (x�; y�; z�), satisfying the KKT

conditions of problem ( 12).

Lemma 8 Let the assumptions of Theorem 1 be satis�ed and the barrier parameter

� is �xed. Also let for some iteration k0 � 0, the level set

S1 = fx 2 <n
+ : �(x; c�; �) � �(xk0 ; c�; �)g (39)
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is compact. Then for all k � k0 we have

lim
k!1

�xTkr�(xk; c�; �) = 0: (40)

Proof The scalar � 2 (0; 1=2) in the step-size strategy at step 2:4, determines �xk
such that

� � 1� �xk(
1

2
+
 k
m0

) � 1

2
;

and by solving for �xk we obtain

1=2

1=2 +  k=m0
� �xk � 1� �

1=2 +  k=m0
:

Hence the largest value that the step-length �xk can take and still satisfy Armijo's rule

in step 2:4 is

�0xk = minf1; 1� �

1=2 +  k=m0
g:

Recall that the step-length �xk is chosen by reducing the maximum allowable step-

length �̂xk until Armijo's rule is satis�ed. Therefore �xk 2 [��0xk; �
0
xk] and thereby also

satis�es Armijo's rule.

As the merit function � is twice continuously di�erentiable and the level set S1 is

bounded, there exists a scalar �M <1 such that

 k =

Z 1

0
(1� t) k rx�(xk + t�xk�xk; c�; �)�Hk k2 dt � �M <1:

Thus we always have �xk � ��xk > 0, where

��xk = minf1; 1� �

1=2 + �M=m0
g:

Hence the step-size �xk is always bounded away from zero.

Furthermore, from Armijo's rule and lemmas 1 and 2 we have

�(xk+1; c�; �)� �(xk; c�; �) � ��xkr�(xk; c�; �)T�xk < 0: (41)

From our assumption that the level set S1 is bounded, it can be deduced that

lim
k!1

j�(xk+1; c�; �)� �(xk; c�; �)j = 0:

Consequently, from ( 41)

lim
k!1

(��xkr�(xk; c�; �)T�xk) = 0:

Finally, since �, �xk > 0 it can be deduced that ( 40) holds. �

Lemma 9 Let the assumptions of the previous lemma hold. Then

lim
k!1

k �xk k2Hk
= 0: (42)
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Proof From ( 20) we have

�r�(xk; c�; �)T�xk �k �xk k2Hk
: (43)

Hence from ( 43) and ( 40) we have that ( 42) holds. �

Theorem 2 Let the assumptions of the previous lemma hold. Then the algorithm

terminates at a KKT point, satisfying the �rst order necessary conditions of problem

( 12), and at that point the perturbed KKT conditions ( 13) are satis�ed, for � �xed.

Proof Let x�(�), z�(�) 2 <n and y�(�) 2 <q be such that limk!1 xk = x�(�),

limk!1 zk = z�(�), and limk!1 yk = y�(�), 8k � k�; k 2 K � f1; 2; :::g. The existence
of such points is ensured since by Assumption A2 and Lemmas 5 and 7, the sequence

f(xk(�); yk(�); zk(�))g is bounded for � �xed, and by Theorem 1 the algorithm always

decreases the merit function � su�ciently at each iteration, thereby ensuring xk 2 S1,
with S1 compact.

Solving the third equation of the Newton system ( 14) for �zk yields

�zk = �X�1
k Zk�xk � zk + �X�1

k e:

Taking limits and using Lemma 7, the above equation yields

lim
k!1

(zk +�zk) = lim
k!1

�X�1
k e: (44)

By de�ning z0k = zk+�zk, from Lemmas 5 and 7, it can be derived that the sequence

fz0kg is bounded, since it is a sum of bounded sequences. Hence, there exits a vector z0�
such that

lim
k!1

z0k = z0� = �X�1
� e: (45)

Furthermore, writing y0k = yk +�yk, the �rst equation of the Newton system ( 14)

takes the form

Hk�xk �rgTk y0k = �rfk + z0k � ckrgTk gk:
Letting k !1, and applying Lemma 9 and ( 45) the above equation becomes

rf� � �X�1
� e+ c�rgT� g� �rgT� y0� = 0; (46)

where we have set y0� = y0�(�) = limk!1(yk + �yk). Similarly, letting k ! 1 the

second equation of the Newton system ( 14) yields

lim
k!1

(rgk�xk) = lim
k!1

(�gk):

Applying Lemma 9 the above equation yields

g� = 0: (47)
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From ( 45), ( 46) and ( 47) we can conclude that the vector x�(�) is the optimum

solution of problem ( 12), while the triple (x�(�); y
0
�(�); z

0
�(�)) solves the perturbed

KKT conditions ( 13), for � �xed. �
An immediate consequence of Theorem 2 is that, for any convergent subsequence,

produced by the algorithm, for � = �l, there is an iteration ~k, such that

k F (x~k; y~k; z~k; c�; �) k� ��; (48)

for all k � ~k, where � 2 (0; 1) and F (x; y; z; c; �) is given by ( 13). At this point, we

record the value of the current iterate

(~xl; ~yl; ~zl) = (x~k; y~k; z~k);

and set � to a smaller value �l+1 < �l. Therefore a sequence of approximate central

points f(~xl; ~yl; ~zl)g is generated.
In the remaining part of this section, we show that the sequence of approximate cen-

tral points converges to a KKT point (~x�; ~y�; ~z�) of the initial constrained optimization

problem ( 4).

For a given � � 0, consider the set of all the approximate central points, generated

by Algorithm 1

S2(�) = f(~xl; ~yl; ~zl) : � �k F (~xl; ~yl; ~zl; c�; �l) k�k F (~x0; ~y0; ~z0; c�; �0) k; 8�l < �0g:
If � > 0 then the step-size rules, described in section 4 guarantee that ~xl; ~zl 2 S2(�)

are bounded away from zero, for l � 0. Consequently (~xl)T ~zl is also bounded away

from zero in S2(�). The following lemma shows that the sequence f~ylg is bounded if

the sequence f~zlg is also bounded.

Lemma 10 Assuming that the columns of rg(~xl) are linearly independent and the

iterates ~xl are in a compact set for l � 0, then there exists a constant M1 > 0 such that

k ~yl k�M1(1+ k ~zl k):
Proof By de�ning rl = rf(~xl) � ~zl + crg(~xl)T g(~xl) � rg(~xl)T ~yl and solving for

rg(~xl)T ~yl we obtain
rg(~xl)T ~yl = rf(~xl)� ~zl + crg(~xl)T g(~xl)� rl:

From our assumptions the above equation can be written as

~yl = [rg(~xl)rg(~xl)T ]�1rg(~xl) (rf(~xl) + crg(~xl)T g(~xl)� rl)

�[rg(~xl)rg(~xl)T ]�1rg(~xl) ~zl:
Taking norms in both sides of the above equation yield

k ~yl k � k [rg(~xl)rg(~xl)T ]�1rg(~xl) k k rf(~xl) + crg(~xl)T g(~xl)� rl k
+ k [rg(~xl)rg(~xl)T ]�1rg(~xl) k k ~zl k

� M1(1+ k ~zl k):
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where the constant M1 <1 is de�ned as

M1 � maxf k [rg(~xl)rg(~xl)T ]�1rg(~xl) k k rf(~xl) + crg(~xl)T g(~xl)� rl k;
k [rg(~xl)rg(~xl)T ]�1rg(~xl) k g:

�

Lemma 11 If (~xl; ~yl; ~zl) 2 S2(�) for all l � 0, then the sequence f(~xl; ~yl; ~zl)g is bounded
above.

Proof From Lemma 10, it su�ces to prove that the sequences f~xlg and f~zlg are

bounded from above. By assumption (A2), the sequence f~xlg is bounded. Assume

that there exists a non-empty set I1z , which contains the indices i of those elements,

(~zl)i, of the vector ~zl, for which liml!1(~z
l)i = 1. From the boundedness of the

sequences f(~xl)i(~zl)ig, i = 1; 2; :::; n, we obtain lim infl!1(~x
l)i = 0, for those indices

i 2 I1z . Furthermore from the de�nition of the set I0x, in Assumption (A4), it is evident

that I1z � I0x.

From ( 48) and the fact that f�lg ! 0 we have that the sequence

fk rf(~xl)� ~zl + c�rg(~xl)T g(~xl)�rg(~xl)T ~yl kg

is bounded. Using this and the fact that the sequences fk rf(~xl) kg and fk crg(~xl)T g(~xl) k
g are bounded, we conclude that fk �~zl � rg(~xl)T ~yl kg is also bounded. Hence, we

have

k ~zl +rg(~xl)T ~yl k
k (~yl; ~zl) k ! 0 (49)

By setting ~ul = (~yl;~zl)
k(~yl;~zl)k

, we have f~ulg bounded and f~ulg ! ~u�. It is clear that k ~u� k= 1

and the components of ~u�, corresponding to those indices i 62 I1z , i.e., f(~zl)ig <1, are

zero. If û� is the vector consisting of the components of ~u� which correspond to the

indices i 2 I1z , then k û� k=k ~u� k= 1. Furthermore, from ( 49) we have

rg(~xl)T ~yl + ~zl

k (~yl; ~zl) k =
[rg(~xl)T ; In] (~yl; ~zl)

k (~yl; ~zl) k = [rg(~xl)T ; ei : i 2 I0x] û� ! 0:

However, this result contradicts Assumption (A2). Hence, the set I1z is empty, or for

all indices i = 1; 2; :::; n, the sequences f(~zl)ig are bounded. Consequently, f~zlg is also
bounded. �

The following theorem shows that the sequence f(~xl; ~yl; ~zl)g converges to (~x�; ~y�; ~z�)
which is a KKT point of the initial constrained optimization problem ( 4).
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Theorem 3 Let f�lg is a positive monotonically decreasing sequence of barrier param-

eters with f�lg ! 0, and let f(~xl; ~yl; ~zl)g be a sequence of approximate central points

satisfying ( 48) for � = �l, l � 0. Then the sequence f(~xl; ~yl; ~zl)g is bounded and its

limit point (~x�; ~y�; ~z�) satis�es the KKT conditions of problem ( 4).

Proof From Lemma 10 the sequence f(~xl; ~yl; ~zl)g is bounded. Then it is convergent

and let (~x�; ~y�; ~z�) be its limit point. From ( 48) and the fact that �l ! 0 we easily

obtain that liml!1 k F (~xl; ~yl; ~zl) k= 0. Therefore,

rf(~x�)� ~z� �rg(~x�)T ~y� = 0

g(~x�) = 0

~X� ~Z�e = 0:

Clearly from the above equations we may derive that (~x�; ~y�; ~z�) is a KKT point of the

initial constrained optimization problem ( 4). �

6 Local Convergence

In this section the local convergence of the algorithm is discussed. Without loss of

generality, we assume that the value of the barrier parameter changes at each iteration

and Armijo's rule does not backtrack and hence the primal step-size �xk determined in

step 2:4 is equal to the maximum allowable step-size �̂xk. We show that Algorithm 1

converges quadratically to the optimum solution. This is essentially a preservation of

the property of the basic Newton algorithm.

Algorithm 1 uses a technique similar to Yamashita and Yabe [8] to determine dif-

ferent step-sizes. The di�erence in the present algorithm is in the rule used for the

step-size �zk of the dual variables yk and zk. In particular, the term 1�
k=2�k 2 (0; 1)

in the de�nition of the parameter m, given by ( 30), results in the lower bound LBi
k of

the box constraints ( 28), being smaller than the corresponding bound, de�ned in [8].

As f�kg ! 0, the term 1� 
k=2
�k approaches 1� 
k. By noting

zik + �zk�z
i
k � (1� 
k)z

i
k > 0;8i = 1; 2; :::; n;

it can be shown that the inclusion of 1�
k=2�k in the lower bounds LBi
k, i = 1; 2; :::; n,

allows a dual step-size �zk, greater than that in [8]. Also, as f�kg ! 0, �zk approaches

the maximum allowable step-size for the variables z, i.e., �zk ! �̂zk, with

�̂zk = maxf1; 
k max
1�i�n

f zik
��zik

: �zik < 0gg:
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The next lemma provides useful bounds on the Newton directions near the optimum

solution. It is based on the complementarity condition

Zk�xk +Xk�zk = �XkZke+ �ke (50)

of the perturbed Newton system ( 14). It has been proved by Yamashita and Yabe

in [8] and has also been used by El-Bakry et al in [22]. We include this lemma for

convenience, since its results are used frequently in the sequel.

Lemma 12 Let strict complementarity at the optimum solution w� holds and there

exists a constant � > 0 such that if k wk � w� k< � then for all i such that xi� = 0, we

have
�xik
xik

= �1 + �k
xikz

i
k

+
��zik
zik

(51)

j�zikj
zik

� � k �wk k; (52)

while for all i such that xi� > 0, we have

�zik
zik

= �1 + �k
xikz

i
k

+
��xik
xik

(53)

j�xikj
xik

� � k �wk k; (54)

where � is de�ned as follows

� = 2maxf f 1
xi�

: xi� > 0; i = 1; 2; :::; ng; f 1
zi�

: zi� > 0; i = 1; 2; :::; ng g:

Proof The proof can be found in [8]. �
The following two lemmas show that the step-sizes �xk and �zk are always strictly

positive. They also show that both step-sizes approach unity, when we are in a close

neighbourhood of w�.

Lemma 13 Let the assumptions of lemma ( 12) are satis�ed. If

� k �wk k� 1

2

k; with 
k 2 (0; 1);

then we have,

1 � �xk � 
k � � k �wk k : (55)

Proof The proof can be found in [8] �
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Lemma 14 Let the assumptions of the previous lemma hold. If

� k �wk k� 1

2

k; with 
k 2 (0; 1);

then the step-size �zk is determined by the formula:

�zk = mimf1; minf� > 0 : zik + ��zik =
1
2m�k

xik + �xk�x
i
k

; �zik < 0g: (56)

Also the values that the step-size �zk take are in the following interval:

1 � �zk � 1� � k �wk k �(1� 
k)(1� 
k
2�k

): (57)

Proof Equality ( 56) basically implies that only those indices i for which �zik < 0,

contribute to the determination of �zk. First we prove that the upper bound constraint

in ( 28) is always not active. This is obvious for all those indices i for which �zik < 0.

Hence, we examine whether the upper bound constraint is also not active when �zik � 0.

To prove this, it su�ces to show that if �izk = 1 (i.e., the maximum allowed step we

can take when �zik � 0) then we always have

(xik + �xk�x
i
k)(z

i
k +�zik) � 2M�k; (58)

where M is de�ned in ( 31). We can distinguish the following four cases:

CASE A: If xi� = 0 and �xik � 0 then by using ( 51) and ( 52) we have

(xik + �xk�x
i
k)(z

i
k +�zik) � xikz

i
k(1 +

�xik
xik

)(1 +
�zik
zik

)

= xikz
i
k(1� 1 +

�k
xikz

i
k

� �zik
zik

)(1 +
�zik
zik

)

= xikz
i
k(1 +

�k
xikz

i
k

)(1 +
�zik
zik

)� xikz
i
k(1 +

�zik
zik

)2

� xikz
i
k(1 +

�k
xikz

i
k

)
3

2
� xikz

i
k

� 1

2
max
i
fxikzikg+

3

2
�k

� 1

2
maxf1; maxifx

i
kz

i
kg

�k
g�k + 3

2
maxf1; maxifx

i
kz

i
kg

�k
g�k

= 2M�k:

CASE B: If xi� = 0 and �xik < 0 then from ( 52) we have

(xik + �xk�x
i
k)(z

i
k +�zik) = xikz

i
k(1 + �xk

�xik
xik

)(1 +
�zik
zik

)

< xikz
i
k(1 +

�zik
zik

)
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� xikz
i
k(1 +

1

2
)

� 3

2
max
i
fxikzikg

� 3

2
maxf1; maxifx

i
kz

i
kg

�k
g�k

< 2M�k:

CASE C: If xi� > 0 and �xik � 0 then, working as in case (A), and using ( 53) and

( 54) we obtain

(xik + �xk�x
i
k)(z

i
k +�zik) � 2M�k:

CASE D: If xi� > 0 and �xik < 0 then, working as in case (B), and using ( 53) we

obtain

(xik + �xk�x
i
k)(z

i
k +�zik) � 3

2M�k < 2M�k:

Hence the step-size �izk is determined from the lower bound constraint, which

becomes active when �zik < 0. We �rst show that, once the new primal iterate

xik+1 = xik + �xk�x
i
k is known, the corresponding product xik+1z

i
k is always strictly

less than the lower bound constraint. Indeed, by observing that for all i = 1; 2; :::; n,

xik + �xk�x
i
k � (1� 
k)x

i
k, we have

1
2m�k

xik + �xk�x
i
k

�
1
2m�k

(1� 
k)x
i
k

<
1
2m�k

(1� 
k)(1� 
k
2�k )x

i
kz

i
k

zik

�
1
2m�k

(1� 
k)(1� 
k
2�k )minifxikzikg

zik

�
1
2m�k

minf 1; (1�
k)(1�

k
2
�k

)minifxikz
i
k
g

�k
g�k

zik

< zik:

Therefore from the above analysis we deduce that the step-size �zk is determined

by ( 56).

Finally we show that ( 57) holds. If �zik � 0 for all i, then from the previous

discussion can be shown that �izk = 1 and thus ( 57) holds. Therefore assume that

there exists at least one index i such that �zik < 0. Working similarly as in cases

(A)-(D), it can be shown that if xi� = 0 then the lower bound constraint in ( 28) is not

violated by taking a unit step-size along the direction �zik < 0. Indeed, we have

(xik + �xk�x
i
k)(z

i
k +�zik) � (1� 
k)x

i
kz

i
k(1 +

�zik
zik

)
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� (1� 
k)x
i
kz

i
k(1�

1

2
)

>
1

2
(1� 
k)(1 � 
k

2�k
)min

i
fxikzikg

� 1

2
minf 1; (1� 
k)(1� 
k

2�k )minifxikzikg
�k

g�k

=
1

2
m�k:

Hence ( 57) is again satis�ed if �zik < 0 and xi� = 0.

Consider the case we have not yet investigated that is, when �zik < 0 and xi� > 0.

It is not certain whether unit step-sizes are allowed, as this might violate the lower

bound constraint in ( 28) or the feasible region (i.e., zik + �zik < 0). Therefore, the

step-size �izk for the i-th dual variable is determined by

zik + �izk�z
i
k =

1
2m�k

xik + �xk�x
i
k

:

Noting that xik + �xk�x
i
k � xik(1� � k �wk k), the above equation becomes

zik + �izk�z
i
k �

1
2m�k

xik(1� � k �wk k) ;

and solving for �izk yields

�izk � �
zik
�zik

(1�
1
2m�k

xikz
i
k(1� � k �wk k) ): (59)

Since xi� > 0, from ( 53) we have

�zik
zik

= �1 + �k
xikz

i
k

� �xik
xik

> �1� �xik
xik

� �1� � k �wk k :

Substituting the above inequality into ( 59) we obtain

�izk �
1

1 + � k �wk k(1�
1
2m�k

xikz
i
k(1� � k �wk k) ): (60)

Furthermore, since it is assumed that � k �wk k� 1
2 we have 1 � (� k �wk k)2 � 1,

and therefore

1

1 + � k �wk k > 1� � k �wk k :

Substituting the above inequality into ( 60) yields

�izk � 1� � k �wk k �1

2

m�k
xikz

i
k

� 1� � k �wk k �1

2

m�k
(1� 
k)(1� 
k

2�k )minifxikzikg
(1� 
k)(1 � 
k

2�k
)

� 1� � k �wk k �(1� 
k)(1� 
k
2�k

):
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Since the common dual step-size is de�ned as �zk = minf1;min1�i�nf�izk : �zik < 0gg
the previous inequality establishes ( 57). �

The result of the following lemma is used in Theorem 4, in which Q-quadratic

convergence of the algorithm is established. Recall that the next iterate is given by

wk+1 = wk+Ak�wk, where the matrix Ak is de�ned as Ak = diagf�xkIn; �ykIq; �zkIng.

Lemma 15 Let the assumptions of the previous lemma hold. Then

k I �Ak k� n(1� 
k) + (q + n)(1� 
k)(1� 
k
2�k

) +O(k F (wk) k) +O(�k): (61)

Proof From ( 55) we have

0 � 1� �xk � 1� 
k + � k �wk k
� 1� 
k + � k rF (wk)

�1 k (k F (wk) k +�k k ê k):
while from ( 57) we have

0 � 1� �zk � (1� 
k)(1� 
k
2�k

) + � k �wk k
� (1� 
k)(1� 
k

2�k
) + � k rF (wk)

�1 k (k F (wk) k +�k k ê k):

Assuming that �yk = �zk and using the following inequality

1p
n
k � kF�k � k�k � kF ;

which relates the l2 matrix norm of any n� n matrix � to the Frobenius one, we have

k I �Ak k = k diagf(1 � �xk)In; (1� �yk)Iq; (1 � �zk)Ing k
� k diagf(1 � �xk)In; (1� �yk)Iq; (1 � �zk)Ing kF
� n(1� 
k) + (q + n)(1� 
k)(1� 
k

2�k
) +O(k F (wk) k) +O(�k):

�
The next theorem shows that Algorithm 1 converges to the optimum solution Q-

quadratically. We de�ne by N (�v; r) the open neighbourhood of radius r around �v,

namely N (�v; r) = fv 2 <n :k v � �v k< rg.

Theorem 4 Assume that the sequence fwkg generated by Algorithm 1 converges to a

solution w� and suppose that assumptions (A1)-(A4) hold at that solution. Assume

also that the parameters �k and 
k are selected such that

�k = O(k F (wk) k2) and 1� 
k = O(k F (wk) k): (62)

Then there exists an � > 0 such that for all w0 2N (w�; �) the sequence fwkg is well

de�ned and converges to w� Q-quadratically.
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Proof We use induction to show that there always exists a positive constant � such

that

k wk+1 � w� k� � k wk � w� k2 : (63)

Since w0 2N (w�; �) we have k w0 � w� k< �. For k wk � w� k< �, we also have,

wk+1 � w� = wk � w� �Ak�wk

= wk � w� �AkrF (wk)
�1[F (wk)� �kê]

= rF (wk)
�1[AkF (w�)�AkF (wk) +rF (wk)(wk � w�)]

+�kAkrF (wk)
�1ê

= rF (wk)
�1[AkF (w�)�AkF (wk)�AkrF (wk)(wk � w�)]

+rF (wk)
�1[AkF (wk)(wk � w�)� F (wk)(wk � w�)]

+�kAkrF (wk)
�1ê

= AkrF (wk)
�1[F (w�)� F (wk)�rF (wk)(wk � w�)]

+(Ak � I)(wk � w�) + �kAkrF (wk)
�1ê:

Taking norms and applying the results of Lemma 15 we obtain

k wk+1 � w� k � k AkrF (wk)
�1 k k F (w�)� F (wk)�rF (wk)(wk � w�) k

+ k Ak � I k k wk � w� k +�k k AkrF (wk)
�1ê k

� O(k wk � w� k2)+ k I �Ak k k wk � w� k +O(�k)

� O(k wk � w� k2)

+[ n(1� 
k) + (n+m)(1� 
k)(1� 
k
2�k ) +O(k F (wk) k)

+O(�k) ] k wk � w� k +O(�k): (64)

From Assumption (A1) we have that F (w) is Lipschitz continuous. Hence, there exists

a constant � > 0 such that

k F (wk) k= k F (wk)� F (w�) k � � k wk � w� k; (65)

for all wk 2 N (w�; �). Choosing the parameters �k and 
k as in ( 62) and considering

( 65), inequality ( 64) guarantees that there exists a positive constant � such that ( 63)

is satis�ed. Also by the induction hypothesis we have k wk�w� k� � and therefore, for

any su�ciently small � we have k wk+1 �w� k� �. Hence the sequence fwkg converges
Q-quadratically to w�. �
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