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Abstract

This paper presents a primal-dual interior point algorithm for solving gen-
eral constrained non-linear programming problems. The initial problem is trans-
formed to an equivalent equality constrained problem, with inequality constraints
incorporated into the objective function by means of a logarithmic barrier func-
tion. Satisfaction of the equality constraints is enforced through the incorporation
of an adaptive quadratic penalty function into the objective. The penalty param-
eter is determined using a strategy that ensures a descent property for a merit
function. It is shown that the adaptive penalty does not grow indefinitely. The al-
gorithm applies Newton’s method to solve the first order optimality conditions of
the equivalent equality problem. Global convergence of the algorithm is achieved
through the monotonic decrease of a merit function. Locally the algorithm is
shown to be quadratically convergent.
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1 Introduction

Since Karmarkar’s seminal work [14], there has been substantial interest in interior
point algorithms for linear programming (LP). These algorithms consider LP as a spe-
cial case of non-linear programming (NLP). Among different interior point approaches,
primal-dual algorithms have attracted most interest. Computational experiments (eg,
[16], [18]) and theoretical developments (eg, [1], [24]) have shown that they perform
much better than other interior point algorithms and outperform the simplex method
in many large-scale LP problems. Primal-dual methods basically apply Newton’s algo-
rithm directly to the primal-dual system of equations for both feasibility and approxi-
mate (or perturbed) complementarity conditions. A rigorous treatment of primal-dual
methods in LP can be found in Wright [12].

Motivated by the computational success of primal-dual methods in LP, the in-
vestigation has focussed on possible extensions to NLP. The bulk of the effort has
concentrated on convex quadratic (eg, [10], [19]) and convex NLP problems (eg, [17],
[13], [11]), showing that primal-dual methods provide an efficient solution framework.
However, only recently general (non-convex) NLP problems have been the subject of
research in this area. El-Bakry et al. [22], McCormick and Falk [20], and Yamashita
[7] have developed globally convergent primal-dual algorithms for that class of prob-
lems. Also Lasdon et al. [15] have considered various primal-dual formulations of those
problems and presented their computational experience.

In this paper, we discuss a primal-dual interior point algorithm for general NLP
problems. Our approach basically derives from the premise that the solution of the first
order optimality conditions of any NLP problem, which exists in the core of interior
point algorithms, is not sufficient to guarantee the convergence to an optimum solution,
unless the problem is convex. In other words, the algorithm, applied for example on
a minimization problem, may converge to a local maximum or even worse to a saddle
point, since the first order optimality conditions are also satisfied in those points. To
avoid such cases a merit function is incorporated within the primal-dual interior point
algorithm. This is achieved by using an Armijo rule to determine the step-size, which
guarantees the monotonic decrease of our merit function.

The algorithm is partially motivated by two different approaches. The first is the
augmented Lagrangian sequential quadratic programming (SQP) framework for gen-
eral constrained optimization problems, discussed in Rustem [2]. The SQP algorithms
possess good theoretical and practical properties and are very efficient for solving gen-
eral NLP problems [4]. The second approach is the primal-dual interior point method,
where a barrier function and a damped Newton framework are used in order to solve
NLP problems. This is closely related to the SQP framework, since after the initial
incorporation of the inequality constraints into the objective function an equivalent
equality constrained problem is obtained. The latter is solved by applying Newton’s
method to the first order optimality conditions. Although our algorithm is related to
the approaches proposed by El-Bakry et at. [22] and Yamashita [7], it differs in signif-
icant aspects, such as the choice of the merit function, the adaptive penalty selection
rule and the step-size rules. Recently, it has come to our attention that Vanderbei and



Shanno [9] and Gajulapalli and Lasdon [21] report very encouraging numerical results
with algorithms which also use an adaptive penalty. The present paper, however, pro-
vides the full analysis of an algorithm which substantially differs from [9] and [21], in
the adaptive penalty term, discussed in Rustem [2], the barrier parameter, the merit
function and the step-size rules.

In section 2 we introduce the basic features of the augmented Lagrangian methods,
used in this paper. In section 3 we present the basic algorithmic framework of primal-
dual methods for NLP problems. Section 4 describes the primal-dual interior point
algorithm. In section 5 we establish the global convergence of the algorithm. In
section 6 we examine the local behaviour of the algorithm and show that it converges
quadratically to the optimum solution, provided that the standard conditions associated
with the Newton method hold.

2 Augmented Lagrangian Methods

Penalty methods are mainly used for equality constrained optimization problems. The
aim is to eliminate the constraints and augment the cost function with a penalty term
that associates a high cost to infeasible points. The severity of the penalty is determined
by a parameter, denoted by c. As c takes higher values feasibility is increasingly
ensured.

Consider the equality constrained problem

ST g(z) =0,

where f : R" — R, and g(z) : R” — R? are given functions. The Lagrangian function of
this problem is L(z,y) = f(z) —y'g(z). Augmenting L(z,y) with a quadratic penalty
term yields the augmented Lagrangian function given by

Lelwyy) = f(2) = y"g(@) + 5 Il g(o) |

which can be considered the Lagrangian function of

min )+ £ z) ||?
flz)+5 gl | )
ST g(x)=0

Problem ( 2) has the same local minima as problem ( 1). The gradient and the Hessian
of L. with respect to x are

VaLe(z,y) = Vf(2) + Vg(z)" (cg(z) —y),



VieLe(z,y) = V2 f (@) + D V2gi(x)(cgi(z) — yi) + cVg(a)Vg(x)". (3)
=1

In particular, if 2, and y, satisfy the first order optimality conditions, then VL. (4, ys) =
VL(2e,y:) = 0 and V2, Le(4,v) = V2, L(24,ys) + cVg(z.)Vg(z.)T. For a detailed
treatment of penalty and augmented Lagrangian methods we refer to [3] and [4].

3 Basic Iteration in Primal-Dual Methods

Consider the following constrained problem

ST g(x)=0, x>0,

where z € R", f : " — R and g(z) : R" — R

In barrier methods, (4) is approximated by augmenting the objective with the
n

logarithmic barrier function B(z;u) : R* — R, B(z;p) = —p 3" log(x?). Thus, the
initial problem is approximated by

min  f(z) — u " log(z?)
(5)
ST g(x) =0,

where £ > 0 and the barrier parameter p is a given sufficiently small and strictly
positive constant [23], [4]. The optimality conditions of ( 5) are

Vf(x)=Vg(z)'y —pX"te = 0
(6)
g(z) = 0,

where X is the diagonal matrix given by X = diag(z!,...,2™). Also e € R" is the vector
of all ones. Introducing of the non-linear transformation z = uX ~'e, ( 6) becomes

V(@) =Vg@)y—z = 0
glz) = 0 (7)
XZe = e,

where z,z > 0 and Z = diag(z',...,2"). The introduction of z is essential to the
numerical success of the barrier methods (see for example [22]).



Consider the Lagrangian function of the equality and inequality constrained prob-
lem ( 4)
L(z,y,2) = f(«) —y"g(a) — 2"z, (8)

where y € ¢ and z € R} = {v € R" : v > 0} are the Lagrange multiplier vectors of
the equality constraints g(z) = 0 and non-negativity constraints = > 0, respectively.
The KKT conditions of ( 4) are given by the nonlinear system of equations

ViL(z,y,2)

where x,z > 0 and the gradient of the Lagrangian with respect to z is
VoL(z,y,2) = Vf(x)=Vg@)y—z = Vf(z)=Y Va(r)y — 2
i=1

The perturbed KKT conditions are taken by introducing a positive perturbation to
the third equation of ( 9), namely to the complimentarity equation. Hence, for z,z > 0
the perturbed KKT conditions are

XZe— pe

A point (z(p),y(p), (1)) is said to belong to the central path C, if it is the solution
of the perturbed KKT conditions ( 10), for a fixed value of y. Conditions ( 10) approx-
imate the KKT conditions ( 9) increasingly accurately as y — 0. Hence, as u — 0, the
sequence {(z(u),y(p),z(1))} of converges to the solution of the KKT conditions ( 9),
of the initial constrained problem ( 4).

The perturbed KKT conditions of the initial problem ( 4), given by ( 10), are equiv-
alent to the KKT conditions of the logarithmic barrier function problem ( 5), given by
( 6). El-Bakry et al., in [22], have proved that the perturbed KKT conditions ( 10) are
not the KKT conditions ( 6) of the logarithmic barrier function problem. Furthermore,
the iterates of the Newton method applied to the perturbed KKT conditions ( 10) are
not the same as the iterates of the Newton method applied to the KKT conditions ( 6)
of the logarithmic barrier function problem. In other words systems ( 10) and ( 6) have
the same solutions (i.e., they are equivalent) but they are not Newton algorithmically
equivalent.

Furthermore, primal-dual methods solve approximately the perturbed KKT condi-
tions ( 10), for a fixed value of . Therefore, the first order change of the above system



needs to be found. The k-th Newton iteration for solving ( 10) can be written as

V2, L(wg,ye, 2z6) —Vg(zp)t —I Ay, Vo Ll(xk, Yk, 2k)
V(i) 0 0 Ay | = — 9(zk)
Ly, 0 Xy Az, XipZre — pre

or in matrix-vector form

J(wg) Awy, = —r(wy,), (11)

where wy, = (x1, yr, 2)", and Awy, = (Azk, Ayg, Azp)T. The solution of ( 11) gives
a direction vector Awy which is used to find the next approximation of the solution
of ( 10). That is, the next iterate is wgy; = wg + AgxAwyg, where Ay is the diagonal
matrix Ay = diag(agiln, oyply, oz ly) and I, I, are the n-th and g-th order identity
matrices respectively. The step-lengths oy, ok, and ) belong to the interval (0,1]
and may all be equal to or different from each other.

A unit step along the Newton direction is often not allowed because it violates the
non-negativity constraints on x and z in ( 10). To avoid this violation, the step-sizes
oz and a,y are selected such that the new iterates zp; and zx41 are strictly positive
for all k. When an approximation of the central point corresponding to the value where
u is fixed is found, the barrier parameter pu is fixed onto a strictly smaller value and
the iterations proceed until p becomes zero.

4 Description of the Algorithm

The algorithm discussed below solves problem ( 4) and is based on a sequence of
optimization problems characterized by a penalty ¢ > 0 and a barrier ;4 > 0 parameter.
The following assumptions are used throughout the paper.

Assumptions:

Al: The second order derivatives of the objective function f and the constraints g
are Lipschitz continuous at the optimum z,.

A2: The columns of the matrix [Vg(x),e; : i € I} are linear independent, where
I = {i : liminfy,_, :ch,C =0,4=1,2,...,n} and e; represents the i-th column of
the n x n identity matrix. Also the sequence {z} is bounded.

A3: Strict complementarity of the solution w, = (x,ys, z«) is satisfied, that is if
2t >0 then 2% = 0, for i = 1,2,...,n and vice versa.

A4: The second order sufficiency condition for optimality is satisfied at the solution
point, i.e., if for all vectors 0 # v € R” such that V¢'(z,)Tv =0,i =1,2,...,q,
and el'v = 0, for i € I%, then v’V ,L(x,y,2)v > 0. Also, the matrix Q; =
Hy + X, ' Z is invertible, with Hy, = V2, L, defined in ( 3).

6



The original equality and inequality constrained optimization problem ( 4) is ap-
proximated by

min f(z) + 5 || g(=) |5 —p iz, log(a")
(12)

ST g(z)=0,

for ¢, > 0. The objective in ( 4) is augmented by the penalty and the logarithmic
barrier functions. The penalty is used to enforce satisfaction of the equality constraints
by adding a high cost to the objective function for infeasible points. The barrier is
needed to introduce an interior point method to solve the initial problem ( 4), since
it creates a positive singularity at the boundary of the feasible region. Thus, strict
feasibility is enforced, while approaching the optimum solution. Both the penalty and
the barrier functions are continuous and differentiable, since f and g are assumed to
possess these properties.

Penalty-barrier methods involve outer and inner iterations [5]. Outer iterations are
associated with decreasing the barrier parameter u, such that p approaches zero. Inner
iterations determine the penalty parameter ¢ and then solve the optimization problem
( 12) for the corresponding values of y and c.

The Lagrangian associated with the optimization problem ( 12) is given by

n
c .
L(w,yse,p) = f(@) + 5 | 9(@) 13 —p D _log(a") — g(x)"y,
i=1
while the first order optimality conditions are the system of nonlinear equations
Vf(z) = pXte+cVg(z) g(z) — Vg(2)y

g9(z)

for z > 0. By invoking the nonlinear transformation z = X ~'e the above conditions
become

Vf(z) = z+cVg(z) g(z) — Vg(z)Ty

F(z,y,z¢,p) = g(x) 0, (13)

XZe — ue

with z,z > 0. For p fixed, system ( 13) is solved by using the Newton method. At the
k-th iteration, the Newton system is

H, -VgI' -I Az, Ve — 2k + Vi g — Vi yi
Vg 0 0 Aye | == | o (14)
Zk 0 Xk Azk Xkae — Kue,



where

m m
He=V2fi+ > Viaileegi — vi) + o Y Vi (Vai)" = Vi, Le(k, yr)
i=1 i=1
is the Hessian of the augmented Lagrangian defined in ( 3). In matrix-vector form ( 14)
can be written as
J (wg; ep) Awy, = —F(wg; ek, fig), (15)

where wy = (zh, Yk, 21)", Awp = (Azp, Ay, Azp)T, and J(wy;cp) is the Jacobian
matrix of the vector function F'(wg; ¢k, pr). Equation ( 15) is different from the corre-
sponding equation ( 11) due to the introduction of the penalty term in the objective
function.

The solution of ( 14) is given by

Az, = Q,ZIVg,ZAyk - Q;;l(vfk — 2zt + Vgl ge — Vi yr)
Ay = —[Var% Vol ok — V% (Vi — 2 + cVgE gk — Vi ui))
Az, = —z —|—,uXk_1€—Xk_IZkALEk,

where Q = Hj + X 17, is assumed to be invertible. The algorithm uses differ-
ent step-sizes for the primal and dual variables. Hence, the next iterate wiyi; =
(Tk+1,Ykt1, 2k+1) is defined as

Tht1 = Tp + Qe AT, Ypt1 = Yk + GEAYL,  Zp41 = 25 + 0 A2y,

where ag, and «,) are the step-lengths for the primal variables z and the pair of dual
variables y and z, respectively.

To initiate the algorithm, a strictly interior starting point is needed, that is a point
w? = (29,9°,2%), with 2%, 2° > 0. By controlling the step lengths a,; and ., the
algorithm ensures that the generated iterates remain strictly in the interior of the
feasible region. Moreover, the algorithm moves from one inner iteration to another

inner iteration (i.e., with p fixed) by seeking to minimize the merit function
n
c .
®(w;eop) = f(2) + 5 1 9(2) [I7 —p 3 log ("), (16)
i=1

which is basically the objective function of problem ( 12). This is achieved by properly
selecting the values of the penalty parameter ¢ at each inner iteration. As shown later,
the monotonic decrease of ( 16) and the rules for determining the primal and dual step-
sizes, guarantee that the inner iterates converge to the solution of ( 12), for u fixed.
Subsequently, by reducing p, such that {u} — 0, the optimum of the initial problem
( 4) is reached.

The primal-dual interior point algorithm is given in Figure 1. Throughout the
algorithm, subscript & indicates variables changed in inner iterations (i.e., while p is
fixed) and superscript [ indicates variables changed in outer iterations (i.e., when p
decreases). Superscript ¢ denotes elements of vectors.
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Algorithm 1
STEP 0: Initialization: Given #°,2° € ®" and §° € RY, such that °, 20 > 0, penalty
and barrier parameters ¢y > 0, x° > 0 and parameters: v,n,p € (0,1), § > 0.
For [ =0,1,2,... do the following steps:

STEP 1: Test for convergence of outer iterations:
If || F(z, 4", 2" ce, pb) ||< €0, then Stop.
STEP 2: Start of inner iterations: (u is fixed to ! throughout)

Set ((I;Oa Yo, ZO) = (jla gl’ 2l)
For k=0,1,2,... do the following steps:

Step 2.1: Test for convergence of inner iterations:
If “ F((I;kaykazk;ckaul) “S 77Ml then
Set (2!, 4!, 2) = (z, yx, z1) and GoTo step 3
Step 2.2: Solve Newton system ( 14) to obtain (Azy, Ay, Azg)

Step 2.3: Penalty parameter selection:
If AzEV i —cr || gi 12 —! Az X, et || Azy, ||%{k§ 0 then cxi11 = ¢.
Else set

Amefkf,ulAsz‘kfle+||AmkH%Ik

llgxll3

Step 2.4: Step-length selection rules:

Ck+1 = max{ , ¢+ 0}

Set o)™ = minj<;<p {;—Z’z Azt < 0} and Gy = min{ya™e 1},
Let oz, = %6zp, where 6 is the smallest non-negative integer such that
(@415 Chp1> 1) — D(ps i1y 1Y) < p gk VO(ps e, ph) T Ay,
with zg11 = o + agrAxg.
Set LB: = min{%mp,xfcﬂz};} and UB}, = max{QMu,acf;Hsz}, m,M >0
For i = 1,2,...,n find: o}, = max{e; : LB}, < 2} (2, + ®;Az},) < UB}
Set = min{l, minj<;<p{ca’; }}
Set Yk+1 = Yk + Ay and zg 11 = 2 + @Az
Step 2.5: Set k =k + 1 and GoTo Step 2.1

STEP 3: Reduction of barrier parameter: Set u/*!' = (1 —v)u!, where 0 < v < 1.

STEP 4: Set =10+ 1 and GoTo Step 1.

Figure 1




4.1 Penalty parameter selection rule

The penalty parameter ¢ plays an important role in the algorithm. At each iteration,
its value is determined such that a descent property is ensured for the merit function
®(x;c, ). For p fixed, the gradient of ® at the k-th iteration is

VO (wp;cp, i) = Ve + cx Vi gy — uXk_le. (17)
The direction Az is a descent direction for ®, at the current point xy, if
AzL VO (xy; ey ) < 0. (18)

By considering the second equation of the Newton system ( 14), the directional deriva-
tive Azl V®(zy; ck, ) can be written as

Az (g ey p) = At V f(wr) — ek || gr |2 —pAzl X e, (19)

where ¢, is the value of the penalty parameter at the beginning of the k-th iteration.
Since the barrier parameter pu is fixed throughout the inner iterations, we can deduce
from ( 19) that the sign of Azl V®(zk;ck, 1) depends on the value of the penalty
parameter. If ¢; is not large enough then the descent property ( 18) may not be
satisfied. Thus, a new value ci1 > ¢, must be determined to guarantee the satisfaction
of the descent property. The next lemma shows that Algorithm 1 chooses the value of
the penalty parameter in such a way that ( 18) holds.

Lemma 1 Let f and g be differentiable functions and let g # 0. If Axy is calculated
by solving the Newton system ( 14) and cgy1 is chosen as in step 2.3 of Algorithm
1 then Az is a descent direction for the merit function ® at the current point xy.

Furthermore

Az V(g cg1, 1) < = || Az [[77,<0. (20)
Proof In step 2.3, Algorithm 1 initially checks the inequality
AziV fr = ek || gx I3 —pAzf Xy et || Aay ||37, < 0. (21)

If ( 21) is satisfied then by setting cz+1 = ¢ and re-arranging ( 21) we obtain ( 20).
On the other hand if ( 21) is not satisfied, by setting

AzLV i — pAal X e+ || Ay ||,

9w 113

Ck+1 > )

and substituting it into ( 19) it can be verified that ( 20) also holds. .
In the previous lemma it is assumed that gp # 0. The next lemma demonstrates

that Az remains a descent direction for the merit function ® when g = 0, i.e., when

feasibility of the equality constraints has been achieved.
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Lemma 2 Let f and g be differentiable functions and let Awy = (Azk, Ayk, Azg)
be the Newton direction taken by solving system ( 14). If for some or all iterations
k, g = 0, then the descent property ( 20) is satisfied for any choice of the penalty
parameter ¢ € [0,00).
Proof If g, =0 then ( 19) yields
Az VO (zg; ey p) = ALV i, — pAzl X e (22)
and the second equation of the Newton system ( 14) becomes
VgrAzy = 0. (23)
Furthermore, solving the first equation of ( 14) for Az, we have
Az, = —X,;leAmk — 2, + ,uX,;le.
Substituting Az into the first equation of ( 14) yields
Vi —cxVaigr +uX; e = —(Hp + X' Zi) Azg + Vi (y + Ayg). (24)
Pre-multiplying ( 24) by Azl yields
Aw{ka—ckAx;‘cFVg,{gk—i—uAac{Xk_le = —Aw{(Hk—i—Xk_lZk)Axk+Ax£ngT(yk+Ayk).
Using ( 23), the above equation becomes
Azl V f + pAaf X, e = —Axl (Hy, + X ' Zy) Ay, (25)
and from ( 22), equation ( 25) yields
AzENVO(zy; cp, p) = —Axf (Hy + X, ' Z1,) Az (26)
From the fact that x; and z; are strictly positive and Assumption (A4), we have
— Az (Hy, + X' Zk) Azy, < — Az HpAwy,. (27)

From ( 26) and ( 27) it is derived that ( 20) holds for every ¢ € [0, 00). .

Lemma 3 Let the assumptions of the previous lemma hold and let g, = 0, for some
k. Then the algorithm chooses cxi1 = ck, in step 2.3. Also, Axy is still a descent

direction for the merit function ® at xy.

Proof In the previous lemma it was proved that the descent property ( 20) is satisfied
for g, = 0. This basically means that the condition in step 2.3 of Algorithm 1 is always
satisfied. Consequently, the algorithm does not need to increase the value of the penalty
parameter and simply sets ci+1 = c. For this choice of the penalty parameter it can
be verified that the descent property ( 20) still holds .

11



Lemma 4 Let f and g be continuously differentiable functions. Then for u fized and

for all iterations k > 0,
i) there always exists a constant cx1 > 0, satisfying step 2.3 of Algorithm 1.
+

(ii) assuming that the sequence {xy} is bounded, there exists an iteration k. > 0, such
that if, for all iterations k > k,, the values of the penalty parameters cp = c, €
[0,00), then the descent property ( 20) is always satisfied, where c, is the value

of the penalty parameter corresponding to iteration k.

Proof Part (7) is a direct consequence of Lemmas 1 and 2, since a value c¢4; > 0 is
always generated, in step 2.3. To show part (ii), we note that at each iteration, step
2.3 generates a value ¢ > 0, such that the descent property ( 20) holds. If ¢ is
increased infinitely often, then {cy} — oco. As there exists ¢,y > 0 that Algorithm
1 can choose at every iteration, then there exists ¢, > 0 such that step 2.3 is always
satisfied if ¢ = c,, for all iterations k& > k. °

4.2 Primal step-size rule

In step 2.4 of the algorithm we adopt Armijo’s rule to determine the new iterate zj1.
The maximum allowable step-size is determined by the boundary of the feasible region
and is given by _

max i

x .

: k )
« = min — : Azl < 0}
zk 1<i<n {—AI}~C k<0

This is indeed the maximum allowed step, since a;** gives an infinitely large value to

at least one term of the logarithmic barrier function Y.}, log(z}, ). However, if the
step-size is in the interval [0, o}*") then the next primal iterate x4 is strictly feasible
and none of the logarithmic terms becomes infinitely large.

We take as initial step &y, a number very close to o} and we ensure that it is
never greater than one, i.e., dz = min{yea}®*, 1}, with v, € (0,1). The final step
is ag, = 3Gy, where 6 is the first non-negative integer for which Armijo’s rule is
satisfied and the factor § is usually chosen in the interval [0.1,0.5], depending on the
confidence we have on the initial step é;r. The value of the parameter p is chosen in

the interval [1075,107!].

4.3 Dual step-size rule

In this section we discuss the determination of the step-size of the dual variables z.
The strategy uses the information provided by the new primal iterate xy,1, in order to
find the new iterate zx,1. It is a modification of the strategy suggested by Yamashita
[7] and Yamashita and Yabe [8].

12



While the barrier parameter 4 is fixed, we determine a step ozik along the direction
Az,i, for each dual variable z,ic, 1 =1,2,...n, such that the box constraints are satisfied

oy = max{a >0: LB. < (2% 4 appAzt) (2 + aAzl) <UBL}. (28)
The lower bounds LB,i and upper bounds UB,i, 1=1,2,...,n are defined as
LB}, = min{amu, (z}, + appAxy) 2z} and UBj, = max{2M pu, (z}, + oz Azy) 2L}, (29)
where the parameters m and M are chosen such that

(1 —y)(1 — —;%) mmz{x}cz}ﬁ}}

0 < m < min{l,
@

: (30)

and o
. 1 A0
M > max{1, DT (31)
7’

with v € (0,1). These two parameters are always fixed to constants, while y is fixed.
These constants satisfy inequalities ( 30) and ( 31) for £ = 0. The values of m and M
change when the barrier parameter y is decreased.

The common dual step length ., is the minimum of all individual step lengths ai k
with the restriction of being always not more that one, namely

oz = min{l, min {al}}.

The step-size for the dual variables y can be either ay; = 1 or ay, = a,;. The
convergence results mentioned in the following sections hold for both choices.

The dual step-size rule is similar to the one that Yamashita and Yabe [8] proposed.
The dual step-size rule of Algorithm 1, however, uses different lower and upper bounds
in the box constraints defined in ( 28). It is shown in section 6 that both the lower
and upper bounds of Algorithm 1 are smaller than the ones used in [8]. As a result,
the dual steps of Algorithm 1 are greater than those determined in [8].

5 Global Convergence

In this section we show that the algorithm is globally convergent, because it always
guarantees progress towards a solution from any starting point. El-Bakry et al. [22]
and Yamashita [7] have also shown global convergence for their primal-dual algorithms.
In [22] the global convergence is achieved by determining a single step-size for all the
variables. The Armijo rule is used to guarantee that the Euclidean norm of the KKT
conditions, which plays the role of a merit function, is reduced at each iteration.
Algorithm 1 is closely related to that in [7], since both algorithms use the same
strategies to determine different step-sizes for the primal and dual variables. They

13



use, however, different merit functions to guarantee global convergence. In [7], the
non-differentiable merit function

bz p,p) = f(2)+p D lg' (@) — ) _ log(a’)
=1 =1

is used, while we have chosen the merit function defined by ( 16), which has the useful
property to be continuously differentiable. An advantage of the differentiability of the
merit function @ is that the adaptive strategy, developed by Rustem in [2], is used to
determine the penalty parameter ¢, to ensure a descent property for @, leading to the
global convergence of the algorithm.

We show that, while the barrier parameter is fixed to a value u!, the algorithm
produces iterates wy(u') = (zp(uh), ye(1'), 21 (4!)), for k = 1,2, ..., which are bounded
and converge to a w, (u') = (z+ ('), ys (1!), 24 (') such that

1 F (@ (i), e (1), 2 ()5 06, 1) [|= 0,

where F(z,y, z;c, ) is the vector of the perturbed KKT conditions, defined in ( 13).
In other words, we show that the inner iterations (2.1) - (2.5) of Algorithm 1, converge
to a solution of the perturbed KKT conditions. For simplicity we suppress the index
I, and we use wy, instead of wy(p') to denote the iterates produced while u = pl.

The basic result of Lemmas 1 to 4 is that the direction Axy, taken from the
solution of the Newton system ( 14), is a descent direction for the merit function ® at
the current point zy, that is inequality ( 20) holds. In the next theorem we show that
the sequence {®(xy;cs, )} is monotonically decreasing if the barrier parameter p is
fixed. We also show that the step a,r, chosen in step 2.4 is always positive.

Theorem 1 Assume that the following conditions hold
1. the objective function f and the constraints g are twice continuously differentiable,

i. the Hessian matriz Hy, = V2 fr+>1", VZQIQ(ckg,i—y,i)—i—cngkTng, is such that, for
every iteration k and for every vector v € R" there exist constants M' > m' > 0,
such that

m' || v [3< v Hyw < M || w |3,

iii. for each iteration k, there exists a triple (Axy, Ayk, Azy), as a solution to the

Newton system ( 14),

w. there exists an iteration k. and o scalar c. > 0, such that the penalty parameter

restriction in step 2.3
Az Y fr— ek | g 5 —pdzf X et || Az [|3,< 0
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s satisfied for all k > ky with cx11 = ¢ = Cx.
Then the step-size computed in step 2.4 is such that agy, € (0,1] and hence the sequence
{®(xk; s, )} is monotonically decreasing, for k > ky and p fized.

Proof Consider the first order approximation with remainder of the function ®(x; c,, i)
around the point zp 1 = ) + gz Axg
(I)($k+1; Cx, M) - (I)(xka Cx, :U‘) =

1
amkAacgvfﬁ(xk; Cay ) + aik/o (1— t)Ax;‘cFVg@(xk + tagp Axg; Coy ) Ay di.

The above equation, after adding and subtracting the Hessian matrix Hj in the re-
mainder, yields
D (Tppp1; Ces ) — P(@hs Cay ) < Qe ATEVO (g5 00, 1) + 302, AxT HyAmy,

1
+a,20k/0 (1 —t) | Az} (V2B (2, + tag,Azy; e, ) — Hy, ) Ay, | dt. (32)

We note that for every symmetric matrix A (eg, [6])

| A2 = max eigenvalue of A.

Hence inequality ( 32) can take the form
Q(zpt1;Ceo 1) — Plans e, p) <

Qh ATL VO (x5 Coy 1) + aTikAwkTHkAfEk + o2 || Az |13, (33)
where .
i :/0 (1= ) || V2O(2k + topAsy; cot) — Hy, 2 dt.
Furthermore, from assumption (i7) we have
| Ay I3< Ao HyAay, (34)
and from Lemmas 1 and 2
Azl HyAzy < —Az] VO (24 co, ). (35)
Substituting ( 34) and ( 35) into ( 33) yields

D150 ) — B ) S kAT V(s o) (1~ k(3 +25). (36)

The scalar p in Armijo’s rule in step 2.4 determines a step-length g such that

T/)k 1
<1-— Iz _

15



Since from Lemmas 1 to 4 we always have Azl V®(zy;ci, ) < 0, there must exist
gk € (0, 1], to ensure ( 36) and Armijo’s rule in step 2.4. Assume that o is the largest
step in the interval (0, 1] satisfying both ( 36) and Armijo’s rule. Consequently for every
a < a, inequality ( 36) and Armijo’s rule are also satisfied. Hence the strategy in step
2.4 always selects a step-length o,y € [Ba®,a’], where 0 < 8 < 1. From the above
analysis, it follows that the sequence {®(zy;cy, 1)} is monotonically decreasing. .

Remark 1 The results of the above theorem can be proved to hold before the penalty pa-
rameter ¢ achieves a constant value c,. This can be done by considering the difference
D(xpy1;Cpr1, b) — P(xk; cor1, i) and the Taylor expansion of the function ®(x;cpy, 1)
instead of ®(z;cy, ). In the above theorem we chose to prove the case where ¢ = ¢y
has been achieved, in order to show that asymptotically, ® is monotonically decreasing

and the strategy in step 2.4 selects a step-length ayy € (0,1].

An immediate consequence of the above theorem is that the sequence {zy} is
bounded away from zero. This is established in the following corollary.

Corollary 1 The sequence {zy} of primal variables generated by Algorithm 1, with p

fized, is bounded away from zero.

Proof Assume to the contrary that the sequence {zx} — 0. Then the sequence
{—37 ,log(zt)} — oo. From the assumption that the feasible region is bounded
we conclude that the sequences {f(zy)} and {|| g(zx) ||} are also bounded. Hence
{®(xk; s, )} — 0o which contradicts the monotonic decrease of ®. .

The following lemma, proved by Yamashita in [7], shows that the dual step-size
rule, used by the Algorithm 1, generates iterates z; which are also bounded above and
away from zero.

Lemma 5 While pu s fized, the lower bounds LB,i and the upper bounds UB,i, 1=
1,2,...,n, of the box constraints in the dual step-size rule, are bounded away from zero
and bounded from above respectively, if the corresponding components xfc, of the iterates

xi are also bounded above and away from zero.

Proof The proof can be found in [7]. o

Having established that the sequences of iterates {zj} and {zx} are bounded above
and away from zero, we show that the iterates {yx}, k& > 0 are also bounded. In
particular Lemma 7 shows that if at each iteration of the algorithm we take a unit step
along the direction Ay, then the resulting sequence {y;+ Ay} is bounded. In addition
to this, Lemma 7 also shows that the Newton direction Awy = (Azy, Ay, Azy) is
bounded, while p is fixed. We first establish the following technical result.
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Lemma 6 Let wy is a sequence of vectors generated by Algorithm 1 for u fized. Then

the matriz sequence {O; '} is bounded, where

0 Vg

O = .
—Vgl H,+ X} 'Z,

Proof The inverse of the partitioned matrix @y is

N AY A Vg% Vgl 1V g,

B
|

Vol Vo Val ™" Qe — UVl [V Vgl 17 Vi,

where Q, = (H,+ X, ' Z;)~. According to Assumption (A4), Corollary 1 and Lemma
5, the matrices Q and [V Vgl ]! exist and are bounded. Hence the matrix @,;1
is bounded, since all matrices involved in it are bounded. .

Lemma 7 Let wy is a sequence of vectors generated by Algorithm 1 for u fized. Then

the sequence of vectors {(Axk,yr + Ayg, Azg)} is bounded.

Proof Solving the third equation of the Newton system ( 14) for Az yields
Az = —zk—l—uXk_le—Xk_leAxk. (37)

Substituting ( 37) into the first equation of ( 14) and re-arranging the first two equa-
tions, yields the following reduced system

0 Vi i Gk (38)

—Vg,{ Hk—i-X,;le Axy ka+cngkTgk—qule

where y;. = yi + Ayg. From the previous lemma we have that the inverse of the matrix
in the left side of ( 38) exists and is bounded. Hence the sequences {Az} and {y;,} are
also bounded. Considering now ( 37), we can easily deduce that the sequence {Az;}
is bounded, since it is a sum of bounded sequences. °

Lemmas 8 and 9 provide the necessary results needed by Theorem 2, which shows
that the sequence of {wy} converges to a point w, = (Z,Yx, 2+), satisfying the KKT
conditions of problem ( 12).

Lemma 8 Let the assumptions of Theorem 1 be satisfied and the barrier parameter

W s fized. Also let for some iteration ko > 0, the level set
S1={z e RL : ©(z;00, 1) < P(Trg; Gy 1)} (39)
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is compact. Then for all k > ky we have

lim Azl V®(zy;c., ) = 0. (40)

k—o0
Proof The scalar p € (0,1/2) in the step-size strategy at step 2.4, determines
such that

1
pSl—axk(aJrW)S

and by solving for a,; we obtain
1/2 1—p
— < < ——mMm.
12+ g fm! = =124 g
Hence the largest value that the step-length ) can take and still satisfy Armijo’s rule
in step 2.4 is
l—p
0 .
= 1, ——— 1}
Qe mln{ ) 1/2 +d)k/m,}
Recall that the step-length «yj is chosen by reducing the maximum allowable step-
length G until Armijo’s rule is satisfied. Therefore gy € [ﬂagk, agk] and thereby also
satisfies Armijo’s rule.
As the merit function @ is twice continuously differentiable and the level set S is
bounded, there exists a scalar M < oo such that

1 —
P = / (1 —=1) || Vo®(zk + tagrAxg; cs, pp) — Hg |2 dt < M < 0.
0

Thus we always have agp > @z > 0, where

1—p 1.

o l-p
ok = mintl, o i

Hence the step-size agy is always bounded away from zero.
Furthermore, from Armijo’s rule and lemmas 1 and 2 we have

O (g 113 Cor 1) — B(@s s ) < pagk V(i 1) Ay, < 0. (41)
From our assumption that the level set S; is bounded, it can be deduced that
Hm (@ (zp415 e, ) — (g3 c, )| = 0.
k—o00

Consequently, from ( 41)

lim (pog VO (2k; ¢, ) Azy) = 0.
k—o00
Finally, since p, azr > 0 it can be deduced that ( 40) holds. .

Lemma 9 Let the assumptions of the previous lemma hold. Then

lim || Ay |7, = 0. (42)
k—o0
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Proof From ( 20) we have
V(s o )T Ay > | A |1, (43)

Hence from ( 43) and ( 40) we have that ( 42) holds. o

Theorem 2 Let the assumptions of the previous lemma hold. Then the algorithm
terminates at o KKT point, satisfying the first order necessary conditions of problem

( 12), and at that point the perturbed KKT conditions ( 13) are satisfied, for p fized.

Proof Let z.(u), z.(p) € R" and y.(u) € RY be such that limg oz = z.(1),
limy 00 2k = 2 (1), and limy oo Y = yu(p), Vk > ki, k € K C {1,2,...}. The existence
of such points is ensured since by Assumption A2 and Lemmas 5 and 7, the sequence
{(zk (1), yr (1), 2z, (1))} is bounded for u fixed, and by Theorem 1 the algorithm always
decreases the merit function @ sufficiently at each iteration, thereby ensuring z; € S,
with S7 compact.

Solving the third equation of the Newton system ( 14) for Az yields

Az = —Xk_leAxk -z + ,uXk_le.
Taking limits and using Lemma 7, the above equation yields

lim (21, + Az) = lem X e (44)

k— o0

By defining z;, = zj, + Az, from Lemmas 5 and 7, it can be derived that the sequence
{#},} is bounded, since it is a sum of bounded sequences. Hence, there exits a vector 2
such that
lim 2z}, = 2z, = uX, le. (45)
k—o00

Furthermore, writing yj, = yx + Ayy, the first equation of the Newton system ( 14)
takes the form
HyAzp — Vgl y, = —Vie + 2, — ek Vi g

Letting k — oo, and applying Lemma 9 and ( 45) the above equation becomes
Vie—pX, e+ e.Vglg, —Vgly, =0, (46)

where we have set y, = ¢l (1) = limg_yo0(yr + Ayg). Similarly, letting & — oo the
second equation of the Newton system ( 14) yields

lim (VgrAzg) = lim (—gy).
k—o00 k—o00

Applying Lemma 9 the above equation yields

g« =0. (47)
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From ( 45), ( 46) and ( 47) we can conclude that the vector z,(u) is the optimum
solution of problem ( 12), while the triple (z.(u),y. (1), 2. (1)) solves the perturbed
KKT conditions ( 13), for p fixed. o

An immediate consequence of Theorem 2 is that, for any convergent subsequence,
produced by the algorithm, for = !, there is an iteration I~c, such that

| Fxi, i, 255 Ceo 1) |< 1t (48)

for all k > k, where n € (0,1) and F(z,y,z; ¢, 1) is given by ( 13). At this point, we
record the value of the current iterate

~l ~l =l
(ZE Y, 2 ) = ((L‘]}ay]}az]})a

I+1

and set p to a smaller value u!*!' < p!. Therefore a sequence of approximate central

points {(z!, 4!, )} is generated.

In the remaining part of this section, we show that the sequence of approximate cen-
tral points converges to a KKT point (Z*, *, 2*) of the initial constrained optimization
problem ( 4).

For a given € > 0, consider the set of all the approximate central points, generated
by Algorithm 1

Soe) = {(#, 9", 2" e <|| F(E, 4" 2 e, i) 1<) F(2°,8°, 2% ¢, 1) ||, Vb < 10}

If € > 0 then the step-size rules, described in section 4 guarantee that @',z € Sy(e)
are bounded away from zero, for [ > 0. Consequently (Z')7# is also bounded away
from zero in Sy(e). The following lemma shows that the sequence {§'} is bounded if
the sequence {3'} is also bounded.

Lemma 10 Assuming that the columns of Vg(i') are linearly independent and the

iterates ¥ are in a compact set for 1 > 0, then there exists a constant My > 0 such that

1§ 1< M1+ || 2 D).

Proof By defining ' = V(i) — 2! + ¢Vg(i)Tg(i) — Vg(@")T§' and solving for
Vg(#)Tj' we obtain

V(@) 'y = V@) -2 + V(@) g@') - .
From our assumptions the above equation can be written as

i = Vg Ve V(@) (VFE) + V() g(#) — )

~[Vg(@")Vg(@)"] 7' Vg(a") 2.

Taking norms in both sides of the above equation yield
151 < I11Vg(@) V@) ] 'Vg(@) || | V&) +evg(E) g(@) —r' |

+ 1 [Vg(@)vg@) 1" V@) I 2|l
My(1+ || 21 ).
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where the constant M; < oo is defined as

My > max{ || [Vg(#) V(@) 'Vg(@) ||| V(@) + V() g(#) —r' ||
| [Vo(&)Vg(@)")~ Vo) |}

Lemma 11 If (', 7', 2') € Sy(e) for alll > 0, then the sequence { (&', 4", Z)} is bounded

above.

Proof From Lemma 10, it suffices to prove that the sequences {#'} and {3'} are
bounded from above. By assumption (A2), the sequence {Z'} is bounded. Assume
that there exists a non—empty set I2°, which contains the indices ¢ of those elements,
(2)), of the vector #', for which lim;_(#")" = oco. From the boundedness of the
sequences {(z')*(!)'}, i = 1,2,...,n, we obtain liminf;_,.,(Z')" = 0, for those indices
i € I, Furthermore from the definition of the set I2, in Assumption (A4), it is evident
that I C ID.
From ( 48) and the fact that {;!} — 0 we have that the sequence

{1 Vf @) =2 +evg(@) 9@ - Va@) g I}

is bounded. Using this and the fact that the sequences {|| V£(#') ||} and {|| cVg(z")Tg(z") ||
} are bounded, we conclude that {|| —2' — Vg(#")7¢' ||} is also bounded. Hence, we
have

12+ Vg@) "y |
1@ 2 |l

—0 (49)

By setting @' ”E ;H, we have {@'} bounded and {@'} — @*. Tt is clear that || @* ||= 1
and the components of @*, corresponding to those indices i ¢ I°, i.e., {(2!)’} < oo, are

zero. If 4* is the vector consisting of the components of 4* which correspond to the
indices i € I2°, then || 4* ||=|| @* ||= 1. Furthermore, from ( 49) we have

= = [Vg(@")", e;:ie I a* — 0.
O TG e e e L= 0

Vo) +2 _ (Vo) 1n) 72

However, this result contradicts Assumption (A2). Hence, the set I2° is empty, or for
all indices i = 1,2,...,n, the sequences {(z!)’} are bounded. Consequently, {#'} is also
bounded. °

The following theorem shows that the sequence {(Z, 7, ')} converges to (Z*, §*, 2*)
which is a KKT point of the initial constrained optimization problem ( 4).
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Theorem 3 Let {y'} is a positive monotonically decreasing sequence of barrier param-
eters with {u'} — 0, and let {(3',7',2")} be a sequence of approzimate central points
satisfying ( 48) for u = p', 1 > 0. Then the sequence {(z',7',2')} is bounded and its
limit point (Z*,7*,2*) satisfies the KKT conditions of problem ( 4).

Proof From Lemma 10 the sequence {(i!,7,3')} is bounded. Then it is convergent
and let (Z*,§*,2*) be its limit point. From ( 48) and the fact that u! — 0 we easily
obtain that limy o, || F(7, 7', 2') ||= 0. Therefore,

V(@) -z —Vg@@)Tgr = 0
g(z*) = 0
X*Z*¢ = 0.

Clearly from the above equations we may derive that (Z*,3*,2*) is a KKT point of the
initial constrained optimization problem ( 4). .

6 Local Convergence

In this section the local convergence of the algorithm is discussed. Without loss of
generality, we assume that the value of the barrier parameter changes at each iteration
and Armijo’s rule does not backtrack and hence the primal step-size a,, determined in
step 2.4 is equal to the maximum allowable step-size G, . We show that Algorithm 1
converges quadratically to the optimum solution. This is essentially a preservation of
the property of the basic Newton algorithm.

Algorithm 1 uses a technique similar to Yamashita and Yabe [8] to determine dif-
ferent step-sizes. The difference in the present algorithm is in the rule used for the
step-size a,y, of the dual variables yj and z;. In particular, the term 1 —-y;/2#% € (0, 1)
in the definition of the parameter m, given by ( 30), results in the lower bound LB} of
the box constraints ( 28), being smaller than the corresponding bound, defined in [8].
As {ur} — 0, the term 1 — 7, /2"* approaches 1 — 7. By noting

2+ opAzk > (1 — )z > 0,Vi=1,2,...,m,

it can be shown that the inclusion of 1 —y;/2#* in the lower bounds LB,i, 1=1,2,...,n,
allows a dual step-size o, greater than that in [8]. Also, as {ur} — 0, i approaches
the maximum allowable step-size for the variables z, i.e., a,p — G, with

i
2k

& = max{l,y, max { : Azj, < 0}}.

1<i<n' —Az}
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The next lemma provides useful bounds on the Newton directions near the optimum
solution. It is based on the complementarity condition

ZAzp + XAz = —XpZpe + pre (50)

of the perturbed Newton system ( 14). It has been proved by Yamashita and Yabe
in [8] and has also been used by El-Bakry et al in [22]. We include this lemma for
convenience, since its results are used frequently in the sequel.

Lemma 12 Let strict complementarity at the optimum solution w, holds and there

exists a constant € > 0 such that if || wp — ws ||< € then for all i such that ' = 0, we

have
Azl —Az
P (51)
Ly L2k, “k,
Az
B2 <) . (52)
ke
while for all i such that x1 > 0, we have
Az A
S I . el (53)
ke Lk Ly
Azl
24l <) dwg (54)
Tk
where K is defined as follows
1 ; , 1 ; .
k=2max{{—: z,>0,i=1,2,...n}, {—: 2. >0,i=1,2,...,n} }.
Tl Zy
Proof The proof can be found in [8]. o

The following two lemmas show that the step-sizes . and «,p are always strictly
positive. They also show that both step-sizes approach unity, when we are in a close
neighbourhood of w,.

Lemma 13 Let the assumptions of lemma ( 12) are satisfied. If
1 .
fl Awg ||< Sk, with oy € (0,1),

then we have,

1> age >y — k|| Awg || - (55)

Proof The proof can be found in [8] o
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Lemma 14 Let the assumptions of the previous lemma hold. If
1 .
K || Awy, ||S 57/427 with Yk € (07 1)7

then the step-size oy, is determined by the formula:

1
Mk

=mim{l, min{a > 0: z} + aAz, = —2""_ Azl <0} 56
. = mim{1l, min{« 2y + alzp, P — zp, < 0} (56)

Also the values that the step-size ) take are in the following interval:
Yk
1> a2 1=k | Awg || =(1 =) (1 = 5-). (57)

Proof Equality ( 56) basically implies that only those indices i for which Az} < 0,
contribute to the determination of a,. First we prove that the upper bound constraint
in ( 28) is always not active. This is obvious for all those indices 4 for which Az} < 0.
Hence, we examine whether the upper bound constraint is also not active when Az,i > 0.
To prove this, it suffices to show that if aik =1 (i.e., the maximum allowed step we
can take when Az} > 0) then we always have

(:JU}c + amkAxfc)(z,i + Az,’c) < 2M iy, (58)

where M is defined in ( 31). We can distinguish the following four cases:
CASE A: If 22 = 0 and Az}, > 0 then by using ( 51) and ( 52) we have

, S , o Azt Azl
(2 + appAzt)(zh + AzE) < zizi(1+ x%k)(l—i- Z'k)
) Az Az
= aja(1-1+ 5 - =R+ =k
- [k Az} Az}
= zhap(l+ ) (1 + =£) — 2jzp (1 + =E)?
k%K 2k 2k
i Pk |3 o
< it LR e
< zpzp(l+ 33?@212)2 T2,
< smax{zpzp} + Sk
2 i 2
< Lonaxqy, i)y 8y, kAT
2 2 ok
= 2M,uk.
CASE B: If 21 = 0 and Az} < 0 then from ( 52) we have
) o . o Azl Az
(2 + e Azt) (zh + AzE) = 2z (14 g xik)(l + Z—z-’“)
k k
AzfC

< aiZl(1+

)

VA
2k
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1

< I;;:Z]Zc(]."_i)
3 .

< o max{zyz}
2

< 3 maxpy, mesilhaty
2 [k

< 2Mpuy.

CASE C: If 21 > 0 and Azi > 0 then, working as in case (A), and using ( 53) and
( 54) we obtain

(@h + e Ah) (7 + Azh) < 2Mpy.

CASE D: If 21 > 0 and Az < 0 then, working as in case (B), and using ( 53) we
obtain

(0 + amAz}) (2 + Azt) < §Mpy < 2Mpy.

Hence the step-size aik is determined from the lower bound constraint, which
becomes active when Az,i < 0. We first show that, once the new primal iterate
x}c 41 = x}c + aka:chc is known, the corresponding product x}c _Hz,ic is always strictly
less than the lower bound constraint. Indeed, by observing that for all 1 = 1,2, ..., n,
:chc + amkA:chc >(1-— f)/k)xft, we have

%mﬂk %mlf'k
o+ oppAzy, T (1= )z,
1
2 Mk i
< — Zk
(1 =) (1 — )z 2
< %m:“k i
> s —— 2
(1 = 7&) (1 = k) min{z} 2} }
< %mﬂ'k Z]Zc
- 1— 1— 2k} min; {z% 2
min{ 1, (L—vx)( Q;L:k)mm {wkzk}}
< ch

Therefore from the above analysis we deduce that the step-size a,j is determined
by ( 56).

Finally we show that ( 57) holds. If Azl > 0 for all 4, then from the previous
discussion can be shown that aik = 1 and thus ( 57) holds. Therefore assume that
there exists at least one index % such that Az/,ic < 0. Working similarly as in cases
(A)-(D), it can be shown that if 22 = 0 then the lower bound constraint in ( 28) is not
violated by taking a unit step-size along the direction Az/,ic < 0. Indeed, we have

i
Az},

i
2,

(2} + agpAzt)(zh + Azk) > (1 —yp)zbzi (1 +

)
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1

> —W’k)%zlic(l—g)
1 Yo\ .o i
> 51— w) (1 = 5 0) min{zyzi}
1 1 — ) (1 — o) min;{z} 2
Z §m1n{ 1’ ( ’Y]f)( Z;)mlnz{$ka}}ﬂk
= Em/.lk

Hence ( 57) is again satisfied if Az} < 0 and 2% = 0.

Consider the case we have not yet investigated that is, when Az,i < 0and % > 0.
It is not certain whether unit step-sizes are allowed, as this might violate the lower
bound constraint in ( 28) or the feasible region (i.e., zi + Az. < 0). Therefore, the
step-size aik for the i-th dual variable is determined by

1
P AL 3k
2h+ Az =
Ty, + Qg ATy,
Noting that % + au Azt > 2t (1 — K || Awy ||), the above equation becomes

S
wi (L= k|| Awg [[)’

7+ ol Azl <
and solving for aik yields

_ %mﬂ'k
w2 (1 =k || Awg [])

)- (59)

Since . > 0, from ( 53) we have

Az [k Azt Az},
Zk Ty T Tk

> —1—r | Auwy |-

Substituting the above inequality into ( 59) we obtain

. 1 lm/;,k
ol > 1— ——2
% T Aw 1 2 -l Aug )

)- (60)

Furthermore, since it is assumed that & | Awy [|< 3 we have 1 — (k || Awy, [|)? < 1,
and therefore

1

—>1—/<& A’LU .
145 || Awy || I A ||

Substituting the above inequality into ( 60) yields

: 1 mpy
oy = 1= duy | =50
2z} 2,
1 MLy Vi
> 1- A —— — (1 — 1——
> K || Awg || 2(1—%)(1—;—’;)mini{x§czi}( M) (1= 5u0)
Yk
2 1=l Awg | =1 = 7)1 = 570
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Since the common dual step-size is defined as o, = min{1, min;<;<,{a?, : Azl <0}}
the previous inequality establishes ( 57). .

The result of the following lemma is used in Theorem 4, in which Q-quadratic
convergence of the algorithm is established. Recall that the next iterate is given by
Wi41 = wy+ApAwy, where the matrix Ay, is defined as Ay, = diag{ oLy, oy ly, i dn}.

Lemma 15 Let the assumptions of the previous lemma hold. Then
Yk
11 = Ag [I< (L =) + (g + 1) (1 =)L = 50) + O F(w) ) + Oug).  (61)

Proof From ( 55) we have

0<l—0am < 1—vy+&] Auwl
< 1=+ VF@e)™ | (| Fwe) |+ € ).

while from ( 57) we have

k
0<l—am < (L=m)(1—go)+5 | Auy |

< (=) - ;Tkk) + 6 || VE(wp) ™ F(w) |+ e )

Assuming that oy, = o) and using the following inequality
1
vn

which relates the l3 matrix norm of any n x n matrix Il to the Frobenius one, we have

“ dza’g{(l - amk)Ina (1 - ayk)Iqa (1 - azk)In} “

T < || T <[ T [,

I T—Ap |l

< “ diag{(l - aa:k)Ina (1 - ayk)Ilb (1 - azk)In} “F
< (L =) + (g + )L =) (L= o) + O(| Flw) ) + Oluar).

[ J

The next theorem shows that Algorithm 1 converges to the optimum solution Q-

quadratically. We define by N (7,7) the open neighbourhood of radius r around 7,
namely N (7,r) = {v e R":||v—7 ||< r}.

Theorem 4 Assume that the sequence {wy} generated by Algorithm 1 converges to a

solution wy and suppose that assumptions (A1)-(A4) hold at that solution. Assume

also that the parameters puy and v, are selected such that
pe = O( Fwe) 1) and 1=, = O(|] Fwg) |)- (62)

Then there exists an € > 0 such that for all wy EN (wy,€) the sequence {wy} is well

defined and converges to w, Q-quadratically.
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Proof We use induction to show that there always exists a positive constant £ such
that

| w1 = ws S €| wp —ws |7 (63)

Since wy EN (ws, €) we have || wy — w, [|< €. For || wi — w, ||< €, we also have,
Wht1 — Wy = Wi — Wy — ApAwy,

= wy — we — AyVF(wg) HF(wg) — pxé]

= VF(wp) [ApF(wi) — ApF(wg) + VF(wg)(wg, — w,)]
e AR VF (wg) e

= VF(wp) ARF(wi) — ApF(wi) — AR VF (wy,) (wy — w,)]
+VF(wi) HARF (wg) (w, — w) — F(wg) (wg, — w,)]
+up AR VF (wy) e

= ARVE(wp) 7' [F(wi) — F(wg) — VF(wy) (wy, — ws)]

+(Ag = I)(wg, — wi) + pp ARV EF (wy) e

Taking norms and applying the results of Lemma 15 we obtain
lwksr —we | < [ ARVE(wp) ™" || || Fws) — F(wg) — VF (wg) (wg —wy) ||

+ | Ag = T wi = ws ||+ || AV (wy)~'e |

IN

Ol we = wi )+ 1 T = A | wr — we || +O (k)

IN

O(|| wy, — wi [|?)

Hn(l =) + (n+m) (L — ) (1 — ) + O(] F(we) )

+O (i) 1| we — we || + O(pei). (64)

From Assumption (A1) we have that F'(w) is Lipschitz continuous. Hence, there exists
a constant ¢ > 0 such that

| F(wp) [| =] F(wr) = F(ws) [| < ¢ | wp —ws |, (65)

for all wy € N (ws,€). Choosing the parameters uy and 7, as in ( 62) and considering
( 65), inequality ( 64) guarantees that there exists a positive constant ¢ such that ( 63)
is satisfied. Also by the induction hypothesis we have || wy —w, ||< € and therefore, for
any sufficiently small € we have || wg11 —wy ||< €. Hence the sequence {wy} converges
Q-quadratically to w,. .
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