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Interior point methods, especially the algorithms for linear programming problems are sensitive
if there are unconstrained (free) variables in the problem. While replacing a free variable by two
nonnegative ones may cause numerical instabilities, the implicit handling results in a semide�nite
scaling matrix at each interior point iteration. In the paper we investigate the e�ects if the
scaling matrix is regularized. Our analysis will prove that the e�ect of the regularization can be
easily monitored and corrected if necessary. We describe the regularization scheme mainly for
the e�cient handling of free variables, but a similar analysis can be made for the case, when the
small scaling factors are raised to larger values to improve the numerical stability of the systems
that de�ne the search direction. We will show the superiority of our approach over the variable
replacement method on a set of test problems arising from water management application.
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1 INTRODUCTION

Interior point methods for constrained optimization are usually formulated for non-
negative variables. Methods for handling free variables have received little atten-
tion. One of the reasons for this is that in nonlinear optimization the computational
di�culties caused by free variables are absorbed by the nonlinearity of the prob-
lem. Free variables can cause trouble when linear programming (LP) problems are
solved by traditional interior point methods. However, LP problems with large
numbers of free variables are rare in the current set of test libraries. For example,
from the more than 100 problems of the commonly used LP test set NETLIB [7]
only 7 problems have more than 4 free variables. However, in practice many more
problems can occur with many free variables. The water management decision
support system Aquarius [8], which has been developed at the Delft University of
Technology especially draws our attention to the necessity for e�cient handling of
free variables.

� This work was supported in part by EPSRC grant No. GR/J52655 and Hungarian Research
Fund OTKA T-016413.
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The simplest way to handle free variables is to split them into positive and
negative parts, also known as variable replacement. This approach, however, may
result in serious numerical troubles. Another straightforward idea is the elimination
of free variables during presolve. While this can be very favorable in some cases, it
can also be a major source of instability or �ll-in. Numerical results indicate [10]
that an e�cient way to handle free variables can be derived by a modi�cation of
the logarithmic barrier function. It is easy to see that this will result in the same
iteration trajectory as that for the problem after elimination of all free variables.
Therefore the approach is also referred to as implicit elimination. The disadvantages
of this technique are the possibility of big �ll-in on problems with several free
variables and the loss of the numerically advantageous positive de�niteness of the
scaling matrix at each interior point iteration [9].
Our aim in the paper is to combine the bene�ts of the variable replacement and

implicit elimination techniques and to derive an e�cient way to handle free vari-
ables. In Section 2 we give a brief summary of the primal-dual logarithmic barrier
algorithm which is the framework of our investigations. In Section 3 we suggest a
regularization approach which makes the use of the normal equation system pos-
sible, but does not encounter the numerical problems inherent to the variable re-
placement. In Section 4 we investigate the proposed regularization and show its
properties. In Section 5 we describe a presolve technique which detects hidden free
variables in the model and eliminates free variables unless they introduce heavy
�ll{in or numerical instability. In Section 6 we show computational results and
compare our method, implemented in BPMPD [13], with the primal{dual interior
point implementation PCx [5] which uses variable replacement. We summarize our
�ndings in Section 7.

2 THE PRIMAL-DUAL LOG BARRIER ALGORITHM

In this paper we have selected the primal-dual logarithmic barrier algorithm to
present our ideas, because it and its modi�ed versions are considered, in general, to
be the most e�cient in practice. The computational results presented in this paper
were obtained using implementations of this algorithm. It is to be noted, however,
that this choice has notational consequences only. Practically, any interior point
method, even nonlinear ones can be discussed in a similar linear algebra framework.
Let us consider the linear programming problem

min cTx

Ax = b; (1)

x � 0;

where c; x 2 Rn, b 2 Rm and A 2 Rm�n and its dual

max bTy;

ATy + z = c; (2)
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z � 0;

where y 2 Rm and z 2 Rn. In this paper we will assume that A is of full row rank.
The primal-dual logarithmic barrier algorithm constructs a sequence of nonlin-

ear optimization problems, where the goal is to minimize the logarithmic barrier
function

L(x; �) = cTx� �

nX
i=1

ln (xj) (3)

for a barrier parameter � � 0 under the condition Ax = b. It can be seen that the
application of the Newton method to solve the �rst order optimality conditions of
each barrier problem results in the so called augmented system:� �D AT

A 0

� �
�x
�y

�
=

�
�
�

�
; (4)

where X = diag(x1; :::; xn); Z = diag(z1; :::; zn); D = X�1Z; � = X�1(�e �
XZe); � = 0m and e is the n-vector of all ones. In one iteration of the primal-
dual interior point method the current iterate (x; y; z) is shifted along the search
direction (�x;�y;�z), where solution of (4) results in �x and �y, and �z can
be obtained as �z = X�1(�e�XZe � Z�x).
An e�cient way to solve (4) is the normal equations approach, where �x is

eliminated �rst from (4). The matrix of the resulting equation system, AD�1AT is
positive de�nite, therefore a Cholesky decomposition can be performed on it. The
big advantage of this approach is the positive de�nite property, which has favorable
numerical bene�ts and makes e�cient symbolic pivot determination possible. For
further details on the interior point algorithms the reader is referred to the recent
paper [2].

3 FREE VARIABLES IN THE PRIMAL-DUAL LOG BARRIER METHOD

In what follows, we investigate the case when some of the variables are not con-
strained by nonnegativity. Let us modify problem (1) as

min cTx;

Ax = b; (5)

xi � 0; i 2 f1; :::; ngnF
where F � f1; :::; ng denotes the index set of free variables. In our investigations
we will assume that the columns of the free variables are linearly independent.
Otherwise, linearly dependent free variables will cause dual infeasibility (primal
unboundedness) unless the dependency is true for the vectors augmented by the
objective coe�cients. In this case, the set of free variables can be reduced to a
maximal independent subset.
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Most of the interior point implementations replace each free variable by two
nonnegative ones: xi = x+i � x�i for i 2 F . After this transformation the standard
interior point technology can be applied. The variable replacement increases the
number of variables in the linear programming problem, but has no further e�ect
on the sparsity of AD�1AT because the sparsity pattern of the newly introduced
columns is the same than that one of the original free variable. The main drawback
of this approach is that function (3) becomes unbounded. Furthermore the dual
of the reformulated problem will have an empty interior. This results in numerical
instabilities, which make the algorithm less e�ective.
A natural idea is to modify (3) in such a way that we do not include the free

variables in the logarithmic barrier term, in other words we de�ne the logarithmic
barrier function for problem (5) as

L(x; �) = cTx� �
X

i=1;:::;n
i=2F

ln (xi): (6)

It is easy to see that application of the log barrier methodology to the above
problem yields the system� � ~D AT

A 0

� �
~�x
~�y

�
=

�
~�
~�

�
; (7)

where

~Dii =

�
x�1i zi i =2 F
0 i 2 F

; (8)

~�i =

�
x�1i (�� xizi) i =2 F

0 i 2 F
; ~� = 0m:

If A is of full row rank and the columns of the free varibales are linearly independent,
then the matrix of system (7) is of full rank. It is to be noted that the diagonal
scaling matrix ~D is no longer positive de�nite, therefore A ~D�1AT does not exist.
This is why Cholesky factorization with the symbolic reordering scheme can not be
used for this system.
However, as it was shown in [12], the decomposition of the augmented system

with 1�1 pivoting is possible, but it must be based on both numerical and sparsity
investigations. Such an approach can not be superior to the Cholesky factoriza-
tion, unless the linear programming problem has special structure, which results in
disadvantageous �ll{in in AAT [9]. The other advantage of the normal equations
approach is that the pivot order determined at the very beginning of the algorithm
will be valid during all interior point iterations, which is not the case when the
augmented system is factored [6, 9].
In [6] the Bunch-Parlett factorization was proposed to solve the inde�nite system

(7). Computational results indicated the usefulness of the Bunch-Parlett factoriza-
tion, but showed that it tends to be computationally more burdensome.
Vanderbei derived the implicit elimination for the primal a�ne scaling algorithm

[15]. The approach presented by the author uses the Schur complement mecha-



ON FREE VARIABLES IN IPMS 5

nism to overcome the semide�niteness of ~D. Further investigations of the Schur
complement method in context of interior point methods indicated that it works
e�ciently if only few columns of A have to be handled with it (in our case, if the
LP problem contains few free variables only) [4]. Otherwise the approach and its
supplementary stabilization techniques are excessively expensive.
We will combine the split variable representation method (which actually regu-

larizes ~D, see in [9]), and the implicit variable elimination method to exploit their
bene�ts. We will use a regularized scaling matrix:

Dii =

�
x�1i zi i =2 F
� i 2 F

; (9)

where � > 0, but keep the right hand side of (7).

4 PROPERTIES OF THE REGULARIZED SYSTEM

In our approach we regularize matrix (8) by replacing its diagonal zero elements
by �. Obviously, changing a zero value in a matrix to a nonzero one can heavily
in
uence the behavior of the system, and it does not stand to reason that such a
modi�cation in our case does not change the solution of the system substantially.
In this section we will derive error bounds on the di�erence of the solution by the
original and regularized systems.
Let ~M denote the matrix at the left hand side of equation (7), and M its regu-

larized version, where (9) is used in place of the ~D . Let k : k denote the Euclidean
norm. Furthermore, let�

~�x
~�y

�
= ~M�1

�
~�
~�

�
and

�
�x
�y

�
= M�1

�
~�
~�

�
:

In the �rst step we examine the case if only one position (i; i) is regularized in
(7). In this case, ~M = M + �eie

T
i . Let u

i =M�1ei. We can compute ~M�1 via the
formula of the modi�ed matrix inverse as:

~M�1 = M�1 � �M�1eie
T
i M

�1

1 + �eiM�1ei
(10)

It follows from this that�
�x
�y

�
�
�

~�x
~�y

�
=

��xiM
�1ei

1 + �(M�1)ii
: (11)

Unfortunately, in (11) the denominator also depends on �. In the following, we will
show that 1 + �(M�1)ii is bounded.
Lemma 4.1.

0 < 1 + �(M�1)ii � 1:
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Proof. To compute (M�1)ii one can use the rule for computing the inverse of a
block matrix. Let

M�1 =

�
� BT

B C

�
the block decomposition suitable to the blocks of M , then

� = �D�1 +D�1AT (AD�1AT )�1AD�1;

(�)ii = �1

�
+

1

�
(AT (AD�1AT )�1AD�1)ii:

In this way,

1 + �(M�1)ii = (AT (AD�1AT )�1AD�1)ii:

Let us substitute D�1 by D�
1

2D�
1

2 (note, D is a positive de�nite diagonal matrix),
and we gain

(AT (AD�1AT )�1AD�1)ii =
1p
�

�
aTi

�
AD�

1

2D�
1

2AT
��1

AD�
1

2

�
i

(12)

=
1p
�

�
aTi

�
AD�

1

2

�+�
i

(13)

where
�
AD�

1

2

�+
denotes the Moore-Penrose pseudoinverse of AD�

1

2 and ai the

i-th column of A. As well known, v = aTi

�
AD�

1

2

�+
is that minimizer of

k AD� 1

2 v̂ � ai k2 (14)

which has the smallest L2 norm. Since for �v =
p
�ei

k AD� 1

2 �v � ai k2= 0;

we can obtain v by the following optimization problem:

min k v k2; (15)

AD�
1

2 v = ai:

Now we write v as the convex combination of two orthogonal components:

v = p�v + (1� p)~v

where 0 � p � 1; �v =
p
�ei and ~v 2 fRn; ~vi = 0g. Because of the orthogonality, ~v

can be obtained by the following problem:

min k v̂ k2;
AD�

1

2 v̂ = ai (16)

v̂i = 0:
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Let s denote the in�mum of the objective function of problem (16). Let s = +1 if
the problem has no feasible solution. Let us observe that s is independent of �. To
obtain v, we have to minimize the expression

k v k2= p2�+ (1� p)2s: (17)

It is easy to derive that the minimum of (17) takes place at

p =
s

s + �

and so the denominator of the expression on the right hand side of (11) is

1 + �(M�1)ii =
1p
�
vi

=
1p
�
(p�vi + (1 � p)~vi)

=
s

s + �
:

It is to be observed that
0 <

s

s + �
� 1 (18)

which proves our lemma.
Note that s

s+�
= 1 if and only if (16) has no feasible solution, that is if ai is

linearly independent from the other columns of A.
Theorem 4.2. The regularization error is of order � that is�

�x
�y

�
�
�

~�x
~�y

�
= ��(�)

where �(�) is bounded.
Proof. Substituting the result of the lemma as

�(M�1)ii =
s

s + �
� 1 (19)

into (11) results in �
�x
�y

�
�
�

~�x
~�y

�
= ��xiu

i +
�2�xiu

i

s
: (20)

Hence ~M furthermore M for any � are nonsingular and s is independent of �,
expression (20) shows that the perturbation introduced by the regularization is of
order �.
Clearly, during interior point iterations, once we have computed a decomposition

of M , with only one more backsolve operation, namely by computing ui = M�1ei
we can compute the solution of the unregularized equations system with an arbi-
trary right hand side.
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In the following we will give a computationally cheap explicite method to reduce
the regularization error.

Theorem 4.3.

�
~�x
~�y

�
can be obtained by the iterative re�nement scheme

�
�x
�y

�0
= M�1

�
~�
~�

�
; (21)

�
�x
�y

�k+1
=

�
�x
�y

�k
+M�1

 �
~�
~�

�
� ~M

�
�x
�y

�k!
: (22)

Proof. To prove the convergence of (21-22) one should observe that

~M

�
�x
�y

�k
=

�
~�
~�

�
+ �
�
�xk

�
i
ei

hence

M�1

 �
~�
~�

�
� ~M

�
�x
�y

�k!
= �� ��xk�

i
M�1ei:

By induction on k it is easy to see that

�
�
�xk

�
i
= �k+1

�
�x0

�
i
(uii)

k

therefore

�� ��xk�
i
M�1ei = ��k+1 ��x0�

i
(uii)

kui:

It follows from the foregoing that

�
�x
�y

�k
=

�
�x
�y

�0
+

0
@k�1X

j=0

��j+1 ��x0�
i
(uii)

j

1
A ui for k > 0: (23)

Let us observe that the multiplicator of ui in (23) is a geometric series with��(�x0)i
starting value and ��uii quotient. Since (M�1)ii = uii, it follows from (19) and (18)
that 0 � ��uii < 1, therefore the geometric series has a �nite limit value, and

�
�x
�y

�1
=

�
�x
�y

�0
� �

�
�x0

�
i
ui

1 + �uii
=

�
~�x
~�y

�
:

In other words, the iterative re�nement which is considered as a standard tech-
nique to improve numerical stability in interior point implementations, for any
regularization � > 0 can be performed with matrix M to compute the solution by
the unregularized system.
Now let us consider the case when the set of the free variables is F = fi1; i2; :::; ikg.

We can apply (20) recursively, at all times taking one more regularization into ac-
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count. As a result, we gain�
�x
�y

�
�
�

~�x
~�y

�
= �

X
i2F

�xiu
i + o(�2): (24)

In this case, one can obtain the �rst order error term by computing

M�1(
X
i2F

�xiei):

As in what has gone once before, by investigating each component in the residual,
the convergence of the iterative re�nement (21-22) can be derived.
The important parameter of our approach is the amount of regularization, �,

which balances between stability and e�ciency. Increasing � can result in more
stable factorizations, but also alters the search directions stronger which may lead
to less e�cient steps or more necessary corrections during iterations. This e�ect
was demonstrated in [9]. Rather than using a �xed value, we describe here an
adaptive procedure to determine the regularization � in each iteration. To derive a
practically e�cient rule for obtaining � we suppose that the columns of A are of the
same norm (this can be done by trivial scaling of the LP problem prior to applying
the interior point algorithm) and that the positive components of x at the optimum
are of the same order of magnitude. This latter requirement is less trivial, but also
ful�lled by most real life applications.
First, we de�ne at iteration k the tentative partition P k of those nonnegative

primal variables which are positive at the optimum, as

P k = fj : j =2 F; j�xaj j=xj � j�zaj j=zjg;
where (�xa;�za) is the primal-dual a�ne scaling direction at the previous iteration
[11]. We selected this indicator because it is independent of problem scaling and has
been justi�ed by both the theory and practice [2]. Since the e�ect of the regulariza-
tion depends on the relation between the columns of free variables and the remain-
ing part of AD�

1

2 , our assumption is that variables
�
xj : j 2 f1; :::; ngn

�
P k [ F

�	
play less important roles and we have to concentrate on the behavior of the vari-
ables de�ned by P k. We compute the "average" scaling factor of the "important"
variables and multiply it by the rtol parameter:

� = rtol

0
@ Y

j2Pk

Djj

1
A

1

jPkj

: (25)

To avoid an increase in the condition number of D, we de�ne the regularization for
the forthcoming iteration as

�k+1 = max

�
min
i2Pk

Dii ; �

�
: (26)

Our experiments indicated that the above technique with rtol = 10�6 is reliable
both numerically and algorithmically.
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5 SPECIAL PRESOLVE TECHNIQUES

Investigations of interior point implementations indicated that presolve techniques
which reduce the original problem size are particularly important in interior point
implementations. One such reduction possibility, which is not used frequently in
practice is the elimination of free variables. Since linear programming problems
often have no or only few free variables, the space for this kind of reduction is very
limited in most of the cases. First, we will describe how some of those variables
can be identi�ed as "free" which have �nite bound(s). Next, we will describe an
elimination process which reduces the problem by elimination of (not necessarily
all) free variables.

In the LP problem the variables have explicit, possibly in�nite bounds. An
often used presolve technique is to de�ne upper and lower limits for constraints
i = 1; :::;m as

bi =
X

j=1;::n
aij>0

aijlj +
X

j=1;::n
aij<0

aijuj and �bi =
X

j=1;::n
aij>0

aijuj +
X

j=1;::n
aij<0

aijlj

where uj and lj are individual upper and lower bounds of xj. Based on the property
that

bi �
X

j=1;::;n

aijxj � �bi

for any solution x which satis�es the individual bounds, infeasibility or redundancy
in the constraint set can be detected [3]. From investigation of the upper and lower
constraint limits and their relation with individual variables one can derive "tighter"
bounds on the variables (that is either larger lower or smaller upper bounds). This
technique is referred as tightening variable bounds [3]. Recent interior point pre-
solve techniques (see e.g. [1]) restore the original bounds or keep the tightened
bounds and solve the modi�ed LP problem. In our approach we concentrate on
making as many variables free as possible, and eliminating as many of those pos-
sible. Therefore instead of restoring the original or keeping the modi�ed bounds,
we relax those for which the bound tightening procedure generated a tighter bound
than the original one.

New implied bounds for variables can be computed as

u
0

j = min
i

8>>>>>>>><
>>>>>>>>:

0
@bi � P

k2f1;::ngnfjg
aik>0

aiklk +
P

k2f1;::ngnfjg
aik<0

akjuj

1
A =aij; aij > 0

0
@bi � P

k2f1;::ngnfjg
aik<0

aiklk +
P

k2f1;::ngnfjg
aik>0

akjuj

1
A =aij; aij < 0

;
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l
0

j = max
i

8>>>>>>>><
>>>>>>>>:

0
@bi � P

k2f1;::ngnfjg
aik<0

aiklk +
P

k2f1;::ngnfjg
aik>0

akjuj

1
A =aij; aij > 0

0
@bi � P

k2f1;::ngnfjg
aik>0

aiklk +
P

k2f1;::ngnfjg
aik<0

akjuj

1
A =aij; aij < 0

:

If u
0

j < uj (or l
0

j > lj) then we tighten the bound as uj := u
0

j (or lj := l
0

j) and mark

the bound which was tightened. Otherwise if u
0

j = uj (or l
0

j = lj) we relax the
bound by setting uj := +1 (or lj := �1). This investigation may be performed
successively until no modi�cation is available. At the end of the procedure we relax
all bounds which were marked during the bound tightening. It is to be noted that
relaxation of bounds in this case is possible because the bound tightening "proved"
that the variable is more constrained by other constraints than by its own bound,
therefore the individual bound can be relaxed.

This approach has two bene�ts. It opens more space for the elimination which
in turn reduces the size of the problem; and removal of bounds simpli�es the loga-
rithmic barrier function (6) and makes the �rst order optimality conditions of the
barrier problem less complex by decreasing its nonlinearity.

The successive computation of implied bounds can be implemented e�ciently by
using counters and update techniques. We observed that the order of the rows and
columns in the bound tightening investigation has strong in
uence on the success
of the procedure. Based on our numerical experiments, we suggest that the rows
and columns are processed in increasing order of their nonzero count.

It is widely known that free variables can be eliminated from the linear pro-
gramming problems using the standard Gauss elimination procedure. But, apart
from special cases (singleton columns, doubleton rows) this possibility was not ex-
ploited up to recently. In this section we describe the elimination process, which is
implemented as a feature of the presolve in BPMPD.

Let C denote the set of column indices and R the set of row indices. Let cj the
number of nonzeros in column j 2 C and ri the number of nonzeros in row i 2 R.
Furthermore, to avoid numerical instability as well as �ll{in, we de�ne a pivot
tolerance ptol and a sparsity tolerance stol. We search for a pivot aij, j 2 F , i 2 R
for which

jaijj � ptol (max
k2R

jakjj); and (27)

(cj � 1)(ri � 1) � stol (cj + ri): (28)

If more than one pivot candidate satis�es the stability (27) and sparsity (28)
requirements, we select one for which the Markowitz count (cj�1)(ri�1) is minimal.
Once a pivot is selected, the constraint matrix is to be transformed as

akl := akl � akjail
aij

for k 2 Rnfig; l 2 Cnfjg; (29)
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the right hand side as

bk := bk � akjbj
aij

for k 2 Rnfig (30)

and the objective function as

cl := cl � ailci
aij

for l 2 Cnfjg: (31)

Furthermore we remove i from C and F , j from R and update the column and row
counts. The process terminates if no other pivot can be selected, either because F
is empty, or no pivot satis�es the tolerances. In our experiment ptol = 10�3 and
stol = 4:0 were used.

TABLE 1: Bound relaxation and elimination of free variables

Problem Orig.free Bounds Final free Elimin.free Fill{in by
name variables relax. variables variables elimination
80bau3b 0 549 434 0 0
bore3d 0 60 53 53 225
capri 0 134 115 104 1150
d
001 0 2179 2179 2179 9576
ganges 0 479 433 433 966

greenbeb 4 1100 1017 704 5910
ken-18 0 86526 24893 24893 28770
nesm 0 110 72 72 618

psd-10 0 20412 6702 6682 43855
pilot 0 660 506 106 1928

pilotnov 0 259 232 133 1524
scfxm256 0 7215 6413 6413 63867
stocfor3 0 7515 7515 7242 60155
world 0 9116 4812 35 1996

Tab. 1 shows on few examples, how many "hidden" free variables can be detected
and how many of them can be eliminated by the afore mentioned technique. Figures
given include the number of free variables in the original problem, the number of
relaxed individual bounds, the number of free variables after bound relaxation, the
number of free variables eliminated and the �ll{in during the elimination.
As a result of the elimination, the problems contain some new "�ll-in" nonzeroes

but less rows and columns. An important issue is how this in
uences the e�ciency
of the computations in the interior point algorithm. Tab. 2 compares some of the
important characteristics of the symmetric decomposition of the augmented system
with ("elim") and without ("noelim") the elimination of free variables. As perfor-
mance indicators, the number of nonzeros in the factorization of the augmented
systems (FNZ), the number of 
oating point operations (in thousands) needed to
compute one decomposition (FLOPS) and the time in seconds on a Sparc-2000
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workstation to compute one factorization (TIME) were used.

TABLE 2: Fill{in and and speed of factorizations

Problem FNZ FLOPS TIME
name noelim elim noelim elim noelim elim
80bau3b 53476 53476 893 893 0.74 0.74
bore3d 1377 613 10 4 0.01 0.01
capri 4983 5020 52 89 0.03 0.04
d
001 14313801 1090680 506614 350559 149.83 116.23
ganges 25000 15021 291 126 0.13 0.05

greenbeb 67414 58184 801 748 0.51 0.45
ken-18 2194501 2072844 101168 100600 62.43 58.11
nesm 32646 30805 524 463 0.21 0.18

psd-10 1675223 1006234 460186 190676 141.94 68.13
pilot 208150 206365 18336 18408 5.15 5.12

pilotnov 51451 54551 2001 2124 0.54 0.55
scfxm256 551647 591776 6362 8353 5.31 6.73
stocfor3 215413 159583 1477 1396 1.31 0.97
world 1104334 1113884 52000 52226 19.60 19.60

Results presented in Tab. (2) indicate that elimination of free variables applied
prior to the interior point method does not increase remarkably the computational
work per iteration. In some of the cases, however, the computation speed is im-
proved signi�cantly. An additional e�ect of the smaller problem dimensions is that
better numerical and algorithmical behavior can be expected.

6 COMPUTATIONAL RESULTS

In our computational results we compare the interior point codes PCx and BPMPD.
Both of the codes are implementations of the infeasible primal{dual logarithmic
barrier algorithm, but PCx uses variable replacement while BPMPD implements
the afore mentioned techniques for handling free variables. Since the goal of our
experiments is to demonstrate the di�erences between the variable replacement
and our approach, we have selected test problems from the water management area
[8]. These models, whereas they are of small to medium size, contain a signi�cant
number (up to 15%) of free variables. The problems presented in Tab. 3 have about
3100 constraints, 3250 variables of which 15 % are free and 9000 nonzeros.

Tab. 3 shows the comparison of the performance of the two implementations.
The �gures given include the number of iterations to optimality, the total solution
time and the accuracy of the solution. All timing results are given in seconds on
a Sparc 2000 workstation, and re
ect on the pure algorithmic time, without the
input of the MPS �le. Both of the solvers were con�gured to stop when the relative



14 CS. M�ESZ�AROS

TABLE 3: Comparison of PCx and BPMPD

Problem Iterations Solution time Signi�cant digits
name PCx BPMPD PCx BPMPD PCx BPMPD

pldd000b 39 25 14.08 11.60 6 9
pldd001b 39 24 13.71 12.56 6 10
pldd002b 39 27 13.78 13.02 6 8
pldd003b 37 26 12.76 13.01 5 9
pldd004b 39 25 13.96 11.11 5 9
pldd005b 36 25 12.71 11.25 5 9
pldd006b 37 23 13.39 10.82 7 8
pldd007b 37 24 12.80 10.82 7 9
pldd008b 38 25 14.07 12.86 6 9
pldd009b 37 24 14.23 11.84 5 9
pldd010b 37 24 14.17 11.60 6 9
pldd011b 37 25 13.90 11.61 6 9
pldd012b 35 24 13.45 11.00 5 8

duality gap, computed by formula

cTx� bT y

jcTxj+ 1:0

was less than 10�8 and both the relative primal infeasibility kAx�bk2
kbk2+1:0

and relative

dual infeasibility kc�ATy�zk2
kck2+1:0

were below 10�8.

Results show that the desired accuracy was not achieved by PCx, because of nu-
merical instabilities at the last stage of the iterations, but BPMPD always resulted
in a solution within the tolerance limits. In the case of PCx during the last few
(usually 5{7) iterations the quality of the current iterate was not improved, until
the solver detected the bad numerical behavior, stopped the iterations and restored
the best solution found so far.

7 CONCLUDING REMARKS

As pointed out in [10], e�cient handling of free variables may result in a semidef-
inite scaling matrix in interior point methods. Since this prevents the use of the
powerful normal equations approach, many researchers implement the variable re-
placement for handling free variables [5, 14]. Variable replacement, however, results
in serious numerical di�culties on linear programming problems with several free
variables. In the paper we presented an approach which regularizes the semide�nite
scaling matrix during interior point iterations. The regularization makes the scal-
ing matrix de�nite, therefore the use of the normal equations approach is possible.
But, our approach avoids variable replacement and numerical di�culties. In the
paper we discussed the e�ect of the regularization. We showed how the solution
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of the unregularized system depends on the regularized one. A cheap and reliable
method was proposed to control the in
uence of the regularization. It was shown
that independently of the amount of regularization, an iterative re�nement scheme
can always serve to approach closer to the unregularized solution. We demonstrated
how "hidden" free variables can be detected. We described an algorithm which is
able to reduce the problem by elimination of some (not necessary all) free variables
without considerable �ll{in or loss in numerical behavior.
In our analysis we considered the case where each singularity was regularized by

the same � > 0. The extension of the approach, in which di�erent singularities are
regularized by di�erent values is also possible. This needs only small changes in
our proofs.
At last, we would like to mention that our observations are valid if "near" semidef-

inite scaling matrices are regularized. This means that "too small" diagonal values
in (8), which may cause numerical instability, can be improved during iterations.
The regularization techniques, mentioned above are recently implemented in

BPMPD. For computing the scaling matrix instead of (9) the formula

Dii =

8><
>:

x�1i zi if i =2 F and x�1i zi � �q
x�1i zi� if i =2 F and x�1i zi < �

� if i 2 F

is used in the solver, where � is de�ned by (25) and � by (26). According to
our experiences, this regularization scheme works e�ciently and helps to avoid
numerical di�culties in the practice.
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