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Abstract

An approach to determine primal and dual stepsizes in the infeasible{

interior{point primal{dual method for convex quadratic problems is

presented. The approach reduces the primal and dual infeasibilities

in each step and allows di�erent stepsizes. The method is derived by

investigating the e�cient set of a multiobjective optimization problem.

Computational results are also given.
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1 Introduction

In the paper we will assume the convex quadratic problem (QP) in the form:

min cTx+ 1

2
xTQx;

subject to Ax = b;

x � 0;
(1)
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where A 2 Rm�n is of full row rank, Q 2 Rn�n is symmetric positive semidef-
inite and c; x 2 Rn; b 2 Rm. The dual of (1) in the Wolfe sense is de�ned as
follows:

max bT y � 1

2
xTQx;

subject to ATy + z �Qx = c;

z � 0;
(2)

where z 2 Rn and y 2 Rm.
In the paper we focus on one particular aspect of infeasible{interior{point

methods, namely on the determination of the steplengths in each iteration.
Our main motivation for this investigation is the practice of linear program-
ming (LP) where using di�erent steplengths in the primal and dual space is a
standard implementation technique. While it is not supported by theoretical
results, the use of di�erent steplengths in linear programming increases the
practical e�ciency of the infeasible{interior{point primal{dual methods [1].

In LP dual feasibility constraints are independent of primal variables. In
QP, however, matrix Q connects the dual feasibility to the primal problem.
That is why interior point implementations of quadratic programming are
restricted to the use of a common steplength in the primal and dual spaces
[2, 9].

We give a simple and computationally cheap procedure to compute di�er-
ent stepsizes in the infeasible{interior{point primal{dual methods of quadratic
programming. One variant of our algorithm guarantees that the determined
steplengths make at least as good progress in both primal and dual feasibility
as the common stepsize, and sometimes performs much better. We study one
particular multiobjective optimization problem in which the squared norm of
primal and dual infeasibilities are the objective functions with respect to the
primal and dual stepsizes under box constraints. We show that our algorithm
results in an e�cient point of this multiobjective problem.

The paper is organized as follows: Section 2 gives a short review of the
infeasible{interior{point primal{dual method for quadratic programming. Sec-
tion 3 describes our method for determining the steplengths and discusses
some relevant questions. Section 4 contains a computational comparison be-
tween our suggested method and the traditional technique. We summarize our
�ndings in Section 5.
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2 The infeasible{interior{point primal{dual al-

gorithm for quadratic programming

Infeasible{interior{point primal{dual methods are considered most e�ective
approaches for solving large-scale problems. Whereas the results of Monterio
and Zhou [8] show the superlinear convergence behavior of these methods,
computational practice indicates their usefulness in practice [7, 3].

Primal{dual interior point algorithms are iterative approaches which seek
to satisfy the Karush{Kuhn{Tucker type optimality conditions for the primal{
dual problem (1-2):

Ax = b; (3)

ATy + z �Qx = c; (4)

Xz = 0; (5)

(x; z) � 0;

where X = diag(x1; :::; xn). The infeasible{interior{point primal{dual meth-
ods generate a sequence of iterates in both the primal and dual spaces

(xk; yk; zk) k = 0; 1; 2; ::: ;

which ful�l the strict positivity condition (xk; zk) > 0, but feasibility (3,4) and
complementarity (5) are reached as k �!1.

Infeasible{interior{point primal{dual algorithm can be derived by perturb-
ing the complementarity conditions (5) and applying Newton's method to solve
the nonlinear system of the �rst order optimality conditions.

Performing these steps, one can obtain the perturbed Karush-Kuhn-Tucker
system of (1{2) as

Ax = b;

ATy + z �Qx = c; (6)

XZe = �e;

where e is the vector having all its coordinates equal to one and � � 0 is the
logarithmic barrier parameter.

In one iteration of the primal-dual algorithm one step of Newton's method
is applied to the �rst order optimality conditions (6) with a given � and then
� is decreased. The algorithm terminates when the infeasibility and the com-
plementarity gap are reduced below predetermined tolerances.
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Given an x; z 2 Rn
+; y 2 Rm, Newton's direction is obtained by solving

the following system of linear equations

2
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3
75 ; (7)

where �b = b � Ax; and �c = c � ATy � z +Qx. If A is of full row rank then
this system has a unique solution.

Once the system (7) has been solved, the maximum allowable stepsizes in
the primal space (��P ) and the dual space (��D) are computed such that the
nonnegativity of the variables is preserved:

��P =
1

max
k=1:::n

n
1;��xk

xk

o ; (8)

��D =
1

max
k=1:::n

n
1;��zk

zk

o : (9)

To ensure decrease in both the primal and dual infeasibilities the common
steplength in the primal and dual spaces is de�ned as

� = min (��P ; ��D): (10)

This stepsize is slightly reduced by a factor 0 < �0 < 1 to prevent hitting the
boundary. Finally, a new iterate is computed as

x  x+ �0��x;

y  y + �0��y;

z  z + �0��z:

After taking the step, the barrier parameter � is decreased by a given factor
and the process is repeated.

Theoretical results, as well computational practice, show that complemen-
tarity (5) should not be approached faster than feasibility (3,4) [4, 5]. Other-
wise, the iterates converge close to the nonnegativity boundary, still far away
from the feasible region. Another argument for the importance of the rapid
reduction of infeasibilities is that the decrease in the complementarity is guar-
anteed in theory only if the iterates are feasible.

Let us note that damping the largest step as (10) in QP is necessary,
otherwise, the decrease in the dual infeasibility is not guaranteed and the
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algorithm may diverge. It is also noted that in linear programming, where Q =
0n�n and consequently dual feasibility is not connected to primal variables, the
determination of di�erent steplengths can be decoupled. By allowing di�erent
stepsizes, the progress in the feasibility is not damped in one of the spaces when
only a small step is possible in the other. This speeds up the convergence to
feasible points, which increases the e�ciency of the algorithm. This behavior
was observed even in the �rst implementations of interior point methods for
linear programming and the technique has become a commonly used standard
[1, 10].

3 Steplength strategies

Several variants of the infeasible{interior{point primal{dual methods have
been developed during the past few years (see [1, 10]). Usually, they di�er
in the centralization term while the feasibility terms are the same as in (7),
therefore, infeasible{interior{point primal{dual methods compute such search
directions which satisfy the conditions

A�x = �b; (11)

AT�y +�z �Q�x = �c: (12)

In other words, (�x;�y;�z) are descent directions for kb � Axk and kc �
ATy � z +Qxk where k : k denotes the Euclidean norm. As mentioned in the
previous section, it is seldom the case that a full step can be made without
violating the nonnegativity of x and z. Therefore, stepsizes have to be de�ned
for the Newton direction as (8) and (9). The simplest way to ensure that both
primal and dual infeasibilities decrease is to use the common steplength (10)
in primal and dual. We call this approach \simple damping". Although simple
damping guarantees that both the primal and dual infeasibilities are decreased
by factor (1� �); reducing the larger stepsize to the value of the smaller one
is probably not the most e�cient approach.

In what follows, we study the behavior of the following two functions:

fP (�P ) = kb� A(x+ �P�x)k2 (13)

and

fD(�P ; �D) = kc� AT (y + �D�y)� (z + �D�z) +Q(x + �P�x)k2 (14)
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in the

��P � �P � 0; (15)

��D � �D � 0 (16)

intervals where ��P , furthermore, ��D are de�ned by (8) and (9). Since the goal
is to reduce infeasibilities and the complementarity gap, we want to minimize
both fP and fD in the interval (15-16). To achieve these goals and determine
\optimal" stepsizes a natural idea is to consider the quadratic multiobjective
problem as

min fP (�P );
min fD(�P ; �D);

subject to ��P � �P � 0;
��D � �D � 0:

(17)

Since the minimization of the two functions at the same time may be im-
possible, we will investigate the e�cient set of multiobjective problem (17).
By the e�cient set of (17) we mean a set of e�cient points (�̂P ; �̂D) 2
[0; ��P ]� [0; ��D] with the following properties:
For any (�P ; �D) 2 [0; ��P ]� [0; ��D]

if

(
fP (�P ) < fP (�̂P ) =) fD(�̂P ; �̂D) < fD(�P ; �D);

fD(�P ; �D) < fD(�̂P ; �̂D) =) fP (�̂P ) < fP (�P ):

In our study we assume that the iterate is infeasible and the quadratic term
in
uences the dual feasibility, i.e.

�b 6= 0; �c 6= 0 and Q�x 6= 0:

Let us note that these assumptions are \automatically" ful�lled in practice, at
least because machine precision is �nite. Next, we describe some properties of
functions (13) and (14).

Proposition 1: Functions fP and fD are convex quadratic. Further, if �b 6= 0,
then fP is strictly convex; if Q�x 6= 0, then fD is strictly convex. In the
latter cases the steplength one gives the unique minimum.
Proof: It follows from (11) that under the �b 6= 0 assumption fP (�P ) = 0 if
and only if �P = 1: Furthermore, (12) shows that if �c 6= 0 and Q�x 6= 0,
then fD(�P ; �D) = 0 if and only if �P = 1 and �D = 1:

Proposition 2: The minimum of fD in the interval (15{16) is unique and
if (��P ; �

�

D) is the minimizer of fD in (15{16), then
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(��P ; �
�

D) 2 f(��P ; �D) j ��D � �D � 0g [ f(�P ; ��D) j ��P � �P � 0g :

In other words, the minimum is at the boundary of the interval and at least
one variable has to be at its upper bound.

Proof: Since ��P � 1 and ��P � 1, the global optimum of fD is outside the
interior of the feasible interval and the proposition follows from the strict
convexity of fD.

Furthermore, let (��P ; �
�

D) denote the unique minimizer of fD in the inter-
val given by (15{16). Now, we describe the e�cient set of problem (17):

Theorem 1: If ��D < ��D, then (��P ; �
�

D) is the only e�cient point of (17).
If ��P < ��P , then the e�cient set of (17) is

f(�P ; �
�

D) j �
�

P � �P � ��Pg :

Proof: If ��D < ��D, then (��P ; �
�

D) minimizes both fP and fD in (15{16) and
Proposition 1 shows that (��P ; �

�

D) is the unique minimizer of fD. From Propo-
sition 2 it follows that if ��P < ��P , then ��D = ��D. As a consequence of Propo-
sition 2, the e�cient set in this case is a subset of f(�P ; ��D) j ��P � �P � ��Pg.
Let us observe that fP (�

�

P ) > fP (�P ) if and only if ��P � �P , from which the
theorem follows.

Let us note that using the simple damping may result in steplengths which
do not belong to the e�cient set of (17). This can occur when ��P > � or ��D 6=
�.

As a consequence of Proposition 2, ��P and ��D can be computed by �xing
either �P or �D to its upper bound and solving one{dimensional quadratic
minimizations. Because it is trivial, its technical details are not described
here.

We suggest two di�erent choices for the steplengths. One is to use (��P ; �
�

D)
which has the property that it is from the e�cient set of (17) and the step mini-
mizes the dual infeasibility. The other suggested choice is using max(�; ��P ) for
primal, and ��D for dual stepsize. It follows from Theorem 1 that this latter is
also from the e�cient set of (17). While none of the objectives may be optimal,
this choice guarantees that the decrease in both primal and dual infeasibilities
is not smaller than that of by the simple damping.

To demonstrate that the larger steplength does not necessarily have to
be damped down to the smaller one, we prepared �gures 1 and 2. Figure
1 shows the maximum allowable steplengths (i.e. ��P and ��D) with respect
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Figure 1: Maximum steplengths on problem q��f80
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Figure 2: Damped steplengths on problem q��f80
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to the iteration count. Simple damping would result in their minimum in
each iteration. Figure 2 shows the e�ect of our second suggested method,
i.e. max (�; ��P ) and ��D. It indicates that di�erent steplengths can be used,
mainly at the �rst stage of the iterations where the iterates are considerably
infeasible. Note that the di�erence between the primal and dual stepsizes
decreases and vanishes as feasibility is approached.

As it was pointed out in [4], for the infeasible{interior{point primal{dual
algorithm some safeguard techniques regarding the steplength selection have
to be included to ensure global convergence. Such safeguard techniques have
been proved to be practically importand for linear programming [5]. In our
implementation we used the conditions described by Kojima et al. [4]:

xjzj > 

xT z

n
; 1 � j � n; (18)

xT z � 
P kAx� bk or kAx� bk � �P ; (19)

xT z � 
d



ATy + z � c�Qx




 or



AT y + z � c�Qx




 � �d (20)

with the following parameter values:


 = 10�3;

P = 10�6 kAx0 � bk ; �p = 10�8(kbk+ 1);


P = 10�6



ATy0 + z0 � c�Qx0




 ; �d = 10�8(kck+ 1);

where (x0; y0; z0) is the starting point. We selected a starting point satisfying
(18) and during iterations the steplengths were reduced until the conditions
(18{20) are satis�ed. We observed that the most important condition is (18)
since in our experiments conditions (19,20) were automatically satis�ed when-
ever (18) was satis�ed. We observed that modifying the steplengts to ensure
(18{20) was rarely necessary and required only a small reduction in the step-
size.

Let us note that if the iterate is primal and dual feasible, then our proce-
dure automatically selects equal steplengths. Contrary to linear programming,
however, in the QP case the complementarity gap does not decrease through-
out as the steplength increases since �xT�z 6= 0. If the iterate is primal and
dual feasible, we truncate the steplenghts at

~� = �
(�xT z + xT�z)

2�xT�z
; (21)

which minimizes

(x+ ��x)T (z + ��z) = xT z + �(�xT z + xT�z) + �2�xT�z:
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It is easy to see that if �b = 0 and �c = 0, then

�xT�z = �xTQ�x;

and
�xT z + xT�z = n�� xT z;

which shows that (x+��x)T (z+��z) decreases at � = 0 if � < xT z
n

and has
a unique minimum at (21) if Q�x 6= 0.

4 Computational results

We demonstrate the e�ects of the discussed steplength strategies by solving
quadratic programming problems from the QP test set [6]. The problems were
solved to 10�8 relative accuracy on an IBM PC Pentium 200 Mhz machine
with 64 MB of memory. In our experiment we compare the iteration counts
and the total solution times taken by the di�erent steplength methods. Table
1 shows the results. Its �rst column contains the name of the problems. The
iteration counts and execution times in seconds are given in columns 2-4 and
5-7, respectively. The execution time includes all parts of the solution process,
comprising scaling, presolving and postsolving. Columns labelled \damped"
refer to the simple damping, whereas \method1" and \method2" denotes our
technique with steplengths (��P ; �

�

D) and (max (�; ��P ); �
�

D), respectively.
The computational results indicate that our method performs better in

the infeasible{interior{point primal{dual algorithm than the simple damping.
Since our approach results in di�erent steps from the simple damping if the
current iterate is \infeasible enough", its performance depends on how fast the
critical feasibility level is achieved. As the results suggest, there are practically
only minor di�erences between the two variants of our method.

5 Conclusion

In the paper we suggested a method for computing di�erent primal and du-
al stepsizes in the infeasible{interior{point primal{dual methods of quadratic
programming. Whereas in linear programming the use of di�erent steplengths
is straightforward and simple, it makes additional analysis in the quadratic
case necessary. As the computational results indicate, our methods outper-
forms the traditional simple damping approach because it can reduce the in-
feasibility faster. Our methods turn to be equivalent to the simple damping
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Table 1: Comparison of di�erent steplength strategies
Problem Iterations Solution time
name dampf method 1 method2 dampf method 1 method 2

q25fv47 20 18 18 28.32 26.27 26.32
qetamacr 19 15 15 3.79 3.18 3.08
q��f80 28 22 21 3.73 2.96 2.97
qgrow15 26 20 19 2.14 1.75 1.70
qgrow22 29 22 22 3.02 2.42 2.42
qisrael 22 18 17 2.26 1.93 1.75
qpilotno 27 23 22 11.53 9.89 9.45
qscfxm2 30 25 23 2.53 2.15 1.98
qscfxm3 32 26 24 3.68 3.08 2.97
qscrs8 25 18 18 1.59 1.21 1.21
qscsd8 17 11 11 2.47 1.87 1.81
qsctap2 21 14 13 3.24 2.30 2.31
qsctap3 22 14 14 4.67 3.13 3.24
qshell 28 23 23 2.41 2.03 2.14
qship04l 16 10 10 1.42 1.10 1.05
qship08l 14 10 10 15.27 10.60 11.42
qship12l 16 12 12 14.06 11.10 11.10
qsierra 21 16 15 3.02 2.48 2.36
qstair 21 14 15 3.13 2.31 2.36
cvxqp1 m 14 9 9 22.63 16.80 16.75
cvxqp2 m 15 10 10 10.66 7.97 7.97
cvxqp3 m 14 10 10 45.64 35.70 35.43
hues-mod 26 19 20 7.25 5.60 5.88
huestis 26 19 20 7.36 5.60 5.93
mosarqp1 12 8 8 2.09 1.59 1.59
mosarqp2 13 9 9 1.65 1.26 1.26
stcqp1 9 8 8 1.54 1.54 1.54
stcqp2 9 9 9 2.46 2.47 2.47
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if the iterate is feasible (or close feasible). Its e�ectiveness depends on the
infeasibility of the iterates as well.
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