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Abstract

This paper describes our experiences in restructuring multi-perspective

requirements speci�cations in order to identify and analyse inconsistencies

and manage change. A partial, heterogeneous and reasonably large

requirements speci�cation from a NASA project was analysed and

decomposed into a structure of \viewpoints", where each viewpoint

encapsulates partial requirements of some system components described in

the speci�cation. Relationships between viewpoints were identi�ed which

included not only the interactions explicitly stated in the requirements

but also some implicit and potentially problematic inter-dependencies.

The restructuring process and a �rst informal analysis of the resulting

relationships enabled the detection of inconsistencies and the de�nition of

some interesting domain-dependent consistency rules. We believe that this

restructuring into viewpoints also facilitated requirements understanding

through partitioning, and requirements maintenance and evolution

through explicit identi�cation of the inter-viewpoint relationships.

1 Introduction

The requirements engineering process of large and complex systems often

involves the participation of many developers who operate according to their

speci�c skills, experience and knowledge. This is particularly the case for

the elicitation and development of requirements speci�cations. Multiple

participants are normally involved in specifying di�erent partial requirements

of the same underlying system. Inevitably, these requirements are more

appropriately described using various development methods and diverse

representation schemes, reecting the di�erent knowledge and perspectives that

the developers have about the underlying domain. Forced integration into a
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single uniform speci�cation is di�cult and can obscure individual views and

inconsistencies. On the other hand, relationships between the various partial

speci�cation fragments, such as overlaps and inter-dependencies, are di�cult

to identify making consistency checking and inconsistency handling di�cult as

well.

To address the above problem we advocate an analysis, a priori, of the

relationships between the methods and representation styles used to develop

speci�cation fragments [9], as well as relationships between domain-speci�c

terms and concepts (e.g., identifying di�erent terms which denote the same

object) [3]. The aim is to preserve the individual views, to support the

development method and representation scheme appropriate for each view, and

to make explicit the relationships between these views.

However, given that it is not always feasible to develop, a priori,

multi-perspective speci�cations with a structure amenable to analysis and

management, an approach that facilitates restructuring of existing speci�cations

seems appropriate. The approach described in this paper restructures existing

informal requirement speci�cations, enriching them by identifying and explicitly

representing interactions and relationships between di�erent parts of the

requirements, so facilitating consistency checking, validation, and subsequent

evolutionary change.

Speci�cally, this paper describes our practical experiences in restructuring

a partial, reasonably large, multi-perspective requirements speci�cation taken

from NASA's International Space Station (ISS) project. We deploy the

Viewpoints framework [5, 9] as a restructuring tool. This framework facilitates

an explicit separation of the perspectives of di�erent developers and their

representation by \ViewPoints"1, allowing the use of di�erent development

methods and representation schemes. Inter-viewpoint rules are de�ned to

provide a means for structural integration of di�erent speci�cation fragments,

a means for consistency checking and inconsistency analysis, and a means for

facilitating change management.

Our case study is an informal, but structured, partial requirements

speci�cation of an integrated hardware and software system (C&DH), which

is part of a wider system for handling the operation of an earth-orbiting space

station. We focus our attention on a particular function of the C&DH, namely,

the \Fault, Detection, Isolation and Recovery" (FDIR) function. We illustrate

how the informal speci�cation was restructured into related viewpoints, and

identify some inconsistencies revealed by this process. We also examine three

other di�erent chronological versions of the same speci�cation to illustrate the

suitability of our approach for tracking evolutionary changes and assessing their

impact on the consistency of the speci�cation.

The approach which we describe in this paper is a departure from the

\traditional" way in which viewpoints have been deployed in the past. Thus,

while the case study serves to validate the useability of viewpoints in a practical

1In this paper, we write the term \viewpoint" in lower case throughout, even though we

are still referring to our particular form of \ViewPoints" described in earlier work [5, 9].
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setting, it also illustrates the bene�ts of using them to \reverse engineer" a

multi-perspective structure, given a monolithic speci�cation. More generally,

we believe that our restructuring of the original speci�cation made it more

accessible, aiding our own understanding of the underlying domain. The

identi�cation and representation of implicit relationships between various parts

of the speci�cations also revealed inconsistencies that would have been di�cult

to detect by other means.

The paper is structured as follows. Section 2 describes the background to

our approach including a summary of multi-perspective software development

using viewpoints [5, 9] and a brief overview of our viewpoint-based restructuring

approach. In Section 3, we describe the application of our approach to the

case study, describe some inconsistencies that were revealed by our approach,

and discuss the way in which our restructuring facilitates change management.

In Section 4 we present and discuss the lessons learned from this experience.

Section 5 compares our approach to related work, while Section 6 summarises

our conclusions and future plans to support improved inconsistency analysis,

requirements traceability, and inconsistency handling.

2 Background

The basic principle underlying the viewpoints framework is separation of

concerns. Viewpoints are loosely coupled, locally managed, distributable objects

that encapsulate partial representation knowledge (a notation), development

knowledge (a process) and speci�cation knowledge (a view) [5]. From a

methodological standpoint, a viewpoint's notation and process are reusable

attributes, and are called a viewpoint template (a viewpoint \type" or

development \technique"). Thus, viewpoints are instantiations of templates,

which capture some partial speci�cation, represented in a particular notation

and developed by following a particular process. In-viewpoint rules for each

viewpoint de�ne its semantics, requirements for well-formedness, and internal

consistency.

The key to successful (and meaningful) deployment of multiple viewpoints

in any software development setting, is an understanding and subsequent

expression of inter-viewpoint relationships that de�ne inter-dependencies and

overlaps between viewpoints. Such relationships may be between the templates

from which viewpoints are instantiated (e.g., syntactic relationships between

constructs of di�erent viewpoint notations) [2, 9], or speci�cation domain-depen-

dent relationships that (usually) emerge as development proceeds [3]. These

relationships are fundamental elements of any viewpoints' structure that results

from a multi-perspective development process. They provide the structural

integration \glue" that holds a multi-perspective speci�cation together, and are

the only means by which consistency and completeness are meaningful in the

viewpoints framework.

Some inter-viewpoint relationships are de�nable before development begins.

This, of course, is not always the case. In a requirements engineering context,
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relationships between di�erent requirements emerge as further requirements

are elicited and analysed. With this in mind, we adapted the viewpoint-

oriented development approach in order to examine its suitability for handling

requirements speci�cations which are (1) not originally structured as a multi-

perspective speci�cation, and (2) still evolving.

The basic approach Our restructuring approach is situated in the middle

ground between informal (and error prone) speci�cation inspection [7] and

(expensive) formal analysis [10]. Our objective is to describe existing

speci�cations as a structure of related viewpoints, and then use this as the

basis for conducting a series of consistency checks and inconsistency analyses.

The approach is comprised of �ve activities. Existing informal speci�cations

are decomposed into parts, with each part represented using some notation

within a viewpoint. The viewpoints' structure is then enriched by identifying

and explicitly de�ning in-viewpoint and inter-viewpoint rules that express the

consistency relationships within and between viewpoints. An analysis of this

new structure is then used to validate the speci�cation and check its consistency.

The results of the analysis are then used to determine the inconsistency handling

process and to support change management.

3 Case Study

Our case study was based on a partial, multi-perspective requirements

speci�cation of the fault protection software of NASA's International Space

Station (ISS) project. This is an international co-operative programme for the

construction and use of a space station orbiting earth. One of the main functions

of the space station software is the Command and Control (C&C) function. This

is responsible for the station operations by monitoring its functions, overriding

them when necessary, performing fault detection, and issuing commands to

control the main station modes (e.g., docking with a Shuttle, re-boosting

to a higher orbit, maintaining microgravity for scienti�c experiments). The

C&C function is carried out as part of the ISS Command and Data Handling

(C&DH) system. The C&DH system is comprised of a set of Computer

Software Con�guration Items (CSCIs) installed in a hierarchically organised set

of processors (Multiplexer/Demultiplexers - MDMs) which communicate among

themselves via MIL-STD-1553 buses. The main ight processor responsible for

the C&C function is denoted by \C&C MDM". The CSCI within the C&C

MDM is the Command and Control Software (CCS) CSCI. The C&C MDM is

located at the top of the hierarchy and is the controller of the 1553 buses to the

MDMs in the hierarchy tier directly below (referred to as the Bus Controller -

BC). The MDMs (along with other hardware) at this next tier are designated

as Remote Terminals (RTs) on the buses.

The informal requirements speci�cations we analysed consisted of two partial

requirements documents of the C&C MDM CSCI, called Control Bus MDM

Management (4 pages) and 1553 Bus Failure, Detection, Isolation and Recovery
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(20 pages). The former describes the management of the MDMs connected to

the BC (one of these MDMs is also the C&CMDM) which includes initialisation,

shutdown and failure recovery. The last of these speci�es the management

of the control buses { e.g., detecting which of the 1553 bus channels have

communication failures. Both these speci�cations are mainly written in English,

and they include reference to some large tables containing information such

as \Data Item Names", \Identi�cation Numbers" and occasionally inputs and

outputs of some of the functions. The document structure is composed of

sections and subsections. These are mostly organised in paragraphs, and in each

paragraph alternative requirements are often listed. The 1553 FDIR document

also includes a owchart describing the general C&C FDIR behaviour model.

3.1 Restructuring into viewpoints

The two requirements documents were decomposed into \high-level" viewpoints

according to their section and subsection structures, and then re�ned into

additional \lower-level" viewpoints according to their speci�cation contents.

The result of the decomposition was a functional hierarchy of viewpoints, with

an increasing level of speci�cation detail. Parent viewpoints tended to denote

the main inputs and outputs of di�erent functions, whereas leaf viewpoints

tended to describe (parts of) functions in more detail.

Four main viewpoint templates were de�ned, called hierarchic tree (HT),

input output ow (IOF), data ow diagram (DFD) and state transition diagram

(STD). The HT template was used to instantiate a viewpoint describing the

hierarchic functional decomposition of the speci�cations. The STD template

was used to instantiate a viewpoint representing the state-based behaviour of the

FDIR function described in the requirements speci�cations by a owchart2. The

IOF template represented functions or processes in terms of inputs and outputs,

while the DFD template used a representation style similar to Tabular Collection

Forms used in CORE [8] which represents functions in terms of actions, their

inputs and outputs, and the inputs' sources and outputs' destinations. Part of

the HT-based viewpoint is shown in Figure 1.

In Figure 1, the �rst and second levels below the root node reect a section/

subsection decomposition of the speci�cation. The two documents examined,

\CB MDM Management" and \1553 FDIR", were in fact themselves sections

of a much larger document specifying the whole C&C MDM CSCI part of the

ISS system, whereas the \Bus Channel Management" was a subsection of the

1553 FDIR section. The third level, on the other hand, reects a function-

based decomposition. \RT Failure Detection" and \BC Failure Detection" are

two di�erent functions described in the Bus Channel Management subsection

and were therefore represented separately. The �nal level in the tree expresses

a functional decomposition. Complex functions were decomposed into parts.

Hence \Set Skip Bit" and \Switch to Backup RT" are two parts of the same

function \RT Failure Detection".

2This was the only semi-formal description given in the 1553 FDIR requirements document.
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C&C MDM

CSCI

1553 FDIR

MDM Failure

Detection
Bus Channel
Management

RT Failure

Detection

Channel

Switch
BC Failure

Detection

Switch to
Backup RT

Set Skip Bit
Switch to

Backup BC
Switch all RTs

to Backup

CB MDM
Management

MDM Recovery

Management

Initialisation

Shutdown

Perform

Initialisation

Set

Parameters
Recovery 1 Recovery 2

Perform

Initialisation

Issue

Commands

Domain: C&C MDM CCS
Template: Hierarchic Tree

Figure 1: Part of the hierarchical decomposition into viewpoints.

In developing the HT template, a number of domain-independent in-view-

point rules were de�ned. These expressed syntactic properties of the tree-style

such as \there is no link between nodes that are at the same level in the hierarchy"

and consistency properties within the viewpoint such as \all nodes must have

di�erent labels". Structural domain-independent inter-viewpoint rules were also

de�ned. These described the related viewpoints that should be instantiated for

each node in the HT viewpoint. Some of these rules are shown in Table 1.

Rules (HT1) and (HT2) de�ned the meaning of a \complete" restructuring of

the speci�cation { if some part identi�ed in the hierarchical decomposition is

not elaborated by some other instantiated viewpoint, then one of these rules

is violated. Rules (HT3) and (HT4), on the other hand, expressed properties

related to hierarchic (parent-child) relationships. (HT3) reects the fact that for

each primitive process in a (parent) IOF viewpoint, there exists in the hierarchic

tree an associated lower-level (child) viewpoint which describes that process

in more detail. Since the process is primitive, the total set of inputs in the

IOF viewpoint should be equal to the total set of inputs in the DFD lower-

level viewpoint. Finally, rule (HT4) covers the case of non-primitive processes

in parent IOF viewpoints for which child lower-level viewpoints have been

de�ned. In this case, the lower-level viewpoint speci�es a further decomposition

of the non-primitive process in the parent viewpoint into sub-processes, and this

speci�cation could well include additional inputs and outputs. This is illustrated

by considering the IOF parent viewpoint in Figure 2 and the lower-level child

viewpoint in Figure 3.

In the IOF template, functions were represented as alternative processes
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Rule Name Rule De�nition

(HT1) For each leaf node there exists a VP instantiated from the DFD

template.

(HT2) For each parent node there exists a VP instantiated from either

the IOF or the STD templates.

(HT3) If for a node X there exists a VP A instantiated from the IOF

template, then for each subnode Y, which is a primitive process

in X and for which there exists a VP B instantiated from the DFD

template, the set of inputs in Y is equal to the set of inputs in X.

(HT4) If for a node X there exists a VP A instantiated from the IOF,

template, then for each subnode Y, which is a non-primitive

process in X and for which there exists a VP B instantiated

either from the DFD template or from the IOF template, then

the set of inputs to the process X in A is extended with the

set of inputs represented in B.

Table 1: Inter-viewpoint rules for the HT template.

(denoted by boxes) and inputs and outputs (denoted by arrows). Inputs

can be either events (e.g., \loss of 1553 communication"), particular values

of some special control parameters (e.g., \failure status = failed for RT"), or

some speci�c commands (e.g., \Recon�gure MDM"). Similarly for the outputs.

Processes can be either \non-primitive" or \primitive". Domain-dependent in-

viewpoint rules specify the processes which are non-primitive. An example is

shown in Figure 4 where the process \Recovery 1" was declared to be non-

primitive.

Non-primitive processes can be decomposed further. For each of these processes

additional viewpoints were instantiated. This is captured by the domain-

independent inter-viewpoint rule (IOF1) in Table 2. The viewpoint in Figure 3

is a decomposition of the non-primitive process \Set Skip Bit" in the viewpoint

shown in Figure 2.

Rule Name Rule De�nition

(IOF1) For each non-primitive process there exists a viewpoint instantiated

from either the IOF template or the DFD template.

Table 2: A domain-independent rule for the IOF template.

The DFD template facilitated a more detailed representation of (parts of)
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Set Skip Bit

in out

e,c,w indicators’ values,

failure status = failed for RT

Switch to Backup RT

in

A, B, notC

out

e,c,w indicators’ values,

failure status = failed for RT,

not perform transaction error

detection on RT for TBD time

Domain-dependent inter-viewpoint rules:

(1) RT can be equal to C&C MDM in Viewpoint “MDM Recovery Management”.
(2) RT can be equal to the MDMs in Viewpoint “MDM Recovery Management”.
(3) The output “failure status = failed for RT” can be equivalento to the inputs “Detect Failure

and “Indication MDM has failed“ in Viewpoint ”MDM Recovery
Management”.

(4) The TBD time is in relation with the time to reinitialise an RT in Viewpoint “Perform Initialisation”.

Domain: RT Failure Detection
Template : Input-Output Flow

A, notB, notC

Domain-dependent in-viewpoint rules:

(1) The processes “Set Skip Bit” and “Switch to Backup RT” are non-primitive.

Glossary:

A = Errors of CSE_RTSA messages occur in two consecutive processing frames.

B = Backup RT is available.
C = Transaction errors are from multiple RTs.

(5) The input “ ” is equivalent to the conjunction of conditions “ ” in Viewpoint “1553 FDIR”.A [a,b,c,d]

of C&C MDM”

Figure 2: RT Failure Detection { A lower-level IOF viewpoint.

functions. These were given in terms of actions, inputs used by the actions and

outputs produced by the action, the sources which generate the inputs and the

destinations which use the outputs. Sources and destinations can themselves

be other functions or processes described in the speci�cation. An example of a

DFD-based viewpoint is shown in Figure 3.

The last template used in the restructuring was the STD template. This was

used to represent the general behaviour of the 1553 FDIR function described in

a owchart in the original speci�cation. It describes a series of di�erent boolean

conditions (or events) and their associated intermediate internal states which

are covered by the 1553 FDIR function in order to detect what type of failure

has occurred and what kind of recovery action to take. Recovery actions are

processes external to the 1553 FDIR. The STD template represented this kind

of owchart speci�cation by associating each internal and external state with

a box, each boolean value of each condition with an arrow going from one box

(state) to another, and declaring by means of an domain-dependent in-viewpoint

rule which of the states was an external recovery state. Part of this STD-based

viewpoint is shown in Figure 5.
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input

input

input

input

source

??

action

M,D,E

notM, notD,

G, E

notM, D
G, notH,
notE

notM, D,

notE, notH

Verify

Conditions

output

output

output

output

M,D,E

notM, notD,

G, E

notM, D
G, notH,
notE

notM, D,
notE, notH

destination

RT Failure

Detection

Domain : Set Skip Bit

Template : Data-Flow Diagram

Glossary:

M = SPD card has been reset within the last 100 sec.

D = Current Channel has been reset within the last major frame.

E = Bus Channel has been switched within the last major frame.

G = Channel reset is inhibited.

H = Alternate bus channel is available.

Domain-dependent inter-viewpoint rules :

(1) H is equivalent to condition P in Viewpoint “1553 FDIR”.

Figure 3: Set Skip Bit { A lower-level DFD viewpoint.

Enriching the structure with inter-viewpoint rules Having de�ned a

collection of viewpoint templates and some basic inter-viewpoint relationships

between them, we then elicited further implicit relationships between viewpoints

to enrich the existing structure. For the case of the IOF template, for example,

the rules (IOF3) and (IOF4) shown in Table 3 were de�ned to capture data

ows between functions. They are dictated partly by the syntactic properties

of the templates { input/output arrows in the IOF and inputs/outputs in the

DFD template denote the same class of object, and partly by the de�nition of

domain-dependent inter-viewpoint rules which establish \ontological overlaps"

[14] between input/output data of di�erent viewpoints. Rule (IOF3) de�nes a

relationship between the RT Failure Detection function, described in Figure 2,

and the MDM Recovery Management function, described in Figure 4, which

states that any RT failure detected by the �rst function is recovered by the

second function. Such a link was not expressed in the original speci�cation

document, and the document structure itself would have not facilitated its

identi�cation since the constituent speci�cations were parts of two di�erent
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Set Parameters

Recovery 1

Recovery 2

operator command to set

failure recovery parameters

in out

Failure Recovery Parameters

out

Open RPCS for the MDM

Detect Failure of C&C MDM

in

Indication MDM has failed

in
Loss of 1553 Communication

in

Reconfigure MDM

in

Reconfigure C&C MDM

in

out

Suspend 1553 BC activity,

Reconfigure C&C MDM as RT

Domain: MDM Recover Management
Template : Input-Output Flow

Domain-dependent in-viewpoint rules:

(1) The C&C MDM is an MDM.
(2) The process “Recovery 1” is not-primitive.

Domain-dependent inter-viewpoint rules:

(1) The input “Indication MDM has failed ” can be equivalent to the output

in Viewpoint “RT Failure Detection”.

(2) The input “Detect Failure of C&C MDM ” can be equivalent to the output
“Failure status = failed for RT” in Viewpoint “RT Failure Detection”.

“Failure status = failed for RT”

Figure 4: MDM Recovery Management { A viewpoint from the IOF template.

document sections. Finally, the domain-independent in-viewpoint rule (IOF2)

in Table 3, was de�ned to express the consistency constraint that each data

input and output is uniquely associated with a single process.

Similar rules were de�ned for the DFD template, also taking into account

information about the source and destination of inputs and outputs respectively.

Two example rules are shown in Table 4. Examples of viewpoints validating

rule (DFD1) are the \RT Failure Detection" and the \Set Skip Bit" viewpoints

(shown in Figures 2 and 3 respectively).

Finally, domain-independent inter-viewpoint rules were de�ned for the STD

template. This facilitated the identi�cation of various inconsistencies within

the 1553 FDIR function, by explicitly stating relationships between the general

1553 FDIR behavioural model and the individual speci�cations of the di�erent

types of failure detections covered by this function. These are shown in Table 5.

The next section describes the inconsistencies identi�ed by these rules for the

process \Set Skip Bit" in the IOF-based viewpoint RT Failure Detection.

Domain-dependent in-viewpoint and inter-viewpoint rules were also de�ned.
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S0 S1 S2

S3

a

not a

b

not b

c

S4

d

not c

not d

notE, P

E, notD, notG

notE, notP, notD,notG

E, D, notC, not B

notE, notP, D, notC,notB

E, notD,G, notC, notB

notE, notP, notD,G,notC,notB

Switch to

alternate channel

Reset Channel

Set Skip Bit

Domain: 1553 FDIR
Template : State Transition Diagram

Domain-dependent inter-viewpoint rules:

(1) The set of conditions “[a,b,c,d] “ is equivalent to the input “A”

in Viewpoint “RT Failure Detection”.

(2) The condition “P” is equivalent to the input “ ” in Viewpoint “Set Skip Bit”.

Domain-dependent in-viewpoint rules:

(1) “Switch to alternate channel”, “Reset Channel” and “Set Skip Bit” are
external recovery states.

H

Figure 5: Part of 1553 FDIR { A high-level STD viewpoint.

These represented either some explicit glossaries about domain-speci�c terms

which were already given in the speci�cations (e.g., in-viewpoint rule (1) in

Figure 4), some domain-speci�c relationships between di�erent terms which

were elicitated by our analysis (e.g., the inter-viewpoint rules in Figures 2 and

4), or by some common sense interpretation of the English text descriptions

(e.g., the inter-viewpoint rules in Figure 5). Figure 6 summarises some of the

inter-viewpoint rules that enriched the structure of the original speci�cation

documents.

3.2 Identifying inconsistencies

The restructured representation of the two informal requirements documents,

facilitated the detection and analysis of existing inconsistencies, expressed as

violations of in-viewpoint and inter-viewpoint rules. The rules a�ected were

among those added during the enriching phase of the approach, for which no

11



Rule Name Rule De�nition

(IOF2) Arrows have di�erent labels

(IOF3) Outputs in an IOF viewpoint are in relation with inputs in any

VP A, instantiated either from the DFD or from the IOF template,

whenever they have the same name or stated to be equivalent.

(IOF4) Inputs in an IOF viewpoint are in relation with outputs in any

VP A, instantiated either from the DFD or the IOF template,

whenever they have the same name or are stated to be equivalent.

Table 3: Additional domain-independent rules for the IOF template.

Rule Name Rule De�nition

(DFD1) The outputs of a DFD viewpoint are inputs to any viewpoint A

instantiated from the IOF template, whenever the destination of

these outputs is equal to the domain of the viewpoint A.

(DFD2) The inputs of a DFD viewpoint are outputs from any viewpoint A

instantiated from the IOF template, whenever the source of

these inputs is equal to the domain of the viewpoint A.

Table 4: Additional domain-independent rules for the DFD template.

explicit corresponding de�nition existed in the original speci�cation. Manual

inspections of these documents would therefore have made the identi�cation of

such inconsistencies more di�cult.

The �rst inconsistency identi�ed related to the violation of the domain-

independent in-viewpoint rule (IOF2) in the MDM Recovery Management

viewpoint (see Figure 4). Using the domain-dependent rule \C&C MDM is

an MDM", the input \Recon�gure MDM" to the process Recovery 1, can be

rewritten as \Recon�gure C&C MDM" whenever the MDM being considered

is the C&C MDM. For this particular case, this input label to the process

Recovery 1 becomes equal to the input label \Recon�gure C&C MDM" of the

process Recovery 2, so violating the in-viewpoint rule (IOF2). Intuitively, the

domain-dependent rule expresses a domain-speci�c overlap between the two

terms MDMs and C&C MDM which implies that the function MDM Recovery

Management is not able to choose which alternative process (Recovery 1 or

Recovery 2) to activate whenever there is a request to recon�gure the C&C

MDM.

Various other inconsistencies were identi�ed within the 1553 FDIR function
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Rule Name Rule De�nition

(STD1) For each external process X, if there exists a viewpoint A

of type IOF which includes the process X, then for each path

leading to X, there exists an identical set of inputs to X in the VP A.

(STD2) For each external process X, if there exists a viewpoint A

of type DFD with domain equal to the process X, then for each path

leading to X, there exists an identical set of inputs in the VP A.

Table 5: Additional domain-independent rules for the STD template.

1553 FDIR

RT Failure Detection

Set Skip Bit

Rules in Figure 4

Rules (1), (2) and
(3) in Figure 2.

MDM Recovery Management

Perform Initialisation

Rule(4) in Figure 2.

Rule (1)

in Figure 5.

Rule (1) in Figure 3. Rule (2) in Figure 5.

(STD1)

(DFD1)

(IOF4)

(IOF3)

Figure 6: The restructured requirements speci�cations with some inter-viewpoint

rules.

{ at least one for each type of failure detection. Only one example is described

here, as the others were detected in a similar way by means of the same domain-

independent inter-viewpoint rule of the 1553 FDIR viewpoint. The example

involves the part of 1553 FDIR viewpoint described in Figure 5 and the RT

Failure Detection viewpoint described in Figure 2. In this case, it is the domain-

independent rule (STD1) which was violated, where the process X is equal to

\Set Skip Bit". The reasoning process which \proved" the violation of this

rule is more complex than that described for the previous inconsistency and is

composed of the following steps.

1. In the RT Failure Detection viewpoint, the process \Set Skip Bit" is non-

primitive. This implies, by the inter-viewpoint rule (IOF1), that there

exists another viewpoint with domain \Set Skip Bit" which speci�es this

process further.

2. The application of rule (IOF1) also involves the Set Skip Bit viewpoint (see

Figure 3). The inter-viewpoint rule (DFD1) in this viewpoint implies that

the alternative four sets of outputs are also alternative four sets of inputs
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to the viewpoint RT Failure Detection, and therefore to each process it

describes.

3. Rule (DFD1) implies that the total inputs to the process \Set Skip Bit" in

the viewpoint RT Failure Detection are four alternative sets of data given

by the four sets of outputs of the Set Skip Bit viewpoint extended with

the inputs already given in the RT Failure Detection for this process.

4. The domain-dependent rule (5) in the RT Failure Detection viewpoint,

involving data of the 1553 FDIR viewpoint, implies an equivalent rewriting

of these four alternative sets of inputs.

5. All alternative paths leading to the process Set Skip Bit in the viewpoint

1553 FDIR are computed. Again, there are four.

6. Each of these paths is compared with each alternative set of inputs

generated in step 4.

The last step is an attempt to validate the (STD1) domain-independent

inter-viewpoint rule. In fact, it was violated, indicating an inconsistency between

the 1553 FDIR and the RT Failure Detection viewpoints. In particular, there

was no set of inputs which is comparable to any of the alternative paths in

the 1553 FDIR viewpoint. Checking the (STD1) rule for each of the alternative

paths, we found four inconsistencies as the rule is violated in each of these cases.

Finally, another inconsistency was identi�ed between the RT Failure

Detection and the MDM Recovery Management functions. This was not a

direct violation of a rule but a consequence of the application of an inter-

viewpoint rule. In the RT Failure Detection viewpoint, if inputs A, notB and

notC occur, the failure status of the RT under consideration is set to \failed"

and the failure detection process (of the C&C MDM CSCI system) continues,

since no backup RT is available (i.e. notB) to recover from the failure. Using

the domain-dependent rule, the RT can be the C&C MDM. The inconsistency

arises when the RT is in fact the C&C MDM. By the inter-viewpoint (IOF3) and

the domain-dependent rule (3) in RT Failure Detection (Figure 2), the output

\failure status = failed for RT" is equivalent to the input \Detect Failure of C&C

MDM" in MDM Recovery Management. In the MDM Recovery Management

viewpoint, it is stated that the process Recovery 2 under this input, stops the

failure detection process, to recon�gure the C&C MDM as a general RT. These

two speci�cations are therefore not consistent. Two contradictory statements

(\continue failure detection process" in the RT Failure Detection viewpoint and

\stop failure detection process" in the MDM Recovery Management viewpoint)

are speci�ed.

3.3 Analysing evolutionary changes

As we indicated in Section 2, inter-viewpoint rules in our viewpoint-based

restructuring approach are the only basis for detecting inconsistency and
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managing change propagation. In the previous section we discussed the

application of the approach for detecting inconsistencies in two informal

requirements speci�cations. We now discuss how we used the approach to

manage evolutionary changes in the same informal speci�cation documents.

Our original speci�cation document was the \June" version - we also examined

two earlier versions (February and April) and one later version (August). For

brevity, we only summarise our results below.

The �rst step was to examine if the requirements document structure was

loosely preserved in each of these versions. The major changes we found were

(i) the existence of an additional section on \MDM Recovery Management"

in the April version, (ii) some paragraphs of the subsection \Bus Channel"

in April's version becoming themselves subsections of the same level as the

Bus Channel in June's version, and (iii) again in June's version, the fusion of

di�erent subsections specifying the MDM Initialisation function for each type

of MDM, into only one general subsection referring to a table summarising the

di�erent type of MDMs. For these major changes, the hierarchic structure of

viewpoints and the basic inter-viewpoint rules was, in general, preserved. In

case (i) the addition of more speci�cations facilitated the identi�cation of more

inter-viewpoint rules for the IOF template. For instance, rule (IOF3), which

facilitates cross-section relationships between the MDM Recovery Management

and 1553 FDIR functions, was meaningless in February's version, as the MDM

Recovery Management function was missing in that version. Such a rule

became useful from April's version onwards, when the function MDM Recovery

Management was added to the speci�cations. In case (ii), the hierarchic tree

structure de�ned for April's version was changed by moving some viewpoints

from being subnodes of the node \Bus Channel" to becoming, together with the

Bus Channel, subnodes of the 1553 FDIR node. Of course wherever necessary,

some of these viewpoints were reformulated with the correct template in order to

preserve the inter-viewpoint rules (HT1) and (HT2). In case (iii), the hierarchic

tree structure de�ned for April's version was further changed by joining together

the viewpoints describing the MDM Initialisation function for each type of MDM

into one viewpoint only. This determined the addition of a domain-dependent

in-viewpoint rule which de�ned the domain of the possible MDMs.

Various other minor changes were made in these four versions of the

speci�cation. These were mainly changes within the speci�cations of some

functions. Interesting ones included the changes made to the the 1553 FDIR

owchart and its associated text descriptions. In each version, the owchart

was gradually extended by introducing either more intermediate conditions or

more external failure detections. Text descriptions of these failure detections

were consequently updated or added. For each of these changes, using the inter-

viewpoint rules, we were able

1. to identify the related parts of the speci�cations which had been a�ected

by the changes,

2. to de�ne the types of changes that needed to be made in order to preserve

consistency, and

15



3. to map back into the speci�cations to check whether these changes were

actually made to the speci�cation.

Our investigation showed that, in most cases, additional inconsistencies were

introduced by the evolutionary changes. The changes were not consistently

traced within the speci�cations { variations were made in some parts of the

document only, leaving other related speci�cation fragments unchanged. We

believe that many of these inconsistencies arose because the relationships

between many speci�cation fragments were left implicit. We believe that our

restructuring approach helped overcome this problem by providing a way for

explicitly representing many of these relationships as inter-viewpoint rules.

4 Lessons Learned

We have described our experience in applying our restructuring approach to

an existing informal requirements speci�cation. We now discuss the lessons

we learned from this experience, indicating how the approach facilitated our

analysis, inconsistency handling and change management.

4.1 Decomposition.

In our case study, we decomposed the informal speci�cation documents in two

steps. First, di�erent high-level viewpoints were de�ned for each section and

subsection of the documents. These tended to be more stable than other lower-

level viewpoints. Their viewpoint rules were often de�nitions of hierarchic

(parent-child) relationships. The second step re�ned the �rst decomposition.

Additional viewpoints were de�ned that encapsulated the di�erent parts of the

same (sub)section in more detail. The result was a \subsystems" hierarchical

decomposition of the speci�cations dictated partly by the document structure

and partly by a careful cross-section analysis of the speci�cations. At this stage,

viewpoints were treated as \black boxes" { simply associated with the di�erent

parts of the speci�cations.

In general, di�erent criteria could be adopted for decomposing the problem

(requirements speci�cation) into parts (viewpoints). For example, viewpoints

could be de�ned for each individual component (or function) of the system

described in the original speci�cation, for each representation scheme used in

the speci�cation, or for each section and subsection of the speci�cation (that

is, decomposing using the existing document structure). Since we were not

experts in the domain of the case study, the �rst option was clearly not easy

to adopt. Moreover, the second option of decomposing on the basis of the

representation styles used in the speci�cation would have lead to an insu�ciently

�ne granularity for the structure to be useful3. On the other hand, our experience

suggests that the document structure of such speci�cations reects a �rst level

3It is often the case, as in our case study, that informal speci�cations are written, almost

entirely, in natural language.
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of decomposition into major subsystems, and it was also generally preserved as

the speci�cations evolved.

Lesson 1 Decomposition based on an existing document structure does

not require any expertise in the domain of the speci�cation, and

provides a path back to the original speci�cation after analysis

and processing is performed on the new structure. Moreover, the

resulting structure is generally stable as the original speci�cation

documents evolve.

4.2 Representation.

While translating (parts of) a speci�cation does not, strictly speaking, fall within

the realms of restructuring, there are advantages that may be accrued from such

a translation process (some even argue that the most signi�cant bene�ts gained

from using formal methods are the result of the formalisation process itself!

[11]). The second stage of our approach therefore allows the representation of

the di�erent viewpoint speci�cations in di�erent notations which may include

the original notation in which they were expressed. The choice of representation

scheme for di�erent viewpoints also involves the expression of some basic

(domain-independent) rules to de�ne the conditions for well-formedness and

internal viewpoint consistency. Examples of such rules were described in Tables

1 and 2. Of course, new domain-independent rules were also added as the

restructuring process proceeded and as a better understanding of the speci�-

cations was gained.

Lesson 2 A mixture of formal and informal representation schemes may

be used to represent requirements as long as the relationships

between them are explicitly de�ned.

4.3 Enriching the viewpoint structure

As described in Section 3, the structure of a viewpoint-oriented speci�cation is

more than just a collection of di�erent viewpoints. It is also the collection of

inter-viewpoint rules that express the relationships between these viewpoints.

Our approach distinguished between domain-independent and domain-

dependent rules. Domain-independent rules expressed the relationships between

viewpoint templates, such as the relationship between a parent \input-output

ow" diagram and the child diagram that decomposes one of the parent's

constituent processes. Many of these rules were de�ned when choosing or

developing a viewpoint template representation scheme, but others were also

elicited after some analysis of the actual speci�cations. For example, the inter-

viewpoint rules listed in Tables 3, 4 and 5 were all added to the templates after

a better understanding of the documents was gained through restructuring.
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Domain-dependent rules, expressed the relationships between actual

speci�cation fragments, such as \ontological overlaps" [14] denoting synonyms in

the problem domain. These were of di�erent types. For instance, the domain-

dependent rule (1) in Figure 4 expressed an in-viewpoint ontological overlap

between the terms MDMs and C&C MDM, whereas the domain-dependent rule

(3) in Figure 2 expressed an \intersection" between the two di�erent functions

RT Failure Detection and MDM Recovery Management. This itself was based

on the ontological overlap expressed by the domain-dependent inter-viewpoint

rules (1) and (2) in Figure 2. Finally, the domain-independent rule (STD1)

expressed an \inclusive" overlap between the general 1553 FDIR function and

the function RT Failure Detection.

Lesson 3 Inter-viewpoint rules are the basis upon which consistency

is checked and change propagation is managed. They are also

the measure of `completeness' in this context.

4.4 Analysis.

Our case study suggested that many inconsistencies in a large monolithic

informal speci�cation include much information that is implicit. For example,

the �rst inconsistency described in Section 3.2 was related to the implicit

assumption that each process described in the MDM Recovery Management

speci�cation is assigned to di�erent failure conditions. Similarly, the

inconsistency between 1553 FDIR and RT Failure Detection viewpoints was

related to the implicit common sense assumption that being the general failure

detection behaviour of the 1553 FDIR speci�cation ought to be reected in the

text description of each individual type of failure detection. The third type of

inconsistency described in Section 3.2 was based on implicit assumptions about

the existence of an interface between the RT Failure Detection and the MDM

Recovery Management functions. The restructuring approach facilitated the

identi�cation of such implicit assumptions, de�ning them explicitly as rules.

Inconsistencies were then identi�ed by either checking these rules, or by using

them to integrate parts of the speci�cation in order to prove their consistency.

What added con�dence to our analysis was that some of the inconsistencies

identi�ed by our study were also identi�ed by NASA's Independent Validation

& Veri�cation (IV&V) group, who used a di�erent approach based on modelling

informal speci�cations using formal methods such as SCR and PVS [10].

While the results of NASA's and our approaches are comparable { similar

inconsistencies were identi�ed in the 1553 FDIR function { we believe that

our approach provided a much \cheaper" alternative to wholesale formalisation

of the original speci�cation documents.

Nevertheless, given a structure of related viewpoints that represents a

requirements speci�cation, di�erent analysis techniques may be deployed to

validate the requirements and to check their consistency. In previous work

for example [6], we used an adaptation of classical logic to perform some kinds
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of analysis, while in other work [2] informal inspection was su�cient. The

approach we have used in the case study combined informal inspections with

some automated support using Prolog (discussed later).

Lesson 4 The viewpoints structure made the speci�cations more

amenable to analysis (both manual and automated).

4.5 Inconsistency handling and change management

The expectation is that analysis will necessitate taking action to handle

inconsistencies [4]. Acting in the presence of inconsistency is still an open

research issue, so we adopted a simple approach of consulting the domain experts

when faced with such inconsistencies.

Nevertheless, we found that the identi�cation and explicit formalisation of

relationships within and between parts of the speci�cation facilitate change

management. The analysis of di�erent versions of the same documents

illustrated that additional inconsistencies were often caused whenever a change

was made to the speci�cations. The lack of explicit relationships within the

original speci�cations meant that any addition of new speci�cation information

was often not propagated to related parts of that speci�cation. For example,

in each version of the original speci�cations, extensions of the owchart of

the 1553 FDIR function were not propagated in the related failure detection

text descriptions, and vice-versa. Moreover, changes made in order to resolve

existing inconsistencies also caused additional inconsistencies [3]. An example

was in June's version of the 1553 FDIR function, where the owchart was

changed to solve some inconsistencies with the text descriptions present in the

April version, but the related text description was not changed consistently,

thus causing the additional inconsistencies described in Section 3.2. The

explicit relationships between the 1553 FDIR viewpoint and the viewpoints

of the text descriptions (e.g., RT Failure Detection) would have helped avoid

such additional inconsistencies, so guaranteeing a consistent evolution of the

documents.

Lesson 5 In-viewpoint and inter-viewpoint rules (whether domain-indepen-

dent or domain-dependent) provide explicit information which is

often missing in speci�cations and which is needed for consistent

change management. Indeed, the impact of evolutionary changes

can be traced, using these rules to check consistent change

propagation to related parts.

As with the analysis, the advantage of this approach is that it is not

expensive in either time or e�ort. In our case study, the document structure

was generally preserved. Thus, evolutionary changes like addition, fusion or

elimination of chunks of speci�cation did not imply a major reorganisation of
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the document structure. Consequently, once a restructured representation of a

version was developed, the modelling of subsequent versions was built upon this

representation. Other methods, such as the formal modelling approaches used

in [10], are much more costly in that the modelling of new versions requires a

re-modelling of the speci�cations.

We also learned from our experience of automating parts of our approach.

The natural language representation style of the informal speci�cations did

not allow a fully automated process for restructuring and representing these

documents into viewpoints. A manual process was needed to provide the

viewpoints structure and the related rules. However, the resulting viewpoint

structure was far more amenable to translation into formal languages (such as

Prolog) to provide automated support for consistency checking. This was easier

to achieve than translating the original natural language speci�cation into a

formal language. Moreover, given that changes to the speci�cations were, in

most cases, not drastic, the restructured representation was preserved during

the evolution of the documents.

Lesson 6 The manual e�ort of representing the speci�cations as

viewpoints need be invested only once and then the

speci�cations may be analysed semi-automatically

in the subsequent versions.

5 Related Work

A number of related approaches have used partial formal modelling to analyse

and validate existing informal requirements speci�cations. For example, the

work of Easterbrook et al. [10] describes the use of formal methods such as

SCR [16] and PVS [15] to model the same informal requirements examined in

this paper. This work describes selective modelling of the most critical parts of

a requirements speci�cation, and the testing of some critical properties. As in

our work, the approach does not aim to guarantee completeness and correctness

of the existing speci�cations, but to increase con�dence in such speci�cations

by identifying inconsistencies and feeding the results back into the requirements

development process. The inconsistencies identi�ed and discussed in [10] include

some of the same inconsistencies identi�ed by our own restructuring approach,

as well as some additional inconsistencies relating to the dynamic properties of

the underlying system.

Our restructuring approach, however, could be used in conjunction with

other formal modelling approaches (such as SCR), by mapping particular

viewpoints into the chosen formal model (such as an SCR model). The Safety

Checklists proposed by Lutz [12], for example, could also complement our

approach. Checklists of properties about interface requirements in safety-critical

systems could be used to enrich our restructuring process by modelling them as

in-viewpoint and inter-viewpoint domain-dependent rules.
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Of course, restructuring speci�cations has been a topic of considerable

interest and research in the past. Most notably, Statecharts [17] attempt to

reduce the complexity of speci�cations modelled as state-transition diagrams

by using clustering of states into superstates. Statecharts have been used

successfully by Heimdahl, Leveson and others [19, 13] to restructure formal,

state-based speci�cations. While such approaches provide powerful (and

automated) tools to analyse formal speci�cations, they are not suitable for

analysing informal speci�cations that may deploy multiple representation

schemes, such as the ones we have described in this paper.

Finally, recent work on formal requirements analysis [20] recognises the need

to devise practical ways of structuring the V&V process in order to make it

methodologically suitable for large scale analysis. The work described in this

paper is a �rst step in this direction.

6 Conclusions and Future Work

This paper has described our experiences in restructuring multi-perspective

requirements speci�cations in order to identify and analyse inconsistencies and

manage change. Our restructuring approach comprises of three main activities:

(1) decomposing the speci�cations into parts, (2) representing these parts

within viewpoints using of di�erent representation styles, and (3) enriching

the resulting structure of viewpoints by identifying and explicitly de�ning in-

viewpoint and inter-viewpoint rules that express speci�c relationships between

di�erent templates, and domain-speci�c properties within and between the

di�erent speci�cation fragments. Using these we were able to check consistency

and completeness, and track and analyse evolutionary changes in the original

requirements speci�cation.

While a large proportion of the approach can be (and was) performed

manually, it is nevertheless amenable to automated support. We have developed

a toolkit to support viewpoint development and inconsistency analysis. The

tool provides a web-based front-end (written in Java) which facilitates the

speci�cation of viewpoints by using a set of prede�ned templates. For each of

these templates, a class of domain-independent in-viewpoint and inter-viewpoint

rules were prede�ned and subsequently checked by a Prolog engine. Di�erent

graphical viewpoint instantiations are converted at run-time into Prolog and

checked for consistency. Changes to viewpoints are made using the web-based

tool and also checked for consistency using the Prolog reasoning engine. An

example of a Prolog clause which checks the the validity of the inter-viewpoint

(STD1) between viewpoints 1553 FDIR and RT Failure Detection is shown

below.
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rule1(Process,FDIR):-

process(Process,FDIR),

typevp(IOF,VP),

process (Process,VP),

nonprimitive(Process,VP),

orinputs(Inputs,Process,VP),

equivalentorInputs(NewInputs,Inputs,Process,VP),

ows(Paths,s0,Process,FDIR),

comparePathsInputs(Paths,NewInputs,Results).

The �rst three clauses after the \:-" (\if") symbol check the basic conditions for

the application of the (STD1) rule { i.e. that Process is an external recovery

process in the FDIR function for which there exists a viewpoint VP of type IOF

which includes that Process. The other clauses correspond to the reasoning

process steps described in Section 3.2, in the speci�c case of Process being equal

to \Set Skip Bit" 4.

At the moment, the toolkit is limited in that (i) the Prolog engine presents

the results of its consistency checking in Prolog format, and (ii) the domain-

dependent rules are hard-coded into the system. We are currently extending this

to allow users to get the results of consistency checking via the same web-based

front-end and to de�ne domain-dependent rules themselves. Thus, the user

should be able to specify the related domain-dependent in-viewpoint and inter-

viewpoint rules during the instantiation process of viewpoints, check consistency

and get information about existing inconsistencies in the same web-based view.

We believe that the framework we have presented in this paper provides

us with the infrastructure for organising speci�cations, detecting and analysing

inconsistencies and managing change. Clearly, further work still needs to be

done to determine how to act in the presence of inconsistencies. However,

we believe that incremental contributions towards this long term goal can be

achieved by complementing our approach with existing work on inconsistency

handling that combines both formal (e.g., logic-based) [6] and human-centered

[2, 18] approaches.
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