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- Abstract

We undertake a computational analysis of the algorithmic components of the sparse simplex (SSX) method
and consider the performance of alternative SSX solutions strategies. We then combine these alternative
strategies within an asynchronous control structure of a parallel algorithm implemented on a distributed
memory multiprocessor machine. Our experimental results not only show (limited) speedup and robust
performance they also give new insight into the internal operation of the SSX and its adaptation on a
parallel platform.



1 Introduction and Background

1.1 Computational solution of LPs

Over the last forty years considerable progress has been made in respect of theory and algorithms for the
solution of large scale linear programs. Until 1984 exterior point or the so-called (pivotal) sparse simplex
(SSX) dominated the computational scene. Karmarkar’s projective method [17], after much controversy,
was finally acknowledged both for its complexity results (low order polynomial bounded) and for its
computational efficiency.

Considerable follow up research and widespread adoption of this approach have lead to the devel-
opment of a family of algorithms which compute non-linear trajectory connecting analytic centers. As
these algorithms search the constraint polyhedron internally these are generally known as interior point
methods (IPMs). In spite of the success of IPMs, research into SSX continue to flourish side-by-side with
IPM. This is mainly because

(i) broader application areas of LP, and
(ii) LP based other optimization problems, for instance, integer, non-linear, stochastic programs

continue to be discovered and adopted in main stream industrial and commercial applications. Many of
these applications are either best processed by the SSX or the IPM or by a hybrid approach involving
both these techniques. For a discussion of recent developments in these areas the readers are referred
to Maros and Mitra, [22] and Gondzio and Terlaky [13], both appearing in the same volume edited by
Beasley [2]. It is well known to researchers in the field of computational LP that three factors, namely,
algorithmic developments, software techniques and hardware platforms contribute towards progressively
better computational solution of these growing applications of LPs. In this paper, however, our main
interest is to investigate how parallel computing can be harnessed to provide relatively faster (than a
single processor) as well as robustly computed solutions of LPs using the SSX approach.

1.2 Parallel SSX algorithm

IPM can be adapted to parallel architectures with relative ease [18] and many successful implementations
have been reported in the literature. In contrast, the reorganization of SSX computing steps for parallel
computers have proven to be difficult. In a review article [24) we have discussed the issues which make it
difficult to adapt SSX readily onto parallel machines. Following Amdah!’s analysis of processing time (1],
we break up an algorithm into fixed serial fraction s and parallelizable fraction p (s + p = 1). We then
find that for SSX the portion p can be very different from model to model and the relative portion is not
large enough to offer a suitable payback in terms of speed up. Stunkel and Reed [28] and Chen et al [5]
report parallel versions of simplex but their results do not take into account challenging industrial models.
Forrest and Tomlin [9], using considerable ingenuity in data reorganization, speeded up the PRICE step
(see Section 2) of the SSX. This was implemented in MPSX for IBM’s family of vector machines and
is one of the earliest and robust implementations of parallel SSX. In more recent times researchers at
Edinburgh University, Hall and McKinnon, have continued to study parallel SSX and have provided
interesting results for a limited range of problems [15]. These implementations are essentially based on
shared memory or virtual shared memory multiple instruction multiple data (MIMD) computers. Bixby
and Martin in a recent report [4] consider the scope of parallelizing dual SSX on distributed memory
MIMD and shared memory MIMD computers. They report results based on their CPLEX solver: in
summary the solutions slow down on distributed memory machines and show good speed up for a shared
memory machine.



1.3 Choice of parallel platform

As research into parallel algorithms and software techniques for parallel architectures continue to grow it is
important to analyze and establish the advantages which are to be gained by adopting these architectures.
In general the main motivations for exploiting parallelism have been

(i) to speed up wall clock (elapsed) time for processing an application,
(ii) to scale up the size of problems which can be solved,
(iii) to compute the solutions in a reliable fashion,

for a given computational application. Latency (for message exchange) and communication speed play
important roles in determining the performance of parallel computers. A number of investigators have
found shared memory MIMD machines are good platforms for achieving speed up.

For a number of complex but entirely justifiable reasons set out here we have chosen to work with
distributed memory MIMD machines. Moor’s Law and the weight of empirical evidence show that
single processor speed continues to jmprove by an order of magnitude every 12-18 months. Thus serial
implementations of application software

(a) are by and large very stable, and
(b) set the most challenging performance standards for parallel algorithms.

Because single processor speeds continue to improve more development and maintenance effort are
recurrently deployed for these “serial software systems” which are by default used for many challenging
applications. This in turn makes these systems both mature in their features and robust in respect
of bugs and fault tolerance. For parallel computing to really gain acceptance, it is also necessary to
compare the performance of a parallel software system against the serial software run on the fastest yet
readily available serial machine. The experience of last few decades have shown fastest serial processors
released to the market outperform substantially the individual processors used in parallel machines. All
these considerations lead to an implied imperative that we need to develop parallel software which is a
natural extension of the serial version. This immediately rules out the use of single instruction multiple
data (SIMD) machine. Virtual shared memory machines also require embedding nonstandard language
constructs (such as pragma extensions of Power C, see [27]) whereas we wish to develop a system which
can be readily ported.

We have therefore adopted a distributed memory multiprocessor as our hardware platform and the
industry de-facto standard parallel virtual machine (PVM) as the message passing standard. Initial
implementation has been on a Parsytec CC12 computer with 12 processors, 64 Mbyte RAM per processor
node. The nodes are Power PC 604 processors running at 133 MHz. The software system can be also
run on a cluster of PCs.

Our experimental results vindicate this choice of “cluster” MIMD architecture as we are able to show
speed up and robust performance (see Section 5). Our aim is twofold. We want to create (i) a scalable
blackbox software system which can be simply used as a robust LP optimization server and (ii) a tool to
investigate the scope of enhancing the simplex method.

1.4 Outline of the paper

The rest of this paper is organised in the following way. In Section 2, we give computational results and
profiling information for the SSX algorithm, analyse the results and discuss a few issues covering sparsity
and parallel algorithms. Section 3 contains a discussion of important and well-established strategies
used in SSX. The results of applying these strategies in a serial algorithm for a chosen collection of test
problems are also set out in this section.



A description of our new cooperating SSX algorithm is given in Section 4 and computational results
are presented and analysed in Section 5. The paper is concluded with a short discussion set out in
Section 6.

2 Computational Analysis of SSX Algorithm

2.1 Structure of the SSX
2.1.1 LP problem statement

We consider the primal linear programming problem in the following general form:

minimize Iz,
subject to Az = b, (1)
. I<z<u, (2)

where A € R™*" ¢, z,l,u€ R",andbe R™. Some or all components of ! and u can be —oco or +00,
respectively.

A is assumed to contain a unit matrix I, A = [/ ,A], so that each row has a logical variable and,
therefore, A is of full row rank.

Let B denote a basis of A; the matrix and the vectors are partitioned as A = [B, N}, z = [zB,ZN), €=
[c,cn]. We rewrite system (1 as Bzg + Nzny = b, or equivalently, zg = B~!(b— Nzy). Variables in
N are either at zero or upper bound or some ‘superbasic’ value.

2.1.2 The primal simplex iteration

In order to analyse the structure of the algorithm, we need to identify the main algorithmic components of
the computational version of the primal revised SSX method. The iteration cycle consists of the following
steps.

Step 1. Compute simplex multiplier 7T = vTB-! using a form vector v (different for Phase-1 and Phase-
2).

Step 2. Check optimality (also known as Choose Column or PRICE): compute d; = ¢; — mTa; for j € N.
If all of them satisfy the optimality condition, stop. Otherwise, there is at least one variable that
can enter the basis. Its subscript is denoted by k.

Step 3. Transform the vector of the improving candidate ax: ax = B~ la;.
Step 4. Choose row (pivot): determine the outgoing variable or bound swap (ratio test).
Step 5. Update solution, basis inverse; do reinversion (refactorization) if necessary.

The (sparse) simplex method as described above, is inherently a serial algorithm.

2.2 Profiling the primal SSX components

In order to decide which components of the SSX can benefit from parallel execution it is necessary to
find out the relative time spent in the main algorithmic components. We have provided some preliminary
information in earlier papers [22], [24]; Bixby and Martin also give comparable results [4]. In Table 1 we
summarize and explain these components.



Table 1: Main algorithmic components of SSX

[ Component Brief explanation B
CHKFEZ | Checking feasibility of the current solution and, accordingly, constructing
Phase-1 or Phase-2 from vector v. It appears in Step 1 of the SSX.

BTRAN | Backward transformation: operation m1 = v'B~" leading to the price vector 7
in Step 1.

PRICE Computation of the d; reduced cost for a designated set of nonbasic variables
as given in Step 2.

FTRAN Forward transformation: updating the column(s) selected by PRICE. Step 3
on one or more vectors.

CHUZRO | Choosing the pivot row (determining the outgoing variable) by applying the
ratio test. Step 4.

HUZKEP | “House-keeping” step after each iteration whereby basis or bound changes and
other related information are updated. Step 5.

INVERT | Refactorization {reinversion) of the current basis to refresh the LU representa-
tion of B~!. This appears in Step 5 and is carried out to limit the growth of
nonzeros and restore computational accuracy.

OTHER Remaining computational work not otherwise accounted above.

In Table 2 the statistics of the problems under consideration are displayed and in Table 3 we set out
the profiling information of applying the default PRICE strategy. These strategies are well known (c.t.,
[22]) and are also explained briefly in section 3.1.

We observe that the proportion of time spent in different components can be extremely variable from
problem instance to problem instance. This, in turn, makes it difficult to adopt a uniform parallelization
strategy.

2.3 Sparsity and Parallelization

The sparse matrix methods both in terms of data representation, and in terms of reordering and processing
algorithms are applied in the serial SSX algorithm. SSX requires frequent operations using packed and
unpacked vectors simultaneously and in this respect it is a “tightly data coupled” algorithm. In general,
it has been well known that PRICE step does take a good proportion of processing time hence Forrest
and Tomlin parallelized this procedure in their implementation [9]. Fine grain parallelization of the other
SSX steps is possible. For instance, Hall and McKinnon have parallelized both PRICE and INVERT
(15). Analyzing the profiles of different models set out in Table 3, it is easily seen that uniform speed-up
is hard to achieve.

Adopting a fine grain parallel approach invariably limits the choice to shared (virtual) memory plat-
forms only. On distributed memory computers a coarser grain parallelism is more meaningful than fine
grain parallelization of SSX. Fine grain parallel steps on distributed memory machines can only lead to
slow down due to latency and communication bottleneck. This is vindicated by the results presented in
[4]. An analysis of the computational profile of the SSX, however, allows us to decide how to structure a
coarse grain parallel algorithm which we discuss in the next section.

3 Sparse Primal Simplex Solution Strategies

SSX iterations do not uniquely define the solution path. The alternative parameter and control choices
in several SSX steps allow us to create a number of alternative versions of the SSX. Most of the current



Number of
Problem rows columns nonzeros

80baudb 2263 9799 29063

bnl2 2325 3489 16124
d2q06¢c 2172 5167 35674
d6cube 416 6184 43888
degen3 1504 1818 26230
fit2p 3001 13525 60784
greenbea | 2393 5405 31499

greenbeb | 2393 5405 31499
maros-r7 | 3137 9408 151120

pilot 1442 3652 43220
pilot87 2031 4883 73804
qap8 913 1632 8304
stocford | 16676 15695 . 74004
truss 1001 8806 36642

woodw 1099 8405 37478

Table 2: Problem statistics of our test set. Models are from netlib/1p/data.

implementations are equipped with a variety of strategies which by and large enhance the reliability and
efficiency of the solvers. The important parameter and control choices are summarized below.

(i) main algorithm: primal or dual method,

(ii) pricing: alarge number of variants, including partial and sectional pricing, multiple pricing, different
versions of normalized pricing,

(iii) determining the outgoing variable: several strategies for row choice which are different in Phase-1
and, Phase-2,

(iv) anti-degeneracy strategies,
(v) inverse update,
(vi) presolve, scaling.

Most of the industrial strength solvers provide a default setting for the above choices and, in many
cases, a strategy is set and it is used throughout the solution. It is generally accepted that there is no
single strategy which is the best for all problems. At different stages of the solution, different strategies
would perform better. However, the investigation of this conjecture requires a demanding experimental
simplex framework and very little results have been reported in the open literature.

Some ‘smart’ solvers can detect certain simple situations and change strategy for the rest of the
solution (e.g., changing from standard pricing to Devez), others can notice the size of the available
memory and change for a strategy that exploits if ‘more than enough’ memory is available, e.g., they
create additional data structures like rowwise storage of A.

In this investigation, we have set out to find a good mix of strategies. We have found that the
cooperating (parallel) version of SSX throws considerable light on the relative performance of individual
as well as mixed strategies. '



[Problem | CHKFEZ | BTRAN | PRICE | FTRAN [ CHUZRO | HUZKEP | INVERT | OTHERS |
80bau3b 2.9 16.4 25.2 224 12.8 9.7 2.3 8.3
bnl2 3.1 16.9 16.0 28.2 18.6 8.1 2.5 6.6
d2q06¢ 0.3 20.1 14.1 31.8 15.4 5.3 6.7 6.3
d6cube 0.2 176 | 314 25.8 9.3 2.0 6.5 7.2
degen3 13 26.3 13.2 32.9 13.2 4.2 8.4 0.5
fit2p ~ 01 17.8 17.3 44.4 14.6 1.7 1.1 3.0
greenbea 2.1 21.2 11.9 28.4 17.0 7.5 4.7 7.2
greenbeb 2.8 20.8 12.3 27.6 16.8 8.4 4.6 6.7
maros-r7 0.2 29.0 10.8 39.9 6.9 2.2 6.5 4.5
pilot 1.0 17.2 5.6 34.1 7.3 1.7 29.7 34
pilot87 0.3 14.4 3.1 30.2 3.5 1.0 40.3 7.2
qap8 0.4 19.1 3.7 39.2 12.7 1.7 19.4 5.8
stocfor3 2.5 21.1 8.1 34.1 19.1 7.7 2.5 49
truss 14 20.1 21.3 28.9 12.2 3.5 5.9 6.7
woodw 1.6 151 376 16.1 12.1 5.0 1.9 10.6

Table 3: Time percentages of algorithmic components of primal SSX using default parameter settings.

3.1 Column selection (PRICE) strategies

Column selection is often referred to as the PRICE step (see section 2.1.2). During pricing, d; of the
nonbasic variables is computed. If there is one that violates the optimality condition then it is a candidate
to enter .the basis.

PRICE is computationally an expensive step because of the many dot products that have to be
calculated for some or all the columns of the A matrix. We set out below the important and most
frequently adopted PRICE strategies for SSX.

1. First improving candidate. The first a;, j € N with nonoptimal d; is selected. This is the cheapest
criterion (part of Bland’s rule) but usually leads to very large number of iterations and, therefore,
is not used in practice.

2. Dantzig rule [6]. In this option all nonbasic variables (full pricing) and select one which violates
optimality condition the most. This ruleis quite expensive (dot products with all nonbasic variables)
but, overall, is considerably better than the previous method. One disadvantage is that it is scale
dependent.

3. Partial pricing. To alleviate the computational burden, only a part of the nonbasic variables is
scanned and the best candidate from this part is selected [26]. In the next step, the next part is
scanned, and so on. If the partition is chosen initially and kept fixed then this is known as static
partial pricing. In contrast, the parts of A matrix may be dynamically redefined during the SSX
iterations; this is known as dynamic partial pricing.

4. Multiple pricing. Some of the most profitable (in terms of the magnitude of d;) candidates are
selected during one scanning pass (major iteration, [26]). They are updated and a suboptimization
is performed involving the current basis and the selected candidates using the criterion of greatest
improvement. During these minor iterations the update of the selected candidates is inexpensive
but some updated columns may become nonprofitable even before using them. Still, this technique
is successful and is included in many solvers. ”

5. Steepest edge. The magnitude d; shows the rate of change (scale dependent) but not how far the
selected variable can go. Hence, it is not a good indicator of the achievable progress in the objective



function. Normalized pricings attempt to estimate the relative merit of the improving candidates
by evaluating d; in a fixed framework. This is achieved by scaling the computed d; by a scale
factor. Scale factors are updated for each basis change.

Steepest edge [10] is the most powerful normalized pricing algorithm but this is computationally
the most expensive. It is a full pricing and does not adapt to multiple pricing. It can dramatically
reduce the total number of iterations but the work per iteration can be so large that there can be
no computational gain. However, in certain problem instances it is superior to any other method.

6. Devez. Introduced by Paula Harris [16], this was the first effective normalized pricing; today we
see it as an approximation to steepest edge. It requires less work per iteration but still can reduce
the number of iterations quite considerably. In a number of cases it results in the reduction of the
overall computational effort and is considered a useful tool for the primal SSX. It is a full pricing
and is not suitable for multiple pricing.

7. Dynamic scaling [3]. This is an inexpensive approximation to the steepest edge pricing. Its advan-
tage is its suitability for partial and multiple pricing. Its effectiveness is, however, questionable for
many problem instances. -

8. Sectional pricing [14]. LP models often exhibit some structure which is characterized by the presence
of sections. In this case pricing can operate more effectively by choosing candidates from different
sections during a multiple pricing step. This increases the possibility that the selected candidates
are not immediately related and most of them will remain candidates during the minor iterations.

9. Partial sectional partial pricing [21]. In identified sections we perform partial pricing. But not in
all of them at a time. The sections themselves are taken in a rotating order. The procedure is
controlled by three parameters:

ns Number of sections

ks Number of sections scanned in one major pricing

kv Number of improving vectors evaluated in a scanned section (uniform value for
each section)

Logical details of this procedure are described in [21] for network optimization that equally hold
for the general simplex method.

10. Composite pricing. In Phase-1 the true objective function is usually not considered. This may entail
that the first feasible solution is far from optimal. Some algorithms create a composite Phase-1
objective function (which is a weighted sum of the true objective function z and the sum of the
infeasibilities w: s = Az + w) and use it to find a better first feasible solution. In this approach the
determination of the weight is, however, critical as well as and non-trivial. Some favorable results
have been reported with a version of this technique which adaptively adjusts the weight [20]. It
requires some extra work per major iteration.

3.2 Row selection strategies

Row selection determines the outgoing basic variable which by performing a ratio test. If the minimum
ratio is unique the corresponding choice of the leaving variable is also unique. However, from numerical
point of view it is always advantageous to have control on the magnitude of the pivot element. Therefore,
by introducing suitable tolerances alternative non-unique choices are constructively created.

In Phase-1, one of the favorable “by-products” of the algorithm described in [19] is its flexibility in
pivot row selection enabling increased numerical stability. In Phase-2, the seminal work of Harris [16]
and a follow-up in [12] give a framework for variations in determining the pivot row.



3.3 Strategies considered

In order to identify a good mix of strategies, we first undertook a stand-alone analysis of performance
of the selected eight strategies. The motivation was to pick relatively good strategies based on our
experience. For our investigations we used FortMP system developed at Brunel University [7]. FortMP
is equipped with a number of solution strategies. In our investigations we used the following.

Standard (STD): Dynamic cyclic partial multiple pricing with 4 candidates. This is used as the default
strategy.

Dever (DVX): single, full pricing.
Full Dantzig Pricing (FDP): the whole matrix is scanned for the ‘best’ candidate (with largest |d;).

Adaptive Composite Pricing (ACP): True objective appears in Phase-1 with an adaptively adjusted
relative weight A (value used: 0.1), with multiple pricing on 4 candidates.

Dynamic Scaling (DSC) of d; with multiple pricing on 4 candidates, in the framework of STD.
Partial Sectional Partial Pricing-1 (PSPP-1): as described above with ns = 5, ks =2, kv =10.
Partial Sectional Partial Pricing-2, (PSPP-2): as above, with ns = 12, ks =3, kv =10.
Partial Sectional Partial Pricing-2, (PSPP-3): as above, with ns = 12, ks =7, kv =_8.

3.4 Performance analysis

The models introduced in section 2, Table 2, and used for SSX profiling were also used to evaluate the
performance of the eight strategies described in section 3.3. A number of default yet standard algorithm
controls such as (i) scaling, (ii) crash basis, (iii) Refactorization every 100 iterations and (iv) Forrest
Tomlin sparse update were set. We specifically switched off presolve to increase solution time and thus
make timing more accurate. The runs were carried out on a single processor of the Parsytec CC-12
computer and the solution times and the iteration numbers were recorded. These results are displayed
in Table 4.
A brief analysis of the result leads to a number of observations and inferences set out below.

(i) There is no single solution strategy that outperforms all the others on all problems. This is another
confirmation of the belief held by SSX code developers.

(ii) The ratios of the worst and best solution times vary between 5.55 and 1.64 and the average is 2.92.
This can be interpreted as that the single best strategy (which is a priori not known at the time of
processing a model and which is different from model to model) can be expected to be three times
faster than the worst strategy. This represents quite a large relative time gain.

(iii) DSC strategy seems to be quite inferior to others in many but not all problem instances. We did
not make an immediate decision to exclude it from further consideration. The inclusion of this
strategy in the parallel algorithm led to interesting results.

(iv) For a number of problem instances PSPP variants provided good performance. The equisized
column partitions are defined in a simple way, but do not make use of any structure information.
We believe if partitioning is done, taking into account structure, this will lead to improvement of
performance.

(v) We conclude that Devex is good for most problem instances. This is a common wisdom. However,
when it performs poorly the time penalty is very high.



Strategy W/B
Problem STD DVX FDP ACP DSC PSPP-1 PSPP-2 PSPP-3 | ratio

80bau3b 65.54 111.68 101.29 78.83  118.82 59.33 64.92 65.85 | 2.00
bnl2 70.75 52.14 67.63 85.54 77.38 64.51 67.18 72.51 | 1.64
d2q06¢ 384.64 217.40 468.65 506.22 458.11  407.79  382.43 409.94 | 2.33
d6cube 11633 173.03 96043 935.73 724.86  359.29  350.70 629.16 | 5.55
degen3 109.17 56.12 94.30 107.59  107.22 103.06 101.79 104.76 | 1.95
fit2p 744.10 490.34 635.15 549.46 1046.51 831.88  805.77  813.08 | 2.13
greenbea | 133.31 135.81  136.07 133.69  395.75 108.55 107.26 111.69 | 3.69
greenbeb 88.23 95.39 110.93 126.98  349.43 96.66 90.94 88.03 | 3.97
maros-r7 | 147.14  262.05 171.15 228.87  369.11 134.87 147.78 152.56 | 2.75

pilot 303.85 245.30 339.01 336.66 935.66 319.33 31228  304.85 3.82
pilot87 122991  674.82 1542.03 1712.55 1976.33 1435.60 1484.20 1510.67 2.93
qap8 100.65 73.78 98.67 96.60 121.86 88.07 100.92 100.60 | 1.65
stocfor3 | 1121.02 1070.09 1117.14 1062.85 2659.73 1155.79 1161.76 1196.45 | 2.50
truss 62.73 121.72  _85.03 81.67 204.71 68.99 56.30 76.05 | 3.64
woodw 8.35 21.94 14.24 14.94 19.91 8.10 6.70 10.55 | 3.27
Sum 1085.72 38017 5942.62 6058.18 9565.39 5241.82 5240.93 5646.75 | 2.92

Average 332.38 253.45 396.17 403.88 637.69  349.45 349.40  376.45 | 2.92

Table 4: Solution times in seconds with different strategies. W/B is the worst to best ratio.

In Table 5 we have set out the strategies with their ranked order. This provides an alternative view
of the strategies and it is easily seen that on average solution time ranking Devex is the outright winner
and the standard strategy (STD) is a good second. These results provide a considerable justification of
the default settings of our FortMP solver.

Ranking on the average also reveals that PSPP-2 is the surprise winner, followed by Devex and PSPP-
1 in the tied second place, which is followed by STD. This somehow vindicates our earlier claim in (iv)
that exploiting structure may improve the effectiveness of the PSPP strategy.

Altogether, the results are very interesting but inconclusive regarding the identification of the ‘best’
single strategy.

4 A Cooperating Framework of SSX

In this section we introduce the cooperating algorithmic framework for the SSX method. We first give a
motivational overview then an outline of the algorithm which is followed up by a formal description and
a pseudocode.

The distributed memory MIMD machine is organized in a simple tree topology with a single master
and eight slave processors. The main idea is to reserve and dedicate each processor node to execute one of
the eight chosen strategies. Thus each processor runs the same problem instance virtually independently
of the other except when reaching a communication point (CP). From qualitative point of view, two types
of CPs (active and passive) are defined for the slaves. When a slave reaches an active CP it initiates
communication. Slaves are prepared to take messages at designated points only. They are the passive
CPs. When such a CP is reached, the slave checks if there is a message for it. If not, normal program
execution continues; if yes, it enters communication in accordance with the nature of the message.

Since nodes run independently and with different strategies, one of them reaches an active CP first.
It reports to the master. Master collects information from all other nodes about their current status of
progress. Master determines the best node (in terms of objective or feasibility) and requests the owner



Strategy

Problem | STD DVX FDP ACP DSC PSPP-1 PSPP-2 PSPP-3
80bau3b 3 7 6 5 8 1 2 4
bnl2 5 1 3 8 7 2 4 6
d2q06¢c 3 1 7 8 6 4 2 5
d6cube 4 1 8 7 6 3 2 )
degen3 8 1 2 7 6 4 3 5
fit2p 4 1 3 2 8 7 5 6
greenbea 4 6 7 5 8 2 1 3
greenbeb 2 4 6 7 8 5 3 1
maros-r7 2 7 5 6 8 1 3 4
pilot 2 1 7 6 8 5 4 3
pilot87 2 1 6 7 8 3 4 5
qap8 6 1 4 3 8 2 7 5
stocfor3 4 2 3 1 8 5 6 7
truss 2 J 6 5 8 3 1 4
woodw 3 8 5 6 7 2 1 4
Sum 54 49 78 83 112 49 48 67
Average 36 327 520 553 747 3.27 3.20 4.47
Rank on

average 4 2 6 7 8 2 1 5
Rank on

sol. time 2 1 6 7 8 3 3 5

Table 5: Ranking of strategies by solution times. Identical scores are given same rank.

of the current best solution to communicate the associated basis to all other nodes. Nodes receive the
basis (list of basic variables and variables at upper bound), factorize this basis and resume optimization
with their designated strategy. This procedure goes on in this cooperative fashion until one of the nodes
reports final solution (optimal, unbounded or infeasible). Subtleties are omitted in this verbal description.
It is clear that what we have defined is an algorithmic framework that can be filled with as many
solution strategies as one wishes. Also, the evaluation criteria at CP can vary.
For a more formal description of the cooperating SSX algorithmic framework we introduce the fol-
lowing notations. .
M Master processor
P Number of strategies
S(i) Slave processor i,i=1,...,P
w(i) Sum of infeasibilities computed by S(i)
z(i)  Value of the objective function computed by S(3)

Assuming that SSX is prepared for communication, we define actually three different types of com-
munication points:

A: Before every minor iteration: a node is ready to receive and respond to messages from master.

B: Regular message sending point of slaves (currently: before every regular refactorization): initiate
communication with master.

C: Termination: one node reaches a terminal solution (optimal, infeasible, unbounded) and is ready to
report it to master.
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The operation of the adaptive composite strategy (ACP) is quite different from the others. Its effort
is aimed at finding a good first feasible solution. In Phase-2 it loses its importance and, therefore, can
follow any other strategy. In our present version it reverts to the standard (STD) by default. Slave with
the adaptive composite (ACP) strategy is denoted by S(k).

All strategies use the expanding feasibility tolerance technique by Gill et al [12]. Therefore, additional
information also has to be included in some messages.

The algorithm

1. Initialization Phase
1.1 Load master node: Control program — M.
Fori=1,...,P

1.2 Load node i: SSX solver — S(3), _
1.3 Load the description of solution strategy of S(): i-th specs file — S(1),
1.4 Input the same LP problem (defined in specs) into S(i),

1.5 Start solving the (same) LP problem in S(i) (minimization assumed).

2. Solution: Cooperative Processing Phase
If C in not reached do

Assume S(p) reaches B.
(a) S(p) sends w(p) and z(p) to M.
(b) M receives message.
(c) M requests all slavesi =1,...,P, i#pto send w(i) and z(7).
(d) Slaves reach A or B and respond to M.
M evaluates situation.
(a) If S(p) is in Phase-2, i.e., w(p) = 0, then
i. it finds 4 such that z(i) = min;{z(j) : j # k, w(j) = 0},, i.e., node with best objective
value.

ii. it requests S(i) to send basis (list of basic variables and variables at bound) and
information about expanding feasibility tolerance (current iterate, value, increment),

lii. it broadcasts this info to all slaves except i and k if latter is still in Phase-1,

iv. slaves receive new basis and restart from this basis except S(i) (and perhaps S(k))
which resumes where it was.

(b) If S(p) is in Phase-1, i.e., w(p) # 0, then
i. if p = k then do not do anything, else
ii. denote I = {j : w(j) = 0}. If I = 0 (all slaves are in Phase-1) do the same as in
Phase-2 replacing z(i) by w(i). If I # 0 then
iii. find 7 such that z(i) = min;{z(j) : j # k, j € I},
and do the same as in Phase-2.

end do
3. Termination Phase

Assume S(p) reaches C. It sends the current status to M.
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(a) M orders all nodes to terminate computations and report statistics (Phase-1 and total
iterations, Phase-1 time) to M.

(b) M declares: solution reached, reports CPU times of all processors, takes the winner’s time
as solution time.

(c) M also terminates.

If a node terminates with an error message, like numerical troubles, then (i) make a note what
happened, (ii) take it as if it had reached B reporting an infinitely bad objective value and let it take the
currently best basis to continue with.

Handling of other exceptional cases is not described here because they do not contribute to the essence
of the general algorithmic framework.

5 Computational Investigation

In this section, we first present the performance of the mixed strategy (see section 4); our main measure
of performance is the wall clock tirfe for computing the solution. Next, we analyze the contribution of
different strategies.

5.1 Results with mixed strategy

In Table 6 we summarize the performance of the mixed strategy algorithm for the chosen set of test
problems. For convenience, we include the solution times of the standard (STD) strategy which is the
default of FortMP. Next, we give the best serial algorithm and its solution time, followed by the ratio
of the worst and best solution times of the eight serial strategies. In the next section of the table there
are three columns. The first one is the solution time of the mixed strategy in seconds. The next column
gives the ratio of the times of the standard strategy to the mixed one. The last column shows the ratio
of the best serial and the mixed strategy in a similar sense.

The results reveal some interesting points. First of all, the mixed strategy is almost always better than
the best serial strategy. Here, we emphasize again, that the best serial strategy is usually not known in
advance. These timing improvements we see as a real achievement because the new algorithm is applied
directly without any fine tuning. This supports our main claim that the performance of SSX can be
improved by a considerable margin. We are convinced that by allowing more refinements and including
more strategies the performance can be enhanced still further.

We justify this claim by xonsidering the data instance of problem d6cube for which the Devex algo-
rithm was far superior to its nearest contender (DVX=173.03 sec, PSPP-2=350.70 sec). Yet the mixed
strategy was able to beat this performance very substantially (M=115.57 sec).

The fact that we have not achieved uniform improvement just underlines the importance of further re-
search in this direction. Although our experiments are comprehensive, we have not explored the full scope
of improving SSX. Our approach with the strategy mix seems to be a promising avenue for improvement.

5.2 Analysis of mixed strategy

The purpose of this section is to investigate the individual contribution of different strategies to the overall
composition of the best mixed strategy. In other words, we wish to establish how many times a specific
strategy was locally (between two communication points, i.e., refactorizations) chosen by comparative
evaluation and thus defining the best sequence which constituted the best mixed strategy.

Table 7 shows the composition of mixed strategy in terms of number of times a given strategy was
used. This table, again, reveals information which is in some ways couter intuitive.

First, it can be seen that all strategies contributed to the mix (no column contains all zeros). Of
course, if a problem is solved with few iterations (and refactorizations) the chance of using all strategies

12



STD Best Serial Mixed Strategy
Problem sec | Strat. | sec | W/B sec [ STD/M | BS/M
80bau3b 65.54 | PSPP-1 59.33 | 2.00 58.70 1.12 1.02
bni2 70.75 | DVX 52.14 | 1.64 40.09 1.76 1.30
d2q06¢c 384.64 | DVX 217.40 | 2.33 || 193.76 1.99 1.12
d6cube 416.33 | DVX 173.03 | 5.55 || 115.57 3.60 1.50
degen3 109.17 | DVX 56.12 | 1.95 49.57 2.20 1.13
fit2p 744.10 | DVX 490.34 | 2.13 || 449.38 1.66 1.09
greenbea 133.31 | PSPP-2 107.26 | 3.69 72.65 183 | 1.48
greenbeb 88.23 | PSPP-3 88.03 | 3.97 65.50 1.35 1.34
maros-r7 147.14 | PSPP-2 | 13487 | 2.75 || 134.79 1.09 1.00
pilot 303.85 | DVX 245.39 | 3.82 || 188.50 1.61 1.30
pilot87 1229.91 | DVX 674.82 | 2.93 || 650.76 1.89 1.04
qap8 100.65 | DVX 73.78 | 1.65 58.87 1.71 1.25
stocfor3 1121.02 | ACP 1062.85 | 2.50 || 806.95 1.39 1.32
truss 62.73 | ,PSPP-2 56.30 | 3.64 59.63 1.05 0.94
woodw 8.35 | PSPP-2 6.70 | 3.27 6.91 1.21 0.97

Table 6: Comparison of best serial and mixed strategies. W /B = ratio of worst to best serial, STD/M =
ratio of the standard serial to mixed strategy, BS/M = best serial to mixed.

is smaller. At the same time, there are really very few zeros in this table. Also to be noted that ACP
can contribute to the mix in Phase-1 only, therefore the corresponding column is more likely to contain
zeros but, in fact, it contains only three.

Second, we point out that the individually rather poorly performing dynamic scaling (DSC) technique
took part in defining the best mix for all but two problems. Even in the case of d6cube (where Devex is
by far the best serial strategy) contributed 11 times to the mix. In case of the largest (in terms of size)
problem in the test set, stocfor3, DSC became the dominant technique, well ahead of Devex.

Third, the real poor performer is the full Dantzig pricing with seven zeros in its column. This further
confirms that FDP, without normalizing the reduced costs (d;), is unlikely to be efficient.

Fourth, while standard pricing (STD) is very good individually, its importance diminishes when used
in potential combination with others.

In an earlier paper on the topic of parallel multiple tree search strategies [25] our computational
experience showed that information sharing of multiple strategies leads to a “mixed strategy” which
performs well and often better than the best individual strategy. We are encouraged to discover that in
the case of SSX comparable performance behaviors take place.

Finally, we wish to point out the robustness property of our cooperating SSX approach. It is well
known that the ill-behaved problems have difficult and easier stages during solution. If a difficult stage
is bypassed in some way solution can proceed successfully. In the outlined algorithm if any of the nodes
reports numerical difficulties or failure the others still can provide bases suitable for further computations.

6 Conclusions

We have created a cooperative parallel version of the sparse simplex method. It is a general framework
that can be used to investigate the effects of changing strategies during solution. We presented the
results of our first investigations with a specific selection of strategies.-We identified that a considerable
improvement in efficiency and reliability can be achieved in this way. On the basis of these findings, it
can be expected that the provision of a larger richness of strategies could further enhance the efficiency
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Problem Strategy

STD | DVX [ FDP | ACP [ DSC [ PSPP-1 | PSPP-2 | PSPP-3
80bau3b 15 7 0 6 7 4 16 4
bnl2 4 8 2 0 10 4 9 9
d2q06¢ 9 84 0 5 5 15 12 8
d6cube 38 140 6 13 11 102 107 14
degen3 3 24 5 3 8 7 3 7
fit2p 8 52 0 2 1 2 14 16
greenbea 11 12 3 3 9 5 22 14
greenbeb 5 21 2 3 8 5 16 4
maros-r7 15 6 0 10 2 3 6 5
pilot 9 27 2 2 17 10 10 4
pilot87 7 58 0 0 15 12 4 4
qap8 3 37 2 3 0 5 26 4
stocfor3 0 30 0 0 47 10 12 2
truss 7 15 3 5 3 21 22 3
woodw 3 0 0 3 0 2 6 3

Table 7: Break-down of mixed strategy. Number of times a given strategy was used.

of the solution. To this end, some more research is justified so that this statement can be verified in
quantitative terms.

There are several issues to be addressed in the future. First, some more algorithmic variants should
be included in the analysis, and, second, we have to identify the situations when a switch is needed. If
the investigations are successful, the serial version of the SSX can ultimately be enhanced such that the
scenario of algorithmic changes could be selected automatically for each problem. In the light of our
findings, the expected rate of improvement seems to be promising.
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