
What can Java Binary Compatibility mean?

Sophia Drossopoulou, Susan Eisenbach, David Wragg

Department of Computing, Imperial College,

Abstract

Java binary compatibility prescribes conditions under
which modi�cation and re-compilation of classes does
not necessitate re-compilation of further classes import-
ing the modi�ed classes. Binary compatibility is a novel
concept for language design.

We argue that the description of the term binary
compatibility in the Java language speci�cation allows
for many possible interpretations. We discuss the vari-
ous interpretations and their rami�cations, and suggest
one interpretation, which is best in our view.

1 Introduction

Separate compilation and linking were introduced into
programming languages in the seventies. In the tradi-
tional arrangement, e.g. Ada [9], Modula-2 [10, 2], the
compiler checks for type consistency and the linker re-
solves references and checks the order of compilation.
Any units (i.e. packages, classes, modules) importing
modi�ed units have to be re-compiled. So, separate
compilation of several units corresponds to the compi-
lation of all units together.

However Java [7], has a di�erent approach, whereby
the remit of the linker has been extended: not only does
it have to resolve external references, it also has to en-
sure that binaries (the compiled units) are structurally
correct (veri�cation), and that they respect the types
of entities they import from other binaries (resolution);
however, the order of compilation need not correspond
to the import relation. This approach allows for dy-
namic linking and execution of remotely produced code
whose source code is not necessarily accessible.

In particular, certain source code modi�cations, such
as adding a method to a class, are binary compatible
[6]. The Java language description does not require
re-compilation of units importing units modi�ed in bi-
nary compatible ways, and claims that successful link-
ing and execution of the altered program is guaranteed.

Not only do binary compatible changes not require re-
compilation of other units, but such re-compilations
may not be possible: a binary compatible change to the
source code for one class may cause the source code of
other classes no longer to be type correct. Separate
compilation is not equivalent to compilation of all units
together.

Because of the related security issues [3], and impli-
cations on library modi�cation policies, binary compat-
ibility has practical importance. The concept is rather
complex � the language speci�cation is inconsistent in
some places, as it considers certain changes to be binary
compatible, whose combination can be shown to lead to
programs which cannot link [5]. More importantly, the
escription given in the language speci�cation allows for
several interpretations.

In [4, 5] we developed formalizations to study issues
around compilation, linking and binary compatibility.
In the process, we discovered four di�erent interpreta-
tions of the de�ntion of binary compatibility given in
the Java speci�cation [7] each with di�erent properties.

This paper o�ers a less formal approach than [4] and
concentrates on the issues around the meaning of binary
compatibility. In section 2 we introduce Java binary
compatibility. In section 3 we introduce basic notions
of compilation, linking and compile-time or link-time
checks. In section 4 we explore and compare the four
interpretations of binary compatibility. Finally, in sec-
tion 5 we draw conclusions.

2 Binary compatibility in Java

The concept of binary compatibility in Java is moti-
vated by the intention to support large scale re-use
of software available on the Internet [8]. Also, binary
compatibility aims to avoid the fragile base class prob-
lem, found in most C++ implementations, where a �eld
(data member or instance variable) access is compiled
into an o�set from the beginning of the object, �xed at
compile-time. If new �elds are added and the class is

1st phase

class Student { int grade; }

class CStudent extends Student { }

class Lab {

CStudent guy;

void f(){ guy.grade=100; }

}

2nd phase

class CStudent extends Student {

char grade;

}

3rd phase

class Marker {

CStudent guy;

void g(){ guy.grade='A'; }

}

Figure 1: Students and computing students - code

re-compiled, then o�sets may change, and object code
that previously compiled using the original de�nition of
the class may not execute safely together with the ob-
ject code of the modi�ed class. Similar problems may
arise with virtual function calls.

C++ development environments usually attempt to
compensate by automatically re-compiling all �les im-
porting the modi�ed class. In Java, although some de-
velopment environments apply the same strategy, this
would be too restrictive in some cases. For instance,
if one developed a local program P, which imported
a library L1, the source for L1 was not available, L1
imported library L2, and L2 was modi�ed, then re-
compilation of L1 would not be possible. Any further
development of P would therefore be impossible.

In contrast, Java promises that if the modi�cation
to L2 were binary compatible, then the binaries of the
modi�ed L2, the original L1 and the current P can be
linked without error. This is possible, because Java
binaries carry more type information than object code
usually does.

The example in �gure 1 demonstrates some of the
issues connected with binary compatibility. It consists
of three phases. In the �rst phase we create the classes
Student, CStudent, and Lab. The class CStudent in-
herits the instance variable grade of type int. In class
Lab the �eld guy, of class CStudent, is assigned grade
100. This program is well-formed and compiles pro-
ducing binary �les Student.class, CStudent.class
and Lab.class. In the second phase we add the �eld
grade of type char to class CStudent, and re-compile
CStudent, producing CStudent0.class. In the third
phase we de�ne a new class, Marker. In the body of its
method g(), we assign the grade 'A' to guy. The class
Marker is type correct, and thus it can be compiled to

produce the �le Marker.class.
The two changes, i.e. the addition of �eld grade in

class CStudent, and the creation of class Marker, are
binary compatible changes. So, the corresponding bina-
ries, i.e. Student.class, CStudent0.class, Lab.class
and Marker.class, can safely be linked together.

The sources are not type correct any more. An at-
tempt to re-compile the class Lab would �ag a type er-
ror for the assignment guy.grade=100, since the expres-
sion guy.grade now refers to the �eld in class CStudent
which is of type char. Also, the compiled form of the
expression guy.grade in the binary Lab.class refers to
an integer, whereas the compiled form of the same ex-
pression in the binary Marker.class refers to a charac-
ter. The two compiled forms exist at the same time, and
refer to di�erent �elds of a CStudent object; c.f. �gure
3, where guy[Student].grade represents the �rst and
guy[CStudent].grade represents the second access.

Similar situations can arise for method calls.

3 Fragments

As in [1] and in [4], we consider fragments as the basic
units participating in compilation and linking. Frag-
ments are collections of classes or interfaces, and they
need not be self-contained. As we are interested in com-
pilation and linking we distinguish source code frag-
ments from binary fragments, and we use:

� S
java

to indicate the Java source language,

� B
java

to indicate the Java binary, or byte-code level
language. B

java
should contain all information nec-

essary for execution and for compilation of import-
ing fragments.

S
java

fragments will be named S, S0, S1, etc, Bjava
frag-

ments will be named B, B0, B1, etc. Sjava
fragments for

the students example are shown in �gure 2, and a high
level version of B

java
fragments is shown in �gure 3. Al-

though byte-code does not look like the code presented
in 3, what we show there essentially contains the ame
information as available in the byte-code. The di�er-
ence between the fragments in �gure 2 and 3 is, that
�eld accesses in the latter are enriched with informa-
tion necessary for execution.

The following distills the basic concepts necessary
for our description of compilation and linking:

� The mapping C : B
java

� S
java

�! B
java

represents
compilation of S

java
fragments into B

java
fragments

using environment information from imported B
java

frag-
ments.

� The operator + : S
java
�S

java
�! S

java
[B

java
�

B
java

�! B
java

combines fragments forming larger
fragments.

1st phase

S
st = class Student { int grade; }

S
cs = class CStudent extends Student { }

S
lab = class Lab {

CStudent guy;

void f(){ guy.grade=100; }

}

2nd phase

S
st = as in 1st phase

S
cs

0

= class CStudent extends Student {

char grade;

}

S
lab = as in 1st phase

3rd phase

S
st = as in 1st and 2nd phase

S
cs

0

= as in 2nd phase
S
lab = as in 1st and 2nd phase
S
m = class Marker {

CStudent guy;

void g(){ guy.grade='A'; }

}

Figure 2: Computing students - source language frag-
ments

� ` 3 is a relation in B
java

� S
java

representing
compile-time checks. For S

java
fragment S, B

java
frag-

ment B, the assertion B ` S 3 expresses that no er-
rors would be �agged by t when compiling S in the
environment of B. Cf(B;S)g is de�ned i� B ` S 3.

�
B̀
3 is a relation in B

java
, representing link-time

checks. The assertion
B̀
B 3 expresses that no

errors should be �agged when linking B.

S
java

���!
C

B
java

���!
+

B
java

compiler linker
checks checks
B ` S 3

B̀
B 3

The source code of the �rst phase of the computing stu-
dents example consists of Sst+Scs+Slab. Compilation
is represented by Cf(�;Sst)g = B

st, and Cf(Bst;Scs)g =
B
cs. The intermediate code of the �rst phase consists

of Cf(�;Sst+Scs+Slab)g = B
st
+B

cs
+B

lab. In the second

phase we compile Cf(Bst+Bcs+Blab;Scs
0

)g = B
cs

0

, thus,
the intermediate code of the second phase consists of
B
st
+B

cs
0

+B
lab.

Note that compiling after linking, i.e. Cf(B;S1+S2)g,
need not be equivalent to linking after compilation, i.e. to

1st phase

B
st = class Student { int grade; }

B
cs = class CStudent extends Student { }

B
lab = class Lab {

CStudent guy;

void f(){ guy[Student].grade=100; }

}

2nd phase

B
st = as in 1st phase

B
cs

0

= class CStudent extends Student {

char grade;

}

B
lab = as in 1st phase
3rd phase

B
st = as in 1st and 2nd phase

B
cs

0

= as in 2nd phase
B
lab = as in 1st and 2nd phase
B
m = class Marker {

CStudent guy;

void g(){ guy[CStudent].grade='A'; }

}

Figure 3: Computing students - intermediate language
fragments

Cf(B;S1)g+Cf(B;S2)g. For example, Cf(Bst;Slab)g is unde-
�ned, whereas Cf(Bst;Slab+Scs)g = B

lab
+B

cs.
Linking intermediate code in actual systems may in-

volve several steps, e.g. veri�cation of format, resolution
of references, and several checks, often applied in an in-
terleaved manner. We are not interested in these steps
themselves, and we consider that all checks should take
place when testing well-formedness of the fragment re-
sulting from the linking process. Thus, the case where
linking fragments B1 and B2 should �ag an error can be
modelled by

B̀
B1+B2 3 not holding.

We shall call fragments disjoint if they de�ne classes
and/or interfaces with di�erent names. For example,

S
cs
+S

st and Sm are disjoint, whereas Sst+Scs and Sm+Scs
0

are not. Fragments �containing� other fragments are
said to subsume them. For example, Slab+Sst+Scs

0

+S
m

subsumes Sm+Scs
0

.
Binary compatibility is concerned with the e�ects of

modi�cations to source and intermediate code. There-
fore we de�ne the operator � to describe the e�ect
of updating the �rst argument by the de�nitions from
the second, whereby any entity in both will be taken
from the second. For example ((Sst+Scs)+Slab)�S

cs
0

=

S
st
+S

cs
0

+S
lab. Also, (Bst+Blab)� B

m= B
st
+B

lab
+B

m.

Thus, the second phase of our example compiles Scs
0

into
B
st
+B

cs
+B

lab, i.e. Bst+Bcs+Blab�Cf((Bst+Bcs+Blab);Scs
0

)g,

giving Bst+Bcs
0

+B
lab.

4 Four interpretations of binary compati-

bility

The Java language speci�cation [7] describes binary com-
patible changes as follows:

�A change to a type is binary compatible with
(equivalently, does not break compatibility with)
pre-existing binaries if pre-existing binaries
that previously linked without error will con-
tinue to link without error.�

Thus, binary comatibility restricts source code modi�-
cations in terms of properties of the resulting compila-
tion, and its formalization will have the general form:

S is a binary compatible change of B i�:

B̀
:::B::: 3 =)

B̀
:::B:::� Cf(:::B:::;S)g::: 3

During the process of formalization, we realized that
the de�nition from [7] is not unambiguous. Namely, it
does not make clear how many binaries are meant, and
in which environment the compilation of the modi�ed
code should take place. This gives rise to several pos-
sible interpretations. In the remainder of this paper we
explore the four alternatives.

1st interpretation considering one set of binaries:

�A change to a type is binary compatible with
pre-existing binaries if these same pre-existing
binaries will continue to link without error if
they previously linked without error.�

which would be formalized as:

Def 1 S is a weak binary compatible change of B if:

B̀
B 3 =)

B̀
B� Cf(B;S)g 3

Therefore, Scs
0

is a weak binary compatible change of
B
st
+B

cs
+B

lab. Still, de�nition 1 is too weak, as it allows
the removal of features not called in the reference binary
B, with no regard to further libraries B0 which linked
with B and possibly relied on these features.

For example, Scs is a weak binary compatible change
of Bst+Bcs

0

, e�ectively removing �eld char grade from

class CStudent, even though B
lab linked with B

st
+B

cs
0

,
but does not link with B

st
+B

cs.
Therefore, we believe that more than one set of bi-

naries should be meant:

�A change to a type is binary compatible with
certain pre-existing binaries if any further pre-
existing binaries that previously linked with-
out error with the pre-existing binaries will
continue to link without error.�

Still, the question as to the environment of compi-
lation of the modi�cation remains open. This could be
the �rst or the �rst and second set of binaries. This
question leads to three further interpretations: strong
binary compatible change, binary compatible change,
and binary compatible change in context. These inter-
pretations are re�nements of each other: if S is a binary
compatible change of B in the context B1, then S is a
binary compatible change of B+B1; if S is a binary com-
patible change of B, then there exists a B1 so that S is
a strong binary compatible change of B+B1.

Thus, the more re�ned interpretations require a smaller
�reference� binary B. At the end of this section we show
why we attatch such importance to small reference bi-
naries B.

2nd interpretation considering two sets of binaries,
and compiling in the �rst set:

�A change to a type is binary compatible with
certain pre-existing binaries if any further bi-
naries that linked without error with the pre-
existing binaries will continue to link without
error with the result of the compilation in the
environment of the �rst binaries.�

formalized as:

Def 2 S is a strong binary compatible change of B, i�
for all B0 disjoint from S:

B̀
B0+B 3 =)

B̀
B0+ (B� Cf(B;S)g) 3

So, Slab is a strong binary compatible change of Bst+Bcs.
Notice, that S may be a a strong binary compatible
change of a library B, which imports other libraries,
and which cannot be used in isolation, i.e.

B̀
B 3 does

not hold. Such a library can only be compiled in the
presence of further libraries, represented by the frag-
ment B0, with which

B̀
B0+B 3. Thus, B acts as a

�lter for B0, by requiring that
B̀
B0+B 3.

Still, de�nition 2 is too strong, because it expects B
to contain all information necessary for the compilation
of S. Thus, for the following source:

S
test = class Test

f CStudent don; ::: don:grade = 99; g

S
test is a strong binary compatible change of Bst+Bcs,

even though S
test only uses, and does not modify fea-

tures from B
st
+B

cs.

3rd interpretation taking two sets of binaries into
account, and compiling in the two sets of binaries:

�A change to a type is binary compatible with
certain pre-existing binaries if any further bi-
naries that linked without error with the pre-
existing binaries will continue to link without

error with the result of the compilation in the
environment of both binaries. �

considers S to be a binary compatible change of B, if all
fragments B0 that successfully linked with B continue to
do so after compilation of S into B0+B.

Def 3 S is a binary compatible change of B, i� for all
B0 disjoint from S:

B̀
B0+B 3 =)

B̀
(B0+B)� Cf((B0+B);S)g 3

So, Slab is a binary compatible change of Bst+Bcs,
and Scs

0

is a binary compatible change of Bst+Bcs+Blab.
De�nition 3 is weaker than de�nition 2, because it

is possible for (B0+B)� Cf((B0+B);S)g to be de�ned and
for B � Cf(B;S)g not to be. Thus, B does not need to
contain all the type information necessary to compile
and type check S; it only needs to contain enough in-
formation to ensure type correct compilation of S in
the environment of all appropriate fragments B0, which
satisfy

B̀
B0+B 3.

For example, Stest is a binary compatible change
of Blab, even though

B̀
B
lab
3 does not hold, and even

though Blab does not contain enough information for the
compilation of Stest. This is so, because all B0 which
satisfy

B̀
B0+B

lab
3 will hold enough features for the

compilation Cf((B0+B
lab);Stest)g.

In previous work [5] we had adopted de�nition 3.
We later realized that the reference binaries B can be
reduced even further. For example, Scs

0

does not mod-
ify Blab, it only uses features used by Blab; the di�erence
in the roles played by reference binaries is expressed by
the concept of a context, as in the fourth interpretation.

4th interpretation considering three sets of binaries,
and compiling in the three sets of binaries:

�A change to a type is binary compatible with
certain pre-existing binaries in the context of
some other binaries if any further binaries
that linked without error with the �rst and
second binaries together will continue to link
without error with the result of the compila-
tion in the environment of the three sets of
binaries. �

Notice, that contexts are not mentioned in [7]; never-
theless, we believe that their advantages justify their
introduction:

Def 4 An S
java

fragment S is a binary compatible change
of an B

java
fragment B1 in the context of B

java
fragment

B2 i� B2 is disjoint from S, B1, and for all B0 disjoint
from S:

B̀
B0+B1+B2 3 =)

B̀
(B0+B1+B2)� Cf((B0+B1+B2);S)g 3:

So, we distinguish B2, the context which may not be
modi�ed by the compilation of S, from B1, which may.
Thus, Stest is a binary compatible change of � in the
context of Blab, Scs

0

is a binary compatible change of �

in the context of Bst, and a binary compatible change of
B
csin the context of Bst, but is is not a binary compat-

ible change of � in the context of Bst+Bcs.
In [4] we show that S is a binary compatible change

of B1 in the context of B2, i� B2 and B1 are disjoint,
and S is a binary compatible change of B1+B2. Fur-
thermore, the following lemma, proven in [4], says that
two binary compatible changes applicable to disjoint
B

java
fragments, can be combined into one binary com-

patible change in the context of a larger context sub-
suming the contexts of the original changes.

Lemma 1 For fragments S1, S2, B1, B2, B3, B4, B5,
where S1, S2 are disjoint, B1, B2 are disjoint, if:

� S1 binary compatible change of B1 in the context
of B3,

� S2 binary compatible change of B2 in the context
of B4,

� B5 subsumes B3 and B4,

then

� S1+S1 is a binary compatible change of B1+B2 in
the context of B5.

Thus, we are able to combine binary compatible changes
and preserve their linking capabilities, provided that the
reference binaries B1, B2 are disjoint, even if the corre-
sponding contexts B3, B4 are not. Therefore, it is im-
portant that the reference binaries (in that case B1, B2)
are as small as possible. For this reason we believe that
de�nition 4 is the best.

5 Conclusions

Traditionally, rules for binary compatibility would have
been learnt by programmers through experience, and
would have re�ected the behaviour of particular com-
pilers and linkers, rather than being speci�ed by the
language semantics. The Java language designers felt
that the notion of binary compatibility was something
they should explicitly de�ne. However, when we ex-
amined their de�nition, we found counter-examples [5]
(i.e. a sequence of binary compatible changes that re-
sulted in code that could not be linked).

More importantly, we found that there was a range
of alternative interpretations of the de�nition as given
in the language speci�cation. In this paper we have ex-
plored this range � although we shall not be surprised

if further alternatives are disovered later. We have sug-
gested that the de�nition which allows for most combi-
nations of changes whilst preserving linking capabilities
should be chosen.

Acknowledgements

We are grateful to David Clarke for feedback, and to
Phil Wadler for heated discussions and many useful sug-
gestions.

References

[1] L. Cardelli. Program Fragments, Linking, and
Modularization. In POPL'97 Proceedings, January
1997.

[2] M. Dausmann, S. Drossopoulou, G. Persch, and
G. Winterstein. A Separate Compilation System
for Ada. In Proc. GI Tagung: Werkzeuge der Pro-
grammiertechnik. Springer Verlag Lecture Notes in
Computer Science, 1981.

[3] Drew Dean. The Security of Static Typing with
Dynamic Linking. In Fourth ACM Conference on
Computer and Communication Security, 1997. Re-
vised version Tech Report number SRI CSL 9704.

[4] Sophia Drossopoulou, Susan Eisenbach, and David
Wragg. A Fragment Calculus: Towards a
Model of Separate Compilation, Linking and
Java Binary Compatibility. Technical Report
99/1, Imperial College Department of Comput-
ing, January 1999. available at http://www-
dse.doc.ic.ac.uk/projects/slurp/.

[5] Sophia Drossopoulou, David Wragg, and Susan
Eisenbach. What is Java Binary Compatibility?
In OOPSLA, 1998.

[6] Ira Forman, Michael Conner, Scott Danforth, and
Larry Raper. Release-to-Release Binary Compati-
bility in SOM. In OOPSLA'95 Proceedings, 1995.

[7] James Gosling, Bill Joy, and Guy Steele. The Java
Language Speci�cation. Addison-Wesley, August
1996.

[8] James Gosling and H. McGilton. The Java
Language Environment A White Paper, http://
java.sun.com/docs/white/langenv, 1996.

[9] US Department of Defense. Reference Manual for
the Ada Programming Language, 1983. ANSI/MIL-
STD-1815 A.

[10] Niklaus Wirth. Programming in Modula-2.
Springer-Verlag, 1982.

