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Abstract

In this report, we investigate the problem of symbolic knowledge
extraction from trained neural networks, and present a new extrac-
tion method. Although neural networks have shown very good per-
formance in terms of learnability, generalizability and speed in many
application domains, one of their main drawbacks lies on the incapac-
ity to provide an explanation to the underlying reasoning mechanisms
that justify a given answer. As a result, their use in many application
areas, for instance in safety-critical domains, has become limited. The
so called “explanation capability” of neural networks can be achieved
by the extraction of symbolic knowledge from it, using “Rules’ Ex-
traction” methods.

We start by discussing some of the main problems of knowledge
extraction methods. In an attempt to ameliorate these problems, we
identify, in the case of regular networks, a partial ordering on the
input vectors space. A number of pruning rules and simplification
rules that interact with this ordering is defined. Those rules are used
in our extraction algorithm in order to help reducing the input vectors
search space during a pedagogical knowledge extraction from trained
networks. They are also very useful in helping to reduce the number
of rules extracted, what provides clarity and readability to the rule
set. We show that, in the case of regular networks, the extraction
algorithm is sound and complete.



We proceed to extend the extraction algorithm to the class of non-
regular networks, the general case. We identify that non-regular net-
works contain regularities in their subnetworks. As a result, the un-
derlying extraction method for regular networks can be applied, but
now in a decompositional fashion. The problem, however, is how to
combine the set of rules extracted from each subnetwork into the final
rule set. We propose a solution to this problem such that we are able
to keep the soundness of the extraction algorithm, although we have
to drop completeness.

The material presented in this report is an integral part of our
neural-symbolic integration proposal. A detailed description of the
system and the results obtained with its application in computational
biology can be found in [5].

1 Introduction

The aim of neural-symbolic integration is to explore the advantages that
each paradigm presents. Within the features of artificial neural networks are
massive parallelism, inductive learning and generalization capabilities. On
the other hand, symbolic systems can explain their inference process, e.g.,
through automatic theorem proving, and use powerful declarative languages
for knowledge representation.

The Connectionist Inductive Learning and Logic Programming (CIL2P)
system [5] is a proposal towards tightly coupled neural-symbolic integration.
CIL?P is a massively parallel computational model based on a feedforward
artificial neural network that integrates inductive learning from examples and
background knowledge with deductive learning from Logic Programming.
Starting with the background knowledge represented by a (propositional)
general or extended logic program, a translation algorithm (see figure 1, (1))
is applied generating a neural network that can be trained with examples
(2). Moreover, the neural network computes the stable model (answer set)
of the general (extended) program inserted in it or learned by examples, as
a parallel system for Logic Programming (3). The final stage of the system
(4) consists of the symbolic knowledge extraction from the trained neural
network. The extraction explains the learning process and gives justifications
for the network’s answers. Moreover, the symbolic knowledge extracted can
be more easily analyzed by a domains knowledge expert, that decides whether
or not to feed it back to the system (5), closing the learning cycle.
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Figure 1: Neural-Symbolic Integration

In this report, we concentrate on the problem of extraction of symbolic
knowledge from trained neural networks, that is, the problem of finding “log-
ical representations” for such networks. Briefly, the problem lies on the com-
plexity of the network’s extraction algorithm. Previously, we have shown
that each acceptable or locally stratified logic program is equivalent to a
single hidden layer feedforward neural network [5]. In one direction of that
equivalence relation, we have obtained a translation algorithm (figure 1(1))
that, given a logic program, derives a neat neural network structure. We
call that network the “canonical form” of the logic program, since numerous
other network structures can be equivalent to it. The problem arises in the
converse direction, that is, given a trained neural network how can we find
the logic program that is equivalent to it? Our problem is that it is very
unlikely that a neat, canonical network will result from a learning process.
Moreover, a typical real-world application network may contain hundreds of
input neurons and thousands of connections, each one with a real number
weight associated.

The so called “explanation capability” of neural networks can be obtained
by the extraction of symbolic knowledge from it. The extraction is responsi-
ble for making the knowledge learned accessible for an expert’s analysis and



for allowing the justification of the decision making process'. Moreover, arti-
ficial neural networks have shown to outperform symbolic machine learning
methods in many application areas, and the development of techniques for
extracting rules from trained neural networks may contribute to the solution
of the so called “knowledge acquisition bottleneck” problem. The domain
theory extracted, resulting from inductive learning with examples, can be
added to a knowledge base or used in the solution of analogous domains
problems. In a more general perspective, we also would like to understand
the neural learning mechanisms. “We do not just want to build systems
which show intelligent behavior, we also want to understand how humans do
it” [18].

It is known that the knowledge acquired by a neural network during its
training phase is encoded as: (i) the network’s architecture itself; (ii) the
activation function associated to it; and (iii) the value of its weights. As
pointed out in [1], the task of extracting explanations from trained neural
networks is the one of interpreting in a comprehensible form the collective
effect of (1), (ii), and (iii).

A classification scheme for rule extraction algorithms should be based
on: (a) the expressive power of the extracted rules; (b) the “translucency”
of the network; (c) the quality of the extracted rules; and (d) the algorith-
mic complexity [1]. The first classification item refers directly to the symbolic
knowledge presented to the end user from the rule extraction process. In gen-
eral, this knowledge is represented by rules of the form “if then else”. The
second classification item contains two basic categories: “decompositional”
and “pedagogical”. In the first one, the rule extraction process occurs at
the level of individual, hidden and output, units within the trained neural
network, which is viewed as a “white box”. In the second one, the neural
network is viewed as a “black box”, since the rule extraction process is done
by mapping inputs directly into outputs. The next classification item intends
to measure how well the task of extracting the rules has been performed, con-
sidering the rules accuracy, consistency and comprehensibility; while the last
item refers to the requirement for the algorithm to be as effective as possible.
In this sense, a crucial issue in developing a rule extraction algorithm is how
to constrain the size of the solution space to be searched.

IFor instance, in a fault diagnosis system a neural network can detect a fault very
quickly, triggering some safety procedures, while the symbolic knowledge extracted from
it can explain (justify) the fault later on. If mistaken, that information can be used to fine
tune the learning system:.



Thrun [39] defines the following desirable properties of an extraction al-
gorithm. 1) No architectural requirements: a general extraction mechanism
should be able to operate with all types of neural networks. 2) No training
requirements: the algorithm should not make assumptions about the way the
network has been built and how its weights and biases have been learned.
3) Correctness: the extracted rules should describe the underlying network
as correctly as possible. 4) High expressive power: more powerful languages
and more compact rule sets are highly desirable.

Intuitively, the extraction task is to find the relations between input and
output concepts in a trained network, in the sense that certain combinations
of inputs imply a particular output. It is a causality relation. Moreover, we
argue that neural networks are nonmonotonic systems (see [5]) and, therefore,
the set of rules extracted may contain default negation (~). Each neuron can
represent a concept or its “classical” negation. Consequently, we expect to
extract a set of rules of the form: Ly, ..., Ly,~ Lyy1,...,~ Ly — Ly 1, where
each L; is a literal, L; (1 < j < m) represents a neuron in the network’s input
layer, and L,,,1 represents a neuron in the network’s output layer?.

The figure below gives a general idea about the pieces of knowledge rep-
resented in a neural network and about their relations. The training set (see
figure 2, (2)) corroborates part of the background knowledge (1) and revises
another part, while the generalization set (3) embodies the training set. We
say that an extraction algorithm is sound and complete if the rule set ex-
tracted is equivalent to the network’s generalization set. If, however, the rule
set (see (4), below) is a subset of (3), then the extraction is sound but not
complete. In this case, if the rule set is at least a superset of the training set
(2), then the extraction has lost only part of the network’s generalization.
Rule set (5) is an example of unsound and incomplete extraction. Here, in
particular unsoundness is a major problem because the complement of (5)
w.r.t (3), that is (5)-(3), may be responsible for wrong generalization.

In this report we describe a new approach for symbolic knowledge extrac-
tion from trained neural networks. We start by discussing some of the main
problems found in the literature. In an attempt to ameliorate them, we iden-
tify, in the case of regular networks, a partial ordering on the input vectors
space and a number of pruning rules and simplification rules that interact
with that ordering. Those rules are used in our extraction algorithm in order
to help reducing the input vectors search space during a pedagogical symbolic

2Note that this is the language of extended logic programming [14].
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knowledge extraction from a trained network. They are also very useful in
helping to reduce the number of rules extracted, what provides clarity and
readability to the rule set. We show that, in the case of regular networks,
the extraction algorithm is sound and complete. We also provide the exten-
sion of the extraction algorithm to the general case, that is, to the case of
non regular networks. We identify that even non regular networks contain
regularities inside its subnetworks. As a result, the underlying extraction
method for regular networks can be applied in the general case, but now in
a decompositional fashion. The main problem we have to tackle, however, is
how to combine the set of rules obtained from each subnetwork into the final
rule set of the original network. We propose a solution to this problem such
that we are able to keep soundness of the extraction algorithm, although we
have to drop completeness.

In section 2 we discuss the main problems encountered in the task of
extracting symbolic knowledge from trained feedforward neural networks. In
section 3 we recall some useful preliminary concepts and define the extraction
problem precisely. In section 4 we present our solution to the extraction
task, culminating with the outline of the extraction algorithm for the class
of regular networks. In section 5 we extend the extraction algorithm for
the class of non regular networks, the general case. Finally, in section 6 we
conclude and discuss directions for future work.

2 Related Work

Among the rules’ extraction methods, the one presented in [18], the “Ru-
leneg” [31], the “VIAnalysis” algorithm [39] and the “Rule-Extraction-as-



Learning” method [8] use the so called “pedagogical” approach, while the
“Subset” [13], the “m of n” method [40], the “Rulex” [2] and Setiono’s pro-
posals [35] and [36] are “decompositional” methods.

In the CIL?P system, after learning, a network N encodes a knowledge
P’ that contains the background knowledge PP complemented or even re-
vised by the knowledge learned with training examples. Hence, an accurate
extraction procedure must derive P’ from N. At the moment, only peda-
gogical approaches can guarantee that the knowledge extracted is equivalent
to the network. In other words, only pedagogical approaches are sound and
complete. Those methods, for instance [18], take into account all possible
combinations of the input vector i of IV in the process of rule generation. In
this way, the method must consider 2" different input vectors, where n is the
number of neurons in the input layer of N. Some pedagogical approaches,
like [8], reduce the input vectors space by extracting rules for the learning
set only, excluding the network’s generalization.

Obviously, pedagogical approaches are not effective when the size of the
neural network increases, as in real-world problems applications. In order to
overcome this limitation, decompositional methods apply, in general, heuris-
tically guided searches to the process of rules’ extraction. The “Subset”
method [13], for instance, attempts to search for subsets of weights of each
neuron in the hidden and output layers of N, such that the neurons’ input
potential exceeds its threshold. Each subset that satisfies the above condi-
tion may be written as a rule. One of the most interesting decompositional
methods is the “m of n” technique [40]. Based on the Subset method, it
reduces the search space of the neural network by clustering and pruning
weights. It also generates a smaller number of rules, by using the follow-
ing representation for each group of rules obtained: If m of (As,..., A,) are
“true” then A is “true”, where m < n. The recent work by Rudy Setiono
[35][36] is another proposal of decompositional rules’ extraction. Setiono pro-
poses a penalty function for pruning single hidden layer feedforward neural
network, and then generates rules from the pruned network by considering
only a small number of activation values at the hidden units.

We argue that neural networks are nonmonotonic systems. That is the
main difference between our extraction approach and the ones above. The
network’s nonmonotonicity should be reflected in the rule set derived. We
do that by adding negation by default (~) to the language. Because of its
nonmonotonic behavior, we can not expect to map a neural network properly
into a set of rules composed of Horn clauses only. The following example

7



illustrates that.

Example 1 Consider a neural network with two input neurons a and b, one
hidden neuron ny, and one output neuron x, such that W, ,, =5, Wy, = =5
and Wy, = 1. Assume that the input vector iy = (1,0) activates x. We
would derive the rule a — x. As a result, we would be able to conclude that
ab — x, since this rule is subsumed by the rule previously derived. However,
as in the network above defined, it may be the case that the input vector
iy = (1,1) does not activate x. In this case, we would conclude that ab » x;
a contradiction! The correct rule to be extracted in the first place is, therefore,
a ~ b — x, which means that x fires in the presence of a provided that b is
not present, and in fact, if b turns out to be true then the conclusion of x
is overruled. As a result, in order to conclude that a — x we need to assure
that both ab — x and a ~ b — z first.

In our approach [5], differently from [13] and [40], the hidden units of N
do not represent any specific concept of P. They actually represent rules.
Hidden neurons should be allowed to change their meaning during learning,
since they are responsible for the network’s generalization capability. Af-
ter all, we do not have any external control over then during the learning
process. The following observation corroborates this idea. “The requirement
for hidden units to be approximated as threshold units and the requirement
that the extracted rules use an intermediate concept to represent each hidden
unit may not enable a sufficiently accurate description of the network to be
extracted. In the case where the meaning of a hidden unit does change dur-
ing training, the comprehensibility of the extracted rules may be significantly
degraded” [1].

Decompositional methods, such as [40] and [36], in general use weights
pruning mechanisms prior to extraction (notice the difference between prun-
ing the input vectors search space and pruning the networks weights). There
is, however, no guarantee that a pruned network will be equivalent to the
original one. Consequently, weights pruning may as well prune information.
That is the reason why those methods usually require retraining the pruned
network, despite of training being already an expensive task. During retrain-
ing, some restrictions must be imposed on the learning process - for instance,
allowing only the thresholds, but not the weights, to change - in order to the
network to keep its “well behaved” pruned structure. At this point, how-
ever, there is no guarantee that the training will be successful under these



restrictions. Moreover, methods that use a penalty function are bounded to
restrict the network’s learning capability?. Even if we avoid penalty func-
tions and weights’ clustering and pruning, the simple task of decomposing
the network into smaller subnetworks, from which rules are extracted and
then put together, has to be carried out carefully. That is because, in gen-
eral, the collective effect of the network is different from the effect of the
superposition of its parts. The following example illustrates this fact.

Example 2 Consider the network of Figure 3. Let us assume that the
weights are such that i = (1,1) activates neither ny nor ny, but that the
composition of ny and ny activates x. For instance, suppose that a =1 and
b =1 imply ny = 0.3 and ny = 0.4, and that these activation values tmply
x = 0.99. A decompositional method would most probably derive a unique
rule, ny,ny — x, not being able to establish the correct relation between a,
b and z. Consider, now, the case where i = (1,1) activates ny and nq, but

Figure 3: A simple example of unsoundness and incompleteness of some
decompositional extraction algorithms.

ny and ny do not activate x. Moreover, if ny and ne are approzimated as
threshold units, that is, considered either totally activated or non activated,
then ny = 1 and ny = 1 activate x. For instance, the weights could be such
that a =1 and b = 1 imply ny = 0.7 and ny = 0.8; ny = 0.7 and ny = 0.8
do not imply x (lets say x < 0.5), but ny = 1 and ny = 1 do imply = (say,

3For instance, the extraction algorithm can not be applied on a network trained with
an “off the shelf” learning algorithm.



z > 0.5). As a result, a decompositional method, like [40], would conclude
that ab — x when actually ab +» x.

The first case is an example of incompleteness. The second one shows how
decompositional extraction methods may turn out to be unsound. Fven Fu’s
extraction proposal [13], that is sound w.r.t each hidden and output neuron,
may become unsound w.r.t the whole network.

Clearly, there is a trade-off between the complezity of the rules’ extraction
methods and the quality of the knowledge extracted from the network. An
alternative to reduce this trade-off is to use an “eclectic” approach. In our
view, it is necessary to adopt an input vectors space pruning method, followed
whenever possible by a pedagogical rules’ extraction procedure. Our goal is to
reduce complexity by applying the extraction algorithm in a smaller solution
space, and to enhance the rule set readability by applying simplifications in
order to generate a reduced, yet accurate, final set of rules.

3 Preliminaries

3.1 General

We need to assert some basic assumptions that will be used throughout this
report. N and R denote the sets of natural and real numbers, respectively.

Definition 3 A partial order is a reflerive, transitive and antisymmetric
relation on a set.

Definition 4 A binary relation < on a set X is said to be total if for every
z,y € X, eitherz <y ory<x.

As usual, x < y abbreviates z < y and y ﬁ x.

Definition 5 In a partially ordered set [X, <], x is the immediate predeces-
sor of y if x < y and there is no other element z in X for which z < z < y.
The inverse relation is called the immediate successor.

Definition 6 Let X be a set and < an ordering on X. Let x € X.

x ts minimal if there is no element y € X s.t. y < x.

z ts minimum if for all elementy € X, x < y. If < is also antisymmetric
and such an  exists, then x is unique and will be denoted by inf(X).
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x 1s maximal if there is no element y € X s.t. x < y.
x s maximum f for all elementy € X,y < z. If < s also antisymmelric
and such an z exists, then x is unique and will be denoted by sup(X).

A maximum (minimum) element is also maximal (minimal) but is, in ad-
dition, comparable to every other element. This property and antisymmetry
leads directly to the demonstration of the uniqueness of inf(X) and sup(X).

Definition 7 Let [X, <] be a partially ordered set. For any z,y € X we
define the least upper bound of x and y as the element z such that x < 2
andy < z, and if there is any element z* withx < 2* andy < z* then z < z*.
The greatest lower bound of z and y is an element w such that w < z and
w <y, and if there is any element w* with w* < x and w* <y then w* < w.

Definition 8 A lattice is a partially ordered set in which every two elements
x andy have a least upper bound, denoted by z+y, and a greatest lower bound,
denoted by x - y. A lattice L is distributive if z + (y - 2) = (x + y) - (x + 2)
andz-(y+2)=(z-y)+ (z-2).

Definition 9 A metric space is a tuple (U, f), where U is a set and f :
U x U — R is a function satisfying the following conditions:

(1) f(z,y) 20,

(1) fz,y) =0 iff 2=y,

(IID) f(@,) = f(,2),

(IV) f(z,y) < f(z,2) + f(z,9).

We say that f is a metric on U. A metric f on U is bounded iff for some
constraint k, f(z,y) <k, for all z,y € U. Functions g : Ux U — R for which
conditions (I) — (IV') are yet to be checked are called distance functions.

3.2 Neural Networks

Hornik, Stinchcombe and White [19] have proved that standard feedforward
neural networks with as few as a single hidden layer are capable of approxi-
mating any (Borel) measurable function from one finite dimensional space to
another to any desired degree of accuracy, provided sufficiently many hidden
units are available. In their words “Single hidden layer ) [] feedforward net-
works can approximate any measurable function arbitrarily well, regardless
of the continuous nonconstant function h used, regardless of the dimension of

11



the input space I, and regardless of the input space environment p. In this
precise and satisfying sense, Y [] networks are universal approximators”.
As a result, we concentrate on single hidden layer networks, without loss of
generality.

Given a single hidden layer trained feedforward network, the following
systems of equations describe it.

n = h(Wiii+ Wiyia+ -« + Wi, — 0p,) (1)
ny = h(Wyyir+ Wayia + - + Waip — On,)

ne = h(Wpir+ Wiz + -+ + Wiy — 0n,)

o = h(Whini +Whng + -+ Win, —0,,) (2)
0 = h(Wani+Wng + -+ + Wyn, — 0,,)

0 = h(Wini+Whine+ -+ W2n, —0,,)

where i = (i1, 19,...,%,) is the network’s input vector (i;u<j<p) € [—1,1]),
0 = (01,09, ...,04) is the network’s output vector (0ji<j<q € [~1,1]), n =
(’I’Ll, na, ...,Tbr) is the hidden layer vector (nj(lgjgr) € [—1, 1]), enj(lstr) 1s the
j-th hidden neuron threshold (0,; € R), 0,,(1<j<q) is the j-th output neuron
threshold (6,, € %), —0n; (resp. —0,;) is called the bias of the j-th hidden
neuron (resp. output neuron), Wi;(l <i<r1<j<p) is the weight of the connection
from the j-th neuron in the input layer to the i-th neuron in the hidden layer
(W5 € R), Wlicicqicjcr) IS the weight of the connection from the j-th
neuron in the hidden layer to the i-th neuron in the output layer (W72 € %),
and finally h(z) = ;725 — 1 is the standard bipolar (semi-linear) activation
function. Note that, more generically, o = 6(i) where 6 : R — R9. For
each output 0;(1 < j < q) in o we have 0; = h(3[_; (W2.h(3h_y (Wi-ix) —
em)) - 90]') :

Whenever it is not necessary to differentiate between hidden and out-
put layer connections, we refer to the weights in the network as W;; only.
Similarly, we refer to the network’s thresholds in general as 6; only.

Note that the above system of equations can be described in a more

concise way by using matrices operations. In order to do so, each bias —6;
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can be seen as a weight coming from an extra neuron with input always fixed
at 1. We define i,,; = 1 and obtain i’ by appending i, to i (i’ =1:iy1).
Similarly, we define n,,; =1 and n' = n: n,,;. We set the weights matrices
W! and W2 with the weights and biases of connections from input to hidden
and from hidden to output layers, respectively, as follows.

Wlll W112 e Wlip _enl
wi_ | T Wh o W e,
Wh WY e WL =,
lel W122 ler —bo,
W2 — Wa Wy - Wy —bo,
W2 Wh oo W2 =l

Given the above matrices, we can rewrite the systems of equations 1 and
2, respectively, as equations 3 and 4 below.

nT = L(WLi'T) (3)
oT = h(W2n'T) (4)

And putting equations 3 and 4 together we obtain:
of = (W2 ((h(WiT)T . )T) (5)

We define the extraction problem as follows. Given a particular set of
weights and biases for the weights matrices W' and W2, resulting from a
training process on the network, find for each input vector i, all the outputs o,
in the corresponding output vector o such that 0; > Apin, where Apmin € (0,1)
is a predefined value (we say that output neuron j is “active” for input vector
iiff 0; > Amin)-

We assume that for each input 7; in the input vector i, either ¢; = 1 or

i; = —1, l.e., i; € {—1,1}. That is done because we associate each input
(and output) neuron with a concept, say a, and i; = 1 means that a is true
while 7; = —1 means that a is false. For example, consider a network with

input neurons a and b. If i = (1, —1) activates the output neuron j then we
derive the rule a ~ b — j. As a result, if the input vector i has length p there
are 2P possible input vectors to be checked.

13



4 The Extraction Algorithm for Regular Net-
works

So far we have seen many problems related to symbolic knowledge extraction
from trained neural networks. Basically, they result from what we call the
quality x complexity trade-off. Let us now start working towards the outline
of their solutions.

Given the above extraction problem definition, firstly we realize that
each output neuron j has a constraint associated. We want to find o; =
h(> i (Win;) — 0,,) s.t. 0j > Amin. We can equivalently define, therefore,
the extraction problem as follows. Let I be the set of input vectors and O
be the set of output vectors. We have seen that o = §(i). Since 6 is not a
bijective function, 6 does not exist. We define, therefore, a binary relation
€ on I x O such that ofi < o = §(i); and the extraction problem reduces to:
for each 0; in 0 € O, find the set I' C I of input vectors i such that 0; > Apn.
Formally, find I’ = {i | ofi and each o; in o is such that 0; > An,}.

Considering the monotonically crescent characteristic of the activation
function h(z) and given that 0 < A,,;, < 1 and § > 0, we can rewrite
h(z) > Amin as & > h™Y(Amin). As a result, note that in order to satisfy
the above constraint 0; > Amin, it is required that x = ) ._ 1(VV2nz) 0,
> 0. The above constraint over o; is therefore written as equation 6 below
in terms of the hidden neurons’ activation values. Hence, each network’s
output o; is determined by the system of equations 1 plus the constraint 6.

j 1is true iff W ny + W2 oMo+ e+ Wfrnr > h Y Apin) + 0, (6)

Remark 1 Given h(z) = 1725 — 1, we obtain h™'(z) = —3 51n (152). Dia-
gram /4 below plots both h(z) and h™'(z) with 8 = 1. Note that the parameter
(3 is responsible for defining the slope of the activation function. The bigger
B s, the more the activation function approximates the step function, as

diagram 5 shows.

4.1 Positive Networks

We start by considering a very simple network where all weights are positive
real numbers, i.e., Vij, W;; € ®". In other words, each W;; in the system of
equations 1 and in equation 6 is positive. Obviously, given two input vectors
i, and i,, if Vi(lgigr)ni(im) > ni(in) then Vj(lsjsq)Oj(ni(im)) > O](nz(in))

14
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Figure 4: Ploting h(z) and h™!(z) for 8 = 1.

Moreover, if i, = (1,1,...,1) each n; is maximum and, therefore, each o,
is maximum. Similarly, if i, = (—1,—1,...,—1) then each n; is minimum
and each o; is minimum. That results also from the monotonically crescent
characteristic of the activation function h(x), as we will see in detail later.
Let us first present a simple example to help clarifying the above ideas.

Example 10 Consider the network and its constraint representation of fig-
ure 6. We know that ny = h(Wy.a + Wy.b — 0,,). Since Wy, W, > 0, it is
easy to verify that the ordering of figure 7 on the set of input vectors 1 holds
w.r.t the output x. The ordering says, for instance, that the activation of ny
is mazimum if i = (1,1), that ny(1,1) > ny(1,—1), and that ny is minimum
if i = (—1,-1). Since W,, > 0, the activation of o, is also mazimum if
i=(1,1), 0.(1,1) > 0,(1,-1), and o, is minimum if i = (—1,—1). The
output x 1s therefore governed by the above ordering.

Given the ordering, we can draw some conclusions. If the minimum ele-
ment is given as the network’s input (representing ~ a A ~ b) and it satisfies
the constraint over z (that is, ~ a A ~ b — z) then any other element in
the ordering will satisfy it as well. In this case, since all possible input vec-
tors are in the ordering, we can conclude that z is a fact (— z). If, on the
other hand, the mazimum element (a A b) does not satisfy x then no other
element in the ordering will satisfy it. Note that if it is the case that both

15
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(1,1) (representing aAb) and (1,—1) (representing a A ~ b) satisfy x but no
other element in the ordering does, we can conclude that a — x. Similarly, if
(1,1) and (—1,1) are the only elements satisfying x we conclude that b — x,
regardless of a.

We have identified, therefore, that if Vij, W;; € R* it is easy to find an
ordering on the input vectors set I w.r.t the output vectors set O. As a
result, that information can be very useful to guide a pedagogical extrac-
tion procedure of symbolic knowledge from the network. The ordering can
help pruning the input vectors search space, so that it may be not neces-
sary anymore to check all the 2™ possible input vectors during a pedagogical
extraction. Given an ordering on I, we can avoid checking some irrelevant
input vectors safely, in the sense that those vectors that are not checked
would not generate new rules. Moreover, each rule obtained is correct since
the extraction is pedagogical, done by querying the actual network.

Note that in the worst case we still have to check all the 2" possible
input vectors, and that in the best case we only need to check one input
vector (either the minimum or the maximum element in the ordering). Note
also that there is, actually, a linear order on the input vectors set, but that
it may be impossible to find it without having to check each input vector,
considering the particular set of weights in the network. Thus, we will focus
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Figure 6: A single hidden neuron network (1) and its constraint representa-
tion (2) w.r.t. output z. W,, W,,W,,, € ®t.

initially on the analysis of a group of networks where an ordering can be easily
found. The following example illustrates what we mean by “an ordering easily
found”.

Example 11 Consider the network of figure 8. If we know, for instance, that
Wa1 > Wy then we can derive the ordering of figure 9(1) on these weights
w.r.t the activation value of neuron ny. In the same way, if we know that
Wae = Wy then we can derive the ordering 9(2) w.r.t. ny. If Wa > Wiy
and Wy > Wiy then we can derive a linear order on the set of weights (and
on the input vectors set) w.r.t the output x as well.

However, if Wy > Wy (see figure 10(1)) and Wyee < Wiy (10(2)) then
we can only derive a partial order 10(3) w.r.t the output x. Note that the
ordering 10(3) on the network’s weights corresponds to the ordering given in
example 10 on the input vectors set 1.

If a particular set of weights is given, for example if Wy = 10,Wy; =
5 Wy = 2 and Wyy = 8, we can actually check that {Wyy, Wya} > {Wa1, Waa},
corresponding to (—1,1) > (1,—1) in the ordering of example 10. For the
time being, we use the partial ordering of figure 10(3) because it is “easily
found”, regardless of the network’s weights values.

Examples 10 and 11 above indicate that the partial ordering on the input
vectors set is the same for a network with two hidden neurons and for a
network with only one hidden neuron. Actually, we will see later that if
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Figure 7: Ordering on the input vectors set I of the network (1) of figure 6.

Figure 8: A two hidden neurons network. W;; € R*.

W;; € R then the partial ordering on the input vectors set is not affected by
the number of hidden neurons. Note that, although the weights are different,
if a given input, say (a,b) = (1,1), occurs in n; then the same input has
to occur in ny as well (where “to occur” means to be responsible for its
activation value). That results from the fact that the network’s recall process
is synchronous, that is, at each time step a unique input vector is presented
to the network and is used to compute the activation values of all hidden and
output neurons. Hence, given W;; € R, input (1,1), for instance, provides
the maximum activation of both n; and ny at the same time.
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Figure 9: Linear ordering on the network’s weights.
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Figure 10: Partial ordering on the network’s weights.

Let us now try and see if we can find an ordering easily in the case where
there are three inputs {a, b, c}, but still with W;; € ®*. It seems reasonable to
consider the ordering of figure 11 since we do not have any extra information
regarding the network’s weights. The ordering is built starting from the
element ( 1,—1,—1) and then flipping each input at a time from -1 to 1
until (1,1,1) is obtained.

It seems that for an arbitrary number of input and hidden neurons, if
W;; € R" then there will always exist a unique minimal element (-1, -1, ..., —1)
and a unique maximum element (1,1,...,1) in the ordering on the input vec-
tors set w.r.t the output neurons’ activations. It seems that W;; € R" is a
sufficient condition for the existence of an easily found ordering on the input
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Figure 11: Partial ordering w.r.t set inclusion on the network’s input vectors
set (p=3).

vectors space. Let us see if we can confirm this.

We assume the following conventions. A literal is a propositional variable
or the negation of a propositional variable. Let P be a finite set of literals.
An interpretation is a function from P to {tt, ff}. That is, an interpretation
maps each literal to either true or false. Given a neural network, we associate
each input and output neuron with a unique literal in P. That is, each
literal occurs at most in one input neuron and in one output neuron. More
precisely, let 7 be the set of input neurons, the function f : 7 — P is
injective. Similarly, g : © — P is injective, where O is the set of output
neurons. As a result, each input vector i can be seen as an interpretation.
Suppose T = {p,q,r}. We fix a linear ordering on the symbols of Z and
represent it as a list, say [p, ¢, 7]. This will allow us to refer to interpretations
and input vectors interchangeably in the following way. We represent i as a
string of 1’s and -1’s, where the value 1 in a particular position in the string
means that the literal at the corresponding position in the list of symbols is
assigned tt, and the value -1 means that it is assigned ff. For example, if
i=(1,-1,1) then i(p) =i(r) =tt and i(q) = ff.

A usual way to represent subsets of a set as abstract data types is to
impose an ordering on the set and then use a bit vector, a vector with 1’s
and 0’s, to denote which members of the set are, respectively, present or
absent in the subset. We identify, therefore, that an input vector i can also
be seen as the above abstract representation of a subset of the set of input
neurons, with the only difference that, instead of 1’s and 0’s, we use 1’s to
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denote presence and -1’s to denote absence in the subset. For example, given
the set of input neurons Z as the list [p,q,7], if i = (1,—1,1) it represents the
set {p,r}, ifi = (—=1,—1,—1) it represents {0}, if i = (1,1,1) it represents
{p,q,r}, and so on. We conclude that the set of input vectors I is an abstract
representation of the power set of the set of input neurons Z. We write it as
I=p(T).

We are now in position to formalize the above concepts. We start by
defining a distance function between input vectors. The distance between
two input vectors is the number of neurons assigned different inputs by each
vector. In terms of the above analogy between input vectors and interpreta-
tions, the same distance function can be defined as the number of proposi-
tional variables with different truth-values.

Definition 12 Leti,, and i, be two input vectors in 1. The distance dist(in,, i,)
between i, and i, is the number of inputs i; for which in(i;) # in(i;).
(dist : I x I — RN)

For example, the distance between i; = (—1,—1,1) and ip = (1,1,-1) is
dist(iy,i2) = 3. The distance between i3 = (—1,1,—1) and iy = (1,-1,-1)
is d’L.St(i;;, i4) = 2.

Proposition 13 [32] The function dist is a metric on 1.

Clearly, the function dist is also a bounded metric on I. That is, dist(in, i) <
p for all iy, i, € I, where p is the length of the input vectors i, and ip.

Another concept that will prove to be important is the sum of the input
elements in a input vector. We define it as follows.

Definition 14 Let i,, be a p-ary input vector in 1. The sum (in,) of in, is the
sum of all input elements i; in iy, that is (im) = Y5 im(i;). () : 1 — Z)

For example, the sum of i; = (—1,—1,1) is (i;) = —1. The sum of
i2 = (1,1,—1) is <12> =1.

Now we define the ordering <; on I = ©(Z) w.r.t set inclusion. Recall
that i,, € Iis an abstract representation of a subset of Z. We say that i,, C i,
if the set represented by i,, is a subset of the set represented by i,.

Definition 15 Let i, and i, be input vectors in 1. i, <1i, tff i, Ci,.
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Clearly, for a finite set Z, I is a finite partially ordered set w.r.t <; having
7 as its maximum element and the empty set } as its minimum element. In
other words, sup(I) = {1,1,...,1} and inf(I) = {-1,-1,...,—1}. Actually,
[I, <i] is more than that.

Proposition 16 [30] The partially ordered set [I, <i] is a distributive lattice.

Note that I is actually the n-cube in the Cartesian n-dimensional space
of coordinates x1, X9, ..., T, where the generic z;(1 < j < n) is either -1 or 1.
I={iy | iy = (i1, ..., ip), Gj0<icp) € {=1,1}}

The following proposition 17 shows that <i is actually the ordering of
our interest w.r.t the network’s output.

Proposition 17 If W;; € Rt then i, <1 i, implies (om(0;) = 6(im)) <
(on(0j) = 8(in)), for all1 < j <q.

Proof. Ifi,, =i, the proof is trivial. Ifi, # i, and i, <i i, then at least one
input in i, say in(i;), is flipped from -1 to 1 in iy, that is in(i;) = —1 and
in(i;) = 1. Letr be the number of hidden neurons m the network. Firstly, we
have to show that h(}_5_ | (Wiinm (¢ ) Ony ) +R(D D (Whim (i) —Ony)) +- - -+
(O (Whin(i) ~ 02)) < WA Va9 ~0r,) + KL (WAinG) ~
Ony)) + -+ + (T (Whin(is) — Gnr)). By the definition of <1 and since
W;; € §R+ we demve zmmedzately that Vj(1 < j < 7) Y0 (Wihin(is) — On;)
< 3P (Whin(is) — 0n,), and by the monotonically crescent chamctem’stic of
h(z) we obtain Vj(1 < j < r) M3t (Wiim(i:)—0n;)) < h(3 o0 (Wiiin(is) —
0r;)). This proves that iy, <1 i, zmplzes (nm(n]) =(im)) < (nn(n]) = 6(1n))
foralll < j <wr. Inthe same way, we obtain that h(}._,(Winm(n;) —0,,))
< WY (Wing(n;) — 0,,)) for all 1 < j < q and therefore that (om(oj) =
6(im)) < (on(oj) = 6(in)). =

4.2 Regular Networks

Let us see now if we can relax the condition Wj; € R and still find easily an
ordering in the network’s input vectors set. We start by giving an example.

Example 18 Consider the network given at example 11 (figure 8), but now
assume Wy and Wyy < 0. Although some weights are negative, we can find
a “reqularity” in the network. For example, the input neuron b contributes
negatively for both ny and ng, and there are no negative connections from
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the hidden to the output layer. We can, therefore, transform the network at
figure 8 into the network of figure 12, where all weights are positive and the
input neuron b is negated.

Figure 12: The positive form of a (regular) network.

Given the network of figure 12, we can find an ordering on the input
vectors set in the same way as before. The only difference s that now Z =
{a,~ b}. We will see later that, if we account for the fact that T may now
have negated literals (default negation), then the networks of figures 8 and 12
are equivalent.

Let us analyze what we have done in the above example. If all connections
from hidden to output layer of a network are either positive or negative, we
do the following for each input neuron y:

1. if y is linked to the hidden layer through connections with negative
weights W, only:

(a) change each Wj, to =W, and rename y by ~ y.

2. If y is linked to the hidden layer through positive and negative connec-
tions:

(a) add a neuron named ~ y to the input layer, and
(b) for each negative connection with weight W, from y to n;:

i. add a new connection with weight —W}, from ~ y to n;, and
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ii. delete the connection with weight W, from y to n;.

3. If y is linked to the hidden layer through connections with positive
weights only:

(a) do nothing.
We call the above procedure Transformation Algorithm.

Example 19 Consider again the network given at example 11 (figure 8), but
now assume that only W,y < 0. Applying the transformation algorithm we
obtain the network of figure 13.

Figure 13: The positive form of a (non regular) network.

Although the network of figure 13 has positive weights only, it is clearly not
equivalent to the original network (figure 8). In this case, the combination of
ny and ny is not straightforward. Note that, i = (1,1) in the original network
provides the mazimum activation of ny, but not the mazimum activation of ny
that is given by i = (—1,1). We can not affirm anymore that (1,1) is bigger
than (—1,1) w.r.t the output x, without having to check them by querying the
network.

The above examples 18 and 19 indicate that if the transformation algo-
rithm generates a network where complementary literals (say, a and ~ a)
appear in the input layer (see the network of figure 13) then the ordering <y
on I is not applicable. On the other hand, if it does not, it seems that <;
is still valid for networks that have “well-behaved” negative weights. This
motivates the following definition.
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Definition 20 A single hidden layer neural network is said to be regular
if its connections from the hidden layer to each output neuron have all ei-
ther positive or negative weights, and if the above transformation algorithm
generates on it a network without complementary literals in the input layer.

Back to example 18, we have seen that the positive form N, of a regular
network N may have negated literals in its input set (e.g. Z; = {a,~ b}).
In this case, if we represent Z, as a list, say [a,~ b, and refer to an input
vector i = (—1,1) w.r.t Z, then we consider i as the abstract representation
of the set {~ b}. In the same way, i = (1,—1) represents {a}, and so on.
In this sense, the input vectors set of N; can be ordered w.r.t set inclusion
exactly as before, using definition 15. The following example illustrates that.

Example 21 Consider the network N, of figure 12. Given I, = |a,~ b] we
obtain the ordering (1) of figure 14 w.r.t set inclusion. The ordering 14(2) on
the input vectors set of the original network N is obtained by mapping each
element of (1) into (2) using~b=1=>b=—-1land~b=-1=b=1.

AN

{1,1} {1,-1}

1\/ -1} {-1,-1} (1,1}
{-1,-1} {-1,1}

Z . =a, ~b] T =[a, b]
(H _ ()

Figure 14: The ordering w.r.t set inclusion on the positive form of a network
(1) and the ordering on the original network (2).
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As a result, querying the network Ny with i = (1,1) is equivalent to
querying the network N with i = (1,—1), querying Ny with i = (—1,1) is
equivalent to querying N with i = (—1,—1), and so on.

More precisely, we define the function ¢ mapping input vectors of the
positive form into input vectors of the subnetwork as follows. Let I be the
input vectors set. Given 7, and an abstract representation I, of p(Z,),
each element z; € Z,, 1 < i < s, is mapped to the set {—1,1} s. t.
o([x1, e, Zs) (31, ey 8s)) = (44,...,7,), where @, = i; if z; is a positive lit-
eral and 7, = —i; if z; is a negative literal. For example o([a,~ b,c,~
d(1,1,-1,-1)) =(1,-1,-1,1).

Note that the correspondence between input vectors and interpretations
is still valid. We only need to define i(~ p) = ff iff i(p) = tt and ~~ p = p.
For example, for Z, = [a,~ b], if i = (—1,—1) then i(a) = ff and i(b) = tt.

Proposition 22 If a network is regqular then i, <1 i, implies (0m(0;) =
8(0(im)) < (on(0j) = 6(a(in)), for all1 < j < q.

Proof. Straightforward by proposition 17 and by the above definition of the
mapping function o.l]

Proposition 22 establishes the correlation between regular networks and
their positive counterpart. As a result, the extraction procedure can either
use the set inclusion ordering, and query directly the positive form of the
network, or use the mapping function ¢ to obtain the ordering on the regular,
original network, and query the original network. We will adopt the first
policy. Note that if the network is already positive then o is the identity
function.

We have seen briefly that if we can find an ordering in a network’s input
vectors set easily, as a result there are some properties that can help pruning
the input search space during a pedagogical extraction of rules. Let us now
define precisely these properties.

Proposition 23 (Search Space Pruning Rule 1) Let i and i, be input vec-
tors of the positive form of a regular neural network N, such that dist(ip,i,) =
1 and (im) < (in) . If in does not satisfy the constraint Co; on the j-th output
neuron of N, then i, does not satisfy Co; either.

Proof. Directly by definitions 12, 14 and 15, if dist(im,i,) = 1 and (im) <
(in) then i, <t i,. By proposition 17, 0;(im) < 0;(in). That completes the
proof. [J
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Proposition 24 (Search Space Pruning Rule 2) Let i, and i, be input vec-
tors of a regular neural network N, such that dist(im,i,) = 1 and (im) < (i) .
If i,, satisfies the constraint Co; on the j-th output neuron of N, then i, also
satisfies Co;.

Proof. This is analogous to the proof of proposition 23.C]

Note that proposition 24 is only the contrapositive of proposition 23.
They say that for any i € I, starting from sup(I) (resp. inf(I)), if i does
not activate (resp. activates) the j-th output neuron, then the immediate
predecessors (resp. successors) of i does not activate (resp. activates) it as
well.

One of the most important properties of an extraction algorithm is the
clarity of the set of rules extracted. What is the reason for extracting an
enormous, although sound, set of rules if one can not understand and use it?
To cope with this problem we do the following. We have seen very briefly
in example 10 that simplifications, like ab — z and a ~ b — = = a — z,
can be done in the set of rules extracted. Moreover, they can be identified in
the input vectors ordering, prior to the actual extraction of rules. We define,
therefore, the following “simplification rules” that will help in the extraction
of a smaller and clearer set of rules.

Definition 25 (Subsumption) A rule vy subsumes a rule ro iff they have
the same conclusion and the set of premises of r1 is a subset of the set of
premises of T.

For example, a — x subsumes ab — z and a ~ b — z.

Definition 26 (Complementary Literals) Let ry = Ly, ..., L, ..., Lj — Lj1
and ry = Ly, ...,~ L;,...,L; — L;;1 be derived rules, where j < |I|. Then,
r3 = Ly, Li—1, Liyy, ..., Lj — Ljy1 is also a derived rule. Note that T3
subsumes Ty and .

For example, if 7 = {a,b,c} and we write a ~ b — x, then it simplifies
a~b— xand a ~b~ c— x Note that, considering the ordering on
I, the above property requires that two adjacent (dist = 1) input vectors
i, =(1,-1,1) and i, = (1, -1, —1) satisfy .

Definition 27 (Fact) If we derive a rule of the form — Lj1 (Ljy1 is a
fact) then Lji1 holds in the presence of any combination of the truth values
of literals Ly, ...,L; in T.
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Definition 27 is a important special case of definition 26. Considering the
ordering on I, an output neuron z is a fact iff inf(I) satisfies the constraint
on z. Note that, by proposition 24, if inf(I) satisfies # then any other input
vector in I satisfies z as well. Another interesting special case occurs when
sup(I) does not satisfy z. In that case, by proposition 23, any other input
vector in I does not satisfy = either, and we can stop the search process
deriving no rules with conclusion z.

Definition 28 (M of N) Let m,n € R,7t C I,|Z/| = n,m < n. Then, if
any combination of m elements chosen from I1 implies L; 1 we derive a rule
of the form m(Z1) — L.

The above Definition 28 may be very useful in helping to reduce the
number of rules extracted. It states that, for example, 2(abc) — x represents
ab — x,ac — x,and bc — z. In that way, if for example we write 3(abedef) —
x then this rule is a short representation of at least C§ = 20 rules *. There
is a rather intricate relation between each rule of the form m of n and the
ordering on the input vectors set I, in the sense that each valid m of n rule
represents a subset of I. Here is a flavor of that relation in a example where
it is easy to identify it. Suppose Z = {a,b,c} and assume that Z/ = Z. Let
us say that the output neuron in question is z, that is, constraint C,, has
to be satisfied by at least one input vector in I in order for us to derive
one or more rules. If only sup(I) satisfies C,,, we derive the rule abc — z.
Clearly, this rule is equivalent to 3(abc) — z. If all immediate predecessor of
sup(I) also satisfy C,_, it is not difficult to verify that the four rules obtained
(riy =abc — z, g =ab~c— x r3 =0a~bc— x, ry =~ abc — ) can
be represented by 2(abc) — z. That is because, by definition 26, each rule
r9, 3 and 74 can be simplified together with 7, deriving abc — z, ab — =,
ac — x and bc — z. Since, by Definition 25, abc — z is subsumed by any of
the other three rules, we obtain 2(abc) — x. Moreover, 2(abc) — = subsumes
3(abc) — z. This motivates the definition of yet another simplification rule,
as follows.

Definition 29 (M of N Subsumption) Let m,p € X,Z1 C Z. m(Z/1) — L;j;,
subsumes p(Z1) — Lj1 iff m < p.

4Note that if Z = {a,b,c} and we write 1(ab) — z, then it is a simplification of C} = 2
rules: a — z and b — z. However, by definition 26, a — z and b — x are already
simplifications of abc — z, ab ~¢c —» z,a ~bc >z, a ~b~c— 2z, ~ abc — x, and
~ab~c—x.
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Back to the illustration about the relation between m of n rules and
subsets of I, let us see what happens if sup(I), the elements at distance 1
from sup(I), and the elements at distance 2 from sup(I) all satisfy C,, . We
would expect that the set of seven rules obtained from I could be represented
by 1(abc) — z, and in fact it is. We have identified, therefore, a pattern in
the ordering on I w.r.t a group of m of n rules, the ones where Z7 = Z. More
generally, given |Z| = k, if all the elements in I that are at distance d from
sup(l) satisfy a constraint C,,, then derive the rule (k — d)(Z) — z. Note
that there are CF_, elements at distance d from sup(I) and that, as a result
of proposition 24, if all the elements in I at distance d from sup(I) satisfy
C,,, then any other element at distance d' from sup(I) s. t. 0 < d' < d also
satisfy C,,.

Remark 2 We have defined regular networks (see definition 20) either with
all the weights from the hidden layer to each output neuron positive or with
all of them negative. We have, although, considered in the above examples
and definitions only the ones where all the weights are positive. However,
it is not difficult to verify that the constraint C,, on the j-th output of a
reqular network with negative weights from hidden to output layer is Wflnl +
WJ?Qng 4+t Wﬁnr < hvl(Amm) +0,;. As a result, the only difference now
is on the sign (<) of the constraint. In other words, in this case we only need
to invert the signs at Propositions 23 and 24. All remaining definitions and
propositions are still valid.

We referred to soundness and completeness of the extraction algorithm
in a somewhat vague manner. Let us define these concepts precisely.

Definition 30 (Extraction Algorithm Soundness) A rules’ extraction algo-
rithm from a neural network N is sound iff for each rule r; extracted, when-
ever the premise of r; is presented to N as input vector, in the presence of
any combination of the input values of literals not referenced by rule r;, the
conclusion of r; presents activation greater than Am:, in the outputl vector of

N.

Definition 31 (Extraction Algorithm Completeness) A rules’ extraction al-
gorithm from a neural network N is complete iff each rule extracted by ez-
haustively verifying all the combinations of the input vector of N either be-
longs to or is subsumed by a rule in the rule set generated by the extraction
algorithm.
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We are finally in position to present the extraction algorithm for regular
networks.

1.

Knowledge Fzxtraction Algorithm for Regular Networks (Outline)

Apply the Transformation Algorithm over N, obtaining its positive
form N,;

Find inf(I) and sup(I) w.r.t Ny using o;
For each neuron o; in the output layer of N, do:

(a) Query N, with input vector inf(I). If o, > A, apply the
Simplification Rule Fact and stop.

(b) Query Ny with input vector sup(I). If 0; < Amin, stop.
/* Search the input vectors space 1.

(c) iy :=inf(X); i, := sup(I);

(d) While dist(iy,inf(I)) < nDIV2 or dist(i;, sup(I)) < nDIV2 +
nMOD2, where n is the number of input neurons of N, do:

/* Generate new i, and i; from old i, and i;, respectively, and
query the network.

i. set new i, := old i, flipped according to the ordering on I;
ii. Query N, with input vector i,;
iii. If Search Space Pruning Rule 2 is applicable, stop generating
the successors of 1 ;

iv. Apply the Simplification Rule Complementary Literals, and
Add the rules derived accordingly to the rule set.

v. set new i, := old i; flipped according to the ordering on I;
vi. Query N, with input vector i;;
vii. If Search Space Pruning Rule I is applicable, stop generating
the predecessors of i;;

viii. Apply the Simplification Rule M of N, and Add the rules
derived accordingly to the rule set.

(e) Apply the Simplification Rules Subsumption and M of N Subsump-
tion on the rule set regarding o;.
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Note that if the weights from the hidden to the output layer of N are
negative, we simply substitute inf(I) by sup(I) and vice-versa. In a given
application, the above extraction algorithm can be halted if a desired degree
of accuracy is achieved in the rule set. The algorithm is such that the exact
symbolic representation of the network is being approximated at each cycle.

Example 32 Suppose T = {a,b,c} and let I = p(Z) be ordered w.r.t set
inclusion. We start by checking inf(I) w.r.t an output neuron x. If inf(I)
activates x, i.e., inf(I) satisfies constraint C,, , then by Proposition 24 any
other input vector activates x and by Definition 27 we can extract — x and
stop. If, on the other hand, inf(I) does not activate x, then we may need to
query the network with the immediate successors of inf(I). Let us call these
input vectors I*, where dist(inf(I),I*) = 1.

We proceed to check the element sup(I). If sup(I) does not satisfy C,,, by
Proposition 23 we can stop, extracting no rules with conclusion x. If sup(I)
activates x, we conclude that abc — x, but we still have to check the input
vectors I** at distance 1 from sup(I). We may also apply some simplification
on abc — x, if at least one of the input vectors in I** activates x. Hence, we
keep abc — x in stand by and proceed.

Let us say that we choose to start by checking iy = (—1,—1,1) in I*. If i
does not satisfy C,,, we have to check the remaining inputs in I*. However,
if iy activates x then, again by Proposition 24, we know that (—1,1,1) and
(1,—1,1) also do. This tells us that not all the inputs in I** need to be checked.
Moreover, if all the elements in I* activate x then we can use Stmplification
28 to derive 1(abc) — = and stop the search.

Analogously, when checking I** we can obtain information about I*. If, for
instance, iy = (1,1,—1) does not activate x then (—1,1,—1) and (1,-1,-1)
in I* do not either, now by Proposition 23. If, on the contrary, iy activates x,
we can deriwe ab — x, using Proposition 24 and Simplification 26. If not only
iy but also the other inputs in I** activate x then we obtain 2(abc) — x, which
subsumes abc — x by Definitions 28 and 25. In this case, we still need to
query the network with inputs i at distance 1 from iy such that (i) < (i), dbut
those inputs are already the ones in I** and therefore we can stop. Note that
the stopping criteria are the following: either all elements in the ordering
are visited or, if not, for each element not visited, propositions 23 and 2/
guarantee that it is safe not to consider it, in the sense that it is either
already represented in the rule set or irrelevant and will not give rise to any
new rule.
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Theorem 33 (Soundness) The extraction algorithm for reqular networks is
sound.

Proof. We have to show that each rule extracted is either 1) obtained di-
rectly from querying the network or 2) a simplification of rules obtained from
querying the network. Case 1 is trivial. In Case 2 we have to show that
each simplification creates rules that subsume rules obtained from querying
the network.

Complementary Literals: Consider a set 1 of p-ary input vectors i =
(41,12, ...,1p) under the set inclusion order. Letim,in € I, where dist(ip,i,) =
1 and (im) < (in) . Assume that i, satisfies C,;. The rule Ly, ..., L;, ..., L, —
L; can be derived by querying the network, where L; (1 < i < p) is a pos-
itive literal if i; = 1 or a negative literal if i, = —1, while L; is the lit-
eral associated with the output neuron o;. By Proposition 24, i, also sat-
isfies C,; and the rule Ly,...,~ L;,...,L, — L; can be derived. By Defi-
nition 26 (Complementary Literals), the rule Lu,...,Li—1, Liy1, ..., Ly — L;
can be obtained, simplifying L; and ~ L;. And by Definition 25 (Subsump-
tion), L, ..., Li-1, Liy1, ..., Ly — Lj subsumes both Ly, ..., L, ..., L, — L; and
L17 ey Li; ceey Lp - L]‘.

Fact: Now assume that i, = inf(I) and in, satisfies C,,. By Proposition
24, i, € I also satisfies C,;. By Definition 27 (Fact), the rule — L; can be
obtained. Since I = p(I), L; — Lj and ~ L; — L; for all1 < i < p. Clearly,
by Definition 25 (Subsumption), — L; subsumes any rule derived from 1 to
Lj.

M of N and M of N Subsumption: Assume that for all ip,,i, € 1 such
that (im) = (in), im and i, satisfy C,;. The rules ~ Ly, Ly, ..., L, — Lj;
Ly,~ Ly,...,L, — Lj;...; L1, Lo, ....,~ L, — L; can be derived. Let q be the
number of positive literals in the body of each rule derived. By Definition
28 (M of N), the rule q(Ly,...,L,) — L; (g < p) is obtained. By Defi-
nition 25 (Subsumption), Ly, ...,L; — L; subsumes Ly,...,Lq, Lgyr — Lj
and Ly,...,Lq,~ Lgr — Lj, and therefore q(L,...,L,) — L; subsumes
~ L1,L2,...,Lp i Lj; Ll,N Lg,...,Lp — Lj;...; L1,L2,...,N Lp - Lj. The
same result holds for any subset I! of {L,..., Ly}, provided that ¢ < |Z1|.
Now, let s(Ly,...,L,) — L;. By Definition 25, Ly, ...,Ly — L; subsumes
Ly, ...,Ly — L; for any set of s elements chosen from {Ly,...,L,} s.t. s < q.
As a result, any rule obtained as a simplification subsumes rules derived from
querying the network. O
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Theorem 34 (Completeness) The extraction algorithm for reqular networks
is complete.

Proof. We have to show that the extraction algorithm terminates either when
1) all possible combinations of the input vector is queried in the network or 2)
the elements not queried do not generate any new rule that is not subsumed
by the rules already in the rule set. Case 1 is trivial. In Case 2, we have
to show that the elements not queried either do not generate any rule at all
(Case 2(i)) or generate rules that are subsumed by the rules extracted (Case

Case 2(i): Consider a set 1 of p-ary input vectors i = (i1,12,...,1p) under
the set inclusion order. Let im,in, € I, where dist(im,in) =1 and (im) < (in) .
Assume that i, does not satisfy C,;. By Proposition 23, i, does not satisfy
C,,.
" Case 2(ii): Now assume that in, satisfies C,;. The rule Ly,..., L, —
L; can be derived. Let q (¢ < p) be the number of positive literals in the
body of the above rule. Let {Ly,...,L,} be the mazimal subset of {Lx, ..., Ly}
only containing positive literals. Using Proposition 24 and Definition 26
(Complementary Literals), the rule Ly,...,L, — L; can be obtained. By
Definition 25 (Subsumption), Ly, ..., L, — L; subsumes any rule derived by
querying the network with i,, since (i) < (in) .

Therefore, for any i not queried in the network, either i, ({(i,) > (i) in
the chain) does not satisfy C,,, or i, ({(i,) < (i) in the chain) satisfies C,,
and the rule derived from i, subsumes the rule derived from i. As a result,
any input vector not queried in the network either does not generate rules at
all, or generates rules that are subsumed by rules already in the rule set. U

5 The Extraction Algorithm for Non-Regular
Networks (The General Case)

So far, we have seen that for the case of regular networks it is possible to find
easily an ordering on the input vectors set, and apply a sound and complete
pedagogical extraction algorithm that searches for relevant input vectors in
that ordering. As a result, by means of the above defined Pruning Rules and
Simplification Rules, we are able to reduce the complexity of the extraction
algorithm by pruning the search space, and to enhance the readability of the
rule set extracted by simplifying the rules derived. Furthermore, the neural
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network and its rule set can be shown equivalent (that results directly from
the proofs of soundness and completeness of the extraction algorithm).

Despite the above results being highly desirable, it is much more likely
that a non-regular network will result from an unbiased training process. In
order to overcome this limitation, in the sequel we present the extension of
our extraction algorithm to the general case, the case of non-regular networks.
The idea is to investigate fragments of the non-regular network in order to
find regularities over which the above described extraction algorithm could
be applied. We would then split a non-regular network into regular subnet-
works, extract the symbolic knowledge from each subnetwork, and finally
assemble the rule set of the original non-regular network. That, however, is
a decompositional approach, and we need to bear in mind that the collective
behavior of a network is not equivalent to the behavior of its parts grouped
together. We will need, therefore, to be specially careful when assembling
the network’s final rule set.

The problem with non-regular networks is that it is difficult to find the
ordering on the input vectors set without having to actually check each input
in the network. In that case, the gain obtained in terms of complexity could
be lost. By considering its regular subnetworks, the main problem we have
to tackle is how to combine the information obtained from each subnetwork
into the final rule set. That problem is due mainly to the non discrete nature
of the network’s hidden neurons. As we have seen in Example 2, that is the
reason why a decompositional approach may be unsound (see section 2). In
order to solve this problem, we will assume that hidden neurons present four
possible activations (—1, Amaz, Amin,1). Performing a kind of worst case
analysis, we will be able to show that the general case extraction algorithm
is sound, although we will have to drop completeness for efficiency.

5.1 Regular Subnetworks

We start by defining precisely the above intuitive concept of a subnetwork.

Definition 35 (subnetworks) Let N be a neural network with p input neu-
rons {i1,...,ip }, r hidden neurons {ny, ...,n,} and q output neurons {0y, ...,04}.
Let N1 be a neural network with p' input neurons {i},...,i,,}, v’ hidden neu-
rons {n),...,n.} and ¢ output neurons {0y, ...,0,,}. N/ is a subnetwork of
N iff 0 <p <p, 07 <0< ¢ < g, and for all i, nj, o) in N',
Wn;zi = anii; Wo}cn; = WOknJ’) an’. = 0'/1]' and oo;c = eok-

J
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Our first task is to find the regular subnetworks of a non-regular network.
Indeed, any single hidden layer network can be split into exactly r regular
subnetworks, where r is the number of hidden neurons. It is not difficult to
check that any network containing a single hidden neuron is regular. As a
result, we could be tempted to split a non-regular network into r subnetworks,
each containing the same input and output neurons as the original network
plus only one of its hidden neurons.

However, let us briefly analyze what could happen if we were to extract
rules from each of the above subnetworks. Suppose that, for a given out-
put neuron z, from the subnetwork containing the hidden neuron n;, the
extraction algorithm obtains the rules ab —,, = and c¢d —,, z; from the
subnetwork containing the hidden neuron ns, it obtains the rule cd —,, x;
and so on. The problem is that the information that ab implies x through n,
is not very useful. It may be the case that the same input ab has no effect
on the activation of z through ns, or that it actually blocks the activation
of x through ny. It may also be the case that, for instance, ad — z as a
result of the combination of the activations of ny and ny together, but not
through each one of them individually. If, therefore, we take the intersection
of the rules derived from each subnetwork, we would be extracting only the
rules that are encoded in every hidden neuron individually, but not the rules
derived from each hidden neuron or from the collective effect of the hidden
neurons’ activations. If, on the other hand, we take the union of the rules
derived from each subnetwork, then the extraction could clearly be unsound.

It seems that we need to analyze a non-regular network first from the
input layer to each of the hidden neurons, and then from the hidden layer to
each of the output neurons. That motivates the following definition of “basic
neural structures”.

Definition 36 (Basic Neural Structures) Let N be a neural network with p
input neurons {iy, ..., iy}, r hidden neurons {n,,...,n,} and q output neurons
{o1,...,0,}. A subnetwork N' of N is a Basic Neural Structure (BNS) iff
either N' contains exactly p input neurons, 1 hidden neuron and 0 output
neurons of N, or N' contains exactly 0 input neurons, r hidden neurons and
1 output neuron of N.

Note that a BNS is a neural network with no hidden neurons and a single
neuron in its output layer. Note also that a network N with r hidden neurons
and ¢ output neurons contains r + ¢ BNSs. We call a BNS containing no

35



output neurons of N, an input to hidden BNS; and a BNS containing no
input neurons of N, a hidden to output BNS.

Proposition 37 Any BNS is (vacuously) regular.

Proof. Directly by Definition 36, by applying the Transformation Algorithm
on a BNS, a network without complementary literals in the input layer is
obtained. By Definition 20, since a BNS does not contain hidden neurons, it
is (vacuously) regular. O

Proposition 37 shows that the Transformation Algorithm applied over a
BNS will derive a positive network (Wj;; € R"), the BNS’s positive form,
which will not contain neurons labeled as complementary literals in its input
layer. The above result indicates that BNSs, which can be easily obtained
from a network N, are suitable subnetworks for applying the extraction al-
gorithm when N is a non-regular network.

5.2 Knowledge Extraction from BNSs

We have seen that if we split a non-regular network into BNSs, there is
always an ordering easily found in each subnetwork. The problem, now, is
that hidden to output BNSs do not present discrete activations {—1,1} in
their input layer. Instead, each input neuron may present activations in the
ranges (—1, Amaz) Or (Amin, 1), and we will need to consider this during the
extraction from hidden to output BNSs. For the time being, let us simply
assume that each neuron in the input layer of a hidden to output BNS is
labeled n;, and if n; is connected to the neuron in the output layer of the
BNS through a negative weight, then we rename it ~ n; when applying the
Transformation Algorithm, as done for regular networks. Moreover, let us
assume that neurons in the input layer of the positive form of hidden to
output BNSs present activations in {—1, A,;;,} only. This results from the
above mentioned worst case analysis, as we will see later.

We need to rewrite Search Space Pruning Rules 1 and 2 for BNSs. Now,
given a BNS with 4 input neurons {i1, ...,%;} and the output neuron o;, the
constraint C,; on the output neuron’s activation is simply given by: j is true
iff Wosirin + Wojiyia + ... + Wojiis > h™H(Amin) + 0o,

Proposition 38 Let i, and i, be input vectors of the positive form of a BNS
with output neuron o;. If iy, <11, then 0;(in) < 0;(in).
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Proof. Case 1 (Input to Hidden BNSs): Directly, by Proposition 37 and
Proposition 17 we obtain 0;(im) < 0(in). Case 2 (Hidden to Output BNSs):
Assume in(ix) = —1 and i,(ix) = Amin. Since Wj; € R' and Apin > 0,
we have (Woi,(=1) — 05;) < (Wi, (Amin) — 0o;). Since im <1 in, we have
(0 (Wossiim(is) = 00;)) < (3251 (Woyiin(is) — 0,,)), and by the monotoni-

cally crescent characteristic of h(z) we obtain h(} 7 | (Woi,im(i:) — 0,;)) <

R0 (Woiin(is) — 0.,)), i.€., 0j(im) < 0;(in). That completes the proof. U
Corollary 39 (BNS Pruning Rule 1) Let im <p ip. If in does not satisfy
the constraint Co; on the BNSs output neuron, then i, does not satisfy Co;
either.

Proof. Directly from Proposition 38.

Corollary 40 (BNS Pruning Rule 2) Let i, <1 in. If i, satisfies the con-
straint Co; on the BNSs output neuron, then i, also satisfies Co;.
Proof. Directly from Proposition 38.

The particular characteristic of BNSs, specifically because they have no
hidden neurons, allows us to define a new ordering that can be very useful
in helping to reduce the BNS’s input vectors search space. Briefly, if now,
in addition, we consider the BNS weights’ values, we may be able to assess,
given two input vectors i, and i,, such that (i,) = (in), whether o0;(i,) <
0;(i,) or not®. Assume, for instance, that in and i, differ only on inputs 4
and iy, where i; = 1 in in and i = 1 in im. Thus, if [Wy;:,| < |[Woyi,|, it is
not difficult to see that 0;(in) < 0j(im). Let us formalize this idea.

Proposition 41 (BNS Pruning Rule 3) Let iy, i, and i, be three different
input vectors in I such that dist(im,1,) = 1, dist(in,io) = 1 and (im) , (in) <
(i,), that is, i, and i, are immediate predecessors of i,. Let i, be obtained
from i, by flipping the i-th input from 1 (resp. Api, for Hidden to Output
BNSs) to -1, while i, is obtained from i, by flipping the k-th input from 1
(resp. Apin for Hidden to Output BNSs) to -1. If iWOjik‘ < |Woji,» then
0(im) < 0j(in). In this case, we write im <y in.

Proof. We know that both i,, and i, are obtained from i, by flipping, re-
spectively, inputs i,(i) and i,(k) from 1 (resp. Amin) to -1. We also know
that 0;(i,) = MWo,ido(i) + Woiio(k) + A + 0,;), where Wy, € R and

2

SRecall that, previously, two input vectors i, and i, such that (i,) = (im) were
incomparable.
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Amin > 0. For Input to Hidden BNSs, 0,(i,) = h(—Wojii + Wo + A+ 9%.)
and 0;(in) = h(Wo5,— W, i, +A+0,,). For Hidden to Output BNSs, 0;(ix) =
h(_Wo]-ii + AminWOjik +A+ eo]') and Oj(in) = h(AminWoj-ii - Wo]-ik +A +90j)-
Since |W0jik[ < ]Wojii , and from the monotonically crescent characteristic
of h(x), we obtain 0;(im) < 0;(in) in both cases. O

As before, a direct result of Proposition 41 is that: if i,, satisfies the
constraint C,; on the BNS output neuron, then i, also satisfies C,;. By
contraposition, if i, does not satisfy C,, then i, does not satisfy C,, either.

Proposition 42 (BNS Pruning Rule 4) Let iy, i, and i, be three different
input vectors in 1 such that dist(im,i,) = 1, dist(is,i,) = 1 and (i,) <
(im) , (in), that is, i, andi, are immediate successors of i,. Let i, be obtained
from i, by flipping the i-th input from -1 to 1 (resp. Api, for Hidden to
Output BNSs), while i, is obtained from i, by flipping the k-th input from
-1 to 1 (resp. Amin for Hidden to Output BNSs). If IWOjik‘ < |Woj,-i , then
0;(in) < 0j(im). In this case, we write i, <y im.

Proof. This is analogous to the proof of proposition 41. [J

Example 43 Consider the network of figure 15 and its positive form at fig-
ure 16. It contains three BNSs; two Input to Hidden BNSs, having inputs
{a,b,c} and outputs n; and ny, and one Hidden to Output BNS, having
inputs {ny,ne} and output x.

Figure 15: A non-regular network.

Applying the Transformation Algorithm on each BNS, we verify that (abc)
18 the maximum element in the ordering of the BNS with output ny, that
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(ab ~ c) is the mazimum element in the ordering of the BNS with output n,,
and that (ny ~ ng) ts the mazimum element in the ordering of the BNS with
output x (see figure 16).

Figure 16: The positive form of a non-regular network, obtained by applying
the Transformation Algorithm over its BNSs.

Figure 17(1) shows the set inclusion ordering on the Input to Hidden
BNSs, where (1,1,1) = (abc) for the BNS with output ny; and (1,1,1) =
(ab ~ c) for the BNS with output ny. Figure 17(2) shows the set inclusion
ordering on the Hidden to Output BNS. Here, we have deliberately used
{n;, ~ n;}, instead of {1,—1}, to stress the fact that hidden neurons do not
present discrete activations.

If now we add to the above ordering the information about BNSs weights,
we will be able to use the results of Pruning Rules 3 and 4 as well. Take,
for example, the positive form of the BNS with output ni, where Wy, <
Whie < Waya. Using Pruning Rules 3 and 4, we can obtain a new ordering
on the input vectors im and in such that (im) = (in) . We obtain (—1,1,1) <
(1,1,-1) <4 (1,-1,1) and (-1,1,-1) <y (—=1,-1,1) <4y (1, -1, -1). Fig-
ure 18 contains a diagram where this new ordering is superimposed on the
previous set inclusion ordering of the BNS. Dotted lines indicate relations
that can be eliminated by transitivity.

The above example illustrates the ordering < on the input vectors set
I of BNSs. The ordering results from the superimposition of the ordering
<{), obtained from Pruning Rules 3 and 4, on the set inclusion ordering <j,
obtained from Pruning Rules 1 and 2. Let us define < more precisely.
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(1,1,-1) (1-1,1) 11,1

=

(-1,-1,-1) ~mn

M 2

i R

Figure 17: Ordering on Input to Hidden BNSs (1), where (1,1,1) = (abc)
w.r.t ny and (1,1,1) = (ab ~ ¢) w.r.t ny. Ordering on Hidden to Output BNS

2).

Definition 44 Let < be a partial order on a BNS’s input vectors set 1. For
all im,ip €1, iy 2 in iff i <1in orip <y in.

Back to Example 43 above, it is not difficult to see that the ordering <
on the BNS with output n; is given by diagram 19 below (see also figure 18).
Note also that < is a chain for the BNS with output z; given that Wy ,, <
Wan,, we derive (~ nq,~ ng) <y (n1,n2) and, therefore, (~ ni,ng) < (~
n1,~ ng) X (n1,n2) 2 (1, ~ ng).

Figure 20 displays < on I = p(Z) for T = {a,b,c,d}, given (1,1,1,1) =
[a,b,¢,d] and |Wy| < |[W,| < |W,| < |W,|. Note that < follows the ordering
on W) + [Ws| + [We| + [Wal.

Incomparable elements in <, as i; = (1,—1,-1) and iy = (—1,1,1) at
figure 19, means that it is not easy to establish whether i; <X iy without
actually querying the BNS with both inputs.

< provides a systematic way of searching the input vectors space. Let us
illustrate this with the following example, which also gives a glance about
the implementation of the extraction search process.

Example 45 Consider the Input to Hidden BNS of figure 21(1), and its
positive form 21(2). The ordering’s mazimum element is input vector it =
(1,1,1,1) = (a,b,~ ¢,~d). In other words, the mazimum activation of n; is
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P

(1,-1,1) «<— (L,1,-1) «<— (-1,1,1)

1,-1,-1) <— (-1,-1,1) <— (-1,1,-1)
(-1,-1,-1)

Figure 18: Adding information about the weights of the BNS with output
n.

obtained when (1,1,1,1) is presented to (2). Equivalently, the mazimum ac-
tivation of n; can be obtained when (1,1,—1,—1) is presented to (1). Taking
BNS(2), we proceed to generate the elements in, such that dist(iy,,it) = 1.
However, Pruning Rule 3 says that there is an ordering among elements i, .
Applied to this example, it says that, for instance, (1,1,1,—1) = (a,b, ~ ¢,d)
provides a smaller activation value to n; than (1,1,—1,1) = (a,b,c,~ d).

Therefore, given Wy,e < Whia < Whia < Why, if we start from it by
flipping from 1 to -1 the input ~ c with the smallest weight W, .., we obtain
the input vector iy = (1,1,—1,1). By Pruning Rule 3, the activation of n;
given iy is greater than the activation of n; given any other element i, such
that (i) = (1) . Thus, if ni(i1) < Amee then ni(im) < Amae. In this case,
we could stop the search. If, alternatively, we start from it by flipping from
1 to -1 the input b with the greatest weight Wy, we obtain the input vector
ip = (1,—1,1,1). By Pruning Rule 3, the activation of n; given iy is smaller
than the activation of n; given any other element i,, such that (i,) = (ia).
And if ni(ia) > Amin then n;(im) > Amin. In this case, we could stop the
search and derive the rule 3(ab ~ ¢ ~ d) — n;.

Suppose we carry on the search within the elements derived from i; (see
figure 22). If we flip from 1 to -1 the input a with the smallest weight Wp,q,
we obtain i3 = (—1,1,—1,1). As before, if n;(i3) < Amqes then for any i,
such that (i,) = (i3) and dist(in,i1) = 1, ni(in) < Amaz. Similarly, if we flip
in iy the input b with the greatest weight Wi, we obtain iy = (1,—1,—1,1).

41



(1,-1,-1) (-1,1,1)

(-1,-1,1)
0
(-1,1,-1)
0

(-1,-1,-1)

Figure 19: The ordering < on the input vectors set of the BNS with output
.

And if n;(1a) > Amin then n;(in) > Amin.

Figure 22 shows the search process for the BNS of figure 21, up to the
elements with distance 2 from the maximum element.

The same searching and pruning procedure of Example 45 applies if we
start from the ordering’s minimum element i, = (—-1,-1,-1,-1) = (~ a,~
b,c,d). However, in this case, Pruning Rule 4 should be used.

A systematic way of searching the input vectors space is obtained as
follows. Given the maximum element, we order it from left to right w.r.t the
weights associated with each input, such that inputs with greater weights
are on the left of inputs with smaller weights. In Example 45, we rearrange
(a,b,~ ¢,~ d) and obtain (1,1,1,1) = [b,~ d,a,~ c]. The search proceeds
by flipping the right most input, then the second right most input and so on.
At distance 2 from sup(I) and beyond, we only flip the inputs on the left of
the left most -1 input. In that way, we avoid repeating input vectors. Figure
77 illustrates this process for the BNS of Example 45.

Similarly, starting from the minimum element, we rearrange (~ a,~
b,c,d) and obtain (—1,—1,—-1,—1) = [~ b,d,~ a,c|. Figure 24 illustrates
the process for the BNS of Example 45. Now, at distance 2 from in f(I) and
beyond, we only flip the inputs on the left of the left most 1 input.

Note the symmetry between figures 23 and 24, reflecting, respectively,
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{a,tzfc,d}

{3,113,0}
{a,bd}

/\
{a,b} {a,c,d}

\/\
{a,c}) {b,c,d}

/\/

{ad) {byc}

{2}

Figure 20: < on p(Z), given Z = {a,b,¢,d} and (1,1,1,1) = [a, b, ¢, d].

the use of Pruning Rules 3 and 4. Starting from sup(I), flipping the input
with the smallest weight results in the next greatest input, while from in f(I),
flipping the input with the smallest weight results in the next smallest input.

Let us now focus on the problem of knowledge extraction from Hidden
to Output BNSs. The problem lies on the fact that hidden neurons do not
present discrete activations {—1,1}. Instead, they are said to be active if their
activation values lie on the interval (Amin, 1), or non-active if their activation
values lie on the interval (—1, A4, ). We need to provide, therefore, a special
treatment for the knowledge extraction procedure from Hidden to Output
BNSs.

We have seen that if we simply assume that hidden neurons are either
fully active or non-active, then the extraction algorithm looses soundness. We
are left with the option of trying to find an ordering on the hidden neurons
ranges of activations (—1, Apnqez) and (Amin, 1). But we realize that we can not
define such an ordering easily. For example, we can not say that (n; < Amqe)
and (N < Amaz) 2 (P1 < Amaz) and (ne > Amin). As a counter-example,
simply take Amez = —Amin = —0.2 and note that ny = —0.3 and ny = —0.3
may provide a greater activation to an output neuron than n; = —0.95 and
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Figure 21: An Input to Hidden BNS (1), and its positive form (2).

ng = 0.25.

At this stage, we need to compromise in order to keep soundness. Roughly,
we have to analyze the activation values of the hidden neurons in the “worst
cases”. Those activations are given by —1 and Ap;, in the case of a hidden
neuron connected through a positive weight to the output, and by A4, and
1 in the case of a hidden neuron connected through a negative weight to the
output.

Example 46 Consider the Hidden to Output BNS of figure 25. The in-
tuition behind its corresponding ordering is as follows: either both m, and
ng present activations greater than Amin, or one of then presents activation
greater than Apm:n, while the other presents activation smaller than Ames, or
both of them present activations smaller than A,.... Considering the worst
cases activations, since the weights from ny and ny to x are both positive, if
the activation of n; is smaller than Ame, then we assume that it is —1. On
the other hand, if the activation of n; is greater than Ami,, then we analyze
the case where it is equal to Amin. In this way, we can derive the ordering of
figure 25 safely, as we show in the sequel.

Similarly, if the weight from n; to x is negative, then we take activa-
tion values Amqee and 1. Given Wys, < Wey,, we also obtain (—1, Amin) <
(Amin, —1). As before, in this case = is a chain.

The recipe for performing a sound extraction from non-regular networks,

concerning Hidden to Output BNSs, is: If the weight from n; to o; is positive
then assume n; = Api, and ~ n; = —1. If the weight from n; to o; is
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LD 5y (LD <y (LL-LTD
(a,~b;>yxd) (a,b,c,d) (~a,b,c,~d)

(1-L1-D) <y CLLL-D) <y (L1-L1) C1-LLD gy C(LLL-D) <y (L1-LD)
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Figure 22: Searching for elements i, and i, st. (i) = (i), and
dist(im,ix) = 1 and dist(i,,ix) = 1. Starting from i, and up to the elements
ij s.t. dist(ij,iT) = 2.

negative then assume n; = 1 and ~ n; = Apqs. These are the worst cases
analyses, what means that we consider the minimal contribution of each
hidden neuron to the activation of an output neuron.

Remark 3 Note that when we consider that the activation values of hidden
neurons are either positive in the interval (Amin, 1) or negative in the interval
(=1, Apmaz), we assume, without loss of generality, that the network’s learning
algorithm is such that no hidden neuron presents activation in the range
[Amazs Amin] (see [5]). Note that one can always assume Amez = Amin = 0.

In the sequel, we exemplify how to obtain the ordering on a Hidden to
Output BNS with two input neurons n; and ng, connected to an output
neuron x with positive and negative weights.

We start by applying the Transformation Algorithm. We obtain the
BNS'’s positive form and check the labels of its input neurons (the net-
work’s hidden neurons). If they are labeled n; and ny (sup(I) = (n1,n2))
then the weights from both of them to x are positive. Thus, we assume

that ~ n; = —1 and n; = Ap, for ¢ = {1,2}. As a result, we derive
the ordering of figure 26(Case 1). If, however, the Transformation Algo-
rithm tells us that sup(I) = (ny,~ ng) then we consider ~ ny = —1 and

n1 = Amin for the activation values of ny, and ~ ny = Ape and ng = 1
for the activation values of ny. Figure 26(Case 2) shows the ordering ob-
tained if sup(I) = (ny,~ ny). Finally, if sup(I) = (~ ny,~ ny), we as-
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(1,1,1,1)
(b,Nd,a,~c)

2 N
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(1,1,-1,-1)y> (1111)>(1111) (1111)
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(1,-1,-1,1) o= (-1,1,-1,1)
(b,d,"'a,"'C: (~b,~d,~a,~C:

Figure 23: Systematically deriving input vectors from i, without repetitions.

sume that ~ n; = Anee and n; = 1 for i+ = {1,2}, as shown in figure
26(Case 3). If, in addition, we have )Woﬂ' < Wojnl‘, we also obtain

(Amm,-—l) <y (—I,Amin) in figure 26(Case 1), (Amm,l) <y (——1,Am,n) in
26(Case 2), and (Amaz,1) <g (1, Amaz) in 26(Case 3). Thus, the resulting
orders < are chains, as expected. Note that the orders of figure 26 are valid
for the original BNSs, and not for their positive forms.

Let us now see if we can define a mapping for Hidden to Output BNSs,
analogous to the mapping o for Regular Networks and Input to Hidden BNSs.
In fact, if we assume, without loss of generality, that Ape = — Amin then the
same function ¢ mapping input vectors of the positive form into input vectors
of the BNS can be used here. Let i; € {—1, Amin}, % € {—1, — Amin, Amin, 1},
z; € I,,1 < i < s. Recall that o([zy, ..., 5] (i1, .-, s)) = (¢}, ..., 7)), where
./

i, = 14; if z; is a positive literal and 7, = —i; otherwise. For example,

O'([a, ~ b, C,~ d] (Amin, Amin, —1, —1)) = (Amm, _Amin, —1, 1) The following
example illustrates the use of o for -Hidden to Output BNSs.

Example 47 Given o([n1,~ na, n3](Amin, Amin, Amin)) = (Amin, Amae, Amin),
we obtain the orders of figure 27. From ny = Apin, ~ Ng = Anee and
ng = Amin, we obtain ~mny = —1, ny =1 and ~ nzg = —1 at 27(a). As be-
fore, the extraction process can be carried out by querying the BNS’s positive
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Figure 24: Systematically deriving input vectors from i, without repetitions.

form with values {—1, Amin}, following 27(b). In this way, the only difference
from Input to Hidden BNSs is that input values 1 should be replaced by Amin
(see figures 23 and 24).

We are finally in position to present the extraction algorithm extended
for non regular networks.

o Knowledge Extraction Algorithm - General Case (Outline)

1. Split the neural network N into BNSs;

2. For each BNS B; (1 <i <r+gq) do:

(a) Apply the Transformation Algorithm and find its positive form
Bilﬁ

(b) Order T, according to the weights associated with each input of
Bil ) -

(c) If B} is an Input to Hidden BNS, take i; € {—1,1};

(d) If B} is a Hidden to Output BNS, take i; € {—1, Amin};

(e) Find Inf(I) and Sup(I) w.r.t B/, using o;
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7 5 (Amin, -1) (-1, Anip
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Figure 25: A Hidden to Output BNS and the corresponding set inclusion
ordering on the hidden neurons activations in the worst case.

{m, m) {ny, ~m} {~n, ~m}
(Amin> Amin (Amin> Amax (Amax> Amax
{~n, m} {m, ~m} {~n , ~m} {n1, m} {m, {~n, m}
(-1, Anin (Amin, -1) -1, Anax (Amin, 1 a, Amax) (Amax, 1)
{~m, ~m} {~m , m} {n1, m)
(-1,-1) -1,1) (1,1
Case 1 Case 2 Case 3

Figure 26: Orderings on Hidden to Qutput BNSs with two input neurons n;
and ng, using worst case analyses on (—1, Amaz) and (Amin, 1).

(f) Call the Knowledge Extraction Algorithm for Regular Networks,
step 3, where N, := B/;
/* Recall that, now, we have to replace Search Space Pruning Rules
1 and 2, respectively, by BNS Pruning Rules 1 and 2.
/* We also need to add to the extraction algorithm for regular
networks, step 3d, the following lines:

o If BNS Pruning Rule 4 is applicable, stop generating the suc-
cessors of i ;

e If BNS Pruning Rule 3 is applicable, stop generating the pre-
decessors of i;
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Figure 27: (a) <X on a Hidden to Output BNS with three input neurons
(n1,m2,n3) and the associated activations in the worst case. (b) < on the
BNS'’s positive form and the mapping ¢ from (b) and (a).

3. Assemble the final Rule Set of V.

In what follows, we describe in detail step 3 of the above algorithm, and

discuss the problems resulting from our worst case analysis of Hidden to
QOutput BNSs.

5.3 Assembling the Final Rule Set

Steps 1 and 2 of the general case extraction algorithm generate local infor-
mation about each hidden and output neuron. In step 3, such information
need to be carefully combined, in order to derive the final set of rules of N.
We use n; and ~ n; to indicate, respectively, that the activation of hidden
neuron n; is greater than A,,;, or smaller than A,,,,. Bear in mind, however,
that hidden neurons n; do not have concepts directly associated to them.
Thus, the task of assembling the final rule set is that of relating the concepts
in the network’s input layer directly to the ones in its output layer, removing

49



n; from the rule set. The following Lemma 48 will serve as basis for this task.

Lemma 48 The extraction of rules from Input to Hidden BNSs is sound
and complete.

Proof. From Proposition 37 and Theorem 33, we obtain soundness of the
rule set. From Proposition 37 and from Theorem 34 we obtain completeness
of the rule set. [

Lemma 48 allows us to use the completion of rules extracted from Input
to Hidden BNSs to assemble the network’s rule set (e.g., the extracted rule
ab — n; can be substituted by the stronger ab < n;). For example, assume
that the extraction algorithm derives a — n; from B; and b ~ ¢ — ny from
Bsy. By Lemma 48, we have a < n; and b ~ ¢ < ny. In other words, any rule
not subsumed by @ — n; implies ~ n;, where ~ n; means that the activation
of n; is smaller than A,,... By contraposition, we have ~ a <>~ n; from By,
and ~ bV ¢ <>~ ny from B,. Now that we have the necessary information
regarding the activation values of n; and n,, assume that we have derived
the rule ny ~ ny — x from Hidden to Output Bs. We know that a — ny and
~ bV ¢ —~ ny. As a result, we may assemble the final rule set w.r.t output
z: {a ~b—x, ac — z}.

The following example illustrates how we assemble the final rule set in
a sound mode. It also illustrates the incompleteness of the general case
extraction.

Example 49 Consider a neural network N with two input neurons a and b,
two hidden neurons m; and ny and one output neuron xr. Assume that the
set of weights is such that the activations of Table 49 are obtained for each
input vector.

a b m T z

1| -1| < Anmaz | < Amaz | < Amaa
1 1| > Apin | > Amin | < Amas
1 -1 < Amaz < Amam < Amaz

1 1 > Amin < Amam > Amm
Table 50: Ranges of activation values in N for each input vector (a,b).

Anexhaustive pedagogical extraction algorithm, that although inefficient,
is provably sound and complete, would derive the unique rule ab — x from N.
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That is because (1,1) is the only input vector that activates x. A decompo-
sitional approach, on the other hand, would split the network into its BNSs.
Since (-1,1) and (1,1) activate ny, the rules ~ ab — ny and ab — ny would
be derived. Similarly, the rule ~ ab — ny would be derived, since (-1,1) also
activates ng.

Now, taking Amin = 0.5, assume that given (ab) = (—1,1), the actual
activation values of ny and ny are, respectively, 0.6 and 0.95. Table 49 in-
dicates that given these activations, x is non active. However, decomposi-
tional approaches such as [40] and [12], by assuming that hidden neurons
are either fully active or non active, could wrongly derive the rule niny — x
(unsoundness). This is because ny =1 and ny = 1 may activate x. In order
to solve this problem, we take the worst case activations of hidden neurons
ny = Amin and ny = Apnin, so that we do not risk deriving incorrect rules.
However, given (ab) = (1,1), assume that the actual activation values of ny
and ny are, respectively, 0.9 and -0.6. Now, if we consider the worst case
activations, ny = Amin and ny = —1, it may be the case that we do not derive
the rule ny ~ ny — x (incompleteness) as expected (see Table 49).

Finally, assume that we have been able to derive the rule ny ~ ny —
from the Hidden to Output BNS of N . The final rule set is assembled as
follows. From ~ ab — ny and ab — n; we derive b — ny; from ~ ab —
ng we derive aV ~ b —~ ngy; and together with n; ~ ny — x we obtain
bA(aV ~ b) — x. As a result, the final rule set is ab — x, in accordance with
the exhaustive pedagogical exlraction process.

An example of a neural network that presents the activations of Table 49
18 given below.

6 Possibly by fine-tuning the value of A, in the extraction algorithm.

51



Lemma 50 The extraction of rules from Hidden to Output BNSs is sound.
Proof. If we are able to derive a rule v taking n; € {—1, Apmin} then, from
the monononically crescent characteristic of h(z), r will still be valid if n; €
{[_1, _Amin]; [Amin; 1]}; Amin >0. 0

Theorem 51 The extraction algorithm for non-regular networks is sound.
Proof. Directly from Lemmas 48 and 50.

Theorem 52 The extraction algorithm for non-reqular networks is incom-
plete.

Proof. We give a counter-ezample. Let B be a Hidden to Output BNS with
input ny; and output . Let B =1, Wy, = 1, 0, = 0.1. Assume Ap;n = 0.4.
Given iy = 1, we obtain o, = 0.42, i.e., ny — z. Taking iy = Ay, we have
0, = 0.15 and thus we have lost ny — x. J

As far as efficiency is concerned, one can apply the extraction algorithm
until a predefined number of input vectors is queried, and then test the
accuracy of the set of rules derived against the accuracy of the network. If,
for instance, in a particular application, the set of rules obtained classifies
correctly, say, 95% of the training and testing examples correctly classified
by the network, then one could stop the extraction process. Otherwise, one
could carry on with the extraction process or even perform an exhaustive
pedagogical extraction. Note that, in terms of accuracy, there is not much
difference between having unsoundness or incompleteness.

6 Conclusion

We have seen that most decompositional methods for rules’ extraction from
trained neural networks are unsound. On the other hand, sound and com-
plete pedagogical extraction methods have exponential complexity. We call
this problem the complezity X quality trade-off. In order to ameliorate it,
we started by analyzing the cases where regularities can be found in the
set of weights of a neural networks. If such regularities are present, some
pruning rules can be used to safely prune the network’s input vectors search
space during the extraction process. These pruning rules reduce the extrac-
tion algorithm’s complexity in some interesting cases. Notwithstanding, we
have shown that the extraction method is sound and complete w.r.t an ex-
haustive pedagogical extraction. We have also defined a set of simplification
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rules. These rules fit very well into the extraction method, since they have a
counterpart graphical representation on the network’s input vectors ordering.
They help reducing considerably the length of the final set of rules extracted,
enhancing the rule set comprehensibility, a major concern.

We carried on to extend the extraction algorithm to the cases where reg-
ularities are not present in the network as a whole. That is the general case,
since we do not fix any constraints on the network’s learning algorithm. We
identified subnetworks that contain regularities. We showed that the net-
work’s building block, here called Basic Neural Structure (BNS), is regular.
As a result, using the same underlying ideas, we are able to derive rules from
each BNS. Here, however, we are applying a decompositional approach, and
we need to investigate how to assemble the final rule set of the network. We
need to provide a special treatment for Hidden to Output BNSs, since hidden
neurons’ activations are not discrete values, but real numbers in the interval
(-1,1). In order to deal with that, we assume, without loss of generality,
two possible intervals of activations (—1, Amqz) and (Amin, 1), and perform a
worst case analysis. Finally, we take advantage of the completeness of Input
to Hidden BNSs extraction to assemble the network’s rule set. We show that
for the case of non regular networks, although using a decompositional ap-
proach, we are able to maintain soundness. We have to drop completeness,
however, as a result of the above worst case analysis.

A possible extension to the extraction algorithm concerns the extraction
of meta-level priorities directly from the network’s Hidden to Output BNSs.
Negative weights from hidden to output neurons implement a preference
relation. We could use this information to extract directly from the network,
together with object level rules, a set of meta-level priorities between rules.
Alternatively, this could be done after the extraction, when the rules are
assembled to derive the final rule set. The result would be the enhancement
of the rule set readability and compactness.

We have been investigating the relations between first order Horn clause
logics and neural networks. We believe that, once such relations are estab-
lished, we could take advantage of using a more expressive language for the
extraction process. It may be the case that an extraction algorithm which
uses a more powerful language, such as the language of First Order Logic,
could help reducing the networks’ input vectors search space, for example by
using variables in the language for the extraction.

In this report, we have investigated the problem of extracting the sym-
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bolic knowledge encoded in trained neural networks. Although neural net-
works have shown very good performance in learnability, generalizability and
speed in many application domains, one of their main drawbacks lies on the
incapacity to explain the reasoning mechanisms that justify a given answer.
As a result, their use in some application areas, for instance in safety-critical
domains, has become limited, if not unacceptable. This has motivated the
first attempts towards finding the justification for neural networks’ reason-
ing mechanisms, dating back to the end of the 1980’s. Nowadays, it seems
to be a consensus that the way to try and solve this problem is to extract
the symbolic knowledge encoded in the network. The problem of symbolic
knowledge extraction from trained networks turned out to be one of the most
interesting open problems in the field. So far, some extraction algorithms
were proposed [2, 8, 13, 31, 36, 40] and had their effectiveness empirically
confirmed using certain applications as benchmark. Some theoretical results
have also been obtained [5, 13, 18, 39]. However, we are not aware of any
extraction method that fulfills Thrun’s list of desirable properties: 1) no ar-
chitectural requirements; 2) no training requirements; 3) correctness; and 4)
high expressive power [39]. The extraction algorithm presented here satisfies
the above requirements 2 and 3. It does impose, however, some restrictions
on the network’s architecture. For instance, it assumes that the network
contains a single hidden layer. This, according to the results of Hornik et
al.[19], is not a drawback though. Concerning the rule set expressive power,
our extraction algorithm enriches the language commonly used by adding
default negation. This is done because, we argue, neural networks encode
nonmonotonicity. In spite of that, we believe that item 4 is the subject,
among the above, that needs most attention and further development.

The material presented in this report is an integral part of our neural-
symbolic integration proposal, consisting on the final step of the system (ez-
planation, see figure 1(4)). A detailed description of the system and the
results obtained with its application in computational biology, specifically
DNA sequence analysis, can be found in [5].
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