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Abstract. The liveness characteristics of a system are intimately related to the notion
of fairness. However, the task of explicitly modelling fairness constraints is compli-
cated in practice. To address this issue, we propose to check LTS (Labelled Transi-
tion System) models under a strong fairness assumption, which can be relaxed with
the use of action priority. The combination of the two provides a novel and practical
way of dealing with fairness. The approach is presented in the context of a class of li-
veness properties termedprogress, for which it yields a particularly efficient model-
checking algorithm. Progress properties cover a wide range of interesting properties
of systems, while presenting a clear intuitive meaning to users.

1 Introduction

Our research objective is the development of practical and effective techniques for model-
ling and analysing the behaviour of concurrent systems. We aim to support analysis based
on the software architecture of a system, and believe that the analysis techniques need to be
both accessible to practising software engineers, and supported by powerful automated
tools. In particular, our approach is based on the use of Labelled Transition Systems (LTS)
to specify behaviour and Compositional Reachability Analysis (CRA) to check composite
system models. The architecture description of a system drives CRA in generating the
model of the system based on its components [14, 22, 23]. The model thus generated can
be checked against the properties required of it.

Previous papers have addressed the problem of verifying safety and liveness properties
in the context of CRA [6, 7]. Our work on liveness property checking [6] takes the auto-
mata-theoretic approach to verification [30], adopted in a number of existing methods and
tools [1, 15, 16]. The approach is based on the use of Linear Temporal Logic (LTL) for-
mulas or Büchi automata to represent liveness properties. The LTS of a program is con-
verted into a Büchi automaton and the LTL formula for some propertyF is translated into
the Büchi automaton for¬F. The automaton corresponding to the intersection of the sys-
tem and the automaton obtained for¬F is then constructed. If the resulting automaton is
empty then the propertyF is not violated.

The tractability of the method is significantly affected by the fact that the Büchi
automatonB is composed with the system. The size of the system can thereby increase by
m times in the worst case, wherem is the size ofB. Moreover, the size of a Büchi automa-
ton may increase exponentially as a function of the length of the LTL formula that it repre-
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sents [16]. Although efficient algorithms exist for the automatic translation of LTL formu-
las into Büchi automata [12], none of these algorithms can guarantee to generate the mini-
mal automaton. In such a setting, fairness is usually represented in terms of constraints
introduced in the form of Büchi automata, which are also composed with the system [1,
16]. Besides complicating the task of modelling, this may further increase the size of the
system to be analysed.

To avoid burdening the users with modelling fairness constraints explicitly, we propose
an optional predefined fairness assumption on the executions of an LTS model. Under this
assumption, we have found that a specific class of liveness properties, which we have
termed progress, can be checked on the unmodified LTS of the system. This is an advan-
tage compared to methods that may increase the state space of the system by the introduc-
tion of property and fairness automata. As the fairness assumption may be too restrictive in
some circumstances, we introduce a simple action priority scheme that relaxes it. This
combination provides a simple, practical and effective way of dealing with selected types
of liveness, and of taking fairness into account when performing liveness property checks.
Most importantly, the technique is widely accessible since it requires little or no experience
with temporal logic.

Note that the class of liveness properties that can be expressed as progress properties is a
subset of those that can be expressed with LTL. Consequently, we do not see progress as
supplanting the need for general LTL model checking. We simply propose it as a more
tractable and more accessible alternative to Büchi automata, whenever it covers the par-
ticular needs of the system developer. As discussed later in the paper, our experience and
that of others [11] indicate that a large number of interesting properties of systems can be
expressed and checked in terms of progress properties.

The LTSA tool
The results of our work have been incorporated in an analysis tool – the Labelled Transi-
tion System Analyser (LTSA) [22, 23]. The examples used in the paper to illustrate prog-
ress checking were developed using the LTSA tool. We will briefly present how models of
system behaviour are described for the LTSA. The tool uses a simple process algebra nota-
tion, called FSP for Finite State Processes, to define the behaviour of processes. As an aid
to understanding, the LTSA supports the facility of drawing the LTS corresponding to an
FSP specification.

Figure 1 gives the FSP specification and corresponding LTS of a server that may be ac-
cessed by two clients,A andB. The server may receive requests by either clientA or client
B (actionsa.reqandb.req, respectively). After receiving a request, the server processes it
and produces a corresponding reply (actionsa.reply and b.reply). The behaviour of
SERVERis defined using action prefix (“-> ”), choice (“|”) and recursion. In the interests
of brevity, we will not formally define their semantics here; the meaning in the example
should be clear from the associated LTS diagram.

Structure
The next section describes how progress properties are specified, and how they are checked
under the proposed fairness assumption. Section 3 introduces the concept of action priority
and its use in progress analysis. Section 4 presents the Readers/Writers example that is
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used to illustrate and evaluate our approach. Finally, section 5 discusses related work, and
section 6 closes the paper with conclusions and plans for future work.

SERVER

a.req

b.req

a.reply

b.reply

0 1 2

FSP: SERVER = ( a.req->a.reply->SERVER
| b.req->b.reply->SERVER ).

Fig. 1. FSP specification and LTS for processSERVER

2 Progress Properties and the Need for Fairness

The regular occurrence of some actions in a system execution indicates that system behav-
iour progresses as desired or expected. We would therefore like to be able to check on the
model of a system that, in all possible executions of the system, such actions occur regu-
larly. In the context of an infinite execution, regularly means infinitely often. A property
that asserts that an actiona is expected to occur infinitely often in every infinite execution
of the system is expressed in LTL asÿ◊a. We call properties of this typeprogress. Often,
progress is not determined by a single action but by one of a set of alternatives. For exam-
ple, a system may be considered to make progress if it outputs one of a set of values. Con-
sequently, we define progress properties in terms of a finite set of actions as follows:

progres s P = {a 1,a 2..a n} defines a progress propertyP which
asserts that in any infinite execution of a target system, at least one of
the actionsa1,a 2..a n will be executed infinitely often.

The LTL formulation of the progress propertyP is ÿ◊(a1 ∨ a2 … ∨ an). Consider a very
simple systemS that consists of the server modelled in figure 1, and two clientsA andB
accessing it. The system can be expressed as the parallel composition of the two clients and
the server, as illustrated in figure 2. Processes assembled with the || parallel composition
operator run concurrently by synchronisation on actions that are common to their alphabets
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and interleaving of the remaining actions. The LTS for systemS is identical to the LTS of
figure 1.

A = (a.req->a.reply->A).
B = (b.req->b.reply->B).

||S = (A || B || SERVER).

Fig. 2. FSP specification of a system with two clients accessing a server

For systemS it is likely that a designer would expect both progress propertiesSERVE_A
andSERVE_Bto hold, where:

progress SERVE_A = {a.reply}
progress SERVE_B = {b.reply}

The reason is that an execution where the requests of some client are ignored indefinitely is
clearly undesirable.

These properties do not hold forS (its LTS is identical to that of figure 1). For example,
SERVE_Bis violated becauseS can generate an infinite execution that only listens to the
requests of clientA by always choosing the transition leading to state (1) when at state (0).
This violation corresponds to a scheduler that is consistently biased against a specific en-
abled transition when given a choice. However, any reasonable scheduler should imple-
ment some notion of fairness when choosing between sets of possible transitions. As it is
not possible to express fairness explicitly in the standard LTS model, we make the follow-
ing fairness assumption in order to check progress:

Fair Choice: If a choice over a set of transitions is executed infinitely
often, then every transition in the set will be executed infinitely often.

a.req

b.req

b.crash a.req

a.reply

b.reply

a.reply

b.crash

0 1 2 3 4

Fig. 3. System consisting of a server and two clients, one of which may crash

As discussed in section 5, fair choice corresponds to a strong fairness assumption on the
system transitions. Under fair choice, progress propertiesSERVE_AandSERVE_Bhold for
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systemS. Consider now the case where in systemS, client B is substituted by client
B_FAULTYthat may crash as modelled by the following FSP expression:

B_FAULTY = (b.req->b.reply->B_FAULTY | b.crash->STOP).

For simplicity, we assume thatB_FAULTYdoes not crash while waiting for a reply. The
LTS of systemS in this case is illustrated in figure 3. We can see that in this system, prog-
ress propertySERVE_Bis no longer satisfied: actionb.reply can only occur finitely many
times in anyfair infinite execution that reaches states (1) or (2) at some point. The set of
states {1,2} is called a terminal set of states, because each state is mutually reachable, but
no state outside the terminal set can be reached from any of those states. We will prove
later that in finite state systems, fair infinite executions always end up in a terminal set of
states. As a result, the only actions that are repeated infinitely often in such executions are
actions that label transitions between states of the terminal set.

The LTSA tool reports the violation as follows:

Progress violation: SERVE_B
Trace to terminal set of states:

a.req
b.crash

Actions in terminal set:
{a.req, a.reply}

This violation does not correspond to a real problem with the system. It is obvious that
reply actions cannot occur infinitely often if, after some point, requests are no longer being
issued. So the desired property is in fact that, if requests fromB occur regularly, then re-

plies toB must also occur regularly, i.e.ÿ◊b.req⇒ ÿ◊b.reply. We call this form of prog-
ress propertyconditional progress, which we define as follows:

progress P = if {a 1,a 2..a n} then {b 1,b 2..b n}
defines a progress propertyP which asserts that in any infinite execu-
tion of a target system, if any of the actionsa1,a 2..a n is executed infi-
nitely often then at least one of the actionsb1,b 2..b n is also executed
infinitely often.

Progress propertySERVE_Bcan therefore be restated as follows:

progress SERVE_B = if {b.req} then {b.reply}

This property is satisfied by systemS, since afterB_FAULTYcrashes, it stops making
requests to the server. The property therefore makes sure that, whenB_FAULTYis alive,
its requests are never consistently ignored, which is what the user wishes to check1.

In the following, we formally describe and prove the checking mechanism for progress
properties for a system executing under fair choice.

1 If in addition we wanted to check that a reply is received foreachrequest, we would combine the
progress property with a safety property [7], which would ensure that a reply must occur in any
interval defined by two requests.



6

Labelled Transition Systems:
Let Statesbe the universal set of states,L be the universal set of observable action labels,
andAct = L ∪ { τ}, where τ is used to denote an action that is internal to a subsystem, and
therefore unobservable by its environment. An LTS of a processP is a quadruple〈S, A, ∆,
q〉 where:

• S⊆ Statesis a finite set of states,
• A = αP ∪ { τ}, whereαP ⊆ L is the communicatingalphabetof P,
• ∆ ⊆ S× A × S, is a transition relation that maps a state and an action onto another state,
• q ∈ S indicates the initial state ofP.

For an LTSP = 〈S, A, ∆, q〉, we say that actiona∈A is enabledat a states∈S, iff ∃ s’∈S
such that (s, a, s’)∈ ∆. Similarly, we say that a transition (s, a, s’)∈∆ is enabled at a state
t∈S iff t = s.

We call anexecutionof P an infinite sequenceq0a0q1a1… of statesqi and actionsai such
thatq0=q and∀i≥0, (qi, ai, qi+1) ∈ ∆. A traceof P is a sequence of observable actions thatP
can perform starting from its initial state [17].

A stater is reachablefrom a states in an LTSP = 〈S, A, ∆, q〉, iff (( r = s) or (∃ a ∈ A
andt ∈ S, such that (s, a, t) ∈ ∆ andr is reachable fromt)). For a states ∈ S, Reachable(s,
P) denotes the set of states that are reachable froms in P, i.e. Reachable(s, P) ={ r ∈ S | r is
reachable froms in P}. An LTS of P = 〈S, A, ∆, q〉 transits into another LTS ofP' = 〈S, A,

∆, q' 〉 with an actiona ∈ A iff ( q, a, q') ∈ ∆. That is〈S, A, ∆, q〉 →a 〈S, A, ∆, q' 〉 iff ( q,
a, q') ∈ ∆. 

Definition - A terminal set of states C⊆S in an LTSP = 〈S, A, ∆, q〉 is a strongly connected
component with no outgoing transitions i.e.

• ∀ s ∈ C, C ⊆ Reachable(s, P)), and
• ∀ s ∈ C, Reachable(s, P) ⊆ C. �

It follows directly from the above definition thatC is a terminal set of states in an LTSP
iff ∀ s ∈ C, Reachable(s, P) = C.

Terminal Set Theorem - Let P = 〈S, A, ∆, q〉 be a finite-state process that executes under
“fair choice”. If w is a legal infinite execution ofP, then the set of states that appear infi-
nitely often inw forms a terminal set of states inP.

Proof: Let S1 ⊆ Sbe the set of states that are repeated infinitely often inw. SinceP consists
of a finite number of states, thenS1 is not empty. With fair choice, the fact that states inS1

are repeated infinitely often inw implies that all transitions that are enabled at these states
also occur infinitely often inw. This means that all states that are reachable from states of
S1 in P occur infinitely often inw. We conclude that∀s∈S1, Reachable(s,P) ⊆ S1. It is also
straightforward that since all states inS1 are repeated infinitely often inw, then every state
in S1 is reachable from any other state inS1, and therefore∀s∈S1, S1 ⊆ Reachable(s,P). We
conclude that∀s∈S1, Reachable(s,P) = S1 and thereforeS1 is a terminal set of states.�
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From the Terminal Set Theorem we conclude that a fair infinite executionw is obtained
by repeating infinitely often states in a terminal set of states. As a result, the actions that
occur infinitely often inw are exactly those actions that are enabled at states in the terminal
set. Therefore, a property “progres s P = {a 1,a 2..a n} ” is satisfied iff for each ter-
minal set of statesC in the LTS of the system, the following holds:∃s∈C, such that some
actiona∈{a 1,a 2..a n} is enabled ats (we say thata is enabledin C). Similarly, a prop-
erty “progres s P = if {a 1,a 2..a n} then {b 1,b 2..b n} ” is satisfied iff in the
LTS of the system, there is no terminal set of states where some action in{a 1,a 2..a n}
but no action in{b 1,b 2..b n} are enabled.

The algorithm that decides whether a progress property is satisfied is therefore based on
the computation of the terminal sets of states of a system. Terminal sets are found by com-
puting the strongly connected components in the LTS graph and applying the additional
criterion that no transition exists to a state outside the strongly connected component. Tar-
jan [29] showed that strongly connected components can be computed in linear time. Con-
sequently, the check that progress properties hold is efficient. Note that it is only necessary
to compute the terminal sets once to check any number of progress properties. As diagnos-
tic information in case of progress violations, the LTSA tool displays the trace of actions
leading to the terminal set together with the actions enabled in the set (see sample output
above).

The LTSA performs a default progress check when no progress properties are explicitly
specified. This consists of checking progress with respect to all actions in the alphabet of
the system. For a systemS, this is equivalent to checking that∀ a∈αS, progress
Pa={a} . If no actions inαS are missing from terminal sets of states inS, then liveness is
guaranteed in the system, since all actions always eventually occur. However, the liveness
guarantee is with respect to the assumption of fair choice. We will see in the next section
that liveness problems related to scheduling only become apparent when the system model
is augmented to reflectadverseconditions.

3 Action Priority

The progress checking mechanism proposed in the previous section is based on the as-
sumption of fair choice. This assumption corresponds to strong fairness on the system
transitions, which is often too restrictive to be practical [27]. In fact, practical schedulers in
computing systems do not implement fair choice [2]. This means that some executions that
may be exhibited by the system will be ignored by the checking mechanism as unfair. To
find problems with such executions, we propose a simple action priority scheme that allows
the user to “stress” a system by applying adverse scheduling conditions. With our scheme,
a set of actions in a process has higher or lower priority than the remaining ones in the
process alphabet. We introduce the following abbreviations:

P a→ to mean that∃ P’ such thatP a→ P’
P ⁄a→ to mean that⁄∃ P’ such thatP a→ P’
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The low (high) priority operators >> (<<) take as arguments a processP = 〈S1, A1, ∆1, q1〉
and a set of actionsK ⊆ Act, and return processP>>K = 〈S1, A1, ∆, q1〉 (P<<K = 〈S1, A1, ∆,
q1〉), where the semantics for∆ are given by Rule 1 (Rule 2) below:

Rule 1: Let a ∈Act. Then:

KPKP

PP
a

a

>>→>>
→

'

'
if ((a ∉ K) or (∀ b ∈ (A1 – K), P ⁄b→ ))

Rule 2: Let a ∈Act. Then:

KPKP

PP
a

a

<<→<<
→

'

'
if ((a ∈ K) or (∀ b ∈ K, P ⁄b→ ))

Intuitively, P>>K expresses the fact that actions inK have lower priority than the remain-
ing actions inαP. As a result, at any state where multiple actions are eligible, actions inK
are ignored unless it is not possible to execute any action inαP-K instead. In contrast, in
P>>K, actions inK have high priority, so actions inαP-K are only selected when it is not
possible to execute some action inK instead.

Action priority is thus used in our approach to force specific transitions to be taken when
a choice is possible. LetP be the original system to be checked, andP’ be the result of
applying action priority toP. Then selected unfair executions ofP will correspond to fair
executions ofP’. These unfair executions ofP can therefore be checked with our mecha-
nism by checking systemP’ under fair choice.

4 Example: Readers/Writers

To illustrate our approach to progress analysis using action priority, we will use the well-
known Readers/Writers problem. This is concerned with access to a shared database by
two kinds of processes. Readers execute transactions that examine the database while Writ-
ers both examine and update the database. For the database to be updated correctly, Writers
must have exclusive access to the database while they are updating it. If no Writer is ac-
cessing the database, any number of Readers may concurrently access it. Access to the
database is controlled by a read/write lock which processes must acquire before accessing
the database. The FSP model for such a lock, together with the processes that acquire and
release it, is defined in figure 4. The system consists of the parallel composition of the user
processes with the lock. The processREADWRITELOCKis defined as choice among a set
of guarded actions controlled by the variableswriting andreaders. The action for a reader
to acquire a lock is only permitted whenwriting is false indicating that the lock has not
been acquired by a writer. The action for a writer to acquire the lock is only permitted
when the lock has not been acquired for either read or write access (readers==0 &&
!writing). The LTS generated for the compositionREADERS_WRITERSis depicted in
figure 5.
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The progress properties of interest in this system are that writers can always acquire the
lock and that readers can always acquire the lock. These properties can be specified as:

progress WRITER = {writer[W].acquire}
progress READER = {reader[R].acquire}

The progress propertyWRITERis satisfied if anywriter in the rangeW acquires the lock.
The propertyREADERis satisfied if anyreader in the rangeR acquires the lock. A prog-
ress check of these properties against theREADERS_WRITERSsystem discovers no viola-
tions. Now we will examine the behaviour of the system under adverse conditions. For the
READERS_WRITERSsystem, these adverse conditions occur when there is always com-
petition for the lock. This happens when either the lock is requested frequently or the lock
is held by processes for long periods. To model these conditions, we give release actions
for both readers and writers lower priority than acquire actions. Consequently, in any
choice between acquiring and releasing the lock, acquiring it will have priority. This is
described by:

||RW_PROGRESS = READERS_WRITERS
>>{reader[R].release,writer[W].release}.

Progress analysis of this system results in the following violation:

Progress violation: WRITER
Trace to terminal set of states:

reader.1.acquire
Actions in terminal set:
{reader.1.acquire, reader.1.release,

reader.2.acquire, reader.2.release}

const Nread = 2 // Maximum readers
range R = 1..Nread
const Nwrite=2 // Maximum writers
range W = 1..Nwrite
range ReadR = 0..Nread
range WriteW = 0..Nwrite

READWRITELOCK = RW[0][False],
RW[readers:ReadR][writing:Bool] =

( when (!writing && readers<Nread)
reader[R].acquire -> RW[readers+1][writing]

| when (readers>0)
reader[R].release -> RW[readers-1][writing]

| when (readers==0 && !writing)
writer[W].acquire -> RW[readers][True]

| when (writing)
writer[W].release -> RW[readers][False]).

USER = (acquire -> release -> USER).

||READERS_WRITERS =
(reader[R]:USER||writer[W]:USER||READWRITELOCK).

Fig. 4. Readers/Writerssystem model
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reader.1.acquire

reader.2.acquire

writer.1.acquire

writer.2.acquire

writer.2.release

writer.1.release

reader.1.acquire

reader.2.release

reader.1.release

reader.2.release

reader.1.release

reader.2.acquire

0 1 2 3 4 5

Fig. 5. LTS for READERS_WRITERS

This is the writer starvation situation in which writers do not get access because the number
of readers with read access never drops to zero. In this simple example, the terminal set of
states (3,4,5) causing the violation can be seen in the LTS ofRW_PROGRESSdepicted in
figure 7.

The problem of writer starvation can be fixed by making readers defer to waiting writers.
To detect waiting processes, we modify the definition ofUSERprocesses such that they
request access to the lock before attempting to acquire it:

USER = (request-> acquire -> release -> USER).

The revised definition of the lock that uses this information is listed in figure 6. The new
version keeps a count of waiting writersww. Readers only acquire access if there are no
writers waiting (!writing && readers<Nread && ww==0). This new version of the lock

READWRITELOCK = RW[0][False][0],
RW[readers:ReadR][writing:Bool][ww:WriteW] =
( when (!writing && readers<Nread && ww==0)

reader[R].acquire -> RW[readers+1][writing][ww]
| when (readers>0)

reader[R].release -> RW[readers-1][writing][ww]
| when (readers==0 && !writing &&ww>0)

writer[W].acquire -> RW[readers][True][ww-1]
| when (writing)

writer[W].release -> RW[readers][False][ww]
| when (ww<Nwrite)

writer[W].request -> RW[readers][writing][ww+1]
|reader[W].request -> RW[readers][writing][ww]).

Fig. 6. RevisedREADWRITELOCK
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when checked under the same conditions no longer detects a violation of the progress prop-
erty WRITER. However, it is now possible for readers to starve:

Progress violation: READER
Trace to terminal set of states:

reader.1.request
reader.2.request
writer.1.request
writer.2.request

Actions in terminal set:
{writer.1.request, writer.1.acquire,

writer.1.release, writer.2.request,
writer.2.acquire, writer.2.release}

reader.1.acquire

reader.2.acquire

writer.1.acquire

writer.2.acquire

writer.2.release

writer.1.release

reader.1.acquire

reader.1.release

reader.2.release

reader.2.acquire

0 1 2 3 4 5

Fig. 7. LTS for RW_PROGRESS

The problem of reader starvation can of course be fixed by introducing a “turn” variable
that lets readers and writers run alternately when competition exists for the lock. Such a
system should satisfy both theREADERand WRITERprogress properties. Examples of
conditional progress properties related to theREADERS_WRITERSsystem are shown
below:

progress WREL[i:W] =
if {writer[i].acquire} then {writer[i].release}

progress RREL[i:R] =
if {reader[i].acquire} then {reader[i].release}

The progress properties assert for each writer and for each reader that, if they regularly
acquire the lock, they must also regularly release it. None of these properties is violated by
the two versions of the system presented.

The checking mechanism that we have proposed is more tractable than the approach
based on Büchi automata. In ourREADERS_WRITERSexample, each of the progress
properties has to be checked separately if Büchi automata are to be used for verification.
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The Büchi automaton for the negation of propertyWRITER (◊ÿ¬(writer.1.acquire ∨
writer.2.acquire)) is illustrated in figure 8. The transition @WRITERis used to mark the
accepting state (1) of the automaton [6]. Note that when fair choice is assumed, a complete
automaton must be used for verification. This is necessary since when a transition is unde-
fined in the automaton, a non-terminal set of states may become terminal. A Büchi
automaton can always be made complete by adding one state.

The systemREADERS_WRITERS|| WRITERconsists of 18 states. The size of the sys-
tem has therefore increased by 3 times, which corresponds to the size of the Büchi
automaton. For large systems, such an increase is significant. Additionally, in our ap-
proach, a single graph exploration is sufficient to check any number of progress properties,
which is not the case with Büchi automata.

Finally, it should be noted that safety analysis must be performed on a system before
action priority is applied for progress analysis purposes. Since action priority removes
transitions, it may remove erroneous system behaviour.

WRITER
tau

writer.1.acquire
writer.2.acquire

writer.1.acquire
writer.2.acquire

@WRITER writer.1.acquire
writer.2.acquire

0 1 2

Fig. 8. Büchi automaton used for checking progress propertyWRITER

5 Related Work

Progress:Manna and Pnueli classify properties of programs into a hierarchy, where each
class is characterised by a canonical temporal formula scheme [24]. They associate the
term progresswith several classes of this hierarchy. These formulas do not always corre-
spond to liveness properties in the safety-liveness classification. Their work gives a de-
tailed description of the differences between the two classifications. In fact, our progress
properties are a subclass of the properties referred to in [24] asresponse. The notion of
progress also appears in Unity [5], where selected types of formulas are handled, and clas-
sified as safety and progress. Their progress properties correspond to LTL properties of the

typeÿ(a⇒◊b) (leads to) andaUb (ensures), whereU denotes strong until.
SPIN [18] uses the notion of progress in a similar context to ours. The tool provides the

facility to mark selected states of processes as progress states. It then checks that
ÿ◊progress, whereprogressis true in a system state if at least one of the system processes
is in a progress state. The SPIN liveness checks also incorporate a weak fairness assump-
tion with respect to processes. The different fairness assumption and the fact that we spec-
ify progress in terms of actions rather than states are largely determined by the difference
in analysis approaches. SPIN uses an on-the-fly approach to analysis, which preserves
information about states in individual processes, whereas we use CRA, where this infor-
mation is not preserved under composition.
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Our approach differs significantly from that of SPIN both in terms of expressiveness,
and algorithmically. Currently, SPIN performs progress checks by introducing a pre-
defined Büchi automaton for progress. As a result, the state space of the system is affected
(this also holds for the original algorithm presented in [18], where a two-state demon proc-
ess was added to the model to determine different modes for the checking algorithm). Un-
like our approach, SPIN cannot check the conjunction of a number of progress properties.
For example, it cannot check whether at least one progress state fromeach component
process must occur infinitely often in the executions of a system. Finally, SPIN cannot
handle conditional progress. In our approach, progress therefore covers a wider range of
properties. Additionally, we provide the option of action priority, which allows the user to
easily experiment with applying adverse scheduling conditions on an otherwise “fair” sys-
tem.

Fairness: The issue of fairness has been extensively investigated. Lehmannet al. intro-
duced three notions of fairness that are useful in practice [21]. An infinite execution is
unconditionallyfair if every transition is taken infinitely often,strongly fair if for every
transition, if it is enabled infinitely often it is executed infinitely often, andweaklyfair if
for every transition, if it is enabled continuously from some point on, it is taken infinitely
often. The term transition can be substituted by process or action to obtain the same fair-
ness conditions with respect to processes [8] or actions [20]. Weak, strong, and uncondi-
tional fairness are also referred to as justice, fairness (or compassion) and impartiality.
Based on these definitions, our assumption of fair choice corresponds to strong fairness
with respect to the system transitions. Different notions of fairness are appropriate for
different system models. Apt et al. [3] present some criteria of effectiveness and utility of
adopting some notion of fairness in a computational model.

Queille and Sifakis [27] deal with fairness extensively, and stress the importance of de-
fining fairness with respect to specific actions or predicates of the system. They call this
relative fairness. Natarajan and Cleaveland [25] take such an approach, and propose a no-
tion of weak fairness with respect tosuccess, in order to determine when a process passes a
test. The framework presented by Manna and Pnueli [24] supports the specification of
weak and strong fairness with respect to specific transitions in the system.

A way of dealing with fairness in model checking is to add Büchi acceptance conditions
to the system. For example in [1], all components of the system are Büchi automata, and
therefore only executions that are acceptable by the product Büchi automaton are checked
for correctness. Gribomont and Wolper [16] describe how a Büchi automaton can be used
to express a fair process scheduler. Clarkeet al. [8] extend their model with a set of predi-
cates, so that fair paths are defined as paths in which each predicate holds infinitely often.
This is equivalent to turning the model of the system into a generalised Büchi automaton.
In this way, they can express both weak and unconditional fairness on processes. However,
this requires the user to modify the initial model of the system. Finally, in Unity [5], the
notion of fairness requires that every statement is selected infinitely often in any infinite
execution.

Priority: Priority has been introduced as a means of assigning more importance to some
actions than others. Examples of actions that require special treatment are interrupts and
timeouts. In [26], Phillips performs a study and comparison between various approaches to
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introducing priority in process algebra. Relative vs. absolute and conditional vs. exclusive
forms of priority appear in the literature. Recently, dynamic priority has also been proposed
in the context of real-time systems [4]. In our approach, priority is not used as a modelling
operator. Rather, it is simply used as a way of eliminating transitions, and obtaining system
executions that would otherwise be considered unfair. Therefore, we do not need to con-
sider whether the semantic equivalence of our model remains a congruence with the intro-
duction of a priority scheme. As a result, we have taken a very simple approach to priority,
similar to the initial one proposed by Cleaveland and Hennessy in [10].

6 Discussion and Conclusions

The work presented in this paper was motivated by a desire to achieve a balance between
expressive power, accessibility and efficiency of analysis methods. Despite their expressive
power, Büchi automata may exacerbate the state explosion problem. Moreover, they are
not easy to specify without the use of an automated tool [19]. In general, this approach to
verification is appropriate for experienced users of an analysis tool, that can use effectively
a formalism like LTL or Büchi automata to specify properties or fairness assumptions of
the system. The effort of using such a mechanism should only be required by the user if no
simpler method is available for performing the specific analysis of interest.

In general, methods should require minimal effort before engineers start realising the
benefits from their use [9]. The progress checking mechanism that we propose provides a
way of checking liveness in a system, which is easily accessible by non-experts. Although
less expressive than LTL and Büchi automata, progress properties can be specified in a
simple intuitive way, and can be checked on the LTS of the system without modifying it or
increasing its size. In the context of CRA, progress properties are specified independently
of the processes and composite subsystems that form a system. Consequently, they can be
applied meaningfully to a subsystem as well as to the composite system as long as the
subsystem contains the progress actions in its alphabet. A single traversal of the LTS of a
system is sufficient to check any number of progress properties.

In our framework, progress and safety checking can be combined efficiently, and
checked in a system simultaneously. Therefore, users need to revert to LTL model-
checking only for restricted classes of liveness properties. Our experience so far in analys-
ing architectural models leads us to believe that progress properties are sufficiently expres-
sive to allow many liveness properties, of interest at the software architecture level, to be
verified. For example, we have applied our technique to a large model of an Active Badge
System [22], and shown that badge commands are not acknowledged if badges move be-
tween locations too frequently.

The combination of progress checks and action priority provides an elegant way of
dealing with models that incorporate a notion of discrete time. The passing of time is mod-
elled as a global tick action [28]. The maximal progress condition that is usually assumed
for these discrete time models is ensured by making the tick action low priority - ">>
{tick} ". The integrity of the model with respect to time can be checked by asserting the
progress property "progress TIME = {tick} ".
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In their work on patterns in property specifications [11], Dwyeret. al report that the
most common property pattern isResponse, described in LTL asÿ(a⇒◊b). Our progress
and conditional progress schemes cover a wide range of properties that fall in this category.
For example, whenÿ◊a holds in a system,ÿ(a⇒◊b) is equivalent to the conditional prog-
ress property “progress Response = if {a} then {b} ”.

The proposed fairness assumption has been elegantly incorporated in all our liveness-
checking mechanisms [13] (though, in this paper, it was presented in the context of prog-
ress). We found that the notion of fairness with respect totransitions fits more naturally
with our framework. Particularly in the context of CRA, it is not easy to apply fairness with
respect to processes of the system. This is because the LTS of a composite system does not
retain information about which processes it consists of. This could only be achieved by
modifying the LTSs of the system components to record all necessary information, simi-
larly to the approach proposed by Clarkeet al. in [8].

In the context of liveness property checking, the possibility of including a notion of fair-
ness is essential. When Büchi automata are used to express fairness constraints, users not
familiar with the formalism are unable to check their model under any fairness conditions.
In such cases, most of the counterexamples returned by the checking procedure correspond
to unrealistic executions of the system analysed. As model checkers return a single coun-
terexample for a property violation, the user has no way of finding out if the property
checked is really violated, unless the counterexample is realistic. We believe that, rather
than checking liveness with no fairness constraints and obtaining misleading violations, it
is preferable from the developer’s point of view to get only realistic results from the tool,
even at the risk of missing problems that may occur in practice.

The advantage of action priority is that it is simple to model, and the LTS of the system
is automatically updated accordingly. The user can therefore easily experiment with
checking various instances of the system behaviour, by applying different priorities to it.
As a result, the coverage of the checking mechanism under fair choice can be increased.
This process is guided by users, who may enforce adverse scheduling conditions based on
their intuition about vulnerable parts of the system behaviour.

In the context of CRA, action priority is applied to produce subsystem versions solely
for checking progress at the subsystem level. These “test” subsystems are not used in con-
structing composite behaviours, since the application of action priority removes parts of
system behaviour. In our implementation, action priority is applied during the construction
of a composite LTS from component processes. Therefore, action priority can also be used
for performing partial searches on systems that are too large for exhaustive exploration. In
these cases, action priority provides a way of selecting interesting behaviours for analysis.
The current priority scheme allows only coarse-grained control of scheduling. To refine
this control, we plan to investigate the use of more powerful priority schemes, such as
relative and dynamic action priorities.
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