
Permco – A Permissive Approach to Covariant Overriding of

Subclass Members

Sophia Drossopoulou Dan Yang
Department of Computing, Imperial College

London SW7 2AZ

Technical report nr: 98/4

Abstract

We describe Permco, a permissive approach which allows covariant overriding of in-
stance variables and any overriding of instance methods.

Subclasses are considered subtypes. Instance method access is treated by considering
the types of all methods defined for the class of the receiver and all its possible subclasses.
Instance variable access is treated by considering the types of the instance variable in all
possible subclasses. Thus, Permco is permissive at the point of redefinition and restrictive
at the point of call or access. Closed types describe values which may belong to a class
but not to its subclasses, and allow a more precise description of types. Result types may
depend on receiver or argument types.

This paper introduces Permco in terms of an example and compares with related
approaches. It then demonstrates its soundness through a subject reduction theorem.

1 Introduction

Component overriding (i.e. replacing instance variables or methods in subclasses) allows ob-
jects of a subclass to respond to a message slightly differently than objects belonging to the
superclass. It is an indispensable feature in object oriented programming languages, but
provides challenging problems for the type system.

As demonstrated in [9], if subclasses are connected to subtypes, then one can straightfor-
wardly obtain a sound type system by requiring the overriding components to belong to a
subtype of the corresponding components in the superclass. This has the consequence that
the argument types of the overriding method have to be supertypes of the argument types of
the overridden method, i.e. we have contravariant overriding, and that the instance variables
must have the same type as the instance variable of the supertype [4].

However, this proves to be too strong a restriction; as argued e.g. by [10, 23, 25], in
programming practice situations requiring covariant redefinition often arise. The type the-
ory community has devoted a lot of research to this problem. The solutions offered range
from giving up the connection between subclasses and subtypes and applying match-bounded
polymorphism [1, 7], multimethods [13], to some combination of static typing with dynamic
checking [24].

An informative overview of the solutions to the more specific problem of binary methods
(where the type of the argument is identical to that of the the receiver and where it changes

1

in subclasses together with the receiver) appeared in [5], and it is probable that some of the
solutions suggested there are definitive.

However, we believe that the more general problem of component overriding, where the
type of the argument is not the same as that of the receiver, has not been definitively settled
yet.

This paper outlines Permco and gives a short survey of other approaches. In Permco sub-
classes are considered to be subtypes. Permco is permissive at the point of redefinition and
restrictive at the point of call or access: Any redefinition of method arguments and covari-
ant redefinitions of instance variables are allowed. At the point of method call, or instance
variable access we type check by considering all possible subclasses of the type of the re-
ceiver. Types indicate the set of classes to whose objects an expression may belong. Closed
types, which consider a class but none of its subclasses, support a more precise description
of that set, and thus they allow a tighter description of the type of an expression. Result
types may depend on the receiver or the argument. Permco operates under the closed world
assumption. However, in the case of introduction of covariant overriding later on in the soft-
ware lifecycle, Permco only requires recompilation, as opposed to reprogramming required
by other approaches; thus Permco is more suitable for incremental program and prototype
development.

The paper is organised as follows: Section 2 introduces the issues around component
overriding through an example. Section 3 outlines Permco and other approaches to this
problem. Section 4 formally defines the approach in terms of a simple calculus and proves its
soundness through a subject reduction theorem. In section 5 we draw some conclusions.

2 The Issues

Any solution to covariant component overriding is tightly connected to the solution of method
binding and the relation between subclasses and subtypes. We discuss these issues in terms
of the example presented in figure 1, using a variant of the syntax in [5].

The class Car describes cars which have a driver; although not explicitly stated, the
instance variable driver should belong to the class Driver. On the other hand, RaceCar,
a subclass of Car describes racing cars, which require special drivers of class FastDriver.
The intention here is to override in class RaceCar the instance variable driver from Car in a
covariant way.

The method register defined in Car, expecting a aDriver argument of class Driver is
redefined in RaceCar expecting a more specific driver, i.e. of class FastDriver – a case of
covariant overriding of method arguments. Thus, (new Car).register(new Driver) is
safe, whereas (new RaceCar).register(new Driver) would raise a run-time exception.
This demonstrates that when covariant overriding is supported replacing an object of a class
by an object of a subclass is not always safe. This phenomenon was already observed in [15].
Ways of combining covariant overriding with sound typing is the subject of our paper.

The method testDrive expects a Car argument, and returns it after trying out its proper-
ties. Thus, ((new FastDriver).testDive(new RaceCar)).speedLimit is safe. However,
we shall see that Permco and multimethods are the only type systems which consider this
expression type correct.

2

class Car
instance variables

driver
instance methods

getDriver
return driver

register(aDriver)
driver := aDriver.
return self

end Car

class RaceCar inherits Car
instance variables

speedLimit
instance methods

register(aDriver)
driver := aDriver.
speedLimit := aDriver.getLicense * 10.
return self

end RaceCar

class Driver
instance methods

testDrive(aCar)
. . . try out aCar
return aCar

end Driver

class FastDriver inherits Driver
instance variables

license
instance methods

getLicense
return license

end FastDriver

Figure 1: Cars and Drivers – the Problem with Covariant Overriding

2.1 Overriding of Instance Variables and Parameters

We distinguish the following solutions to component overriding:
In the novariant solution, as called in [25], a component overrides another component only

if they have the same name and the same type. In this solution objects of class RaceCar have
a driver of class Driver and a driver of class FastDriver, and there is no way to express the
intention that a RaceCar is a special case of Car, where the driver has to belong to the class
FastDriver. Novariance is adopted by C++ and Java.

The contravariant solution follows the results from [9], whereby we obtain a simple, sound
type system if component types in a subtype are subtypes of the corresponding component
types in the supertype. In particular, functional types follow a contravariant subtype rule in
the argument type:

T2 ≤ T1, S1 ≤ S2 =⇒ T1 → S1 ≤ T2 → S2

which means that the parameter types of the overridden method have to be supertypes of
the overridden method. As argued in [4], instance variables require a set and a get function,
therefore, the instance variable types would have to be the same. Thus, for imperative object
oriented languages, the novariant solution is a special case of the contravariant solution. In
terms of our example, either the redefinition of methods register would be forbidden, or
RaceCar would not be a subtype of Car.

In the covariant solution, the parameter types of the overriding method are subtypes
of the corresponding parameter types of the overridden method, and similarly, the type of
an instance variable is a subtype of that being overridden. Eiffel, Beta and O2 adopt the
covariant solution.

3

class Car
instance variables

driver : <Driver>
instance methods

getDriver
‘� X ≤ <Car>.X −→ <Driver> �’
‘� X ≤ <RaceCar>.X −→ <FastDriver> �’
return driver

register(aDriver)
‘� X ≤ [Car].Y ≤ <Driver>.X× Y −→ X �’
driver := aDriver.
return self

end Car

class RaceCar inherits Car
instance variables

driver: <FastDriver>
speedLimit: <Number>

instance methods
register(aDriver)

‘� X ≤ <RaceCar>.Y ≤ <FastDriver>.X× Y −→ X �’
driver := aDriver.
speedLimit := aDriver.getLicense * 10.
return self

end RaceCar

class Driver
instance methods

testDrive(aCar)
‘� X ≤ <Driver>.Y ≤ <Car>.X× Y −→ Y �’
. . . try out aCar
return aCar

end Driver

Figure 2: Cars and Drivers in Permco

2.2 Subclasses vs Subtypes

Objects belong to classes which determine their behaviour. Types – in our approach – describe
the set of classes to whose objects evaluation of an expression might lead. The open type <C>
denotes the type of instances of class C or any subclasses of C. For example, <Car> describes
objects of class Car, or RaceCar, or any further subclass of Car. All object oriented languages
support open types. In some languages (e.g. Eiffel, C++, but not in Java) it is possible to
express the type of instances of a class C, but none of its superclasses; in our terminology this
is a closed type [C]. For example, [Car] only describes objects of class Car.

The concepts of subclass and subtype are closely related but distinguished: Subclasses
represent implementation inheritance, i.e. instances of a subclass inherit variables and meth-
ods from a superclass, and therefore they “understand” all messages that an object of a
superclass understands. Subtypes represent specification conformance, i.e. if a type T1 is a
subtype of T2, then an expression e1 of type T1 can replace an expression e2 of type T2.

4

We distinguish the solution whereby subclasses and subtypes are connected from that
where they are not (we use � and ≤ to denote subclass and subtype):

[unconnect]
C2 � C1
nothing

[connect]
C2 � C1
<C2> ≤ <C1>

[connect1]
C2 � C1
<C2> ≤ <C1>
[C2] ≤ [C1]

[connect2]
C2 � C1
<C2> ≤ <C1>
[C2] ≤ <C1>

The first solution, [unconnect], corresponds to structural type equivalence; the subtype
hierarchy is separated from the subclass hierarchy. This solution is widely adopted [6, 1];
the subtype relationship holds only when all the components in the subclasses are subtypes
of the corresponding components in the superclass. Furthermore, even classes which are not
subclasses may form subtypes if their components have appropriate types.

In the next three solutions, subtypes are connected to subclasses: if C2 is a subclass of C1,
then the open type <C2> is a subtype of the open type <C1>. [connect] applies to languages
where closed types are not expressible, eg. Java or Beta. In languages where closed types are
expressible, either [C2] is a subtype of [C1], or [C2] is a subtype of <C1>. The first, [connect1],
is the case where an implicit coercion operation takes place when passing a subclass object
where a superclass object is expected; this applies to C++. The latter, [connect2], is the case
where entities of open and closed types have the same representation. That is so in LOOM,
or Smalltalk where all entities are implicitly pointers. It is not so in C++, where open types
correspond to pointers, and closed types correspond to entities on the stack.

2.3 Method Binding

Method binding is the process of resolving the method body to be executed when an object
receives a message. Static binding can be resolved at compile time, thus allowing for efficient
implementation but restricting flexibility. All object oriented languages support, at least
in some cases, dynamic binding, which takes place at run-time, when the receiver is fully
evaluated, and its class is known. Dynamic binding is further divided into single method
dispatch, where only the class of the receiver is taken into account, and multi-method dispatch,
where binding takes into account the class of receiver and several parameters.

In single method dispatch methods belong to the class where they are defined. The method
defined in the nearest superclass of the receiver’s class is selected. Single method dispatch is
adopted by most languages, eg Smalltalk, C++ and Java.

Multi-methods are global rather than belong to particular classes. When the classes of
the receivers are known, then the method whose argument types are the nearest to the actual
receiver classes is selected. This solution is adopted by O2[2], CLOS[21] and Rosette [20],
and it is formally described by the λ& calculus [13].

2.4 World View, Implications of Covariant Redefinitions

Another important issue is whether an approach operates under the open world or the closed
world assumption. The closed world assumption requires type information about the whole
program in order to type check an expression, whereas the open world assumption does
not. In particular, adding a subclass under the closed world assumption might require type

5

checking the complete program again, whereas, under the open world assumption, it would
only require type checking the particular class. Seen in isolation, the open world assumption
is by far preferable.

However, we believe, that the implications of subsequent covariant redefinitions is an issue
of comparable importance: Consider the implications of a later introduction of a covariant
redefinition into the class hierarchy of a program several months or even years after the initial
program was developed, type checked, and deployed.

In LOOM, the classes would have to be replaced by parameterized classes, and the use of
the corresponding types would have to be replaced by the instantiation of the corresponding
parameterized types. Although the original non-parameterized types were subtypes, the new
parameterized type instatiations may not be subtypes of each other. Therefore a certain
amount of reprogramming might be required. In λ& only a little amount of reprogramming
would be required: some previously normal methods would have to be turned to multimeth-
ods. On the other hand, the approaches which do not use explicit class parameterization,
e.g. Permco, Beta and Eiffel, would only require renewed type checking of the program. We
feel that this is an advantage in the software lifecycle process.

In terms of our cars and drivers example, consider the case where the classes Car and
RaceCar dealing with engines, horsepower, drivers etc, but not differentiating the drivers of
normal cars from the drivers of racing cars, were developed and imported by other modules.
Suppose, that, later on, it was necessary to introduce drivers for RaceCars in the covariant
manner. In a LOOM program one would have to replace Car and RaceCar by parameterized
classes, and this change would need to be reflected in all importing modules, even those which
did not make use of the vehicles’ drivers. Namely, one would need to replace the previously
nonparameterized type CarType by the type instantiation CarType(DriverType). One would
also have to reprogram those parts of the earlier program which were meant to work both
for cars and race cars, because in the new version of the program they would not, even if
these parts were not concerned with drivers – because RaceCarType(FastDriverType) does
not match CarType(FriverType), cf. section 3.4. The necessary changes in the λ& program
are less incisive: one would have to turn the method register into a multimethod. The
Permco approach would only require type checking of the importing modules. These modules
would remain type correct if they did not deal with drivers. Similarly, Beta would require the
introduction of a virtual type for the driver in class Car, but would not require reprogramming
of the use of Car, unless the driver was explicitly required.

3 The Approaches

The solutions to method binding, subclasses vs subtypes, etc described in the previous section,
are not orthogonal: an arbitrary combination would not necessarily give a sound type system.
In this section we outline the combinations adopted by C++, Eiffel, multimethods, LOOM,
Beta and Permco.

In figure 3 we summarise these approaches in terms of the solution taken. Figure 4 gives
type checking results of the different approaches, where

√
means that the expression is type

correct, × means that the expression is type incorrect, ? means that a runtime check is
performed, −−− means that the expression is impossible to express in the language,

√
C,√

RC and
√

C,RC mean that the message is bound to the method defined in class Car, RaceCar
and Car or RaceCar respectively. The types of the variables are given with the figure.

6

C++ Effel λ& LOOM Beta Permco

pol. catcall
Overriding of
Inst. Vars or novariant covariant covariant, covariant covariant covariant
Parameters contravariant
Subclasses vs connect1 connect1 connect unconnect connect connect2
Subtypes
Method single single multiple single single single
Binding
Result Type none receiver argument class virtual receiver or
Dependence parameter type argument
World open closed open, open closed closed
View closed
Implication of impossible recompile restricted reprogram restricted recompile
Covariant reprogram reprogram
Redefinition

Figure 3: Properties of Various Type Systems

3.1 Permco

In Permco [18, 28] which was originally developed on top of Smalltalk [19, 17], subclasses are
connected to subtypes, and because all entities are internally represented as pointers to heap
objects, C2 � C1 implies that <C2> ≤ <C1> and [C2] ≤ <C1>, but not [C2] ≤ [C1]. Covariant
type redefinitions of instance variables and any type redefinitions of method types are allowed.
Message expressions are type checked by considering the types of the methods in the receiver
and all its subtypes. Signatures are used to represent the types of the methods. One or more
signatures can be used to represent the type of a method.

The cars example in Permco is shown in figure 2. Because <RaceCar> is a subtype of
<Car>, the assignment aFiat = lotus is legal, and lotus may appear wherever a <Car> is
expected. Similarly, because [Car] is a subtype of <Car>, aFiat = twingo is type correct.
On the other hand, <RaceCar> is not a subtype of [Car], and the assignment twingo=lotus
is illegal.

The expression lotus.driver = noddy is type incorrect and twingo.driver = john is
type correct - as expected. Furthermore, the expression lotus.driver = john is type incor-
rect; this makes sense, because john may point to a Driver object at run time. In the same
spirit, aFiat.driver = john is type incorrect. The type rules of Permco achieve this by
requiring the type of the expression updating an object to be a subtype of the type of the
label for all subtypes of the object: in that case they require <Driver> to be a subtype of
<Driver> and of <FastDriver>.

Similar rules hold for type checking message expressions: consider all possible subtypes
of the receiver’s type, and all methods defined for them. For example, because RaceCar has
“exceptional” requirements, for any expression of type <Car> we need to take the possibility
of <RaceCar> into consideration, and to check whether it too, would behave correctly in the
context. Hence the expression aFiat.register(john) is type incorrect.

7

Line C++ Eiffel λ& LOOM Beta Permco

1 aFiat=lotus
√ √ √ × √ √

2 noddy=schumacher × × −−− × −−− ×
3 twingo.driver = john

√ √ −−− √ −−− √
4 aFiat.driver = john

√ √
or × −−− √

? ×
5 aFiat.driver = schumacher

√ √ −−− × √ √
6 lotus.driver = john × × −−− × × ×
7 lotus.driver = noddy × × −−− × −−− ×
8 lotus.driver = schumacher

√ √ −−− √ √ √

9 twingo.register(john)
√

C

√
C −−− √

C −−− √
C

10 twingo.register(noddy)
√

C

√
C −−− √

C −−− √
C

11 aFiat.register(john)
√

C

√
C or × √

C,RC

√
C ? ×

12 aFiat.register(noddy)
√

C

√
C or × −−− √

C −−− ×
13 aFiat.register(schumacher)

√
C

√
C or × √

C,RC × √
C,RC

√
C,RC

14 lotus.register(noddy) × × −−− × × ×
15 noddy.testDrive(lotus) × × √ × × √

.speedLimit
16 schumacher.testDrive(lotus) × × √ × × √

.speedLimit

where the variables have types: schumacher:<FastDriver>, john:<Driver>,
noddy:[Driver], lotus:<RaceCar>, twingo:[Car], aFiat:<Car>

Figure 4: Type checking cars and drivers expressions in the six approaches

The signature of testDrive succinctly expresses that the type of the result is the same
as that of the argument. Thus, the type of noddy.testDrive(lotus) is <RaceCar>, and
therefore the expression noddy.testDrive(lotus).speedLimit is type correct.

Note that in Permco replacing an object of a class by an object of a subclass does
not preserve the types. For example, twingo.register(john) is type correct, whereas
(new RaceCar).register(john) is not. Nevertheless, Permco has the subtype substitu-
tivity property, i.e. in a type correct expression any sub-expression of type T may be re-
placed by a type correct sub-expression of type T′, if T′ is a subtype of T. The above ex-
pressions, twingo.register(john) and (new RaceCar).register(john) do not constitute
a counterexample, because [RaceCar], the type of new RaceCar, is not a subtype of [Car],
the type of twingo. On the other hand, <FastDriver> is a subtype of <Driver>, and
the expression twingo.register(schumacher) is legal – as required by by the fact that
twingo.register(john) is legal and the subtype substitutivity property.

3.2 C++

In C++ subclasses are connected to subtypes and component overriding adopts the novariant
solution. C++ provides both overriding and static overloading. For example, the method
register is defined in Car with parameter type <Driver>, and it is redefined in RaceCar
with parameter type <FastDriver>; this is a case of overloading. While overriding can only

8

be resolved dynamically, overloading is resolved statically.
For the expressions in figure 4, assume that the variables are declared as: FastDriver*

schumacher, Driver* john, Driver noddy, RaceCar* lotus, Car twingo, Car* aFiat, and
that the class Car has an instance variable driver of type Driver*, and its subclass RaceCar
has an instance variable driver of type FastDriver*. Because pointers and stack objects
have different internal representations, the assignment noddy = schumacher is type incorrect.
The message expression twingo.register(john) is statically bound. Also, the expression
aFiat.register(schumacher) is type correct, because the only method register requiring
a receiver type of <Car> and parameter type <Driver> is defined in class Car (while the
register method defined in class RaceCar requires different parameter types, and thus over-
loads and does not override register from class Car), and at runtime it will be bound to the
method register from class Car even if aFiat points to an instance of RaceCar.

3.3 Eiffel

Eiffel subclasses are subtypes. Messages are dynamically bound to methods according to the
class of the receiver. Instance variable and method redefinitions in subclasses are allowed in
a covariant manner. As a result, earlier versions were not sound, [16], and several proposals
aim for an upwards compatible, type sound version of Eiffel [15].

A simpler approach in [25] suggests “polymorphic catcalls”. Informally, an entity p is
polymorphic if there is an assignment p = q, where q has a different type than p; a call of
the form p f : ... is a “catcall” if some subclass of the class defining f covariantly redefines
the parameter types of f. Meyer points out that while polymorphic is desirable and catcall
is allowed, a polymorphic catcall may cause a runtime error, therefore it is considered a type
error.

The method register from RaceCar covariantly overrides register from Car. Therefore,
if the program contains an assignment like aFiat = lotus, then aFiat.register(john) and
aFiat.register(schumacher) would be polymorphic catcalls, and therefore type incorrect.
On the other hand, if aFiat is not polymorphic, then we know that only the method from
Car may be called (i.e. × or

√
C, depending on the rest of the program).

The polymorphic catcall solution is less expensive to implement than system-level valid-
ity, but it still needs to collect information about variable usage, and some times, e.g. for
aFiat.register(schumacher) it is less permissive than other approaches.

3.4 LOOM

[1, 6, 8, 4] separate inheritance from subtypes and introduce matching; in [7] the subtype
relation is dropped in favour of matching. A version of matching types enriched with ideas
from virtual types is suggested in [22] whereby classes are parameterized in the LOOM style,
but can also explicitly refer to each other’s type parameters. Figure 5 describes cars and
drivers in LOOM.

Roughly, if a class extends a superclass, i.e. has more components but does not override
the types in the superclass, then the object type of the subclass matches (represented by <#)
the object type of the superclass

τ extends τ ′

C
 ObjectType τ <# ObjectType τ ′ ObjectType(<#)

9

class Car(MyDrType<#Driver)
instance variables

driver:#MyDrType,
instance methods

getDriver:#MyDrType
return driver

register(aDriver:#MyDrType):MyType
driver := aDriver.
return self

end Car

class Driver
instance methods

testDrive(aCar:#Car):#Car
. . . try out aCar
return aCar

end Driver

class RaceCar
inherits Car(MyDrType<#FastDriverType)
modifying register

instance variables
speedLimit:Number

instance methods
register(aDriver:#MyDrType):MyType

driver := aDriver
speedLimit :=

aDriver.getLicense * 10.
return self

end RaceCar

Figure 5: Cars and Drivers in LOOM

For example, the class FastDriver extends Driver, therefore the type FastDriverType
matches the type DriverType.

Covariant type redefinitions are supported through MyType, or through explicit type pa-
rameters to classes. MyType represents the type of the receiver. In inherited methods MyType
changes automatically to the type of the corresponding subclass. Thus, in figure 5, the method
register returns an object of the same type as the receiver; for a CarType receiver the result
will be a CarType, whereas for a RaceCarType receiver the result will be a RaceCarType.
The “extends” relation considers MyType as the same. Type parameters may be declared
and used in a class, and restricted in subclasses, for example MyDrType in class Car is used
to describe the type of the instance variable driver in the parameterized class Car, and is
further restricted to match FastDriver in class RaceCar.

No “matching” relation is defined for such parameterized types, as they are not proper
types. Parameterised types may be applied to type arguments, and form proper types. For
example, CarType(FastDriverTYpe) and CarType(DriverType) are proper types, whereas
RaceCarType(DriverType) is an illegal instantiation. Instantiations of parameterized types
are replaced by the type obtained by substituting the formal parameter by the actual type
parameter. Thus, CarType(FastDriverType) <#RaceCarType(FastDriverType) but it does
not hold that RaceCarType(FastDriverType) <#CarType(DriverType), nor does it hold that
CarType(FastDriverType) <#CarType(DriverType).

For a type τ , the object type #τ indicates the values of any type matching τ . Matching
is required for type checking calls of inherited methods. In the following rule, if the receiver
o has type γ, which matches ObjectType{m : τ} (i.e. an object type containing a method m
of type τ), then the message send o ⇐ m has type τ [γ/MyType].

C
 γ <# ObjectType{m : τ}, C, E
 o : γ

C, E
 o ⇐ m : τ [γ/MyType]

The types of the LOOM variables in figure 4 are: schumacher : #FastDriverType,
john : #DriverType, noddy : DriverType, aFiat : #CarType(#DriverType), twingo :

10

CarType(#DriverType) and lotus : #RaceCarType(#FastDriverType). The assignment
aFiat = lotus is illegal, because, as we said earlier, RaceCarType(FastDriverType) does
not match CarType(DriverType). The assignment aFiat.driver=schumacher and the ex-
pression aFiat.register(schumacher) are type incorrect for the same reason. Note that in
the examples from figure 4 the methods from class RaceCar(MyDrType) are never called, when
the receiver is of type #CarType(DriverType). This should not be a surprise: such a receiver
would never at run time be an object of type RaceCarType(FastDriverType). This is so,
again because it does not hold that RaceCarType(FastDriverType)<# CarType(DriverType)

The method testDrive in Driver accepts any argument that matches Car, and returns
#Car, however the dependence of the result type on the argument type is not expressed.
Trying to express that dependence by introducing a type parameter to Driver would over-
shoot the target: namely, one would need to distinguish between DriverType(#CarType) and
DriverType(#RaceCarType) and it would be impossible to construct one object which would
be able to testDrive both RaceCars and normal Cars.

3.5 Multimethods and λ&

Multimethods are supported in CLOS and Rosette [21, 20], and formally studied in the λ&-
calculus in [13, 11]. In figure 6 we outline the drivers example in the multimethods style of
CLOS – the λ& calculus is not imperative, and would look distinctly different.

Dynamically overloaded methods have an overloaded type1 formed by putting together the
types of the different branches, e.g. {U1 → V1, . . . , Un → Vn}. The type of a message expression
is evaluated by selecting the best approximating branch from the overloaded type according
to the actual parameter types.

An overloaded type {U1 → V1, . . . , Un → Vn} is well formed iff Ui ≤ Uj =⇒ Vi ≤ Vj,
i.e. if the argument type of the first method is a subtype of that of the second method then
the return type of the first must be a subtype of that of the second. In fig. 6 the multimethod
register has type { Car× Driver → Car, RaceCar× FastDriver→ RaceCar }. The pa-
rameter types of the second branch, RaceCar× FastDriver, are subtypes of the parameter
types of the first branch, Car× Driver, and the return type of the second branch, RaceCar,
is a subtype of the return type of the first branch, Car.

On the other hand, contravariant type redefinitions define the subtype relationship for the
parameter types which do not take part in the branch selection. That is, for the parameters
which do not take part in dynamic method binding, for two bodies belonging to the same
method identifier, if the parameter types of the first are a supertypes of the second, then the
return type of the first has to be a subtype of the second.

U2 ≤ U1, V1 ≤ V2
U1 → V1 ≤ U2 → V2

∀i ∈ I, ∃j ∈ J U′j → V′j ≤ U′′i → V′′i
{U′j → V′j}j∈J ≤ {U′′i → V′′i}i∈I

The multi-method approach as in [10] does not support closed types, therefore in figure
4 we do not consider the expressions which mention twingo and noddy. Furthermore, [10]
is a functional calculus (although in [12, 14] imperative versions are suggested), therefore in
figure 4 we do not consider assignment expressions either.

1Notice that the term “overloading” is used here in a rather unusual sense to describe dynamic method
binding, as opposed to the static binding method binding which overloading means for C++.

11

class Car includes
driver:Driver
getDriver:Driver is

return driver
end Car

class RaceCar inherits Car includes
driver:FastDriver
speedLimit:Number
getDriver:FastDriver is

return driver
end RaceCar

class Driver
...
...

end Driver

method register(receiver:Car,
aDriver:Driver):Car is

receiver.driver := aDriver.
return receiver

method register(receiver:RaceCar,
aDriver:FastDriver):RaceCar is

receiver.driver := aDriver.
receiver.speedLimit := aDriver.getLicense*10.
return receiver

method testDrive(receiver:Driver,
aCar:Car):Car is

. . . try out aCar
return aCar

method testDrive(receiver:Driver,
aRaceCar:RaceCar):RaceCar is

. . . try out aRaceCar . . .
return aRaceCar

Figure 6: Cars and Drivers in Multimethods

The method call aFiat.register(john) will result into calling the branch with types
RaceCar× FastDriver→ RaceCar if aFiat is a RaceCar and john is a FastDriver, other-
wise it will call the branch with type Car× Driver→ Car (i.e.

√
C,RC). For the expression

lotus.register(john) multimethods are the most permissive; the register method from
Car would be bound.

The method testDrive and the dependence of the result type on the argument can be
expressed through multimethods. Still, there are two disadvantages: Firstly, we use two
identical method bodies in order to express the signature of the method. Secondly, we shall
need to add as many further method bodies as there will be subclasses of Car.

3.6 Beta

Beta [24] allows covariant type redefinition by means of virtual types. Virtual types can be
understood as symbolic names for types, which may be covariantly overridden in subclasses.
Virtual types play a similar role to C++ virtual methods in that they can be redefined in
subclasses. For the car example in Figure 7, MyDrType is a virtual type which is redefined in
the subclass RaceCar.

The question whether the assignment aFiat.driver = john should be permitted is tackled
in an “optimistic” way, i.e. it is considered type correct, but run-time checks are inserted
to ensure that no racing car will be assigned a non licensed driver. Virtual types were
incorporated into Java [26]. In [27] a stricter, statically typed version is suggested whereby
each runtime check is considered a type error.

Figure 7 outlines the drivers example in Beta. Closed types do not exist in Beta, thus all
expressions involving noddy or twingo are impossible in Beta. Also, aFiat.driver = john
and aFiat.register = john are considered type correct and will be checked at run-time.

The result type of the method testDrive does not depend on the argument type, and

12

class Car
typedef MyDrType as Driver
instance variables

driver:MyDrType
instance methods

getDriver:MyDrType
return driver

register(aDriver:MyDrType):MyType
driver := aDriver

class RaceCar inherits Car
typedef MyDrType as FastDriver
instance variables

speedLimit:Number
instance methods

register(aDriver:MyDrType):MyType
driver := aDriver
speedLimit :=

aDriver.getLicense * 10.

class Driver
instance methods

testDrive(aCar:Car):Car
. . . try out aCar
return aCar

register(aDriver:MyDrType):MyType
driver := aDriver.

Figure 7: Cars and Drivers in Beta

therefore noddy.testDrive(lotus).speedLimit is a type error. We could have tried to
express the dependence by introducing a virtual type into the class Driver. However, as for
LOOM, this would not solve the problem, since it would not be possible for objects of the
same class to testDrive ordinary Cars and RaceCars.

3.7 Comparison

From the previous discussion and from the table in figure 4, we can see that multi-methods are
in some cases the most permissive. However, they require the more expensive multi-method
dispatch run-time mechanism. C++ has a sound type system which uses static overloading in
lieu of covariant overriding, and thus fails so express the intention that a racing car requires
a more special kind of driver than that of a general car. LOOM uses explicit type parameters
to allow covariant type redefinitions.

Permco seems to be nearest to the Beta approach, especially if the [27] idea is followed
whereby the run-time checks are replaced by type errors. In that sense, one of the contri-
butions of this paper would be a demonstration of the soundness of their approach. With
the reservation, that Permco does not support explicit names for the virtual types of other
classes, and thus is more restricted than Beta.

On the other hand, Permco allows the dependence of result types on the arguments, and
so it can give types to functions to which most of the other approaches could not. Also,
by allowing several signatures to one method body, it can express the type of a method like
passenger in figure 10 in the appendix.

Permco adopts the closed world view, which is a disadvantage. However, the implications
of the introcduction of covariant overriding later in the software lifecycle, is, we believe of
comparable importance, especially for prototype development. There, we believe lies an
important advantage for Permco .

13

4 Permissive Component Overriding in terms of λ&,S

We use the calculus λ&,S to precisely describe the ideas of Permco , and to demonstrate its
soundness.

4.1 λ&,S Syntax

λ&,S is a first order language reflecting only the most essential features of an object oriented
language; it is object based and its syntax is similar to that of λ& in [13]. However, λ&,S

models single method dispatch, as opposed to multi-method dispatch from [13]. Furthermore,
the λ&,S and λ& type systems are different. In λ& covariant redefinition of argument types
is required for those arguments whose classes are taken into account for method selection
(multimethods, binary methods) and contravariant redefinition of argument types is required
for those arguments whose types are not taken into account for method selection. On the
other hand, in λ&,S the classes of arguments are not taken into account for method selection,
and there is no restriction to the redefinition of argument types.

Obj ::= self
| 〈 Number〉Num
| 〈 Label=Obj (, Label=Obj)∗ 〉Class

Expr ::= Obj
| Param
| FROM Obj SEL Label
| IN Obj UPD Label WITH Expr
| Methods=�Expr .(Expr)∗

Method ::= µselfClass(.λ Param)∗. Expr
Methods ::= Method

| +
| Methods & Method

Class, Label, Param ::= Identifier
Number ::= 1 | 2 | 3 ...

λ&,S is a very basic language. It does not support method parameters, recursion, or the
nil object. We claim that the language it represents is sufficient for the demonstration of the
concept and the soundness, since the omitted features, although important from the program-
ming view point, have usually not exposed difficult typing issues for first order programming
languages. λ&,S expressions can be objects, update, select expressions, or message sends.

There exist predefined number objects, e.g. 〈4〉Num. Objects of user defined classes are
labelled tuples of further objects, and they carry their class as part of their denotation. For
example, 〈driver = john〉Car is an object of class Car. self, the name of the receiver object,
and any parameters (Param) may appear in method bodies.

The expressions FROM...SEL... and IN...UPD...WITH are used to select, or to update a label
of an object. Notice that the above syntax ensures that label update and selection may only
be applied to the receiver self, of a method.

A message send, m=�e0.e1...en, consists of one or more method bodies (i.e. m) being sent
to a receiver (i.e. e0), and possibly a number of argument expressions (i.e. e1, ...en). For
example, register=�lotus.schumacher is a message send. + is a predefined method with
the expected behaviour.

14

µselfC.λy1...λyn.e is a method defined in class C, with arguments y1, ...yn, and method
body e. We use µ in order to distinguish the receiver from other parameters, because we
model single dispatch. Inheritance is described through grouping several methods using the
& operator. For example, getDriver = µselfCar.FROM self SEL driver is a non-overloaded
method, while register is a dynamically overloaded method, whereby

register = µselfCar.λaDriver. IN self UPD driver WITH aDriver
&

µselfRaceCar.λaDriver. IN (IN self UPD driver WITH aDriver)
UPD speedLimit WITH ((getLicense=�aDriver)∗10)

4.2 Types and Environment

Expression types, ExpType , describe the type of expressions:

ExpType ::= <TypeError>
| SingleExpType (∨ SingleExpType)*

SingleExpType ::= <ClassName> | [ClassName]
ClassName ::= identifier

We call <...> an open type, and [...] a closed type. For a class C, <C> denotes the set of
objects belonging to any of the subclasses of C (and also to C, since we consider the subclass
relationship, denoted by �, to be reflexive); whereas [C] denotes only the set of objects that
belong to class C, but not to any of its subclasses. As we discussed already in section 2.1,
this distinction between open and closed types can be found in some popular object oriented
programming languages.

Union types describe expressions which may evaluate to objects which belong to any of
the constituent single types. <TypeError> indicates that at run time the exception object
does not understand message may be raised.

Type variables may appear in the result type of a signature. The result type of a signature
is defined by ExtExpType :

ExtExpType ::= ExtSingleExpType (∨ ExtSingleExpType)*
ExtSingleExpType ::= SingleExpType | TypeVariable
TypeVariable ::= Identifier

Method types are nonempty sets of signatures. Signatures are:

Signature ::= � Quantifier∗ Params −→ ExtExpType �
Quantifier ::= VarIdent ≤ ExpType .
Params ::= Param (× Param)∗

Param ::= VarName
VarIdent,VarName ::= Identifier

15

In our example, the type of register is: � X ≤ [Car].Y ≤ <Driver>.X × Y −→ X �, � X ≤
<RaceCar>.Y ≤ <FastDriver>.X × Y −→ X �.

An environment Γ contains the types of variables (i.e. Γx), bounds of type variables
(i.e. ΓX), type definitions for the labels of each class (i.e. ΓC,L), and the subclass hierarchy.

Γ ::= ε empty
| Γ′, x : T x does not appear in Γ′

T extended expression type
| Γ′, X ≤ T X type variable, not appearing in Γ′

T expression type
| Γ′, C = 〈〈L1 : T1, ..., Lm : Tm〉〉 Ti expression type, i ∈ {1, . . . , m}, C not defined in Γ′

| Γ′, C INH C′ C′ defined in Γ′, C not defined in Γ′

REDEF 〈〈L1 : T1, ..., Lm : Tm〉〉
EXT 〈〈Lm+1 : Tm+1, . . . , Ln : Tn〉〉 Ti expression type, i ∈ {1, . . . , n}

L1, . . . , Lm labels, appearing in the def. of C′

Lm+1, . . . , Ln labels, not appearing in the def. of C′

| ResultType = T T extended object type

For the cars and drivers example the following information would be stored in the environment:
Γ1 = Car = 〈〈driver : <Driver>〉〉,

RaceCar INH Car REDEF〈〈driver : <FastDriver>〉〉 EXT 〈〈speedLimit : <Number>〉〉,
Driver = 〈〈. . .〉〉,
FastDriver INH Driver REDEF 〈〈〉〉 EXT 〈〈license : <Num>〉〉.

4.3 Operational Semantics

The term rewrite relationship −−−�Γ describes the evaluation of λ&,S terms:

[Sel]
FROM 〈..., lab = o, ...〉C SEL lab−−−�Γ o

[Upd]
IN 〈.., lab = o1, ..〉C UPD lab WITH o2−−−�Γ〈.., lab = o2, ..〉C

[Con]
ei ground for i < k
ek−−−�Γe′k
m=�e1...ek...en−−−�Γm=�e1...e′k...en

[MethSel]

〈. . .〉C, o1, . . . , on are ground terms
mk = µselfCk, for k ∈ 1, ...m
Ci = MC(C1, . . . , Cm, C), Ci �= ⊥
(m1&...&mm)=�〈. . .〉C.o1...on−−−�Γmi=�〈. . .〉C.o1...on

[MethAppl]
oi ground for all i ≤ n
µselfC.λx1....λxn.e=�o0...on−−−�Γe[self/o0...xn/on]

16

For the following examples, assume that schumacher = 〈license = 40〉FastDriver , and
lotus = 〈driver = schumacher, speedLimit= 330〉RaceCar.

The [Sel]-rule describes the selection of a subcomponent of an object. For example:
FROM lotus SEL driver−−−�Γschumacher. The [Upd]-rule describes updating a component.
For example: IN schumacher UPD license WITH 100−−−�Γ〈license = 100〉FastDriver.

When considering a message send, the receiver and then the arguments are evaluated from
left to right; cf. the rule [Con].

When the receiver and arguments are ground expressions, then the method whose receiver
class is theminimal superclass (denoted byMC(C1, . . . , Cm, C)) of the class of the receiver object
is selected (cf the rule [MSel]). Thus:

register=�lotus.schumacher −−−�Γ µselfRaceCar....=�lotus.schumacher
i.e. the RaceCar branch of the method register is selected, because the minimal superclass
of the receiver, RaceCar, in {Car, RaceCar} is RaceCar.

Once method selection has been resolved, application of a single method causes self to
be substituted by the receiver object, and all parameters x1, ...xn to be substituted by the
corresponding actual parameters in the method body, cf rule [MethApp]. Term substitution
has the usual definition.

For example,
register=�〈...〉Car.〈...〉Driver −−−�Γ [MethSel]
µselfCar.λaDriver.IN self UPD driver WITH aDriver=�〈...〉Car.〈...〉Driver −−−�Γ [MethAppl]
IN self UPD driver WITH aDriver[〈...〉Car/self, 〈...〉Driver/aDriver] = text.subst
IN 〈...〉Car UPD driver WITH 〈...〉Driver
Note that the −−−�Γ-relationship is a one to one relation, and therefore, the evaluation of

λ&,S-terms is deterministic (as is the case in practical programming languages).

4.4 Type Rules

The following rules determine subtypes, where� stands for subclass and ≤ stands for subtype.
If Γ=Γ′, C INH C’ REDEF. . . EXT. . ., Γ′′, then Γ
 C � C′. The subtype relationship is based
on the suclass relationship:

[SubCl-1]
Γ
 C1 � C2
Γ
 <C1> ≤ <C2>

[TypErr]
Γ
 T ≤ <TypeError>

[SubCl-2]
Γ
 C1 � C2
Γ
 [C1] ≤ <C2>

[Trans]
Γ
 T1 ≤ T2
Γ, X ≤ T1
 X ≤ T2

[UnTyp]
for all i ∈ {1, . . . , n} exists j ∈ {1, . . . , m} with Γ
 Ti ≤ Sj
Γ
 T1 ∨ . . . ∨ Tn ≤ S1 ∨ . . . ∨ Sm

We can prove that the ≤ relationship is a partial order. All rules enjoy the subformula
property, no judgement matches the consequence of more than one rule, and the requirements
of each rule are simpler than the consequence; therefore, the ≤ relationship is deterministically
computable.

In our system, covariant redefinition of the types for subclass labels is allowed. This means
that the type of a subclass label can be a subtype of that of the corresponding label in the
superclass. This requirement is expressed in the following definition:

17

Definition 1 An environment Γ is well formed, iff for any classes C and C′, Γ
 C =
〈〈. . . , L : T, . . .〉〉, Γ
 C′ = 〈〈. . . , L : T′, . . .〉〉, Γ
 C � C′ implies that Γ
 T ≤ T′.

From now, we implicitly expect environments to be well formed.
Figure 8 describes the types of λ&,S expressions. The first three rules are rather straight-

forward.
The fourth rule, [Update] deals with component updating when covariant redefinition

of instance variables is allowed in subclasses. It allows updating label L in an object o
by expression e′, provided that T′, the type of e′, is a subtype of the type of the label L
in all subclasses of the class of o. This rule makes the expression aFiat.driver := john
type incorrect, because for [RaceCar], a subtype of <Car>, the type of the label driver is
<FastDriver>, which is not a supertype of john’s type.

[Var] Γ
 x : Γx
[Object]

L1, ..., Ln are all labels of C
Γ
 ei : Ti
Γ
 Ti ≤ ΓC,Li
Γ
 〈L1 = e1, ...Ln = en〉C : [C]

[Select]
Γ
 o : <C> or Γ
 o : [C]
Γ
 FROM o SEL L : ΓC,L

[Update]

Γ
 e′ : T′

Γ
 o : T
Γ
 [C] ≤ T implies Γ
 T′ ≤ ΓC,L

Γ
 IN o UPD L WITH e′ : T

[Abstr]
Γ
 T0 ≤ <C>
Γ, Y0 ≤ T0, .., Yn ≤ Tn, self : Y0, y1 : Y1, .., yn : Yn
 exp : R
Γ
 µselfC.λy1...λyn.exp :: � Y0 ≤ T0. . . . Yn ≤ Tn.Y0 × . . . × Yn −→ R �

[Over]
Γ
 µselfCi.λy1...λyn.expi :: sigi,j j ∈ {1, . . . , mi}
Si = {sigi,1, ...sigi,mi} complete signature set for Ci, i ∈ {1, . . . , n}
Γ
 µselfC1.λy1...λyn.exp1& . . .&µselfCn.λy1...λyn.expn : ∨C1,...,CnSi

[Union]
Γ
 ei : Ti,1 ∨ . . . ∨ Ti,ni i ∈ {0, . . . , n}
Γ, y0 : T0,j0 , . . . , yn : Tn,jn
 m=�y0.yn : Tj0,...,jn
Γ
 m=�e0.e1 . . . en : ∨ji∈{1,...,ni}Tj0,...,jn

[MessSend]

Ti single type i ∈ {0, . . . , n}
Γ
 ei : Ti i ∈ {0, . . . , n}
Γ
 m : S
Γ
 m=�e0 . . .en : A(S, T0, . . . , Tn)

Figure 8: Type Rules for λ&,S

The remaining rules describe types of methods and message sends. They make use of the
terms complete signature set, ∨C1,...,CnSi, and the function A(S, T0, . . . , Tn), which are defined
in [28]; here we give an outline.

Rules [Abstr] and [Over] describe the type of methods. A signature of a single method
body, µselfC ...exp, given in class C, expressed by Γ
 µselfC...exp :: sig, is calculated in

18

the usual manner, [Abstr]. A single method body may have more than one signatures.2 These
signatures are collected into a complete signature set for the class where the method body
appears. For example, for classes C1, C2, C3 with C1 � C2 � C3, and a method defined
in class C2 the signature set {X ≤ [C2].....} is not complete, whereaS the set {X ≤ <C2>....}
is. The type of a dynamically overloaded method with method bodies in classes C1, ... Cn
is the consistent union ∨C1,...,CnSi, which is the union of all signatures from Si, except for
signatures whose receiver is a subtype of the receiver of another method body’s receiver class.
In Appendix 6 we further clarify the concepts of complete signature sets and consistent union.

The type of message expressions ([MessSend]) is A(S, T0, . . . , Tn), which, given a set of
signatures S and types T0, . . . , Tn, is determined by:

• R(S, T0, . . . , Tn), the relevant signature set, are those signatures of S whose i-th element is
in the subtype relationship with Ti. For example� X ≤ <Car>.Y ≤ <FastDriver>.X × Y −→ X �
and� X ≤ <RaceCar>.Y ≤ <Driver>.X × Y −→ X � are relevant signatures for <RaceCar>
and <Driver>.

•M(S, T0, . . . , Tn), theminimal signature set, contains those signatures fromR(S, T0, . . . , Tn)
whichmatch T0, . . . , Tn best. For example� X ≤ <RaceCar>.Y ≤ <FastDriver>.X× Y −→ X �
matches <RaceCar>, <FastDriver> better than� X ≤ <Car>.Y ≤ <Driver>.X× Y −→ X �.

• IfM(S, T0, . . . , Tn) does not cover S and T0, . . . , Tn, thenA(S, T0, . . . , Tn) = <TypeError>.
A signature set does not cover types T0, . . . , Tn iff there exists a T′0, a subtype of T0, and a sig-
nature in the set whose receiver type is T′0, and none of the signatures in the set has receiver T′o,
and all argument types are supertypes of T1, . . . , Tn. For example, the set {� X ≤ <Car>.Y ≤
<Driver>.X× Y −→ X �, � X ≤ <RaceCar>.Y ≤ <FastDriver>.X× Y −→ X �} does not
cover <Car>, <Driver>, because for <RaceCar> the argument type <FastDriver> is not
a supertype of <Driver>. Intuitively this expresses that if the receiver expression reduces
to a value of type <RaceCar>, the argument may still be <Driver>, which is not covered
by the argument type of the signature.

• If M(S, T0, . . . , Tn) covers S and T0, . . . , Tn, then A(S, T0, . . . , Tn) returns the applica-
tion of the signatures in M(S, T0, . . . , Tn) to the types T0, . . . , Tn. For example {� X ≤
<RaceCar>.Y ≤ <Driver>.X × Y −→ Y �} covers [RaceCar], [FastDriver].
Therefore, A(S, [RaceCar], [FastDriver]) is [FastDriver].

4.4.1 Concepts required for the type rules

The concepts required for the type rules are mostly straightforward. Ideas similar to applicable
signatures, minimal signatures, and covering signature sets can be found in widely spread
programming languages, such aS C++ or Java.

Less common are the notions of complete signature set and consistent union. The re-
quirement for these two concepts stems from the fact that in Permco we allow more than
one signature for one method body, and that signatures may have a receiver which is a sub-

2For example, the method body m1 defined below has signatures � X ≤ <A>.Y ≤ .X× Y −→ <Num> �
and � X ≤ <A>.Y ≤ <C>.X× Y −→ <Boolean> �.

class A class B class C

methods methods methods
m1(y) m2 m2

return y.m2 return 15 return true

19

class of, and not the same as the class containing the method body. These possibilities make
Permco more flexible, and allows more expressions to be type correct.

This extra flexibility was important to us, because our original aim was to allow as many
expressions to be type correct as possible, especially as we developed Permco with Smalltalk
programs in mind, which have been constructed without type checkers and thus tend to have
rather peculiar types – if any.

On the other hand, we could have chosen to allow less flexibility and thus obtain a simpler
type system. Good programming style probably would suggest that this extra flexibility is not
that desirable: it makes sense to require only one signature per body, and that this signature
should have the class of the definition as its receiver. We believe, that under these restrictions
the straightforwardly calculated signature of one body would form a complete signature set,
and the union of signatures of overloaded method bodies would be consistent. Thus, these two
concepts would not be required, the [Union] type rule could be simpliified to the set theoretic
union, and the definition of covering signature set would also be simplified.

Thus, we believe that it is possible to design a slightly stricter and simpler version of
Permco . With the increased interest in virtual types for Java [27], this avenue of research is
becoming more appealing.

4.5 Soundness

We demonstrate the soundness of our approach by proving the following subject reduction
theorem. Note that the theorem states that any well formed non ground expression will be
rewritten, and thus it excludes the possibility of the runtime error method not understood.
It also excludes null access exceptions, because we have not modelled nil.
Theorem
If e is a closed, non-ground expression, T is an object type, Γ
 e : T, T �= <TypeError>,

then there exists an expression e′ and a type T′, such that e−−−�Γe′, Γ
 e′ : T′ and Γ
 T′ ≤ T.
Proof The full proof can be found in [28]. The following support lemmas are used, for

a set of signatures S, and types T0, . . . , Tn, T′0, . . . , T′n:
• Γ
 T′i ≤ Ti, i ∈ {0, . . . , n} =⇒ R(S, T′0, . . . , T′n) ⊆ R(S, T0, . . . , Tn)
• Γ
 T′i ≤ Ti, i ∈ {0, . . . , n}:
M(S, T0, . . . , Tn) covers T0, . . . , Tn and S =⇒ M(S, T′0, . . . , T′n) ⊆ M(S, T0, . . . , Tn)
• Γ
 T′i ≤ Ti, i ∈ {0, . . . , n}:
M(S, T0, . . . , Tn) covers T0, . . . , Tn and S =⇒ M(S, T′0, . . . , T′n) covers T′0, . . . , T′n and S
• Γ
 T′i ≤ Ti, i ∈ {0, . . . , n}, and if signature sig is relevant to T0, . . . , Tn:
Γ
 sig ◦ T′0, . . . , T′n ≤ sig ◦ T0, . . . , Tn
• For closed types T0, . . . , Tn, T0 = [C], an overloaded method meth, where

meth = µselfC1.e1&...&µselfCk.ek, Γ
 µselfCj.ej : Sj, j ∈ {1, . . . , n}, Γ
 method : S,
MC(C1, . . . , Cn, C) = Ci. If M(S, T0, . . . , Tn) covers T0, . . . , Tn and S, then:

M(S, T0, . . . , Tn) = M(Si, T0, . . . , Tn) and M(Si, T0, . . . , Tn) covers T0, . . . , Tn and S
• Γ, x : X, X ≤ ΓX
 exp : R, Γ
 exp′ : T, Γ
 T ≤ ΓX, then there exists a type T′ so that:
Γ
 exp[o′/x] : T′ and Γ
 B(T′) ≤ B(R[T/X])
Using these results, the theorem can be proven by structural induction on the deduction

Γ
 e : T.

20

5 Conclusions

Our approach is permissive in that it aims to allow the programmer as much label/method
overriding as possible, and in that it aims to consider type correct as many programs as
possible. It does this without application of data flow analysis. Thus it should be suitable for
type checking legacy software, and should provide an appropriate alternative to the current
suggestions for type checking Eiffel [15, 25].

However, restrictions on separate compilation need to be imposed, i.e. subclasses defined
in separately compiled modules and redefining the types of inherited methods or labels in
a non-contravariant manner would invalidate the types of previously type checked modules
importing the superclass.

On the other hand, when non-contravariant redefinitions are introduced fairly late in the
software development cycle, our permissive approach only requires recompilation of importing
modules, whereas other approaches require reprogramming of importing modules. The possi-
blility to express dependence on the type of an argument gives Permco additional expressive
power.

Further work includes developing parameterized types for the system. Also, one could
consider incorporating the ideas from [22, 27] whereby the virtual types or type arguments
may be referred to from outside their class.

Finally, we would like to develop a slightly less powerful, but simplified version of Permco

along the lines described in section 4.4.1.

6 Acknowledgements

We are grateful to Giuseppe Castagna and the anonymous FOOL3 referees for useful com-
ments on a previous version of this paper. Stuart Kent and Peter Burton made many con-
structive suggestions for the clarification of the issues discussed.

References

[1] Martin Abadi and Luca Cardelli. On subtyping and matching. ACM Transactions on Program-
ming Languages and Systems, 18(4):401–423, 1996.

[2] Francois Bancilhon and Claude Delobel. Implementing an Object-Oriented Database System: The
story of O2. Morgan Kafmann, 1992.

[3] Kim Bruce. Typing in Object Oriented Languages: Achieving Expressibility and Safety. Technical
report, Williams College, 1996.

[4] Kim Bruce, Luca Cardelli, Giuseppe Castagna, The Hopkins Objects Group, Gary T. Leavens,
and Benjamin Pierce. On Binary Methods. Theory and Practice of Object-oriented Systems,
pages 221–242, 1995.

[5] Kim Bruce, Jon Crabtree, Thomas Murtagh, Robert van Gent, Allyn Dimock, and Robert Muller.
Safe and decidable type checking in an object oriented language. In Proceedings of OOPSLA,
pages 29–46, 1993.

[6] Kim Bruce, Leaf Petersen, and Adrian Fiech. Subtyping is not a Good Match for Object-Oriented
Languages. In ECOOP’97. Springer, June 1997.

[7] Kim Bruce, Angela Schuett, and Robert van Gent. PolyTOIL: A Type-safe Polymorphic Object
Oriented Language. In Proceedings of ECOOP 95, pages 27–51, 1995.

21

[8] Luca Cardelli. A semantics of multiple inheritance. Information and Computation, 76(2-3):138–
164, February 1988.

[9] Giuseppe Castagna. Covariance and Contravariance: Conflict Without a Cause. ACM Transac-
tions on Programming Languages and Systems, 17(3):431–447, March 1995.

[10] Giuseppe Castagna. A meta-language for typed object-oriented languages. Theoretical Computer
Science, 151(2):297–352, November 1995.

[11] Giuseppe Castagna. Object-Oriented Programming: A Unified Foundation. Progress in Theoret-
ical Computer Science. Birkäuser, Boston, 1996.

[12] Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A Calculus for Overloaded Functions
with Subtyping. Information and Computation, 117(2):115–135, February 1995.

[13] Guiseppe Castagna and John Boyland. Parasitic methods: an implementation of multi-methods
in Java. In OOPSLA, 1997.

[14] William R. Cook. A Proposal for Making Eiffel Type-safe. The Computer Journal, 32(4):305–
311693, 1989.

[15] William R. Cook and Jens Palsberg. A Denotational Semantics of Inheritance and its Correctness.
In Proceedings of OOPSLA, pages 433–443, 1989.

[16] Sophia Drossopoulou and Stephan Karathanos. Static typing for Dynamic Binding. In BCS-FACS
Special Christmas Meeting on Object Orientation, 1993.

[17] Sophia Drossopoulou and Dan Yang. Permissive types, July 1996. FOOL 3, New Brunswick, New
Jersey.

[18] Sophia Drossopoulou, Dan Yang, and Stephan Karathanos. Static Types for Smalltalk. In
Steven Goldsack and Stuart Kent, editors, Formal Methods and Object Technology, pages 262–
286. Springer Verlag, 1996.

[19] Carnot Research Group. Rosette reference manual. at
http://www.mcc.com/projects/carnot/resette/.

[20] S.K. Keene. Object-Oriented Programming in COMMON LISP: A Programming Guide to CLOS.
Addison Wesley, 1989.

[21] Philip Wadler Kim Bruce, Martin Odersky. A Statically Safe Alternative to Virtual Types. In
FOOL5, San Diego, 1998.

[22] Ole L. Madsen. Open Issues in Object Oriented Programming - a Scadinavian Perspective.
Software Practice and Experience, 25, December 1995.

[23] Ole Lehrman Madsen, Birger Moeller-Pedersen, and Kristen Nygaard. Object Oriented Program-
ming in the Beta Programming Language. Object-Oriented Programming. Addison Wesley, 1993.

[24] Bertrand Meyer. Static Typing and Other Mysteries of Life. In Keynote Lecture, OOPSLA 95,
1995.

[25] Kresten K. Thorup. Genericity in Java with Virtual Types. In ECOOP, 1997.

[26] Mads Torgersen. Virtual Types are Statically Safe. In FOOL5, San Diego, 1998.

[27] Dan Yang. Type Checking Smalltalk. PhD thesis, Imperial College of Science, Technology and
Medicine, University of London, 1997. Available at: http://www.doc.ic.ac.uk/ yd/thesis.

22

Appendix Notes on Complete Signature Set and Consistent Union

In section 4.4 we used the concepts of complete signature set and consistent union for the
type of message expressions, without a complete definition. In this appendix we give the
definitions and motivation for these concepts. More can be found in [28].

Appendix.1 Complete Signature Set

For a method defined in class C, individual signatures are inferred according to the [Abstr]-
rule. The type of a method is a set of such signatures, which has to be complete. Such a set
is complete iff for any subclass of C, there exists at least one signature in the set applicable to
that class. Any incomplete set of signatures can be made complete by adding the signature
� X ≤ <C>.. . . −→ <TypeError> �.

The example in figure 9 demonstrates the need for the requirement of complete signature
sets. The issue is the proper type for the method passenger in class Van. From [Abstr]

class Car
instance methods

passenger
‘ � X ≤ <Car>.X −→ <Num> �’
return 4

end Car

class Van inherits Car
instance methods

passenger
‘ � X ≤ <Van>.X −→ <TypeError> �,
� X ≤ <SmallVan>.X −→ <Num> �’
return self.extraSeat

end Van

class SmallVan inherits Van
instance methods

extraSeat
‘ � X ≤ <SmallVan>.X −→ <Num> �’
return 2

end SmallVan

Figure 9: Example of incomplete signature sets

we get the signature: � X ≤ <SmallVan>.X −→ <Num> �. However, the set consist-
ing of this signature alone is not complete, because the signature is not applicable to type
<Van>. The complete signature set is {� X ≤ <Van>.X −→ <TypeError> �,� X ≤
<SmallVan>.X −→ <Num> �}.

If we allowed the incomplete signature set {� X ≤ <SmallVan>.X −→ <Num> �} to be
the type of passenger in Van, and combined it with the signature� X ≤ [Car].X −→ <Num> �
of passenger in Car, then the overloaded method passenger = µselfCar . . . & µselfVan . . .
would have type {� X ≤ [Car].X −→ <Num> �,� X ≤ <SmallVan>.X −→ <Num> �}, and
the type system would consider aVan.passenger to have type <Num> although execution of
the expression (new Van).passenger creates a runtime exception.

Appendix.2 Consistent Union

When we put together the signatures of different branches of a method defined in classes C1,
... Cn, we use the consistent union ∨C1,...,CnSi. A signature of a method body defined in class

23

class Car
instance methods

called
‘ � X ≤ <Car>.X −→ <TypeError> �,
� X ≤ <RentVan>.X −→ <Num> �’
return self.name

end Car

class Van inherits Car
instance methods

called
‘ � X ≤ <Van>.X −→ <TypeError> �,
� X ≤ <SmallVan>.X −→ <Char> �’
return self.band

end Van

class SmallVan inherits Van
instance methods

band
‘ � X ≤ <SmallVan>.X −→ <Char> �’
return ’f’

end SmallVan

class RentVan inherits SmallVan
instance methods

name
‘ � X ≤ <RentVan>.X −→ <Num> �’
return 4

end SmallVan

Figure 10: Example of inconsistent signature sets

Ci, with a receiver type T is not included into the consistent union, if T is a subtype of Cj, ie
of one of the classes where another body of the method appears.

The example in figure 10 demonstrates how inconsistent signature unions may cause prob-
lems. The method called has a definition in class Car, and another definition in class
Van, i.e. called = µselfCar . . .&µselfVan The first body, i.e. µselfCar . . ., has type
{� X ≤ <Car>.X −→ <TypeError> �,� X ≤ <RentVan>.X −→ <Num> �}, which is com-
plete. The second body, i.e. µselfCar . . ., has type {� X ≤ <Van>.X −→ <TypeError> �,
� X ≤ <SmallVan>.X −→ <Char> �}, which is also a complete signature set. The set
{� X ≤ <Car>.X −→ <TypeError> �, � X ≤ <RentVan>.X −→ <Num> �, � X ≤
<SmallVan>.X −→ <Char> �} is the “straightforward union” of these types; the consistent
union is {� X ≤ <Car>.X −→ <TypeError> �, � X ≤ <SmallVan>.X −→ <Char> �},
which is a subset of the straightforward union. The second signature of called in class Van,
� X ≤ <RentVan>.X −→ <Num> � has the receiver type <RentVan>, which corresponds to
a subclass of the class Van where the method called is redefined; therefore this signature is
not included in the consistent union.

If, instead, we considered the type of called to be the straightforward union of the sig-
nature sets, then the expression (new RentVan).called would have type <Num>. However,
evaluation of this expression will return ′f′ which has type [Char].

24

