
What is Java Binary Compatibility?

Sophia Drossopoulou, David Wragg, Susan Eisenbach

Department of Computing

Imperial College

sd{dpw,se}@doc.ac.ac.uk

Abstract

Separate compilation allows the decomposition of pro-
grams into units that may be compiled separately, and
linked into an executable. Traditionally, separate com-
pilation was equivalent to the compilation of all units
together, and modi�cation and re-compilation of one
unit required re-compilation of all importing units.

Java suggests a more �exible framework, in which
the linker checks the integrity of the binaries to be com-
bined. Certain source code modi�cations, such as addi-
tion of methods to classes, are de�ned as binary compat-
ible. The language description guarantees that binaries
of types (i.e. classes or interfaces) modi�ed in binary
compatible ways may be re-compiled and linked with
the binaries of types that imported and were compiled
using the earlier versions of the modi�ed types.

However, this is not always the case: some of the
changes considered by Java as binary compatible do
not guarantee successful linking and execution. In this
paper we study the concepts around binary compatibil-
ity. We suggest a formalization of the requirement of
safe linking and execution without re-compilation, in-
vestigate alternatives, demonstrate several of its prop-
erties, and propose a more restricted de�nition of binary
compatible changes. Finally, we prove for a substantial
subset of Java, that this restricted de�nition guarantees
error-free linking and execution.

1 Introduction

Module systems [19, 18], introduced in the seventies,
support the decomposition of large programs into small,
more manageable units (modules, classes, clusters, pack-
ages). Traditionally, separate compilation [3] allowed

these units to be compiled one at a time using only the
signature (i.e. type) information from imported units.
The object code of such separately compiled units would
be combined by a linker into an executable. If each unit
were compiled after any unit it imported, each unit com-
piled successfully, and all units were present, then link-
ing would be successful. The compiler had to check that
units respected imported units' signatures, whereas the
linker had to reconcile external references, and to check
the order of compilation, typically using time stamps in
the object code. Therefore, separate compilation was
equivalent to the compilation of all units together.

Because of the intended support for loading and exe-
cuting remotely produced code, Java has a di�erent ap-
proach to separate compilation and linking. As before,
classes may be compiled separately � even on di�er-
ent machines, and the compiler has to check that units
respect imported units' signatures. Also, if each unit
compiles successfully, and it is compiled after any unit
it imported, then linking will be successful. However,
the remit of the linker has been extended: Not only
does it have to resolve external references, it also has
to ensure that binaries are structurally correct (veri�-
cation), and that they respect the types of entities they
import from other binaries (resolution).

In the traditional approach, when the signature of
a unit is modi�ed and re-compiled, all importing units
have to be re-compiled as well. In Java however, re-
compilation of importing units cannot always be en-
forced. It is the task of the linker to ensure that the
binaries respect each others' exported signatures, inde-
pendently of the order of compilation. Certain source
code modi�cations, such as adding a method to a class,
are de�ned as binary compatible [8]. The Java language
description does not require the re-compilation of units
importing units which were modi�ed in binary compat-
ible ways, and claims that successful linking and execu-
tion of the altered program is guaranteed.

Not only do binary compatible changes not require
re-compilation of other classes, but such re-compilations

may not be possible: a binary compatible change to the
source code for one class may cause the source code of
other classes no longer to be type correct. Yet the guar-
antee of successful linking and execution still holds since
only the binaries are consulted during these steps. In
particular, it is possible to link successfully and ex-
ecute binaries corresponding to type-incorrect source
code. Separate compilation is no longer equivalent to
compilation of all units together.

This is a deliberate feature and constitutes a crucial
ingredient of the Java approach [11]. It allows the mod-
i�cation (usually through extension) of libraries, with-
out requiring re-compilation of software using these li-
braries.

Binary compatibility is a powerful but immature lan-
guage feature; although supported in previous forms by
some language implementations, Java is the �rst case we
know of where it is explicitly described in the language
de�nition. We feel that its exact meaning and proper-
ties are not fully understood. This is unfortunate, since
[5, 4] demonstrate that loopholes in the de�nition and
implementation of binary compatibility provide oppor-
tunities to break Java security.

The Java language speci�cation [10] devotes a whole
chapter to binary compatibility, giving examples, and
pointing out possible interplay of features. However,
it does not give an exact de�nition, and uses the term
binary compatibility in two senses. It lists the changes
considered to be binary compatible, e.g. on p.237:

�...a list of some important binary compatible
changes that Java supports: re-implementing
existing methods, ..., adding new �elds to an
existing class or interface, ..., adding a class,
...�

and describes the guarantee of such changes, p.240:

�A change to a type is binary compatible with
... pre-existing binaries if pre-existing bina-
ries that previously linked without error will
continue to link without error. �

So, from the Java description we have

modi�cations guarantee

list of binary no re-compilation,
compatible changes =) linking without errors,

safe execution

There is no appropriate precedent for a terminology
in this area: Corresponding to the guarantee we de�ne
link compatible changes as source code modi�cations for
which all types (i.e. classes and interfaces) that success-
fully linked with the original binaries will also success-
fully link with the binaries obtained after modi�cation

and re-compilation. Safe changes are those changes that
can be proven to preserve the guarantee; they include
most changes listed in [10] e.g. adding instance variables
to classes, modifying method bodies. They do not in-
clude the addition of methods to interfaces, because,
as we shall see, this does not preserve the property of
linking without errors:

modi�cations guarantee

list of binary no re-compilation,
compatible changes =) linking without errors,

safe execution
j j

formalized as formalized as

#
list of safe changes =) link compatibility

Based on the above formalization we were able to dis-
tinguish nuances in the concept of binary compatibility,
and to formulate and prove composability properties:

� The de�nition of link compatibility allows appli-
cation of the term to binaries that are not stand-
alone. This is a common situation for libraries
importing further libraries.

� We argue that the exact de�nition of link com-
patibility should cater for the possibility of linking
with further, yet unknown binaries, i.e. it should
say: �A change is binary compatible with pre-
existing binaries if any further pre-existing bina-
ries that link without error with the former pre-
existing binaries continue to do so after the change
to the former pre-existing binaries.�

� We show that applying a sequence of link compat-
ible changes to a binary preserves all the linking
capabilities of the original binary.

� We show that link compatible changes applied to
di�erent, but possibly mutually dependent bina-
ries, preserve all the linking capabilities of the orig-
inal program consisting of the original binaries.
This caters for the case where programmers de-
velop di�erent interdependent libraries, and says
that binary compatible changes do not alter the
linking capabilities of the overall system.

� We demonstrate that two consecutive link compat-
ible changes usually cannot be folded into one; and
that two di�erent link compatible changes applied
to the same binary usually cannot be reconciled.

We build on some of our previous work formalizing
the semantics of Java [6, 7], but we could have used any

formalization that gives meaning to type checking and
distinguishes source code from compiled code, e.g. [17].

The remainder of this paper is organized as follows:
In section 2 we examine the motivation and some sub-
tleties of binary compatibility, and demonstrate these
in terms of examples. In section 3 we summarize the
formalization from [7] needed for the current discus-
sion. In section 4 we formalize compilation and link-
ing of fragments. In sections 5-6 we de�ne link com-
patibility, prove its composition properties, de�ne safe
changes and prove that they are link compatible. In
appendix A we justify our approach and discuss alter-
natives. Finally, in section 7 we draw conclusions and
outline further work.

2 Binary compatibility in Java

The motivation for the concept of binary compatibility
in Java is the intention to support large scale re-use of
software available on the Internet [11].

In particular, Java avoids the fragile base class prob-
lem, found, in most C++ implementations, where an
instance variable (data member) access is compiled into
an o�set from the beginning of the object, �xed at
compile-time. If new instance variables are added and
the class is re-compiled, then o�sets may change, and
object code previously compiled using the original de�-
nition of the class may not execute safely together with
the object code of the modi�ed class. Similar problems
arise with virtual function calls. The term �fragile base
class problem� is also used in a wider sense, to describe
the problems arising in separately developed systems
using inheritance for code re-use [13].

C++ development environments usually attempt to
compensate by automatically re-compiling all �les im-
porting the modi�ed class. Although Java develop-
ment environments do the same, there are realistic cases
where this strategy would be too restrictive. For in-
stance, if one developed a local program P, which im-
ported a library L1, the source for L1 was not available,
L1 imported library L2, and L2 was modi�ed, then re-
compilation of L1 would not be possible. Any further
development of P would therefore be impossible.

In contrast, Java promises that if the modi�cation
to L2 were binary compatible, then the binaries of the
modi�ed L2, the original L1 and the current P can be
linked without error. This is possible, because Java
binaries carry more type information than object code
usually does.

Interestingly, it is possible to modify types in binary
incompatible ways, and to still be able to link without
errors with the binaries of some importing types. Still,
other binaries will exist, which linked without errors

1st phase

class Student { int grade; }

class CStudent extends Student { }

class Lab {

CStudent guy;

void f(){ guy.grade=100; }

}

2nd phase

class CStudent extends Student {

char grade;

}

3rd phase

class Marker {

CStudent guy;

void g(){ guy.grade='A'; }

}

Figure 1: Students and computing students - code

with the type, but no longer link without errors with
the binary of the modi�ed type.

2.1 An example

The example from �gure 1 demonstrates some of the
issues connected with binary compatibility. It consists
of three phases.

In the �rst phase we create the classes Student,
CStudent, and Lab. For simplicity we ignore the issue
of access restrictions (e.g. private, public, import).
The class CStudent inherits the instance variable grade
of type int. In the class Lab, the �eld guy, of class
CStudent, is assigned the grade 1. This program is well-
formed, and can be compiled, producing three binary
�les Student.class, CStudent.class and Lab.class.
In the second phase we add the �eld grade of type char
to class CStudent, and re-compile CStudent, producing
CStudent0.class. In the third phase we de�ne a new
class, Marker. In the body of its method g(), we as-
sign the grade 'A' to guy. The class Marker is type
correct, and thus it can be compiled to produce the �le
Marker.class.

The two changes, i.e. the addition of �eld grade in
class CStudent, and the creation of class Marker, are
binary compatible changes. So, the corresponding bina-
ries, i.e. Student.class, CStudent0.class, Lab.class
and Marker.class, can safely be linked together.

The sources are not type correct any more. An at-
tempt to re-compile the class Lab would �ag a type er-
ror for the assignment guy.grade=100, since the expres-
sion guy.grade now refers to the �eld in class CStudent
which is of type char. Also, the compiled form of the
expression guy.grade in the binary Lab.class refers
to an integer, whereas the compiled form of the same

1st phase

interface I {

void meth1();

}

class C implements I { void meth1(){::: } }

class D {

void meth3() { I anI = new C(); }

}

2nd phase

interface I {

void meth1();

void meth2();

}

3rd phase

class D {

void meth3()

{ I anI = new C(); anI.meth2(); }

}

Figure 2: Adding a method to an interface

expression in the binary Marker.class refers to a char-
acter. The two compiled forms exist at the same time,
and refer to di�erent �elds of a CStudent object. An
implementation of Java has to re�ect this in the code
produced; in our formalization in section 3 we describe
this in terms of di�erent Javase intermediate code. Sim-
ilar situations can arise for method calls.

2.2 A problem with binary compatibility

The example in �gure 2 demonstrates that the list of
binary compatible changes given in [10] is too permis-
sive and so fails to ful�l the guarantee. In particular,
it considers the addition of methods to interfaces to be
a binary compatible change, and as a result it does not
prevent values of a particular interface type referring
to objects of classes which do not fully implement that
interface. This problem is known to JavaSoft [16].

In the �rst phase consider compiling interface I, and
classes C, D. Compilation will be successful. In the sec-
ond phase method meth2() is added to interface I, and
I is re-compiled. This is listed as a binary compat-
ible change [10]. In the third phase, code invoking
anI.meth2() is added to the body of meth3 in class
D and then D is re-compiled. Since the new method
body is type correct, this is a binary compatible change
as well, [10]. According to the guarantee of binary com-
patibility, the binaries for I0, C and D0 should link and
run successfully. But they cannot, as there is no imple-
mentation of meth2().

Thus, although addition of methods to interfaces is
listed as a binary compatible change in [10], it does not
uphold the promise of safe linking and execution.

1st phase

�st = Studentext Object

f grade : int g
�cs = CStudent ext Student f g
�lab = Lab ext Object

f guy : CStudent; f :! void g
2nd phase

�cs0 = Student ext Student

f grade : char g
3rd phase

�m = Marker ext Object

f guy : CStudent; g :! void g

Figure 3: Environment for computing students

3 Formalization of the Java semantics

This section summarizes material from [7] needed for
the formalization of separate compilation and binary
compatibility. In [7] we describe the semantics of a sub-
stantial subset of Java encompassing primitive types,
classes, interfaces, inheritance, �elds, methods, inter-
faces, shadowing, dynamic method binding, the value
null, arrays, exceptions and exception handling. We
distinguish between three languages: Javas is our subset
of Java, Javase is an enriched version of Javas contain-
ing compile-time information necessary for execution,
Javar is an extension of Javase supporting run-time con-
structs such as addresses.

Java � Javas �!
C

Javase � Javar ;p Javar

#
Type = Type = Type �wdn Type

We give type systems for Javas, Javase and Javar. The
two latter are slight modi�cations of the former. We
prove that a well-typed Javas term retains its type when
transformed to the corresponding Javase or Javar term.
The operational semantics, ;p, describes the execu-
tion of Javar terms for a particular Javase program
p. We prove a subject reduction theorem, stating that
execution of Javar terms preserves types up to sub-
classes/subinterfaces. In the remainder of this section
we discuss these concepts in more depth.

A Javas program consists of an environment, usu-
ally denoted by a �, and Javas body, usually denoted
by a p. The syntax of environments can be found in
appendix B, that of Javas bodies can be found in ap-
pendix C. The �rst phase of the computing students ex-
ample corresponds to environment �st �cs �lab, as given
in �gure 3, and body pst pcs plab, as given in �gure 4.

The order of declarations and de�nitions is not sig-
ni�cant, therefore ��0 = �0 �, and p p0 = p0 p. The sets
Cl(�), Cl(p), It(�), and Vr(�) contain the names of

all classes, interfaces or variables declared in environ-
ment � or program p respectively. The set D() is the
union of the previous sets. For example, D(pcs plab) =
D(�cs �lab) = fCStudent; Labg.

The assertion � ` T �wdn T0 indicates that in envi-
ronment �, type T widens to type T0, i.e. values of type
T can be assigned to variables of type T0 without any
run-time checks.

1st phase

pst = Student ext Object f g
pcs = CStudent ext Student f g
plab = Lab ext Object

f f isf guy:grade= 100; g g
2nd phase

pcs
0

= CStudent ext Student f g = pcs

3rd phase

pm = Marker ext Object

f g isf guy:grade =0 A0; g g

Figure 4: Javas class bodies for computing students

We indicate by � ` 3 that the declarations in en-
vironment � are well-formed, e.g. that every identi�er
has a unique declaration, that �elds are unique in a
class, etc. Provided that � ` 3, Javas terms can be
type checked in terms of a type inference system, part
of which appears in appendix D. The assertion � ` t : T
signi�es that term t has type T for environment �; the
assertion � ` p 3 signi�es that program body p is well-
typed in environment �, i.e. the class bodies contain
type correct function bodies which return values of the
expected types. The assertion � ` p 33 signi�es that
p is complete, i.e. that it is well-typed and contains a
class body for each class in �.

To support execution of method calls and �eld ac-
cess, Javas is enriched with type information. The en-
riched language is called Javase; enriching is performed
by the mapping C, which can be understood as an ab-
straction of compilation from Java source code to binary
code. Only type correct terms are mapped, i.e. Cf(�; t)g
is de�ned only i� there exists a type T with � ` t : T.
Furthermore, if � ` t : T, and ��0 ` 3 (i.e. �0 does not
�a�ect� �), then ��0 ` t : T and Cf(�; t)g=Cf(��0; t)g.
The syntax of Javase is an extension of the Javas syntax
and is given in appendix E.

The Javase version of the students class bodies is
given in �gure 5. In plab

se
the �eld access guy.grade has

been enriched by the class from which grade is inher-
ited, and is compiled to guy[Student].grade, whereas
in pm

se
it is compiled to guy[CStudent].grade.

Javase terms also have types, indicated by assertions
� s̀e t : T. For a Javase program body p, � s̀e p 3

means that p is well-typed, whereas � s̀ep 33 signi�es

1st phase

pst
se

= Cf(�st �cs �lab; pst)g
= Student ext Object f g

pcs
se

= Cf(�st �cs �lab; pcs)g
= CStudent ext Student f g

plab
se

= Cf(�st �cs �lab; plab)g
= Lab ext Object

f f isf guy[Student]:grade= 100 g g
2nd phase

pcs
0

se
= Cf(�st �cs0 �lab; pcs

0

)g
= CStudent ext Student f g = pcs

se

3rd phase

pm
se

= Cf(�st �cs0 �lab �m; pm)g
= Marker ext Object

f g isf guy[CStudent]:grade=0 A0 g g

Figure 5: Javase class bodies for computing students

that p is well-typed and complete. The type system
for Javase is identical to that of Javas except for the
two cases where the Javase syntax di�ers from that of
Javas; these appear in appendix F. When type checking
Javase �eld access expressions, the parent class contain-
ing the �eld declaration is taken into account. Similarly,
the statically determined argument types are taken into
account when type checking Javase method calls. These
properties of the Javase types re�ect, at a higher level,
checks performed by the byte-code veri�er [15, 12], and
are crucial for proving the lemmas in section 5. The
following lemma says that C preserves types:

Lemma 1 For types T, T0 Javas term t:
� ` t : T =) � s̀e Cf(�; t)g : T

Javar is an extension of Javase describing run-time
terms, such as addresses, or null-values in �eld access
or method calls. For Javase program body p, Javar terms
are executed according to rewrite system ;p.

The subject reduction theorem proven in [7] (and
similarly in [17, 14]) states that for any well-typed, non-
ground Javar term and any Javase body p with s̀ep 33,
there exists a rewrite step which either terminates, or
produces a new, well-typed Javar term, or contains an
exception. The exception may be a language de�ned ex-
ception, such as divide-by-zero, null-pointer-access etc,
or any of the user-de�ned exceptions, but not one of
the linker exceptions. In particular, because the sub-
ject reduction theorem ensures the existence of a rewrite
step, it also guarantees that all required method bodies
and �elds will be present. Absence of �elds or method
bodies is the kind of thing that would throw a linker
exception [12].

The subject reduction theorem thus suggests that
the assertion � s̀ep 33 means that p is a complete suc-

cessfully linked Javase program body. The assertion
� s̀ep 33 can be established by proving that � s̀e p 3

and that Cl(p) = Cl(�). The latter requirement is usu-
ally a last step and is straightforward to establish. How-
ever, the requirement � s̀e p 3 is not that easy; in gen-
eral it requires full type checking.

Therefore, we consider the preservation of the prop-
erty � s̀e p 3 to be an appropriate approximation of
the guarantee of binary compatibility. For notational
convenience, we use the notation s̀e(�; p) 3 as a syn-
onym for � s̀e p 3.

4 Concatenating and compiling fragments

We shall call a pair F = (�; p), a fragment, where � is
an environment and p is one or more class bodies. If p
is a Javas body then F will be a Javas fragment, other-
wise it will be a Javase fragment. Fragments consist of
the declaration and body of one or more classes; they
represent parts of programs, or libraries, and they need
not be self-contained.

In this section we introduce operators to describe
concatenation and compilation of fragments. In some
cases we expect the constituent environments and bod-
ies to be disjoint, as de�ned in:

De�nition 1 For environments �, �0 and bodies p, p0:

� �, �0 are disjoint i� D(�) \ D(�0) = ;.

� p, p0 are disjoint i� D(p) \ D(p0) = ;.

� (�; p) and (�0; p0) are disjoint, i�
�, �0 and p, p0 are disjoint.

For example, �cs0 and �m are disjoint, whereas �cs0 and
�m �cs are not. The parts of well formed environments
or programs are disjoint, e.g. ��0 ` 3 implies that �,
�0 are disjoint.

The operator � represents concatenation of frag-
ments through juxtaposition, without performing any
checks.

De�nition 2 For fragments F = (�; p), F0 = (�0; p0):

� F�F0 = (��0; p p0)

Concatenation is associative and commutative. If F and
F0 are disjoint, then ` F 3 and ` F0 3 implies ` F�F0 3.
Also, ` F�F0 3 implies that F and F0 are disjoint.

The operator � describes updating the �rst ar-
gument by the declarations/bodies from the second,
whereby any class or interface in both will be taken
from the second:

De�nition 3 For environments �, �0 and bodies p, p0

fragments F = (�; p), F0 = (�0; p0):

�0 �1

�0�0

p1

p0

p0

Cf(�0 �0; p0)g

�
C
(�0; p0)

Figure 6: (�0 �1; p0 p1)�C
(�0; p0)

� �� �0 = �0 �
0,

where �0 such that � = �0 �1, D(�1) � D(�0),
and �0, �

0 disjoint.

� p� p0 = p0 p
0,

where p0 such that p=p0 p1, D(p1) � D(p0), and
p0, p

0 disjoint.

� F� F0 = (�� �0; p� p0)

Updating is associative but not commutative. For dis-
joint fragments F, F0 updating is equivalent to concate-
nation, and also F�(F00 � F0) = (F�F00)� F:

The operation Cf(F; F0)g describes the compilation of
a fragment F0 in the context of F, i.e. compilation using
the environment provided by both F and F0.

De�nition 4 For fragment F = (�; p), and Javas frag-
ment F0 = (�0; p0) :

� Cf(F; F0)g = (�0; Cf(�� �0; p0)g)

Thus, Cf((�st �cs; pst pcs); (�cs0 ; pcs
0

))g = (�cs0 ; pcs
0

se
) =

Cf((�st �cs; pst
se
pcs
se
); (�cs0 ; pcs

0

))g.
The operation F�

C
F0 describes the e�ect of the com-

pilation of a Javas fragment F0 on an existing Javase frag-
ment F. The original Javase fragment F is updated by
the compilation of F0 in the context of F.

De�nition 5 For Javase fragment F, and Javas frag-
ment F0:

� F�
C
F0 = F� Cf(F; F0)g

So, (�st �cs; pst
se
pcs
se
)�

C
(�cs0 ; pcs

0

) = (�st �cs0 ; pst
se
pcs

0

se
).

Figure 6 describes the compilation of the Javas frag-
ment (�0; p0) into existing Javase fragment (�0 �1; p0 p1).
The ensuing environment, ���0, consists of �0 and �0,
the part of � which is not superseded by �0. The new
program body, p� Cf(�� �0; p0)g, consists of the compi-
lation of p0 in the new environment and p0, the part of
p which is not superseded by p0.

In general, Cf(F; F)g�
C
F0 6= Cf(F� F0; F� F0)g. The left

hand side represents separate compilation of fragments

whereas the right hand side represents compilation of
all fragments together. As we mentioned earlier, in Java
these are di�erent, and it is possible for the �rst to be
de�ned, and the latter to be unde�ned.

Because the arguments of �
C

come from di�er-
ent domains, the concepts of commutativity and asso-
ciativity do not apply. We shall use �

C
implicitly in

a left-associative manner. For fragments F0, F=(�; p),
F0=(�0; p0), such that D(�) = D(�0) and p = p0, the
equality (F0 � F0)�

C
(�0; �) = (F0 � F0)�

C
(�0; p0) holds,

where � describes the empty environment or program
body.

The second phase of the students example compiles
(�cs0 ; pcs) into (�st �cs �lab; pst

se
pcs
se
plab
se

), giving:

(�st �cs �lab; pst
se
pcs
se
plab
se

)�
C
(�cs0 ; pcs)

= (�st �cs �lab; pst
se
pcs
se
plab
se

)�
C
(�cs0 ; �)

= (�st �cs0 �lab; pst
se
pcs
se
plab
se

)

In the third phase we compile the new fragment (�m; pm)
into the result of the previous change, giving:

(�st �cs0 �lab; pst
se
pcs
se
plab
se

)�
C
(�m; pm)

= (�st �cs0 �lab �m; pst
se
pcs
se
plab
se

Cf(�st �cs0 �lab �m; pm)g)

= (�st �cs0 �lab �m; pst
se
pcs
se
plab
se

pm
se
)

The following lemma, used to prove lemma 5, de-
scribes the result of compiling fragment F00 into F�F0. If
Cf(F0; F00)g is de�ned, i.e. compilation of F00 does not need
information from F, then F remains una�ected, and is
not taken into account for compilation of F00. If F and
F00 are disjoint, then F remains una�ected but may be
taken into account for compilation of F00.

Lemma 2 For fragments F, F0, F00, with F and F0 disjoint:

� Cf(F0; F00)g de�ned =) (F�F0)�
C
F00 = F�(F0 �

C
F00)

� F and F00 disjoint =)
(F�F0)�

C
F00 = F�(F0 � Cf(F�F0; F00)g)

5 Link compatibility

The term link compatibility aims to capture the guar-
antee given by binary compatibility. It restricts source
code modi�cations in terms of the properties of the re-
sulting compilation. As we argued in section 3, well-
formedness, expressed by the assertion s̀eF 3, should
be preserved throughout binary compatible changes.

We consider F0 a link compatible change of a fragment
F, if all fragments F0 that successfully linked with F

continue to do so after compilation of F0 into F.

De�nition 6 A Javas fragment F0, is a link compatible
change of a Javase fragment F, i�
For all F0 disjoint with F0:

s̀eF0�F 3 =) s̀e(F0�F)�C
F0 3

For example, (�cs0 ; pcs) is a link compatible change
of (�st �cs �lab; pst

se
pcs
se
plab
se

), and (�cs0 ; �) is a link com-
patible change of (�st �cs �lab; pst

se
pcs
se
plab
se

). In section 6
we discuss how to prove such statements.

Originally we had de�ned as link compatible changes
F0 those guaranteeing that s̀eF 3 =) s̀eF�C

F0 3,
but this de�nition turned out to be too weak, c.f. ap-
pendix A where we discuss alternatives. The require-
ment s̀e(F0�F)�C

F0 3 ensures successful compilation
of F0 in the context of both F0 and F. It is weaker
than asking s̀eF0�(F�C

F0) 3, because it is possible for
(F0�F)�C

F0 to be de�ned and for F �
C
F0 not to be.

This subtlety is deliberate. It allows F0 to be consid-
ered a link compatible change for a library F, which
imports other libraries, and which cannot be compiled
in isolation, i.e. for which s̀eF 3 does not hold. Such a
library can only be compiled in the presence of one or
more further libraries, represented by the fragment F0,
with which s̀eF0�F 3 holds.

Therefore, the fragment F does not need to contain
all the type information necessary to type check F0; it
only needs to contain enough information to ensure type
correct compilation of F0 in the context of all appropri-
ate fragments F0. Thus, F acts as a kind of �lter for F0,
by requiring that s̀eF0�F 3. Consider, for example:

�C = class C ext Object ff :! intg;
�D = class D ext C ff :! intg;

�D0 = class D ext C ff :! int; x : charg;

The fragment (�D0 ; �) is a link compatible change of
(�C �D; �), of (�C; �), and of (�D; �). The latter holds,
because any �0 with �0 �

D ` 3 also satis�es �0 �
D0 ` 3.

Our original intuition was, for F0 a link compatible
change of F, that F need only contain the de�nitions or
declarations modi�ed by F0. This was incorrect, because
in general these do not hold su�cient information to en-
sure type correctness in the context of all appropriate
fragments F0. For example, consider the environments:

�A = class A ext Object ff :! intg;

�A0 = class A ext Object ff :! charg;
�B = class B ext A f g;

�B0 = class B ext A ff :! intg

The fragment (�B0 ; �) is a link compatible change of
(�A �B; �), and of (�A; �), but it is not a link compatible
change of (�B; �). Namely, s̀e(�

A0 ; �)�(�B; �) 3 holds,
but �A0 �B0 ` 3 does not! And so, it is not the case that

s̀e((�
A0 ; �)�(�B; �))�

C
(�B0 ; �) 3.

5.1 Properties of link compatible changes

We now discuss and prove the following �ve properties
of link compatible changes:

� Preservation over larger fragments: link com-
patibility is preserved by larger fragments.

� Preservation over sequences: a sequence of
link compatible changes preserves well-formedness
� as shown in �gure 7.

� Preservation over libraries: several link com-
patible changes when applied to di�erent fragments
preserve well formedness � as shown in �gures 8,
9.

� Lack of diamond property: for two di�erent
link compatible changes applied to the same frag-
ment, there does not necessarily exist a further link
compatible change reconciling the two � as shown
in �gure 11.

� Lack of folding property: in general, two link
compatible changes cannot be folded into one link
compatible change� as shown in �gure 10.

These properties are crucial in delineating the exact na-
ture of binary compatibility. In fact, we have been dis-
cussing with the Java language developers whether a di-
amond property and the preservation over libraries are
satis�ed by binary compatibility, and to what extent
these properties should be satis�ed [16]. Thus, a major
contribution of this paper lies, we believe, in formulat-
ing and distinguishing these properties.

The preservation over larger fragments automatically
establishes link compatibility for all fragments that con-
tain a smaller fragment for which this property has
already been established. The preservation over se-
quences guarantees that link compatible steps may be
combined, and preserve the linking capabilities � pro-
vided that each step is a link compatible change of the
result of the application of all previous modi�cations.
The preservation over sequences is not surprising, but
the fact that it is satis�ed demonstrates that the de�-
nition is appropriate.

The lack of folding and diamond properties restrict
the ways in which link compatible changes may be com-
bined. The lack of diamond property means that pro-
grammers may not apply independent link compatible
changes to the same fragment and expect the linking
capabilities to be preserved. However, the preservation
over libraries allows programmers to apply independent
link compatible changes and expect the linking capabil-
ities to be preserved, as long as they were working on
di�erent fragments. In particular, it means that vari-
ous libraries may be modi�ed separately, each in link
compatibile ways, and still preserve their linking capa-
bilities. This holds, even if these libraries should import
each other.

Next we formulate and prove these properties.

Preservation over larger fragments A link compat-
ible change of a given fragment is also a link compatible
change of any larger fragment:

Lemma 3 For fragments F, F0, F00, where F0 and F00 are
disjoint:

F0 is a link compatible change of F =)
F0 is a link compatible change of F00�F

Preservation over sequences As outlined in �gure
7, a sequence of link compatible steps, F01, ... F

0

n, applied
to fragment F preserves the linking capabilities of F. In
order to establish that a step is link compatible, we need
to know the e�ect of all prior steps, thus we require that
F0i+1 is link compatible for F0�F�C

F01:::�C
F0i.

F

�
C
F01

F1

F0 = F0�F

Fn

�
C
F0n

F0

Figure 7: Preservation over sequences

Lemma 4 For Javase fragments F, F0, a sequence of
Javas fragments F01, ... F

0

n, F0 disjoint F0i, if

� for all i, 1 � i � n:
Fi de�ned =) F0i+1 link compatible change of Fi

where Fi = F0�F�C
F01:::�C

F0i

then

� s̀eF0�F 3 =) s̀e(F0�F)�C
F01:::�C

F0n 3

Proof by induction on k; using that F0=F0 �F and
Fk+1=Fk �

C
F0k, prove that s̀eF

k
3 for all k. Also, Fn =

(F0�F)�C
F01:::�C

F0n. 2

Preservation over libraries Link compatible modi�-
cations F0i applied to fragments Fi which are parts of a
program F � F1� ::: � Fn, preserve the linking capabil-
ities of that program, provided that the modi�cations

are link compatible for the particular fragments only �
i.e. require F0i is a link compatible change of Fi, which
is stronger than requiring F0i to be a link compatible
change of F1:::Fn.

F � F1 � F2 ::: � Fn

�
C
F01

�
C
F02

�
C
F0n

F � F001 � F002 � F00n:::

Figure 8: Preservation over libraries where F00k = Fk �
Cf(F�F001�:::F

00

k�1�Fk:::�Fn; F
0

k)g

In contrast to preservation over sequences, we do not
need to know the e�ect of another modi�cation in or-
der to establish that F0i is a link compatible change of
Fi. However, we may take another modi�cation into
account when applying a modi�cation. We distinguish
the following two cases: 1) The application of a mod-
i�cation takes into account the e�ect of the previous
modi�cations, thus Fk is transformed to F00k , where F00k
= Fk � Cf(F�F001�:::F

00

k�1
�Fk:::�Fn; F0k)g; as described in

�gure 8. 2) The application of a modi�cation does not
take into account the e�ect of any other modi�cations
and compiles in the original context, i.e. Fk is trans-
formed to F00k , where F00k = Fk � Cf(F� F1 ::: � Fn; F

0

k)g;
as described in �gure 9.

F � F1 � F2 ::: � Fn

�
C
F01 �

C
F02 �

C
F0n

� F001F � F002 � F00n:::

Figure 9: Preservation over libraries where F00k = Fk �
Cf(F�F1:::�Fn; F0k)g

The �rst case represents the situation where pro-
grammers make changes to the particular fragments
that belong to them, but are aware of each other's ac-
tions. The second case corresponds to the situation
where programmers take a snapshot of each other's work,
and then go on to work on their own fragments unaware
of each other's activity. In both cases, when all modi-
�ed fragments are put together, the resulting program
F � F001 :::� F00n preserves the linking capabilities of the
original program. The order of the fragments is imma-
terial for the current lemma.

Lemma 5 For Javase fragments F, F1, ... Fn, Javas
fragments F01, ... F

0

n, where F
0

i disjoint from Fk, from F0k
and from F for all i 6= k, i; k2f1:::ng, if

� F0i is a link compatible change of Fi for 1 � i � n

� s̀e F � F1� ::: � Fn 3

then

� s̀e F � F001 :::� F00n 3

where F00k = Fk � Cf(F�F001�:::F
00

k�1
�Fk:::�Fn; F0k)g

� s̀e F � F001 :::� F00n 3

where F00k = Fk � Cf(F� F1 ::: � Fn; F
0

k)g

Proof Because s̀e F � F1� ::: � Fn 3, we know that
Fi are disjoint from Fk and from F, for i 6= k.
1st Part De�ne Fk = F�F001 � :::F

00

k �Fk+1:::�Fn, where
F00k = Fk �Cf(F�F001�:::F

00

k�1�Fk:::�Fn; F
0

k)g. To show that

s̀eF
n
3.

For all k 6= j, if F00k and F00j are de�ned, then F00k is
disjoint from F00j , from F0j , from Fj and from F.

Show by induction on k that F00k and Fk are de�ned,
and that s̀eF

k
3. The case where k = 0 follows from

the assumptions of the lemma. For the induction step
(k + 1) k + 2) : by induction hypothesis

s̀eF
k+1

3 by de�nition of Fk+1

s̀eF�F001�:::F
00

k�Fk+1:::�Fn 3 � commutative

s̀e(F�F001�:::F
00

k�Fk+2:::�Fn)�Fk+1 3
F0k+1 link compatible change of Fk+1

s̀e((F�F
00

1�:::F
00

k�Fk+2:::�Fn)�Fk+1)�C
F0k+1 3

lemma 2
F00i disj. from F00l , Fl for 1 � i 6= l � k

Fl disj. from Fj for 1 � l 6= j � n

s̀e(F�F001�:::F
00

k�Fk+2:::�Fn)�Fk+1 �
Cf(F�F001�:::F

00

k�Fk+2:::�Fn�Fk+1; F
0

k+1)g 3
de�nition of F00k+1

s̀e(F�F001�:::F
00

k�Fk+2:::�Fn)�F
00

k+1 3

de�nition of Fk+2

s̀eF
k+2

3.
Therefore, F00k+1 is de�ned and s̀eF

k+1
3 holds.

2nd Part similar to and easier than 1st part. 2

Lack of folding property The concepts of transitivity
and re�exivity are not applicable to the link compati-
bility relationship, because its domain and range do not
match. Instead, one might consider the following �fold-
ing property�, outlined in �gure 10:

For disjoint F01, F
0

2, if F
0

1 is a link compatible change
of F, and F02 is a link compatible change of (F0�F)�C

F01,
then F01 � F02 is a link compatible change of F0�F, and
(F0�F)�C

F01 �C
F02. = (F0�F)�C

(F01 � F02)

F0�F F0�F

?
�

C
F01

?
�

C
F02 ?

�
C
(F01 � F02)=)=(F0�F)�C

F01

(F0�F)�C
F01 �C

F02 (F0�F)�C
F01 �C

F02

Figure 10: Lack of folding property

Such a property does not hold. As a counter-example,
consider Javase fragment corresponding to Student and
CStudent, i.e. F = (�st �cs; pst pcs). First, the class Lab
is compiled, i.e. F01 = (�lab; plab). Then, the modi�ed
class CStudent0 is compiled, i.e. F02 = (�cs0 ; pcs). Both
changes are link compatible changes, yet the change
formed by naïvely composing the two steps, i.e. com-
piling Lab and CStudent0 into the original program, is
not a link compatible change, since the Javas class body
of Lab is not well-typed in an environment featuring the
class declaration from CStudent0.

Lack of diamond property For certain F01 and F02,
link compatible changes of F, there do not exist frag-
ments F03 and F04, such that F03, F

0

4 disjoint with F01, F
0

2,
and F03 is a link compatible change of F�

C
F01, and F04 is

a link compatible change of F�
C
F02, and F�

C
F01 �C

F03=
F�

C
F02 �C

F04.
For example, F01 might be introducing a method f

with signature int ! int into a class C, and F02 intro-
ducing another method f with signature int ! char

into the same class C. The lack of diamond property
does not contradict the preservation over libraries, be-
cause there we required the modi�cations to be applied
to disjoint fragments.

5.2 Type preserving changes

In the previous section we established the power of link
compatibility, and argued that it models the guaran-
tee by binary compatibility. However, we have not dis-
cussed yet how to prove that a particular modi�cation
is link compatible.

F0�F

�
�	

@
@R

(F0�F)�C
F01 (F0�F)�C

F02

=)=

F0�F

�
�	

@
@R

(F0�F)�C
F01 (F0�F)�C

F02

@
@R

�
�	

(F0�F)�C
F01 �C

F03 = (F0�F)�C
F02 �C

F04

Figure 11: Lack of diamond property

In this section we introduce type preserving changes,
and prove that type preserving changes are link com-
patible. In section 6 we shall introduce safe changes,
which correspond to those changes suggested in the Java
speci�cation, which apply to Javas, and can be demon-
strated to ensure link compatibility, and we shall prove
that safe changes are type preserving. Thus, we have:

modi�cations guarantee

list of type link
safe =) preserving =) compatible

changes changes changes

A type preserving change of an environment � pre-
serves the types of all Javase expressions e given by �
and context environments �0.

De�nition 7 An environment �0 is a type preserving
change of environment � i� for all �0 disjoint with �0,
for all Javase expressions e, types T:

�0 � s̀e e : T =) �0 �� �0 s̀e e : T

For example, consider �A, �A0 , �B, �B0 as introduced
in the beginning of section 5. Then the environment
�B0 is a type preserving change of �A �B, and of �A, but
it is not a type preserving change of �B. It holds that
�A0 �B; x : �B ` x[]:f() : char, but it does not hold that
�A0 �B � �B0 ; x : �B ` x[]:f() : char. In fact, it does not
even hold that �A0 �B � �B0 ` 3.

Notice, that � might be incomplete in the above def-
inition , i.e. it might not satisfy � ` 3, and it might
not have a type for the expression e. The requirement
that �0 � s̀e e : T =) �0 �� �0 s̀e e : T is strictly
stronger than � `se e : T =) �� �0 `se e : T.
For example, �B0 vacuously satis�es the requirement

�A
s̀e e : T =) �A � �B0

s̀e e : T, since no expres-
sion satis�es �A

s̀e e : T. We expect for � with � ` 3,
the requirement � s̀e e : T =) � � �0 s̀e e : T to be
equivalent with �0 � s̀e e : T =) �0 �� �0 s̀e e : T.

Notice also, that a type preserving change of of an
environment does not preserve the types of Javas terms.
So, �st �cs; guy : CStudent ` guy:grade : int, whereas
(�st �cs; guy : CStudent)� �cs0 ` guy:grade : char.

As with link compatibility, in general, if �0 is a type
preserving change of a smaller environment �, then it is
also a type preserving change of the larger environment
��00.

The following lemma describes how type preserv-
ing changes of environments combined with type cor-
rect compilations of class bodies produce link compati-
ble modi�cations. The second requirement, asking that
�0 � ` 3 =) �0 �� �0 ` p0 3, allows us to consider
modi�cations which need a context �0 for their com-
pilation. Thus we can have libraries which are not
stand alone. That requirement could be replaced by
the stronger requirement that �� �0 ` p0 3. The third
requirement ensures that a new class body will be pro-
vided for any class in �0, i.e. whose declaration is mod-
i�ed.

Lemma 6 For environments �, �0, Javase program body
p, Javas program body p0, if

� �0 is type preserving change of �

� 8 �0 disj. with �0: �0 � ` 3 =) �0 �� �0 ` p0 3

� Cl(�0) � Cl(p0)

then

� (�0; p0) is a link compatible change of (�; p)

Proof through careful application of the de�nitions
and type checking rules.

Let us call F = (�; p), F0 = (�0; p0). Take any
Javase fragment F0 = (�00; p00), such that F0 disjoint
from F0, and s̀eF0�F 3. To show that s̀e(F0�F)�C

F0 3.
Because s̀eF0�F 3, it also holds that �00 and �

are disjoint, and, because of the requirements of the
lemma, �00 ` p0 3, where �00 = �00 �� �0. Therefore,
�00 ` 3. It remains to prove that �00 s̀e p

00
3, where

p00 = Cf(�00; p00 p� p0)g.
Take any Javase class body cBody from p00. Let C be

the name of the class to which cBody belongs.
1st Case: C 2 Cl(p0). Then there exists a Javas

class body cBody0, such that p0 = cBody0 p01, and that
Cf(�00; cBody0)g=cBody. Because �00 ` p0 3, we also have
that �00 ` cBody0 3, and with lemma 1, we also get that
�00 s̀e cBody 3.

2nd Case: C =2 Cl(p0), therefore cBody stems from
p00 or p. Because �00 � s̀e p00 p 3, it also holds that

�00 � s̀e cBody 3. Because Cl(�0) � Cl(p0), we also
have that C =2 Cl(�0). Therefore, C has the same def-
inition in �00 � and in �00 �� �0. Take any method
body mBody from cBody; because cBody is type correct,
through application of the type rule for class bodies,
we obtain: �00 �; this : C s̀e mBody : T1 � :::Tn ! T,
where T1 � :::Tn ! T is a signature of m in class C in
the environment �00 �, and where mBody has the form
mBody = m is �x1 : T1:::�xn : Tn:fstmtsg. Applying the
type rules for method bodies, we obtain: �00 �; this :
C; z1 : T1; :::zn : Tn s̀e stmts[z1=x1; :::; zn=xn] : T, where
z1, ... zn are fresh identi�ers in stmts and in �00 �.
From de�nition 7, it follows that �00 (� � �0); this :
C; w1 : T1; :::wn : Tn s̀e stmts[w1=x1; :::wn=xn] : T, where
we renamed z1, ... zn to w1, ... wn in order to avoid any
name clashes. Therefore, applying the Javase type rule
for method bodies, we obtain that �00 ���0; this : C `

se mBody : T1 � :::Tn ! T, and because the de�nition
of C in �00 � is identical to that in �00 �� �0, we have
that all method bodies in cBody satisfy their signature
in �00 �� �0. So, it holds that �00 �� �0 s̀e cBody 3.

Therefore, �00 �� �0 s̀e cBody 3 for any cBody in
p00. This, �nally, gives that s̀e(�

00; p00) 3. 2

From lemma 6 we see that link compatibility requires
the environment modi�cation to be a type preserving
change of the original environment, and the Javas pro-
gram body modi�cation to be type correct in the new
environment. The latter requirement is very easy to
establish, and corresponds to a successful local compi-
lation step. This con�rms that �reimplementing method
bodies is a binary compatible change�, [10].

However, the �rst requirement from lemma 6, namely
type preservation, is not obviously straightforward to
establish, since it requires that for all possible environ-
ments �00, the two environments should give the same
types to all Javase expressions.

In the next section we consider restricted modi�ca-
tions to the environment which imply type preservation.

6 Safe changes

Safe changes are those of the changes described in [10],
which apply to the language Javas, and can be demon-
strated to preserve the guarantees of binary compatibil-
ity. In particular, they do not include the addition of
instance methods to interfaces, which was demonstrated
to be problematic in section 2. The safe changes are:

� no change at all

� adding a new class C or interface I to a program,
as long as the name of the new type is not the
same as that of any existing type;

� changing the direct super-class of a class C, as long
as all direct or indirect super-classes continue to be
direct or indirect super-classes;

� changing the direct super-interfaces of an interface
I, as long as all direct or indirect super-interfaces
continue to be direct or indirect super-interfaces;

� adding a �eld to a class C;

� adding a method to a class C;

and are formalized in de�nition 8. Remember that
changing method bodies, or the names (but not the
types) of the formal parameters of a method, are already
considered link compatible changes because of lemma 3;
therefore these changes do not need to be de�ned as safe
changes.

De�nition 8 An environment �0 is a a safe change of
another environment �, i�:

� for all �0 disjoint with �0:
�0 � ` 3 =) �0�� �0 ` 3

and one of the following holds:

� �0 = �

� �0 = C ext C0 impl I1; :::In f fDcls; mDclsg
and C =2 Cl(�)

� �0 = I ext I1; :::In f mDcls g and I =2 It(�)

� �0 = C ext C00 impl I1; :::In f fDcls; mDcls g
� = C ext C0 impl I1; :::In f fDcls; mDcls g; �1
and � ` C00 �wdn C0

� �0 = C ext C0 impl I01; :::I
0

k f fDcls; mDcls g
� = C ext C0 impl I1; :::In f fDcls; mDcls g; �1

8i2f1:::ng9j2f1:::kg : �0 ` I0j �wdn Ii

� �0 = C ext C0 impl I1; :::Im
fv1 : T1; :::vn : Tn; vn+1 : Tn+1; mDclsg

� = C ext C0 impl I1; :::Im
fv1 : T1; :::vn : Tn; mDclsg; �1

� �0 = C ext C0 impl I1; :::Im
ffDcls; m1 : MT1; ::: mn : MTn; mn+1 : MTn+1g

� = C ext C0 impl I1; :::Im
ffDcls; m1 : MT1; ::: mn : MTng; �1

Remember that the order of declarations is not signi�-
cant, therefore � = �1; C ext C0:::, only means that �
contains such a declaration of class C. The requirement
�0 � ` 3 =) �0�� �0 ` 3, which ensures preserva-
tion of well formedness of the environment in all appro-
priate contexts �0, could be replaced by the stronger
requirement ��0 ` 3, which corresponds to requiring
succesful compilation in the context of �. The original

requirement, �0 � ` 3 =) �0�� �0 ` 3, is trivially
satis�ed by the �rst �ve cases of de�nition 8. In the
sixth case, which describes the addition a new �eld,
vn+1, to a class, this �eld must have a di�erent name
than any of the other �elds in the class, i.e. vn+1 6= vi
for 1 � i � n. The seventh case describes the addi-
tion of an instance method mn+1 to a class. The new
method, mn+1, may not override any of the methods al-
ready in C; if mn+1 overrides any method inherited by
C from any of its superclasses, then it must have the
same result type as the overriden method. This means,
that either one of the superclasses of C must contain a
method with identi�er mn+1 and signature MTn+1, or all
of the superclasses of C must be present in �.

The following lemma says that safe changes are type
preserving.

Lemma 7 Given environments �, �0, if �0 is a safe
change of �, then �0 is a type preserving change of �.

Proof Take any �0, safe change of �. To show that �0

is type preserving change of of �.
For any environment �0 disjoint from �0, any Javase ex-
pression e0, and type T0, �0 � s̀e e0 : T0 implies that
�0 � ` 3, which implies that �0 and � are disjoint.
Take any environment �0 disjoint from �0.
Show for any T, T0 that �0 � ` T �wdn T0 implies that
�0 �� �0 ` T �wdn T0, using structural induction on
the proof of �0 � ` T �wdn T0.
Show for any class C, that if C has in environment �0 �
a declaration of a �eld v with type T, then class C also
has in environment �0 �� �0 a declaration of �eld v

with type T. Similarly, if class C inherits from another
class C0 in environment �0 � a declaration of a �eld v

with type T, then class C also inherits from the class C0

in environment �0 �� �0 a declaration of �eld v with
type T. These �eld declarations must be unique. Any
methods declared or inherited by interface I in environ-
ment �0 �, are also declared or inherited by interface I
in environment �0 �� �0. Finally, for any method with
identi�er m with argument type AT and result type T

declared or inherited by class C in environment �0 �,
there exists a method with identi�er m with argument
type AT and result type T declared or inherited by class
C in environment �0 �� �0.
Then show, by structural induction on the proof, that
�0 � s̀e e : T implies �0 �� �0 s̀e e : T. For the cases
where e is a variable, an instance method call, or an
instance variable access one has to apply case analysis
on the contents of �0, according to de�nition 8. 2

In the computing students example �cs0 adds an in-
stance variable to a class, therefore it is a safe change of
�cs, and so with lemma 7, �cs0 is a type preserving
change of �cs. Because type preservation automatically

applies to larger environments, �cs0 is a type preserv-
ing change of �cs �st. With lemma 6, (�cs0 ; pcs

se
) is a

link compatible change of (�st �cs; pst
se
pcs
se
). Similarly,

�m adds a class to environment �st �cs0 �lab, therefore
it is a safe change; and so, the pair (�m; pm) is a link
compatible change of (�st �cs0 �lab; pst

se
pcs
se
plab
se

).

7 Conclusions and further work

The contributions of this paper are:

� We suggest a terminology and formal framework
with which to describe the e�ects and properties
of binary compatibility.

� We de�ne safe changes, a subset of the binary com-
patible changes listed in the language speci�cation,
and prove for a substantial subset of Java, that
safe changes guarantee successful linking without
re-compilation.

� We identify as the characteristic property of safe
changes that they preserve the types of the en-
riched Javase expressions.

� We have investigated the properties of combina-
tions of binary compatible modi�cations.

We expect that better formalizations will be found; in-
deed the formulation suggested in this paper is the re-
sult of many discussions and iterations over previous
approaches [20], and we continue work in this direc-
tion. Some of the outstanding questions are described
in chapter A.

Concepts for binary compatibility as proposed in [8]
in�uenced the Java language design. Ours is the only
formalization for a concrete language and proof of cor-
rectness we know of. In [2] fragments consisting of a sig-
nature and a body are used to describe linkable units,
and linking consists of a type checking and a substitu-
tion phase. Our formalism distinguishes between source
code and compiled code, mainly because in Java sepa-
rate compilation is not equivalent to compilation of all
parts together, a fact already pointed out but not pur-
sued in [2].

We shall extend Javas to encompass a larger sub-
set of Java, and extend safe binary compatibility to in-
clude access restrictions, static variables and methods,
etc. Further work includes re�ning the description of
separate compilation to consider compilation in partial
environments, rather than in the environment for the
whole program. For the computing students, e.g. , some
classes do not need to be compiled in the complete en-
vironment, because Cf(�st �cs �lab; pst)g = Cf(�st; pst)g.

It would be interesting to recast some of this work in
terms of a formal description of the Java byte-code and

byte-code veri�er (such as [15, 9]). The fact that sepa-
rate compilation of the types is not equivalent to compi-
lation of all types together can be seen as another case of
lack of full abstraction property in language translation,
which, as shown in [1] may lead to loss of protection.
It remains to investigate how far problems with binary
compatibility can be understood in these terms.

Finally, a more distant and ambitious task remains
the formalization of the dynamic linker/loader, and an
approach to the associated security issues.

Acknowledgements

We acknowledge the �nancial support from the EP-
SRC (Grant Refs: GR/L 76709 and GR/K 73282). We
are grateful to Guy Steele for valuable feedback, to
Gabrielle Sinnadurai, David von Oheimb and to the
anonymous ecoop and oopsla referees, and most par-
ticularly to one of them, for useful and detailed sugges-
tions on the presentation.

References

[1] Martin Abadi. Protection in Programming Lan-
guage Translations. In ICALP'98 Proceedings.
Springer Verlag, 1998. to appear, also available
at: http://gatekeeper.dec.com/pub/DEC/SRC
/research-resports/abstracts/src-rr-154.html.

[2] L. Cardelli. Program Fragments, Linking, and
Modularization. In POPL'97 Proceedings, January
1997.

[3] M. Dausmann, S. Drossopoulou, G. Persch, and
G. Winterstein. A Separate Compilation System
for Ada. In Proc. GI Tagung: Werkzeuge der Pro-
grammiertechnik. Springer Verlag Lecture Notes in
Computer Science, 1981.

[4] Drew Dean. The Security of Static Typing with
Dynamic Linking. In Fourth ACM Conference on
Computer and Communication Security, 1997. Re-
vised version Tech Report number SRI CSL 9704.

[5] Drew Dean, Edward W. Felten, and Dan S. Wal-
lach. Java Security: From HotJava to Netscape and
Beyond. In Proceedings of the 1996 IEEE Sympo-
sium on Security and Privacy, pages 190�200, May
1996.

[6] Sophia Drossopoulou and Susan Eisenbach. Java is
type safe � probably. In Proceedings of the Euro-
pean Conference on Object-Oriented Programming,
June 1997.

[7] Sophia Drossopoulou and Susan Eisenbach. To-
wards an Operational Semantics and a Proof of
Type Soundness for Java. In Jim Alvez Foss,
editor, Formal Syntax and Semantics of Java.
Springer Verlag Lecture Notes in Computer Sci-
ence, 1998. to appear, available at http://www-
dse.doc.ic.ac.uk/projects/slurp/.

[8] Ira Forman, Michael Conner, Scott Danforth, and
Larry Raper. Release-to-Release Binary Compati-
bility in SOM. In OOPSLA'95 Proceedings, 1995.

[9] Allen Goldberg. A Speci�cation of Java Load-
ing and Bytecode Veri�cation. Technical report,
Kestrel Institute, December 1997.

[10] James Gosling, Bill Joy, and Guy Steele. The Java
Language Speci�cation. Addison-Wesley, August
1996.

[11] James Gosling and H. McGilton. The Java
Language Environment A White Paper, http://
java.sun.com/docs/white/langenv, 1996.

[12] Tim Lindholm and Frank Yellin. The Java Virtual
Machine. Addison-Wesley, 1997.

[13] Leonid Mikhajlov and Emil Sekerinski. A study
of the fragile base class problem. In ECOOP'98
Proceedings. Springer Verlag, 1998. to appear.

[14] Tobias Nipkow and David von Oheimb. Java`ight
is type-safe � de�nitely. In POPL'98 Proceedings,
January 1998.

[15] Raymie Stata and Martin Abadi. A Type System
For Java Bytecode Subroutines. In POPL'98 Pro-
ceedings, January 1998.

[16] Guy Steele. Private Communication, January
1998.

[17] Donald Syme. Proving Java Type Sound. Technical
Report 427, Cambridge University, June 1997. to
appear in Formal Syntax and Semantics of Javatm,
edited by Jim Alves Foss, Springer, LNCS.

[18] US Department of Defense. Reference Manual for
the Ada Programming Language, 1983. ANSI/MIL-
STD-1815 A.

[19] Niklaus Wirth. Programming in Modula-2.
Springer-Verlag, 1982.

[20] David Wragg, Sophia Drossopoulou, and Susan
Eisenbach. Java binary compatibility is almost cor-
rect. Technical Report 3/98, Imperial College De-
partment of Computing, February 1998. available
at http://www-dse.doc.ic.ac.uk/projects/slurp/.

Appendix

A Modelling link compatibility

In this section we discuss the concept of link compati-
bility, analyze and justify our approach, and give alter-
native de�nitions. As we said earlier, link compatibil-
ity was introduced to capture the guarantee of binary
compatibility. Consider again the description from the
Java language speci�cation:

�A change to a type is binary compatible with
(equivalently, does not break compatibility with)
pre-existing binaries if pre-existing binaries
that previously linked without error will con-
tinue to link without error.�

A.1 The issues

Five issues arose when considering the formalization of
the above description:

� representation of �binaries�;

� representation of �change�;

� the extent of the role of the pre-existing binaries;

� the number of �pre-existing binaries� involved;

� representation of �linking� and �linking without er-
ror�;

which we shall discuss in some detail.

The representation of �binaries� In most current
Java implementations binaries are Java byte-code pro-
grams (i.e. .class �les) However, this does not have to
be so; indeed, any code satisfying the requirements out-
lined in ch 13.1 of the Java speci�cation may be used.
Furthermore, the byte-code is at a di�erent level of ab-
straction from most programmers' view of Java. There-
fore, we represent �binaries� as Javase bodies. Javase has
the advantage of having a type system, and of contain-
ing all necessary information for execution.

The representation of �change� Since Java programs
are represented by environment and body pairs, change
consists of a new environment and body. Should the
body of the change be a Javase or a Javas body? We
chose to have Javas bodies, because this models more
accurately source code modi�cations as introduced by
a programmer, and also expresses the fact that binary
compatible changes allow parts of a program to have
been compiled with di�erent versions of the environ-
ment.

The extent of the role of the pre-existing binaries

In how far is the context F0 crucial for the compilation

of the modi�cation F0? Do we allow the modi�cations
to depend on contexts? Our answer is yes, because we
want to model modi�cations to libraries that are not
stand-alone. This is why in de�nition 6 we require

s̀eF0�F 3 =) s̀e(F0�F)�C
F0 3

as opposed to the stronger requirement

s̀eF0�F 3 =) s̀eF0�(F�C
F0) 3.

The number of �pre-existing binaries� involved

The term �pre-existing binaries� is used twice in the
quote from before, but it is not necessarily clear, how
many di�erent pre-existing binaries are involved. Either
one set is involved, meaning:

A change is binary compatible with pre-existing
binaries if these pre-existing binaries link with-
out error and continue to do so after the change.

or, two sets are involved, meaning:

A change is binary compatible with pre-existing
binaries if any further pre-existing binaries
that link without error with the former pre-
existing binaries continue to do so after the
change to the former pre-existing binaries.

We have chosen the second interpretation, and distin-
guish F, the binaries being modi�ed, from F0, the �con-
text� binaries that linked without error with F.

In de�nition 6 the modi�cations F0 are considered
link compatible for F, i� for all contexts F0, such that F
and F0 linked without error, the e�ect of F0 onto F will
link with F0 without error. However, in section A.2 we
shall discuss the repercussions of considering one set of
pre-existing binaries.

The representation of �linking�, and of �linking

without error� Linking is described in some detail in
12.3 of [10], as a process taking place after loading, and
consisting of veri�cation, preparation and resolution of
symbolic references. Veri�cation ensures that a binary
is structurally correct; for the byte-code it is described
in some detail in [12] and also in [15]. Preparation in-
volves creation of static �elds and their initialization
to default values. Resolution involves checking sym-
bolic references (containing type information) to meth-
ods and �elds of other classes and replacing them by
more direct references [10].

A formal description of the linker requires the de-
velopment of more formal apparatus, e.g. [9]. However,
for the purposes of the current investigation, we do not
need a complete description of the linking process, be-
cause we clearly are not interested in the outcome of
the linker, we are only interested in the possible errors
reported by it. All checks performed during veri�cation
and resolution correspond to checking type correctness
of Javase terms.

Thus, we claim for Javase fragments F1, F2, that if

s̀eF1 3, then the code corresponding to F1 would pass
the veri�er checks, and if s̀eF1�F2 33, then all sym-
bolic references in the code corresponding to F1 and F2
would be successfully resolved. Therefore, the require-
ment s̀eF1�F2 3 together with the requirements that
all declared classes have a class body, adequately rep-
resents �linking without error�. In section A.2 we shall
discuss the repercussions of an alternative representa-
tion of �linking without errors' through run-time safety,
a property whereby program execution will never raise
linker-related exceptions c.f. de�nition 10.

A.2 Alternative de�nitions

The approach described in the main body of this pa-
per represents a certain stance on the issues identi�ed
above, one which we have found to be the most reason-
able and fruitful. Naturally we have given some con-
sideration to other possibilities, and in this section we
compare three alternatives to de�nition 6, which cor-
respond to di�erent answers to the last two of the �ve
issues.

We consider the representation of �linking without
error� either through type-safety of the program, or
though the run-time safety, For the number of pre-
existing binaries, we consider the cases where either one
or two sets are taken into account. This produces the
following four alternatives:

pre-existing two one
binaries

linking
without error

type link weak link
safe compatible compatible

run-time global link local link
safe compatible compatible

De�nition 9 describes a variation of link compatibil-
ity where we consider a modi�cation F0 with respect
to some speci�c pre-exiting binaries F only, and require
the result to link without error:

De�nition 9 A Javas fragment F0 is a weak link com-
patible change of a Javase fragment F, i�

` F�
C
F0 3

This de�nition would allow the removal of a method
from a class, provided that that method were not called
inside any of the method bodies in F. Therefore, this
de�nition is appropriate only in cases where we have an
exact knowledge of the classes which we want to link

with the modi�ed classes. For well-formed fragments
link compatibility implies weak link compatibility.

Lemma 8 If a Javas fragment F0 is a link compatible
change of a Javase fragment F, and ` F 3, then F0 is a
weak link compatible change of F.

We shall now consider an alternative representation
of �links without error�, in terms of the run-time be-
haviour of the resulting program, whereby we call a
Javase program run-time safe if its execution does not
cause the exceptions that would be detected by a linker
(i.e. absence of a method body, or absence of a �eld).

We call linker exceptions those exceptions that could
be raised by resolution; these are AbstractMethodError,
IllegalAccessError, InstantiationError, etc. In
other words, execution of a run-time safe program may
terminate, or may halt or because of a prede�ned or
user de�ned exception, but not because an appropriate
body or �eld was absent.

De�nition 10 A Javase fragment F = (�; p) is run-
time safe i�, for all terms t, states �, with execution
of p leads to con�guration ht; �i:

� t = throw �i, �(�i) =�:::�E =)
E is not a linker exception.

The subject reduction theorem implies that type safety
and completeness guarantee run-time safety.

Conjecture 1 If s̀eF 33, then F is run-time safe.

Our next attempt at a formal de�nition of the guar-
antee of binary compatibility will be in terms of run-
time safety. In de�nition 11 we only consider one set
of pre-existing binaries, whereas in de�nition 12 we
consider two.

De�nition 11 A Javas fragment F0 is a local link com-
patible change of a Javase fragment F, i�

F�
C
F0 is run-time safe.

Therefore, provided that F�
C
F0 is run-time safe, F0 is a

local link compatible change, even if s̀eF�C
F0 3 did not

hold! Thus local link compatibility seems to guarantee
no more than what is required. The above de�nition
would allow the addition of a method to an interface,
provided that this method was never called from F; this
corresponds to the second phase from our example in
section 2.2. However, we see no practical way of en-
suring that a change satis�es the local link compatible
change property. More importantly, after a local link
compatible change and a locally type correct compi-
lation run-time safety is not guaranteed any more, as
demonstrated by the third phase of the example from
section 2.2.

Therefore, a type correct compilation cannot be con-
sidered a local link compatible step, and a type-correct
compilation of a new fragment F0 does not guarantee
run-time safety, unless the original fragment F was type
correct:

Conjecture 2 If a Javas fragment F0 is weak link com-
patible change of a Javase fragment F, then F0 is a local
link compatible change of F.

The opposite direction of the implication does not hold.
For example, the addition of a method to an interface,
although a local link compatible change, does not al-
ways create a type correct fragment and therefore is
not not weak link compatible.

The requirement of local link compatibility is weak,
because it cannot guarantee much after subsequent lo-
cally type correct compilations. In the next de�nition
we require the property of run-time safety to be pre-
served in all appropriate contexts, and by subsequent
locally type-correct compilations of class bodies.

De�nition 12 A Javas fragment F0 is a global link
compatible change of a Javase fragment F, i� for all
Javas fragments F00, Javase bodies p00, Javase fragment
F00 = (�; p00), where F0 disjoint from F0, F00:

F0�F is run-time safe
=)

(F0�F)�C
F0 �

C
F00 is run-time safe

(or is unde�ned).

Thus, the addition of a method to an interface is
not a global link compatible change even if this method
were not called in F, F0 or F0, as it may be called in
a subsequent modi�cation F00. Global link compatible
changes are local link compatible changes.

Lemma 9 If a Javas fragment F0is global link compati-
ble change of a Javase fragment F, then F0is a local link
compatible change of F.

It seems to us that global link compatibility is the
weakest possible description of the guarantee of binary
compatibility. It remains open, in how far global link
compatibility is equivalent to link compatibility, and if
it is not, whether there are useful cases covered by one
but not the other. The following diagram summarizes
the relationship between the four de�nitions given in
this section:

link
compatible if s̀eF 3

��

?
��

weak link
compatible

��
global link
compatible if F run-time

safe

��

?

��

local link
compatible

B The syntax of environments

Env ::= [StandardEnv ;] Decls
StandardEnv ::= Exception ext Object...NullPE ext Exception...; ...
Decls ::= Decl ; Decls j �
Decl ::= ClassId ext ClassName impl (InterfName)�

VarType ::= SimpleType j ArrayType
SimpleType ::= PrimType j ClassName j InterfaceName
ArrayType ::= SimpleType[] j ArrayType[]

j InterfaceName

PrimType ::= bool j char j int j ...
Type ::= VarType j void j nil

{(VarId :VarType)� (MethId : MethType)�}
j InterfId ext InterfName�{(MethId : MethType)�}
j VarId : VarType

MethType ::= ArgType ! (VarType j void)
ArgType ::= [VarType (�V arType)�]

C The syntax of Javas

ProgramBody ::= (ClassBody)�

ClassBody ::= ClassId ext ClassName {(MethBody)�}
MethBody ::= MethId is (� ParId : VarType.)�

{Stmts ; return [Expr] }
Stmts ::= Stmt j Stmts ; Stmt
Stmt ::= if Expr then Stmts else Stmts

j Var = Expr j Expr j throw Expr
j try Stmts (catch ClassName Id Stmts)� finally Stmts
j try Stmts (catch ClassName Id Stmts)+

Expr ::= Value j Var j
Expr.MethName (Expr�) ([Expr])+([])�

Var ::= Name j Var.VarName j Var[Expr] j this

Value ::= PrimValue j null

PrimValue ::= intValue j charValue j byteValue j ...

D Some of the Javas type checking rules

� ` 3 i is integer; c is character; x is identi�er
� ` null : nil; � ` true : bool; � ` false : bool; � ` i : int; � ` c : char; � ` x : �(x)
Cf(�; z)g = z if z is integer, character, identi�er, null; true, or false

� ` v : T
� ` e : T0

� ` T0 �wdn T

� ` v := e : void
Cf(�; v := e)g = Cf(�; v)g := Cf(�; e)g

� ` return : void
Cf(�; return)g = return

� ` e : bool
� ` stmts : void � ` stmt : T � ` stmts0 : T0

� ` stmts ; stmt : T
Cf(�; stmts ; stmt)g = Cf(�; stmts)g ; Cf(�; stmt)g
� ` if e then stmts else stmts0 : void
Cf(�; if e then stmts else stmts0)g = if Cf(�; e)g then Cf(�; stmts)g else Cf(�; stmts0)g

� ` v : T[]
� ` e : int
� ` v[e] : T
Cf(�; v[e])g = Cf(�; v)g[Cf(�; e)g]

� ` ei : Ti i2f1:::ng; n � 1
MostSpec(�; m; T1; T2 � :::� Tn) = f(T; MT)g
� ` e1:m(e2:::en) : Res(MT)
Cf(�; e1:m(e2:::en))g = Cf(�; e1)g:[Args(MT)]m(Cf(�; e2)g:::Cf(�; en)g)

� ` v : T
FDec(�; T; f) = (C; T0)
� ` v:f : T0

Cf(�; v:f)g = Cf(�; v)g:[C]f

mBody = m is �x1 : T1:::�xn : Tn:fstmtsg
xi 6= this i2f1:::ng
z1; :::; zn are new variables in �
�; z1 : T1:::zn : Tn ` stmts0 : T0

� ` T0 �wdn T

� ` mBody : T1 � :::� Tn ! T

Cf(�; mBody)g = m is �x1 : T1:::�xn : Tn:fCf(�; stmts)gg

n � 0; k � 0; m � 0;� ` � 3

�(C) = C ext C0 impl I1:::Infv1 : T1:::vk : Tk; m1 : MT1:::ml : MTlg
cBody = C ext C0 fmBody1; :::mBodylg; stmts0 = stmts[z1=x1; :::; zn=xn]
�(this) = Undef

mBodyi = mi is mPrsStsi i2f1:::lg
�; this : C ` mBodyi : MTi i2f1:::lg
� ` cBody 3

Cf(�; cBody)g = C ext C0 fCf(�; mBody1)g:::Cf(�; mBodyl)gg

p = p1p2 =) Cl(p1) \ Cl(p2) = ;
n � 0; p = cBody1; :::cBodyn
cBodyi = Ci ext :::f:::g for i2f1:::ng
� ` cBodyi 3 i2f1:::ng
� ` p 3

Cf(�; p)g = Cf(�; this : C; cBody1)g:::Cf(�; this : C; cBodyn)g

� ` p 3

` (�; p) 3

Cl(�) = Cl(p)
� ` p 3

� ` p 33

E Altering the syntax of Javas to obtain Javase syntax

Expr ::= ...
j Expr.[ArgType]MethName(Expr�) replacesExpr.MethName(Expr�)
j Stmts

Var ::= ...
j Var.[ClassName]VarName replacesVar.VarName

F Some of the Javase type checking rules

� s̀e v : T
� ` T �wdn C

FDec(�; C; f) = (C; T0)
� s̀e v:[C]f : T0

� s̀e ei : T0i i2f1:::ng; n � 0
� ` T0i �wdn Ti i2f2:::ng
FirstFit(�; m; T01; T2 � :::� Tn) = f(T; MT)g
� s̀e e1:[T2 � :::� Tn]m(e2:::en) : Res(MT)

