
A Translation Method for
Belnap Logic

Imperial College Research Report DoC 98/7

Odinaldo Rodrigues
Department of Computing,

King’s College, London
rodrigu@dcs.kcl.ac.uk

Alessandra Russo
Department of Computing,

Imperial College, London,
ar3@doc.ic.ac.uk

September 1998

Abstract

In this report we present a translation of Belnap’s four-valued
logic[1] into classical first-order logic. Soundness and completeness
of the translation approach with respect to Belnap’s notion of entail-
ment are proved. Examples derivations are also given. These results
provide the basis for developing a belief revision approach for Bel-
nap’s logic in terms of standard AGM [3] belief revision operators for
classical logic1.

1 Introduction

Standard familiar systems such as classical logic, modal logic, intuitionistic
logic have in common the principle that contradicting information entails
any arbitrary sentence. This principle, known as ex falsum quod libet, is,

1The use of a classical revision operator for non-classical logics will be investigated in
a forthcoming paper.

1

however, not always appropriate to describe real application deduction pro-
cesses, where information are often deduced from quite possibly inconsistent
databases. Alternative systems have been developed, examples of which in-
clude the logic of first-degree entailment (also known as system E) and the
relevant implication system (or system R), in which deductions between for-
mulae hold only when there is some “connection” between the formulae (e.g.
the formulae share some sentential variable). In [2] Belnap provides a se-
mantic characterization of first-degree entailment together with a sound and
complete axiomatisation, emphasising its connection with the problem of
“how a computer should think” [1].

We provide a translation of Belnap’s semantics into a set of first-order
logic formulae. Sets of Belnap formulae are translated into a conjunction
of atomic predicates. An appropriate classical axiomatisation is defined,
which captures the semantic behaviour of Belnap connectives, thus allowing
Belnap’s notion of entailment to be expressed in terms of classical entailment
from the translated theories. This embedding into classical logic has two main
advantages. The first one is to provide the basis for analysing belief revision
operations for these types of logics. Secondly, theorem provers for four-valued
logic can be developed by applying existing classical theorem provers on the
classical logic translation of these logics.

In Section 2.1, we illustrate Belnap’s semantics, showing some of the
features of the deduction process that it formalises and its differences with
respect to familiar classically-based deductive systems. In Section 2.2, we
define our translation approach and the classical axiomatization of Belnap’s
four-valued semantics, providing some illustrative derivation examples. We
prove the soundness and completeness results of the translation approach,
showing that it preserves Belnap’s deductive process.

2 Translating Belnap’s four-valued logic into

classical logic

We introduce specific notation as and when necessary throughout the rest
of the report. However, the reader might like to bear the following in mind:
propositional symbols will usually begin with a lower-case letter, whereas
predicate symbols will often begin with an upper–case letter. Greek–letter
meta–variables will be used to refer in general to wffs of the Belnap logic

2

(i.e. “object logic”), whereas upper-case meta-variable letters will be used
to denote wffs of first-order logic (i.e. “target logic”). Larger entities such as
structures, sets, theories and languages will often be symbolised in caligraphic
font, A,B, C,

2.1 Belnap’s four-valued Logic

As mentioned in [1], Belnap describes its semantic characterisation of four-
valued logics as an appropriate logic for expressing practical deductive pro-
cesses. In database management or question-answer systems, collections of
data are proned to include either explicit or hidden inconsistencies. This is
due for instance to the fact that information may come from different con-
tradicting sources. The use of a classical deductive process would not be
appropriate in this case – since any arbitrary information is classically deriv-
able from an inconsistent collection of data. Explicit inconsistencies may
come from different sources equally reliable, whereas hidden inconsistencies
are identified only by means of deductive reasoning. The motivation for
Belnap’s approach is to provide a logic less sensitive to inconsistencies.

Syntax Let LB be the Belnap propositional language composed of a count-
able set of propositional letters {p, q, r, . . .} and the connectives ¬, ∧ and ∨.
The set of wffs is given by the standard construction of formulae. For the
finite case, a Belnap theory can be seen as a single formula given by the
conjunction of a given finite set of wffs. The formula ¬p∧ (¬q∨ r)∧¬r is an
example of a finite Belnap theory. Because of the soundness and complete-
ness results of Section 2.2, it would not be difficult to extend this logic to
deal with infinite theories.

In a proof theoretical terms, Belnap’s four-valued logic is characterised
by a finite axiomatization. Given two Belnap wffs α and β, the expression
α → β denotes that α entails β. In this sense, the symbol → can be seen
as a derivability relation between formulae, or equally between theories and
a formula. The expression α ↔ β denotes that β can be derived from α
(α → β) and vice-versa, or, semantically, that α and β are equivalent. The
axiomatization given below is known to be sound and complete with respect
to the semantics of the logic presented later.

Definition 1 [Axiomatization] Let α1, . . . , αn, β1, . . . , βm and γ be Belnap
wffs. A proof theory for Belnap four-valued logic, denoted with AxB, is the

3

following set of expressions:

1. ¬¬α↔ α.

2. ¬(α ∧ β) ↔ ¬α ∨ ¬β.

3. ¬(α ∨ β) ↔ ¬α ∧ ¬β.

4. α ∨ β ↔ β ∨ α.

5. α ∨ (β ∨ γ) ↔ (α ∨ β) ∨ γ.
6. α ∨ (β ∧ γ) ↔ (α ∨ β) ∧ (α ∨ γ).
7. α ∧ β ↔ β ∧ α.

8. α ∧ (β ∧ γ) ↔ (α ∧ β) ∧ γ.
9. α ∧ (β ∨ γ) ↔ (α ∧ β) ∨ (α ∧ γ).

10. α1 ∧ . . . ∧ αn → β1 ∨ . . . ∨ βm provided that βj = αi for some i and j.

11. α→ β and β → γ then α→ γ.

12. α↔ β and β ↔ γ then α↔ γ.

13. α→ β if and only if ¬β → ¬α.

14. (α ∨ β) → γ if and only if α→ γ and β → γ.

15. α→ β if and only if β ↔ (α ∨ β)

16. α→ β if and only if α↔ (α ∧ β)

17. α→ (β ∧ γ) if and only if α→ β and α→ γ.
�

The first nine expressions correspond to standard classical properties of nega-
tion, disjunction and conjunction (e.g., commutativity, associativity, De Mor-
gan laws). We will sometimes refer to them as the Belnap axioms. Ex-
pressions 10, 11 and 13 capture respectively the reflexivity, transitivity and
contrapositive properties of the derivability relation →, whereas expressions
14-17 correspond to standard classical rules for introduction and elimination
of ∨ and ∧ respectively. We will sometimes refer to expressions 11-17 as the

4

Belnap rules. Any Belnap expression of the form ψ → ϕ can be either an
instantiation of one of the axioms 1-10 in definition 1, or obtained using some
of the Belnap rules 11-17, together with some axiom instantiations. For any
given expression ψ → ϕ, we therefore define the notion of length as the “least
number” of Belnap rule applications needed to show ψ → ϕ.

The similarity between the above rules and classical rules shows that
four-valued logics are indeed very close to standard classical logic. The basic
classical rule, which is missing in Belnap logic and which makes this logic
paraconsistent is the rule (α ∧ ¬α) → β, often referred to as ex falsum quod
libel. This rule allows within a classical framework to derive any arbitrary
information from inconsistent assumptions. Belnap logic does not allow so.

Semantics The semantics underlying Belnap’s logic is four-valued. Let 4
be the set {T, F, Both, None}. The elements of this set are the four different
truth-values which an atomic sentence can have within a given “state of
information”. The intuitive meaning of these values is given as follows:

1. p is stated to be true only (T)

2. p is stated to be false only (F)

3. p is stated to be both true and false, for instance, by different sources,
or in different points of time (Both), and

4. p’s status is unknown. That is, neither true, nor false (None).

The four values form a lattice, called the approximation lattice and de-
noted by A4 where the ordering relation v goes “uphill” and respects the
monotonicity property, in the sense that information about the truth-value
of a formula “grows” from None to Both. A4 can be seen in Figure 1.

The truth values of complex formulae are defined based on A4 and result
in the truth tables shown in Figure 2.

The truth tables constitute a lattice, called logical lattice and denoted
by L4 (Figure 3). In L4, logical conjunction is identified with the meet
operation and logical disjunction with the join operation.

The notion of a interpretation of formulae is expressed in Belnap’s logic
in terms of set-ups. A set-up s is a mapping of the atomic formulae into
4. Using the truth tables given in Figure 2, each set-up can be extended
to a mapping of all formulae into 4, in the standard inductive way. We
call this extended set-up a 4-valuation and denote it with v. Thus, for any

5

Both

F

None

T

Figure 1: The approximation lattice A4.

given Belnap formula α and set-up s, the valuation v(α) is always well-
defined. This makes Belnap’s semantic somewhat different from the classical
semantics, because the notion of model, that is, an interpretation that makes
a formulae true is non-existent.

The notion of semantic entailment is then expressed in terms of a partial
ordering � associated with the logical lattice L4. We will denote the se-
mantic entailment relation with ⇒ to distinguish it from the proof theoretic
notion of entailment →. The two notions are equivalent, as given by the cor-
respondence 1, and the symbols → and ⇒ will be often used interchangeably.

Definition 2 Let α and β be two Belnap formulae. We say that α entails β,
written α⇒ β, if for all 4-valuations v, v(α) � v(β), where � is the partial
ordering associated with the lattice L4. Analogously, a non empty finite set
of formulae Γ entails α, if the conjunction of all formulae in Γ entails α.

�

(Correspondence)
α→ β iff α⇒ β (1)

We now introduce some terminology which will be used throughout this
report.

Definition 3 Let α be a Belnap formula and let v be a 4-valuation. We say
that α is

• at least true under v if v(α) = T or v(α) = Both.

• at least false under v if v(α) = F or v(α) = Both.

6

∧ None F T Both

None None F None F

F F F F F

T None F T Both

Both F F Both Both

Truth-table for the connective ∧

∨ None F T Both

None None None T T

F None F T Both

T T T T T

Both T Both T Both

Truth-table for the connective ∨

None F T Both

¬ None T F Both

Truth-table for the connective ¬

Figure 2: Truth-tables for Belnap’s connectives.

• not true under v if v(α) = F or v(α) = None.

• not false under v if v(α) = T or v(α) = None. �

Using the above terminology, the notion of semantic entailment between
a theory and a formula given in Definition 2 can be equivalently expressed
as follows.

Definition 4 Let Γ be a set of Belnap formulae and α a Belnap formula. Γ
entails α if and only if for every 4-valuation v,

T

BothNone

F

Figure 3: The logical lattice L4.

7

i) if all the formulae in Γ are at least true under v, then α is at least true
under v;

ii) if all the formulae in Γ are not false under v, then α is not false under
v. �

This definition will play an important role in the soundness and com-
pleteness proofs of the first-order Belnap translation with respect to Belnap
semantics.

2.2 The translation into classical logic

In this section, we describe a translation approach of Belnap logic into first-
order logic and show that it is sound and complete with respect to Belnap’s
semantic notion of entailment. Let L be a two sorted first-order language
composed of the sort F , called B-formulae, and the sort V called truth values.

The set of constants of the sort F is the set of propositional letters in
Belnap’s logic, whereas terms of F are constructed using three main functions
¬, ∧, and ∨ which correspond to the Belnap connectives. The set of ground
terms of F is therefore equivalent to the set of Belnap wffs. The sort V is
instead composed of two constant symbols {tt,ff}, the basic constants from
which Belnap’s four-valued semantics can be constructed. L also contains
the two-sorted binary predicate holds. holds takes as first arguments, F
terms, and as second arguments V terms. F variables will be denoted with
x, y, z, First-order formulae are constructed in the usual way.

Ground atomic formulae can be of two types holds(ϕ, tt) and holds(ψ,ff)
for any Belnap wffs ϕ and ψ. Atomic formulae of the first type mean that
“tt ∈ v(ϕ)”, for some 4-valuation v, which is equivalent to say that for some
4-valuation, ϕ is at least true. Atomic formulae of the second type state
instead that “ff ∈ v(ψ)”, for some 4-valuation v, which is equivalent to say
that for some 4-valuation, ψ is at least false. With these two types of atomic
formulae it is possible to express Belnap’s full four-valued semantics. In order
to simplify the proof, we extend the sort V with four constant symbols T , F

, None and Both, as follows:

Definition 5 Let α be a Belnap formula. The four truth values that α can
assume in Belnap semantics is expressed in the first-order translation by the

8

following additional types of atomic formulae:

holds(α,T)
def
= holds(α, tt) ∧ ¬holds(α,ff)

holds(α, F)
def
= ¬holds(α, tt) ∧ holds(α,ff)

holds(α,None)
def
= ¬holds(α, tt) ∧ ¬holds(α,ff)

holds(α,Both)
def
= holds(α, tt) ∧ holds(α,ff)

�

The atomic formulae on the left-hand side express that under a 4-valuation
v, v(α) =T, v(α) =F, v(α) = None and v(α) =Both respectively. However,
these additional four types of atomic formulae are in reality a short-hand for
first-order formulae constructed from the basic language L. We will therefore
use throughout the report only the basic atomic formulae of L.

The semantic behavior of Belnap connectives is fully captured by the
following first-order axiomatisation.

Definition 6 Given the two languages LB and L, AB is the first-order ax-
iomatisation of Belnap four-valued semantics given by the following six ax-
ioms:

∀x[holds(x,ff) ↔ holds(¬x, tt)] (Ax 1)
∀x[holds(x, tt) ↔ holds(¬x,ff)] (Ax 2)
∀x, y[holds(x ∧ y, tt) ↔ (holds(x, tt) ∧ holds(y, tt))] (Ax 3)
∀x, y[holds(x ∧ y,ff) ↔ (holds(x,ff) ∨ holds(y,ff))] (Ax 4)
∀x, y[holds(x ∨ y, tt) ↔ (holds(x, tt) ∨ holds(y, tt))] (Ax 5)
∀x, y[holds(x ∨ y,ff) ↔ (holds(x,ff) ∧ holds(y,ff))] (Ax 6)

�

The translation function τ is a mapping from the set of Belnap wffs to the
set of ground atomic first-order formulae of the form holds(ϕ, tt). For a
given Belnap formula ϕ, its first order translation, denoted with τ(ϕ) or
simply ϕτ , is the first-order atomic formula holds(ϕ, tt). The translation of
a Belnap theory (i.e. finite sets of Belnap formulae) is therefore given by the
translation of the conjunction of all Belnap formulae included in the theory.
For instance, let Γ = {ϕ1, . . . , ϕn} be a Belnap theory, its translation τ(Γ),
or Γτ , is the atomic first-order formula holds(ϕ1 ∧ . . . ∧ ϕn, tt).

We are now going to prove that the above translation function together
with the axiomatisation AB is sound and complete with respect to the Bel-
nap’s semantic notion of entailment.

9

Theorem 1 (Correspondence) Let ψ and ϕ be two Belnap formulae.

ψ → ϕ iff AB, holds(ψ, tt) ` holds(ϕ, tt)
and AB,¬holds(ψ,ff) ` ¬holds(ϕ,ff).

The proof of the above theorem uses Lemmas 1 and 2. Lemma 1 expresses
the completeness of the translation function and the first-order axiomatisa-
tion with respect to Belnap’s notion of entailment.

The statement captures, in first-order terms, the notion of entailment,
given in Definition 4, whenever ψ is of the form α1∧. . .∧αn, with {α1, . . . , αn}
being a Belnap theory.

For the first conjunct of the statement, the assumption holds(ψ, tt) is
equivalent, by axiom (Ax 3), to holds(α1, tt) ∧ . . .∧ holds(αn, tt), which can
be read as “all αi, for each 1 ≤ i ≤ n, are at least true”. The consequence
holds(ϕ, tt) can also be read as ϕ is at least true. Analogously, for the second
conjunct in the statement, the assumption ¬holds(ψ,ff) is equivalent, by
axiom (Ax 4), to ¬holds(α1,ff)∧. . .∧¬holds(αn,ff), where each ¬holds(αi,ff)
can be read as “αi is not false”. Lemma 2 expresses instead the soundness
of the translation function and the first-order axiomatisation with respect to
belanp’s notion of entailment.

Lemma 1 (Completeness) Let ψ and ϕ be two Belnap formulae.
If ψ → ϕ then AB, holds(ψ, tt) ` holds(ϕ, tt) and

AB,¬holds(ψ,ff) ` ¬holds(ϕ,ff).

Proof: The proof is by induction on the length n of the derivation ψ → ϕ.
Base Case: n = 0. Then ψ → ϕ can only be an instantiation of one of the
axioms 1-10 given in Definition 1. The proof is therefore by cases on each of
these axioms. Only some of the cases are shown here. The remaining ones
are proved following the same type of argument.
Case 1: ψ → ϕ is an instantiation of α1 ∧ . . . ∧ αh → β1 ∨ . . . ∨ βk, for some
h and k such that αi = βj for some i and j. We show in Figure 4 that
AB, holds(α1 ∧ . . . ∧ αh, tt) ` holds(β1 ∨ . . . ∨ βk, tt) and in Figure 5 that
AB,¬holds(α1 ∧ . . . ∧ αh,ff) ` ¬holds(β1 ∨ . . . ∨ βk,ff).
Case 2: ψ → ϕ is an instantiation of α∨ (β∧γ) → (α∨β)∧ (α∧γ). We show
in Figure 7 that AB, holds(α∨ (β ∧ γ), tt) → holds((α∨β)∧ (α∧ γ), tt), and
in Figure 6 that AB,¬holds(α ∨ (β ∧ γ),ff) → ¬holds((α ∨ β) ∧ (α ∧ γ),ff).
Similar argument is applied in the case where ψ → ϕ is an instantiation of
(α ∨ β) ∧ (α ∧ γ) → α ∨ (β ∧ γ).

10

AB, holds(α1 ∧ . . . ∧ αh, tt) (Ax 3)

holds(α1, tt) ∧ . . . ∧ holds(αh, tt) (E∧)

holds(αi, tt) (equiv. rewriting)

holds(βj, tt) (I∨)

holds(β1, tt) ∨ . . . ∨ holds(βk, tt) (Ax 5)

holds(β1 ∨ . . . ∨ βk, tt)

Figure 4: First-order proof of Belnap axiom 10.

Inductive Step: We assume that there exists a first part of a derivation proving
an expression of the form α→ β with n−1 applications of Belnap rules; and
that the n-th application of a Belnap rule gives us the expression ψ → ϕ.
We reason by cases on each Belnap rule that could have been applied on this
n-th step.
Case 1: We assume that last rule application is the “if-part” of Belnap
rule 13 in Definition 1. Therefore, we have that there exists a proof of
¬ϕ → ¬ψ, with n − 1 rule applications. So by inductive hypothesis we can
say that AB, holds(¬ϕ, tt) ` holds(¬ψ, tt) and that AB,¬holds(¬ϕ,ff) `
¬holds(¬ψ,ff). We want then to show that

AB, holds(ψ, tt) ` holds(ϕ, tt)

and that
AB,¬holds(ψ,ff) ` ¬holds(ϕ,ff).

From the inductive hypothesis AB,¬holds(¬ϕ,ff) ` ¬holds(¬ψ,ff), we
get, by contrapositive of classical logic, that

AB, holds(¬ψ,ff) ` holds(¬ϕ,ff)

Hence, using Belnap axiom 2, we get AB, holds(ψ, tt) ` holds(ϕ, tt). To
show that AB,¬holds(ψ,ff) ` ¬holds(ϕ,ff) we consider the second part of

11

AB ,¬holds(α1 ∧ . . . ∧ αh, ff)

holds(β1 ∨ . . . ∨ βk, ff) (assumption)

holds(β1, ff) ∧ . . . ∧ holds(βk, ff) (Ax 6)

holds(βj , ff) (E∧)

holds(αi, ff) (equiv.rewriting)

holds(α1, ff) ∨ . . . ∨ holds(αh, ff) (I∨)

holds(α1 ∧ . . . ∧ αh, ff) (Ax 4)

⊥ (I¬)

¬holds(β1 ∨ . . . ∨ βk, ff)

Figure 5: First-order proof of Belnap axiom 10.

the inductive hypothesis. AB, holds(¬ϕ, tt) ` holds(¬ψ, tt) gives, by contra-
positive of classical logic that

AB,¬holds(¬ψ, tt) ` ¬holds(¬ϕ, tt).

Hence, by Belnap axiom 1, AB,¬holds(ψ,ff) ` ¬holds(ϕ,ff). The case for
the “only if-part” of Belnap rule 13 follows the same argument.

Case 2: We assume that last rule application is the “if-part” of Belnap rule
15 in Definition 1. Therefore, we have there exists a proof of α → β
with n − 1 rule applications, where ψ is equal to α and ϕ is equal to
α ∨ β. So by inductive hypothesis, AB, holds(α, tt) ` holds(β, tt) and that
AB,¬holds(α,ff) ` ¬holds(β,ff). We want to show that

1. AB, holds(β, tt) ` holds(α ∨ β, tt) and
AB, holds(α ∨ β, tt) ` holds(β, tt)

2. AB,¬holds(β,ff) ` ¬holds(α ∨ β,ff) and
AB,¬holds(α ∨ β,ff) ` ¬holds(β,ff).

12

AB,¬holds(α ∨ (β ∧ γ), ff) (Ax 6)

¬holds(α, ff) ∨ ¬holds(β ∧ γ, ff) (Ax 4)

¬holds(α, ff) ∨ (¬holds(β, ff) ∧ ¬holds(γ, ff)) (De Morgan Law)

(¬holds(α, ff) ∨ ¬holds(β, ff)) ∧ (¬holds(α, ff) ∨ ¬holds(γ, ff)) (Ax 6)

¬holds(α ∨ β, ff) ∧ ¬holds(α ∨ γ, ff) (Ax 4)

¬holds((α ∨ β) ∧ (α ∨ γ), ff)

Figure 6: First-order proof of left-to-right part of Belnap axiom 6.

The first part of (1) is quite straightforward. We show the second part.
Assume AB, holds(α ∨ β, tt). By axiom (Ax 5) and reflexivity of classical
logic, AB, holds(α ∨ β, tt) ` AB, holds(α, tt) ∨ holds(β, tt). By inductive
hypothesis, AB, holds(α, tt) ` holds(β, tt) and by reflexivity of classical logic

AB, holds(β, tt) ` holds(β, tt).
Therefore, using classical ∨-introduction rule,

AB, holds(α, tt) ∨ holds(β, tt) ` holds(β, tt).
Hence, AB, holds(α∨β, tt) ` holds(β, tt). The proof for (2) follows the same
argument.
All the other cases can be easily proved using appropriate properties and
rules of classical logic and, if necessary, the Belnap axioms. �

Lemma 2 (Soundness) Let ψ and ϕ be two Belnap formulae.
If AB, holds(ψ, tt) ` holds(ϕ, tt) and AB,¬holds(ψ,ff) ` ¬holds(ϕ,ff),

then ψ → ϕ.

Some additional propositions and definitions need to be given before proving
the above lemma. The soundness of the classical translation is based on the
idea that for any given Belnap 4-valuation it is always possible to construct
a classical interpretation I which satisfies the classical axioms AB and which
preserves Belnap’s semantic entailment. We show first how this classical
interpretation can be constructed and its properties.

13

AB, holds(α ∨ (β ∧ γ), tt) (Ax 5)

holds(α, tt) ∨ holds(β ∧ γ, tt) (Ax 3)

holds(α, tt) ∨ (holds(β, tt) ∧ holds(γ, tt)) (De Morgan Law)

(holds(α, tt) ∨ holds(β, tt)) ∧ (holds(α, tt) ∨ holds(γ, tt)) (Ax 5)

holds(α ∨ β, tt) ∧ holds(α ∨ γ, tt) (Ax 3)

holds((α ∨ β) ∧ (α ∨ γ), tt)

Figure 7: First-order proof of left-to-right part of Belnap axiom 6.

Definition 7 Let v be a Belnap 4-valuation from the set of Belnap wffs to
the power set ℘({tt,ff}). A classical interpretation associated with v, and
denoted with Iv, is a function defined as follows

• Iv(tt) = tt and Iv(ff) = ff.

Also, for each ground term α of sort F :

• Iv(α) = α, for each ground term α of sort F .

• Iv(holds) = {〈α, tt〉 | tt ∈ v(α)} ∪ {〈α,ff〉 | ff ∈ v(α))}
�

It is easy to show, by definition of Iv, that the following properties hold for
any Belnap formula α and 4-valuation v.

• v(α) = T if and only if Iv |= holds(α, tt) ∧ ¬holds(α,ff)

• v(α) = F if and only if Iv |= holds(α,ff) ∧ ¬holds(α, tt)
• v(α) = Both if and only if Iv |= holds(α, tt) ∧ holds(α,ff)

• v(α) = None if and only if Iv |= ¬holds(α, tt) ∧ ¬holds(α,ff)

The following proposition shows that a classical interpretation Iv associ-
ated to a given 4-valuation v is a model of the first-order axioms AB.

14

Proposition 1 Let v be a 4-valuation and let Iv be its associated classical
interpretation. Then Iv is a model of the classical axiomatisation AB.

Proof: The proof is by cases of each axiom of AB.

Case 1: (Ax 1). We want to show that Iv |= ∀x[holds(x,ff) ↔ holds(¬x, tt)].
We reason by contradiction. We assume that, for some x, Iv |= holds(x,ff)
and Iv 6|= holds(¬x, tt). By definition of Iv, ff ∈ v(x), which implies by the
¬ truth table that tt ∈ v(¬x). Hence Iv |= holds(¬x, tt) which contradicts
the hypothesis. Similarly for the other case, i.e. Iv 6|= holds(x,ff) and Iv |=
holds(¬x, tt).
Case 3: (Ax 3). We want to show that Iv |= ∀x, y[holds(x ∧ y, tt) ↔
(holds(x, tt) ∧ holds(y, tt))]. We reason by contradiction. Assume that, for
some x, Iv |= holds(x ∧ y, tt), and Iv 6|= holds(x, tt) or Iv 6|= holds(y, tt).
By definition of Iv, tt ∈ v(x ∧ y), which implies by the ∧ truth table that
tt ∈ v(x) and tt ∈ v(y). Therefore, Iv |= holds(x, tt) and Iv |= holds(y, tt),
which is in contradiction with the initial hypothesis. The second case, i.e.
assume that, for some x, Iv 6|= holds(x ∧ y, tt), and Iv |= holds(x, tt) and
Iv |= holds(y, tt), can be proved following the same argument.

Case 5: (Ax 5). We want to show that Iv |= ∀x, y[holds(x ∨ y, tt) ↔
(holds(x, tt) ∨ holds(y, tt))]. We reason by contradiction. Assume that, for
some x, Iv |= holds(x ∨ y, tt), and Iv 6|= holds(x, tt) and Iv 6|= holds(y, tt).
By definition of Iv, tt ∈ v(x ∨ y), which implies by the ∨ truth table that
tt ∈ v(x) or tt ∈ v(y). Therefore, Iv |= holds(x, tt) or Iv |= holds(y, tt),
which is in contradiction with the initial hypothesis. The second case, i.e.
assume that, for some x, Iv 6|= holds(x ∨ y, tt), and Iv |= holds(x, tt) or
Iv |= holds(y, tt), can be proved following the same argument.

Axioms 2,4 and 6 are proved in an analogous way of the proofs of Axioms,
1,3 and 5, respectively. �

Proof of Lemma 2. We prove the contrapositive statement. We assume that
ψ 6→ ϕ and we want to show that either AB, holds(ψ, tt) 6` holds(ϕ, tt) or
AB,¬holds(ψ,ff) 6` ¬holds(ϕ,ff). The hypothesis ψ 6→ ϕ implies different
cases or truth values for ψ and ϕ according to the ordering relation � over
the logical lattice L4. We consider these cases individually. ψ 6→ ϕ implies
that for some 4-valuation v, v(ψ) 6� v(ϕ).

Case 1: v(ψ) = T and v(ϕ) = Both. From v, we can construct the as-
sociated classical interpretation Iv. By definition, Iv |= holds(ψ, tt) and
Iv |= ¬holds(ψ,ff). But Iv 6|= ¬holds(ϕ,ff).

15

Case 2: v(ψ) = T and v(ϕ) = None. Then tt 6∈ v(ϕ). From v, we can construct
the associated classical interpretation Iv. By definition, Iv |= holds(ψ, tt)
and Iv |= ¬holds(ψ,ff). But Iv 6|= holds(ϕ, tt).

Case 3: v(ψ) = T and v(ϕ) = F. Then tt 6∈ v(ϕ). From v, we can construct
the associated classical interpretation Iv. By definition, Iv |= holds(ψ, tt)
and Iv |= ¬holds(ψ,ff). But Iv 6|= holds(ϕ, tt).

Case 4: v(ψ) = None and v(ϕ) = F. Then tt 6∈ v(ψ), ff 6∈ v(ψ) and tt 6∈
v(ϕ). From v, we can construct the associated classical interpretation Iv.
By definition, Iv |= ¬holds(ψ,ff), but but Iv 6|= ¬holds(ϕ,ff).

Case 5: v(ψ) = Both and v(ϕ) = F. Then tt ∈ v(ψ), ff ∈ v(ψ) and tt 6∈
v(ϕ). From v, we can construct the associated classical interpretation Iv.
By definition, Iv |= holds(ψ, tt), but but Iv 6|= holds(ϕ, tt). �

Proof of Theorem 1.
The “if-part” is given by Lemma 2 whereas the “only-if” part is given by
Lemma 1. �

3 Conclusions and Future work

In this report we have provided a translation method of Belnap’s four-valued
logic into classical logic. The translation method is sound and complete with
respect to Belnap’s notion of entailment in the sense that for two Belnap
formulae ψ and ϕ

ψ → ϕ iff AB, holds(ψ, tt) ` holds(ϕ, tt)
and AB,¬holds(ψ,ff) ` ¬holds(ϕ,ff).

where AB is an axiomatisation in first-order logic describing the properties
of Belnap’s logic.

This translation is to be used in a forthcoming paper where the use of
(classical) belief revision operators for non-classical logics will be investigated.

Acknowledgements

We would like to thank Prof. Dov Gabbay for useful discussions carried out
during the preparation of this report.

16

References

[1] N. Belnap. How a computer should think. In G. Ryle, editor, Contem-
porary Aspects of Philosophy, pages 30–56. Oriel Press, 1977.

[2] N. Belnap. A useful four-valued logic. In J. M. Dunn and G. Epstein,
editors, Modern Uses of Multiple-valued Logic, pages 8–37. D. Reidel,
1977.

[3] Peter Gärdenfors. Knowledge in Flux: Modeling the Dynamics of Epis-
temic States. A Bradford Book - The MIT Press, Cambridge, Mas-
sachusetts - London, England, 1988.

17

