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Abstract

A primal-dual interior point algorithm for solving general nonlinear programming

problems is presented. The algorithm solves the perturbed optimality conditions by

applying a quasi-Newton method, where the Hessian of the Lagrangian is replaced

by a positive de�nite approximation. An approximation of Fletcher's exact and

di�erentiable merit function together with line-search procedures are incorporated

into the algorithm. The line-search procedures are used to modify the length of

the step so that the value of the merit function is always reduced. Di�erent step-

sizes are used for the primal and dual variables. The search directions are ensured

to be descent for the merit function, which is thus used to guide the algorithm

to an optimum solution of the constrained optimisation problem. The monotonic

decrease of the merit function at each iteration, ensures the global convergence

of the algorithm. Finally, preliminary numerical results demonstrate the e�cient

performance of the algorithm for a variety of problems.
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1 Introduction

Interior point methods are a successful and e�cient class of techniques for solving large-

scale Linear Programming (LP) problems. After the announcement of the �rst interior

point method with polynomial complexity by Karmarkar [20], there has been a wide inter-

est in the application of these methods in LP. Among di�erent interior point approaches,

primal-dual algorithms have attracted most of the interest. Computational experiments

(eg, [24], [3]) and theoretical developments (eg, [5], [29]) have shown that they perform

much better than other interior point algorithms and outperform the simplex method in

many large-scale LP problems.

The computational success of primal-dual interior point methods in linear program-

ming has motivated substantial interest in their application in Nonlinear Programming

(NLP). Most of the e�ort has been focused on convex Quadratic Programming (QP)

(see for example [13], [23]) and convex NLP problems (see for example, [17], [16], [14]),

demonstrating that primal-dual interior point methods can solve those problems e�ciently.

However, only recently general (non-convex) NLP problems have been the subject of re-

search in this area. El-Bakry et al. [27], McCormick and Falk [8], and Yamashita [9] have

developed globally convergent primal-dual algorithms for that class of problems. Also

Lasdon et al. [12] have considered various primal-dual formulations of those problems and

reported their computational experience.

In this paper, we discuss a primal-dual interior point algorithm for general (non-

convex) NLP problems. We are interested in problems with both equality and inequality

constraints, and for notational simplicity we consider the NLP problem

min f(x)

ST g(x) = 0; x � 0

(1)

where x = (x1; :::; xn)T , and f : <n ! <, g : <n ! <q are given smooth functions. The

Lagrangian function of problem (1) is

L(x; y; z) = f(x)� yT g(x)� zTx (2)

where y 2 <q and z 2 <n are the Lagrange multiplier vectors of the equality and inequality

constraints, respectively. The �rst order necessary conditions for a local minimiser x� of

problem (1) are

rf(x�)�rg(x�)
T y� � z� = 0;

g(x�) = 0;

X�Z�e = 0; x�; z� � 0

(3)

where X� = diagfx1�; :::; x
n
� g, Z� = diagfz1� ; :::; z

n
� g, and rg denotes the Jacobian matrix

of the equality constraints.
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Interior point methods solve problem (1) by solving the parametrised equality con-

strained problems

min B(x;�) = f(x)� �
Pn

i=1 log(x
i)

ST g(x) = 0

(4)

for a decreasing sequence of positive barrier parameters �, converging to zero. The objec-

tive function of the parametrised problems (4) is the classical logarithmic barrier function,

�rst introduced by Frisch [6]. Since the logarithm is not de�ned for non-positive values,

the objective function of (4) is de�ned only in the interior of the feasible region. Fiacco and

McCormick [1] have shown under certain assumptions that, if x(�) is the exact solution of

problem (4) with � �xed, then the sequence fx(�)g generated as � ! 0, converges to an

optimum solution x� of the initial problem (1). The solution of problem (4) is determined

by solving its �rst order optimality conditions. The solution of these conditions is found

by using Newton's method, which is e�cient for convex programming.

Our approach for solving problem (1) is to use the primal-dual interior point framework

[15] to handle the inequality constraints and a Sequential Quadratic Programming (SQP)

framework [4] to handle the equality constraints. The motivation of our work is based

on the observation that the solution of the �rst order optimality conditions of any NLP

problem, which is the core of interior point algorithms, is not su�cient to guarantee

the convergence to an optimum solution, unless the problem is convex. In other words,

the algorithm applied, for example, on a minimisation problem, may converge to a local

maximum or even worse to a saddle point, since the �rst order optimality conditions are

also satis�ed at those points.

To avoid such situations, a merit function is incorporated within the primal-dual inte-

rior point algorithm. The adopted merit function has the property that its unconstrained

minimisers are solutions of the initial problem (1). The purpose of the merit function

is to guide the iterates of the algorithm to a minimiser of the initial problem. This is

achieved by ensuring that the merit function is decreased su�ciently at each iteration of

the algorithm.

Merit functions have been used extensively in SQP algorithms to achieve global con-

vergence. Recently, some merit functions have been used in interior point methods. One

example is the merit function which uses the logarithmic barrier function for the inequality

constraints and the classical quadratic penalty function for the equality constraints. That

merit function was proposed independently by Vanderbei and Shanno [25], and Akrotiri-

anakis and Rustem [11] and derives mainly from the merit function proposed and studied

by Rustem [2] in the context of SQP methods. Other merit functions have been proposed

and analysed by Yamashita [9], Gay et al. [7], and Gajulapalli and Lasdon [26].

This paper is organised as follows. In section 2 we present the basic framework of

primal-dual interior point methods for NLP problems. In section 3 we analyse the adopted

merit function and line search rules. In Section 4 we discuss the global convergence of the

algorithm. Finally, in Section 5 we report our computational experience.
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2 Primal-Dual Interior Point Methods

Primal-dual interior point algorithms �nd the solution of the initial problem (1), by solving

barrier problems (4) for a sequence of strictly positive barrier parameters. They consist

of two types of iterations: inner and outer. The inner iterations are associated with the

solution of the barrier problem (4) for a �xed value of the barrier parameter �, whereas

the outer iterations are associated with the reduction of �.

For � �xed, the Lagrangian function of problem (4) is

LB(x; y;�) = f(x)� �
nX
i=1

log(xi)� yT g(x) (5)

and its �rst order optimality conditions are given by the system of equations

rf(x)�rg(x)T y � �X�1e = 0

g(x) = 0:

(6)

where X = diagfx(1); :::; x(n)g and e = (1; :::; ; 1)T .

Introducing the non-linear transformation z = �X�1e, the above system of equations

can be written as

rf(x)�rg(x)T y � z = 0

g(x) = 0

XZe� �e = 0;

(7)

where Z = diagfz(1); :::; z(n)g and x; z > 0. The introduction of this transformation is

essential to the numerical success of the method since system (7) is more stable than

system (6).

Also, equations (7) di�er from the optimality conditions (3) of the initial problem only

in the third equation, known as the complementarity condition. Due to this di�erence,

system (7) is referred to as the perturbed optimality conditions of the initial problem. For

positive values of �, the solutions (x(�); y(�); z(�)) of the perturbed optimality conditions,

lie in the interior of the feasible region, and form the so-called central path [15]. As �! 0,

equations (7) approximate (3) with increasing accuracy. Consequently, the central points

(x(�); y(�); z(�)) converge to a point satisfying the optimality conditions (3) of the initial

problem.

Primal-dual algorithms use Newton's method to solve the perturbed optimality condi-

tions (7). At the k-th iteration and for � �xed, the �rst order change of system (6) yields
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the linear system of equations

2
66666664

Hk �rg(xk)
T �I

rg(xk) 0 0

Zk 0 Xk

3
77777775

0
BBBBBBB@

�xk

�yk

�zk

1
CCCCCCCA
= �

0
BBBBBBB@

rxL(xk; yk; zk)

g(xk)

XkZke� �e

1
CCCCCCCA

(8)

where Hk is the Hessian matrix of the Lagrangian function (2), or an approximation to it.

If we de�ne wk = (xk; yk; zk) and �wk = (�xk;�yk;�zk), system (8) can be written in a

more convenient and concise form as

J(wk)�wk = �F (wk;�); (9)

where F (wk;�) is the vector containing the perturbed optimality conditions, and J(wk)

is the corresponding Jacobian matrix.

If we solve the third equation of the Newton system (8) for �zk we obtain

�zk = �X�1
k Zk�xk � zk + �X�1

k e: (10)

Substituting (10) into the �rst equation of (8) we obtain the reduced system of optimality

conditions

2
6664
Hk +X�1

k Zk �rg(xk)
T

rg(xk) 0

3
7775

0
BBB@

�xk

�yk

1
CCCA = �

0
BBB@
rxLB(xk; yk;�)

g(xk)

1
CCCA (11)

The Newton direction �wk is then used to �nd the next iterate

wk+1 = wk +Ak�wk;

where Ak = diagf�xkIn; �ykIq; �zkIng and In, Iq are the n-th and q-th order identity

matrices respectively. The step-lengths �xk , �yk , and �zk are in the interval (0; 1] and may

all be equal to or di�erent from each other. Furthermore, �xk � �max
xk

and �zk � �max
zk

,

where

�max
xk

= 
 max
1�j�n

f�
x
(j)
k

�x
(j)
k

: �x
(j)
k < 0g (12)

and

�max
zk

= 
 max
1�j�n

f�
z
(j)
k

�z
(j)
k

: �z
(j)
k < 0g (13)

represent the maximum allowable step sizes, which guarantee that the iterates xk and zk
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always remain strictly feasible, for some 
 2 (0; 1).

The distance of the current point from the central path is measured by the Euclidean

norm of the perturbed optimality conditions, i.e., k F (wk;�) k. Once this measure is less

than a certain threshold value, the barrier parameter is reduced and the whole process is

repeated until the barrier parameter becomes zero.

3 Merit function and step-size rules

The aim of the merit function is to provide a measure of progress towards an optimum

solution of the barrier problems (4) as well as the initial problem (1). This is achieved by

ensuring that it decreases at each iteration of the algorithm. A procedure for adjusting the

step lengths of the variables is used in order to guarantee that the merit function decreases

at each iteration. Interior point methods use the logarithmic barrier function to eliminate

the inequality constraints of the initial problems. However, they do not provide any means

to eliminate the equality constraints, which are carried over without any transformation to

the barrier problems. Therefore the merit function is a combination of the barrier function

and the equality constraints.

Throughout the paper the following assumptions hold.

Assumptions:

A1: The second order derivatives of the objective function f and the constraints g are

continuous.

A2: The columns of the matrix [rg(x); ej : j 2 I0x] are linearly independent, where

I0x = fj : lim infk!1 x
(j)
k = 0; j = 1; 2; :::; ng and ej represents the j-th column of

the n� n identity matrix. Also the sequence fxkg is bounded.

A3: Strict complementarity of the solution w� = (x�; y�; z�) is satis�ed, that is if z
i
� > 0

then xi� = 0, for i = 1; 2; :::; n and vice versa.

A4: The second order su�ciency condition for optimality is satis�ed at the solution

point, i.e., if for all vectors 0 6= v 2 <n such that rg(j)(x�)
T v = 0, j = 1; 2; :::; q,

and eTj v = 0, for j 2 I0x, then v
Tr2

xxL(x; y; z)v > 0. Also, the approximation matrix

Hk is such that
1

M1
k v k2� vTHkv �M1 k v k

2 (14)

where M1 is a positive constant and the matrix Hk +X�1
k Zk is non-singular.

Furthermore we use the notation fk = f(xk), gk = g(xk), to denote the values of the

objective and constraint functions at the k-th iteration. The Euclidean norm is denoted

by k : k.
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3.1 Description of the merit function

The merit function used by our algorithm is based on the exact and di�erentiable penalty

function developed by Fletcher [22]. For the barrier problem (4) it has the form

�(x) = B(x;�)� g(x)T ŷ(x) +
1

2
c k g(x) k2; (15)

where c � 0 is the penalty parameter and

ŷ(x) =
h
rg(x)Trg(x)

i�1
rg(x)TrB(x;�): (16)

Note that the multipliers ŷ(x) in the merit function �(x) are the least squares estimates

of the optimal Lagrange multipliers of the barrier problem (4). Furthermore, since they

are continuous functions of x, they provide increasingly more accurate approximations of

the optimal Lagrange multipliers as the algorithm proceeds.

The function �(x) has the essential property of a merit function [21], that is, for �

�xed, x(�) is a local minimum of � if and only if it is a local minimum of the barrier

problem (4). However, its major disadvantage is that its gradient depends on the second

derivatives of the objective and constraint functions, due to the function ŷ(x). Hence if �

is to be used in a line search procedure of the form

�(xk + �xk�xk) � �(xk) + ��xkr�(xk)
T�xk; (17)

where � 2 (0; 1), the computational e�ort required for the calculation of r�(xk) may

damage the performance of the algorithm. To overcome this di�culty, we use an approxi-

mation of the merit function � de�ned by Powell and Yuan [19]. That approximation has

the useful property that its derivative does not depend on the second derivatives of the

objective or constraint functions.

Suppose that at the k-th iteration, the Newton direction (�xk;�yk;�zk) has been

determined and a trial step �xk;i is available. Since ŷ(x) is a continuous function, we have

ŷ(xk + ��xk;i�xk) � ŷk + � [ŷ(xk + �xk;i�xk)� ŷk] ;

for � 2 [0; 1], where ŷk = ŷ(xk). Similarly, the values of the merit function � between the

points xk and xk + �xk;i�xk can be approximated by the univariate function

�k(��xk;i) = B(xk + ��xk;i�xk;�)

� [ŷk + �(ŷ(xk + �xk;i�xk)� ŷk)]
T g(xk + ��xk;i�xk)

+
1

2
ck;i k g(xk + ��xk;i�xk) k

2; (18)

The strategies that determine the step sizes �xk;i and the penalty parameters ck;i for

di�erent i, are described in the following sections.

By direct substitution we can see that the approximate merit function �k has the

7



property

�k(0) = �(xk) and �k(�xk;i) = �(xk + �xk;i�xk) (19)

This property suggests that the line search procedure (17) can be replaced by

�k(�xk;i) � �k(0) + ��xk;i�
0
k(0) (20)

where �0k(0) is the �rst derivative of �k with respect to � at � = 0, de�ned as

�0k(0) = rB(xk)
T�xk �

1

�xk;i
[ŷ(xk + �xk;i�xk)� ŷk]

T gk

�ŷTkrgk�xk � ck;i k gk k
2 : (21)

Since �0k(0) does not require the calculation of second derivatives of the objective and

constraint functions, the approximate merit function �k is preferable to the initial exact

penalty function �.

3.2 Penalty parameter selection and step size rules

In this section we describe the mechanism which ensures that �xk is a descent direction for

the approximate merit function �k, and the procedure for adjusting the step size �xk;i to

guarantee reduction of �k at each iteration. We also describe the strategy that determines

the common step size �z for the dual variables y; z. The analysis assumes that the barrier

parameter � is �xed. By noting that the decrease of the approximate merit function and

equations (19) guarantee the decrease of the initial exact merit function �, we show that

the algorithm converges to a central point satisfying system (7).

In order to guarantee that �k is reduced at each iteration k, the derivative �0k(0) must

be negative. From the de�nition of �0k(0) we can see that if the penalty parameter ck;i is

large enough then �0k(0) can be negative. At the current iteration k, we select the value

of the penalty parameter ck;i such that the descent condition

�0k(0) � �
1

2

h
�T
k (Hk +X�1

k Zk)�k + ck;i k gk k
2
i
� �

1

4
ck;i k gk k

2� 0 (22)

is satis�ed. The index i represents the number of times the descent condition has been

checked at the k-th iteration.

Condition (22) is a modi�cation of the corresponding condition de�ned by Powell and

Yuan [19]. The matrix Hk +X�1
k Zk represents an approximation of the Hessian matrix

r2
xxLB(xk; yk;�) = Hk + �X�2

k

of the Lagrangian (5) of the barrier problem. The use ofHk+X
�1
k Zk instead ofr

2
xxLB(xk; yk;�)

is justi�ed by the fact that our algorithm determines the Newton direction by solving the

primal-dual system (8).
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If (22) is satis�ed, the penalty parameter does not increase, i.e., ck;i+1 = ck;i. Other-

wise, the penalty parameter is determined by

ck;i+1 = maxf2ck;i; � 2
�T
k (Hk +X�1

k Zk)�k

k gk k2
;

2

k gk k2
[
1

2
�T
k (Hk +X�1

k Zk)�k +rgk�xk

�
1

�k;i
[ ŷ(xk + �xk;i�xk)� ŷk ]

T gk � ŷTkrgk�xk ] g: (23)

The new value ck;i+1 of the penalty parameter guarantees that �0k(0) � 0, since (22)

is satis�ed. We then check if inequality (20) is satis�ed for ck;i+1 and the current value

of the step size �xk;i. If it is not satis�ed we reduce the step-size by choosing the new

one, �xk;i+1, from the interval [�1�xk;i; �2�xk;i], for some �1; �2 2 (0; 1) and �1 � �2. This

process is repeated until (20) is satis�ed for the corresponding values of ck;i+1 and �xk;i+1.

If on the other hand, (22) is satis�ed for ck;i+1 and �xk;i we set

xk+1 = xk + �xk;i�xk and ck+1;0 = ck;i+1 (24)

For the calculation of the new iterate of the dual variables z we use the information

provided by the new primal iterate xk+1. This is a modi�cation of the strategy suggested

by Yamashita [9] and Yamashita and Yabe [10].

While the barrier parameter � is �xed, we determine a step �
(j)
zk along the direction

�z
(j)
k , for each dual variable z

(j)
k , j = 1; 2; :::n, such that the box constraints

�(j)zk
= maxf� > 0 : LB

(j)
k � (x

(j)
k + �xk�x

(j)
k )(z

(j)
k + ��z

(j)
k ) � UB

(j)
k g: (25)

are satis�ed. The lower bounds LB
(j)
k and upper bounds UB

(j)
k , j = 1; 2; :::; n are de�ned

as

LB
(j)
k = minf

1

2
m�; (x

(j)
k + �xk�x

(j)
k )z

(j)
k g; (26)

and

UB
(j)
k = maxf2M�; (x

(j)
k + �xk�x

(j)
k )z

(j)
k g; (27)

where the parameters m and M are chosen such that

0 < m � minf1;
(1� 
)(1 � 


(M0)�
)minifx

(j)
k z

(j)
k g

�
g; (28)

and

M � maxf1;
maxifx

(j)
k z

(j)
k g

�
g > 0; (29)

with 
 2 (0; 1) and M0 a positive large number. These two parameters are always �xed

to constants which satisfy (28) and (29), while � is �xed. The values of m and M change
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when the barrier parameter � is decreased.

The common dual step length �zk is the minimum of all individual step lengths �
(j)
zk

with the restriction of being always not more that one, namely

�zk = minf1; min
1�j�n

f�(j)zk
gg: (30)

The step-size for the dual variables y can be either �yk = 1 or �yk = �zk .

The di�erence between the present step-size rule and the one proposed in [10] lies in

the de�nition of the lower bounds LB
(j)
k , j = 1; 2; :::; n of the box constraints (25). In

particular, the term 1 � 
=(M0)
� 2 (0; 1) in the de�nition of the parameter m, given

by (28), results in the lower bounds LB
(j)
k being smaller than the corresponding bounds

de�ned in [10]. Consequently, the step lengths �zk are larger than those in [10]. Also by

noting that

lim
�!0

(1� 
=(M0)
�) = 1� 


and

z
(j)
k + �zk�z

(j)
k � (1� 
)z

(j)
k > 0; for all j = 1; 2; :::n

it can be shown that asymptotically the algorithm accepts the maximum allowable step

for the dual variables.

A summary of the procedure we use to �nd the new penalty parameter and di�erent

step-sizes for the primal and dual variables of the problem is described bellow

Algorithm 1 Solution of the Barrier problems (4)

At the beginning of the k-th iteration the following items are available:

A point (xk; yk; zk) such that xk; zk > 0, and parameters � > 0, ck;0 � 0,

�; � > 0, �1; �2 2 (0; 1) with �1 � �2

Repeat until k F (xk; yk; zk;�) k� ��

Compute Newton direction (�xk;�yk;�zk), by solving system (8)

Set i = 0 and �k;i = �max
xk

If (22) is satis�ed then set ck;i+1 = ck;i
Else compute ck;i+1 from (23)

Repeat until (20) is satis�ed

Choose �k;i+1 2 [�1�xk;i; �2�xk;i].

Set i = i+ 1

End

Set ik = i, xk+1 = xk + �xk;ik�xk and ck+1;0 = ck;ik
Compute the dual step-size �zk from (30)

Set zk+1 = zk + �zk�zk and yk+1 = yk + �zk�yk
Set k = k + 1

End

From the above discussion, we can derive that the values of the penalty parameter are
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non-decreasing and either one of the two cases may happen

ck;i+1 = ck;i or ck;i+1 � 2ck;i (31)

A critical issue with equation (23) is that a division by zero may occur when the

current point satis�es the equality constraints. The following proposition shows that this

does not occur as long as the Hessian matrix Hk (or its approximation) is positive de�nite.

Lemma 1 Let k (�xk;�yk;�zk) k> 0, the descent condition (22) not be satis�ed and

the matrix Hk be positive de�nite. Then we have k gk k6= 0.

Proof Assume on the contrary that k gk k= 0. Then from the violation of the descent

condition (22) we have

rfTk �xk � �eTX�1
k �xk > �

1

2
�xTk (Hk +X�1

k Zk)�xk (32)

Pre-multiplying the �rst equation of system (11) by �xTk we have

�xTkrf
T
k � ��xTkX

�1
k e = ��xTk (Hk +X�1

k Zk)�xk (33)

Substituting (33) into (32) yields

��xTk (Hk +X�1
k Zk)�xk > �

1

2
�xTk (Hk +X�1

k Zk)�xk (34)

Recalling that the elements of the diagonal matrix X�1
k Zk are positive for every iteration,

from (34) we can obtain

��xTkHk�xk > 0 (35)

which contradicts the assumption that the Hk is positive de�nite. Hence k gk k6= 0. �

An immediate consequence of Lemma 1 is that the descent condition (22) is satis�ed

when k gk k= 0, i.e., when feasibility of the equality constraints has been achieved.

Corollary 1 Let k (�xk;�yk;�zk) k> 0, the matrix Hk be positive de�nite and k gk k=

0. Then the descent condition (22) is satis�ed for the current value ck;i of the penalty

parameter, and therefore ck;i+1 = ck;i.

Proof It su�ces to show that

�0k(0) +
1

2

h
�T
k (Hk +X�1

k Zk)�k + ck;i k gk k
2
i
< 0 (36)
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From (21), and the assumption that k gk k= 0 we have

�0k(0) = rfTk �xk � �eTX�1
k �xk

Using (33) the above equation becomes

�0k(0) = ��xTk (Hk +X�1
k Zk)�xk (37)

From (37) and the assumptions that Hk is positive de�nite and k gk k= 0, it is clear that

(36) is satis�ed. �

Furthermore each component of the sequence fxkg is bounded above by Assumption

(A2), and away from zero by the existence of the logarithmic barrier term. The next

lemma, proved by Yamashita [9], states that the sequence fzkg has similar properties.

Lemma 2 While � is �xed, the lower bounds LBi
k and the upper bounds UBi

k, i =

1; 2; :::; n, of the box constraints in the dual step-size rule, are bounded away from zero

and bounded from above respectively, if the corresponding components xik, of the iterates

xk are also bounded above and away from zero.

Proof The proof can be found in [9]. �

A result of the above lemma is that the elements of the diagonal matrix X�1
k Zk are

bounded above and away from zero. Also from (14) there exists a positive constant M2

such that
1

M2
k v k2� vT (Hk +X�1

k Zk)v �M2 k v k
2 (38)

Based on the above property of the matrix Hk+X
�1
k Zk, we can derive a useful upper

bound on the derivative �0k(0) of the approximate merit function.

Lemma 3 The descent condition (22), Assumptions (A1)-(A4) and (38) imply the in-

equality

�0k(0) � �� k �xk k
2; (39)

where � > 0.

Proof The proof is similar to that in [19]. For all iterations k � 0, de�ne � 2 (0;1) such

that

2� k Hk +X�1
k Zk k +�

2 k Hk +X�1
k Zk k�

1

2

1

M2
(40)

where M2 is de�ned in (38). Furthermore the direction �xk can be written as

�xk = �x
(1)
k +�x

(2)
k (41)

12



where �x
(1)
k and �x

(2)
k are the projections of �xk at the range space of rg

T
k and the null

space of rgk, respectively. Hence the vectors �x
(1)
k and �x

(2)
k have the properties

rgk�x
(2)
k = 0 and (�x

(1)
k )T�x

(2)
k = 0 (42)

Substituting (41) into the second equation of system (11), and using the �rst equation of

(42) we have

rgk�x
(1)
k = �gk

Using Assumption (A2), the above equation yields

k �x
(1)
k k�M3 k gk k (43)

where M3 is a positive constant. Also from (38) we have

(�x
(2)
k )T (Hk +X�1

k Zk)�x
(2)
k �M2 k �x

(2)
k k2 (44)

We distinguish two cases. If k �x
(1)
k k� � k �x

(2)
k k, then from (43), using (40), (41) and

the second part of (42) yields

k gk k
2�

1

M2
3

k �x
(1)
k k2�

1

M2
3

(k �x
(1)
k k + k �x

(2)
k k)2

(1 + ��1)2
=

k �xk k
2

M2
3 (1 + ��1)2

(45)

If k �x
(1)
k k< � k �x

(2)
k k, then from (40) and (44) we have

�xTk (Hk +X�1
k Zk)�xk = (�x

(1)
k +�x

(2)
k )T (Hk +X�1

k Zk)(�x
(1)
k +�x

(2)
k )

� k �x
(2)
k k2 (

1

M2
� 2� k Hk +X�1

k Zk k

��2 k Hk +X�1
k Zk k)

�
1

2

1

M2
k �x

(2)
k k2

>
1

2

1

M2

(k �x
(1)
k k + k �x

(2)
k k)2

(1 + �)2

=
1

2

1

M2

k �xk k
2

(1 + �)2
(46)

Substituting (45) into the last inequality of (22) yields

�0k(0) � �
1

4
ck;i

k �xk k
2

M2
3 (1 + ��1)2

� �
1

4
c1;0

k �xk k
2

M2
3 (1 + ��1)2

(47)

where c1;0 is the initial value of the penalty parameter. Similarly substituting (46) into

13



the middle inequality of (22) yields

�0k(0) � �
1

4

1

M2

k �xk k
2

(1 + �)2
(48)

Finally from (47) and (48) we can derive that if

� =
1

4
minfc1;0

1

M2
3 (1 + ��1)2

;
1

M2

1

(1 + �)2
g

then (39) holds. �

We next show that ik in Algorithm 1, is always �nite. This means that the step size

�xk;i is bounded away from zero.

Lemma 4 Let k (�xk;�yk;�zk) k> 0 and the descent condition (22) hold. Then ik is

�nite.

Proof The proof is similar to that in [19]. Assume on the contrary that ik becomes

in�nity. Then for all i = 0; 1; 2; :::, we have

�k(�xk;i)� �k(0) > ��xk;i�
0
k(0) (49)

From (31) we can derive that either

lim
i!1

ck;i =1 (50)

or

ck;i = ck;i� = ck; for all i � i� (51)

First we assume that (50) holds. This means that the descent condition (22) does not hold

and the penalty parameter needs to increase in�nitely many times. From the violation of

(22) we have

rB(xk;�)
T�xk � ŷTkrgk�xk +

1

2
�xTk (Hk +X�1

K Zk)�xk

�
1

�xk;i
[ŷ(xk + �xk;i�xk)� ŷk]

T gk �
1

2
ck;i k gk k

2 (52)

Moreover from Lemma 1 we have that k gk k6= 0. Hence, from (50), we can derive that

the left hand side of inequality (52) becomes unbounded, as i ! 1. However only the

term
1

�xk;i
[ŷ(xk + �xk;i�xk)� ŷk]

T gk

depends on i and due to the continuity of the second derivatives and the full rank of rgTk ,

(52) remains �nite. This shows that (50) is impossible.
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Assume that (51) holds. Then for all i � i�, from the �rst order Taylor expansion of

�k we have

�k(�xk;i)��k(0)� ��xk;i�
0
k(0) = (1� �)�xk ;i�

0
k(0) + o(�xk;i) (53)

From Lemma 3 we deduce that the right hand side of (53) becomes negative as i ! 1,

which contradicts (49). �

The next lemma shows that the sequence of penalty parameters fck;ig is bounded, i.e.,

the penalty parameter does not increase in�nitely.

Lemma 5 Let Assumptions (A1)-(A4) hold and the barrier parameter � be �xed. Then

there exists an iterate k� and a constant c 2 [0;1), such that

ck;i = ck�;0 = c (54)

for all k � k� and 0 � i � ik.

Proof Since ck;i satis�es only one of the conditions in (31) it is su�cient to show that

there exists a constant c such that the descent condition (22) is satis�ed if ck;i � c. We

�rst need to show that

rB(xk;�)
T�xk +�xTk (Hk +X�1

k Zk)�xk � ŷTkrgk�xk = O(k �xk kk gk k) (55)

Pre-multiplying by �xk the �rst equation of system (11) we have

�xTk (rfk � �X�1
k e) + �xTk (Hk +X�1

k Zk)�xk = ��xTkrg
T
k yk (56)

where yk = yk + �yk. Adding �xTkrg
T
k ŷk to both sides of (56) and using the second

equation of (11) yields the bound

j�xTk (rfk � �X�1
k e) + �xTk (Hk +X�1

k Zk)�xkj = j�xTkrg
T
k (yk � ŷk)j

� k gk kk yk � ŷk k (57)

Moreover, from Assumption (A2) we have the condition

k yk � ŷk k = O(k rgTk yk �rg
T
k ŷk k)

= O(k rgTk yk +rfk � �X�1
k e k + k rgTk ŷk +rfk � �X�1

k e k)

= O(k (Hk +X�1
k Zk)�xk k) (58)

where the last equation derives from the de�nition of ŷk as the least squares approximation
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of the Lagrange multipliers, which gives the inequality

k rgTk ŷk +rfk � �X�1
k e k�k rgTk yk +rfk � �X�1

k e k

Therefore (55) follows from the fact that the matrices Hk + X�1
k Zk are bounded (see

Assumption A4 and (38)). The rest of the proof is similar to Lemma 3:4 in [19]. �

Having established that the sequences of iterates fxkg and fzkg are bounded above

and away from zero, we show that the iterates fykg; k � 0 are also bounded. In particular

Lemma 7 shows that if at each iteration of the algorithm we take a unit step along the

direction �yk, then the resulting sequence fyk + �ykg is bounded. In addition to this,

Lemma 7 also shows that the Newton direction �wk = (�xk;�yk;�zk) is bounded, for

�xed �. We �rst establish the following technical result.

Lemma 6 Let wk is a sequence of vectors generated by Algorithm 1 for �xed �. Then the

matrix sequence f��1k g is bounded, where

�k =

0
B@

0 rgk

�rgTk Hk +X�1
k Zk

1
CA :

Proof The inverse of the partitioned matrix �k is

��1k =

0
BBB@

[rgk
krg
T
k ]
�1 �[rgk
krg

T
k ]
�1rgk
k


krg
T
k [rgk
krg

T
k ]
�1 
k � 
krg

T
k [rgk
krg

T
k ]
�1rgk
k

1
CCCA ;

where 
k = (Hk+X
�1
k Zk)

�1. According to Assumption (A4), and Lemma 2, the matrices


k and [rgk
krg
T
k ]
�1 exist and are bounded. Hence the matrix ��1k is bounded, since

all matrices involved in it are bounded. �

Lemma 7 Let wk be a sequence of vectors generated by Algorithm 1 for �xed �. Then

the sequence of vectors f(�xk; yk +�yk;�zk)g is bounded.

Proof Re-arranging the system (11) yields

0
BBB@

0 rgk

�rgTk Hk +X�1
k Zk

1
CCCA

0
BBB@

y0k

�xk

1
CCCA = �

0
BBB@
gk

rfk � �X�1
k e

1
CCCA (59)

where y0k = yk +�yk. From the previous lemma we have that the inverse of the matrix in

the left side of (59) exists and is bounded. Hence the sequences f�xkg and fy
0
kg are also

bounded. Considering now (10), we deduce that the sequence f�zkg is bounded. �
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We then show that the direction �xk becomes small.

Lemma 8 Let Assumptions (A1)-(A4) hold. Then we have

lim
k!1

�xk = 0 (60)

Proof The proof is similar to that in Powell and Yuan [19]. From Lemma 5 we know that

there exists an iteration k� such that for every iteration k � k� the penalty parameter

does not increase more than a constant c. From (19) and (20), the exact merit function

� is monotonically decreasing for all k � k�, and therefore the sequence f�(xk) : k � k�g

is convergent. We then show that for � �xed and k � k�, if k �xk k> 0, i.e., xk is not

on the central path, the Algorithm 1 will �nd a new primal iterate xk+1 = xk + �xk;i�xk
such that

�(xk+1; c) < �(xk; c): (61)

Hence �xk is a descent direction for the exact merit function �.

From the �rst order Taylor expansion of the approximate merit function �k, for k � k�,

we have

�k(�xk;i)� �k(0) � ��xk;i�
0
k(0) = (1� �)�k;i�

0
k(0) +  k;i; (62)

where

 k;i = �k(�xk;i)� �k(0)� �xk;i�
0
k(0)

= �(xk + �xk;i�xk; c)� �(xk; c)� �xk;ir�(xk; c)
T�xk

[ŷ(xk + �xk;i�xk)� ŷk]
T gk � �xk;i�x

T
krŷ

T
k gk: (63)

From (63) we can see that

j k;ij = o(�xk;i): (64)

Furthermore, from (64) we can see that there exists a constant �̂ > 0, such that, if �xk;i < �̂,

then the right hand side of (62) can be negative i.e.,

 k;i < �(1� �)�xk;i�
0
k(0) � (1� �)�xk;i��

2 (65)

Hence at the k-th iteration the step length is at least �1�̂ > 0. From (62), using (19) and

(65), we have

�(xk; c)� �(xk + �xk;i�xk; c) = �k(0)� �k(�xk;i) � ���xk;i�
0
k(0)

� ��1�̂��
2 > 0

which shows that (61) is true. �

The next theorem shows that, while the barrier parameter � is �xed, the iterates

(xk; yk; zk) converge to a point satisfying the perturbed optimality conditions (7).
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Theorem 1 Let the Assumptions (A1)-(A4) hold and let � be �xed. Then Algorithm 1

terminates at a point, satisfying the perturbed optimality conditions (7).

Proof We �rst prove that for k su�ciently large, the dual step, �zk , becomes unity, by

showing that

lim
k!1

k zk +�zk � �X�1
k+1e k= 0: (66)

By adding ��X�1
k+1e to both sides of (10) yields

k zk +�zk � �X�1
k+1e k � k �X�1

k Zk k k �xk k + � k X�1
k �X�1

k+1 k k e k (67)

Moreover

k X�1
k �X�1

k+1 k
2 � n max

1�j�n
f(

1

x
(j)
k

�
1

x
(j)
k+1

)2g

= n max
1�j�n

f
(�xk)

2(�x
(j)
k )2

(x
(j)
k )2 (x

(j)
k+1)

2
g

Since we always have �xk 2 (0; 1], (�x
(j)
k )2 �k �xk k

2 and the sequence fxkg is bounded

away from zero, from the above inequality and (60) we can show that

lim
k!1

k X�1
k �X�1

k+1 k
2 � n lim

k!1
max
1�j�n

f
k �xk k

2

(x
(j)
k )2 (x

(j)
k+1)

2
g = 0 (68)

Hence letting k !1 in (67), and using (60) and (68) it can be deduced that (66) holds.

Consequently, zk+1 = zk +�zk, for k su�ciently large.

Furthermore, using (10) and for k su�ciently large, the complementarity condition

becomes

Xk+1zk+1 = Xk+1(zk +�zk) = Xk+1X
�1
k (�Zk�xk + �e) (69)

From (60) and the fact that the elements of the diagonal matrix Xk+1X
�1
k can be written

as

x
(j)
k+1

x
(j)
k

= 1 + �xk
�x

(j)
k

x
(j)
k

; for all j = 1; 2; :::; n;

we can derive that

lim
k!1

Xk+1X
�1
k = In (70)

where In is the n � n identity matrix. Letting k ! 1 in (69), and using (60) and (70)
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yields

lim
k!1

Xk+1zk+1 = X�(�)z�(�) = �e (71)

Also for k !1, the second equation of system (11) and (60) yield

lim
k!1

(rgk�xk) = g(x�(�)) = 0 (72)

The �rst equation of the system (11) can be written as

rfk �rg
T
k yk+1 + c�rg

T
k gk � �X�1

k e = �(Hk +X�1
k Zk)�xk

where yk+1 = yk +�yk. Letting k !1, and using (60) the above equation yields

lim
k!1

k rfk �rg
T
k yk+1 + c�rg

T
k gk � �X�1

k e k= 0 (73)

From the assumptions that the functions f and g have continuous gradients and rgTk has

full column rank and using (68), equation (73) yields

lim
k!1

k rfk+1 �rg
T
k+1yk+1 + c�rg

T
k+1gk+1 � �X�1

k+1e k= 0

or equivalently

rf(x�(�))�rg(x�(�))
T y�(�) + c�rg(x�(�))

T g(x�(�))� �X�(�)
�1e = 0 (74)

From (74), (72) and (71) we can conclude that the vector (x�(�); y�(�); z�(�)) is a

solution of the perturbed optimality conditions (8). �

4 Global convergence

In this section we discuss the convergence of the algorithm for a decreasing sequence of

positive barrier parameters f�l : l = 0; 1; 2; :::g. Theorem 1 guarantees that if � = �l, for

some l � 0, there is an iteration ~k such that for all k � ~k

k F (xk; yk; zk;�
l) k� ��l (75)

for some � > 0. At this point the barrier parameter is reduced, i.e., � = �l+1 < �l and

the iterations proceed. If we de�ne

(~xl; ~yl; ~zl) = (x~k; y~k; z~k)
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then the sequence f(~xl; ~yl; ~zl) : l = 0; 1; 2; :::g approximates the sequence of central points

f(x(�l); y(�l); z(�l)) : l = 0; 1; 2; :::g.

Algorithm 2, below, provides the a description of the main steps performed when the

barrier parameter changes.

Algorithm 2

Initialisation: Choose a starting point (x0; y0; z0) such that x0; z0 > 0.

Choose initial values for the penalty c0;0 � 0 and barrier parameter �0 > 0.

Select the parameters � > 0; �0; � 2 (0; 1)

Set k = 0, l = 0 and (~xl; ~yl; ~zl) = (xk; yk; zk).

Repeat until k F (~xl; ~yl; ~zl; 0) k� �0
Apply Algorithm 1 to �nd a point (x~k; y~k; z~k), such that

k F (x~k; y~k; z~k;�
l) k� ��l

Set (~xl; ~yl; ~zl) = (x~k; y~k; z~k), �
l+1 = ��l, l = l + 1.

End

Note that the index l is used to count the outer iterations (i.e., number of times the

barrier parameter is reduced), whereas the index k, which changes within Algorithm 1, is

used to count the total number of iterations needed to �nd an optimal solution of problem

(1). In the sequel we show that the sequence f(~xl; ~yl; ~zl) : l = 0; 1; 2; :::g generated by

Algorithm 2, converges to a point (~x�; ~y�; ~z�) which is an optimal solution of the original

problem (1).

For a given � � 0, consider the set of all the approximate central points, generated by

Algorithm 1

S(�) = f(~xl; ~yl; ~zl) : � �k F (~xl; ~yl; ~zl;�l) k�k F (~x0; ~y0; ~z0; ; �0) k; 8�l < �0g:

If � > 0 then the step-size rules, described in section 3 guarantee that ~xl; ~zl 2 S(�) are

bounded away from zero, for l � 0. Consequently (~xl)T ~zl is also bounded away from zero

in S(�). The following lemma shows that the sequence f~ylg is bounded if the sequence

f~zlg is also bounded.

Lemma 9 Let the columns of rg(~xl) be linearly independent and the iterates ~xl be in a

compact set for l � 0. Then there exists a constant M4 > 0 such that

k ~yl k�M4(1+ k ~zl k):

Proof By de�ning rl = rf(~xl)� ~zl �rg(~xl)T ~yl and solving for rg(~xl)T ~yl we obtain

rg(~xl)T ~yl = rf(~xl)� ~zl � rl:
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From our assumptions the above equation can be written as

~yl = [rg(~xl)rg(~xl)T ]�1rg(~xl) (rf(~xl)� rl)

�[rg(~xl)rg(~xl)T ]�1rg(~xl) ~zl:

Taking norms in both sides of the above equation yields

k ~yl k � k [rg(~xl)rg(~xl)T ]�1rg(~xl) k k rf(~xl)� rl k

+ k [rg(~xl)rg(~xl)T ]�1rg(~xl) k k ~zl k

� M4(1+ k ~zl k):

where the constant M4 is de�ned as

M4 � maxf k [rg(~xl)rg(~xl)T ]�1rg(~xl) k k rf(~xl)� rl k;

k [rg(~xl)rg(~xl)T ]�1rg(~xl) k g:

and is �nite according to our assumptions. �

Lemma 10 Let (~xl; ~yl; ~zl) 2 S(�) for all l � 0. Then the sequence f(~xl; ~yl; ~zl)g is bounded

above.

Proof From Lemma 9, it su�ces to show that the sequences f~xlg and f~zlg are bounded

from above. By assumption (A2), the sequence f~xlg is bounded. Assume that there exists

a non-empty set I1z , which contains the indices j of those elements, (~zl)(j), of the vector

~zl, for which liml!1(~z
l)(j) =1. From the boundedness of the sequences f(~xl)(j)(~zl)(j)g,

j = 1; 2; :::; n, we obtain lim infl!1(~x
l)(j) = 0, for those indices j 2 I1z . Furthermore

from the de�nition of the set I0x, in Assumption (A4), it is evident that I1z � I0x.

From (75) and the fact that f�lg ! 0 we have that the sequence

fk rf(~xl)� ~zl �rg(~xl)T ~yl kg

is bounded. Using this and the fact that fk rf(~xl) kg is bounded, we conclude that

fk �~zl �rg(~xl)T ~yl kg is also bounded. Hence, we have

k ~zl +rg(~xl)T ~yl k

k (~yl; ~zl) k
! 0 (76)

By setting ~ul = (~yl; ~zl)= k (~yl; ~zl) k, we have f~ulg bounded and f~ulg ! ~u�. It is clear

that k ~u� k= 1 and the components of ~u�, corresponding to those indices j 62 I1z , i.e.,

f(~zl)(j)g < 1, are zero. If û� is the vector consisting of the components of ~u� which

correspond to the indices j 2 I1z , then k û� k=k ~u� k= 1. Furthermore, from (76) we have
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rg(~xl)T ~yl + ~zl

k (~yl; ~zl) k
=

[rg(~xl)T ; In] (~y
l; ~zl)

k (~yl; ~zl) k
= [rg(~xl)T ; ej : j 2 I

0
x] û

� ! 0:

However, this result contradicts Assumption (A2). Hence, the set I1z is empty, or for

all indices j = 1; 2; :::; n, the sequences f(~zl)(j)g are bounded. Consequently, f~zlg is also

bounded. �

The following theorem shows that the sequence f(~xl; ~yl; ~zl)g converges to an optimum

point (~x�; ~y�; ~z�) of the initial constrained optimisation problem (1).

Theorem 2 Let f�lg is a positive monotonically decreasing sequence of barrier parame-

ters with f�lg ! 0, and let f(~xl; ~yl; ~zl) : l � 0g be a sequence of approximate central points

satisfying (75). Then the sequence f(~xl; ~yl; ~zl)g is bounded and its limit point (~x�; ~y�; ~z�)

satis�es the �rst order optimality conditions of problem (1).

Proof From Lemma 9 the sequence f(~xl; ~yl; ~zl)g is bounded. Then it is convergent and

let (~x�; ~y�; ~z�) be its limit point. From (75) and the fact that �l ! 0 we easily obtain that

liml!1 k F (~xl; ~yl; ~zl) k= 0. Therefore,

rf(~x�)� ~z� �rg(~x�)T ~y� = 0

g(~x�) = 0

~X� ~Z�e = 0:

Clearly from the above equations we may derive that (~x�; ~y�; ~z�) is an optimum point of

the initial constrained optimisation problem (1). �

5 Numerical Results

The algorithm described in the previous sections has been implemented using standard C,

on a Dual processor Sun UltraSparc-2, 167 MHz, with 256 megabytes of RAM, running

Solaris (release 5:5:1). The test-problems were drawn from the Hock and Schittkowski

collection [28]. For most of the problems we used the starting points recommended by in

[28].

The various parameters used in Algorithms 1 and 2 are selected as follows: c0;0 = 0, � =

1000, �1 = 0:05, �2 = 0:5, � = 10�3, 
 = 0:995 � = 0:95 and �0 = 10�8. Furthermore, since

the values �k(0), �k(�xk;i) and �
0
k(0) are available, they can be used to provide a quadratic

interpolation of the approximate merit function �k(�), with � 2 [�1�xk;i; �2�xk;i]. Thus

the new step-size �xk;i+1 is given by

�xk;i+1 = max f �1; min f �2; �xk;i g g �xk;i
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where

�xk;i =
��xk;i�

0
k(0)

2
�
�k(�xk;i)� �k(0) � �xk;i�

0
k(0)

�

Moreover, the matrices Hk, which approximate the Lagrangian Hessian, are calculated

by using Powell's technique [18] for preserving positive de�niteness. Hence Hk is updating

according to

Hk+1 = Hk �
Hkpkp

T
kHk

pTkHkpk
+
rkr

T
k

pTk rk

where

pk = xk+1 � xk

qk = rLB(xk+1; yk+1;�)�rLB(xk; yk+1;�)

rk = !kqk + (1� !k)Hkpk

and

!k =

8>>><
>>>:

1; if pTk qk � 0:2pTkHkpk

0:8pTkHkpk=(p
T
kHkpk � pTk rk); if pTk qk < 0:2pTkHkpk

The scalar !k is introduced to assure that pTk rk is positive for all k, so that positive

de�niteness of the sequence of matrices fHkg is satis�ed. The identity matrix was used

as the initial matrix of the sequence fHkg.

In Algorithm 2, the value of the barrier parameter is reduced by a constant factor

� = 0:95. This constant reduction is su�cient to guarantee the convergence of our method

to an optimum solution of the initial problem (1). However, the e�ciency of any primal-

dual interior point algorithm heavily depends on the speed by which � approaches zero.

To accelerate our algorithm we used a strategy where the barrier parameter does not

decrease by a constant factor. The reduction strategy derives from two other strategies,

presented by Lasdon et al. [12] and Gay et al. [7]. The basic characteristic of our strategy

is that, it determines the new value of �, by taking into consideration the distance of the

current point (xk; yk; zk) from the central path and the optimum solution of the initial

problem. The barrier reduction strategy is shown in bellow

Barrier reduction strategy

If k F (xk; yk; zk;�
l) k2� ��l or k > 5 then

�l+1 = minf0:95�l; 0:01(0:95)k k F (xk; yk; zk; 0) k2g

If k F (xk; yk; zk;�
l) k2� 0:1��l then

If �l < 10�4 then

�l+1 = minf0:85�l; 0:01(0:85)k+2� k F (xk; yk; zk; 0) k2g

Else
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�l+1 = minf0:85�l; 0:01(0:85)k+� k F (xk; yk; zk; 0) k2g

The vectors F (xk; yk; zk;�
l) and F (xk; yk; zk; 0) represent the perturbed and unper-

turbed optimality conditions. The threshold determining whether the barrier parameter

is going to decrease is initially checked. If the current point is close enough to the central

path (i.e., if k F (xk; yk; zk;�
l) k2 � 0:1��l) and the optimum solution (i.e., if �l < 10�4),

then the barrier parameter is reduced faster, since it is multiplied by the factor (0:85)2� ,

where � > 0. If it is only close to the central path and not close to the optimum solu-

tion then the barrier parameter is still reduced but not as fast as before, since it is now

multiplied by the larger factor (0:85)� . Hence, � can be thought of as a parameter which

accelerates the decrease of � at appropriate points. In our numerical tests, this barrier

reduction rule has performed very e�ectively. All the numerical results have been obtained

by using the above strategy, with � = 5.

Table 1 summarise the numerical results, where we use the following abbreviations

Prob: The problem number given in the Hock and Schittkowski collection [28].

Iter: The total number of iterations required to �nd an optimum solution of the initial

constrained problem (1).

c0;0: The initial value of the penalty parameter.

c�: The �nal value of the penalty parameter.

k�: The iteration after which the penalty parameter was unchanged.

The algorithm described in the previous sections solved successfully all the problems

to the desired accuracy. For all the problems the starting points recommended in [28] were

used. The behaviour of the penalty parameter was quite stable. In most of the problems

its initial value was set to zero. Its �nal value remained relatively low and became constant

in early iterations.

Finally it should be mentioned that the incorporation of the merit function into the

primal-dual framework prevented the algorithm from converging to a local maximum or

other stationary points. These results are quite encouraging and indicate that merit

functions a very important role in the design of primal-dual interior point algorithms for

general nonlinear programming problems.
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Prob. Iter. c0;0 c� k� Prob. Iter. c0;0 c� k�

5 8 0 0 1 73 7 0 8.2 1

10 14 0 305.4 10 76 8 0 22 3

11 8 0 99.16 4 83 7 0 0 1

12 11 0 0 1 84 16 0 0 1

14 10 107 2�107 9 93 14 0 7.2�109 9

22 9 0 0 1 95 14 0 0 1

24 9 0 0 1 96 13 0 0 1

27 20 0 5.7�104 15 97 20 0 0 1

32 14 0 0 1 98 17 0 0 1

33 12 0 0 1 100 18 0 4.2�105 11

34 10 0 1.2 6 104 16 0 9.8�104 14

35 7 0 27.03 2 105 36 0 0 1

43 15 0 17.5 4 108 18 0 32 4

57 15 1000 1000 1 110 8 0 0 1

59 13 0 0 1 112 23 0 0 1

64 18 0 2.6�1010 16 113 12 0 23 3

65 10 0 0 1 114 17 0 3.5�103 6

66 11 0 2.9�103 8 117 22 200 1.4�108 17

71 10 0 0.7 2 118 12 0 0 1

72 11 0 6.6�109 8 119 19 0 4.7�103 4

Table 1: Numerical Results.
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