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Abstract

There is a conflict between the goals of improving the quality of scientific software and improving
its performance. A key issue is to support reuse and re-assembly of sophisticated software components
without compromising performance. This paper describes THEMIS, a programming model and run time
library being designed to support cross-component performance optimisation through explicit manipula-
tion of the computation’s iteration space at run-time.

Each component is augmented with “component dependence metadata”, which characterises the con-
straints on its execution order, data distribution and memory access order. We show how this supports dy-
namic adaptation of each component to exploit the available resources, the context in which its operands
are generated, and results are used, and the evolution of the problem instance.

Using a computational fluid dynamics visualisation example as motivation, we show how component
dependence metadata provides a framework in which a number of interesting optimisations become
possible. Examples include data placement optimisation, loop fusion, tiling, memoisation, checkpointing
and incrementalisation.

1 Introduction

In many scientific applications, the use of sophisticated data structures and elaborate, adaptive numerical
methods can be highly effective in solving computational problems that would otherwise be difficult or
impossible to solve. Examples include adaptive multigrid and multipole methods, and coupled multiphysics
simulations. Unfortunately, the software complexity associated with these techniques means that they are
seldom exploited effectively.

This paper presents a programme of research at Imperial College aimed at developing tools and tech-
niques which will reduce the complexity of such software, enhance the scope for re-use of software com-
ponents, and improve performance on current and future platforms. We describe a prototype design called
THEMIS (“the explicit manipulation of iteration spaces”). We illustrate the ideas with reference to an
adaptive fluid flow visualisation application currently being developed.

The crucial issue which we propose to address is the apparent conflict between the goals of improving
the quality of scientific software and improving its performance. The quest for more usable, higher quality
scientific software is reflected in growing interest in component-based scientific programming. Our aim
is to reverse the performance problems associated with composite programs which arise from the use of
components which are developed outside the context in which they will be used.

The background to this is our body of work in cross-component data placement optimisation for regular,
data-parallel programs [6–9]. We have developed a good understanding of the parameters that determine

1



both the complexity and the accuracy of optimisation algorithms in this problem domain [10]. This paper
shows how we are expanding this work in several directions that will increase the range and power of the
optimisation methods used.

The key new idea behind this paper is to complement data placement metadata with a set of metadata
that define dependencies between components. Having a powerful component dependence calculus is key
to the new directions set out above which we wish to explore.

Contributions. The main contributions of this paper are as follows:

1. We present a design for Component Dependence Metadata, a general framework for characterising
the computational structure, execution order and dependence of software components

2. We show how Component Dependence Metadata can be used to implement a variety of optimi-
sations, including cross-component loop fusion, tiling, data placement optimisation and automatic
derivation of one- and two-sided communication plans.

3. We illustrate the potential for the approach with reference to a computational fluid dynamics visual-
isation application

4. We discuss the relationship between this approach and earlier work.

2 Background

Libraries. The most significant practical progress to date in supporting sophisticated scientific applica-
tions has been the development of libraries in C++ to support rich data types and associated operations.
Examples include the Standard Template Library [38], the LEDA library for computational geometry [21],
the Blitz++ scientific array package [37], BoxLib [28], and others. Libraries supporting parallel compu-
tation on irregular data have lagged behind; STAPL is a parallel development of the Standard Template
Library [27]. POOMA [25] is a C++ library designed to represent common abstractions in computational
science applications. PETSc [4, 5] extends array objects with communication methods. OPlus [11] man-
ages communication in unstructured meshes in Fortran. KeLP [17] and CHAOS [1, 20, 32] introduced the
idea of inspecting the irregular data structure to plan the communication required.

Although these approaches help manage the communications involved, none of them provides any
automated support for resource management in applications with several parallel components.

Component-based programming. Recently various research groups have applied component-based soft-
ware engineering to scientific computation. Examples include [2, 22, 26]. Component-based program-
ming infrastructures (eg Microsoft’s COM and .Net, Javabeans and the Corba Component Model) rely on
dynamically-linked libraries, and indirect (virtual) method calls. Both of these techniques present barriers
for performance optimisation, making run-time techniques essential. An important research question is
how to communicate the results of static analysis to the run-time optimiser [34].

Skeletons. The starting point for the skeleton approach is to implement recurring parallel structures of
computation and communication, so that implementation and optimisation techniques can be reused for
a wide range of similar computational patterns [13]. It was quickly recognised that the key issue, after
implementing one skeleton efficiently, is to accommodate programs consisting of several skeleton instanti-
ations. Skeleton programming languages such as SCL [15] and P

�

L [24] are actually skeleton composition
languages. The task of the compiler is to implement composition (sequential, parallel, pipelined or other)
efficiently. While much research has been devoted to transforming skeleton programs (which are generally
functional) to improve performance, the most successful work so far [24] has concentrated on resource
management: given a pipeline of two parallel components, how should the available processors be divided
between them to match their throughput?

The promise of the approach we propose lies in developing these ideas to deal with irregular data.
Some prototypes have been built (for example [40]), but little progress has been made on cross-component
optimisation.
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Compilers. From the perspective of conventional compiler techniques, cross-component optimisation
concerns optimising across sequences of loop nests, which may or may not be encapsulated in subroutines.
Data access summary information, as used for interprocedural analysis [14] forms “metadata” describing
each component. Unfortunately, with irregular data (even irregular multiblock), the actual dependence
between two operations is data-dependent.

The data alignment problem for regular data has been extensively studied [10,12]. One natural approach
is to exploit these powerful results in dealing with blocks, while using a run-time technique to handle sets
of blocks, and thereby block-irregular applications.

Conclusion — the Importance and Challenge of Component-based Parallel Programming. Re-
search must focus on supporting component-based parallel software in order to control software develop-
ment costs, to reduce the barriers to the adoption of sophisticated computational methods, and to promote
reuse. The challenge in promoting good design principles is to avoid the traditional performance penalty
of cleanly separating an application into comprehensible, reusable components. Doing this in the presence
of less-regular data structures requires a combination of static information about the behaviour of the com-
putational components, together with some element of run-time manipulation of this metadata to optimise
execution.

3 Cross-component optimisation

Components are self-describing, separately-deployable units of software reuse.Explicit support for component-
based programming is being developed in the scientific computing community [22]. In this paper we avoid
the details of such techniques and focus on the metadata needed to support cross-component optimisation.

Resource-, Context- and Problem-optimised Component Composition

To build adaptive, high-performance scientific applications in the form of re-usable components, we need
to optimize the execution of composite programs. The need and opportunity for optimization arises from:

� Heterogeneous and Varying Resources: We expect future high-performance computing resources
to be heterogenous collections of SMP clusters, linked by fast but heterogenous networks. Further-
more, the exact configuration available is likely to vary, at least from run-to-run.

� The Context in which Components are Used: This consists of the data placement and time sched-
ule with which a component’s operands are produced, and its results consumed. The component
may also be contending for resources with other, concurrently executing components. Optimising
components for their context is complicated on systems that support multiple levels of parallelism
simultaneously, each with its own characteristic level of communication granularity.

� The Adaptive and Irregular Nature of Problem Domains: In irregular and adaptive applications,
computation and communication are focussed on regions of interest which may change with time.

In the next section we describe the programming model and run time library that support the development
of resource-, context- and problem-optimised composition.

4 Component Dependence Metadata in Themis

Component dependence metadata consists of two parts - characterising the constituent components, and
describing how they are composed:

� Component Composition Graph. This data structure represents the large-grain, inter-component
control flow graph.
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� Component Dependence Summaries. These dependence metadata provide an abstract description
of each component’s internal iteration space, as a function of the component’s parameters, together
with functions mapping each iteration to the memory addresses it may use and define.

Given two run-time component instances, the Component Composition Graph indicates which is seman-
tically required to be executed first. The actual dependence relationship between them can be calculated
in more detail by finding the intersections between data accessed in the first component instance, and data
accessed in the second. Thus we capture data dependence, and “storage” dependences, namely anti- and
output-dependences arising from explicit re-use of memory1.

4.1 Representing Component Dependence Summaries

For our current purposes (pace the component-based programming community), a component is a pro-
cedure which operates on aggregate data. The procedure’s operands and results might simply be array
subsections. More interestingly, it might operate on a “multiblock” set of array subsections [17]. Further-
more, rather than simply arrays we may have any indexed collection type [3].

To capture this variety, we generalise the notion of a multiblock array decomposition. Given a proce-
dure P, we need to discuss P’s properties and P’s parameters:

� Property: P.IterationSpace

The � -dimensional integer space in which iterations of P’s execution are enumerated2

This is an inherent property of P representing the infinite range of possible executions which might
take place.

� Parameter: P.IterationDomain

This describes which actual iterations of P should be executed. This is represented as a set of non-
intersectingIterationRegions. An IterationRegion is a polytope in P.IterationSpace,
characterised as the intersection of a set of integer plane equations each defining a half-space.

� Parameters: P.Operands and P.Results

These are the indexed data collections on which P operates.

� Property: P.Uses

For each of the parameter Operands, this maps each point in the IterationSpace to the set of
indices of the indexed collection which might be accessed (read) by that iteration.

For simple array and multiblock computations, this can usually be represented as an affine function.
In [9] we show how this can be extended to capture data which is accessed by many iterations
(leading to a broadcast in a parallel implementation).

� Property: P.Defines

This is just the same as P.Uses but characterises the data items (ie the elements of the P.Results
collections) which might be written to by each given iteration.

Motivation. It is important to understand that it is not enough simply to characterise the set of data items
which might be read/written by a component. This would be enough to find out whether invocation of two
components P followed by Q are dependent. However, we need to understand the dependence relationship
between corresponding iterations.

For example, to determine whether the outermost loop of P can be fused with the outermost (
�
) loop of

Q, we need to determine whether every value needed by iteration
�

of Q is available by iteration
�

of P. We
return to this important issue in Section 4.2.

1In [8] we describe a run-time renaming scheme which can remove execution order constraints due to storage reuse - but explicit
control remains important in many applications to avoid running out of space.

2In the case where P consists of an imperfect nest of loops, this is a simplification: a statement at an intermediate loop nesting
level is represented by a set of points in the iteration space. This appears not to interfere with the effectiveness of the model.

4



4.2 Example: multiblock Jacobi

Figure 1 shows a much-simplified example to illustrate the component dependence metadata and its appli-
cation. Each run-time instance of the jacobi2d component can be queried for the following metadata:

� Property jacobi2d.IterationSpace is simply the two-dimensional vector space of positive
integers � �������	�
� �����
� .

� Parameter jacobi2d.IterationDomain is a Set of three rectangular sections of jacobi-
2d.IterationSpace.

� Parameters jacobi2d.Operands and jacobi2d.Results are U and V respectively.

V is a Set of rectangular arrays whose bounds match the corresponding elements of jacobi2d-
.IterationDomain.

This exact correspondence between the shape of the IterationDomain and the shape of the Result
data structure occurs frequently - iteration � ��
����

of the Jacobi loop assigns to location V[i][j].

The situation for U is somewhat more complicated, since the Jacobi loop reads a “halo” of locations
(often called ghost cells) outside the range of iterations � ��
����

, due to the i-1, i+1 and j-1, j+1
index expressions.

To prevent these accesses from being bounds errors (and to provide boundary conditions), the storage
for U has to be somewhat larger - we need to grow each of the constituent regions by one in each
direction. Although we could do this in an ad-hoc fashion, it can be handled systematically using the
Use mappings below.

� Property jacobi2d.Defines consists of a single mapping, being the identity function from iter-
ation � ��
����

in jacobi2d.IterationSpace to location V[i][j] in V. There is one mapping
because the Jacobi loop has just one assignment to V.

� Property jacobi2d.Uses consists of four mappings:

– ����� ��
������ � �	����
����
in U, due to the memory reference U[i-1][j]

– ����� ��
������ � � �!��
����
in U, due to the memory reference U[i+1][j]

– � � � ��
������ � ��
��"�#�$�
in U, due to the memory reference U[i][j-1]

– �$%�� ��
������ � ��
��&�'�$�
in U, due to the memory reference U[i][j+1]

In our prior work [6–10], component metadata describes data placement constraints. In this framework,
component dependence metadata captures the available flexibility in execution order.

Using the dependence information in the Jacobi example. For example, consider the following se-
quence:

S1: jacobi2d(U, V, Domain);
S2: jacobi2d(V, W, Domain);

Here, we apply the Jacobi operation in statement S1 to an initial set of Grids U, yielding V, then a second
step S2 to produce W. This execution order makes somewhat inefficient use of cache memory; it would be
beneficial to fuse the two loops. However a simple calculation using the Uses mappings shows that the which loops

resulting single loop nest would fail to respect the dependences required - element V[i][j+1] is used by
iteration � ��
����

of S2 but is generated in iteration � �(
��)���*�
of S1. We show how the validity of loop fusion

is tested in Section 5.3.
However, it turns out that these loops can be fused. The trick [16] is to renumberS2.IterationSpace

by shifting it by
�

in both
�

and
�
. This aligns iteration � �+�,��
��-�,�$�

of S1 with iteration � ��
����
of S2. Now

no dependence violation occurs.
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class Region2 {
public int i_lower, i_upper, j_lower, j_upper;

// Constructor
Region2(int i_l,int i_u, int j_l,int j_u) {

i_lower = i_l; i_upper = i_i;
j_lower = j_l; j_upper = j_u;

}
}
class Grid2<T> {

Set<Region2> DataArrayShapes;
Set<Array2<T>> DataArrays;

// Constructor
Grid2(Set<Region2> RegionShapes) {

foreach (i=0; i<=RegionShapes.size; ++i) {
DataArrayShapes.add(RegionShapes[i]);
DataArrays.add(new Array2(RegionShapes[i]));

}
}

}
void jacobi2d(Grid2<double> U, Grid2<double> V, Set<Region2> Domain) {

// for each region in the set of regions
foreach(Region2 R, Domain)

{
// do the standard Jacobi loop
for (int i=R.i_lower; i < R.i_upper; ++i)

for (int j=R.j_lower; j < R.j_upper; ++i)
V[i][j] = (U[i-1][j]+U[i+1][j]+U[i][j-1]+U[i][j+1])*0.25;

}
}
void main() {

Set<Region2> Domain;

// Build an example multiblock iteration space
Domain.add(new Region2(0,100, 0,100));
Domain.add(new Region2(100,200, 50,150));
Domain.add(new Region2(200,300, 100,200));

// Declare matching space
Grid2 V<double>(Domain);
Set<Region2> Domain_expanded = ... compute storage for U, see text
Grid2 U<double>(Domain_expanded);

jacobi2d(U, V, Domain);
}

Figure 1: Sketch of multiblock two-dimensional Jacobi application. The Jacobi loop iterates over three
non-intersecting but partially-abutting rectangular regions. The Array2, Grid2 and Region2 types are
based on KeLP’s types of the same name.
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5 Using component dependence metadata

This section illustrates how component dependence metadata can be used to solve some simple cross-
component optimisation problems. This should explain some of the motivation behind the approach.

5.1 Deriving data placement constraints

Given a data distribution � which specifies a set of subsections of an array A which is accessed by compo-
nent P, we can calculate the required placement of P’s other operands/results as follows:

1. Find the iteration domain corresponding to the data decomposition � . If A is an operand, find the
set of Uses mappings which map iterations to uses of A (if A is a result, find the corresponding
Defines mappings).

2. Invert these mappings to find the iterations which use each of the subsections described in � (as-
suming, of course, that the mappings are invertible).

3. Now, find all the data accessed by these iterations using the Uses and Definesmappings forwards.

This allows us to derive Beckmann’s data placement metadata. Beckmann shows [9] how data placement
constraints can capture data replication - where the mappings are not invertible; further work is needed in
this area.

Comment: Enumerated versus closed-form domains. To implement the multiblock domain decom-
position of Figure 1, we simply enumerate the set of subdomains. To represent a regular domain decom-
position, such as block-wise, cyclic or block-cyclic, this would be unwieldy. Instead we plan to use an
extension of the Set collection type which uses a closed-form generator function to produce its elements
on demand. Where appropriate, this generator function can be accessed explicitly.

For example, consider the problem of finding the data placement constraints in a regular array con-
text as discussed above. If the data decomposition � above is given as a closed form, say a blockwise
decomposition, the inverse Use mappings can be used to yield the IterationDomain also in closed
form.

5.2 Composing parallel components – deriving a data communication plan

To execute the Jacobi example in parallel, we need to partition the IterationDomain across the � pro-
cessors. Call this � -element set of IterationDomains the IterationDomainDecomposition.
Given some arbitrary partitioning, we need an efficient way to calculate the data communications involved
in a specified computation (in KeLP this is called the “MotionPlan”). Consider our Jacobi example
again; assume that the same partitioning is used to execute both S1 and S2:

// this loop executes once on each processor
foreach (proc, ProcessorSet)
S1: jacobi2d(U, V, IterationDomainDecomposition[proc]);

// implicit data redistribution required

// this loop executes once on each processor
foreach (proc, ProcessorSet)
S2: jacobi2d(V, W, IterationDomainDecomposition[proc]);

Now each processor
�

looks up IterationDomainDecomposition to find the iterations it must
execute. However, when processor

�
executes S2, it needs some values from other processors (due to the

ghost cell halo). We can calculate which values are needed, and where they are stored:

1. Use the Uses mappings of S2 to find the set ��������� of memory locations accessed by processor
�
’s

iterations.
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2. Use the Defines mappings of S1 to find the set � ������� of memory locations written to by each
processor

�
.

3. On each processor
�
, compute the intersection of its � � ��� � with the � �$����� of each of the other

participating processors. This is the set of receive operations required.

4. On each processor
�
, compute the intersection of its � ������� with the ��� � � � of each of the other

participating processors. This is the set of send operations required.

An implicit assumption here is that data needed by S2 but not produced by S1 is already available. This
happens naturally, as it must have been generated by some earlier component, say S0 - we simply make
sure this automatic data distributed operation is applied when S0 is composed with S1; S2.

Data-dependent Uses mappings. Note that we assumed that each processor can calculate the Uses
mappings of all the other processors. If it cannot, the communications must be one-sided, initiated by the
processor which needs the data. In some interesting examples (such as locally-essential trees in implemen-
tations of the Barnes-Hut algorithm [31]), we can conservatively approximate the set of data needed by a
processor.

5.3 Cross-component loop fusion

As mentioned in Section 4.2, a key motivation is to support cross-component loop fusion and related ideas,
including tiling. To check the validity of loop fusion, we need to know more than just the set of data items
are accessed by the two loops – we also need to know about the order in which the elements are produced
and used.

Assume that the IterationSpaces of the two components S1 and S2 are the same. To test whether
a component S1 can be fused with a component S2, we need to construct the dependence equation for
each potential dependence (we discuss data dependences here; anti- and output-dependences are similar):

1. Where a collection A appears in both S1.Defines and S2.Uses, we introduce the corresponding
mappings � ���� �

to model the access patterns due to each memory reference:

�
	�� 
������������ � ��� � � ��� � �
and ����� ������� � ��� � � ��� � �
(where �� is a � -element vector representing a point in the � -dimensional IterationSpace).

2. Now, consider two distinct iteration space points, �� and �� �
. A dependence between iteration �� of S1

and iteration �� �
of S2 occurs when the dependence equation is satisfied:

�
	�� 
������������ � ��� � � ��� � ��� ����� �
����� � ��� � � ��� � �

3. To classify the dependence, we need to characterise the solutions to this dependence equation. There
might be no dependence:

� There may be no solution at all
� The solutions may all lie outside the actual loop bounds (the IterationDomain)
� In an IterationSpace with non-unit step, the solutions may occur only at non-executed

iterations

If there is a dependence, we need to find out whether there exists a solution for which

��"! �� �

(under the lexicographic ordering).
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Figure 2: Structure of the CFD visualisation application

As explained earlier, the presence of such a dependence reflects that when fused, S2 would attempt to read
a value before it has been generated by S1.

To solve the dependence equation, our prototype implementation uses Fourier-Moztkin elimination, a
standard technique [39]. Although this can, in principle, be computationally hard, the equations found in
practice are almost always very simple and the time taken has been minimal.

6 Extended example: visualisation in computational fluid dynamics

To provide a testbed for these ideas, we have been developing a simple visualisation tool for a three-
dimensional computational fluid dynamics application.

Figure 2 shows the overall structure of the application. The prototype is a straightforward implemen-
tation using standard tools; the user interface is implemented in Tcl/tk, the visualisation uses vtk [33], and
the CFD application is NaSt3DGP [18]. The application essentially a simplified version of SCIRun [23];
the objective is to motivate and demonstrate generic mechanisms to support applications of this kind.

The challenge we focus on is to handle very large finite-difference meshes at each timestep, while
supporting interactive exploration of the flow evolution over time. Our prototype allows the user to:

� Rotate, pan, zoom in and out to view the fluid volume

� Slice/select fluid subregions of interest

� Add specified isosurfaces (contours) and streamlines to show flow patterns and eddies

� Use a slider to produce a smooth animation of the scene over a range of timesteps

To achieve interactive responsiveness, we plan to use THEMIS to explore a number of performance en-
hancement techniques. For example:

� Checkpointing/memoisation For interesting examples, the mesh representing the flow state at each
timestep may be several gigabytes in size (eg � ��� ��� ��� ��� ��� 8-byte doubles per state variable).

Conventionally, at each timestep the entire fluid state mesh is written to disk. Especially in a parallel
system, file access can dominate execution time both for flow calculation and subsequent visualisa-
tion.
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Instead, we propose to let the THEMIS run-time system decide which results to store, and which to
recompute on-demand. Thanks to the dependence information, THEMIS has a complete recipe for
each intermediate value calculated.

This approach can be compared with periodic checkpointing of the fluid simulation. The dependence
metadata gives THEMIS precise details of what data needs to be stored.

� Scheduling and placement of malleable task graphs When the user requests a timestep whose
mesh has not been stored, we need to go back to the most recently stored fluid state, and re-run the
computation from there.

To do this quickly, we need instantaneous access to multiple processors. Unless a large parallel
computer can be dedicated to the user, we need to make use of whatever resources are free at the
time (see for example recent work at Imperial [30]).

We propose to use THEMIS to decompose and schedule the computation using the (possibly-heterogenous)
processors and network capacity available.

A more sophisticated extension of this idea is to take into account the data already available on the
machines in question. If a processor is used for the first time, the scheduler must account for the time
to ship the code and data it needs. Subsequent uses can skip this step and perhaps also use cached
intermediate results too.

� Incrementalisation If the user is viewing only a slice of the volume, we can propagate the demand
for data back through the Component Composition Graph, so that contouring is applied only to the
visible region — indeed only the visible region need be extracted from the fluid simulation.

When the user shifts the slice of the data to be rendered, we need to redo this demand propagation.
The interesting challenge is to make use of whatever parts of the intermediate values we already
have.

� Fusion, tiling and pipelining The straightforward implementation of Figure 2 would load a mesh,
then apply a contouring algorithm, then apply a streamlining algorithm, then render the resulting
polygons. These repeated traversals of the mesh make poor use of cache (and virtual memory).
Using the loop fusion techniques described earlier, THEMIS should be able to combine multiple
passes.

This mixture of task- and data-parallelism creates a rich variety of alternative parallel implementa-
tions, including the classical rendering pipeline. Themis can use dependence information to imple-
ment these alternatives; we need to develop optimisation algorithms (for example, see [35] to find
the best one for the circumstances.

7 Related work

We discussed the key published background work in Section 2. Here we briefly focus on a specific point
of reference — KeLP. Component dependence metadata and the dependence calculus have been heavily
influenced by Baden’s use of metadata for structured irregular grids [17], which is currently being extended
to unstructured meshes. KeLP’s data placement metadata, the FloorPlan, defines the mapping of a block-
structured irregular array onto an array of processors. KeLP further provides a region calculus which,
given two different FloorPlans for some block-irregular array, can derive an optimised data motion plan to
perform the communication for redistributing the data from one placement to the other.

Our Component Composition Graph is analogous to KeLP’s MotionPlan, but rather than representing
data movement, the Component Composition Graph represents a large-grain, inter-component dataflow
graph.

Regarded as an extension to KeLP, Component Dependence Metadata will allow us to increase the
scope for adaptive run-time scheduling, as well as off-line optimisation. Further, the metadata will provide
the infrastructure for automatic placement of intermediate data, currently not supported by KeLP.
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Another interesting point of reference is DUDE [36]. In this C++ library, the programmer adds an
explicit description of the dependence distance vectors connecting each pair of dependent components. The
DUDE run-time system can then calculate what synchronisation and commiunication is needed. Thus, in
DUDE, dependence information has to be added for each component composition. By contrast, in THEMIS,
the dependence metadata is associated with each component. The dependences between components is
automatically calculated from this information.

In some sense, THEMIS can be regarded as an extension of Jade [29]. Jade is a parallel object-oriented
language based on C++. Each method has an associated access descriptor which describes the objects it
may read or write. Jade’s run-time system automatically arranges the synchronisation and communication
required. In Jade, an access to an object in shared memory is potentially an access to any part of the
object. In THEMIS, the dependence metadata provides more refined information about which consituents
of a chared collection type might be accessed.

8 Implementation status

The THEMIS library has not yet been implemented, but many of the ideas have been investigated in pro-
totype form. Our “TaskGraph” library (implemented by Alistair Houghton [19]) provides a convenient
syntax for the Component Composition Graph using templates, overloading and macros in C++. The li-
brary automatically derives Component Dependence Summaries for simple loop procedures, and summary
metadata can be added manually for user-supplied functions.

Once the TaskGraph has been optimised, it is printed as a C program, compiled, then linked back into
the running application. Considerable performance advantage is gained from run-time code generation,
due to specialisation and also by avoiding function and virtual function call overheads.

The library automatically exploits dependence information by fusing loops wherever possible.
THEMIS will extend this with a dependence calculus, for manipulating component dependence meta-

data, together with a library for manipulating the iteration domains of the components to generate optimised
code. This will provide the tools with which a programmer can implement the interactive visualisation ap-
plication as we have described.

9 Conclusions

We have presented THEMIS, a software framework for cross-component performance optimisation. The
key idea is for each component to carry Component Dependence Metadata which gives an abstract and
general characterisation of how its iteration space accesses shared data. We present a design for Component
Dependence Metadata which links the accessed data regions to the iteration space, and we demonstrate how
this makes loop fusion possible.

We conclude the paper with a brief discussion of a sophisticated CFD visualisation application we are
developing, which is designed to use these ideas to achieve interactive responsiveness even when working
with extremely large data sets.

THEMIS is a synthesis of ideas:

� From the skeletons community, we have taken the idea of optimising compositions of parallel soft-
ware components.

� From the restructuring compilers community we have taken the mathematical formulation of depen-
dence and transformation of a component’s iteration space.

� From KeLP [17] and Chaos [1,20,32] we have taken the idea of metadata to describe data shape and
dependence, the idea of planning parallel execution by processing this metadata, and the idea that
metadata can be globally replicated even if data is not.

The main challenge for future work is to provide flexible, powerful, explicit control of cross-component
optimisation as we have described, without introducing unmanageable complexity.
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