A Digit-Serial Structure for Reconfigurable
Multipliers

Chakkapas Visavakul, Peter Y. K. Cheung, and Wayne Luk

Department of EEE, Imperial College, Exhibition Road, London SW7 2BT, UK

c.visavakul@ic.ac.uk, p.cheung@ic.ac.uk, wl@doc.ic.ac.uk

Abstract. This paper presents a design for combining reconfigurable
multiplier array known as Flexible Array Blocks (FABs) and digit-serial
techniques to implement arbitrary size multipliers with limited resources.
Any 4Mx4N bit multipliers can be implemented. In-depth evaluation of
the tradeoff between resources and performance is presented. The result-
ing design is suitable for embedding in heterogeneous FPGA structures
for fixed point DSP applications.

1 Introduction

FPGAs are commonly used in many DSP and video processing applications
where multiplication forms one of the most common operations. Whilst existing
FGPA architectures are optimised for binary addition, configuring FPGAs for
binary multiplication is much less efficient. Haynes and Cheung reported the
design of a reconfigurable multiplier array (known as Flexible Array Blocks or
FAB) that can improve area efficiency by more than one order of magnitude [1].
A FAB is a 4x4 bit reconfigurable building block formed from a regular adder
array structure that supports both signed and unsigned representations. Any
4Mx4N bit parallel multiplier can be implemented by cascading together MxN
FABs as a two dimensional array.

Although the proposed design improves area and time efficiency, it suffers a
major limitation on flexibility. If a required multiplier cannot be fitted into the
available on-chip FAB resources, it cannot be implemented. There are no pos-
sibility for trading off resources with multiplication time. This paper proposes
a solution to this problem by exploiting digit-serial techniques to provide the
necessary tradeoff between number of clock cycles needed to perform a multipli-
cation and the number of FAB resources used. The resulting structure, known
as DigiFAB, can be configured to implement any 4Mx4N multiplier with any
amount of FAB resources. An in depth quantitative study of the tradeoff between
hardware and performance is also made.

This paper is organised as follows. In Section 2 a slight modification to the
origin FAB structure is introduced. In section 3, the detail design of DigiFAB,
a digit-serial version of the FAB structure, is described. An in depth evaluation
of the the area-time tradeoff of DigiFAB is presented in Section 4. Section 5
concludes the paper.

2 Reduced Flexible Array Block

The original FAB structure [1] was designed as a 4x4 bit multiplier array con-
figurable to form larger signed 2’s complement or unsigned multipliers. This can
be simplified to a Reduced Flexible Array Block, or RFAB (Figure 1), by remov-
ing the partial product adder which is only used if the FAB is located on the
right-most column of the 2-dimensional array. A 4Mx4N multiplier can be con-
structed by simply connected MxN reduced FABs together in a 2-dimensional
array as shown in Figure 2'.

@) @] @]]
C.
A0 B3 Mb A0 B2 A0 B1 A0 BO
L1 L1 L1 L
B

sici A B |

Bottom[2:0] Co o

A1 83 Mb AL B2 AL BL AL so\—"
T | [1 Top
sici A B I sici A B si Ci A B sici A B [3:0]
Ua Yg Ys Yg
Co o Co o Co o
A2 B3 Mb A2 B2 A2 B1 A2 B0
11 | | 1|
sici A B I sici A B sici A8 sici A B

co o| @

EOAZMa\
s A
U

0 0

Co 0 0. Co 0 C
@ i (m\‘(a i (5)\‘(1) i (4)\‘«» i

o
B1 A3 Ma
[
sici A B |

U

o
B2 A3 Ma
[
Sici A B |

A3 B3 MaMD)
T
sici AB I J

A

@)

Fig. 1. Reduced Flexible Array Block (RFAB)

3 Digit-Serial Multiplier using FABs

Consider the case where instead of having the resource of MxN FABs on-chip,
only KxL FABs are available?. To implement a 4Mx4N multiplier, the 2-dimensional
FAB array can be divided into tiles of KxI. FABs as shown in Figure 3. A digital-
serial implementation can then be realised by mapping a single KxL. FAB cluster
to each tile on successive clock cycles. This can either be done row first or col-
umn first. In this way, tradeoff is made between area and performance (i.e. the
number of clock cycles).

Unfortunately this tradeoff is not direct, nor is it simple. Additional regis-
ters, multiplexers and control logic have to be added to the KxL. FAB cluster

! Hereafter the reduced form of FAB (RFAB) is used whenever FAB is mentioned.
2 To simplify the discussion, we assume for the moment M/K and N/L are integers

M x N FAB
r

| o0 | o
i A8 FAB
| oo ©1 N
I
! o)
! FAB FAB FAB
} (1.0 1) [ERYEN)
|
e .
| } } | } I TopSum
| | | -
N 1 ! i ! (4N -bit)
| } } | } |
T - s
I
1| Fae FAB FAB
I (M-1,0) (M-1,1) (M-1, N-1)
|
L ulmx wlnbw))\ o aps0)

abit 2bit - g

sum(0) sum(1) 2| sy
msB RightSum(4M - bit)

Fig.2. 4Mx4N bit multiplier

implemented with MxN FABs

M* x N* FAB
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o
. o0 |

LSB

Kl FAB
(0, {N*L}-1)

—
TopSum
(4N* - bit)

T AR

KxLFAB
({M¥/K}-1, 0)

TN

[4L-bit Sum(0) |

MSB

KxL FAB

(AMK}-1, 1) (MTK)-1, (N*IL)-1)

* | sy aram- 1))

aL-bit Sum(0) B

i RightSum(4M* - bit)

AL-bit Sum(N/L}-1) |

Fig. 3. 4Mx4N bit multiplier implemented with
tiles of KxL FABs

in order to store the partial results. Figure 4 shows the basic structure of Digi-
FAB, a DIGIt-serial implemenation of multiplier using FABs. All the peripheral
circuits surroudning the KxL FAB cluster are overheads due to the digit-serial

implementation.

This is complicated further when M and N are not divisible by K and L
respectively. In which case, the DigiFAB is configured to implement a 4M *x4N*

multiplier where,

M* = [M/KxK
N* = [N/L]xL

The number of extra registers needed to implement DigiFAB is given in Table

FAB Top Registers|Right Registers|Mux Registers
width| level |width| level |width| level

1x1| 4 1 7 N 1 N

KxL| 4K 1 8L-1| N*/L 1 N*/L

Table 1. Summary of registes usage in DigiFAB

3.1 Factoring of FAB clusters

Given the hardware resource of W FABs, there are many ways to factorise it
such that W = KxL. For example 10 FABs can be employed to implement 4
different DigiFAB cluster configurations: 1x10, 2x5, 5x2 and 10x1. Table 2 shows
the possible clustering arrangement for W= 9 to 12.

4K 4L This two DFFs
v ¢ & % depth = MK aK-1
B

BL Left A

Bottom Top

A 4

[4K-2:0] [4K-2:0]

'TopSum[4K-1]

M Ag) + M8y

All 2-way DFF

D
QF QR " rdir{—regdir

depth = N¥/L
QR[4L-1.0] QRBL-2:4L]
aL (L1
v ¥ L InB[4L-1]
‘ A cga B onle—m |

4L¢ RightSum

Fig. 4. DigiFAB structure

RFABs (X)|Factors|Possible Configurations (KxL)
12 122 3[1x12, 2x6, 3x4, 4x3, 6x2, 12x1
11 111 1x11, 11x1
10 125 |1x10, 2x5, 5x2, 10x1
9 133 |1x9, 3x3, 9x1

Table 2. Examples of possible clustering of 9 to 12 FABs

4 Evaluations and Results

In this section, the tradeoff between area and speed of DigiFAB is presented in
two ways. Firstly DigiFAB using only 4x4 cluster is compared with a FAB-only
implementation. Secondly the effect of using different cluster configurations on
area and multiplication times is investigated for a range of FAB resources.

4.1 Area and Speed tradeoff for 4x4 cluster

Parametric models for the hardware complexity of the FAB-only and the Digi-
FAB implementations are found as:

T""FAB = 836MN
Trpigirap = 654K L + 88K + 96L + 272N + 29M™ /K + 21N™ /L + 256

The area utilization is measured in terms of number of transistors, and the
circuits are mapped to the Alliance standard cell library [2].

Since area estimate for DigiFAB includes estimates for all the control circuitry
necessary for its proper function, its model contains many more parameters when
compared with the FAB-only implementation.

Figure 5 shows the transistor counts for implementing a NxN multiplier
using DigiFAB with a single 4x4 cluster, and compares it to a FAB-only imple-
mentation. As expected the transistor count for the FAB-only implementation
increases as N2 while the DigiFAB size remains substantially constant. This is
in spite of the extra registers required to store partial results and the additional
overhead added by the control circuitry.

The timing model is also based on the Alliance CMOS cell library. The
multiplication time is dependent on two factors: the worst-case time delay on
the combinatorial circuit and the number of clock cycles required to complete
a multiplication. The FAB-only implement requires only a single clock cycle to
compute the product, but it contains long delay paths through both sum and
carry chains. The DigiFAB, as with all digital-serial approaches [3], allows much
shorter clock period to be used. However it also requires {[M /K] + 1} % [N/L]
cycles to complete a computation. The total computation time used for the
evaluation is computed by multiplying the shortest clock period with the number
of clock cycles required.

Figure 6 shows that computation time of the FAB-only design increases lin-
early with N, while the DigiFAB implementation has a step like computation
time due to the quantized nature of the circuit.

4.2 Effects of Different Clustering Arrangements

So far only DigiFAB using 4x4 cluster of FAB cells has been considered. The
same resource (W = 16) could also have been configured as 1x16, 16x1, 8x2, and
2x8. Which configuration would give the best area-speed tradeoff?

DigiFAB(N,N,4,4)

FAB(N,N)

FAB(N.N)

Computation time at max clock speed

DigiFAB(N,N,4,4)

16 32 48 64

16 32 18 64 Multiplier size (AN-bit)
Multiplier size (4N-bit)

Fig. 6. Computation time comparison
between FAB and DigiFAB with 16

RFABs

Fig. 5. Area comparison between FAB
and DigiFAB with 16 RFABs

Figures 7 and 8 show respectively the relative area and compute time of all
possible configurations for different values of W when compared with a FAB-only
implementation of a 32232 bit multiplier. For example, if 16 FABs are used in a
DigiFAB structure, only around 30% of hardware resources is required, but the
compute time would increase by a factor of between 4 to 26, depending on the
cluster arrangement. In other words, how W is factored into KxIL hardly affects
the amount of area saving, but can have significant effect on compute time. It
can also be seen that having a cluster configuration that is essentially square
provides the best arrangement (i.e K and L are as close as possible). In contrast
the long-and-thin, and the short-and-fat configuration are worst (i.e. Wx1 and
1zW).

0.35

. 16x1
0.30 P 25

20

I
[
8x2

2x8
4x4

0.20

0.15

Relative area to FAB implementation

0.10

Relative processing time to FAB (times)

0.05

1 16 4

8 12 8 12
Number of FABs formed to KxL Number of FABs formed to KxL

Fig. 7. Relative area to FAB-only im-
plementation for building 32x32 bit
multiplier using DigiFAB with 16 or less
RFABs

Fig. 8. Relative calculation time to
FAB-only implementation for building
32x32 bit multiplier using DigiFAB with
16 or less RFABs

These two graphs can be combined to give a direct resource vs area vs com-
pute time tradeoff for the different cluster configurations as shown in Figure 9.
Each line represents a fixed amount of FAB resource. Every point on this graph is
a possible solution to the problem of implementing a 32x32 bit unsigned/signed
multiplier. Figure 10 shows a related tradeoff characteristic. Instead of showing
the total compute time on the x-axis, this uses the maximum operating clock
frequency relative to a FAB-only implementation. It can be seen that if DigiFAB
is to be used in an embedded array with fast clocking, one would choose a small
value for W.

0.35

e
@
3

ol
v
&

0.20

area to FAB implementation

0.10 d

— .7 =X N
; 020 8o
- 6 A -
0.15 —=e § = ! ,N
.15 5 & 6 —
— 2 5
4 0.15 5o
3 g 4

0.05

5 10 5 20 2 1 2

5
clock speed

Relative ing time to FAB i ation
Fig. 9. Relative area VS relative com- Fig.10. Relative area VS maximum
putational time for different DigiFAB clock speed for different DigiFAB con-
configurations figurations

5 Conclusion

In this paper, a digit-serial version of the original FAB reconfigurable multiplier is
presented. It has been shown that by exploiting digit-serial techniques, a flexible
tradeoff between array resource, area and compute time is available. It has also
been demonstrated that although a given resource could be configured in many
different ways, the optimum clustering configuration is one which is essentially
as square as possible. The DigiFAB design also allosw any size of multiplier to
be implemented with any fixed amount of FAB resource.

Many questions remain unanswered. What is the appropriate mixture of FAB
cells and conventional LUT-based logic cells? How should the routing to FABs
be organised and how much? However, results from this paper suggest that digit-
serial FABs may provide sufficient advantages to warrant efforts to be devoted
to answering these questions.

References

1. Simon D. Haynes, Peter Y. K. Cheung, “A Reconfigurable Multiplier Array For
Video Image Processing Tasks, Suitable For Embedding In An FPGA Structure”,
in Proceedings. IEEE Symposium on FPGAs for Custom Computing Machines, pp.
226-234, 1998.

2. A. Greiner, F. Pécheux, “ALLIANCE: A complete set of CAD tools for teaching
VLSI design”, 3"¢ Eurochip Workshop on VLSI Design Training, Grenoble, pp.
230-237, 1992.

3. Yun-Nan Chang, Janardhan H. Satyanarayanan, Keshap K. Parhi, “Systematic De-
sign of High-Speed and Low-Power Digit-Serial Multipliers”, IEEE Trans Circuits
and Syst.—II Analog and Digital Signal Processing, vol. 45, no. 12, December 1998.

