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Abstract

In this project, we work towards a continuous and spatial extension of stochastic 7w calculus.
The continuous semantics is a useful alternative to the discrete semantics and has been recently
provided for other process algebras. Ability to express spatial properties of the models is an
important practical extension, specially in Systems Biology.

Inspired by previous work [7][20], after showing results on process aggregation in stochastic 7
calculus (S7) in form of multisets, we formulate and informally justify the continuous semantics.
We show that this is tractable (in the sense that the set of resulting ordinary differential equations
(ODEs) is finite) for the case of a subset of stochastic 7 calculus called Chemical Ground Form
(CGF) defined in [7].

We attempt to tackle the problem of potentially infinite set of ODEs. We define two notions of
finiteness, one allowing a direct analysis and another allowing further investigation of convergence
results. We also provide an algorithm translating models in stochastic S7 into CGF in case the
finiteness is satisfied. We give a syntactical restriction of Sm which guarantees finiteness. We
intuitively and informally describe another condition on S models guaranteeing finiteness.

We explore the relationship between the continuous and discrete semantics. We experimentally
look at the effect of scaling populations of processes in various existing models.

We define a simple spatial extension of Sw. We bring the aggregation results to this exten-
sion and define an extended continuous semantics. We give an original example demonstrating
advantages of this extension.

As an essential co-product, we develop an efficient, user friendly and portable tool implementing
the above formalisms, with comparable simulation performance with the state of the art Stochastic
Pi Machine (SPiM) simulator[32]. We also collect some of the available models in stochastic
7 calculus from Systems Biology, whose analysis can be enriched by the additional continuous
semantics.
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1. INTRODUCTION 1

Introduction

Systems Biology is an interdisciplinary study field aimed towards quantitative understanding of
biological systems. It searches for suitable abstractions that would, with the confirmation from
experimental data, enhance knowledge about complex interactions within these systems.

Stochastic process algebras is a family of formalisms originating in the field of performance
analysis of concurrent computer systems. Stochastic process algebras have recently been used to
model different phenomena in Systems Biology. They provide a formal description of the systems
and offer model compositionality, where complex systems can be expressed in terms of interacting
subsystems. Also, coming from computer science, process algebras clearly separate their syntax
from semantics — they can be thought of as intermediate descriptions from which different analyses
can be carried out. Traditionally, they are used with discrete semantics, intuitively close to
computer systems. A recent trend is in providing an additional continuous semantics, as has
been done for example for PEPA in [20], BioPEPA and for stochastic Concurrent Constraint
Programming in [3]. This allows a single process-algebraic description approaching the modelled
problem from two different perspectives. Such feature is particularly desired in Systems Biology,
where the interacting systems coexist on a wide range of temporal and spatial scales and neither
the continuous nor discrete approach is universally suitable [41].

Another attractive feature of stochastic process algebras lies in the flexibility they offer to
possible extensions. This again suits Systems Biology, where the modelled systems can be highly
specialized and many different aspects need to be considered. One such extension is the addition
of features expressing spatial properties of the modelled systems — a fundamental concept in a wide
range of areas in Systems Biology, such as modelling of tissues or intra-cellular processes. There
have been different attempts to bring spatial expressivity to process algebras and various special-
ized formalisms have been proposed, such as the BioAmbient calculus [35] or a compartmental
extension of BioPEPA [I1].

Stochastic 7 calculus is a stochastic process algebra that has been successfully applied to
modelling in Systems Biology [9] 8, B8, 24]. It provides the discrete semantics, supported by a
tool Stochastic Pi Machine (SPiM) [32] for simulating the described models.

Our aim is to extend stochastic 7 calculus with both the continuous semantics and spatial
features, while still allowing re-use of existing models. We also aim to provide a tool that enables
the additional analysis resulting from the continuous semantics to be applied to the existing models
from SPiM.

1.1 Project Aim

We can summarize the main aims of the project as the following:
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(1) We aim to provide a continuous semantics for stochastic 7 calculus. Some work has been done
in this direction. Cardelli described a translation from a subset of stochastic 7 calculus to
a system of ordinary differential equations (ODEs) via an intermediate translation through
equivalent chemical equations[7]. The continuous 7 calculus is a process algebra based
on 7 calculus aimed mainly towards the continuous semantics, with focus on evolutionary
properties of biochemical pathways|[25].

(2) Following the trend of PEPA and sCCP, [14],[2], the next step after defining the continuous
semantics is an investigation into the relationship between the two semantics. BioPEPA
presents results showing that the continuous semantics is a certain limit of the discrete; it is
of interest to provide such results for stochastic 7 calculus.

(3) We aim to define a spatial extension of stochastic 7 calculus, making the framework more
applicable to systems biology. As opposed to the BioAmbient calculus[35], we only aim to
express static compartmental structure, with the hope of applying the continuous semantics
to this extension. We require the formalism to support re-use of existing models from
stochastic 7 calculus.

(4) To demonstrate the above concepts and to enhance existing models with the continuous
analysis, we aim to develop a portable and user-friendly tool, making the framework more
accessible to both biologists wishing to apply it and to computer scientists designing further
extensions.

1.2 Contributions

The main contributions of this project come from tackling the above challenges.

e To arrive at a definition of the continuous semantics and also to enable efficient simulation,
we describe a process aggregation method in terms of a multiset representation. In Chapter
] we first restate the definition, semantics and structural congruence of stochastic 7 calculus
(to which we refer to as to Sm). We show how the structural congruence can achieve process
aggregation in form of multisets and thus provide an efficient simulation algorithm as well
as serve as a basis for the continuous semantics.

e We define the continuous semantics of Sw. In Chapter [ we define and give informal justi-
fication for a direct translation to a system of ordinary differential equations (ODEs). We
show that the CGF subset of ST makes the resulting system of ODEs viable for numerical
analysis. We provide an efficient algorithm to do so.

e In Chapter [f] we illustrate that the restriction operator, capable of producing new species
(e.g. used to model complexation and polymerization) can cause the set of ODEs to be
infinitely large. We give some basis for classification of finiteness of the continuous semantics.
In Section [5.1} we formally describe two notions of what it means for a system of S to
produce an infinite set of ODEs. We then give a condition on the syntax of processes to
guarantee the finiteness. We informally give intuition for a more general condition that will
guarantee the systems to be useful for further analysis. We will describe how to translate
S7 models into CGF in case the finiteness is satisfied and do so for several existing models.

e We investigate the relationship between the two semantics. In Section [5.2] we experiment
with various available models and provide observations of some properties of the relationship
between the continuous and discrete semantics. We highlight the difference between these
and some of the convergence properties for BioPEPA[T4].

e We define an extension of Sw that allows to express static compartments with fized volume. In
Chapter[6] we justify the main ideas and give the definition and provide continuous semantics
for this extension. We give an example of an existing S model extended with the spatial
features and also give an original example from plant biology demonstrating the flexibility
of this framework.
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e We implement a portable tool written in Java programming language that provides efficient
simulation (as an alternative to SPiM) of models in S and ODE generation and solution
of models in CGF, enhancing the possible analysis of existing and future models. Chapter [7]
describes the design, algorithms and used technologies and suggests a proof of correctness.
In the Appendix[B] we provide a collection of models with results from both semantics when
applicable, gathered from available literature.
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Process algebras in Systems Biology

There has been an increasing interest in the application of process algebras in the modelling and
analysis of biological systems. The reason for this is that there is an obvious correspondence
between biological systems and concurrent systems — the species (molecules, proteins, etc.) can be
seen as processes interacting and influencing each other (e.g. via chemical reactions). See [0] for
examples of this correspondence in different areas of Biology. This abstraction provides various
benefits:

e Process algebras provide a formal representation of the modelled system, thus avoiding
ambiguity.

e They offer model compositionality — complicated systems can be defined in terms of sub-
systems. This is crucial in tackling an important theme in systems biology, which is to
understand how the interactions between different components bring new functionality.

e Process algebras conveniently offer different analysis techniques. They can be considered as
an intermediate description that leads to different mathematical formalisms.

Last but not least, stochastic process algebras offer direct, practical implementations. This
fits well in the knowledge discovery cycle of Systems Biology. First, a formal process-algebraic
model abstracting a biological system is proposed, using the available knowledge and intuition
about its components, functionality and interactions with other systems. On this model, different
mathematical and computational analyses can be performed (using the tool offered by the process
algebra), thus providing an experiment in-silico. Results of this experiment can be compared
with the real experimental data. This can lead to refined models (e.g. using more fine tuned
parameters agreeing with the experiments) and eventually to better understanding of the biological
system. Moreover, when the biological system is known to be consisting of different subsystems,
the corresponding models can be composed together, avoiding additional work, and the analysis
offering insight into the role different interactions and cooperations play in the functioning of the
system. See Figure for an overview.

We give an introduction to stochastic process algebras in the context of Systems Biology. We
describe different mathematical formalisms which are used by stochastic process algebras, includ-
ing the Gillespie algorithm for stochastic simulation, numerical methods for solving differential
equations and mention some of the theory of Markov chains. We introduce stochastic process
algebras and show how exactly they are attractive to Systems Biology and how they employ the
above formalisms to provide analyses of the modelled systems. We will mainly concentrate on
general process algebras, such as the stochastic m calculus and BioPEPA. We also briefly look at
some extensions providing spatial modelling and the alternative continuous semantics.
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a2 MAP kinase (MAPK) activity

0.01 01 1 10
[malE-Mos], M

*
Experimental
Data
Biological
System e

K % 2a3(d, k).(1d. KK +1k. KKP)
KK % 2a4(d, k).(d. KK +k.KKP)

System = E;|10 x KKK|---

Figure 2.1: The cycle of systems biology. Formal model is created using the current knowledge
and intuition about the system. The model analysis is compared with the experimental data to
improve the model and eventually enhance the knowledge about the biological system.

Notation. In the rest of this report, we will introduce various abstract concepts, some of which
can be rather obscured by their syntax (specially the Chapter |3| and 4| can be quite “syntax
heavy”). We are aware of this and will always try to give intuitive description of the underlying
ideas. Moreover, we will use the margins to place markers' whenever a new syntactical construct

is defined.
We will use similar style when describing the implementation, marking the important Java

classes.

2.1 Mathematical background

We briefly go through various mathematical concepts that are useful in designing and implementing
stochastic process algebras. We first state some well known properties of Exponential distribution
which is crucial for analysis of (Markovian) stochastic process algebras. We restate a simple
method for sampling variables from the Exponential and general discrete distribution, which will
be useful for implementing the discrete semantics of stochastic w calculus. We define a class
of stochastic processes, continuous-time Markov chains (CTMCs) that are the target formalism
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of many stochastic process algebras. We show how these can be simulated using the described
sampling techniques. We describe the Gillespie algorithm for stochastic simulation of chemical
reactions and show how it relates to the CTMCs. We recollect a numerical method for solving
systems of ordinary differential equations, which will be useful when implementing computational
analysis of the continuous semantics of stochastic 7 calculus.

2.1.1 Exponential distribution

In the following, we will use exponential random variables in various places. We state some of their
important properties that can be found in standard probability literature [37, [I8]. A continuous
random variable X is said to have an exponential distribution with parameter A if its probability
density function is given by

F@) = {)\e)‘“" z >0,

0 x < 0.
Its cumulative distribution function then is

z —e M g
F@) = [ fwdy = {1 .

0 x < 0.

The mean of X can be derived as

E(X) = /_OO xf(z)dx

oo
:/ e
0
o0 1
= [—ze )P —|—/ e Mdr = =,
0 A

The variance is Var(X) = 1/A2.
A random variable X is said to be memoryless if

PX >s+tX >t)=P(X > s)

for all s,t € R > 0. If we consider X as a lifetime of a certain object, the above states that after
any arbitrary lifetime t of the object, the remaining lifetime has the same distribution as at the
time 0; that is, the object does not “remember” that it has already been alive for time .

We can simply verify that the exponential random variable X is memoryless:

P(X > s+t) = e NFD
=e MM =P(X > 5)P(X > 1).

On the other hand, the exponential distribution is the only memoryless distribution: Let X be

memoryless and let g(z) = P(X > z). Then we get

g(s+1t) = g(s)g(t).

) -s)-r 2)

Similarly, for all integers m, g(m/n) = g™ (1/n). Also

9(1)=g<;+i+...i>:gn<i)

and hence g(m/n) = (g(1))™/™. As g is right continuous, we can replace m/n by any real number
x. Now g(1) = (g(1/2))? > 0 and so g(z) = e~** where A = —log(g(1)). This will be later very
useful when characterizing continuous time Markov chains.

We will use hazard rates when arguing that systems of chemical reactions can be represented
by Markov chains.

Letting s =t = 1/n, we get
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Definition. Let X be a continuous random variable with distribution function F' and density f.
The hazard rate function r(t) of X is

__f®)
r(t) = = F)

One way to look at hazards is to observe, for a small ¢,

Pt< X <t+dt, X >1t)
P(X > 1)

Pt < X <t+4t)
P(X > t)

_f@)dt

T 1-F(®%)

Pit< X <t+t|X >t)=

= r(t)dt.

For X exponentially distributed with parameter A, the hazard is

ft)
)= —— 2
"= T
A —At
==X
PEY:
Therefore the hazard of an exponential random variables is constant.
On the other hand, the hazard uniquely determines the distribution F'. Integrating both sides
of the hazard definition, we get

log(1—F(t)) = — /Otr(t)dt +k

1—F(t) =e"exp (— /Ot r(t)dt) :

Letting ¢t = 0 shows that £ = 0 and so

F() = 1— exp (- /Ot r(t)dt) .

In case of a constant hazard, we get the exponential distribution function (and so no other con-
tinuous distribution has constant hazard).

Consider n independent random variables X1, Xs,..., X, all exponentially distributed with
respective parameters A1, A, ..., A,. Let Z = min(Xy, Xo,...,X,). The distribution of Z can be
derived as

P(Z>z2)=P(X;>zforalli=1,...,n)

=[P > 2)

Therefore Z is exponentially distributed with parameter » . ; A;. We can look at the n variables
X, as times until occurrence of n different events. The random variable Z is then the time until
any of these events occurs. If we treat the parameters \; as the rates of the corresponding events,
i.e. the number of events of type ¢ occurring during a unit time, then it is expected that the rate
of any event occurring occurring during unit time is the sum of all the rates.
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We now look at the probability that an event occurring belongs to a chosen variable X;. Let
W =min(X;, j # i). Then W is an exponential random variable with the rate A =3, A; and
S0

P(Z = Xi) =P(X; <W)

o0

P(W > z)\e %dx

J
J

= /00 Ne~QitNeqy
0
by by

7

TN SN

The above two properties will be useful when simulating the situation of having n events with
exponentially distributed delay times. We use the second property to randomly choose an event
that happens next and the first one to determine the delay until this event happens.

2.1.2 Sampling from random variables

One of the output formalisms of stochastic process algebras is stochastic simulation. This requires
generation of random variates. We will describe the basic inversion method that will be sufficient
for the simulation algorithms described in the remainder of this report. We assume that we can
generate samples from the standard uniform distribution (a common feature of most programming
platforms).

Proposition 2.1. Let U be a standard uniform random variable (i.e. one taking values in [0, 1])
and F a monotonous distribution function. Then the random variable X = F~!(U) has distribu-
tion function F'.

Proof. Because F' is monotonous, we have for any x € R

P(X <z)=PF YU) <2)
=P(U < F(x)
= F(x). ]

~—

Using the above proposition, we can simulate an exponentially distributed random variable
with parameter \. We have F(z) =1 — e ** and so F~!(z) = — log(1 — z). Therefore, if U is
uniform (0, 1), the random variable —% log(1 — U) is exponentially distributed with parameter 1.
Because 1 — U is also uniform (0, 1), we have — log U is exponential with parameter A.

In a similar way, we can simulate any discrete random variable taking values from a finite set.
Assume U is standard uniform and X is discrete with mass function

f(k) = p

for k = 1,2,..., K and real numbers p; such that Zszl p; = 1. If we now divide the interval
[0,1] into K subintervals Iy = [0,p1), I = [p1,p1 + p2), -.., Ix = [Zszl —1,1] then clearly
P{Ue€l;)=p, =P(X =) forall i =1,..., K. Therefore we can take i such that U € I; as a
realization of X.

We just add that there are many more sophisticated methods for sampling random variables
(both continuous and discrete) that can apply to a wider range of distribution and can also
offer better performance of implementation. However, the inversion method will suffice for our
investigation.
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2.1.3 Markov chains

Building on probability theory, we can introduce the Markov chains — the target formalism for
discrete semantics of stochastic process algebras.

Definition. A stochastic process is a family {X(¢) : ¢ € T} of random variables indexed by
some set T. We call a stochastic process discrete time if T = {0,1,2,...} and continuous time if
T = [0, 00).

Definition. Continuous time stochastic process {X (t) : t > 0} is a continuous time Markov chain
(CTMC) if for all s,t > 0 and nonnegative integers i, 7, z(u),0 < u < s if

P(X(t+s)=74X(s)=i,X(u)=z(u), 0<u<s)=P(X(t+s)=jX(s) =1i).

If the probability
P(X(t+s) = jlX(s) =)

is independent of s, we say the CTMC has stationary or homogeneous transition probabilities.
From now on we will assume this to be the case.

The following definition is an alternative formulation of CTMCs (which can be proved equiv-
alent to the above), more suitable for simulation.

Definition. CTMC is a stochastic process such that

(i) each time it enters a state i, the amount of time it spends in that state before making a
transition into state j is exponentially distributed with parameter A;; depending only on ¢
and j,

(ii) when it leaves state 4, it enters state j with some time independent probability P;;.

We add that there is a highly developed theory that allows more analysis of CTMCs, such
as calculation of transient probability distributions or steady states. This usually relies on the
state space of the CTMC to be finite. Whereas it is the case for some stochastic process algebras
such as BioPEPA, we will show that models in stochastic 7 calculus can result in CTMCs with
infinite state space. In that case, stochastic simulation will be the main technique of analysing
those CTMCs. Although it does not provide precise results and is prone to error, it is efficient
and with certain care can be used to gain better understanding of the underlying models.

2.1.4 Simulation of Markov chains

The second characterization of CTMCs is directly suited to simulation. The most obvious way to
proceed is called the direct method. In each state ¢, there are finitely many possible transitions.
The waiting times for all of these will be exponentially distributed random variables and hence
the time until the first transition occurs will be exponential too, with parameter equal to the sum
of the parameters of the individual waiting times. Sampling this random variable (for example
using the inversion method) gives us the time until the transition occurs. Then we can get the
new state j by sampling a discrete random variable with mass function f(j) = P;; for all possible
j (by using inversion if there is finitely many of them).

2.1.5 Gillespie Algorithm

In this section we introduce the widely used simulation algorithm of Gillespie [I7], who made a
big contribution to bringing stochastic simulation to biochemistry. The algorithm deals with the
following problem: Assume a fixed volume V containing a spatially uniform mixture of n chemical
species interacting through m specified chemical reaction channels. Given the initial numbers of
molecules of each species, what will the populations be at any given time?
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Figure 2.2: The X molecule (represented by the sphere of radius r1) moves towards the ¥ molecule
(represented by the sphere with radius r2, the diagram does not represent the relative positions
of the two molecules), sweeping volume §Veo in a short time interval dt.

Traditionally, ordinary differential equations are used to tackle this problem. Let X;(¢) be the
number of molecules of the i-th species at time ¢. Assuming that each reaction is a continuous
rate process, we get the reaction equations

Xm/dt = fl(Xla s 7Xn)a
dX2/dt = f2(X1, Ce 7Xn),

AX,/dt = fo(X1,..., Xn).

It is sometimes argued that in addition to these equations usually being not analytically
tractable, they also don’t describe the physical basis of the problem faithfully and assume that
the time evolution of a chemically reacting system is continuous and deterministic — molecular
population levels can only change in discrete steps and it is not possible to account for exact
positions and velocities of all the molecules in the system. Hence it is impossible to predict the
system behaviour and so the time evolution is not deterministic.

Another way of looking at this problem takes a probabilistic approach, based on the assumption
that the contents of the fixed volume are well stirred and hence the molecules uniformly and
independently distributed over the volume V. Consider the reaction

X+Y =,

and assume that both X and Y molecules are spheres of radii r; and 79 respectively. Such reactions
are the most common and more complicated ones (those involving more than two molecules) can
be considered rare, see [40])

The above reaction occurs when any two X and Y molecules collide, i.e. when the distance
between an X molecule and an Y molecule is less than ri5 = rq + ro.

We can pick an arbitrary pair of X and Y molecules and consider the speed vis of the X
molecule relative to the Y molecule. In the next small time interval §t, the X molecule will cover,
relative to the Y molecule, a collision volume §Veon = mrigv126t. Since the molecules are uniformly
distributed, we can get the probability of the reaction by fixing an X molecule and calculating the
probability of having a ¥ molecule within 6V oy. See Figure 2.2}

Therefore

P(the two molecules coliding in next 6t) = §Veon/V
=V rrivt
=c- 0t

for a constant ¢ specific to the reaction. Now a probability of any pair of X and Y reacting is (if
there are X; molecules of X and X, molecules of Y in the system) X; Xocdt as there are X3 Xo
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different pairs. We can see this as a hazard rate of a distribution of the time until the reaction
occurs. Therefore this is exponentially distributed with parameter X7 Xsc;. Generally, depending
on the left hand side of the reaction equation, the number of different combinations will depend

hi(Z, i) on the current population level. For each reaction i, we can denote the hazard by h;(Z,¢;) for a
system state T, a vector of concentrations of the individual species. Because these hazards depend
only on the current state of the system, its time evolution can be regarded as a CTMC. This leads
to a simulation algorithm (named the Gillespie algorithm in the context of biochemistry) identical
to the general direct method for Markov chains. See Algorithm

Algorithm 1 The Gillespie algorithm
1: Initialize molecule numbers in the vector z, set time ¢ < 0
2: repeat
Calculate h;(, ¢;) for each i
4:  Sample the next reaction p from discrete distribution where ¢ has a probability h;(Z, ¢;)
5. Sample 7 from exponential distribution with parameter 3, h;(, ¢;)
6:  Change the number of molecules according to the reaction p, set t «— t + 7
7: until £ > t50p

@

2.1.6 Next reaction method

There have been several improvements to the Gillespie algorithm (and so the direct method as
well), focusing on more efficient simulation. One such improvement is the algorithm by Gibson
and Bruck [I5], also called the Next reaction method, which improves the efficiency in presence
of large numbers of reacting species and reaction channels. We will implement this algorithm in
addition to the direct method and try to assess its suitability for stochastic 7 calculus.

The main idea of the algorithm is in keeping a queue of all the reactions that can happen. This
may seem counter-intuitive in the first place. However, an efficient implementation of the queue
allows fast retrieval and insertion of the reaction times. This is combined with an observation that
not all of the times in the queue have to be updated after a reaction occurs — only the reaction
involving species whose population changed have to be considered — thi