
Department of Computing
Imperial College London

Continuous and spatial extension
of stochastic π-calculus

Final Year Project

Anton Stefanek

Marker: Dr. Maria Grazia Vigliotti
Second Marker: Dr. Jeremy Bradley June 26, 2009

ii

Abstract

In this project, we work towards a continuous and spatial extension of stochastic π calculus.
The continuous semantics is a useful alternative to the discrete semantics and has been recently
provided for other process algebras. Ability to express spatial properties of the models is an
important practical extension, specially in Systems Biology.

Inspired by previous work [7][20], after showing results on process aggregation in stochastic π
calculus (Sπ) in form of multisets, we formulate and informally justify the continuous semantics.
We show that this is tractable (in the sense that the set of resulting ordinary differential equations
(ODEs) is finite) for the case of a subset of stochastic π calculus called Chemical Ground Form
(CGF) defined in [7].

We attempt to tackle the problem of potentially infinite set of ODEs. We define two notions of
finiteness, one allowing a direct analysis and another allowing further investigation of convergence
results. We also provide an algorithm translating models in stochastic Sπ into CGF in case the
finiteness is satisfied. We give a syntactical restriction of Sπ which guarantees finiteness. We
intuitively and informally describe another condition on Sπ models guaranteeing finiteness.

We explore the relationship between the continuous and discrete semantics. We experimentally
look at the effect of scaling populations of processes in various existing models.

We define a simple spatial extension of Sπ. We bring the aggregation results to this exten-
sion and define an extended continuous semantics. We give an original example demonstrating
advantages of this extension.

As an essential co-product, we develop an efficient, user friendly and portable tool implementing
the above formalisms, with comparable simulation performance with the state of the art Stochastic
Pi Machine (SPiM) simulator[32]. We also collect some of the available models in stochastic
π calculus from Systems Biology, whose analysis can be enriched by the additional continuous
semantics.

iii

Acknowledgments

Firstly, I would like to thank my supervisor Dr. Maria Vigliotti for her support and enthusiasm.
I would also like to thank to Dr. Jeremy Bradley for his helpful discussions.
I would like to thank to all my friends for looking after me during the recent months.
Finally, I am grateful to my parents for their total love and support.

iv

CONTENTS v

Contents

1 Introduction 1
1.1 Project Aim . 1
1.2 Contributions . 2

2 Process algebras in Systems Biology 5
2.1 Mathematical background . 6

2.1.1 Exponential distribution . 7
2.1.2 Sampling from random variables . 9
2.1.3 Markov chains . 10
2.1.4 Simulation of Markov chains . 10
2.1.5 Gillespie Algorithm . 10
2.1.6 Next reaction method . 12
2.1.7 Numerical algorithms for solving systems of ODEs 13

2.2 Stochastic process algebras . 13
2.2.1 Stochastic π calculus . 14
2.2.2 Continuous π calculus . 15
2.2.3 Bio-PEPA . 15

2.3 Spatial extensions . 16
2.4 Summary . 16

3 Stochastic π calculus 17
3.1 Syntax . 17
3.2 Substitution and alpha congruence . 20
3.3 Semantics . 22
3.4 Structural congruence . 25
3.5 Simulation . 26
3.6 Prime processes . 28
3.7 Summary . 29

4 Continuous semantics of stochastic π calculus 31
4.1 Translation to CGF . 36
4.2 Summary . 39

5 Finiteness conditions and convergence investigations 41
5.1 Conditions for finiteness . 43

5.1.1 Syntactic restriction . 43
5.1.2 Restriction on private names . 44

5.2 Relationship between continuous and discrete semantics 45

6 Spatial extension of stochastic π calculus 53
6.1 Syntax . 54
6.2 Semantics . 54
6.3 Simulation . 55
6.4 Continuous semantics . 61
6.5 Relationship to Sπ . 62
6.6 Summary . 63

vi CONTENTS

7 Implementation 65
7.1 Architecture overview . 66

7.1.1 Used libraries . 67
7.2 Implementation details . 67

7.2.1 ANTLR grammars . 67
7.2.2 Process representation . 68
7.2.3 Higher level collections . 68
7.2.4 Commands . 71

7.3 Spatial extension . 72
7.4 Testing . 74
7.5 Benchmarking . 74

8 Evaluation and Future work 75
8.1 Multiset representation . 75
8.2 Continuous semantics . 75
8.3 Finiteness conditions . 75
8.4 Relationship between the two semantics . 76
8.5 Spatial extension . 76
8.6 Implementation . 76
8.7 Collection of models . 77
8.8 Future work . 77
8.9 Conclusion . 78

A JSPiM 83
A.1 Language definition . 83

A.1.1 Core . 83
A.1.2 Spatial extension . 84

A.2 Screenshots . 84

B Collection of basic examples 87
B.1 Circadian clock . 88

B.1.1 Model . 88
B.1.2 Results . 88

B.2 Circadian clock in CGF . 89
B.2.1 Model . 89
B.2.2 Results . 89

B.3 Oregonator 1 . 91
B.3.1 Model . 91
B.3.2 Results . 91

B.4 Oregonator 2 . 93
B.4.1 Model . 93
B.4.2 Results . 93

B.5 MAPK 1 . 95
B.5.1 Model . 95
B.5.2 Results . 95

B.6 MAPK 1 in CGF . 97
B.6.1 Model . 97
B.6.2 Results . 97

B.7 Bistable . 99
B.7.1 Model . 99
B.7.2 Results . 99

B.8 Bistable in CGF . 101
B.8.1 Model . 101
B.8.2 Results . 101

B.9 SIR model . 103
B.9.1 Model . 103

CONTENTS vii

B.9.2 Results . 103
B.10 ABA Signal Transduction in Plants . 105

B.10.1 Model . 105
B.10.2 Results . 106

B.11 Repressilator . 107
B.12 Plant Tissue in Lπ . 109

C Tests 113

viii CONTENTS

LIST OF FIGURES ix

List of Figures

2.1 The cycle of systems biology. 6
2.2 Argument for the Gillespie algorithm. 11
2.3 Correspondence between biological and process algebraic terms used in this report. 14

3.1 Structural operational semantics of Sπ . 23
3.2 Example of a derivation for a member of the transition relation. 24
3.3 Example of a (pre-)transition diagram. 24
3.4 Example of a transition diagram. 24
3.5 Illustration of the enumeration argument. 27

4.1 A diagram overviewing the four ways how a prime process can increase and decrease
its population. 34

4.2 Sample simulation and a solution to the system of ODEs of a Lokta-Volterra model. 36
4.3 CTMC for EHCl . 37
4.4 Simulation and ODE solution of a HCl model. 38

5.1 The effect of scaling on the simulation of the MAPK model. 47
5.2 Plots of the changing variance for the MAPK model. 48
5.3 The effect of scaling on the simulation of the circadian clock model. 49
5.4 Plots of the changing variance for the circadian clock model. 50
5.5 Sample simulation of the repressilator model . 51
5.6 The effect of scaling on the simulation of the repressilator model. 52

6.1 Argument for the spatial Gillespie algorithm. 54
6.2 Structural operational semantics of Lπ. 56
6.3 Simulation of the SIR model with active quarantining and the original model with

single location. 58
6.4 Location graph of the plant tissue model . 59
6.5 Sample simulations of the plant tissue model. 60
6.6 Numerical solutions to the ODEs from the SIR model with quarantining compared

with the results for the original model. 62

7.1 Overview of the JSPiM package structure. 66
7.2 The role of ANTLR grammars in JSPiM. 67
7.3 High level overview of π calculus process representation in the implementation. . . 69
7.4 Representation of Sπprocesses in JSPiM. 69
7.5 High level overview of collections behind the simulation and ODE generation in

JSPiM . 70
7.6 Overview of the main fields and methods of the collections used for simulation in

JSPiM. 70
7.7 Overview of the main fields and methods of the collections used for ODE generation

and solution in JSPiM. 70
7.8 Summary of representation of some of the Sπ definitions in JSPiM. 71
7.9 Overview of commands in JSPiM. 71
7.10 Summary of the simulation and ODE generation commands in JSPiM. 72
7.11 Overview of spatial packages in JSPiM. 73
7.12 Spatial collections in JSPiM. 73

x LIST OF FIGURES

7.13 Overview of the main fields and methods of the NodeReactingCollection. 73
7.14 Overview of the main fields and methods of the SpatialReactingCollection. 74
7.15 Comparison of running times of SPiM and JSPiM. 74

A.1 Screenshot from JSPiM. 84
A.2 Screenshot from the simulation window. 85
A.3 Screenshot from the spatial simulation window. 85

B.1 Sample simulation of the Circadian clock model. 88
B.2 Sample simulation of the CGF translation of the circadian clock model. 90
B.3 Results from the Oregonator 1 model. 92
B.4 Results from the Oregonator 2 model. 94
B.5 Simulation of the MAPK model. 96
B.6 Results from the MAPK1 (in CGF) model. 98
B.7 Results from the Bistable model. 100
B.8 Results from the Bistable (in CGF) model. 102
B.9 Results from the SIR model. 104
B.10 Results from the ABA signal transduction in plants model. 106
B.11 Results from the repressilator model . 108

LIST OF ALGORITHMS xi

List of Algorithms

1 The Gillespie algorithm . 12
2 The Next Reaction Method . 12
3 The fourth-order Runge-Kutta method. 13
4 The Gillespie algorithm for Sπ. 28
5 The Gillespie algorithm for Lπ . 57

xii LIST OF ALGORITHMS

1. INTRODUCTION 1

1
Introduction

Systems Biology is an interdisciplinary study field aimed towards quantitative understanding of
biological systems. It searches for suitable abstractions that would, with the confirmation from
experimental data, enhance knowledge about complex interactions within these systems.

Stochastic process algebras is a family of formalisms originating in the field of performance
analysis of concurrent computer systems. Stochastic process algebras have recently been used to
model different phenomena in Systems Biology. They provide a formal description of the systems
and offer model compositionality, where complex systems can be expressed in terms of interacting
subsystems. Also, coming from computer science, process algebras clearly separate their syntax
from semantics – they can be thought of as intermediate descriptions from which different analyses
can be carried out. Traditionally, they are used with discrete semantics, intuitively close to
computer systems. A recent trend is in providing an additional continuous semantics, as has
been done for example for PEPA in [20], BioPEPA and for stochastic Concurrent Constraint
Programming in [3]. This allows a single process-algebraic description approaching the modelled
problem from two different perspectives. Such feature is particularly desired in Systems Biology,
where the interacting systems coexist on a wide range of temporal and spatial scales and neither
the continuous nor discrete approach is universally suitable [41].

Another attractive feature of stochastic process algebras lies in the flexibility they offer to
possible extensions. This again suits Systems Biology, where the modelled systems can be highly
specialized and many different aspects need to be considered. One such extension is the addition
of features expressing spatial properties of the modelled systems – a fundamental concept in a wide
range of areas in Systems Biology, such as modelling of tissues or intra-cellular processes. There
have been different attempts to bring spatial expressivity to process algebras and various special-
ized formalisms have been proposed, such as the BioAmbient calculus [35] or a compartmental
extension of BioPEPA [11].

Stochastic π calculus is a stochastic process algebra that has been successfully applied to
modelling in Systems Biology [9, 8, 38, 24]. It provides the discrete semantics, supported by a
tool Stochastic Pi Machine (SPiM) [32] for simulating the described models.

Our aim is to extend stochastic π calculus with both the continuous semantics and spatial
features, while still allowing re-use of existing models. We also aim to provide a tool that enables
the additional analysis resulting from the continuous semantics to be applied to the existing models
from SPiM.

1.1 Project Aim

We can summarize the main aims of the project as the following:

2 1. INTRODUCTION

(1) We aim to provide a continuous semantics for stochastic π calculus. Some work has been done
in this direction. Cardelli described a translation from a subset of stochastic π calculus to
a system of ordinary differential equations (ODEs) via an intermediate translation through
equivalent chemical equations[7]. The continuous π calculus is a process algebra based
on π calculus aimed mainly towards the continuous semantics, with focus on evolutionary
properties of biochemical pathways[25].

(2) Following the trend of PEPA and sCCP, [14],[2], the next step after defining the continuous
semantics is an investigation into the relationship between the two semantics. BioPEPA
presents results showing that the continuous semantics is a certain limit of the discrete; it is
of interest to provide such results for stochastic π calculus.

(3) We aim to define a spatial extension of stochastic π calculus, making the framework more
applicable to systems biology. As opposed to the BioAmbient calculus[35], we only aim to
express static compartmental structure, with the hope of applying the continuous semantics
to this extension. We require the formalism to support re-use of existing models from
stochastic π calculus.

(4) To demonstrate the above concepts and to enhance existing models with the continuous
analysis, we aim to develop a portable and user-friendly tool, making the framework more
accessible to both biologists wishing to apply it and to computer scientists designing further
extensions.

1.2 Contributions

The main contributions of this project come from tackling the above challenges.

• To arrive at a definition of the continuous semantics and also to enable efficient simulation,
we describe a process aggregation method in terms of a multiset representation. In Chapter
3 we first restate the definition, semantics and structural congruence of stochastic π calculus
(to which we refer to as to Sπ). We show how the structural congruence can achieve process
aggregation in form of multisets and thus provide an efficient simulation algorithm as well
as serve as a basis for the continuous semantics.

• We define the continuous semantics of Sπ. In Chapter 4 we define and give informal justi-
fication for a direct translation to a system of ordinary differential equations (ODEs). We
show that the CGF subset of Sπ makes the resulting system of ODEs viable for numerical
analysis. We provide an efficient algorithm to do so.

• In Chapter 5, we illustrate that the restriction operator, capable of producing new species
(e.g. used to model complexation and polymerization) can cause the set of ODEs to be
infinitely large. We give some basis for classification of finiteness of the continuous semantics.
In Section 5.1, we formally describe two notions of what it means for a system of Sπ to
produce an infinite set of ODEs. We then give a condition on the syntax of processes to
guarantee the finiteness. We informally give intuition for a more general condition that will
guarantee the systems to be useful for further analysis. We will describe how to translate
Sπ models into CGF in case the finiteness is satisfied and do so for several existing models.

• We investigate the relationship between the two semantics. In Section 5.2 we experiment
with various available models and provide observations of some properties of the relationship
between the continuous and discrete semantics. We highlight the difference between these
and some of the convergence properties for BioPEPA[14].

• We define an extension of Sπ that allows to express static compartments with fixed volume. In
Chapter 6 we justify the main ideas and give the definition and provide continuous semantics
for this extension. We give an example of an existing Sπ model extended with the spatial
features and also give an original example from plant biology demonstrating the flexibility
of this framework.

1. INTRODUCTION 3

• We implement a portable tool written in Java programming language that provides efficient
simulation (as an alternative to SPiM) of models in Sπ and ODE generation and solution
of models in CGF, enhancing the possible analysis of existing and future models. Chapter 7
describes the design, algorithms and used technologies and suggests a proof of correctness.
In the Appendix B, we provide a collection of models with results from both semantics when
applicable, gathered from available literature.

4 1. INTRODUCTION

2. PROCESS ALGEBRAS IN SYSTEMS BIOLOGY 5

2
Process algebras in Systems Biology

There has been an increasing interest in the application of process algebras in the modelling and
analysis of biological systems. The reason for this is that there is an obvious correspondence
between biological systems and concurrent systems – the species (molecules, proteins, etc.) can be
seen as processes interacting and influencing each other (e.g. via chemical reactions). See [6] for
examples of this correspondence in different areas of Biology. This abstraction provides various
benefits:

• Process algebras provide a formal representation of the modelled system, thus avoiding
ambiguity.

• They offer model compositionality – complicated systems can be defined in terms of sub-
systems. This is crucial in tackling an important theme in systems biology, which is to
understand how the interactions between different components bring new functionality.

• Process algebras conveniently offer different analysis techniques. They can be considered as
an intermediate description that leads to different mathematical formalisms.

Last but not least, stochastic process algebras offer direct, practical implementations. This
fits well in the knowledge discovery cycle of Systems Biology. First, a formal process-algebraic
model abstracting a biological system is proposed, using the available knowledge and intuition
about its components, functionality and interactions with other systems. On this model, different
mathematical and computational analyses can be performed (using the tool offered by the process
algebra), thus providing an experiment in-silico. Results of this experiment can be compared
with the real experimental data. This can lead to refined models (e.g. using more fine tuned
parameters agreeing with the experiments) and eventually to better understanding of the biological
system. Moreover, when the biological system is known to be consisting of different subsystems,
the corresponding models can be composed together, avoiding additional work, and the analysis
offering insight into the role different interactions and cooperations play in the functioning of the
system. See Figure 2.1 for an overview.

We give an introduction to stochastic process algebras in the context of Systems Biology. We
describe different mathematical formalisms which are used by stochastic process algebras, includ-
ing the Gillespie algorithm for stochastic simulation, numerical methods for solving differential
equations and mention some of the theory of Markov chains. We introduce stochastic process
algebras and show how exactly they are attractive to Systems Biology and how they employ the
above formalisms to provide analyses of the modelled systems. We will mainly concentrate on
general process algebras, such as the stochastic π calculus and BioPEPA. We also briefly look at
some extensions providing spatial modelling and the alternative continuous semantics.

6 2. PROCESS ALGEBRAS IN SYSTEMS BIOLOGY

Biological
System

Experimental
Data

Formal
Model

Model
Analysis

K def= ?a3(d, k).(!d.KK +!k.KKP)
KK def= ?a4(d, k).(!d.KK +!k.KKP)

...
System = E1|10×KKK | · · ·

?

Figure 2.1: The cycle of systems biology. Formal model is created using the current knowledge
and intuition about the system. The model analysis is compared with the experimental data to
improve the model and eventually enhance the knowledge about the biological system.

Notation. In the rest of this report, we will introduce various abstract concepts, some of which
can be rather obscured by their syntax (specially the Chapter 3 and 4 can be quite “syntax
heavy”). We are aware of this and will always try to give intuitive description of the underlying
ideas. Moreover, we will use the margins to place markers1 whenever a new syntactical construct1new syntax

is defined.
We will use similar style when describing the implementation, marking the important Java

classes.

2.1 Mathematical background

We briefly go through various mathematical concepts that are useful in designing and implementing
stochastic process algebras. We first state some well known properties of Exponential distribution
which is crucial for analysis of (Markovian) stochastic process algebras. We restate a simple
method for sampling variables from the Exponential and general discrete distribution, which will
be useful for implementing the discrete semantics of stochastic π calculus. We define a class
of stochastic processes, continuous-time Markov chains (CTMCs) that are the target formalism

2. PROCESS ALGEBRAS IN SYSTEMS BIOLOGY 7

of many stochastic process algebras. We show how these can be simulated using the described
sampling techniques. We describe the Gillespie algorithm for stochastic simulation of chemical
reactions and show how it relates to the CTMCs. We recollect a numerical method for solving
systems of ordinary differential equations, which will be useful when implementing computational
analysis of the continuous semantics of stochastic π calculus.

2.1.1 Exponential distribution

In the following, we will use exponential random variables in various places. We state some of their
important properties that can be found in standard probability literature [37, 18]. A continuous
random variable X is said to have an exponential distribution with parameter λ if its probability
density function is given by

f(x) =

{
λe−λx x ≥ 0,
0 x < 0.

Its cumulative distribution function then is

F (x) =
∫ x

−∞
f(y)dy =

{
1− e−λx x ≥ 0,
0 x < 0.

The mean of X can be derived as

E(X) =
∫ ∞
−∞

xf(x)dx

=
∫ ∞

0

λxe−λx

= [−xe−λx]∞0 +
∫ ∞

0

e−λxdx =
1
λ
.

The variance is Var(X) = 1/λ2.
A random variable X is said to be memoryless if

P(X > s+ t|X > t) = P(X > s)

for all s, t ∈ R ≥ 0. If we consider X as a lifetime of a certain object, the above states that after
any arbitrary lifetime t of the object, the remaining lifetime has the same distribution as at the
time 0; that is, the object does not “remember” that it has already been alive for time t.

We can simply verify that the exponential random variable X is memoryless:

P(X > s+ t) = e−λ(s+t)

= e−λse−λt = P(X > s)P(X > t).

On the other hand, the exponential distribution is the only memoryless distribution: Let X be
memoryless and let g(x) = P(X > x). Then we get

g(s+ t) = g(s)g(t).

Letting s = t = 1/n, we get

g

(
2
n

)
= g

(
1
n

+
1
n

)
= g2

(
1
n

)
.

Similarly, for all integers m, g(m/n) = gm(1/n). Also

g(1) = g

(
1
n

+
1
n

+ · · · 1
n

)
= gn

(
1
n

)
and hence g(m/n) = (g(1))m/n. As g is right continuous, we can replace m/n by any real number
x. Now g(1) = (g(1/2))2 ≥ 0 and so g(x) = e−λx where λ = − log(g(1)). This will be later very
useful when characterizing continuous time Markov chains.

We will use hazard rates when arguing that systems of chemical reactions can be represented
by Markov chains.

8 2. PROCESS ALGEBRAS IN SYSTEMS BIOLOGY

Definition. Let X be a continuous random variable with distribution function F and density f .
The hazard rate function r(t) of X is

r(t) =
f(t)

1− F (t)
.

One way to look at hazards is to observe, for a small δt,

P(t < X < t+ δt|X > t) =
P(t < X < t+ δt, X > t)

P(X > t)

=
P(t < X < t+ δt)

P(X > t)

' f(t)δt
1− F (t)

= r(t)δt.

For X exponentially distributed with parameter λ, the hazard is

r(t) =
f(t)

1− F (t)

=
λe−λt

e−λt
= λ.

Therefore the hazard of an exponential random variables is constant.
On the other hand, the hazard uniquely determines the distribution F . Integrating both sides

of the hazard definition, we get

log(1− F (t)) = −
∫ t

0

r(t)dt+ k

1− F (t) = ek exp
(
−
∫ t

0

r(t)dt
)
.

Letting t = 0 shows that k = 0 and so

F (t) = 1− exp
(
−
∫ t

0

r(t)dt
)
.

In case of a constant hazard, we get the exponential distribution function (and so no other con-
tinuous distribution has constant hazard).

Consider n independent random variables X1, X2, . . . , Xn all exponentially distributed with
respective parameters λ1, λ2, . . . , λn. Let Z = min(X1, X2, . . . , Xn). The distribution of Z can be
derived as

P(Z > z) = P(Xi > z for all i = 1, . . . , n)

=
n∏
i=1

P(Xi > z)

=
n∏
i=1

e−λiz

= exp

(
−

(
n∑
i=1

λi

)
z

)
.

Therefore Z is exponentially distributed with parameter
∑n
i=1 λi. We can look at the n variables

Xi as times until occurrence of n different events. The random variable Z is then the time until
any of these events occurs. If we treat the parameters λi as the rates of the corresponding events,
i.e. the number of events of type i occurring during a unit time, then it is expected that the rate
of any event occurring occurring during unit time is the sum of all the rates.

2. PROCESS ALGEBRAS IN SYSTEMS BIOLOGY 9

We now look at the probability that an event occurring belongs to a chosen variable Xi. Let
W = min(Xj , j 6= i). Then W is an exponential random variable with the rate λ =

∑
j 6=i λj and

so

P(Z = Xi) = P(Xi ≤W)

=
∫ ∞

0

P(Xi ≤W |Xi = x)P(Xi = x)dx

=
∫ ∞

0

P(W > x)λie−λixdx

=
∫ ∞

0

λie
−(λi+λ)xdx

=
λi

λi + λ
=

λi∑n
i=1 λi

.

The above two properties will be useful when simulating the situation of having n events with
exponentially distributed delay times. We use the second property to randomly choose an event
that happens next and the first one to determine the delay until this event happens.

2.1.2 Sampling from random variables

One of the output formalisms of stochastic process algebras is stochastic simulation. This requires
generation of random variates. We will describe the basic inversion method that will be sufficient
for the simulation algorithms described in the remainder of this report. We assume that we can
generate samples from the standard uniform distribution (a common feature of most programming
platforms).

Proposition 2.1. Let U be a standard uniform random variable (i.e. one taking values in [0, 1])
and F a monotonous distribution function. Then the random variable X = F−1(U) has distribu-
tion function F .

Proof. Because F is monotonous, we have for any x ∈ R

P(X ≤ x) = P(F−1(U) ≤ x)
= P(U ≤ F (x))
= F (x). �

Using the above proposition, we can simulate an exponentially distributed random variable
with parameter λ. We have F (x) = 1 − e−λx and so F−1(x) = − 1

λ log(1 − x). Therefore, if U is
uniform (0, 1), the random variable − 1

λ log(1− U) is exponentially distributed with parameter 1.
Because 1− U is also uniform (0, 1), we have − 1

λ logU is exponential with parameter λ.
In a similar way, we can simulate any discrete random variable taking values from a finite set.

Assume U is standard uniform and X is discrete with mass function

f(k) = pk

for k = 1, 2, . . . ,K and real numbers pi such that
∑K
k=1 pi = 1. If we now divide the interval

[0, 1] into K subintervals I1 = [0, p1), I2 = [p1, p1 + p2), . . . , IK = [
∑K
k=1−1, 1] then clearly

P(U ∈ Ii) = pi = P(X = i) for all i = 1, . . . ,K. Therefore we can take i such that U ∈ Ii as a
realization of X.

We just add that there are many more sophisticated methods for sampling random variables
(both continuous and discrete) that can apply to a wider range of distribution and can also
offer better performance of implementation. However, the inversion method will suffice for our
investigation.

10 2. PROCESS ALGEBRAS IN SYSTEMS BIOLOGY

2.1.3 Markov chains

Building on probability theory, we can introduce the Markov chains – the target formalism for
discrete semantics of stochastic process algebras.

Definition. A stochastic process is a family {X(t) : t ∈ T} of random variables indexed by
some set T . We call a stochastic process discrete time if T = {0, 1, 2, . . . } and continuous time if
T = [0,∞).

Definition. Continuous time stochastic process {X(t) : t ≥ 0} is a continuous time Markov chain
(CTMC) if for all s, t ≥ 0 and nonnegative integers i, j, x(u), 0 ≤ u < s if

P(X(t+ s) = j|X(s) = i,X(u) = x(u), 0 ≤ u < s) = P(X(t+ s) = j|X(s) = i).

If the probability
P(X(t+ s) = j|X(s) = i)

is independent of s, we say the CTMC has stationary or homogeneous transition probabilities.
From now on we will assume this to be the case.

The following definition is an alternative formulation of CTMCs (which can be proved equiv-
alent to the above), more suitable for simulation.

Definition. CTMC is a stochastic process such that

(i) each time it enters a state i, the amount of time it spends in that state before making a
transition into state j is exponentially distributed with parameter λij depending only on i
and j,

(ii) when it leaves state i, it enters state j with some time independent probability Pij .

We add that there is a highly developed theory that allows more analysis of CTMCs, such
as calculation of transient probability distributions or steady states. This usually relies on the
state space of the CTMC to be finite. Whereas it is the case for some stochastic process algebras
such as BioPEPA, we will show that models in stochastic π calculus can result in CTMCs with
infinite state space. In that case, stochastic simulation will be the main technique of analysing
those CTMCs. Although it does not provide precise results and is prone to error, it is efficient
and with certain care can be used to gain better understanding of the underlying models.

2.1.4 Simulation of Markov chains

The second characterization of CTMCs is directly suited to simulation. The most obvious way to
proceed is called the direct method. In each state i, there are finitely many possible transitions.
The waiting times for all of these will be exponentially distributed random variables and hence
the time until the first transition occurs will be exponential too, with parameter equal to the sum
of the parameters of the individual waiting times. Sampling this random variable (for example
using the inversion method) gives us the time until the transition occurs. Then we can get the
new state j by sampling a discrete random variable with mass function f(j) = Pij for all possible
j (by using inversion if there is finitely many of them).

2.1.5 Gillespie Algorithm

In this section we introduce the widely used simulation algorithm of Gillespie [17], who made a
big contribution to bringing stochastic simulation to biochemistry. The algorithm deals with the
following problem: Assume a fixed volume V containing a spatially uniform mixture of n chemical
species interacting through m specified chemical reaction channels. Given the initial numbers of
molecules of each species, what will the populations be at any given time?

2. PROCESS ALGEBRAS IN SYSTEMS BIOLOGY 11

δVcoll = πr2
12 · v12δt

r1

r12 = r1 + r2

v 12
δt

r2

Figure 2.2: The X molecule (represented by the sphere of radius r1) moves towards the Y molecule
(represented by the sphere with radius r2, the diagram does not represent the relative positions
of the two molecules), sweeping volume δVcoll in a short time interval δt.

Traditionally, ordinary differential equations are used to tackle this problem. Let Xi(t) be the
number of molecules of the i-th species at time t. Assuming that each reaction is a continuous
rate process, we get the reaction equations

dX1/dt = f1(X1, . . . , Xn),
dX2/dt = f2(X1, . . . , Xn),

...
dXn/dt = fn(X1, . . . , Xn).

It is sometimes argued that in addition to these equations usually being not analytically
tractable, they also don’t describe the physical basis of the problem faithfully and assume that
the time evolution of a chemically reacting system is continuous and deterministic – molecular
population levels can only change in discrete steps and it is not possible to account for exact
positions and velocities of all the molecules in the system. Hence it is impossible to predict the
system behaviour and so the time evolution is not deterministic.

Another way of looking at this problem takes a probabilistic approach, based on the assumption
that the contents of the fixed volume are well stirred and hence the molecules uniformly and
independently distributed over the volume V . Consider the reaction

X + Y → · · · .

and assume that both X and Y molecules are spheres of radii r1 and r2 respectively. Such reactions
are the most common and more complicated ones (those involving more than two molecules) can
be considered rare, see [40])

The above reaction occurs when any two X and Y molecules collide, i.e. when the distance
between an X molecule and an Y molecule is less than r12 = r1 + r2.

We can pick an arbitrary pair of X and Y molecules and consider the speed v12 of the X
molecule relative to the Y molecule. In the next small time interval δt, the X molecule will cover,
relative to the Y molecule, a collision volume δVcoll = πr2

12v12δt. Since the molecules are uniformly
distributed, we can get the probability of the reaction by fixing an X molecule and calculating the
probability of having a Y molecule within δVcoll. See Figure 2.2.

Therefore

P(the two molecules coliding in next δt) = δVcoll/V

= V −1πr2
12v12δt

= c · δt

for a constant c specific to the reaction. Now a probability of any pair of X and Y reacting is (if
there are X1 molecules of X and X2 molecules of Y in the system) X1X2cδt as there are X1X2

12 2. PROCESS ALGEBRAS IN SYSTEMS BIOLOGY

different pairs. We can see this as a hazard rate of a distribution of the time until the reaction
occurs. Therefore this is exponentially distributed with parameter X1X2ci. Generally, depending
on the left hand side of the reaction equation, the number of different combinations will depend
on the current population level. For each reaction i, we can denote the hazard by hi(x̃, ci) for ahi(ex, ci)
system state x̃, a vector of concentrations of the individual species. Because these hazards depend
only on the current state of the system, its time evolution can be regarded as a CTMC. This leads
to a simulation algorithm (named the Gillespie algorithm in the context of biochemistry) identical
to the general direct method for Markov chains. See Algorithm 1.

Algorithm 1 The Gillespie algorithm
1: Initialize molecule numbers in the vector x̃, set time t← 0
2: repeat
3: Calculate hi(x̃, ci) for each i
4: Sample the next reaction µ from discrete distribution where i has a probability hi(x̃, ci)
5: Sample τ from exponential distribution with parameter

∑
j hj(x̃, cj)

6: Change the number of molecules according to the reaction µ, set t← t+ τ
7: until t > tstop

2.1.6 Next reaction method

There have been several improvements to the Gillespie algorithm (and so the direct method as
well), focusing on more efficient simulation. One such improvement is the algorithm by Gibson
and Bruck [15], also called the Next reaction method, which improves the efficiency in presence
of large numbers of reacting species and reaction channels. We will implement this algorithm in
addition to the direct method and try to assess its suitability for stochastic π calculus.

The main idea of the algorithm is in keeping a queue of all the reactions that can happen. This
may seem counter-intuitive in the first place. However, an efficient implementation of the queue
allows fast retrieval and insertion of the reaction times. This is combined with an observation that
not all of the times in the queue have to be updated after a reaction occurs – only the reaction
involving species whose population changed have to be considered – this relationship is given by a
dependency graph calculated prior to the execution of the algorithm. Moreover, it can be proved
that the affected reaction times don’t have to be re-sampled and can be scaled based on the current
reaction.

Algorithm 2 The Next Reaction Method
1: Initialize molecule numbers, set t← 0, generate dependency graph G
2: Calculate the hazard ai for each reaction i
3: For each reaction i generate the reaction time τi from an exponential distribution with parameter ai

4: repeat
5: Let µ be the reaction with the least τµ
6: Update the numbers of molecules to reflect execution of µ
7: Sample τ from an exponential distribution with parameter

∑
j aj

8: Change the number of molecules according to µ, set t← t+ τ
9: for all edge (µ, α) in G do {update the affected reactions}

10: update aα
11: if α 6= µ, set τα ← (aα,old/aα,new)(τα − t) + t
12: if α = µ, generate ρ from an exponential distribution with parameter aµ and set τa ← ρ+t
13: end for
14: until t > tstop

2. PROCESS ALGEBRAS IN SYSTEMS BIOLOGY 13

2.1.7 Numerical algorithms for solving systems of ODEs

The continuous semantics will lead to an initial value problem, consisting of a set of n coupled
ordinary differential equations for some n,

dy1/dt = f1(y1, . . . , yn),
...

dyn/dt = fn(y1, . . . , yn)

and initial values yi(0) = ci for all i = 1, . . . , n.
In general it is intractable to find an analytical solution. In that case it still may be possible

to provide an approximate numerical solution. One of the standard algorithms to do so is the
fourth order Runge-Kutta mehtod. Starting from the initial values in ỹ(0), the method proceeds
in determining the values of ỹ = (y1, . . . , yn) at times that are increments of a step size h. Each
ỹ((k+ 1) ·h) = ỹ(k+1) is determined from ỹ(k) considering the slope of ỹ given by f = (f1, . . . , fn),
at different points between k · h and (k + 1) · h. See Algorithm 3 for details. We will implement
this in our tool.

Algorithm 3 The fourth-order Runge-Kutta method.
1: set ỹ0 to contain the initial values, t0 ← 0
2: while tn < tstop do
3: k1 ← f(tn, ỹn)
4: k2 ← f(tn + 1

2h, ỹn + 1
2hk11̃)

5: k3 ← f(tn + 1
2h, ỹn + 1

2hk21̃)
6: k4 ← f(tn + h, ỹn + hk31̃)
7: yn+1 ← 1

6h(k1 + 2k2 + 2k3 + k4)
8: tn+1 ← tn + h, n← n+ 1
9: end while

2.2 Stochastic process algebras

Stochastic process algebras are based on process algebras. Traditionally, process algebras are for-
malisms to specify the behaviour of a concurrent system in a formal, modular and hierarchical way.
The basic building blocks are processes that can perform actions – the basic unit of communication.

Process algebras are usually defined in an inductive fashion, giving the basic primitives, e.g.
actions, the zero process not capable of any actions or an instance of a previously defined process,
and then providing operators for composing these, such as summation expressing multiple capa-
bilities, parallel composition for allowing communication, restriction or name hiding for expressing
private communication etc.

The behaviour of the process algebraic models is in most cases given in terms of semantics
defined on the inductive structure of processes, producing a transition system of some kind. This
usually describes what happens to a process after it performs an action and when multiple processes
interact and in what way they synchronize. Additionally, possible recursive behaviour or private
communication can be described.

The original purpose of process algebras was to reason about the systems qualitatively, for
example studying different notions of equivalences or validity of properties expressible in some
system of logic. The development of stochastic process algebras, an extension of the above, was
motivated by the need of analysing performance, a quantitative measure, of large computer and
communication systems. In this setting, the process algebraic description is enriched with infor-
mation about the delay of individual actions, usually in terms of a probability distribution. The
semantics then enhances the transition system with transition distributions and thus gives rise to
stochastic processes. In case the transition distributions are exponential, the resulting stochastic
process is a CTMC. This allows for different kinds of analyses to be performed on the models,
such as numerically solving (in case the underlying state space is finite) or simulating the CTMCs.

14 2. PROCESS ALGEBRAS IN SYSTEMS BIOLOGY

Due to the earlier mentioned similarities between biological systems and concurrent processes,
stochastic process algebras got applied and later adapted to specific problems in Systems Biology.
Through this paper, we will sometimes use biological terms in place of their process algebraic
representations and vice versa, see Figure 2.3 for a small overview.

Process algebra Biology
process gene,protein,molecule, cell
identifier species
communication reaction
top-level process mixture,solution
number of processes population
system model

Figure 2.3: Some correspondence between biological and process algebraic terms that will be used
interchangeably in this report.

2.2.1 Stochastic π calculus

We introduce a process algebra that will serve as the basis for our further extensions. Here we
only give a brief overview and postpone the details to the Chapter 3. The original π calculus was
developed by Milner [27] as an extension of CCS and has been widely used to study concurrent
and mobile computational systems. The quantitative extension – the stochastic π calculus has
been defined in [33] and in [36] the authors argued why it can serve as a suitable abstraction for
Systems Biology.

The building blocks of stochastic π calculus are processes, communicating through channels.
Each channel has an associated rate, a parameter of an exponential distribution of the commu-
nication latency over the channel. Processes can perform actions. These can be on the channels
– output actions !a〈b〉 and input actions ?a(x) where a is the channel name, b the sent message
and x the bound variable that gets replaced by the received message. Processes can also perform
internal silent actions at a given rate, τ@r.

The most basic process is the zero process 0, not capable of any action. A process capable
of executing an action α and evolving into a new state (process) P is written as α.P . Multiple
capabilities are grouped by the summation operator

∑
. Two processes can be put in parallel by

the operator | to allow communication on the channels as well as independent transitions.
The messages sent in output actions can include channel names – one of the feature distin-

guishing π calculus from CCS. The main reason for this is the restriction operator (new e@re) –
a way of defining a new channel e which a process can send to establish private communication.
Finally, process identifiers can define processes with recursion.

The syntax of the processes of stochastic π calculus can be summarized as

P ::= 0 (the empty process)

:
∑
i∈I

αi.P (guarded summation)

: (new x)P (restriction)
: P |P (parallel composition)
: A〈a〉 (identifier instance)

The semantics of stochastic π calculus is in the form of a transition system, with state corre-
sponding to processes and labels to the rates. If a process is a parallel composition, it allows the
components to perform silent actions individually. If two components can perform complementary
actions (input to output and vice versa) on the same channel, they evolve together (with the rate
of the used channel), possibly exchanging a message. If the sender is under a restriction and the
message contains the private name, the receiver gets put under the same restriction (this is called

2. PROCESS ALGEBRAS IN SYSTEMS BIOLOGY 15

scope extrusion of the restriction operator). The transition system can then be interpreted in a
straightforward way as a CTMC (under the second formulation). Intuitively, since a process can
evolve into a parallel composition, the CTMC can have an infinite state space, making stochastic
simulation the only possible method of analysis.

We look at the stochastic π calculus in detail in Chapter 3, where we also recall structural
congruence – an equivalence relation, that will enable aggregation of processes and thus lead to an
efficient simulation algorithm of the underlying CTMC. The aggregation also shows how stochastic
π calculus naturally supports the law of mass-action – the rate of reaction between two molecules
is proportional to the product of their concentrations (as we argued in the description of the
Gillespie algorithm).

Cardelli related a subset of stochastic π calculus, the Chemical Ground Form (CGF) to a
subset of standard chemical equations[7], by defining a translation between the two. Since there
is a standard translation of chemical equations to ordinary differential equations, this provides
a continuous semantics for the CGF subset of stochastic π calculus. An interesting question is
whether there is a clear direct translation from CGF to a set of ODEs and also whether this can
be extended to the full stochastic π calculus. We will try to address this in the following chapters.

The state of the art tool for analyzing models in stochastic π calculus is the Stochastic Pi
Machine (SPiM) developed by Phillips and Cardelli[32]. It provides efficient stochastic simulation
of the models, using the Gillespie algorithm. It also provides a convenient graphical notation for
the processes.

2.2.2 Continuous π calculus

A recent development is the continuous π calculus[25]. It is inspired by the syntax of π calculus,
but generalizes several concepts. It is not restricted to input and output actions on channels.
Instead, it considers affinity networks, a mechanism to define communication between arbitrary
names, making the modelling more suitable in the context of biology – for example the names
can represent sites of interaction on proteins and the networks the possible interactions. This
also generalizes message exchange - when two processes communicate, both can send and receive a
messages. The semantics of continuous π calculus is given in terms of real vector spaces. Although
a promising formalism, it does not provide a freely available tool and does not specify how infinite
systems of differential equations are treated.

2.2.3 Bio-PEPA

BioPEPA is an extension of a process algebra PEPA, built on the experience with modelling sig-
nalling pathways with PEPA [12]. In contrast to π calculus, PEPA is inspired by the process
algebra CSP and offers synchronization of more than two processes. The original stochastic se-
mantics of PEPA led to bounded channel kinetics where the rate of synchronization of processes is
proportional to the minimum rate of the synchronized processes. This served as a limitation in the
context of biology, where different kinetic laws are required. BioPEPA therefore introduces func-
tional rates, allowing to express general kinetic laws and also stoichiometric coefficients. It focuses
on reagent-centric view, where the individual processes correspond to levels of concentration of the
species, as opposed to π calculus where each process corresponds to a single molecule (although
the multiset representation we define in the next Chapter will move more towards this direction).
Such description of the system then leads to different forms of analysis – BioPEPA offers analy-
sis of the resulting CTMC (as it can guarantee a finite number of states), stochastic simulation,
solution of the ODEs from continuous representation of the system and model checking.

The resulting CTMC is in the case of BioPEPA called CTMC with levels. In [14], authors
show that such CTMCs also belong to the family of density-dependent Markov chains and so
provide certain convergence properties. In particular, the authors show that a set of ODEs which
is precisely the one derived from the continuous semantics, can be considered as a limit, when
increasing the number of levels of concentration of the species, of the transient behaviour of
the CTMC. Provided a continuous semantics is defined for the stochastic π calculus, it would
interesting to relate it to this work and examine whether the set of ODEs from the continuous
semantics is a limit of the CTMC in some sense.

16 2. PROCESS ALGEBRAS IN SYSTEMS BIOLOGY

2.3 Spatial extensions

There are numerous process algebras oriented towards expressing spatial properties. These include
for example BetaBinders [34] or BioAmbients [35]. BioAmbients are a modification of Ambient
calculus, which is an extension of π calculus aimed at describing mobility. The processes can be
enclosed in compartments (the ambients) and are allowed to communicate as in π calculus when
within the same compartment. In addition, processes are also allowed to direct the behavior of their
enclosing ambients – they can move inside another ambient, merge with a neighbouring ambient,
create a new ambient or dissolve an existing one. In Systems Biology, it has been argued the
ambients are suitable to model mobility around membrane interactions. Although BioAmbients
is a promising formalism, we believe that enhancing it with continuous semantics would be too
challenging. Instead, we will concentrate on systems where the compartments are static – in [11],
authors define an extension to BioPEPA capable of expressing static compartmental structure,
with possibility of changing volume over time. They also justify the use of static compartments
by the fact that those are the ones considered in models present in the literature and various
specialized databases. One of our aims is to define such extension for stochastic π calculus that
would also allow the re-use existing models.

2.4 Summary

In this chapter we gave an overview of the role of stochastic process algebras in Systems Biology,
providing the context of the work that will follow in this report. We introduced stochastic π
calculus and mentioned the reasons we find it worth of further research.

We also listed several concepts and techniques that will be useful when reasoning about and
implementing our extensions.

3. STOCHASTIC π CALCULUS 17

3
Stochastic π calculus

In this chapter, we give a careful and detailed overview of the stochastic π calculus. The pre-
sentation will be based on the original paper [33] where stochastic π calculus was introduced,
but modified in order to fluently lead to the implementation as well as to facilitate the further
extensions. We will abbreviate the presented version of stochastic π calculus by Sπ. Sπ

We start by a definition of the language of Sπ. This language gives us a way to describe
the modelled system, in form of an environment defining the possible components and a top-level
process representing the initial configuration. After going through several technicalities (such as
substitution and alpha congruence), we define the semantics of Sπ, in form of a transition system
where the states correspond to processes and the labels to rates from channel communication
or silent delays. This can lead to a CTMC and to simulation. We will argue that this is not
efficient as the run time depends on population of individual processes. We therefore proceed to
use the structural congruence, a commonly used equivalence relation in process algebras, to provide
aggregation of processes in terms of multisets. This will then lead to an efficient simulation not
dependent on the individual populations – we provide a theorem explicitly enumerating all the
possible transitions in the transition system and use this theorem to give an efficient modification
of the Gillespie algorithm for Sπ.

We conclude the chapter by describing a representation that will be useful for defining the
continuous semantics.

3.1 Syntax

Here we describe the language of Sπ. We first list the different sets of words that can be used.
The main elements of Sπ are processes. The calculus allows naming of these by process identifiers
in order to facilitate more succinct syntax and more importantly recursion. The processes are
able to communicate via channels - either named or anonymous dynamically created ones, both
denoted by channel names.

Definition (Process identifiers). Let I be a set of process identifiers. We usually denote these I
with A,B,C, etc.

Definition (Channels). Let N be a countable set of channel names. In the following, we usually N
use the lower case letters a, b, c, etc. to denote these.

We assume functions n : N → N and r : N → R that associate channels with their arity and
rate. For a channel c ∈ N , we write these as nc and rc. nc, rc

Variables will serve as placeholders for receiving messages in channel communication.

18 3. STOCHASTIC π CALCULUS

Definition (Variables). Let V be a set of variables. We usually denote these with x, y, z, etc. WeV
denote vectors of variables, i.e. elements of the set Vn for some n ∈ N , by x̃, ỹ, etc. and mixed
vectors of variables and names, i.e. elements of the set (V ∪ N)n by ψ̃, ϕ̃, etc.

A basic unit of communication between two processes is an action. A process can either send
a message (possibly containing some information) through a channel (an output action) or receive
a message (an input action). Additionally, processes can perform an internal change (a silent
action).

Definition (Actions). An output action on a channel or a variable a ∈ (V ∪ N) is denoted !a.!a〈 eψ〉
The action can also include sending arguments, a vector ψ̃ ∈ (V ∪ N)n for some n ∈ N. We write
such action as !a〈ψ̃〉.

Similarly, an input action on a channel or a variable a ∈ (V ∪ N) is ?a. This action can also?a(ex)
receive arguments, a vector x̃ ∈ Vn for some n ∈ N . We write such action as ?a(x̃).

A silent action of rate r ∈ R is denoted as τ@r.τ@r

Finally, in the following we use α to denote an action and let A be the set of all actions andA,Aτ
Aτ the set of all silent actions.

We can now define the structure of processes of Sπ. The most basic process, serving as a base
case for the recursive composition of processes is the zero process, not capable of any action. To
enable actions, a process can be written as a summation of different alternatives – a collection of
continuations, where each element is an action together with the further evolution of the process
(another process). Two processes can be composed in parallel to enable all of their actions in
addition to communication between them. A new channel name can be created in a restriction,
ensuring that no external processes can communicate on this channel unless they are sent its name.
Finally, an instance of a previously defined process can be reused by naming the corresponding
identifier.

Definition (Processes). A set of processes P is defined as the minimal set such thatP

(i) the zero process 0 is in P,0

(ii) a summation
∑
i∈I αi.Pi, where I is a finite index set and αi an action and Pi ∈ P a process

P
i∈I αi.Pi

for all i ∈ I, is in P,

(iii) a parallel composition P |Q, where P,Q ∈ P is in P,P |Q

(iv) a process identifier instance A ∈ I is in P and also its parametrized instances A〈ψ̃〉, ψ̃ ∈A〈 eψ〉
(N ∪ V)n for some n ∈ N, are in P,

(v) a restriction (new a@ra)P , where a ∈ N , ra ∈ R, P ∈ P, is in P.new a@ra

In the following, we abbreviate α.0 as α, use the + operator as an explicit version of
∑

, that
is write α1.P1 + α2.P2 for

∑
i∈{1,2} αi.Pi, and avoid any operator and write α.P in case |I| = 1.

We also sometimes refer to α.P as to a channel continuation if α is a channel action and delay
continuation otherwise. The identifier instances that can be used to build processes have to be
defined in an environment - a collection of equations which relate an identifier name (with optional
parameters) to the corresponding process.

Definition (Environment). A defining equation for a process identifier A ∈ I isA(ex) def
= P

A
def= P

where P ∈ P. This can be additionally parametrized as

A(x̃) def= P

where P ∈ P and x̃ ∈ Vn for some n called the arity of A and denoted nA.nA
An environment E is a finite set of defining equations.E

3. STOCHASTIC π CALCULUS 19

Such environments need to be well defined. In particular, all the identifiers used in the def-
initions have to be defined within the same environment and used with the same arity of the
parameters. Additionally, none of the identifiers can immediately produce itself, i.e. lead to an-
other copy of itself without any action. This restriction can be justified with the fact that in
nature, processes always take some time and nothing can get produced instantly.

Definition (Valid environment). Let

E =


A1(x̃1) def= P1

...
Am(x̃m) def= Pm

 ,

Ai ∈ I, x̃i ∈ VnAi for i = 1, . . . ,m be an environment. A process P is valid with respect to E if

(i) the set of identifiers used by P is a subset of {A1, . . . , Am},

(ii) every instance Ai〈ψ̃〉 of Ai is used with the right arity, that is ψ̃ ∈ (V ∪ N)nAi .

An identifier Ai immediately produces identifier Aj if the syntax tree of Pi contains an instance
of Aj which is not below a summation. Further, Ai immediately produces Aj if Ai immediately
produces Ak which immediately produces Aj .

An identifier Ai is valid with respect to E if Pi has free variables (see further) precisely those
in x̃i and if it doesn’t immediately produce itself.

We say that the environment E is a valid environment if all Ai, i = 1, . . . ,m are valid with
respect to E.

Example 1. An environment containing the equations

A(x, y) def=!x〈y〉,

B
def=!c.A〈d, e, f〉

is not valid as the defining equation for B contains an instance of A with the wrong arity.
An environment containing the equations

A
def=!a|B,

B
def= (new b@1.0)(!b|C),

C
def=!c|A

is not valid because the identifier A can produce itself infinitely. On the other hand, the environ-
ment consisting of the equations

A
def=!a|τ@1.0.B,

B
def= (new b@1.0)(!b|C),

C
def=!c|A

is valid because A no longer produces B (instantiation of a new B is guarded by the silent action
τ@1.0).

We will refer to a pair (S,E) of a valid environment E and a process S valid with respect to (S,E)

E as to a system of stochastic π calculus and call S a top-level process. This can be considered as
a complete specification of a model – E describes the model and S gives the initial situation.

Example 2. We can define a simple valid environment containing the defining equations

Prey def= τ@r1.(Prey |Prey)+?eat ,

Predator def=!eat .(Predator |Predator) + τ@r2

20 3. STOCHASTIC π CALCULUS

and a top level process

System = (Predator |Predator)|Prey

with eat a channel in N with neat = 0, reat = 0.01 and nPrey = nPredator = nSystem = 0. This
can represent a simple predator–prey model, in which the prey (represented by the Prey process)
reproduces at a rate r1 (the silent action τ@r1 leading to two copies of the Prey process) unless
eaten (communication on the channel eat) by the predator (represented by the Predator process),
which needs the prey in order to reproduce and is otherwise dying at a certain rate (the silent
action τ@r2, leading to a zero process).

We can extend this to demonstrate the use of the restriction operator and parameter passing
by considering the valid environment with defining equations

HidingPlace def= (new a@1.0)(!hide〈a〉.?discover .!a.HidingPlace),

Prey def= τ@1.(Prey |Prey)+?eat+?hide(x).HiddenPrey〈x〉,

HiddenPrey(y) def=?y.Prey ,

Predator def=!eat .(Predator |Predator) + τ@1+!discover .Predator

and the top level process

System = (Predator |Predator)|((Prey |Prey)|HidingPlace)

where hide ∈ N , nhide = 1, nHiddenPrey = 1. The modification can represent the ability of Prey
processes to “hide” in designated places and to be later discovered by the Predator processes. The
HidingPlace process uses the restriction (the “new” operator) to create a unique, private channel.
This channel is then sent to the Prey that is going to hide in the place (by an output action on
the channel hide). After this, the Prey cannot be eaten, since the only action it allows is on the
private channel it received from the hiding place. When the place gets discovered by a Predator,
the corresponding Prey gets notified by communication over the private channel. The fact that
the channel is private makes sure the hidden Prey processes get paired with HidingPlace processes.
We will precisely describe this behaviour in the semantics of Sπ.

Note that the above example might be overcomplicated and serves only to demonstrate the
use of the syntactic features.

3.2 Substitution and alpha congruence

Before defining the semantics of stochastic π calculus, certain attention has to be paid to the
channel names. Mainly, we need to define how the newly generated channel names in restrictions
will be treated to stay private. This also affects the behaviour of receiving a message from an
input action ?a(x).

We will use the following definitions, all implicitly stated with respect to a valid environment
E.

Definition (Free and bound names). Define the functions returning free names and bound namesfn, bn

of a process, fn : P → 2V∪N , bn: P → 2V∪N respectively, inductively as

fn(0) = ∅, bn(0) = ∅
fn(?a(x̃).P) = {a} ∪ fn(P) \ x̃, bn(?a(x̃).P) = x̃ ∪ bn(P),
fn(!a〈ψ̃〉.P) = {a} ∪ ψ̃ ∪ fn(P), bn(!a〈ψ̃〉.P) = bn(P),
fn(τ@r.P) = fn(P), bn(τ@r.P) = bn(P),
fn(
∑
i∈I αi.Pi) =

⋃
i∈I fn(αi.Pi), bn(

∑
i∈I αi.Pi) =

⋃
i∈I bn(αi.Pi),

fn(P |Q) = fn(P) ∪ fn(Q), bn(P |Q) = bn(P) ∪ bn(Q),
fn((new a@r)P) = fn(P) \ {a}, bn((new a@r)P) = bn(P) ∪ {a},
fn(A〈ψ̃〉) = ψ̃, bn(A〈ψ̃〉) = ∅.

where a ∈ (V ∪ N), x̃ ∈ Vn, ψ̃ ∈ (N ∪ V)m for some n,m ∈ N.
Note that we implicitly use the vectors x̃ and ψ̃ as sets when the context is clear.

3. STOCHASTIC π CALCULUS 21

Example 3. Consider the environment

P (x) def= (new a)(!b〈a〉.?a(y).P 〈x〉)︸ ︷︷ ︸
P ′

,

Q(x) def= ?b(y).(new b)(Q〈y〉)︸ ︷︷ ︸
Q′

.

Then

fn(P ′) = {b, x}, bn(P ′) = {a, y},
fn(Q′) = {b}, bn(Q′) = {y, b},

fn(P ′|P ′) = fn(P ′), bn(P ′|P ′) = bn(P ′).

Channel continuations of the form ?a(x).P are capable of receiving a message m. The effect
of this is that the variable x bound to the action ?a(x) gets “replaced” by m in P . We formalize
this in the following definition.

Definition (Substitution). We define a substitution function ·{· 7→ ·} : P ×V × (V ∪N)→ P as ·{· 7→ ·}

(i) 0{x 7→ y} = 0,

(ii) (!a〈b〉.P){x 7→ y} =!c〈d〉.(P{x 7→ y}) where

c =

{
y if x = a,

a otherwise,
d =

{
y if x = b,

b otherwise,

(iii) (?a(z).P){x 7→ y} =


?a(z).P if x = z,

(?a(w).(P{z 7→ w})){x 7→ y} if y = z, w 6∈ fn(P),
?y(z).(P{x 7→ y}) if x = a,

?a(z).(P{x 7→ y}) otherwise,

(iv) (
∑
i∈I αi.Pi){x 7→ y} =

∑
i∈I(αi.Pi){x 7→ y},

(v) (P |Q){x 7→ y} = P{x 7→ y}|Q{x 7→ y},

(vi) A〈b〉{x 7→ y} = A〈y〉 if b = x and A〈b〉 otherwise,

(vii) ((new z@r)P){x 7→ y} =


(new z@r)P if x = z,

((neww@r).P{z 7→ w}){x 7→ y} if y = z, where w 6∈ fn(P),
(new z@r)P{x 7→ y} otherwise.

This definition naturally extends to the case when the channel names a, b and variables z are
replaced by vectors of channel names and variables – we can use the shorthand

P{x̃ 7→ ψ̃} for P{x1 7→ ψ1}{x2 7→ ψ2} · · · {xn 7→ ψn}

where x̃ = (x1, x2, . . . , xn) ∈ Vn and ψ̃ = (ψ1, ψ2, . . . , ψn) ∈ (V ∪ N)n for some n ∈ N .

Example 4. By the above definition, we have for example

(?a(x).A〈x〉+!a〈x〉.B〈x〉){x 7→ c} =?a(x).A〈x〉+!a〈c〉.B〈c〉,
((new b@r)A〈b, c〉){c 7→ d} = (new b@r)A〈b, d〉,

((new b@r)!a〈b〉){a 7→ b} = (new c@r)!b〈c〉.

In the above definition, in cases (iii) and (vi), the new name w can be arbitrary. More generally,
the actual bound name used with the new operator and the variable within an input action should
not matter, as long as it stays private for the restriction.

22 3. STOCHASTIC π CALCULUS

Definition (α congruence). We say that two processes P and Q are alpha congruent, write
P ≡α Q, if they differ only in the choice of their bound names.· ≡α ·

Example 5. By the above definition, we have

(new a@r)!b〈a〉 ≡α (new c@r)!b〈c〉,
(new a@r)!b〈a〉 ≡α (new a@r)!b〈a〉,

(new x@r)!a〈x〉|(new x@r)!a〈x〉 ≡α (new y@r)!a〈y〉|(new z@r)!a〈z〉,
?a(x).!x ≡α?a(y).!y.

3.3 Semantics

We are now ready to describe the behaviour of π processes. Intuitively, two processes present within
a parallel composition are able to communicate if each can execute a complementary (input to
output and vice versa) action on the same channel. This gets more complicated if the outputting
process within a restriction is sending the new name – the receiver has to be put under the same
restriction, otherwise the name would no longer stay unique to the restriction.

We need to distinguish when an output action is sending a name that is bound by an enclosing
restriction.

Definition. A bound output action is of the form (ϕ)!a〈ψ̃〉 where ϕ ⊆ N , ϕ ⊆ ψ̃. If ϕ is the(ϕ)!a〈 eψ〉
empty set, this becomes a normal output action !a〈ψ̃〉.

A free input action is of the form ?a〈ψ̃〉 where ψ̃ ∈ (V ∪ N)n for some n ∈ N.?a〈 eψ〉
Let A+ be the set of actions extended with bound output actions and free input actions.A+

Extend the function fn to actions in the obvious way, so that fn(!a〈ψ̃〉) = fn(?a〈ψ̃〉) = {a} ∪ ψ̃,fn(α)

fn(?a(x̃)) = {a}, fn((ϕ)!a〈ψ̃〉) = {a} ∪ ψ̃ \ ϕ.
Define the open names of an action, on: A+ → 2V∪N as on((ϕ)!a〈ψ̃〉) = ϕ and ∅ otherwise.on(·)

We now give the semantics of Sπ in form of a multi-transition system – a directed graph
allowing multiple edges and loops. The states will correspond to Sπ processes and the transitions
to the possible behaviour. The need for this to be a multi -transition system arises from the fact
that different behaviour can lead to the same evolution of the system.

Definition (transition semantics). The transition relation is a multi-relation · ·−→ · F P×Aτ×P,· ·−→ ·
restriction of the multi-relation · ·−→ · F P×A+×P inductively defined by the rules in the Figure
3.1.

The rule Act expresses that an output or silent action continuations evolve into the process
prefixed by that action. For inputs, this also depends on the actual message received – the rule In
expresses all the possibilities. These two rules are expressing the basic notions of capability and
are only auxiliary to defining the transition relation (the transition pairs they define obviously
belong to the difference of the pre-transition relation and the transition relation).

The rule Ide allows for identifiers instances to be treated in the same way as the processes
they are defining.

Together, these three rules form base cases for the further rules. The rule Sum gives a sum-
mation the capability of all the possible actions of its individual continuations (one at a time)
and the rule Par allows components of parallel composition to evolve individually. The rule Com
synchronizes the evolution of two processes capable of complementary input and output action
within a parallel composition. This turns capabilities into transitions in the transition relation.

The rule Res treats the case when a process inside a restriction is capable of an action not
involving the private channel – in that case the same capability is passed on the restriction.

The rule Open handles the case when the private channel name can be sent out, by lifting the
restriction and storing the private name in the bound output action of the resulting capability.
Finally, the rule Close synchronizes two processes as the rule Par with additionally enclosing the
resulting parallel composition in a restriction on the channel names stored in the involved bound
output action.

3. STOCHASTIC π CALCULUS 23

Act: α.P
α−→ P , α not input,

In: ?a(x̃).P
?a〈 eψ〉−→ P{x 7→ ψ̃}

Ide:
P{x̃ 7→ ψ̃} α−→ P ′

A〈ψ̃〉 α−→ P ′
, A(x̃) def= P

Par: P
α−→ P ′

P |Q α−→ P ′|Q
, fn(Q) ∩ on(α) = ∅

Sum: αj .Pj
αj−→ P ′, j ∈ I∑

i∈I αi.Pi
α−→ P ′

Res: P
α−→ P ′

(new b@r)P α−→ (new b@r)P ′
, b /∈ fn(α), b /∈ on(α)

Open: P
(ϕ)!a〈 eψ〉−→ P ′

(new b@r)P
(ϕ∪{b@r})!a〈 eψ〉−→ P ′

, b ∈ ψ̃, b /∈ ϕ

Close: P
(ϕ)!a〈 eψ〉−→ P ′ Q

?a〈 eψ〉−→ Q′

P |Q τ@ra−→ (newϕ)(P ′|Q′)

Com: P
!a〈 eψ〉−→ P ′ Q

?a〈 eψ〉−→ Q′

P |Q τ@ra−→ P ′|Q′

Figure 3.1: The transition rules for the stochastic π calculus. The rules Par, Close and Com
also have alternatives with the operands of the | operator swapped.

Example 6. Figure 3.2 gives a sample derivation using these rules. Figure 3.3 gives an example
of all the possible capabilities and transitions of a process.

When we eventually get a continuous-time Markov chain (CTMC) from the transition system
and simulate it, in each state we need to consider all the possible transitions.

Definition. For a process P ∈ P, define the multiset of possible transitions Trans(P) ∈M(P × Trans(P)

Aτ × P) to be

Trans(P) = {|(P, τ@r, P ′) : P τ@r−→ P ′|}.

We will write the elements of Trans(P) as P τ@r−→ P ′ and usually replace the τ@r by only r.
We will also write P α1α2···αn−→ P ′, α1, α2, . . . , αn ∈ A to abbreviate the statement that there

exist processes P1, . . . , Pn+1 such that P1 = P , Pn+1 = P ′ and Pi
αi−→ Pi+1 for i = 1, . . . , n.

Define the set of derivatives of P , Ds(P) to be Ds(P)

Ds(P) = {P ′ : P τ@r1τ@r2···τ@rn−→ P ′ ∈ Trans(P)}.

Finally, define the transition diagram of P to be the multi-graph with vertices members of
Ds(P) and oriented edges (with labels) members of the transition relation.

24 3. STOCHASTIC π CALCULUS

Act
!b〈d〉.P !b〈d〉−→ P

Open
(new d@r)(!b〈d〉.P)

(d)!b〈d〉−→ P
Par

(new d@r)(!b〈d〉.P |!a〈c〉.Q)
(d)!b〈d〉−→ P |!b〈c〉

In
?b(x).R〈x〉 ?b〈d〉−→ R〈d〉

Close
((new a@r)(!b〈a〉.P)|!a〈c〉.Q)|?b(x).R〈x〉 τ@rb−→ (new d)(((P |!a〈c〉))|R〈d〉)

Figure 3.2: Example of a derivation for a member of the transition relation. The transition is
built from two complementing capabilities, which are built on the structure of the corresponding
processes, with the base cases expressed by the rules Act and In.

(new a@r)(!b〈a〉.P)|!a〈c〉.Q)|?b(x).R〈x〉

(new d)(((P |!a〈c〉))|R〈d〉) (new a@r)(!b〈a〉.P)|!a〈c〉.Q)|R〈d〉 (P |!a〈c〉.Q)|?b(x).R〈x〉

τ@rb
?b〈d〉 ({a})!b〈a〉

Figure 3.3: All the possible (pre-)transitions of the process (new a@r)(!b〈a〉.P)|!a〈c〉.Q)|?b(x).R〈x〉.
The capabilities (i.e. the pre-transitions that are not transitions) are faded.

Example 7. See Figure 3.4 for an example of a transition diagram and an example of why the
set of possible transitions has to be a multiset (and so also why the transition relation has to be
a multi-relation).

(!a.!b|?a)|?a.?b

(!b|0)|?a.?b (!b|?a)|?b

(0|!a)|0

ra ra

rb

(a) An example of a transition diagram.

!a+?a|!a+?a

0|0

rara

(b) An example
demonstrating the
need for Trans(P) to
be a multiset.

Figure 3.4: Transition diagrams. Figure (a) shows the complete transition diagram of a process
and figure (b) demonstrates why the transition diagrams can be multi-graphs.

The transitions diagram of P can be now seen as a description of a CTMC. We can associate
each node with a state of the chain and each edge with a transition between states, with the
rate of the exponential being the edge’s label. This gives a CTMC which can be simulated by
one of the algorithms mentioned in the previous chapter. However, there is a drawback to this
approach. In biochemical applications of Sπ, we usually have large numbers of certain processes
(say those modelling molecules). If this is the case, we can see that the number of states, and
more importantly of transitions, will be large. If we consider a process P that allows a silent
transition and a system with n copies of process P put in parallel (with the bracketing chosen
arbitrarily), then we can see that there are n possible silent transitions to a system with (n − 1)

3. STOCHASTIC π CALCULUS 25

copies of P , each bracketed differently. This is not desired for two reasons. First, to list all the
transitions of the system (as is needed in each iteration of Algorithm 1), we would need to traverse
the expression of length n. Secondly, if P processes correspond to molecules, we are usually not
distinguishing between two different copies of P (as for the Gillespie algorithm to apply, we assume
that the molecules are uniformly distributed across the volume) and would rather like to consider
each bracketing of the system to be the same. This is a target of some criticism of stochastic π
calculus, [12].

The following section defines a congruence relation that will, apart from other things, abstract
from the order and bracketing of parallel compositions and allow an efficient enumeration of all the
possible transitions of a system, not dependent on the numbers of individual parallel components.

3.4 Structural congruence

As a next step, we abstract further from the syntax of stochastic π calculus by considering processes
modulo an equivalence relation – the structural congruence. The properties of this relation allow us
to describe the semantics in a more succinct form and eventually enable more efficient simulation.

Definition (structural congruence). We say that two processes are structuraly congruent if they · ≡ ·
belong to the relation · ≡ · ⊆ P ×P inductively defined as the least equivalence relation preserved
by the process constructs and satisfying

(i) P |Q ≡ Q|P ,

(ii) (P |Q)|R ≡ P |(Q|R),

(iii) P |0 ≡ P ,

(iv) P ≡ Q if P ≡α Q,

(v) (new a@r)(new b@s)P ≡ (new b@s)(new a@r)P ,

(vi) (new a@r)0 ≡ 0,

(vii) ((new a@r)P)|Q ≡ (new a@r)(P |Q) if a /∈ fn(Q),

(viii) A〈ψ̃〉 ≡ P{x̃ 7→ ψ̃} if A(x̃) def= P ∈ E.

The rule (v) allows us to extend the notation of the new operator to sets. From now on, we
will write (newψ)P , where ψ = {a1@r1, . . . , an@r2} ⊆ N , to represent the congruence class of
(new a1@r1) · · · (new an@rn)P . Note that it is sufficient for ψ to be a set and not a multiset –
(new a@r)(new a@r)P ≡ (new a@r)P since a /∈ fn((new a@r)P).

Similarly, the rules (i) and (ii) allow us to extend the notation of the parallel composition
operator to multisets – we will write

{|n1 × P1, n2 × P2, · · · , nm × Pm|}

to represent the congruence class of

P1|P1| · · · |P1︸ ︷︷ ︸
n1

| · · · |Pm| · · · |Pm︸ ︷︷ ︸
nm

We can think of this as bringing the syntactical representation closer to the models where we
assume that the individual species (such as molecules) are uniformly distributed in the enclosing
compartment (“represented” by the multiset).

From now on we will use the multiset representation and the (newψ) notation interchangeably
for processes. Formally, whenever such representation appears where a process should, we choose
any process belonging to the congruence class of the representation. For example, when say
{|2 × P,Q|} is a process, we mean any process of the congruence class of {|2 × P,Q|}, that is for
example (P |P)|Q.

The following theorem shows that the structural congruence preserves the semantics of pro-
cesses. We need this to justify that we can use structurally congruent processes interchangeably
in the transition systems and hence in the resulting CTMCs.

26 3. STOCHASTIC π CALCULUS

Theorem 3.1. For two processes P,Q ∈ P, if P ≡ Q, then there is a multiset bijection
φ : Ds(P)→ Ds(Q) such that if P α1α2···αn−→ P ′ then Q

α1α2···αn−→ Q′ and P ′ ≡ Q′ for Q′ = φ(P ′).

Proof. We can prove a stronger version of this statement extended to derivatives of P , Q under
the full pre-transition relation. The proof would proceed by induction on the structure of ≡. �

3.5 Simulation

The above theorem let us consider processes modulo the structural congruence when reasoning
about the simulation. The next natural step is to choose a representative of classes of structural
congruence. This consists of describing the “form” of this representative and then showing that
such form belongs to each congruence class.

Definition (standard form). A standard form is an equivalence class represented by

(newψ){|n1 × P1, · · · , nm × Pm|}

where ψ is a finite set of names, ni ∈ N and Pi ∈ P, Pi is a summation.

Note that our definition of standard form differs from that of [27], where it is a process. We
abstract from this and take it to be a multiset representation.

Proposition 3.2. Every process is structurally congruent to a standard form.

Proof. Take a process P ∈ P. First assume that the syntax tree of P has identifier instances only
under summations. Then by structural induction on the formation of P :

(i) P = 0 is congruent to (new ∅){||}.

(ii) P =
∑
i∈I αi.Pi is congruent to (new ∅){|P |}.

(iii) P = P1|P2 is congruent to (newψ1 ∪ ψ2)M1]M2 where (newψ1)M1 and (newψ2)M2 are
standard forms of P1 and P2 respectively such that ψ1 ∩ψ2 = ∅ (their existence i iss guaran-
teed by the inductive hypothesis and the fact that we can use alpha congruence to get sets
of names with the desired property).

(iv) P = (new a@ra)P belongs to (new{a@ra} ∪ ψ)M where (newψ)M is a standard form of P
such that a /∈ ψ.

Let Ai(x̃) def= Pi, i = 1, . . . , n be all the defining equations in the given valid environment.
Because the environment is valid, none of the identifiers immediately produces itself and therefore
the identifiers can be ordered as Ai1 , Ai2 , . . . , Ain such that Aij does not immediately produce Aik
for k > j and j = 1, . . . , n. Then Pi1 contains identifier instances only up to under summations
and so Ai1〈ψ̃〉 is structurally congruent to a standard form for any ψ̃ ∈ (V ∪ N)m. Now Ai2〈ψ̃〉
is structurally congruent to a standard form, since Pi2 will contain at most Ai1 not under a
summation. We can proceed with all the identifiers upto Ain and therefore every process is
structurally congruent to a standard form. �

The main aim of this section is to give a complete enumeration of all the possible transitions
of a process. For processes that are summations, this enumeration is straightforward – the only
possible rule that can be applied is Sum.

In case of a tree of nested parallel compositions, it is easy to see that each process can potentially
communicate with any other process in the tree (except for itself), through multiple applications
of the rule Par. This also means that if there are several copies of a process in the tree, they can
all communicate with the same processes. For example, take the process (Q|(P |P))|(Q|P) and
assume that processes P , Q can communicate (e.g. P is capable of an output action on channel a
and Q of an input action on a). We can label each occurrence of P ,Q and the | operator, say as
(Q1|2(P 3|4P 5))|6(Q7|8P 9). Then each occurrence of P can communicate with each occurrence of
Q, “through” one of the | operators. See Figure 3.5 for an illustration.

3. STOCHASTIC π CALCULUS 27

|6

|2

Q1 |4

P 3 P 5

|8

Q7 P 9

Figure 3.5: The occurence P 3 can communicate with Q1 with Par applied at the level of |4 and
with Com applied at the level of |2. Similarly P 5 can communicate with Q1 through I2, P 3 with
Q7 with Par applied at the levels of |8 and |2 and Com at the level of |6, etc. In total, there are
3 · 2 ways in which a P can communicate with a Q.

Therefore there are exactly 3 · 2 possible ways P and Q can communicate. In general, if
there are n occurrences of P and m occurrences of Q in the tree of nested parallel compositions
(corresponding to a process R), there are n ·m ways in which P and Q can communicate and so
Trans(R) will contain n ·m copies of the transition R

τ@ra−→ R′.
We can derive a similar result for the case when P can communicate with another P , with the

difference that the total number of transitions will be n·(n−1) since a process cannot communicate
with itself.

Finally, n copies of a process capable of a silent action will result in n silent transitions.
The following theorem summarizes the above mentioned enumeration, based on the standard

form of a process.

Theorem 3.3. If P has a standard form (newψ)P ′, where P ′ ≡ {|n1 × P1, · · · , nm × Pm|}, then

Trans(P) = {|r(i, j)× P τ@ra−→ (newψ)(P ′ \ Pi \ Pj]Qi]Qj{x̃ 7→ ψ̃})

: Pi
!a〈 eψ〉−→ Qi, Pj

?a(ex)−→ Qj |}]

{|ni × P
τ@r−→ (newψ)(P ′ \ Pi]Qi) : Pi

r−→ Qi|}

where

r(i, j) =

{
ni × nj if i 6= j,

ni × (ni − 1) otherwise.

Proof. We choose a process from the congruence class of P and show that all the possible tran-
sitions defined in the semantics agree with the given enumeration (as is argued in the paragraph
above). The result then follows from the Theorem 3.1. �

Note that we use the capability Pi
!a〈 eψ〉−→ Qi only for convenience and could have said that Pi is

a summation where one of the summands of !a〈ψ̃〉.Qi.
Example 8. Take an environment containing the defining equations

P
def=!a.P1 + τ@r1.P2,

Q
def=?a.Q1,

R
def=?b.R1+!b.R2,

S
def= 3× P |4×Q|5×R.

Then we have Trans(S) containing precisely the following transitions

12× (S τ@ra−→ 2× P |3×Q|5×R|P1|Q1),

20× (S τ@rn−→ 3× P |4×Q|3×R|R1|R2),

3× (S τ@r1−→ 2× P |4×Q|5×R|P2).

28 3. STOCHASTIC π CALCULUS

The Theorem 3.3 allows us to aggregate structurally congruent processes and efficiently com-
pute all the possible transitions. This is projected into an aggregation of the state space of the
resulting CTMC and also to an efficient enumeration of the transitions from each state. This leads
to an efficient simulation algorithm, see Algorithm 4.

Also, we can see the Theorem 3.3 as justifying the fact that Sπ naturally gives the mass-
action kinetics – the rate of communication between two processes is equal to the product of their
populations in the system. This is not completely true if the two processes are of the same kind,
when the rate is n · (n − 1) if the population is n. However, this difference can be neglected if n
is large, which is the case when mass-action kinetics applies.

Algorithm 4 The Gillespie algorithm for Sπ.
1: Start with a top-level process S
2: repeat
3: get the standard form of S to be (newϕ) {|n1 × P1, . . . , nm × Pm|}︸ ︷︷ ︸

S′

4: for all i, j, a ∈ ϕ ∪ fn(S) do {collect all transitions T = {|S τ@r−→ U |}}

5: if Pi
!a〈 eψ〉−→ Qi and Pj

?a〈 eψ〉−→ Qj then
6: Let (newϕi)Mi be a standard form of Qi and (newϕj)Mj be a standard form of Qj ,

with ϕ1 ∩ ϕ1 = ϕ1 ∩ ϕ = ϕ2 ∩ ϕ = ∅
7: insert r(ni, nj) copies of S τ@ra−→ (newϕ∪ϕi ∪ϕj)(S′ \Pi \Pi]Mi]Mj) into T , where

r(ni, nj) = ni · nj if i 6= j and ni · (ni − 1) otherwise
8: end if
9: if Pi

τ@r−→ Qi then
10: Let (newϕi)Mi be a standard form of Qi, ϕi ∩ ϕ = ∅
11: insert ni copies of S τ@r−→ (newϕ ∪ ϕi)(S \ Pi]Mi) into T
12: end if
13: end for
14: let rtotal =

∑
S
τ@r−→U

r

15: randomly select a transition S
τ@r−→ U with probability r/rtotal

16: generate δt from Exp(rtotal)
17: set t = t+ δt, set S = U
18: until until t = tstop

The efficiency improvement of the state space aggregation is obvious. Let the standard form
of the top-level process in each iteration contain n summations out of which there are m different
ones, with k the maximal size of an index set. Then each iteration has running time O(m2k2), as
opposed to O(n2k2) in case the summations are not aggregated. This is a significant performance
improvement, as the models often contain hundreds of identical processes.

3.6 Prime processes

In this section we define a different representative of the equivalence classes of structural congru-
ence, that will be useful when defining the continuous semantics of Sπ. The basic blocks will be
prime processes – processes representing the defined species or complexes of them which cannot
be divided.

Definition. A process of Sπ, P ∈ P is a prime process if P ≡ Q|R for some Q,R ∈ P implies
that Q ≡ 0 or R ≡ 0.

Denote the set of all prime processes by P̂.bP
Definition. Given a process P ∈ P, the prime decomposition of P is P ≡ {|n1×P1, . . . , nm×Pm|}
where all Pi are prime processes, not structurally congruent.

The following Proposition, like the Proposition 3.2, shows that the prime decomposition is a
well defined representative of congruence classes.

3. STOCHASTIC π CALCULUS 29

Proposition 3.4. Every process P of Sπ has a unique (up to structural congruence), finite, prime
decomposition.

Proof. In [25], author suggests assigning normal forms to processes using a normalising and con-
fluent term rewriting system respecting ≡, and taking the prime decomposition as the multiset of
parallel components of the normal form. �

Originally, the only restriction on the definition of identifiers was that they cannot immediately
produce themselves. We add another restriction, that is identifiers can be only defined as prime
processes. This will make certain technical details in the following easier.

3.7 Summary

We introduced and formally defined stochastic π calculus (Sπ). We gave a formal definition of
its semantics and shown why it is not directly suitable for efficient simulation. We proceeded
with defining the structural congruence and shown how it can be used for state aggregation in
the underlying CTMC and we gave an efficient simulation algorithm for Sπ based on the Gillespie
algorithm.

30 3. STOCHASTIC π CALCULUS

4. CONTINUOUS SEMANTICS OF STOCHASTIC π CALCULUS 31

4
Continuous semantics of stochastic π

calculus

The main aim of this chapter is to provide an alternative semantics of stochastic π calculus. We
will refer to the original semantics defined in the previous chapter as to discrete and stochastic.
We concluded the last chapter by defining the prime decomposition of processes. This enables to
express each process as a vector (possibly infinitely dimensional) of populations of prime processes.
These populations are always integers (hence the term discrete for the original semantics). Each
process is then capable of evolving into a different process, by performing a silent transition (which
either results from a communication between two subprocesses or a capability of a subprocess to
perform a silent action). Each such transition is interpreted as having an exponential delay with
its given rate (hence the term stochastic) and so the behaviour of the system can be described by
a continuous time Markov chain (CTMC).

Discrete stochastic simulation is often used as an alternative to the more traditional approach
of modelling with a system of ODEs (which describe the model in a continuous and deterministic
way), as we already mentioned when describing the Gillespie algorithm. Therefore, one can still be
interested in the original approach to the problem. Inherently, the stochastic π calculus language
(and other stochastic process algebras, such as PEPA) does not necessitate the discrete stochastic
semantics. Instead, it can be thought of as a intermediate description of the model on which
different analyses can be performed. A recent tendency is to provide an alternative semantics in
form of a system of ODEs obtained from the syntactical description of the model, that somehow
corresponds to the time evolution of the system. In [7], this semantics is provided for a subset
of stochastic π calculus called Chemical Ground Form (CGF), via translation using chemical
reactions. We provide an equivalent formulation extended to the full Sπ, using similar style to
[20], where a continuous (or fluid) semantics is defined for the PEPA process algebra.

We will show that this semantics gives a finite set of ODEs if the system is of CGF.
Then in the next chapter, we will also highlight several (non-CGF) models where the obtained

system of ODEs is infinitely large and therefore not viable for a numerical solution. Motivated
by this, we try to formulate conditions on the models which ensure that the set of ODEs will be
finite.

Finally, we try to compare the results from both of the semantics and experimentally verify
properties similar to those in [14].

We first define CGF, a subset of Sπ, and also of CCS, which is equivalent to basic chemistry[10].

Definition. Chemical Ground Form (CGF) is a subset of stochastic π calculus, with processes CGF

PCGF ⊆ P a minimal set such that

(i) 0 ∈ PCGF, 0

32 4. CONTINUOUS SEMANTICS OF STOCHASTIC π CALCULUS

(ii)
∑
i∈I αi.Pi ∈ PCGF, where I is a finite index set and αi a channel action without arguments

P
i∈I αi.Pi

or a silent action and Pi ∈ PCGF a process for all i ∈ I,

(iii) P,Q ∈ P, P |Q ∈ PCGFP |Q

(iv) A〈ψ̃〉 ∈ PCGF, ψ̃ ∈ (N ∪ V)n for some n ∈ N.A〈 eψ〉
We can restrict the definition of an environment for stochastic π calculus to an environment

for CGF and also define the restricted operational semantics and structural congruence.

Prime processes will correspond to all the different “species” arising during the evolution of
the model. For the whole Sπ (and also CGF), the set of prime processes P̂ is infinite (consider
simple continuations of the form !a for a name a ∈ N). However, when modelling with a fixed
system, we are only interested in the prime processes that are reachable from the initial top-level
process.

Definition. Prime processes of a system (S,E) is the set P̂(S,E) of all prime processes P suchbP(S,E)

that S −→∗ P |Q for some Q.

In case of CGF, there is an efficient algorithm enumerating the possible prime processes of a
system, which depends explicitly only on the syntactical structure of the environment. Let P̂CGF

denote all the prime processes of CGF.

Definition. Given a CGF system (S,E), define the (CGF) prime approximation of (S,E),bP∗CGF(S,E)

P̂∗CGF(S,E) ⊆ PCGF as

P̂∗CGF(S,E) =
m⋃
i=1

P̂E(Pi)

where {|n1×P1, . . . , nm×Pm|} is a prime decomposition of S and P̂E : PCCS → 2PCGF is inductively
defined as

(i) P̂E(0) = ∅,

(ii) P̂E(
∑
i∈I αi.Pi) =

⋃
i∈I P̂E(Pi) ∪ {Pi},

(iii) P̂E(A〈ψ̃〉) = P̂E(P{x̃ 7→ ψ̃}) ∪ {A〈ψ̃〉 : P is prime}, A(x̃) def= P ∈ E,

(iv) P̂E(P |Q) = {R : R = P,Q and R is not a parallel composition} ∪ P̂E(P) ∪ P̂E(Q).

The following proposition justifies the choice of the prime approximation. Within a fixed
environment in CGF, it is possible to have only a finitely many different types of prime processes.
This results from the fact that the only way to “create” a new process in a transition is by parallel
composition, which by definition cannot give rise to a new prime process other than those defined
in the environment.

Proposition 4.1. For all CGF systems (S,E), P̂(S,E) ⊆ P̂∗CGF(S,E).

Proof. In CGF, the only reachable prime processes are defined in continuations by some identifiers
(or the identifiers themselves). These are precisely those listed by P̂∗CGF. �

Corollary 4.2. The set of prime processes of CGF system is always finite.

Proof. Clearly the only rule from the definition of prime approximation that could possibly cause
recursion producing infinitely many new processes is (iii). However, since there is only a finitely
many process identifiers used in an environment and finitely many channel names (as no restriction
is allowed), this rule will be applied only to finitely many different arguments. �

Therefore the prime approximation gives us an efficient algorithm to enumerate prime processes
of a CGF system – we will use this in our implementation.

In case of the full Sπ, the enumeration of the set of prime processes of a system isn’t so simple,
as the set can be infinite (as we show later). However, we can still define a systematic way of
obtaining an approximation.

4. CONTINUOUS SEMANTICS OF STOCHASTIC π CALCULUS 33

Definition. Given an Sπ system (S,E), the prime approximation of (S,E) is P̂∗(S,E) defined bP∗(S,E)

as
⋃∞
i=0 P̂i where

P̂(0) = {Pi : S ≡ {|n1 × P1, . . . , nm × Pm|}∗},

P̂(i+1) = {Qi : (R1|R2) τ@r−→ Q, Q ≡ {|k1 ×Q1, . . . , kl ×Ql|}∗, R1, R2 ∈ P̂i} ∪ P̂i.

When modelling with ODEs, the solution is a set of real valued functions over time, one for each
component of the model. Similarly, the continuous semantics will assign a real valued function
over time to each prime process.

Definition. Given a system (S,E), for each P ∈ P̂(S,E), define the quantity function of P to [P]

be [P] : R→ R, a function that gives the (real-valued) quantity of the process P in the system at
a given time.

Communication in Sπ can essentially happen only between two prime processes. When prime
processes P1 and P2 communicate, they evolve to Q1 and Q2 respectively, possibly bound under the
same restriction. These are not necessarily prime, but can be decomposed into primes. Intuitively,
if P1 and P2 produce P3, the differential equation of P3 should depend on P1 and P2. But it also
should depend on the quantity of P3 that is produced in the communication of P1 and P2 – we
need the following operator.

Definition. Define the mutliplicity operator, #: P × P̂ → N as S#P = n if S ≡ {|n× P, . . . |} is ·#·
the prime decomposition of S.

Note that for S and P in CGF, we can define # without considering prime decompositions

S#Q =


1 if S = Q,
P1#Q+ P2#Q if S = P1|P2,

R{x̃ 7→ ψ̃}#Q if S = A〈ψ̃〉, A(x̃) def= R ∈ E,
0 otherwise.

This gives an efficient algorithm for computing #; we will use it in our implementation.

Consider a system (S,E) and its evolution over time. The prime decomposition theorem tells
us that each derivative of S will be a parallel composition of prime processes from the (possibly
infinite) set P̂(S,E) and so can be represented as (possibly infinitely dimensional) vector. In
the original discrete case, each transition from S to S′ can be characterised by a change in the
populations of the individual prime processes. This change will only depend on the population of
the prime processes in S. We will try to explicitly characterise it.

There is only a limited number of ways a population of a process P can change. It can increase,
as a result of communication between two prime processes, or as a result of a silent transition of
a prime process (either caused by a silent action or internal communication). It can decrease
as a result of communication with another prime process or due to a silent transition (again
either caused by a silent action or internal communication). We will define multisets of enter
transitions and exit transitions of a process (both in versions due to channel communication and
silent transition). See Figure 4.1 for an overview.

Definition. The multiset of enter channel transitions of a process P with respect to a system Enterch,S,E
(S,E) is

Enterch,S,E(P) = {|n× (a,R, T) : R, T ∈ P̂(S,E),

R
(ϕ)!a〈 eψ〉−→ R′, T

?a〈 eψ〉−→ T ′,

(newϕ)(R′|T ′)#P = n|}.

The multiset of enter silent transitions of a process P with respect to a system (S,E) is Enterτ,S,E

Enterτ,S,E(P) = {|n× (r,Q) : Q ∈ P̂(S,E),

Q
τ@r−→ Q′,

Q′#P = n|}.

34 4. CONTINUOUS SEMANTICS OF STOCHASTIC π CALCULUS

P

Q R|T

τ@r a

τ@q ·|U Exit

Enter

Figure 4.1: A diagram overviewing the four ways how a prime process can increase and decrease
its population.

Definition. The multiset of exit channel transitions of a process P with respect to a system (S,E)Exitch,S,E
is

Exitch,S,E(P) = {|(a, U) : U ∈ P̂(S,E), P
(ϕ)!a〈 eψ〉−→ P ′, U

?a〈 eψ〉−→ U ′|}]

{|(a, U) : U ∈ P̂(S,E), P
?a〈 eψ〉−→ P ′, U

(ϕ)!a〈 eψ〉−→ U ′|}.

The multiset of exit delay transitions of a process P with respect to a system (S,E) isExitτ,S,E

Exitτ,S,E(P) = {|r : P τ@r−→ P ′|}.

For processes in CGF, we can give an efficient enumeration of the above multisets. Because
there is no restriction operator, the standard form of a CGF process is in fact its prime decompo-
sition as well. Therefore we can use arguments similar to the Theorem 3.3 to given an algorithm
for constructing the Enter and Exit multisets. We will use this in our implementation.

Consider a general Sπ system (S,E) and let P1, . . . , Pn be all the prime processes of P̂(S,E)
(the assumption of finiteness only simplifies the following argument) and let S#Pi = ni. Say S
undergoes a transition to S′ and take a prime process, say P1. If the multiset of enter channel
transition of P1 contains a triple (a, Pi, Pj), P1 6= Pi 6= Pj 6= P1, the probability of the transition
of S −→ S′ being due to communication of Pi and Pj is proportional to ra · ni · nj (by argument
similar to the proof of Theorem 3.3 we can treat the case of when Pi = Pj and also the enter silent
transitions), resulting in a positive change in the population of P1. Similarly, if we take (a, Pi),
Pi 6= P1, from the exit channel transition multiset of P1, we get the probability of the transition
being due to the communication of P1 and Pi to be ra · n1 · ni, resulting in a negative change of
population of P1.

The time the transition S −→ S′ takes is from an exponential distribution with parameter
equal to the sum of these probabilities, say λ. This has a mean λ−1. Informally, if we take a
proportion of this time, δt, we can argue that the average population change of P1 after time δt
(denoted by S(δt)#P1) will be

S(δt)#P1 − S#P1 =
∑

(a,Pi,Pj)∈Enterch,S,E(P)

ra · c(ni, nj)δt+
∑

(r,Pi)∈Enterτ,S,E(P)

r · niδt

−
∑

(a,Pi)∈Exitch,S,E(P)

ra · c(P1, Pi)δt−
∑

r∈Exitτ,S,E(P)

r × n1δt,

where c(·, ·) is the number of possible combinations, defined as

c(ni, nj) =

{
ni · nj if i 6= j,

ni · (ni − 1) if i = j.

Taking the limit of δt → 0, we can get an intuitive notion of differential equation describing
the evolution of P1. In general, we arrive at the following definition.

4. CONTINUOUS SEMANTICS OF STOCHASTIC π CALCULUS 35

Definition. The system of differential equations of a system (S,E) consists of the following, for
each P ∈ P̂(S,E):

d[P](t)
dt

=
∑

(a,R,T)∈Enterch,S,E(P)

ra · c([R](t), [T](t)) +
∑

(r,Q)∈Enterτ,S,E(P)

r · [Q](t)

−
∑

(a,U)∈Exitch,S,E(P)

ra · c([P](t), [U](t))−
∑

r∈Exitτ,S,E(P)

r · [P](t),

where c(·, ·) is the number of possible combinations, defined as

c([P](t), [Q](t)) =

{
[P](t) · [Q](t) if P 6= Q,

[P](t) · ([P](t)− 1) if P = Q.

Clearly, the initial conditions of the model are given by the top-level process of the system and
so we can complete the definition of the continuous semantics of Sπ systems.

Definition. The continuous semantics of a system (S,E) is

{[P] : P ∈ P̂(S,E)}

such that the quantity functions [P] satisfy the system of differential equations of (S,E) with
initial conditions given by

[P](0) = S#P.

Example 9. Consider the CGF environment Elotka

Prey def= τ@rreproduce .(Prey |Prey)+?eat ,

Predator def=!eat .(Predator |Predator) + τ@rdie

with an initial process
System = 1000× Prey |950× Predator .

We have argued in the previous chapter how this can represent a simple predator-prey model. The
set of prime processes of System is (possibly obtained as P̂∗CGF(System, Elotka) by observing that
all the processes can occur)

P̂(System, Elotka) = {Prey ,Predator}.

We also have

Enterch,System,Elotka
(Prey) = {||},

Enterτ,System,Elotka
(Prey) = {|2× (rreproduce ,Prey)|},

Exitch,System,Elotka
(Prey) = {|(eat ,Predator)|},

Exitτ,System,Elotka
(Prey) = {|rreproduce |},

Enterch,System,Elotka
(Predator) = {|2× (eat ,Predator ,Prey)|},

Enterτ,System,Elotka
(Predator) = {||},

Exitch,System,Elotka
(Predator) = {|(eat ,Prey)|},

Exitτ,System,Elotka
(Predator) = {|rdie |}.

We get the set of differential equations of (System, Elotka) to be

d[Prey](t)
dt

= rreproduce · [Prey](t)− reat · [Predator](t) · [Prey](t),

d[Predator](t)
dt

= reat · [Predator](t) · [Prey](t)− rdie · [Predator](t).

36 4. CONTINUOUS SEMANTICS OF STOCHASTIC π CALCULUS

The initial conditions for the process System are

[Prey](0) = 1000, [Predator](0) = 950.

and hence the continuous semantics of (System, Elotka) is the solution to the system of ODEs
of (System, Elotka) with these initial conditions. See Figure 4.2 for a numerical solution to this,
compared to a sample simulation trace and an average of multiple simulations. Also note how the
continuous semantics exactly corresponds to the well-known Lotka-Volterra equations modelling
the same situation directly with ODEs (for example see [17]).

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 2 4 6 8 10 12 14 16

SystemKnocked

Prey
Predator

(a) simulation

 850

 900

 950

 1000

 1050

 1100

 1150

 0 2 4 6 8 10 12 14 16

SystemKnocked

Prey
Predator

(b) replicated simulation

 940

 960

 980

 1000

 1020

 1040

 1060

 0 2 4 6 8 10 12 14 16

SystemKnocked

Prey
Predator

(c) ODE solution

Figure 4.2: Simulation and ODE solution of the process SystemKnocked from the environment
Elotka .

We now state a Theorem analogous to Theorem 3.1, saying that the structural congruence
respects the continuous semantics.

Theorem 4.3. If (S1, E) and (S2, E) are two Sπ systems such that S1 ≡ S2, then there exists a
bijection φ : P̂(S1, E)→ P̂(S2, E) such that for every prime process P ∈ P̂(S1, E), [P] = [φ(P)].

Proof. The proof is due to the fact that in constructing the sets of prime processes and enter and
exit multisets, we consider processes modulo structural congruence. �

4.1 Translation to CGF

The definition of prime processes of a general Sπ system cannot be made so explicit as for the
case of CGF. We first present an example demonstrating how some of the functionality of the
restriction operator can be “emulated” in CGF.

4. CONTINUOUS SEMANTICS OF STOCHASTIC π CALCULUS 37

Example 10. Consider the environment EHCl

H def= (new e@10.0)(!share〈e〉.H b〈e〉),

H b(e) def=!e.H ,

Cl def=?share(e).Cl b〈e〉,

Cl b(e) def=?e.Cl .

In a process consisting of parallel composition of processes Cl and H , i.e. {|n × Cl ,m × H |}, the
only possible reaction that can occur is a communication between H and Cl on the share channel.
This gives rise to a complex (let us call it HCl),

(new e@10.0)(!e.H |?e.Cl).

This process cannot react with any other process and has only one possible transition to the process
(new e@10.0)(H |Cl), which is structurally congruent to H |Cl . This suggests an “equivalent”
process τ@10.0.(H |Cl) and thus a CGF environment EHCl′

H ′ def=!share.HCl ′,

Cl ′ def=?share,

HCl ′ def= τ@10.0.(H ′|Cl ′).

Now the resulting CTMC (see Figure 4.3) from a process S = n × H |m × Cl is the same as
from S′ = n × H ′|m × Cl ′ (it can be easily observed that the CTMC will be same as that from
Figure 4.3 with H replaced by H ′ and Cl by Cl ′).

{|n× Cl ,m×H |}

{|(n− 1)× Cl , (m− 1)×H ,HCl |}

{|(n− k)× Cl , (m− k)×H , k ×HCl |}

{|(n− k − 1)× Cl , (m− k − 1)×H , (k + 1)×HCl |}

{|(n−m)× Cl ,m×HCl |}

n ·m · rshare
10.0

(n− k) · (m− k) · rshare
(k + 1) · 10.0

Figure 4.3: CTMC for EHCl .

38 4. CONTINUOUS SEMANTICS OF STOCHASTIC π CALCULUS

The continuous semantics (S′, EHCl′) is

d[H ′](t)
dt

= 10.0 · [HCl ′](t)− rshare · [H ′](t) · [Cl ′](t), (4.1)

d[Cl ′](t)
dt

= 10.0 · [HCl ′](t)− rshare · [H ′](t) · [Cl′](t), (4.2)

d[HCl ′](t)
dt

= rshare · [H ′](t) · [Cl ′](t)− 10.0 · [HCl ′](t). (4.3)

See Figure 4.4 for a solution to the induced system of ODEs and an example of a simulation.

 0

 20

 40

 60

 80

 100

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

HCl

H
Complex

(a) simulation

 0

 20

 40

 60

 80

 100

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

HCl

H
Complex

(b) replicated simulation

 0

 20

 40

 60

 80

 100

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

HCl

H
Complex

(c) ODE solution

Figure 4.4: Sample simulation of the HCl model and a numerical solution to the system of ODEs
generated by the continuous semantics.

The above can be trivially compared with the continuous semantics of the system (S,EHCl)
where

S = n×H|m× Cl .

We have P̂(S,EHCl) = {H ,Cl , (new e@10.0)(Cl b〈e〉|H b〈e〉)}. The system of ODE’s for (S,EHCl)
then is

d[H](t)
dt

= 10.0 · [(new e@10.0)(Cl b〈e〉|H b〈e〉)](t)− rshare · [H](t) · [Cl](t),

d[Cl](t)
dt

= 10.0 · [(new e@10.0)(Cl b〈e〉|H b〈e〉)](t)− rshare · [H](t) · [Cl](t),

d[(new . . .)(Cl b〈e〉|H b〈e〉)](t)
dt

= rshare · [H](t) · [Cl](t)− 10.0 · [(new e@10.0)(Cl b〈e〉|H b〈e〉)](t).

4. CONTINUOUS SEMANTICS OF STOCHASTIC π CALCULUS 39

Compare this with the ODEs generated from the CGF translation of EHCl (equations (4.1) -
(4.3)).

4.2 Summary

We defined continuous semantics for the full Sπ. We have shown efficient algorithms for generating
the set of ODEs for a system in CGF – this will form the basis of our implementation of the
continuous semantics. We gave an example showing that the new operator can be sometimes
“emulated” in CGF.

40 4. CONTINUOUS SEMANTICS OF STOCHASTIC π CALCULUS

5. FINITENESS CONDITIONS AND CONVERGENCE INVESTIGATIONS 41

5
Finiteness conditions and convergence

investigations

We start this chapter with two examples of Sπ systems where the continuous semantics gives an
infinite set of ODEs.

Example 11. Consider a simple model from [8]. We won’t give the biological details here;
it suffices to say that the model concerns polymerization of actin (a basic unit of cytoskeletal
networks in eukaryotic cells) monomers into filaments. We take the simplest model from [8],
where the monomers (processes Af below) can form linear chains. In such process, the chain is
able to bind a new monomer on one end and to disassociate its monomers on the other. We have
the environment Eactin containing the defining equations

Af def= (new r@p)(?c(l).Al〈l〉+!c〈r〉.Ar〈r〉),

Al(l) def= (new r@p)(!l.Af +!c〈r〉.Ab〈l, r〉),

Ar(r) def=?r.Af ,

Ab(l, r) def=!l.Ar〈r〉

and a top-level process S = n×Af . Two Af processes can create a complex (new r1@p)(Ar〈r1〉|Al〈r1〉)
which can then bind another Af process (the Al subprocess) or release an Af process (the Ar)
subprocess.

To get all the prime processes of this system, observe that

P̂(0) = {Af },

P̂(1) = P̂(0) ∪ {(new r1@p)(Ar〈r1〉|Al〈r1〉)},

P̂(2) = P̂(1) ∪ {(new r1@p, r2@p)(Ar〈r1〉|Ab〈r1, r2〉|Al〈r2〉)},

P̂(k+1) = P̂(k) ∪ {(new r1@p, . . . , rk+2@p)(Ar〈r1〉|Ab〈r1, r2〉|Ab〈r2, r3〉| · · · |Ab〈rk+1, rk+2〉|Al〈rk+2〉)︸ ︷︷ ︸
Ak+2

}.

since (Ak+1|Af) τ@rc−→ Ak+2 and Ak+1
τ@p−→ Ak are the only possible reactions involving processes

in P̂(k). Therefore P̂∗(S,Eactin) = {Af , A1, A2, . . . , An−2} = P̂(S,E) and the system of ODEs is

42 5. FINITENESS CONDITIONS AND CONVERGENCE INVESTIGATIONS

then

d[Af](t)
dt

= 2 · p · [A1](t) +
n−2∑
k=2

(p · [Ak](t)− rc · [Ak](t))− rc · [Af](t)([Af](t)− 1),

d[A1](t)
dt

= rc · [Af](t) · ([Af](t)− 1) + p · [A2](t)− p · [A1](t),

...
d[Ak](t)

dt
= rc · [Af](t)[Ak−1](t) + p · [Ak+1](t)− p · [Ak](t),

...
d[An−2](t)

dt
= rc · [Af](t)[An−3](t) + p · [An−1](t)− p · [An−2](t),

The above system of ODEs has finitely many equations. However, their number (and the
length of the summation in the first one) depends on the number of Af processes in the top-level
process. Moreover, in [8], the authors give more complicated systems modelling branching of the
actin chains – this results in a combinatorial explosion of the number of prime processes (which can
be equal to the number of different binary trees with n nodes). Finally, in case the environment
additionally contains a process that generates new Af processes, say a defining equation of the
form

F
def= τ@1.0.(F |Af)

the resulting set of ODEs is (countably) infinite, with the first ODE containing an infinite sum-
mation.

Example 12. Take the environment Estar containing defining equations

P
def= (new e@r)(!s〈e〉|?e),

Q
def=?s(x).F 〈x〉,

F (x) def= τ@r.(!e|F 〈x〉)

and a top-level process S = P |Q. The prime processes of (S,Estar) are P,Q and

(new e@r)(?e|F 〈e〉) = P0,

(new e@r)(?e|!e|F 〈e〉) = P1,

...
(new e@r)(?e| !e| · · · |!e︸ ︷︷ ︸

k

|F 〈e〉) = Pk,

...

This set is (countably) infinite.

The above examples show Sπ systems that have continuous semantics producing an infinite
set of differential equations. We will try to reason about this property further. We formally define
two notions of what it means for a system to be finite, based on the intuition from the above
examples. We show that if a system is finite, we can replace it with an equivalent CGF system.

We then formulate two conditions that will guarantee these notions. One will be based on
restricting the syntax of Sπ, not allowing parallel composition in continuations (we will call this
subset of Sπ the non-productive Sπ, npSπ). The other is based on static analysis of what can
happen to newly generated channel names.

Using these conditions, we translate several finitely scalable models from SPiM and try to
investigate the relationship between their discrete and continuous semantics.

5. FINITENESS CONDITIONS AND CONVERGENCE INVESTIGATIONS 43

5.1 Conditions for finiteness

As was shown in the example above, a continuous semantics of a process does not always have to
be a finite system of differential equations. We first specify what exactly it means for a continuous
semantics to give a finite set of ODEs. We give two possible definitions. The first one, which we
will call just finiteness, assumes a fixed system (S,E) and requires a finite number of processes.
The second is stronger and requires not only a fixed system (S,E) to give finitely many prime
processes, but also to make the number of prime processes independent of scaling, that is taking
n× S instead of S for some n.

Definition. We say that a system (S,E) is finite if the set of prime processes of S with respect
to E, P̂(S,E) is finite.

Example 13. Any CGF system is finite, as we have proved in the Corollary 4.2.

Definition. We say that a system (S,E) is scalably finite if there exists a finite set of prime
processes P∗ such that the prime processes of (n× S,E) is a subset of P∗.

Example 14. Any CGF system (S,E) is scalably finite – the prime approximation P̂∗CGF (S,E)
does not depend on multiplicities of processes inside S. We have shown that the prime approxi-
mation is always finite and so can be taken as the set P̂∗ in the previous definition.

Clearly if a system is scalably finite, then it is also finite. The opposite is not true – the system
from the actin example is finite but not scalably finite.

The following theorem shows why it is useful to consider conditions for finiteness – if a system
is finite, then we can replace it with a CGF system. This will allow modelling of the system in
JSPiM.

Theorem 5.1. If a system (S,E) is finite, then there exists a CGF system (S′, E′) with the same
continuous semantics.

Proof. Assume (S,E) is finite. Then there are finitely many prime processes in Ds(S) = {P1, . . . , Pn}.
Take a set of identifiers I = {A1, . . . , An}. We will define a translation function θ : P → PCGF to
define a CGF environment E′ = {Ai

def= θ(Pi) : i = 1, . . . , n} and a top-level process S′ = θ(S) with
the same continuous semantics as (S,E). For P not a prime, that is P with prime decomposition
{|k1 × Q1, . . . , km × Qm|}, define θ(P) = {|k1 × θ(Q1), . . . , km × θ(Qm)|}. For P prime, consider
the sets Exitch,S,E(P) and Exitτ,S,E(P). These are clearly both finite. We will define θ(P) to be
a summation. Let Exitch,S,E(P) contains precisely m copies of (a,Q), corresponding to pairs of

transitions P |Q τ@ra−→ Ri, i = 1, . . . ,m, where P does an output action. For transition i, define a
new channel aP,Q,i where i = 1, . . . ,m, with the same rate as a and add a summand !aP,Q,i.θ(Ri).

If Exitch,S,E(P) contains precisely l copies of (a,Q), corresponding to transitions P |Q τ@ra−→ Tj ,
j = 1, . . . , l, where P does an input action, add summands ?aQ,P,j . Similarly for r in Exitτ,S,E(P)

corresponding to a silent transition P
τ@r−→ R, add summand τ@r.θ(R).

Now clearly the identifier instances A1, . . . , An are the only prime processes in (S′, E′). By
the above construction θ defines a multiset bijection between Exitch,S,E(Pj) and Exitch,S′,E′(Aj),
that is (a, P,Q) ∈ Exitch,S,E(Pj) iff (aP,Q,i, θ(P), θ(Q)) ∈ Exitch,S′,E′(Aj) for some i – and so
the negative terms in the ODE associated with [Aj] are the same as the negative terms in those
for [Pj]. Similarly for Exitτ,S,E(Pj) and Exitτ,S′,E′(Aj). Also, it is easy to see that θ defines a
bijection between the Enter multisets of Pj and Aj and so the positive terms in the ODEs for [Aj]
and [Pj] are the same and so (S′, E′) and (S,E) have the same continuous semantics. �

5.1.1 Syntactic restriction

We define a syntactical restriction of Sπ that will guarantee finiteness. An obvious choice for this
restriction is to forbid parallel compositions in continuations. This will result in the standard form
of any derivative of such process having only finitely many parallel components.

44 5. FINITENESS CONDITIONS AND CONVERGENCE INVESTIGATIONS

Definition. Non-productive π calculus (npSπ) is a subset of stochastic π calculus which allows
parallel composition only at the levels of top-level processes, that is processes of npSπ are the
set Pnp minimal such that 0 ∈ Pnp,

∑
i∈I αi.Pi ∈ Pnp if Pi ∈ Pnp for all i ∈ I, A〈ψ̃〉 ∈ Pnp and

(new a@r)P ∈ Pnp if P ∈ Pnp. An environment of npSπ then contains defining equations of the
form

A(x̃) def= P

where P ∈ Pnp. We allow parallel composition of identifier instances in the top-level processes,
which then become A1〈ψ̃1〉|A2〈ψ̃2〉| · · · |Am〈ψ̃m〉 where ψ̃i ∈ NnAi .

Proposition 5.2. Let (S,E) be a system of npSπ. Then the continuous semantics of (S,E) is
finite.

Proof. Let S have a standard form (newϕ){|n1 × P1, . . . , nm × Pm|}. Take any derivative of S,
say S′. Let the standard form of S′ be (newϕ′){|k1 ×Q1, . . . , kl ×Ql|}. It is easy to see, since no
parallel composition is allowed after continuations, that the sum of ni is greater or equal to the
sum of kj . Therefore there exists a constant N (for example the sum of all ni) which bounds the
sum of kj . Also, each Qj is a summation or an identifier instance and so has to be a subprocess of
a right hand side of some defining equation in E. Thus there must be a constant K which bounds
the number of free variables of all Qj ’s in all S′. Therefore there is a constant (e.g. N ·K) which
bounds the number of free variables of {|k1 ×Q1, . . . , kl ×Ql|} in all possible S′. Therefore there
is always a standard form of S′ which has ϕ′ such that |ϕ′| < N ·K. Then there is only finitely
many combinations in which the different Qj ’s can be grouped according to shared variables and
so there is only finitely many prime processes that can arise within a derivative of S. �

Unfortunately, this restriction is too strict and none of the non-CGF models in the collection
in Appendix B belong to npSπ.

Moreover, npSπ does not guarantee scalable finiteness.

Proposition 5.3. The continuous semantics of (S,E) is not necessarily scalably finite.

Proof. Consider the environment Eactin – clearly this is an environment of Pnp and a top-level
process S = n×Af . Then, as shown in an example above, the size of P̂(S,E) is n. �

5.1.2 Restriction on private names

We will informally argue that the two examples from the end of the previous chapter suggest the
only two possible ways a system can become infinite. In the first example, the complications were
caused by the processes Ab〈ri, rk〉, which were “holding the restrictions together”. In the original
model, the number of these depended on the initial populations in the top-level process of the
system – the system stayed finite, but not scalably finite. In the modification, this was made
worse by the added process being able to create infinitely many of these “chaining” processes.

In the second example, the “infiniteness” was caused by a process creating arbitrary many
copies of the private channel name, resulting in complexes of arbitrary “size”.

We give a condition that eliminates the above scenarios. To eliminate the first case, we do not
allow a process to “bind” two names potentially “originating in restrictions”. We need to define
what we mean by “binding” and “originating in a restriction”.

We will say that a process binds two names or variables if they occur within the same summation
or as parameters of an identifier instance. For example, the process !a+?c(x).?b.!x binds a and
b and so does A〈a, b〉, but the process !a|?b does not. In short, a process P binds a and b if it
contains a and b as free names and there exist no processes Q and R such that P ≡ Q|R where a
is not free in Q and b is not free in R. This implies that if we have (new{a, b})P , we cannot find
Q, R such that this would be congruent to (new a)Q|(new b)R.

For each variable in the definition of an environment, we need to decide if it can originate in a
restriction, that is the input action defining the variable can receive (in any derivative of the top-
level process) a name that comes from a restriction or the process identifier defining the variable
can be instantiated with a name that comes from a restriction. For example, in the environment
Eactin , the variable l in the first summand in the definition of Af can come from a restriction

5. FINITENESS CONDITIONS AND CONVERGENCE INVESTIGATIONS 45

because a private name from an Af process can be shared on the channel c. Similarly, the variable
l in the definition of Al(l) def= can come from a restriction, since Al gets instantiated in Af with
a variable that can come from a restriction. A name originates in a restriction if it is bound by
a restriction – for example the name r in the definition of Af in Eactin originates in a restriction.
Also the r in Ab〈l, r〉 in the definition of Al does and therefore Ab〈l, r〉 can bind two names coming
from a restriction – precisely what we want to avoid.

To eliminate the second case, we do not allow recursive “copying” of names and variables that
can originate in a restriction.

Now assume that the two requirements are satisfied, that is, there is no process anywhere in the
derivatives of a top-level process S that can potentially bind two names originating in restrictions
and that there is a limit to the number of times a name from a restriction can be copied. We can
take any derivative of S, say S′ and consider its standard form (newϕ){|n1 × P1, . . . , nm × Pm|}.
The names in ϕ = {e1, . . . , ek} are the only names originating in restrictions. Because of the
first condition, the standard form can be split into k prime processes, each a restriction on one of
the names from ϕ, containing some of Pi, say a process Ei = (new ei){|ni1 × Pi1 , . . . , nil × Pil |},
i = 1, . . . , k. Because of the second condition, there is a limit to the number of copies of ei and
therefore there is a limit to the sum of nij . Because the Pij have to come from the definition of
the environment which is finite, there is only a finite number of such Ei in all the derivatives S′

and so (S,E) is finite. Because no part of our argument used the initial top-level process S, we
also get (S,E) to be scalably finite.

We can use the above reasoning to see that the system from the model B.1 is scalably finite,
as there is no copying of new names and no process binds two different names originating in
restrictions. See B.2 for a translation of this to CGF (using the algorithm from the proof of
Theorem 5.1).

We can also look at the system in the model B.5. This does not satisfy the above condition in
its current form, since for example the process

E2 def= (new{k1@rk, d1@rd)(!a1〈d1, k1〉.(?d1.E1+?k1.E2))

binds the two names k1 and d1 originating restrictions. However, we can see that these two names
originate in the “same” restriction. We can observe that every name binding is like this and
therefore conclude that the system is scalably finite and give its translation to CGF, the model
B.6. Perhaps this example justifies why didn’t give a formal definition of the above condition – to
make it useful we would have needed to consider many special cases.

5.2 Relationship between continuous and discrete seman-
tics

We will experiment with the continuous and discrete semantics by looking at available models for
stochastic π calculus. In particular, we investigate whether some of the convergence properties
from PEPA and BioPEPA hold for Sπ.

In BioPEPA, the continuous concentration associated with each species is discretised into a
number of levels. One can increase this granularity, resulting in “finer” state space of the underlying
CTMC. It has been shown in [14] that the set of ODEs derived from the syntax of the model (which
is not dependent on the number of levels in the case of BioPEPA) captures the limiting behaviour
of the CTMC representing the discretised system.

In Sπ, there is no obvious “granularity” that can be increased. However, we can still try to
investigate convergence in some sense. Each process can have an integer population in a system,
which reaches a certain maximum over a time scale we can be interested in. If we divide the
populations by this maximum, we can think of them as concentrations. Then clearly the larger
this maximum is, the more “granularity” we get. Given a system (S,E), we can try to scale it,
that is consider systems (n×S,E) for different n. If (S,E) is scalably finite, the systems (n×S,E)
will have the same prime processes as (n×S,E) and therefore continuous semantics with the same
prime processes. It may be of interest to investigate how the scaling influences the relationship
between the discrete and continuous semantics. In particular, we will look at how the average

46 5. FINITENESS CONDITIONS AND CONVERGENCE INVESTIGATIONS

of replicated simulation traces compares to the ODE solution when n is increased. Intuitively,
this should result in a similar effect on the CTMC as the increased granularity – with larger
populations of processes, the reaction rates increase and the state space of the CTMC becomes
“finer”. As opposed to BioPEPA, the set of ODEs from continuous semantics of Sπ does depend
on the scaling. Therefore, for the comparison to make any sense, we need to always compare
simulations and ODEs from the same scale.

In the following examples, we take models from the collection in Appendix B and experiment
with the scaling. If the model is not in CGF, we use the ideas from the previous section and
translate it (we have done this for the models B.1 and B.5). For each of the models, we take the
initial system (S,E) and then scale it twice by a factor of ten, i.e. get systems (10 × S,E) and
(100×S,E). For each of these, we obtain an average and variance of 20 simulations traces. We will
compare the averages with the respective ODE solutions. We will also look at the variance – we
plot changing standard deviation over the time, scaled by the mean to allow comparison between
the different scales. We show examples where the correspondence between the simulations and
ODE solutions clearly shows and so we can expect the convergence to hold. However, we show an
example where no such correspondence appears and so we can expect that the convergence does
not hold in general for Sπ systems.

Example 15. In this example, we take a model which studies ultra-sensitivity of the mitogen-
activated protein kinase (MAPK) cascade, as described in [21] and translated to stochastic π
calculus in [31]. See Appendix B.5 for JSPiM description of the model. Originally, the model is in
Sπ. However, using the intuition from the previous section, we were able to translate it to CGF
and therefore use JSPiM to analyse the continuous semantics. See Appendix B.6 for the translated
model. In this case, the convergence of the discrete semantics is evident – the simulation average
gets closer to the corresponding ODE solution as the scale increases. See Figure 5.1. Also, the
variance decreases with increased scale, see Figure 5.2.

5. FINITENESS CONDITIONS AND CONVERGENCE INVESTIGATIONS 47

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40

System

KKKst
KKPP

KPP

(a) Replicated simulation for the original model

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40

System

KKKst
KKPP

KPP

(b) ODE solution for the original model

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25 30 35 40

System10

KKKst
KKPP

KPP

(c) Replicated simulation for the model scaled by 10

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25 30 35 40

System10

KKKst
KKPP

KPP

(d) ODE solution for the model scaled by 10

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 5 10 15 20 25 30 35 40

System100

KKKst
KKPP

KPP

(e) Replicated simulation for the model scaled by 100

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 5 10 15 20 25 30 35 40

System100

KKKst
KKPP

KPP

(f) ODE solution for the model scaled by 100

Figure 5.1: The effect of scaling on the simulation of the MAPK model. The average of 20 different
runs of the simulation is compared to the solution of the corresponding ODEs for the original model
and the original model scaled by factors of 10 and 100 respectively. We can expect the simulation
averages to converge to the ODE solution as the scale increases.

48 5. FINITENESS CONDITIONS AND CONVERGENCE INVESTIGATIONS

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 5 10 15 20 25 30 35 40

System

KKKst
KKPP

KPP

(a) original model

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 5 10 15 20 25 30 35 40

System10

KKKst
KKPP

KPP

(b) scaled by 10

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 5 10 15 20 25 30 35 40

System100

KKKst
KKPP

KPP

(c) scaled by 100

Figure 5.2: Plots of the changing variance for the MAPK model. For each scale, the standard
deviation scaled by the maximal mean is plotted. We can see that the variance decreases as the
scale increases.

Example 16. We consider a model of circadian clock as defined in [30]. See Appendix B.1 for
the original model and Appendix B.2 for the translation to CGF that we used for analysing the
continuous semantics. Similar to the MAPK model, this model suggests the convergence of scaled
simulation towards the scaled ODE solution. See Figure 5.3. In this case, the decrease in variance
is not as significant as in the MAPK model. See Figure 5.4.

5. FINITENESS CONDITIONS AND CONVERGENCE INVESTIGATIONS 49

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 100 200 300 400 500 600 700 800

Clocknn

RNAAnn
RNARnn

Ann
Rnn

AComplexB

(a) Replicated simulation for the original system

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 100 200 300 400 500 600 700 800

Clocknn

RNAAnn
RNARnn

Ann
Rnn

AComplexB

(b) ODE solution for the original system

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 100 200 300 400 500 600 700 800

Clocknn

RNAAnn
RNARnn

Ann
Rnn

AComplexB

(c) Replicated simulation for the system scaled by 10

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 100 200 300 400 500 600 700 800

Clocknn

RNAAnn
RNARnn

Ann
Rnn

AComplexB

(d) ODE solution for the system scaled by 10

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 100 200 300 400 500 600 700 800

Clocknn

RNAAnn
RNARnn

Ann
Rnn

AComplexB

(e) Replicated simulation for the system scaled by 100

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 100 200 300 400 500 600 700 800

Clocknn

RNAAnn
RNARnn

Ann
Rnn

AComplexB

(f) ODE solution for the system scaled by 100

Figure 5.3: The effect of scaling on the simulation of the circadian clock model. The average of
20 different runs of the simulation is compared to the solution of the corresponding ODEs for the
original model and the original model scaled by factors of 10 and 100 respectively.

50 5. FINITENESS CONDITIONS AND CONVERGENCE INVESTIGATIONS

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 100 200 300 400 500 600 700 800

Clocknn

RNAAnn
RNARnn

Ann
Rnn

AComplexB

(a) original model

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 100 200 300 400 500 600 700 800

Clocknn10

RNAAnn
RNARnn

Ann
Rnn

AComplexB

(b) scaled by 10

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 100 200 300 400 500 600 700 800

Clocknn100

RNAAnn
RNARnn

Ann
Rnn

AComplexB

(c) scaled by 100

Figure 5.4: Plots of the changing variance for the circadian clock model. For each scale, the
standard deviation scaled by the maximal mean is plotted. We can see that the variance decreases
as the scale increases.

Example 17. The last example we look at is where we fail to observe any convergence behaviour.
Consider a simple repressilator model from [1]. The model consists of three gene gates (processes
Gene〈a, b〉, Gene〈b, c〉 and Gene〈c, a〉), each capable of producing a different protein (Protein〈b〉,
Protein〈c〉 and Protein〈a〉 respectively) if in an active state. A gene gate can be blocked to a
blocked state where it is unable to produce the protein. This is triggered by an abundance of a
protein from another gene gate – Protein〈a〉 blocks Gene〈a, b〉, Protein〈b〉 blocks Gene〈b, c〉 and
Protein〈c〉 blocks Gene〈c, a〉. The proteins can also degrade at a certain rate. The following
system defines this in Sπ:

Gene(a, b) def= τ@t.(Protein〈b〉|Gene〈a, b〉+?a.τ@u.Gene〈a, b〉),

Protein(b) def=!b.Protein〈b〉+ τ@d

where the top-level process is

Repressilator = Gene〈a, b〉|Gene〈b, c〉|Gene〈c, a〉

Simulating this system, we can observe alternate cycles of protein production, characterised by
an abundant protein and two blocked gene gates. One of the blocked gates is repressed by the
produced protein, whereas the other is not. If the repressed gate unblocks, it is likely to get
blocked, because of the presence of the blocking protein. If the other gate unblocks, it starts
producing a protein that represses the currently active gate – the cycle changes. The order of the
different periods as well as their lengths is highly stochastic – see [1] for a detailed investigation,

5. FINITENESS CONDITIONS AND CONVERGENCE INVESTIGATIONS 51

also concerning the influence of changing rates of the different channels. We add that the situation
does not change with scaling – in presence of larger populations of genes, they tend to get blocked
and unblocked in the same cycles, as the proportion of produced proteins also changes.

This behaviour is clearly discrete, with the genes and blocked genes being in populations of
only 0 and 1. Also, since the system starts in an “equilibrium” where each gene produces proteins
blocking the other genes, there is no reason for oscillation in the deterministic continuous case.
Therefore in order to examine the continuous semantics, we artificially block two of the genes.
However, this doesn’t change much, as the system tends to the “equilibrium” state after the first
artificial oscillation ends. See Figure 5.5 for the plots of the simulation and ODE solution for the
original system and Figure 5.6 for the effects of scaling.

 0

 20

 40

 60

 80

 100

 120

 140

 0 10000 20000 30000 40000 50000 60000

Repressilator

Protein<a>
Protein
Protein<c>

(a) simulation

 0

 20

 40

 60

 80

 100

 0 10000 20000 30000 40000 50000 60000

Repressilator

Protein<a>
Protein
Protein<c>

(b) replicated simulation

 0

 20

 40

 60

 80

 100

 0 10000 20000 30000 40000 50000 60000

Repressilator

Protein<a>
Protein
Protein<c>

(c) ODE solution

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000

Repressilator

Protein<a>
Protein
Protein<c>

(d) detail of ODE solution

Figure 5.5: Sample simulation and ODE solution of the repressilator model. The ODE solution
tends to go to the equilibrium state.

52 5. FINITENESS CONDITIONS AND CONVERGENCE INVESTIGATIONS

 0

 200

 400

 600

 800

 1000

 0 2000 4000 6000 8000 10000 12000 14000 16000

Repressilator10

Protein<a>
Protein
Protein<c>

(a) Replicated simulation for the system scaled by 10

 0

 200

 400

 600

 800

 1000

 0 2000 4000 6000 8000 10000 12000 14000 16000

Repressilator10

Protein<a>
Protein
Protein<c>

(b) ODE solution for the system scaled by 10

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000 12000 14000 16000

Repressilator100

Protein<a>
Protein
Protein<c>

(c) Replicated simulation for the system scaled by 100

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000 12000 14000 16000

Repressilator100

Protein<a>
Protein
Protein<c>

(d) ODE solution for the system scaled by 100

Figure 5.6: The effect of scaling on the simulation of the circadian clock model. The average of
20 different runs of the simulation is compared to the solution of the corresponding ODEs for the
original model and the original model scaled by factors of 10 and 100 respectively. This suggests
that the simulations do not converge to the ODE solution.

6. SPATIAL EXTENSION OF STOCHASTIC π CALCULUS 53

6
Spatial extension of stochastic π calculus

In this chapter we define a simple spatial extension of Sπ, which we call Lπ. As we argued in
the introduction, our main aim is to provide an extension that will allow the reuse of existing Sπ
models as well as keep the alternative continuous semantics. We will also only consider the case
of static compartments, as has been done in [11].

We first introduce the main ideas and give an informal justification why they might be a suitable
representation of the physical nature of the problem. After that, we give a formal definition of Lπ,
defining the syntax and operational semantics. This will also require slight changes to the original
semantics of Sπ, caused by the presence of explicit volume in Lπ – we describe these changes.
We show how the aggregation result translates to Lπ and give an efficient simulation algorithm.
We support the formalism by presenting two examples – one a simple adaptation of an epidemic
SIR model, another an original example using the location structures to model virus spreading in
plant tissue. As the next step, we extend the continuous semantics of Sπ to Lπ and give a simple
example. We conclude the chapter by looking at the expressive power of Lπ and show that it can
be “emulated” by Sπ.

We go back to an argument before Sπ and generalize the example from Section 2.1.5. Consider
two containers, say C1 and C2, with constant volumes V1 and V2 respectively. Assume that C1

and C2 are connected in some way, say by sharing a part of their surface of area A, through which
molecules of the species X can “cross”, after approaching it at a distance m (say this expresses
some kind of permeability of the boundary). Let C1 contain molecules of X (with radius r),
uniformly distributed. We can take the average speed v of X molecules with respect to a point
P on the boundary and consider the volume a single molecule sweeps in time δt, δVcross = πd2vδt
where d = m+ r. See Figure 6.1.

Then we have the probability of X hitting P to be c · δt, where c is a constant specific for X
and V2. If we now have N X molecules, the probability of any molecule hitting any point on the
surface will be proportional to N ·A · cδt. Looking at this as a hazard rate of the distribution until
the next movement of an X molecule from C1 to C2, we get this to be exponentially distributed
with parameter depending on the species X and the two compartments C1 and C2. We can treat
reactions happening inside C1 and C2 independently and in the same fashion as in the argument
in the section 2.1.5. Last but not least, we ignore the possibility of reactions occurring “between”
two compartments. Therefore our system still yields a CTMC.

We can now take a system of compartments (possibly nested, but not overlapping), assuming
that each pair can share some surface and thus allow movement of molecules. We can abstract from
the area of this surface and the permeability constant and just consider a single number, which we
will call the movement constant for the two compartments. Clearly if the two compartments are
not directly connected, this number is zero. We also abstract from the fact that the compartments
are actual physical containers – they can represent regions of different properties inside another

54 6. SPATIAL EXTENSION OF STOCHASTIC π CALCULUS

δVcoll = πd2 · vδt

r

d = r +m

vδ
t

C1C2

P

m

Figure 6.1: The X molecule (represented by the sphere of radius r) moves towards a point P on
the boundary between the compartments, sweeping volume δVcoll in a short time interval δt.

compartment. We will therefore use the word location to denote them. This system of locations can
be represented as a graph with directed and weighted edges, with the weight being the movement
constant. The nodes can also carry weight corresponding to the volume of the respective locations.

As our plan is to re-use existing Sπ models, the direction of our abstraction is clear at this
point – we assume each of the nodes of the above graph (we will call such graphs location graphs)
can contain a Sπ process. The behaviour within locations will be the same as given by Sπ, with
the difference that the volume is no longer 1. Additionally, the processes (the prime processes
in parallel composition) in the locations will be allowed to “move” between the locations of the
graph, with rates given by a function representing the movement constants.

6.1 Syntax

We will extend the syntax of Sπ by adding a layer of graphs. The nodes of these will have explicit
names, and so

Definition. Define the set of location names NL. We will use l,m, n, . . . to denote these.NL

The location graphs are a finite set of locations, each containing an ordinary Sπ process, to-
gether with a function expressing the volume of each location and a movement function expressing
the rate of movement between locations for each prime process.

Definition. Define the set of location graphs L to be the minimal set such thatL
[. . . , li : P1, . . .]v,m

[l1 : P1, . . . , ln : Pn]v,m ∈ L

where L = {l1, . . . , ln} ⊆ NL is a set of location names, Pi ∈ P for all i = 1, . . . n, v : L → R is a
volume function and m : P̂ × L× L→ R is a movement function.

If G = [l1 : P1, . . . , ln : Pn]v,m we can write that li ∈ G and li : Pi ∈ G for each i = 1, . . . , n.
A system of Lπ is a tuple consisting of a graph G and an evironment E such that for all(G,E)

li : Pi ∈ G, Pi is valid with respect to E.

6.2 Semantics

The semantics of Lπ is a direct extension of that of Sπ, justified by the argument at the beginning
of this chapter. The evolution inside locations is directed by the internal Sπ processes. The only
modification is in the resulting rates, which are influenced by the volume function – the rate of
communication between two processes should be inversely proportional to the volume. At this
place, we are forced to slightly modify the semantics of Sπ. The problem is that in its original
form, it is not possible to distinguish between a transition resulting from communication and from

6. SPATIAL EXTENSION OF STOCHASTIC π CALCULUS 55

a silent action – a required property since the rates of silent actions should not depend on the
volume of the enclosing compartment. For this purpose, we define a new kind of transition τa where
a ∈ N , which will be treated in the same way as τ@ra, but will be distinguished when considering
the semantics of transitions inside locations. The transition τa will arise when two processes
communicate on the channel a (that is in the rules Com and Close which we need to modify).
We also need to pay attention to complexes – the components of these should be considered close
in the compartment and therefore the rate of their communication should not depend on the
volume. This can be treated by modifying the rule Res – if the inside of a restriction on a channel
e communicates on a channel that is not private (so does a transition τa, anew e), the resulting
transition should be influenced by the volume and so is τa. Otherwise, it is an internal action of
the complex, not influenced by the volume of the compartment and so is τ@ra. For this to make
sense, we have to assume that subprocesses of a (prime) complex can communicate with each other
only on the private channel; however, the semantics will be well defined even if this is not the case.

Apart from transitions inside locations, the only other transitions are those corresponding to
processes moving from one location to another. The rate of this is given by the movement function.
A prime process can move from one location to another if it is inside parallel composition in the
location. At this point we make a design decision and allow movement of only summations and
identifier instances – for movements of restrictions we would have to make sure that the moving
process is a prime process, which would complicate the semantics in a significant way. We can
justify this by the fact that complexes are “too complicated” to move. We leave it for future work
to find models which would benefit from movements of complexes.

The movement will be represented by a lifting action, removing a process from a parallel
composition.

Definition. Define the lifting action to be lift(P), where P ∈ P. Define the set of all actions of lift(P)

Lπ to be AL, including all the actions of Sπ, A+ and all the lifting actions. AL

Definition (transition semantics). Define a pre-transition relation to be a multi relation · ·−→ · ·−→ ·
· F L × Aτ × L defined as the restriction of the multi relation · ·−→ · F L × AL × L inductively
defined by the rules in the Figure 6.2.

The rule Inside concerns the transitions inside the locations, that involve communication on
“global” channels. The rule InsideTau concerns local transitions which do not depend on the
volume. The rule rule LiftSum is the base case for lifting summations and the rule LiftID
for identifiers defining summations. The rule LiftPar allows lifting through trees of parallel
compositions. The rule LiftNew allows lifting from restrictions only when the restricted name
isn’t in the lifted process. Finally, the rule Move defines movement, where it puts a lifted process
from one location to another (into the topmost parallel composition), with the rate determined by
the movement function (which has to be non-zero).

6.3 Simulation

We can use structural congruence of the Sπ processes inside locations to provide a theorem anal-
ogous to Theorem 3.3.

Theorem 6.1. IfG = [l1 : P1, . . . , ln : Pm] and Pi has a standard form (newϕi){|ni,1×Pi,1, . . . , ni,mi×
Pi,mi |} = (newϕi)P ′i then

Trans(G) = {|G τ@ra/v(li)−→ [· · · li : Qi, . . .]v,m : Pi
τa−→ Qi|}]

{|G τ@r−→ [· · · li : Qi, . . .]v,m : Pi
τ@r−→ Qi|}]

{|G τ@m(Pi,k,li,lj)−→ [. . . , li : (newϕi)(P ′i \ Pi,k), . . . , lj : Pi,k|Pj , . . .]v,m
fn(Pi,k) ∩ ϕi = ∅, m(Pi,k, li, lj) 6= 0|}.

Proof. This follows from the Theorem 3.3 and a similar argument concerning the movement tran-
sitions. �

56 6. SPATIAL EXTENSION OF STOCHASTIC π CALCULUS

Inside:
P

τa−→ Q

[. . . , li : P, . . .]v,m
τ@ra/v(li)−→ [. . . , li : Q, . . .]v,m

InsideTau:
P

τ@r−→ Q

[. . . , li : P, . . .]v,m
τ@r−→ [. . . , li : Q, . . .]v,m

LiftSum: ∑
i∈I αi.Pi

lift(
P
i∈I αi.Pi)−→ 0

LiftID:
if A(x̃) def=

∑
i∈I αi.Pi

A〈ψ̃〉 lift(A〈 eψ〉)−→ 0

LiftPar:
P1

lift(Q)−→ P ′1

(P1|P2)
lift(Q)−→ (P ′1|P2)

LiftNew: P
lift(Q)−→ P ′ , x /∈ fn(Q)

(new x@r)P
lift(Q)−→ (new x@r)P ′

Move:
P

lift(Q)−→ P ′ m(Q, li, lj) 6= 0

[. . . , li : P, . . . , lj : R, . . .]v,m
τ@m(Q,li,lj)−→ [. . . , li : P ′, . . . , lj : (Q|R), . . .]v,m

Figure 6.2: The transition rules for the location graphs. The . . . mean that the locations not listed
remain unchanged between left and right components of members of →.

The above theorem gives a straightforward modification of the Gillespie algorithm for Lπ. An
important observation is that we can use the same techniques from the Sπ version of this algorithm
to obtain the internal transitions inside locations – this will become useful in the implementation.
See Algorithm 5.

We end this section with two interesting examples illustrating the flexibility of Lπ.

Example 18. We look at a simple extension of a model in Sπ.
Consider the environment ESIR with the defining equations

S
def=?infect .I,

I
def=!infect .I + τ@rrecover.R,

R
def= 0

and the top-level process
System = 100× S|10× I.

This is a simple epidemics model, such as the one due to Kermack-McKendrick [40]. In this model,
there is a population of individual susceptible to a disease, transfered from infected individuals,
who recover after a period of time.

One can be interested in the dynamics of this model in the case there is an active quarantining,
that is if the infected individuals are likely to get diagnosed and isolated until they recover. We
can model this as a location graph with two nodes – one the original “world” (node a), the other
the quarantine (node b). The infected will then be “allowed” to move from a to b (the rate of
the movement, say rdiagnose, can represent the rate of how fast they become diagnosed) and the

6. SPATIAL EXTENSION OF STOCHASTIC π CALCULUS 57

Algorithm 5 The Gillespie algorithm for Lπ .
1: Start with a graph G = [l1 : P1, . . . , ln : Pn]v,m where Pi’s have standard form as in Theorem

6.1
2: repeat
3: for all i = 1, . . . , n do
4: collect T ′i = {|Pi

τ@r−→ Qi|} as in Algorithm 4
5: set Ti = {|G τ@r−→ [. . . , li : Qi, . . .]v,m|}
6: collect T ′′i = {|Pi

τa−→ Qi|} as in Algorithm 4

7: add {|G τ@ra/v(li)−→ [. . . , li : Qi, . . .]v,m|} to Ti
8: end for
9: for all i, j, k such that m(i, j, Pi,k) > 0 and fn(Pi,k) ∩ ϕi = ∅ do {collect all movement

transitions Tm}
10: insert ni,k copies of G

τ@m(i,j,Pi,k)−→ [. . . , li : (newϕi)(P ′i \ Pi,k), . . . , lj : Pi,k|Pj , . . .]v,m into
Tm

11: end for
12: let T = T1] · · ·] Tn] Tm
13: let rtotal =

∑
S
τ@r−→U

r

14: randomly select a transition G
τ@r−→ G′ ∈ T with probability r/rtotal

15: generate δt from Exp(rtotal)
16: set t = t+ δt, set G = G′

17: until t = tstop

recovered will be allowed to move from b to a (the rate of movement, say robserve, can represent
the “observation” period to determine an individual has recovered). The graph then would be

[a : System, b : 0]v,m

where m(a, b, I) = rdiagnose, m(b, a,R) = rdischarge and 0 otherwise and v(a) = v(b) = 1. See
Figure 6.3 for a sample simulation and comparison with the single compartmental model. One
quantity of interest can be the proportion of susceptible population that has not become infected
during the spread of the disease and the effect of quarantining on this number.

Example 19. This example will illustrate a slightly different approach to the above. Consider
a hypothetical plant tissue. This tissue consists of cells arranged in a two dimensional grid. A
cell can be attacked by a virus. A hypothesis is that in this case, it sends out a signal to the
neighbouring cells, which in turn become more resistant to the virus and thus eventually prevent
its spreading to the whole tissue. We will show how Lπ could be used to model this situation and
so to carry out experiments in-silico to confirm the hypothesis.

Our location graph will represent the structure of the tissue – we take a grid with only adjacent
nodes connected. Each location will correspond to a cell – initially, it will contain a Cell process.
The Virus process will be able of attacking the cell. In that case, the cell releases warnings to
the neighbouring cells – it will create several Warning processes, that are allowed to move to the
neighbours – and switches to the mode fighting the virus. The life of the cell will be represented by
the process Life and the resistance against the virus by the Resistance processes. The resistance
processes will be able to attack the virus (output action on the channel defeat), while the virus
attacks the life of the cell (output action on the channel fight) – the likelihood of cell surviving
therefore depends on the number of resistance cells it releases. When a virus wins, the cell gets
defeated and the virus multiplies, otherwise a resistance process destroys the virus and notifies the
cell (output action on the channel defeated) which then switches back to the normal state (but
with resistance to the virus). When a cell gets warned (communicates with a warning process), it
switches to the resistant state (the process RCell), which is identical to the Cell with the difference
that it releases more Resistance processes.

58 6. SPATIAL EXTENSION OF STOCHASTIC π CALCULUS

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180

SpatialSystem:a

S
I

R

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 20 40 60 80 100 120 140 160 180

SpatialSystem:b

S
I

R

(a) System with quarantine

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140 160 180 200

System

S
I

R

(b) Original system

Figure 6.3: Simulation of the SIR model with active quarantining and the original model with
single location. We can be interested in comparing the number of susceptible individuals who do
not become infected (around 20 in case of quarantining and 5 in the original model).

Therefore take the environment

Cell =?attack .(Life|6× Reistance|4×Warning)+?warn.RCell ,
RCell =?attack .(Life|20× Reistance|4×Warning)+?warn.RCell ,

Resistance =!defeat .!defeated + delay@expire,
Life =?fight+?defeated .RCell ,

Virus =!attack .(!fight .(2×Virus)+?defeat)

and the graph

Tissue = [cx,y : Cell |if (x, y) = (1, 1) then Virus : x, y = 0, . . . , 3]v,m

with v(cx,y) = 1 and

m(cx,y, cx+∆x,y+∆y) =

{
move if ∆x,∆y ∈ {−1, 0, 1} and |∆x|+ |∆y| = 1,
0 otherwise.

The picture on Figure 6.4 should make the above more clear.
We can execute a simulation of this model to see the effects of different parameters of the

model, such as the numbers of Resistance processes released by the cell or rates of individual
channels. See Figure 6.5 for two sample simulation traces.

6. SPATIAL EXTENSION OF STOCHASTIC π CALCULUS 59

c0,0 : Cell c0,1 : Cell c0,2 : Cell c0,3 : Cell

c1,0 : Cell c1,1 : Cell |Virus c1,2 : Cell c1,3 : Cell

c2,0 : Cell c2,1 : Cell c2,2 : Cell c2,3 : Cell

c3,0 : Cell c3,1 : Cell c3,2 : Cell c3,3 : Cell

Figure 6.4: Location graph of the plant tissue model. The locations are arranged in a grid, where
only adjacent locations are connected. Each location contains a Cell process and c1,1 additionally
contains a Virus process. The Virus is allowed to move between locations. When it attacks a
cell, the cell releases Warning processes, which are allowed to spread to neighbouring locations to
make their cells more resistant. Nothing else is allowed to move.

60 6. SPATIAL EXTENSION OF STOCHASTIC π CALCULUS

Cell RCell Virus

(a) Virus contained

Cell RCell Virus

(b) Virus spreading

Figure 6.5: Sample simulation of the plant patogen model. Each cell in the grid represents time
evolution of the corresponding compartment. The system starts with the virus in the location
c1,1. Figure (a) shows an example of a simulation where the virus is contained after attacking
the neighbouring cells of c1,1. Figure (b) shows a simulation where the virus spreads to the
neighbouring cells and survives.

6. SPATIAL EXTENSION OF STOCHASTIC π CALCULUS 61

6.4 Continuous semantics

In this section we present the continuous semantics for Lπ. The argument for its suitability is the
same as for the case of Sπ, using the Theorem 6.1.

We need to extend the definition of prime processes. Because the processes are allowed to move,
we cannot consider prime processes for the locations individually but need to take the whole graph
into account.

Definition. Let (G,E) be an Lπ environment. The prime processes of (G,E) is the set P̂(G,E)
of all Sπ prime processes P such that G −→∗ G′ and G′ ≡ [. . . , li : P |Q, . . .]v,m.

Now each location will contain populations of prime processes – we need separate quantity
functions for each location–prime process combination.

Definition. For each P ∈ P̂(G,E) and a location l ∈ G, define the quantity function of P to be [P]l
[P]l : R→ R.

Definition. The system of differential equations of an initial graph G = [l1 : P1, . . . , ln : Pn]v,m
with respect to an environment E consists of the following, for each P ∈ P̂(G,E) and location d[P]l

dt

l ∈ G,

d[P]l(t)
dt

=
∑

(a,P1,P2)∈Enterch,G,E(P)

ra · c([P1]l(t), [P2]l(t))/v(l) +
∑

(r,Q)∈Enterτ,G,E(P)

r · [Q]l

−
∑

(a,Q)∈Exitch,G,E(P)

ra · c([P]l(t), [Q]l(t))/v(l)−
∑

r∈Exitτ,G,E(P)

r · [P]l(t)

+
∑

m(k,l,P) 6=0

m(k, l, P) · [P]k(t)−
∑

m(l,k,P)6=0

m(l, k, P) · [P]l(t)

where the Enter and Exit sets are defined as in Sπ with respect to P̂(G,E) and the function c(·, ·)
defined in the same way as for Sπ(see Chapter 4).

Definition. The continuous semantics of a graph G with respect to an environment E is

{[P]l : P ∈ P̂(G,E), l ∈ G}

where [P]l satisfy the initial conditions given by

[P]l(0) = Pl#P

where G = [. . . l : Pl, . . .]v,m.

Example 20. Consider the SIR model with quarantine. We get the following Enter and Exit
multisets (only listing the non-empty ones)

Exitch,G,E(S) = {|(infect , I)|},
Enterch,G,E(I) = {|2× (infect , S, I)|},

Exitch,G,E(I) = {|(infect ,S)|},
Exitτ,G,E(I) = {|(rrecover)|},

Enterτ,G,E(R) = {|(rrecover, I)|}.

62 6. SPATIAL EXTENSION OF STOCHASTIC π CALCULUS

The system of ODEs of (G,E) is

d[S]a(t)
dt

= −rinfect · [S]a(t) · [I]a(t),

d[I]a(t)
dt

= rinfect · [S]a(t) · [I]a(t)− rrecover · [I]a(t)− rdiagnose · [I]a(t),

d[I]b(t)
dt

= rdiagnose · [I]a(t)− rrecover · [I]b(t),

d[R]a(t)
dt

= rrecover · [I]a(t) + rdischarge · [R]b,

d[R]b(t)
dt

= rrecover · [I]b(t)− rdischarge · [R]b(t).

See Figure 6.6 for a numerical solution to this system of ODEs and a comparison with the solution
for the original model.

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140 160 180 200

System.a

S
I

R

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100 120 140 160 180 200

System.b

S
I

R

(a) System with quarantine

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140 160 180 200

System

S
I

R

(b) Original system

Figure 6.6: Numerical solutions to the ODEs from the SIR model with quarantining compared
with the results for the original model.

6.5 Relationship to Sπ

We look at the expressive power of Lπ. We give an informal argument (which can be easily
formalized) justifying that any Lπ system can be emulated by a Sπ system. Suppose we are given
a location graph with n locations. We need to make sure that

6. SPATIAL EXTENSION OF STOCHASTIC π CALCULUS 63

(1) the prime processes exist in n disjoint groups, able to react only with the processes from the
same group (with reaction rates modified by different volumes assigned to each group) and

(2) that summations (or identifiers defining summations) can “move” between these groups.

To guarantee (1), note that reactions between processes can happen on “global” channels –
we can introduce a new version of each channel for each location, with the rate modified by the
volume of the location. For each defining equation in the Sπ environment, we can introduce n
new defining equations, each using one of the versions of each channel. Note that this does not
influence restricted channels – if two processes can create a complex, the sending process has to
send the restricted name through a channel – this will make sure they are in the same location.

To guarantee (2), we have to make sure every summation can “move” to a summation corre-
sponding to a different location. Without loss of generality we can assume that each summation
is defined by an identifier in the environment. Then for each non-zero movement constant, this
summation can contain a silent transition with the movement constant as the rate, evolving into
a version of the identifier for the target location.

The situation would change if complexes are allowed to move between locations – we would
have to make sure all their subprocesses “move” to the new location at the same time. In case
there is more than two, this would require a synchronization primitive not present in Sπ.

We only add that despite the same expressive power, Lπ certainly makes it more convenient
to define models involving static compartments, as can be seen from the examples.

6.6 Summary

We introduced a spatial extension of Sπ for static compartments, called Lπ. We gave its syntax
and semantics, in a style similar to Sπ and also extended the continuous semantics to Lπ. We
presented two examples justifying the use of Lπ. Finally, we argued that although the expressive
power of Lπ and Sπ are the same, Lπ provides more convenient modelling framework.

64 6. SPATIAL EXTENSION OF STOCHASTIC π CALCULUS

7. IMPLEMENTATION 65

7
Implementation

In this chapter we present an implementation of some of the theoretical concepts described earlier.
The initial aim for the implementation was to produce a convenient tool to explore (experimen-
tally) the relationship between the discrete and continuous semantics of the stochastic π calculus.
Another aim was to provide an extensible platform on which further extensions, such as the out-
lined spatial calculus, can be built. The tool was mainly inspired by the SPiM abstract machine
[32] and should serve as an alternative when SPiM is not fully available (e.g. under Linux operat-
ing system, no graphical interface is provided) and comparison with the continuous semantics of
models in CGF is desired. Moreover, written in the Java programming language, it provides an
extensible Sπ calculus implementation to a wider range of developers.

Briefly, the developed tool, named JSPiM is an interpreter for Sπ and Lπ. Similar to SPiM, it
consists of a simple text editor for writing models. The models are described in a syntax similar
to that of the formal definition of Sπ and Lπ. The editor, as opposed to SPiM, provides syntax
error reporting, making it more convenient to write new models. In addition to description of
the environment and top-level processes, commands can be specified. These include simulation of
the top-level Sπ process (both single traces and mean and variance from replicated runs) ODE
solution of the continuous semantics if the system is in CGF and a simulation of location graphs
of Lπ. JSPiM presents the results of the commands visually (using the chart library JFreeChart).
Moreover, it is able to export the resulting data together with GNUPlot description files that can
be used to automatically produce diagrams suitable for papers (most of the graphs in this report
were generated in this way). For long running executions, JSPiM supports non-interactive mode
which can be run without a graphical interface.

We first describe the high level architecture overview of JSPiM. Intentionally, we only include
the Sπ part of JSPiM and describe the Lπ extension later, mirroring the order of the theoretical
development. We list the main package structure in which the code is organized and describe the
used external libraries. After this, we describe how JSPiM represents the different structures from
Sπ. We start with a description of how the syntax translates (via grammars written in the ANTLR
compiler generator) to the internal representation of processes. We describe this representation,
which closely follows the formal description from Chapter 3. JSPiM uses higher level collections
to allow efficient implementation of the simulation algorithm and ODE generations – we describe
these and show how they relate to the formal description, suggesting a proof of correctness of our
implementation. We give an overview of the commands JSPiM provides and show how they use
the collections.

The implementation of Lπ demonstrates the extensibility of JSPiM. We describe how the
implementation of Lπ structures fits into the core architecture and how they relate to the formal
development in Chapter 6.

We conclude the chapter with remarks on how testing was carried out during development

66 7. IMPLEMENTATION

of JSPiM and also briefly and informally evaluate how its performance compares to SPiM, using
models from the model library in the Appendix B.

7.1 Architecture overview

JSPiM is written in the Java 1.5 programming language. We tried to follow the best practices of
software engineering, to provide a solid implementation as well as a platform for further extensions.
The high level package structure of JSPiM is the following:

• The whole code falls under the package jspim. This contains the main class JSPIM that
handles different command line options and sets up the user interface or non-interactive
execution.

• The user interface components are in the gui package. These include the main window GUI
as well as a simple text editor EditorPane and chart windows for displaying the results.

• Package syntax consists of the auto-generated code from ANTLR parser generator and pro-
vides classes for translation of stream of characters into the representation of stochastic π
calculus.

• The representation of processes and environments is in the package processes.

• Package collections defines higher level structures that provide primitives for stochastic sim-
ulation and ODE generation, such as the classes ProcessesCollection and ReactingCollection
for efficient simulation and ODECollection for ODE generation.

• Package commands contains the various commands – stochastic simulation (single and repli-
cated) and generation and solution of ODEs. These use classes from the package collection
and are responsible for initializing the simulation/ODE solution and for graphical and file
output of the resulting data.

• Package utils provides different utilities used by the commands, such as random variate
samplers(exponential and discrete) and numerical ODE solver (fourth order Runge-Kutta).

See Figure 7.1 for an overview of the package structure.

Figure 7.1: Overview of the main package structure of JSPiM. The packages are ordered by
dependency – each package depends only on the packages bellow it.

7. IMPLEMENTATION 67

7.1.1 Used libraries

JSPiM employs several external tools and libraries at different layers in the structure, including
parsing, process representation and graphical output.

• ANTLR[29] is a language tool for building lexers, parsers and compilers. It is based on at-
tribute grammars and automatically generates Java code. JSPiM uses the lexer and parser
grammars to create Sπ abstract syntax tree (AST) and a list of commands from the textual
representation and then a compiler to transform the AST to the below described represen-
tation. ANTLR is published under BSD license.

• google-collections[5] is a set of collection types, naturally extending the Java Collections
Framework. JSPiM mainly uses the multiset and multimap collections (interfaces Multiset
and Multimap and implementations HashMultiset and HashMultimap) to represent the struc-
tural congruence classes of processes and auxiliary data structures for simulation. google-
collections is published under the Apache License 2.0 licence.

• JFreeChart [16] is a Java chart library. It is used to plot results of the different “executions”
of Sπ processes (simulation, ODE solution, etc.). JFreeChart is published under the LGPL
license.

7.2 Implementation details

We list the main important details of the implementation. We start at the bottom layer of parsing,
then describe process representation, followed by the higher level collections and commands.

7.2.1 ANTLR grammars

JSPiM uses three different ANTLR grammars. The Lexer defines individual tokens and eliminates Lexer

white space and comments and Parser constructs an abstract syntax tree (internal ANTLR repre- Parser

sentation) corresponding to the syntactical structure of processes, environments and commands. It
is defined with respect to the operator precedence to avoid unnecessary parentheses. See Appendix
A.1 for the exact grammar used.

The third grammar Compiler defines a tree-walker. This takes the abstract sytnax tree gen- Compiler

erated from the Parser and builds the JSPiM representation of processes, environment and com-
mands. It also performs validity checks of the environment and provides mechanisms for error
reporting. See Figure 7.2 for a diagram.

Lexer

Parser

Compiler

Interpreter

tokens

AST

environment, commands

ANTLR grammars

Figure 7.2: The role of ANTLR grammars in JSPiM. The Lexer splits the input character stream
into tokens, the Parser constructs an abstract syntax tree and the Compiler builds the JSPiM repre-
sentation of the processes, environments and commands. These are then passed to the interpreter.

68 7. IMPLEMENTATION

7.2.2 Process representation

The used data structures representation closely follows the developed theory – we argue that this
correspondence can almost directly serve as a proof of correctness. At the core is the representation
of Sπ processes, naturally taken from the syntactical definition (and enhanced by some of the
results concerning structural congruence) and adapted to the object oriented paradigm. The base
class in the hierarchy is PiProcess, representing general processes from P. It stores a link toPiProcess

the Environment object, representing the environments, as collections of ProcessDefinition objects.
Representations of the functions ranging over processes and those inductively defined on their
syntactical structure, such as fn(·) and substitution ·{x̃ 7→ ψ̃} are defined as abstract methods of
the class PiProcess.

This base class is then extended by classes corresponding to the different syntactical constructs.
See Figure 7.3 for an overview.

(i) The class Zero represents the zero process, trivially defining all the required functions.Zero

(ii) The class Summation represents summations. It contains a collection of continuations pre-Summation

fixed with channel actions (ChannelContinuation) and with silent actions (DelayContinuation).
Each continuation consists of the prefix action (class Action extended by ChannelAction and
DelayAction) and the following process.

(iii) The class ParallelComposition represents trees of nested parallel compositions. The leaf pro-Parallel
Composition cesses are stored in a multiset (Multiset class from google-collections), as defined by the

structural congruence.

(iv) The class ProcessID represents parametrized identifier instances. It stores the parameters inProcessID

a list and has method getUnfolded() which returns the correct substitution instance from the
right hand side of the corresponding defining equation in the environment.

(v) The class Restriction represents chains of nested restrictions. It consists of a set of new channelRestriction

definitions (class Channel, storing the name and the rate), as specified by the structural
congruence, and of the restricted process.

Ideally, equality of the PiProcess objects would implement the structural congruence. Un-
fortunately, checking structural congruence for processes of π calculus (and so of Sπ) is Graph
Isomorphism complete, [23]. Therefore JSPiM implements only syntactical equality. This is re-
flected by the overriding of the equals() and hashCode() methods of the subclasses of PiProcess.

7.2.3 Higher level collections

A level higher from the processes are collections. These serve as bases for both the discrete and
continuous semantics. See Figure 7.5 for an overview.

The ProcessesCollection is the main one from which the others derive. It consists of a setPiProcesses
Collection of new channel names and a multiset of processes and keeps auxiliary maps of possible channel

communications. When a new process is added or an existing one removed, this map gets updated
locally – only the affected channels change. The ReactingCollection derives from ProcessesCollectionReacting

Collection and supports methods for enumerating and sampling the reaction events. It keeps multimaps
assigning events to each channel name and delay rate – channelEvents contains events for each
channel, with the corresponding apparent rates. Similarly delayEvents keeps events for each silent
action rate. It supports generation of the next reaction event (single iteration of the Algorithm 4)
in the getNextEvent() method:

• First, a discrete distribution sampler chooses an event (the class utils.samplers.Discrete). The
possible events are values of the two multimaps channelEvents and delayEvents.

• The chosen reaction is then applied by the applyReaction() method. This removes the reacting
processes by calling removeProcess() from the ProcessesCollection and adds the continuations
(two for a communication event and one for a silent one) by calling addProcess(), with
possibly applying the substitution resulting from input action parameter binding.

7. IMPLEMENTATION 69

Figure 7.3: High level overview of Sπ process representation in the implementation. The base is
the abstract class PiProcess, extended by classes representing the possible syntactical constructs,
such as Zero, Summation, etc. Each process also keeps a reference to an Environment, containing
a collection of defining equations (ProcessDefinition).

P ∈ P extends PiProcess
0 Zero
α.P Continuation∑
i∈I αi.Pi Summation

P |Q ParallelComposition

A〈ψ̃〉 ProcessID
(new x@r)P Restriction

Figure 7.4: Representation of Sπprocesses in JSPiM.

• After this, both the reacting processes and their products are inspected to determine which
channel names and delay rates have changed. For each changed channel name, the method
collectChannelEvents() is called. In this method, the channel actions for the given name are
retrieved and all possible combinations of input and output continuations are matched. For
each pair, a new event is created with the probability calculated as the rate of the aggregated
transition as given by the Theorem 3.3. Similarly, for each changed delay rate, the method
collectDelayEvents() is called.

• Finally, a delay is generated from the exponential distribution (the utils.sampler.Exponential
class) with parameter set to the sum of rates of all the events.

See Figure 7.6 for an overview of the two classes.
The ODECollection handles the ODE generation for the continuous semantics of CGF. Given a ODE

Collectionsystem consisting of a top-level Process object and an Environment object, it generates the system
of ODEs defining the continuous semantics in the following way

• First, prime processes are collected from the given process, using the algorithm P̂∗ for CGF
implemented in the method collectPrimeProcesses(), where the auxiliary function P̂E corre-

70 7. IMPLEMENTATION

Figure 7.5: High level overview of the collections used for efficient simulation and ODE generation.

ProcessesCollection
channels: Set〈Channel〉
processes: Multiset〈PiProcess〉
channelActions: Map〈PreAction,Multiset〈ChannelContinuation〉〉
delayActions: Map〈Double,Multiset〈DelayContinuation〉〉
� addProcess()
� removeProcess()
• getOccurences()

ReactingCollection
channelEvents: Multimap〈String,Event〈Reaction〉〉
delayEvents: Multimap〈Double,Event〈Reaction〉〉
� applyReaction()
• getNextEvent()

Figure 7.6: Overview of the main fields and methods of the collections used for simulation in
JSPiM.

sponds to the abstract method getPrimeProcesses() of the class PiProcess (defined in each of
the subclasses). At this step the algorithm terminates if the given process or environment
are not in CGF – an exception NotInCGFException is thrown (e.g. when trying to obtain
prime processes from a Restriction).

• After this, the Enter and Exit sets are built in the method collectFormulas(), using the action
maps from ProcessesCollection, and stored in the enterActions and exitActions respectively.

• In the method solveODEs(), a system of ODEs is defined in the object of class GeneratedODEs
(extending the class SystemOfODEs used by the solver) using the enter and exit actions. The
result from method rungeKutta() of the class utils.numerical.RungeKutta is returned.

See Figure 7.7 for an overview of the ODECollection class.

ODECollection
enterActions: List〈List〈Reaction〉
exitActions: List〈List〈Reaction〉
� collectPrimeProcesses()
� collectFormulas()
• solveODEs()

Figure 7.7: Overview of the main fields and methods of the collections used for ODE generation
and solution in JSPiM.

7. IMPLEMENTATION 71

A(x̃) def= P ProcessDefinition
E Environment
nA ProcessDef.getArity()
valid E Environment.isValid()
fn(P) PiProcess.getFreeNames()
bn(P) PiProcess.getBoundNames()

P{x̃ 7→ ψ̃} PiProcess.getSubstitution(Map〈String,String〉)
P ≡ Q PiProcess.equals() (only some rules)
standard form ProcessesCollection
]Q ProcessCollection.addProcess()
\Q ProcessCollection.removeProcess()

P
α−→ PiProcess.getPossibleChannelActions()

P
τ@r−→ PiProcess.getPossibleDelayActions()

P /∈ PCGF NotInCGFException

P̂E(P) PiProcess.getPrimeProcesses()
P#Q PiProcess.countOccurences(PiProcess Q)
Enter−,S,E ODECollection.enterActions
Exit−,S,E ODECollection.exitActions

Figure 7.8: Summary of representation of some of the Sπ definitions in JSPiM.

7.2.4 Commands

Commands in JSPiM provide analysis of the discrete semantics of Sπ and the continuous semantics
of CGF. All the commands extend the abstract class Command. The class Simulate responsible for Command

stochastic simulation of Sπ systems implements the Algorithm 4, the class ODESolve implements
ODE generation and solution for systems of CGF. The class MultipleSimulate performs replicated
simulation of Sπ systems and calculates the transient mean and variance. See Figure 7.9 for an
overview.

Figure 7.9: Overview of commands in JSPiM.

All the commands have some of their arguments in common. Each command analyses a system
(Sπ or CGF). In JSPiM, we assume that every program defines a single environment, so the only
explicit argument is the top-level process. Whether a simulation or ODE solution, the command
requires the maximal time it should consider. To actually display any information, the commands
require a list of observed processes. At each data point, populations of these are stored. Finally,
in case of a file output, all three commands require a filename.

We briefly overview the three commands:

• The Simulate command implements the Algorithm 4. It uses ReactingCollection for each
step of the iteration. It keeps executing the iteration step until the returned time from
ReactingCollection.getNextEvent() reaches the given stopping time. As an argument it also
takes an integer data step, specifying the number of steps between taking two consecutive
data points, in order to provide some control over the size of the resulting data.

72 7. IMPLEMENTATION

• The MultipleSimulate command repeats the simulation given number of times, using React-
ingCollection in the same way as Simulate. It divides the time into intervals of given size
(time step) and calculates mean and variance from data points in each of these intervals.

• The ODESolve command generates and solves the ODEs from the given CGF process, using
ODECollection. It takes the time step as an argument, corresponding to the parameter h in
Algorithm 3.

The arguments to the commands are summarized in the table below. See Figure 7.10 for a
diagram overviewing the Simulate and ODESolve commands.

Simulate process, time, data step, observed processes, filename
MultipleSimulate process, time, replications, time step, data step, observed processes, filename
ODESolve process, time, data step, inner step, observed processes, filename

Simulate

ReactingCollection

get next
reaction

apply reaction

update
reaction maps

and events

Discrete.getSample()
Exponential.getSample()

applyReaction()

collectChannelEvents()
collectDelayEvents()

environment, process,
observed processes

process

(a) simulate

ODESolve

ODECollection

collect
prime processes

collect enter
and exit sets

generate ODEs

solve ODEs

GeneratedODES

RungeKutta.solveODEs()

environment, process,
observed processes

process

(b) ODE

Figure 7.10: Summary of the simulation and ODE generation commands in JSPiM.

7.3 Spatial extension

The implementation of Lπ is analogous to how Lπ extends Sπ. The main package of the extension
is spatial, containing packages with the same name as those in the core. See Figre 7.11 for an
overview.

• Package gui defines the new user interface components such as the simulation window with
multiple locations.

• Package commands defines the new command for spatially simulating Lπ systems.

7. IMPLEMENTATION 73

• Package collections defines the new collections used for spatial simulation of Lπ systems.

• Package syntax defines the extended lexer, parser and compiler to include the syntax of Lπ.

Figure 7.11: Overview of spatial packages in JSPiM.

The spatial extension defines location graphs in a class LocationGraph, which contains a map LocationGraph

from location names to processes and the movement and volume functions.
Similar to the core implementation, the spatial extension defines higher level collections for

efficient simulation and ODE generation. See Figure 7.12 for an overview.

Figure 7.12: Spatial collections in JSPiM.

• The class SpatialReactingCollection implements an efficient single step of the Algorithm 5.
It is using an extended ReactingCollection, the NodeReactingCollection for each location to
obtain internal events and then adds movements, objects of class MovementReaction, to these
for sampling. See Figure 7.13 and 7.14.

• The class SpatialODECollection implements ODE generation and solution. It uses ODECol-
lection (and has the same method signature) for each location to obtain the enter and exit
multisets for the inner transitions.

NodeReactingCollection
volume: Double
• lift()
• put()
• getEvents()

Figure 7.13: Overview of the main fields and methods of the NodeReactingCollection.

74 7. IMPLEMENTATION

SpatialReactingCollection
nodes: Map〈String,NodeReactingCollection〉
m: Map〈Movement,Double〉
� getMovementEvents()
• getNextEvent()

Figure 7.14: Overview of the main fields and methods of the SpatialReactingCollection.

7.4 Testing

During the development, JSPiM has been tested in various ways. The package tests provides a
way to test the consistency of the process representation. It contains test commands (subclasses
of the Test class) which have the corresponding syntax defined in the Lexer and Parser. The class
AreCongruent provides testing for the (limited) structural congruence implementation, allowing
checks of the form P ≡ Q and P 6≡ Q, with syntax Process ∼ Process and Process ∼ Process
respectively.

The class Reduces allows checks of the form P −→ Q with syntax Process->Process and
NotReduces allows to check whether Trans(P) = ∅ with syntax Process-|.

See Appendix C for a list of tests that have been used.
More complex testing has been done by comparing the simulation results with those of SPiM.

We compared plots resulting from the models listed in Appendix B (and their scaled versions
which lower the variance of the simulation traces). We also compared the ODE solutions with
simulation averages.

7.5 Benchmarking

We ran several benchmarks based on the models in Appendix B and compared the simulation times
(average of 5 runs) with those produced by SPiM. We can conclude that JSPiM gives comparable
performance to SPiM. The tests were run on a system with Intel Core 2 Quad CPU Q8200 at
2.33GHz with 3GB RAM and MS Windows Vista operating system.

Model JSPiM time SPiM time
B.1 21 s 14 s
B.2 2 s 4 s
B.5 0 s 0 s
B.11 1 s 1 s
B.7.1 2 s 10 s

Figure 7.15: Comparison of running times of SPiM and JSPiM. The performance varies between
models, due to the different implementation details of SPiM and JSPiM. Overall, the simulation
times are in the same order and similarly depend on scaling.on scaling.

One thing to note is that JSPiM is not as memory efficient as SPiM. This is caused mainly by
the overhead of the multisets and should be investigated before general release.

8. EVALUATION AND FUTURE WORK 75

8
Evaluation and Future work

8.1 Multiset representation

In Chapter 3, we gave a standard definition of a variant of stochastic π calculus called Sπ. We
used the structural congruence to provide a multiset representation of processes. Although this is
not novel in itself, we are not aware of any work where such representation was given explicitly
for stochastic π calculus. This representation then proved to be useful for providing an efficient
simulation algorithm and also for defining the continuous semantics. We add that it also gives
slightly different view on stochastic π calculus – the processes do not correspond to individual
molecules (as is often argued, e.g. in [12]) but instead they represent different species, with the
multiset multiplicity corresponding to the population.

8.2 Continuous semantics

In Chapter 4, we defined and informally justified continuous semantics for Sπ, by giving a direct
translation from the calculus to a set of ordinary differential equations. We have shown that for
a subset of Sπ, the Chemical Ground Form (CGF), the resulting set of differential equations is
finite. This differs from the approach taken in [7], where the author gives an indirect translation
from CGF to ODEs via intermediate translation through chemical reaction equations. We have
also shown efficient algorithms for obtaining this set of ODEs.

The continuous semantics certainly brings benefits of having multiple methods of analysis of
Sπ models. We were able to apply it to various existing models in stochastic π calculus (some of
them can be found in Appendix B).

8.3 Finiteness conditions

In Section 5.1, we gave two examples of Sπ systems with continuous semantics producing an
infinite set of ODEs. These motivated formulation of two notions of finiteness of Sπ systems.
One of the notions guarantees a finite set of ODEs of the continuous semantics of the system.
The other, the scalable finiteness, guarantees that we can take any multiple of the system (i.e.
arbitrarily increase the initial populations of processes) and get a constant number of ODEs.

We first gave a syntactical condition on Sπ that guarantees finiteness by considering a restric-
tion that does not allow parallel composition in continuations. This condition didn’t prove to
be very useful, since the nature of models in Systems Biology usually requires creation of new
processes; none of the examples in our collection of models satisfied this restriction. Using the two

76 8. EVALUATION AND FUTURE WORK

examples, we informally described how a system can be infinite and applied this reasoning to two
models, Appendix B.1 and Appendix B.5, to reason that they are scalably finite, in order to carry
out experiments in the following section.

This argument has severe limitations as it is not formal and only gives intuition about when
Sπ systems are finite. To formalize it, more theory would have to be built to analyze the structure
of Sπ environments – we believe that this lies outside of the scope of this project and leave the
development for future work – our main aim was to translate Sπ models into CGF to provide the
possibility of further analysis.

8.4 Relationship between the two semantics

In Section 5.2, we looked at comparing the continuous and discrete semantics. We are not aware
of any investigation or results for stochastic π calculus in this area.

Inspired by work done for BioPEPA, we tried to confirm some convergence properties. Our
hypothesis was that the continuous semantics of a system is a limit to its discrete semantics as it
gets scaled. We experimentally confirmed this hypothesis on two examples. However, we found
an example, a model of a gene repressilator, where this most likely doesn’t hold, by showing that
the simulation average (probably) converges to a different function than the continuous semantics.
This argument can be supported by the fact that in [4], the author uses a model of a similar system
to show limitations of the continuous semantics of stochastic Concurrent Constraint Programming
and proposes the use of hybrid systems.

8.5 Spatial extension

In Chapter 6, we defined a spatial extension to Sπ, named Lπ, that allows to express models with
static compartments of constant volume and processes moving between these. Both the syntax and
semantics of Lπ are a direct extension of those for Sπ. This allows convenient re-use of Sπ models
and so supports the compositionality argument for our framework, as we illustrated on a simple
SIR epidemic model from [7]. We gave an efficient algorithm as a basis for our implementation of
Lπ. We also presented an original example from plant biology demonstrating the flexibility of Lπ.

We extended the continuous semantics to bring its benefits to Lπ. We are not aware of any
other spatial extension of stochastic π calculus that would provide continuous semantics. We have
shown that the expressive power of Lπ is the same as that of Sπ but argued that it offers more
succint modelling language.

8.6 Implementation

We developed a tool supporting Sπ and Lπ. The tool, named JSPiM, is written in Java 1.5
programming language. It supports efficient simulation of Sπ systems. We used the multiset
representation of Sπ processes to closely tie the implementation with the formally described al-
gorithm, thus suggesting a proof of correctness. This is in contrast to the current state of the art
stochastic π calculus implementation, the Stochastic π machine (SPiM) [32], where the authors
prove correctness through an intermediate abstract machine [32]. JSPiM also implements the
continuous semantics of systems in CGF, using representation close to the formalism and the effi-
cient algorithms derived in Chapter 4. We are not aware of any implementation of the continuous
semantics for CGF processes.

We also implemented the basic concepts of Lπ in JSPiM and demonstrated how the extension
of Lπ from Sπ corresponds to the extension of the implementation.

Where applicable (i.e. in stochastic simulation of Sπ systems), we informally compared the
performance of JSPiM with SPiM, giving comparable performance. This justifies future work
for releasing JSPiM to the community, as it offers wider portability to SPiM and provides the
continuous semantics of CGF as well as the spatial extension.

8. EVALUATION AND FUTURE WORK 77

8.7 Collection of models

As a by product of our effort, we collected several example models in the Appendix B. These
originate in the literature on stochastic π calculus applications in biology. We were able to enhance
most of them (possibly after translation to CGF, using the ideas given in Chapter 5) with results
from analysing the continuous semantics.

8.8 Future work

There are various different directions our work can be taken further. Firstly, the above mentioned
outstanding challenges have to be tackled. These include

• Formal justification of the continuous semantics. The set of ODEs from continuous semantics
of a Sπ system should be somehow formally related to the underlying CTMC, instead of the
informal argument we presented here.

• Formal finiteness results. Our informal argument about the requirements for a system to be
scalably finite should be formalized. Ideally, a necessary and sufficient condition should be
found. Alternatively, it might be of interest to see whether the problem of determining if a
given Sπ system is equivalent to a CGF system (one yielding the same CTMC) is decidable.

• Relationship between the continuous and discrete semantics. The investigation we carried
out should be extended so a new hypothesis concerning the convergence of simulations to
ODE solutions can be formulated and then proved. Ideally, similar argument to the one for
BioPEPA in [14] would be formulated : a class of CTMCs could be found that has limiting
behaviour solution to a set of ODEs and it could be proved that the CTMCs resulting from
the discrete semantics belong to this class and the ODEs are precisely those generated by the
continuous semantics. Most likely, such a class of CTMCs will not be found for the whole
Sπ, as we suggested by the repressilator example in Section 5.2. Therefore we could restrict
our attention to some class of Sπ models where this could hold.

• Models for Lπ. To fully justify the flexibility of Lπ, real Systems Biology models should be
formulated in Lπ and proven to bring insight into the biological system. This could involve
extending the plant tissue example to make it more according to biological knowledge on the
subject.

• Extension of Lπ. We can look at whether there is a consistent way of extending Lπ to allow
movement of complexes and evaluate the expressive power this adds to Lπ as compared to
Sπ. We can also restrict movement between locations and add explicit movement actions,
which would have to be executed before a process moves.

• Improved implementation. Using the formal finiteness results, the JSPiM could implement
the continuous semantics for the full Sπ and Lπ. This would require finding an efficient
algorithm for enumerating the prime processes of Sπ systems as well as the Enter and Exit
multisets. This can be possibly achieved by considering some of the results about finiteness.
Additionally, truncation of the set of prime processes can be defined, giving the possibility
of continuous semantics even when the system is not finite.

To improve the implementation of Lπ, parametric definition of the location graphs and
movement functions can be implemented for common families of graphs, such as grids, to
avoid complicated descriptions of the models, such as the one for the plant tissue example
where each member of the movement function has to be explicitly defined, see Appendix
B.12.

Also, JSPiM could be improved to implement some of the features of SPiM. For example,
SPiM allows typed channels – that is specifying not only arity of the channel but also what
type the arguments can be. We could include this in the implementation to allow better
error reporting.

78 8. EVALUATION AND FUTURE WORK

Last but not least, a release of JSPiM to the community would be valuable for obtaining
feedback on the implementation as well as Lπ and the its possibilities for modelling.

Additional research can be carried out to use our developed formalisms. One obvious direction
after we have defined the continuous semantics of Sπ would be to look at hybrid semantics, for
example as has been done for the stochastic Concurrent Constraint Programming in [4]. This uses
the formalism of hybrid automata, systems which combine continuous dynamics of with discrete
stochastic control. We believe that the formalisms we presented in this project as well as the
implementation can be valuable for research in this direction.

8.9 Conclusion

We provided a continuous and spatial extension of stochastic π calculus. We believe our contri-
bution is valuable to the research community, by giving a new formalism, some insight into the
relationship between continuous and discrete approaches to modelling and by providing a tool that
can be used for analysing real examples from Systems Biology.

BIBLIOGRAPHY 79

Bibliography

[1] R. Blossey, L. Cardelli, and A. Phillips. A compositional approach to the stochastic dynamics
of gene networks. Transactions on Computational Systems Biology, IV(3939):99–122, 2006.

[2] L. Bortolussi. On the approximation of stochastic concurrent constraint programming by
master equation. Electron. Notes Theor. Comput. Sci., 220(3):163–180, 2008.

[3] L. Bortolussi and A. Policriti. Stochastic concurrent constraint programming and differential
equations. Electr. Notes Theor. Comput. Sci., 190(3):27–42, 2007.

[4] L. Bortolussi and A. Policriti. The importance of being (a little bit) discrete. Electron. Notes
Theor. Comput. Sci., 229(1):75–92, 2009.

[5] K. Bourrillion and J. Levy. google-collections. http://code.google.com/p/google-collections/.

[6] L. Cardelli. Abstract machines of systems biology. Transactions on Computational Systems
Biology, III:145–168, 2005.

[7] L. Cardelli. From processes to odes by chemistry. In IFIP TCS, 2008.

[8] L. Cardelli, E. Caron, P. Gardner, O. Kahramanoğulları, and A. Phillips. A process model
of actin polymerisation. In N. Cannata, E. Merelli, and I. Ulidowski, editors, Proceedings of
the Workshop ”From Biology To Concurrency and back (FBTC 2008)”, July 2008, volume
229 of Electronic Notes in Theoretical Computer Science, pages 127–144, Reykjavik, Iceland,
2008. Elsevier.

[9] L. Cardelli, P. Gardner, and O. Kahramanoğulları. A process model of rho gtp-binding
proteins in the context of phagocytosis. Electron. Notes Theor. Comput. Sci., 194(3):87–102,
2008.

[10] L. Cardelli and G. Zavattaro. On the computational power of biochemistry. In AB ’08:
Proceedings of the 3rd international conference on Algebraic Biology, pages 65–80, Berlin,
Heidelberg, 2008. Springer-Verlag.

[11] F. Ciocchetta and M. L. Guerriero. Modelling biological compartments in bio-pepa. Electron.
Notes Theor. Comput. Sci., 227:77–95, 2009.

[12] F. Ciocchetta and J. Hillston. Bio-pepa: a framework for the modelling and analysis of
biological systems, 2008. Theoretical Computer Science.

[13] W. Cohen. A Computer Scientist’s Guide to Cell Biology. Springer, 2007.

[14] N. Geisweiller, J. Hillston, and M. Stenico. Relating continuous and discrete PEPA models
of signalling pathways. Theor. Comput. Sci., 404(1-2):97–111, 2008.

[15] M. A. Gibson and J. Bruck. Efficient exact stochastic simulation of chemical systems with
many species and many channels. J. Phys. Chem. A, 104(9):1876–1889, March 2000.

[16] D. Gilbert. Jfreechart. http://www.jfree.org/jfreechart/.

[17] D. Gillespie. Exact stochastic simulation of coupled chemical reactions. The Journal of
Physical Chemistry, 81(25):2340–2361, 1977.

80 BIBLIOGRAPHY

[18] G. Grimmett and D. Stirzaker. Probability and Random Processes. Oxford University Press,
2001.

[19] A. Guecioueur. Modelling aba signal transduction in plants using a stochastic process calculus,
2008.

[20] J. Hillston. Fluid flow approximation of PEPA models. In Proceedings of the Second Inter-
national Conference on the Quantitative Evaluation of Systems, pages 33–43, Torino, Italy,
Sept. 2005. IEEE Computer Society Press.

[21] C. Y. Huang and J. E. Ferrell. Ultrasensitivity in the mitogen-activated protein kinase cascade.
Proc Natl Acad Sci U S A, 93(19):10078–10083, September 1996.

[22] M. John, R. Ewaki, and A. Uhrmacher. A spatial extension to the π calculus. In Proceedings
on the First Workshop “From Biology to concurrency and back”, volume 194, 2007.

[23] V. Khomenko and R. Meyer. Checking π-calculus structural congruence is graph isomorphism
complete. Technical Report CS-TR: 1100, School of Computing Science, Newcastle University,
2008. 20 pages.

[24] C. Kuttler and J. Niehren. Gene regulation in the pi calculus: simulating cooperativity at
the lambda switch. Transactions on Computational Systems Biology VII, 4230:24–55, 2006.

[25] M. Kwiatkowski and I. Stark. The continuous π-calculus: A process algebra for biochemical
modelling. In Computational Methods in Systems Biology: Process of the Sixth International
Conference CMSB 2008, number 5307 in Lecture Notes in Computer Science, pages 103–122.
Springer-Verlag, 2008.

[26] T. Lu, D. Volfson, L. Tsimring, and J. Hasty. Cellular growth and division in the gillespie
algorithm. Systems Biology, 1(1):121–128, 2004.

[27] R. Milner. Communicating and mobile systems: the π-calculus. Cambridge University Press,
1999.

[28] V. Muganathan, A. Phillips, and Maria G. Vigliotti. Bam: Bioambient machine. In ACSD
08, To appear.

[29] T. Parr. Antlr. http://www.antlr.org/.

[30] A. Phillips. Examples in spim. http://research.microsoft.com/en-us/projects/spim/
examples.pdf.

[31] A. Phillips and L. Cardelli. A graphical representation for the stochastic pi-calculus. In
Proceedings BioConcur 2005, 2005.

[32] A. Phillips and L. Cardelli. Efficient, correct simulation of biological processes in stochastic
π-calculus. Proceedings of Computational Methods in Systems Biology, pages 184–199, 2007.

[33] C. Priami. Stochastic π-calculus. The Computer Journal, 38(7), 1995.

[34] C. Priami and P. Quaglia. Beta binders for biological interactions. In Computational Methods
in Systems Biology, volume 3082/2005, pages 20–33. Springer, 2005.

[35] A. Regev, E. Panina, W. Silverman, L. Cardelli, and E. Shapiro. Bioambients: An abstraction
for biological compartments. Theoretical Computer Science, Special Issue on Computational
Methods in Systems Biology, 325(1):141–167, 2004.

[36] A. Regev, W. Silverman, and E. Shapiro. Representation and simulation of biochemical
processes using the pi-calculus process algebra. Pac Symp Biocomput, pages 459–470, 2001.

[37] S. Ross. Introduction to Probability Models. Academic Press, 2007.

http://www.antlr.org/
http://research.microsoft.com/en-us/projects/spim/examples.pdf
http://research.microsoft.com/en-us/projects/spim/examples.pdf

BIBLIOGRAPHY 81

[38] N. Segata and E. Blanzieri. Stochastic pi-calculus modelling of multisite phosphorylation
based signalling: The pho pathway in sccharomyces cerevisiae. Lecture Notes in Computer
Science, 2008.

[39] C. Versari and N. Busi. Stochastic simulation of biological systems with dynamical compart-
ment structure. CMSB, pages 80–95, 2007.

[40] D. Wilkinson. Stochastic Modelling for Systems Biology. Chapman & Hall/CRC, 2006.

[41] O. Wolkenhauer, M. Ullah, W. Kolch, and K.-H. Cho. Modelling and simulation of intracel-
lular dynamics: Choosing an appropriate framework. IEEE Transactions on NanoBioscience,
3:200–207, 2004.

82 BIBLIOGRAPHY

A. JSPIM 83

A
JSPiM

A.1 Language definition

A.1.1 Core

Program := RateDefinition∗ ChannelDefinition∗ ProcessDefinition∗ Command∗

RateDefinition := var rateID = value ;
ChannelDefinition := new channelID @ (value | rateID) ;

ProcessDefinition := processID {(NameList)}=Process ;
Process := 0

|Action.Process+ · · · +Action.Process
|Process | Process
|#int Process
|(new Channel (, Channel)∗)(Process)
|ProcessID {< NameList >}

Channel := channelID @ (value | rateID)
Action := !(channelID | variableID){<NameList>}

| ?(channelID | variableID){(NameList)}
NameList := (variableID | channelID) (, (variableID | channelID))∗

Command := simulate(Process , value , int , ProcessList , filename);
| rsimulate(Process , value , int , value , int , ProcessList , filename);
| odesolve(Process , value , value , int , ProcessList , filename);

ProcessList := Process (,Process)∗

84 A. JSPIM

A.1.2 Spatial extension

Program := RateDefinition∗ ChannelDefinition∗ ProcessDefinition∗ GraphDefinition∗

Command ′∗

GraphDefinition := spatial GraphID = {NodesList MovementDefinition }
NodesList := [nodeID :Process (, nodeID :Process)∗];

MovementDefinition := (m(nodeID ,nodeID ,Process) =value;)∗

Command ′ := Command |
spatialSimulate(graphID , value , int , ProcessList , filename);

A.2 Screenshots

Figure A.1: Screenshot from JSPiM.

A. JSPIM 85

Figure A.2: Screenshot from the simulation window.

Figure A.3: Screenshot from the spatial simulation window.

86 A. JSPIM

B. COLLECTION OF BASIC EXAMPLES 87

B
Collection of basic examples

This is a collection of examples of models on which the provided tool was tested. Most of these
have origins in the SPiM example library [30].

We present source code of JSPiM and results obtained from running the given commands, with
the graphs taken from the GNUPlot output of JSPiM.

Because the syntax of SPiM and JSPiM is slightly different, we translated the models manually.
This resulted most of the time to only string replacement.

88 B. COLLECTION OF BASIC EXAMPLES

B.1 Circadian clock

Translated from a model in the SPiM library[30].

B.1.1 Model

1 var drA = 1.0s;

2 var drR = 0.02;

3 var dA = 0.1;

4 var dR = 0.01;

5 var tA = 4.0;

6 var tR = 0.001;

7 var tA’ =40.0;

8 var tR’ =2.0;

9 var trA = 1.0;

10 var trR = 0.1;

11

12 new bind@100.0;

13 new pA@10.0;

14 new pR@10.0;

15

16 DNA_A = delay@tA.(RNA_A| DNA_A) + ?pA(u).DNA_A’<u>;

17 DNA_A’(u) = delay@tA’.(RNA_A | DNA_A’<u>) + !u.DNA_A;

18 RNA_A = delay@trA.(A|RNA_A) + delay@drA;

19 A = (new u@1.0 uA@10.0 uR@100.0)

20 (!pA<uA>.?uA.A + !pR<uR>.?uR.A

21 + delay@dA + !bind<u>.A_Bound<u>);

22 A_Bound(u) = delay@dA.!u + ?u.A;

23 DNA_R = delay@tR.(RNA_R| DNA_R) + ?pR(u).DNA_R’<u>;

24 DNA_R’(u) = delay@tR’.(RNA_R | DNA_R’<u>) + !u.DNA_R;

25 RNA_R = delay@trR.(R|RNA_R) + delay@drR;

26 R = delay@dR + ?bind(u).R_Bound<u>;

27 R_Bound(u) = ?u.R + delay@dR.!u;

28 Clock = (DNA_A|DNA_R);

29

30 simulate(Clock,800.0,60,RNA_A,RNA_R,A,R,A_Bound,"tmp/clock.csv");

B.1.2 Results

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 100 200 300 400 500 600 700 800

Clock

RNAA
RNAR

A
R

ABound

Figure B.1: Sample simulation of the Circadian clock model.

B. COLLECTION OF BASIC EXAMPLES 89

B.2 Circadian clock in CGF

Translation of the above model to CGF (using ideas described in the Chapter 5).

B.2.1 Model

1 var drA = 1.0;

2 var drR = 0.02;

3 var dA = 0.1;

4 var dR = 0.01;

5 var tA = 4.0;

6 var tR = 0.001;

7 var tA’ =40.0;

8 var tR’ =2.0;

9 var trA = 1.0;

10 var trR = 0.1;

11

12 new bind@100.0;

13 new pA@10.0;

14 new pR@10.0;

15

16 DNA_Ann = delay@tA.(RNA_Ann|DNA_Ann) + ?pA;

17 DNA_Rnn = delay@tR.(RNA_Rnn|DNA_Rnn) + ?pR;

18

19 RNA_Ann = delay@trA.(Ann|RNA_Ann) + delay@drA;

20 RNA_Rnn = delay@trR.(Rnn|RNA_Rnn) + delay@drR;

21

22 Ann = !pA.AComplexA + !pR.AComplexR + !bind.AComplexB + delay@dA;

23 Rnn = delay@dR + ?bind;

24

25 AComplexA = (delay@tA’.(RNA_Ann|AComplexA))+delay@10.0.(DNA_Ann|Ann);

26 AComplexR = (delay@tR’.(RNA_Rnn|AComplexR))+delay@100.0.(DNA_Rnn|Ann);

27 AComplexB = delay@dA.delay@1.0.Rnn + delay@dR.delay@1.0.Ann;

28

29 Clocknn = (DNA_Ann|DNA_Rnn);

30

31 odesolve(Clocknn,800.0,0.1,2000,RNA_Ann,RNA_Rnn,Ann,Rnn,AComplexB,"");

32 rsimulate(Clocknn,500.0,40,0.1,20,RNA_Ann,RNA_Rnn,Ann,Rnn,AComplexB,"");

33 simulate(Clocknn,800.0,40,RNA_Ann,RNA_Rnn,Ann,Rnn,AComplexB,"");

B.2.2 Results

90 B. COLLECTION OF BASIC EXAMPLES

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 100 200 300 400 500 600 700 800

Clocknn

RNAAnn
RNARnn

Ann
Rnn

AComplexB

(a) simulation

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 100 200 300 400 500 600 700 800

Clocknn

RNAAnn
RNARnn

Ann
Rnn

AComplexB

(b) replicated simulation

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 100 200 300 400 500 600 700 800

Clocknn

RNAAnn
RNARnn

Ann
Rnn

AComplexB

(c) ODE solution

Figure B.2: Sample simulation of the CGF translation of the circadian clock model.

B. COLLECTION OF BASIC EXAMPLES 91

B.3 Oregonator 1

Translated from a model in the SPiM library[30], also present in [17].

B.3.1 Model

1 new c1@2.0;

2 new c2@0.1;

3 new c3@104.0;

4 new c4@0.008;

5 new c5@26.0;

6

7 X1 = ?c1.X1;

8 X2 = ?c3.X2;

9 X3 = ?c5.X3;

10 Y1 = !c2 + !c3.(Y3|Y1|Y1) + !c4 + ?c4;

11 Y2 = !c1.Y1 + ?c2;

12 Y3 = !c5.Y2;

13

14 System = (X1|X2|X3|#500 Y1|#1000 Y2|#2000 Y3);

15

16

17 odesolve(System,6.0,0.005,10,Y1,Y2,Y3,"");

18

19 simulate(System,6.0,60,Y1,Y2,Y3,"");

20 rsimulate(System,6.0,20,0.01,1,Y1,Y2,Y3,"");

B.3.2 Results

92 B. COLLECTION OF BASIC EXAMPLES

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 1 2 3 4 5 6

System

Y1
Y2
Y3

(a) simulation

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 1 2 3 4 5 6

System

Y1
Y2
Y3

(b) replicated simulation

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 1 2 3 4 5 6

System

Y1
Y2
Y3

(c) ODE solution

Figure B.3: Results from the Oregonator 1 model.

B. COLLECTION OF BASIC EXAMPLES 93

B.4 Oregonator 2

Translated from a model in the SPiM library[30].

B.4.1 Model

1 new c1@0.0002;

2 new c2@0.1;

3 new c3@104.0;

4 new c4@0.008; //(* 0.016 / 2 *)

5 new c5@26.0;

6

7 X1 = ?c1;

8 X2 = ?c3. X2;

9 X3 = ?c5. X3;

10 Y1 =

11 !c2

12 + !c3. (Y3 | Y1 | Y1)

13 + !c4

14 + ?c4;

15 Y2 =

16 !c1. Y1

17 + ?c2;

18 Y3 = !c5. Y2;

19

20 System = (#10000 X1 | X2 | X3 |

21 #500 Y1 | #1000 Y2 | #2000 Y3);

22 odesolve(System,6.0,0.0004,10,X1,Y1,Y2,Y3);

23 rsimulate(System,6.0,"",100,0.01,200,X1,Y1,Y2,Y3);

24 simulate(System,6.0,"",200,X1,Y1,Y2,Y3);

B.4.2 Results

94 B. COLLECTION OF BASIC EXAMPLES

 0

 2000

 4000

 6000

 8000

 10000

 0 1 2 3 4 5 6

System

X1
Y1
Y2
Y3

(a) simulation

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 1 2 3 4 5 6

System

X1
Y1
Y2
Y3

(b) replicated simulation

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 1 2 3 4 5 6

System

X1
Y1
Y2
Y3

(c) ODE solution

Figure B.4: Results from the Oregonator 2 model.

B. COLLECTION OF BASIC EXAMPLES 95

B.5 MAPK 1

Translated from a model in the SPiM library[30].

B.5.1 Model

1 var ra = 1.0;

2 var rd = 1.0;

3 var rk = 1.0;

4

5 new a1@ra;

6 new a2@ra;

7 new a3@ra;

8 new a4@ra;

9 new a5@ra;

10 new a6@ra;

11 new a7@ra;

12 new a8@ra;

13 new a9@ra;

14 new a10@ra;

15

16 E1 = (new k1@rk d1@rd)(!a1<d1,k1>.(?d1.E1 + ?k1.E1));

17 E2 = (new k2@rk d2@rd)(!a2<d2,k2>.(?d2.E2 + ?k2.E2));

18 KKK = ?a1(d,k).(!d.KKK + !k.KKKst);

19 KKKst = (new d3@rd k3@rk d5@rd k5@rk)(

20 ?a2(d,k).(!d.KKKst + !k.KKK) + !a3<d3,k3>.(?d3.KKKst + ?k3.KKKst)

21 + !a5<d5,k5>.(?d5.KKKst + ?k5.KKKst));

22 KK = ?a3(d,k).(!d.KK + !k.KKP);

23 KKP = ?a4(d,k).(!d.KKP + !k.KK) + ?a5(d,k).(!d.KKP + !k. KKPP);

24 KKPP = (new d7@rd k7@rk d9@rd k9@rk)(

25 ?a6(d,k). (!d. KKPP + !k. KKP)

26 + !a7<d7,k7>. (?d7. KKPP + ?k7. KKPP)

27 + !a9<d9,k9>. (?d9. KKPP + ?k9. KKPP));

28 K = ?a7(d,k).(!d.K + !k.KP);

29 KP = ?a8(d,k).(!d.KP + !k.K) + ?a9(d,k).(!d.KP + !k.KPP);

30 KPP = ?a10(d,k).(!d.KPP + !k.KP);

31 KKPase = (new d4@rd k4@rk d6@rd k6@rk)(

32 !a4<d4,k4>.(?d4.KKPase + ?k4.KKPase) + !a6<d6,k6>. (?d6.KKPase + ?k6.KKPase));

33 KPase = (new d8@rd k8@rk d10@rd k10@rk)

34 (!a8<d8,k8>.(?d8.KPase + ?k8.KPase) + !a10<d10,k10>.(?d10.KPase + ?k10.KPase));

35

36 System = (E1 | #10 KKK | #100 KK | #100 K | E2 | KKPase | KPase);

37

38 simulate(System,40.0,1,KKKst,KKPP,KPP,"");

39 rsimulate(System,40.0,20,0.1,1,KKKst,KKPP,KPP,"");

B.5.2 Results

96 B. COLLECTION OF BASIC EXAMPLES

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

System

KKKst
KKPP

KPP

(a) simulation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40

System

KKKst
KKPP

KPP

(b) replicated simulation

Figure B.5: Simulation of the MAPK model.

B. COLLECTION OF BASIC EXAMPLES 97

B.6 MAPK 1 in CGF

Translation of the above model to CGF.

B.6.1 Model

1 var ra = 1.0;

2 var rd = 1.0;

3 var rk = 1.0;

4

5 new a1@ra;

6 new a2@ra;

7 new a3@ra;

8 new a4@ra;

9 new a5@ra;

10 new a6@ra;

11 new a7@ra;

12 new a8@ra;

13 new a9@ra;

14 new a10@ra;

15

16 E1 = !a1.E1Complex;

17 KKK = ?a1;

18 E1Complex = delay@rd.(E1|KKK) + delay@rk.(E1|KKKst);

19

20 E2 = !a2.E2Complex;

21 E2Complex = delay@rk.(E2|KKK) + delay@rd.(E2|KKKst);

22 KKKst = ?a2 + !a3.KKKstComplex1 + !a5.KKKstComplex2;

23

24 KKKstComplex1 = delay@rd.(KKKst|KK) + delay@rk.(KKKst|KKP);

25 KKKstComplex2 = delay@rd.(KKKst|KKP) + delay@rk.(KKKst|KKPP);

26 KK = ?a3;

27 KKP = ?a4 + ?a5;

28 KKPP = ?a6 + !a7.KKPPComplex1 + !a9.KKPPComplex2;

29 KKPPComplex1 = delay@rd.(KKPP|K) + delay@rk.(KKPP|KP);

30 KKPPComplex2 = delay@rd.(KKPP|KP) + delay@rk.(KKPP|KPP);

31 K = ?a7;

32 KP = ?a8 + ?a9;

33 KPP = ?a10;

34 KKPase = !a4.KKPaseComplex1 + !a6.KKPaseComplex2;

35 KKPaseComplex1 = delay@rd.(KKPase|KKP) + delay@rk.(KKPase|KK);

36 KKPaseComplex2 = delay@rd.(KKPase|KKPP) + delay@rk.(KKPase|KKP);

37 KPase = !a8.KPaseComplex1 + !a10.KPaseComplex2;

38 KPaseComplex1 = delay@rd.(KPase|KP) + delay@rk.(KPase|K);

39 KPaseComplex2 = delay@rd.(KPase|KPP) + delay@rk.(KPase|KP);

40

41 System = (E1 | #10 KKK | #100 KK | #100 K | E2 | KKPase | KPase);

42

43 simulate(System,40.0,1,KKKst,KKPP,KPP,"");

44 odesolve(System,40.0,0.1,10,KKKst,KKPP,KPP,"");

45 rsimulate(System,40.0,100,0.1,1,KKKst,KKPP,KPP,"");

B.6.2 Results

98 B. COLLECTION OF BASIC EXAMPLES

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

System

KKKst
KKPP

KPP

(a) simulation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40

System

KKKst
KKPP

KPP

(b) replicated simulation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40

System

KKKst
KKPP

KPP

(c) ODE solution

Figure B.6: Results from the MAPK1 (in CGF) model.

B. COLLECTION OF BASIC EXAMPLES 99

B.7 Bistable

Translated from a model in the SPiM library[30].

B.7.1 Model

1 var tA = 0.20;

2 var dA = 0.002;

3 var tB = 0.37;

4 var dB = 0.002;

5 var dAB = 0.53;

6 var unbind = 0.42;

7 var tB’ = 0.027;

8

9 new bind@0.72;

10 new inhibit@0.19;

11

12 Aa = delay@tA.(A | Aa);

13 A = (new u@unbind)(

14 delay@dA

15 + !bind<u>.A_B<u>

16 + !inhibit<u>.A_b<u>);

17 A_b(u) = ?u.A;

18 A_B(u) = delay@dAB;

19 Bb =

20 delay@tB.(B | Bb)

21 + ?inhibit(u).Bb_A<u>;

22 Bb_A(u) =!u.Bb + delay@tB’.(B | Bb_A<u>);

23 B = ?bind(u).B_A<u> + delay@dB;

24 B_A(u) = 0;

25 System = (Aa | Bb);

26

27 simulate(System,10000.0,1,A,B,"");

28 rsimulate(System,2000.0,100,1.0,1,A,B,"");

B.7.2 Results

100 B. COLLECTION OF BASIC EXAMPLES

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

System

A
B

(a) simulation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

System

A
B

(b) simulation alternative

 0

 10

 20

 30

 40

 50

 60

 70

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

System

A
B

(c) replicated simulation

Figure B.7: Results from the Bistable model.

B. COLLECTION OF BASIC EXAMPLES 101

B.8 Bistable in CGF

Translation of the above model to CGF.

B.8.1 Model

1

2 var tA = 0.20;

3 var dA = 0.002;

4 var tB = 0.37;

5 var dB = 0.002;

6 var dAB = 0.53;

7 var unbind = 0.42;

8 var tB’ = 0.027;

9

10

11 new bind@0.72;

12 new inhibit@0.19;

13

14

15 Aa = delay@tA.(A | Aa);

16

17 A =

18 delay@dA

19 + !bind.AComplexBind

20 + !inhibit.AComplexInhibit;

21 AComplexBind = (delay@dAB);

22 AComplexInhibit = delay@unbind.(A|Bb) + delay@tB’.(B|AComplexInhibit);

23

24

25 B = ?bind + delay@dB;

26

27 Bb =

28 delay@tB.(B | Bb)

29 + ?inhibit;

30

31

32

33

34

35 System = (Aa | Bb);

36

37 odesolve(System,2000.0,1.0,1000,A,B,"");

38 simulate(System,2000.0,1,A,B,"");

39 rsimulate(System,2000.0,100,1.0,1,A,B,"");

40

B.8.2 Results

102 B. COLLECTION OF BASIC EXAMPLES

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

System

A
B

(a) simulation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

System

A
B

(b) replicated simulation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

System

A
B

(c) ODE solution

Figure B.8: Results from the Bistable (in CGF) model.

B. COLLECTION OF BASIC EXAMPLES 103

B.9 SIR model

A model adapted from [7].

B.9.1 Model

1 var t=0.001;

2 var r=0.03;

3

4 new i@t;

5 new r@r;

6

7 S=?i.I;

8 I=!i.I + delay@r.R;

9 R=!r;

10

11 System = #200 S|#2 I;

12 System10 = #2000 S|#20 I;

13

14 simulate(System,200.0,1,S,I,R,"output/SIRSim");

15 odesolve(System,200.0,0.1,10,S,I,R,"output/SIRODE");

16 rsimulate(System,200.0,20,0.1,1,S,I,R,"output/SIRRSim");

17

18

B.9.2 Results

104 B. COLLECTION OF BASIC EXAMPLES

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140 160 180

System

S
I

R

(a) simulation

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140 160 180 200

System

S
I

R

(b) replicated simulation

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140 160 180 200

System

S
I

R

(c) ODE solution

Figure B.9: Results from the SIR model.

B. COLLECTION OF BASIC EXAMPLES 105

B.10 ABA Signal Transduction in Plants

Taken from [19].

B.10.1 Model

1 var abar_delay = 2.0;

2 var abar_to_ros = 0.001;

3 var ros_to_ca = 0.0001;

4 var ca_to_k = 0.01;

5 var ca_add = 0.05;

6 var ca_decay = 0.000001;

7 var k_add = 0.02;

8 var k_decay = 0.001;

9 var cl_add = 0.02;

10 var cl_decay = 0.001;

11

12 new ababind@1.0;

13 new cain@1.0;

14 new caout@1.0;

15 new kin@0.001;

16 new kout@0.00001;

17 new kescape@10.0;

18 new clin@0.001;

19 new clout@0.00001;

20 new clescape@10.0;

21 new ros@1.0;

22 new no@1.0;

23

24 ABA_Helper = delay@0.0001.(#20 ABA);

25 ABA = !ababind;

26 R = ?ababind.delay@abar_delay.ABAR;

27 ABAR = delay@abar_to_ros.(#1 ROS_Intermediate|#1 NO);

28 ROS_Intermediate = delay@ros_to_ca.(#2 !cain | ROS);

29 ROS = !ros;

30 NO = !no;

31 Ca = delay@ca_to_k.(Ca_to_K|Ca_to_Cl) +delay@ca_decay;

32 Ca_Channel1 = delay@ca_add.(#1 Ca |Ca_Channel1 | Ca_Channel2);

33 Ca_Channel2 = ?cain.?cain.(#1 Ca |Ca_Channel1 | Ca_Channel2);

34 Ca_to_K = delay@0.001.(#1 !kescape);

35 Ca_to_Cl = delay@0.001.(#1 !clout);

36 K = ?kout.?kout + delay@k_decay;

37 K_Channel = delay@k_add.(#1 K|K_Channel);

38 K_Escape = ?kescape.?kescape.(!kout |K_Escape);

39 Cl = ?clout.?clout + delay@cl_decay;

40 Cl_Channel = delay@cl_add.(#1 Cl|Cl_Channel);

41 Cl_Escape = ?clescape.?clescape.(!clout | Cl_Escape);

42

43 System = (#1 ABA_Helper| #30 R| #1 Ca_Channel1 | 1# Ca_Channel2 |

44 #1 K_Channel| #1 Cl_Channel| #5 Ca| #5 K | #10 Cl| #1 K_Escape);

45 System10 = (#10 ABA_Helper| #300 R| #10 Ca_Channel1 |#10 Ca_Channel2 |

46 #10 K_Channel| #10 Cl_Channel| #50 Ca|#50 K | #100 Cl| #10 K_Escape);

47 System100 = (#100 ABA_Helper| #3000 R| #100 Ca_Channel1 | #100 Ca_Channel2 |

48 #100 K_Channel| #100 Cl_Channel| #500 Ca| #500 K | #1000 Cl| #100 K_Escape);

49

50 simulate(System,49000.0,7,ABA,R,Ca,ROS,NO,K,Cl,"");

51 rsimulate(System,49000.0,20,10.0,7,ABA,R,Ca,ROS,NO,K,Cl,"");

52 odesolve(System,49000.0,10.0,1000,ABA,R,Ca,ROS,NO,K,Cl,"");

106 B. COLLECTION OF BASIC EXAMPLES

B.10.2 Results

 0

 5

 10

 15

 20

 25

 30

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

System

ABA
R

Ca
ROS

NO
K
Cl

(a) simulation

 0

 5

 10

 15

 20

 25

 30

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

System

ABA
R

Ca
ROS

NO
K
Cl

(b) replicated simulation

 0

 5

 10

 15

 20

 25

 30

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

System

ABA
R

Ca
ROS

NO
K
Cl

(c) ODE solution

Figure B.10: Results from the ABA signal transduction in plants model.

B. COLLECTION OF BASIC EXAMPLES 107

B.11 Repressilator

Translated from the SPiM library[30].

1 //each action has to have a corresponding new defined

2 var t = 0.1;

3 var d = 0.001;

4 var u = 0.0001;

5

6 new a@ 1.0;

7 new b@ 1.0;

8 new c@ 1.0;

9

10

11 Gene(a,b) = delay@t.(Protein | Gene<a,b>) + ?a.delay@u.Gene<a,b>;

12 Protein(b) = !b.Protein + delay@d;

13

14 Repressilator = (Gene<a,b> | Gene<b,c> | Gene<c,a>);

15

16 RepressilatorKnocked = (delay@u.Gene<a,b>| #100 Protein<a> |

17 delay@u.Gene<b,c> | delay@u.Gene<c,a>);

18

19

20 //odesolve(RepressilatorKnocked,60000.0,20.0,1000,Protein<a>,Protein,Protein<c>,"");

21 //rsimulate(RepressilatorKnocked,60000.0,100,10.0,1,Protein<a>,Protein,Protein<c>,"");

22 simulate(RepressilatorKnocked,60000.0,10,Protein<a>,Protein,Protein<c>,"");

23 //simulate(Repressilator,600000.0,"",40,Protein<a>,Protein,Protein<c>);

108 B. COLLECTION OF BASIC EXAMPLES

 0

 20

 40

 60

 80

 100

 120

 140

 0 10000 20000 30000 40000 50000 60000

Repressilator

Protein<a>
Protein
Protein<c>

(a) simulation

 0

 20

 40

 60

 80

 100

 0 10000 20000 30000 40000 50000 60000

Repressilator

Protein<a>
Protein
Protein<c>

(b) replicated simulation

 0

 20

 40

 60

 80

 100

 0 10000 20000 30000 40000 50000 60000

Repressilator

Protein<a>
Protein
Protein<c>

(c) ODE solution

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000

Repressilator

Protein<a>
Protein
Protein<c>

(d) detail of ODE solution

Figure B.11:

B. COLLECTION OF BASIC EXAMPLES 109

B.12 Plant Tissue in Lπ

Original model from Chapter 6.

1 new attack@10.0;

2 new warn@10.0;

3 new defeat@1.0;

4 new fight@20.0;

5 new defeated@10.0;

6

7 Cell = ?attack.(L|#6 Resistance| #4 Warning) + ?warn.RCell;

8 RCell = ?attack.(L|#20 Resistance| #4 Warning) + ?warn.RCell;

9 Virus = !attack.(!fight.(#2 Virus) + ?defeat);

10 Resistance = !defeat.!defeated;

11 L = ?fight+?defeated.Cell;

12 Warning = !warn;

13

14 spatial Tissue = {

15 [

16 a00: Cell, a01: Cell, a02: Cell, a03: Cell,

17 a10: Cell, a11: Cell|Virus, a12: Cell, a13: Cell,

18 a20: Cell, a21: Cell, a22: Cell, a23: Cell,

19 a30: Cell, a31: Cell, a32: Cell, a33: Cell

20];

21 //row 0

22 m(a00,a01,Warning)=10.0;

23 m(a00,a10,Warning)=10.0;

24

25 m(a01,a00,Warning)=10.0;

26 m(a01,a02,Warning)=10.0;

27 m(a01,a11,Warning)=10.0;

28

29 m(a02,a01,Warning)=10.0;

30 m(a02,a03,Warning)=10.0;

31 m(a02,a12,Warning)=10.0;

32

33 m(a03,a01,Warning)=10.0;

34 m(a03,a13,Warning)=10.0;

35 //row 1

36 m(a10,a11,Warning)=10.0;

37 m(a10,a00,Warning)=10.0;

38 m(a10,a20,Warning)=10.0;

39

40 m(a11,a10,Warning)=10.0;

41 m(a11,a12,Warning)=10.0;

42 m(a11,a01,Warning)=10.0;

43 m(a11,a21,Warning)=10.0;

44

45 m(a12,a11,Warning)=10.0;

46 m(a12,a13,Warning)=10.0;

47 m(a12,a02,Warning)=10.0;

48 m(a12,a22,Warning)=10.0;

49

50 m(a13,a12,Warning)=10.0;

51 m(a13,a03,Warning)=10.0;

52 m(a13,a23,Warning)=10.0;

53 //row 2

54 m(a20,a21,Warning)=10.0;

55 m(a20,a10,Warning)=10.0;

56 m(a20,a30,Warning)=10.0;

57

110 B. COLLECTION OF BASIC EXAMPLES

58 m(a21,a20,Warning)=10.0;

59 m(a21,a22,Warning)=10.0;

60 m(a21,a11,Warning)=10.0;

61 m(a21,a31,Warning)=10.0;

62

63 m(a22,a21,Warning)=10.0;

64 m(a22,a23,Warning)=10.0;

65 m(a22,a12,Warning)=10.0;

66 m(a22,a32,Warning)=10.0;

67

68 m(a23,a22,Warning)=10.0;

69 m(a23,a13,Warning)=10.0;

70 m(a23,a33,Warning)=10.0;

71 //row 3

72 m(a30,a31,Warning)=10.0;

73 m(a30,a20,Warning)=10.0;

74

75 m(a31,a30,Warning)=10.0;

76 m(a31,a32,Warning)=10.0;

77 m(a31,a21,Warning)=10.0;

78

79 m(a32,a31,Warning)=10.0;

80 m(a32,a33,Warning)=10.0;

81 m(a32,a22,Warning)=10.0;

82

83 m(a33,a32,Warning)=10.0;

84 m(a33,a23,Warning)=10.0;

85

86

87 m(a00,a01,Virus)=0.5;

88 m(a00,a10,Virus)=0.5;

89

90 m(a01,a00,Virus)=0.5;

91 m(a01,a02,Virus)=0.5;

92 m(a01,a11,Virus)=0.5;

93

94 m(a02,a01,Virus)=0.5;

95 m(a02,a03,Virus)=0.5;

96 m(a02,a12,Virus)=0.5;

97

98 m(a03,a01,Virus)=0.5;

99 m(a03,a13,Virus)=0.5;

100 //row 1

101 m(a10,a11,Virus)=0.5;

102 m(a10,a00,Virus)=0.5;

103 m(a10,a20,Virus)=0.5;

104

105 m(a11,a10,Virus)=0.5;

106 m(a11,a12,Virus)=0.5;

107 m(a11,a01,Virus)=0.5;

108 m(a11,a21,Virus)=0.5;

109

110 m(a12,a11,Virus)=0.5;

111 m(a12,a13,Virus)=0.5;

112 m(a12,a02,Virus)=0.5;

113 m(a12,a22,Virus)=0.5;

114

115 m(a13,a12,Virus)=0.5;

116 m(a13,a03,Virus)=0.5;

117 m(a13,a23,Virus)=0.5;

118 //row 2

B. COLLECTION OF BASIC EXAMPLES 111

119 m(a20,a21,Virus)=0.5;

120 m(a20,a10,Virus)=0.5;

121 m(a20,a30,Virus)=0.5;

122

123 m(a21,a20,Virus)=0.5;

124 m(a21,a22,Virus)=0.5;

125 m(a21,a11,Virus)=0.5;

126 m(a21,a31,Virus)=0.5;

127

128 m(a22,a21,Virus)=0.5;

129 m(a22,a23,Virus)=0.5;

130 m(a22,a12,Virus)=0.5;

131 m(a22,a32,Virus)=0.5;

132

133 m(a23,a22,Virus)=0.5;

134 m(a23,a13,Virus)=0.5;

135 m(a23,a33,Virus)=0.5;

136 //row 3

137 m(a30,a31,Virus)=0.5;

138 m(a30,a20,Virus)=0.5;

139

140 m(a31,a30,Virus)=0.5;

141 m(a31,a32,Virus)=0.5;

142 m(a31,a21,Virus)=0.5;

143

144 m(a32,a31,Virus)=0.5;

145 m(a32,a33,Virus)=0.5;

146 m(a32,a22,Virus)=0.5;

147

148 m(a33,a32,Virus)=0.5;

149 m(a33,a23,Virus)=0.5;

150 };

151

152 spatialSimulate(Tissue,20.0,100,Cell,RCell,Virus,"");

112 B. COLLECTION OF BASIC EXAMPLES

C. TESTS 113

C
Tests

The different tests used to test the basic syntax and structural congruence of JSPiM.

1 new x@1.0;

2 new a@2.0;

3 new b@1.0;

4

5 P(x) = !x;

6 Q(x,y) = !x<y>;

7

8 R = !x.R;

9 S = ?x.S;

10

11 T = (new x@2.0)(!x);

12

13 //necessary congruences:

14 //zero tests

15 0 ~ 0;

16 //action tests

17 !a<x> ~ !a<x>;

18 !a<x,y> ~ !a<x,y>;

19 !a<x> !~ !a<y>;

20 !a<x,y> !~ !a<b,c>;

21 !a<x> !~ !b<x>;

22 !a<x> !~ ?a(x);

23 ?a(x) !~ ?a(y); //alpha congruence not implemented

24 //restriction tests

25 (new x@2.0)(0) ~ (new x@2.0)(0);

26 (new x@2.0 y@2.0)(0) ~ (new x@2.0 y@2.0)(0);

27 !a<x> !~ (new x@2.0)(!a<x>);

28 (new x@2.0)((new y@2.0)(0)) ~ (new x@2.0 y@2.0)(0);

29 (new x@2.0)(!x)|(new x@2.0)(!x)|!x ~ (new x0@2.0 x1@2.0)(!x0|!x1|!x);

30 #4 (new x@2.0)(!x)|!x ~

31 (new x0@2.0 x1@2.0 x2@2.0 x3@2.0)(!x0|!x1|!x2|!x3|!x);

32 //summation tests

33 !a<x> + !b<x> ~ !a<x> + !b<x>;

34 //process id tests

35 P<a> ~ P<a>;

36 P<a> !~ P;

37 Q<a,b> ~ Q<a,b>;

38 Q<a,b> !~ Q<b,a>;

114 C. TESTS

39 //parallel tests

40 P<a>|P ~ P|P<a>;

41 P<a>|P<a>|P<a>|P ~ P<a>|P|P<a>|P<a>;

42 #23 P<a> ~ #23 P<a>;

43 #20 P<a>|#21 P|#22 P<c> ~ #21 P | #22 P<c> | #20 P<a>;

44 #20 P<a> ~ #10 P<a> | #10 P<a>;

45 #1 P<a> !~ #2 P<a>;

46 #20 (P<a> | P) ~ #20 P<a> | #20 P;

47 //parallel+restriction

48 (new a@2.0)(P<a>)|(new b@2.0)(P) ~ (new a@2.0 b@2.0)(P<a>|P);

49

50 //optional congruences

51 //P<a> ~ !a;

52 !a<x> + !b<x> ~ !b<x> + !a<x>;

53

54 //reductions

55 ?x.P<a>|!x.P -> P<a>|P;

56 ?x(x).P<x>|!x<a> -> P<a>;

57 #20 P<a> | ?a -> #19 P<a>;

58 //this doesn’t work now

59 //(new a@2.0)(!x<a>)|?x(x).P<x> -> (new a@2.0)(!a);

60

61 (new a@2.0)(!x<a>)|?x(x).P<x> -> (new a@2.0)(P<a>);

62 (new a@2.0)(!x<a>)|?x(x).Q<a,x> -> (new x0@2.0)(Q<a,x0>);

63 (!x<a>+!x)|?x(y).P<y> -> P<a>;

64 (!x<a>+!x)|?x(y).P<y> -> P;

65 R|S -> R|S;

66

67 //no reductions

68 0 -|;

69 !a|!b -|;

70 (new x@2.0)(!x)|?x -|;

71 #500 !a -|;

72 R -|;

73

	Introduction
	Project Aim
	Contributions

	Process algebras in Systems Biology
	Mathematical background
	Exponential distribution
	Sampling from random variables
	Markov chains
	Simulation of Markov chains
	Gillespie Algorithm
	Next reaction method
	Numerical algorithms for solving systems of ODEs

	Stochastic process algebras
	Stochastic calculus
	Continuous calculus
	Bio-PEPA

	Spatial extensions
	Summary

	Stochastic calculus
	Syntax
	Substitution and alpha congruence
	Semantics
	Structural congruence
	Simulation
	Prime processes
	Summary

	Continuous semantics of stochastic calculus
	Translation to CGF
	Summary

	Finiteness conditions and convergence investigations
	Conditions for finiteness
	Syntactic restriction
	Restriction on private names

	Relationship between continuous and discrete semantics

	Spatial extension of stochastic calculus
	Syntax
	Semantics
	Simulation
	Continuous semantics
	Relationship to S
	Summary

	Implementation
	Architecture overview
	Used libraries

	Implementation details
	ANTLR grammars
	Process representation
	Higher level collections
	Commands

	Spatial extension
	Testing
	Benchmarking

	Evaluation and Future work
	Multiset representation
	Continuous semantics
	Finiteness conditions
	Relationship between the two semantics
	Spatial extension
	Implementation
	Collection of models
	Future work
	Conclusion

	JSPiM
	Language definition
	Core
	Spatial extension

	Screenshots

	Collection of basic examples
	Circadian clock
	Model
	Results

	Circadian clock in CGF
	Model
	Results

	Oregonator 1
	Model
	Results

	Oregonator 2
	Model
	Results

	MAPK 1
	Model
	Results

	MAPK 1 in CGF
	Model
	Results

	Bistable
	Model
	Results

	Bistable in CGF
	Model
	Results

	SIR model
	Model
	Results

	ABA Signal Transduction in Plants
	Model
	Results

	Repressilator
	Plant Tissue in L

	Tests

