
Visualisation and Evaluation of

Arguments

BEng Individual Project Report

Chris Pinnick

Supervisor: Dr. Francesca Toni

Second marker: Prof. Marek Sergot

June 16, 2009

www.doc.ic.ac.uk/̃ cp06/project

http://www.doc.ic.ac.uk/~cp06/project

Abstract

Tools to aid in sensemaking and the analysis of arguments have been grow-
ing in number and sophistication over the past decade. At the same time
an increasing acknowledgement of the usefulness of argumentation in real-
world problems has lead to the discovery of applicable methods of evaluating
arguments. Until now little has been done to bring these areas together.

Here we present ‘ArgumentSpace’, a collaborative argument visualisation
and evaluation tool, combining a simple visual framework for argument de-
sign, with the ability to evaluate dialectic validity using the CaSAPI evalu-
ation program developed at Imperial College.

We also explore the use of schemes in argumentation and implement a means
of allowing the construction of arguments through informal abductive rea-
soning schemes. Schemes are defined in a common XML format, and can be
dynamically added to ArgumentSpace, providing interoperability with other
argumentation tools.

The use of ontologies for shared knowledge representation has increased
in popularity in recent years. ArgumentSpace provides the ability to link
argument statements to ontological evidence, and evaluates the ontology to
check for agreement. To facilitate this, an ontological query engine has been
developed for ArgumentSpace which exploits ontology semantics as well as
syntax. The results of ontological evaluation are integrated with arguments
to produce a statement of validity to user, taking into account both dialectic
structure and ontological content.

We perform case studies on the use of ArgumentSpace in two application
areas; a problem in the climate change debate, and a legal reasoning sce-
nario involving German family law. Through using ArgumentSpace in these
two extended problems, and in conjunction with usability and scalability
analysis, we identify both the merits of the system, and areas of further
work.

Acknowledgements

I would like to thank my supervisor, Dr. Francesca Toni, for her constant
guidance and support during the project. Her motivation and enthusiasm

helped me develop an interest in argumentation and maintain focused
throughout the project.

I would also like to acknowledge Prof. Marek Sergot, my second marker,
and Dorian Gaertner, co-author of CaSAPI, for their constructive

comments and assistance.

1

Contents

1 Introduction 5

1.1 Motivation . 5

1.2 Overview of the Report . 7

2 Background to Argumentation 9

2.1 Argumentation . 9

2.2 Argumentation Frameworks 10

2.3 Notions of Validity . 13

2.4 CaSAPI . 14

3 ArgumentSpace 17

3.1 System Introduction . 17

3.2 A Walkthrough Example . 18

3.3 ArgumentSpace Concepts . 21

3.4 Brief Technical Overview . 22

4 Knowledge Representation and Validity 24

4.1 Argument Representation . 24

4.2 Debate Evaluation . 28

4.3 Transformation to ABA . 30

5 Argument Schemes 35

2

5.1 Background to Schemes . 35

5.2 Enhancements to Walton’s Schemes 42

5.3 Argument Scheme XML Definitions 43

6 Ontologies 44

6.1 Background to Ontologies . 44

6.2 Ontology Representation and OWL 46

6.3 Ontological Reasoning . 48

6.4 Query Language . 51

6.5 Combining Ontological Reasoning with the Argument 51

7 Issues in Software Engineering 56

7.1 Design Structure . 56

7.2 CaSAPI as a Server . 57

7.3 Concurrency and Synchronisation 59

7.4 Multithreading . 61

7.5 Security . 61

8 Evaluation 64

8.1 Case Study: A Problem in Legal Reasoning 64

8.2 Case Study: An Argument on Climate Change 72

8.3 Usability Evaluation . 75

8.4 Scalability and Performance Evaluation 82

8.5 Comparison to Existing Tools 88

9 Conclusions 97

9.1 Achievements and Contributions of the Project 97

9.2 Current Weaknesses and Further Work 98

3

Bibliography 104

A Ontological Query Engine Proofs 105

A.1 Individuals . 105

A.2 Classes . 106

B Ontological Query Language 108

C XML Scheme: Argument for Financial Support 109

4

Chapter 1

Introduction

1.1 Motivation

Public debate of matters such as climate change, civil liberties and foreign
policy decision has been a staple part of society for a long time. People en-
joy discussing and arguing about topics which they feel passionately about.
In more serious contexts, business analysts, scientific researchers and legal
experts use arguments and debate to provide an effective way of making
decisions.

Often the topics debated are complex, involving large amounts of informa-
tion, inferences and general knowledge. Making sense of these arguments
and deciding on the reliability of a claim is often very difficult.

Argument visualisation tools help structure arguments in order to make
sense of the information by distinguishing statements and connections be-
tween them in a visual manner. The user is then more able to follow the
arguments made and come to a judgement on any particular claim.

5

In the following example, an argument is shown in its original dialogue, and
visualised (split into statements, inferences and attacks):

John (1): The government should protect its citizens from harm.
Smoking tobacco is extremely harmful to the smokers’ health,
therefore the government should ban smoking.
Chris (2): The government also has an obligation to protect its
citizens’ freedom of choice, banning smoking would be a breach
of this.
John (1): Banning smoking would not take away freedom of
choice, since smoking is often not a choice, since nicotine is ad-
dictive, once people begin smoking they lose the ability to choose
freely.

Figure 1.1: Smoking example visualised

It is clear that visualising the argument can assist in understanding it and
reasoning about it.

The climate change debate is an area which has gained much recent atten-
tion. Despite a near unanimous consensus in the scientific community that
global warming is a human driven issue, there still exists a vocal sceptical
opinion. This is largely fuelled by sceptic think tanks funded by petroleum

6

related industry, who have an obvious interest in playing down the effect of
CO2 emissions. The use of sensemaking tools to both educate and aid in
decision making on the climate change challenge has been pushed forward
recently with the upcoming Essence conference [13]. This conference aims
to bring together those involved in climate change issues with the designers
of sensemaking tools in preparation for the UN Climate Change Conference
in Copenhagen, December 2009. Conferences such as this demonstrate the
growing interest and importance of argumentation tools.

In many public and media debates the conclusions made are incorrect, some-
times by accident and later retracted, sometimes intentionally. Often oppos-
ing sides of an argument have interests which will cause them to be poorly
trusted as judges of the conclusion. For example, when General Motors ar-
gues that pollution is not a problem, it is not very credible. It would be very
useful to be able to draw conclusion algorithmically, that is, to determine
the indisputable validity of an initial claim, given the available knowledge
and arguments. A number of argument mapping tools have been developed
to assist in sensemaking [18,19,26] and much work has been done on deter-
mining the validity of arguments [15, 11]. However little has been done to
bring these two areas together.

This report presents ArgumentSpace, a distributed multi-user platform for
developing and evaluating arguments. ArgumentSpace combines the prod-
uct of recent research in argument evaluation; the ‘Credulous and Scepti-
cal Argumentation (Prolog Implementation)’ [15] system, developed by D.
Gaertner and F. Toni; with a visual argument editor. ArgumentSpace inte-
grates argument schemes [29] as a means of argument design and analysis.
ArgumentSpace also uses ontologies in argumentation as a method of sup-
porting statement validity, to achieve this a simple ontological query engine
was developed.

1.2 Overview of the Report

The report is organised as follows. In chapter 2 we give a brief background
on argumentation theory, which is core to ArugmentSpace. In chapter 3
we use describe the ArgumentSpace tool, giving an overview of its com-
ponents and functionality. In chapter 4 we focus on the visualisation of
arguments and their evaluation using CaSAPI, serving as a backend to Ar-
gumentSpace. In chapter 5 we describe the role of schemes in argumentation
and how ArgumentSpace implements and extends the concept of schemes
into the tool. In chapter 6 we discuss the use of ontologies in argumentation,
and the functionality provided by ArgumentSpace in evaluating ontological
evidence. In chapter 7 we discuss issues of software engineering which be-

7

came apparent throughout the design of ArgumentSpace. In chapter 8 Ar-
gumentSpace is evaluated with extended problems in two application areas,
climate change and legal reasoning. In addition, the scalability and usabil-
ity of ArgumentSpace are assessed, and the system is compared to existing
tools. Finally in chapter 9 we summarise the achievements of the project
and discuss areas in which ArgumentSpace could be improved.

8

Chapter 2

Background to
Argumentation

This chapter presents some background on argumentation (section 2.1), fo-
cusing on two frameworks of computational argumentation in artificial in-
telligence, namely abstract argumentation (section 2.2.1) and assumption-
based argumentation (section 2.2.2). It also explores several alternative
notions of validity of arguments in the two frameworks (section 2.3). It then
summaries the CaSAPI argumentation tool (section 2.4) which is a core
component of ArgumentSpace as we will see in chapter 4.

2.1 Argumentation

Argumentation is a field of study focusing in the interaction of parties plead-
ing for and against some conclusion. In computer science it is largely con-
cerned with the construction, evaluation and interaction of these arguments
automattically. Argumentation has natural links with logic and finds appli-
cations in artificial intelligence and multi-agent systems, for example [4, 7].
Argumentation aids in issues of negotiation and resolution of conflict be-
tween agents, perhaps possessing differences of opinion [21]. More generally,
it provides a means of representing and reasoning with a potentially incom-
plete and inconsistent knowledge base. As well as in artificial intelligence,
argumentation has natural applications in real world problems such as legal
reasoning [3] and policy decision making [32].

Argumentation frameworks provide an argument structure based on logi-
cal reasoning, formalisms for assessing whether arguments are in fact valid
(whether a rational reasoner would accept a given claim, supported or op-

9

posed by arguments), and provide means to prove a claims validity. Numer-
ous conferences exist driving the field of argumentation. Of particular note
are ArgMAS1 (Argumentation in Multi-Agent Systems), CMNA2 (Com-
putational Models of Natural Argument) and COMMA3 (Computational
Model of Arguments).

2.2 Argumentation Frameworks

2.2.1 Abstract Argumentation

Based around the principle that understanding and formalising the struc-
ture and acceptability of arguments was essential in leading to computer
exchanges of arguments, Dung [11] proposed one of the first argumenta-
tion frameworks, which is now referred to as the abstract argumentation
framework.

Abstract argumentation is a framework based around atomic arguments,
where an argument is not considered to have any internal structure. In
abstract argumentation what matters is “conflicts” between arguments, ex-
pressed by an attack relationship.

Formally, an abstract argumentation framework is a pairAF =< AR, attacks >
where AR is a set of arguments, and attacks is a binary relation on argu-
ments.

For example:
AR = {“It will rain tomorrow”,“It won’t rain for the next 3 days”}
attacks = {(“It will rain tomorrow”,“It won’t rain for the next 3 days”)}

It should be noted that arguments do not necessarily carry any semantic
meaning, and could be of a purely abstract form, as in:
AR = {a, b, c}
attacks = {(b, a), (c, b)}

Formally we say:
x ∈ AR attacks y ∈ AR whenever (x, y) ∈ attacks
x ∈ AR attacks S ⊆ AR whenever x attacks some y ∈ S
S′ ⊆ AR attacks S ⊆ AR whenever some x ∈ S′ attacks S.

Dung described the principle of validity of arguments in abstract argumen-
tation as “The one who has the last word laughs best” [11]. More formally,

1ArgMAS: homepages.inf.ed.ac.uk/irahwan/argmas
2CMNA: www.cmna.info
3COMMA: www.csc.liv.ac.uk/̃ comma

10

http://homepages.inf.ed.ac.uk/irahwan/argmas
http://www.cmna.info
http://www.csc.liv.ac.uk/~comma

in abstract argumentation a set of arguments is deemed acceptable (under
admissible belief semantics) if it is able to counter attack all arguments
attacking it and it does not attack itself.

In the example above, the set of arguments {a, c} is acceptable.

Criticism of abstract argumentation is based around the lack of structure
of its arguments, and in particular the problem this brings in how to use
shared content of different abstract arguments and how to identify attacks
on an abstract argument.

2.2.2 Assumption Based Argumentation

Assumption based argumentation (ABA) [6, 12, 16] was built using ideas of
abstract argumentation, but aims to avoid its problems by structuring ar-
guments into a more logical form, based on rules, assumptions and defining
attacks based on contrary assumptions. In the assumption based argumen-
tation framework, arguments and attacks are built from:

Assumptions: Statements, on which the argument relies, which may be
disproved, for example “it will rain”, or of an abstract form, for ex-
ample p, q, etc.

Contraries: definitions of statements which are in conflict
for example the contrary of “it will rain” may be “it won’t rain”.

Rules: logical inferences, for example “if it will rain you should take an
umbrella” or more formally:“you should take an umbrella”←“it will
rain”

Then, arguments and attacks are obtained as follows:

Arguments: An argument in favour of a claim x is supported by a set of
assumptions X, obtained through backwards deduction from x to X
using the set of rules.

Attacks: Attacks within the framework are made by attacking an assump-
tions on which the argument relies. Specifically by obtaining a counter-
argument whose claim is a contrary of an original assumption in sup-
port of the argument. Any attack is itself an argument, and so counter
attacks follow the same structure.

11

For example, given the rules:
“you should take an umbrella”←“it will rain”.
“it will rain” ← “the news forecast rain”.
“the news forecast sunshine” ← “the presenter was in a good mood”.
Assumptions: “the news forecast rain”, “the presenter was in a good mood”
Contraries: “the news forecast rain” is the contrary of “the news forecast
sunshine”

An argument in favour of “you should take an umbrella” supported by the
assumptions “the news forecast rain” could be obtained by applying the first
two rules backwards.
An attack on the argument above would be the argument in favour of “the
news forecast sunshine”, supported by the assumption “the presenter was
in a good mood”, obtained in a similar fashion.

More formally: ABA frameworks are tuples < L,R,A, C >. where:

• (L,R) is a deductive system with a language L and a set of rules R
of the form x← y1, ..., yn.

• A ⊆ L is a non-empty set of assumptions.

• C is a total mapping from A to the power set P(L)−{{}}, where, for
any α ∈ A, C(α) is the non-empty set of contraries of α.

This framework is quite general, allowing proponent-opponent arguments to
be structured and evaluated.

An argument X ` x attacks an argument Y ` y if and only if x is a contrary
of some assumption in Y 4.

For example, given the following set of rules R:
a← b
c← d
contrary(b,c)5

contrary(d,e)
A : {b, d, e}

{d} ` c attacks {b} ` a (“the argument for c, based on the assumption d, at-
tacks the argument for a, based on the assumption b”) because contrary(b,c)
(“c is the contrary of b”).

4X ` x means the argument with conclusion x, supported by the set of assumptions
X, obtained using inference rules in R backwards.

5C(α) = S is represented here and later as contrary(α, β) for each β ∈ S.

12

A set of assumptions is admissible if it does not attack itself and it counter
attacks every set of assumptions attacking it.

A set of assumptions A attacks a set of assumptions B whenever there is an
argument A′ ` a where A′ ⊆ A such that a is the contrary of an assumption
in B. For example, in the previous framework, the set of assumptions {b, e}
is admissible, whereas {b} is not.

2.3 Notions of Validity

Both abstract argumentation and ABA can be equipped with other notions
of validity of arguments, in addition to the notion of admissibility we have
seen before.

A set of assumptions/arguments is:

Ideal iff it is admissible and is a subset of all maximally admissible 6 sets.

Complete iff it is admissible and it contains all arguments/assumptions
(respectively) it can defend by counter attacking all attacks against
them.

Grounded iff it is minimally complete (it is the smallest set of argu-
ments/assumptions which is complete).

The grounded notion is the most sceptical, ideal is still sceptical, but less so
than grounded, and the admissible notion is credulous.

The following example, an abstract argumentation framework, illustrates
how admissibility is credulous:
AR : {a, b, g, d}
attacks = (a, a), (a, b), (b, a), (g, d), (d, g)

Seen visually (where edges represent the attacks relation):

a //

boo g // doo

Here admissible sets are: ∅, {b}, {d}, {g}, {b, d} and {b, g}.

Therefore the maximally admissible sets are: {b, d} and {b, g}.
The ideal sets (which are admissible and a subset of both maximally admis-
sible sets) are ∅, {b}.

6A set of assumptions/arguments is maximally admissible (also known as ‘preferred’)
if no additional item can be added to the set without it loosing admissibility.

13

The only grounded set (minimally complete), is ∅.

To deem a claim acceptable, we need to identify a set of assumptions that is
“consistent” (namely that it does not attack itself), includes a core support
(for the initial claim) as well as assumptions that “defend” that support,
and is acceptable under the chosen semantics.

Based on the three semantics; Grounded Belief semantics (GB), Ideal-Belief
semantics (IB) and Admissible-Belief semantics (AB), different computa-
tional mechanisms (in the form of dispute derivations) can be defined.

Grounded-Belief semantics

The proponent is not prepared to take any chances and is completely scep-
tical in the presence of seemingly equivalent alternatives. For a claim to be
deemed valid, a grounded set of assumptions for the claim (a GB-dispute
derivation) must be found.

Ideal-Belief Semantics

The proponent is somewhat sceptical, wary of alternatives, but is prepared
to accept common ground between them. For a claim to be deemed valid,
an ideal set of assumptions for the claim (an IB-dispute derivation) must be
found.

Admissible-Belief semantics

The proponent would adopt any alternative that is capable of counter-
attacking all attacks without attacking itself. For a claim to be deemed
valid, an admissible set of assumptions for the claim (an AB-dispute deriva-
tion) must be found.

2.4 CaSAPI

The ‘Credulous and Sceptical Argumentation, Prolog Implementation’ (CaS-
API) [15, 14] is a Prolog system which computes three types of dispute
derivations; GB, IB and AB (as above) under the ABA framework. Users of
the system define an ABA framework and a claim which is to be evaluated,
CaSAPI then computes a valid set of assumptions (a dispute derivation)
under the chosen semantics (if any such set exists).

14

The process of computing a dispute derivation is performed through a kind of
game played by two fictional players: a claim’s proponent, and an opponent
trying to undermine the claim.

A simple example follows, where we wish evaluate the acceptability of p,
given the ABA framework below:
p← a
¬a← b
¬b← c
Assumptions : {a, b, c}
Contraries : {contrary(a,¬a), contrary(b,¬b), contrary(c,¬c)}

The way in which CaSAPI would compute the AB-dispute derivation can
be seen below in the table, which shows at each step i the sentences held by
the proponent and opponent, P and O respectively, the set of assumptions
A the proponent is using to support the claim and defend himself, and the
set of assumptions C in the opponents argument which the proponent has
chosen to counter-attack. The logic of the game can be understood through
the ‘player thoughts’ column.

i Pi Oi Ai Ci Player thoughts
0 {p} {} {} {} (prop) I must prove p
1 {a} {} {a} {} (prop) to prove p, I will assume {a}
2 {} {{¬a}} {a} {} (opp) to undermine the claim, I need to

attack a by proving ¬a
3 {} {{b}} {a} {} (opp) which I will do by assuming b
4 {¬b} {} {a} {b} (prop) to prove a I need to attack b by

proving ¬b
5 {c} {} {a, c} {b} (prop) which I will do by assuming c
6 {} {{¬c}} {a, c} {b} (opp) to undermine the claim, I need to

attack c by proving ¬c
7 {} {} {a, c} {b} (opp) which I have no way of doing,

proponent wins

By assuming {a, c}, the proponent cannot be defeated, and the claim p is
deemed acceptable under the admissible belief semantics. The set {a, c} is
termed the ‘defence set’.

The CaSAPI system has been developed through various versions, with in-
creasing levels of functionality.

• Version 2 computed dispute derivations under GB, IB and AB seman-
tics, but did not compute a dialectical structure (arguments, attacks,
and counter arguments).

• Version 3 works with AB semantics, computes a dialectical structure,

15

but is restricted to use with patient selection functions 7.

• Version 4 removes the restriction on selection functions of the previous
version and works with AB and GB semantics 8.

Overall CaSAPI provides a means to evaluate arguments described in the
ABA framework. Since arguments designed visually in ArgumentSpace can
be transformed into the ABA framework (see section 4.3), CaSAPI also
provides a means of evaluating arguments described in my framework.

7Once a player has chosen a potential argument, a sentence from that argument’s
premises must be selected, which premise is chosen is determined by the selection function.

8As of version 4.5.

16

Chapter 3

ArgumentSpace

Models for computational argumentation are not easy to use for non expert
people. However, the ability to construct, amend and evaluate arguments,
for example in debates, could be useful to many. In this chapter we present
ArgumentSpace, an argument visualisation and evaluation tool, through a
simple use case which utilises its various features.

3.1 System Introduction

ArgumentSpace is a Java based tool providing four main areas of function-
ality, namely the ability to:

1. Design arguments visually, assisting in the design of well formed argu-
ments with claims and supports.

2. Utilise argument schemes such as ‘Argument through expert opinion’
for the design and analysis of arguments.

3. Support statements with ontological evidence and check the evidence
through an ontological query engine.

4. Evaluate the claims of arguments created through any combination of
the above and present detailed information on the result of evaluation.

We will describe 2 and 3 in chapters 5 and 6 respectively. 1 and 4 are sup-
ported by the assumption based argumentation (ABA) framework described
in chapter 2, and are described in chapter 4. In this chapter, we give an
overview of the system.

17

Figure 3.1: ArgumentSpace user interface

Figure 3.1 shows the ArgumentSpace graphical user interface. To the left
hand side of the system is the main argument visualisation window ‘Argu-
ment Visualisation’, in which a series of statements are shown, connected by
arcs showing which statements support or attack others. The window in the
upper right hand corner ‘Current Arguments’ shows the debates which can
be loaded into the visualisation window, by clicking on the associated load
button. In the bottom right ‘ABA translation’ panel, the logical translation
of the argument is shown. How these sections of the system are used will be
explained throughout the report.

3.2 A Walkthrough Example

The best way to be become familiar with the overall aims and achievements
of the system is to walk through a simple example. Suppose the following
argument is put forward:

18

“We should go to the Queen concert in the park next week be-
cause the band is really good, and I know it will be a sunny day
because they said so on the BBC news”

This sentence contains a number of assertions, some of which are explicit
and others implicit, seen below:

X: “We should to the Queen concert”
Y: “The band is really good”
Z: “It will be a sunny day”
Z1: “They said so on the BBC news”
Z2: “BBC news is a credible expert in meteorology”
Z3: “Weather forecasts are in the domain meteorology”

As seen Z2 and Z3 are not stated in the quote, they are implicit assertions
which are presumed to be agreed. By using a visualisation tool such as Ar-
gumentSpace, the arguer is encouraged to make these assumptions explicit,
so that others can identify and challenge them if necessary.

3.2.1 Argument design

In ArgumentSpace an argument is designed by making a series of statements,
and stating the links between these statements as arcs in the graph. The
result as visualised in ArgumentSpace can be seen in figure 3.2.

Figure 3.2: Example argument in ArgumentSpace

3.2.2 Argument schemes

Statements Z,Z1,Z2 and Z3 form a typical argument scheme, ‘argument
through expert opinion’ (as can be seen from figure 3.3), supporting a claim

19

through a statement from some agreed expert source. Human arguments
typically follow common patterns of reasoning, this program allows argu-
ments to be constructed through such schemes (discussed further in chapter
5).

Figure 3.3: ‘Argument through expert opinion’ viewed in ArgumentSpace

3.2.3 Ontologies

Statement Z2, that the BBC news is an expert in meteorology, is one of many
types of statement that could supported by, and evaluated against some
agreed ontology. An ontology is just a formalism for holding knowledge, as
can be seen from figure 3.4.

Figure 3.4: Example ontology

As well as visualising ontologies stored in the web ontology format (OWL),
ArgumentSpace provides an ontological query engine for checking statements
against the ontology. The statement Z2: “BBC weather is a credible expert
in the meteorology domain”

20

Would be equivalent to: “INDIVIDUAL BBC ELEMENTOF CLASS Me-
teorologyExperts (that is, the BBC is a member of the set of all experts in
meteorology).

This statement is then checked against the ontology using the query engine,
and the result presented to the user (the development of the ontological
query engine is discussed in section 6.3).

3.2.4 Validity

Finally, to evaluate the argument as a whole, and the validity of the initial
claim (that we should go to the concert), the statement is first converted
into a series of logical statements (taking into the account the result of
evaluating any statements supported through ontologies), and then passed
to the Prolog evaluator, namely an adapted version of CaSAPI.

Figure 3.5: Argument evaluation result

The ABA definition of acceptability can be put simply as ‘an argument is
valid if it can defend itself from all attacks’. We save the formal discussion
of the logic of computing acceptability in ArgumentSpace for a later chapter
(4). Intuitively, in figure 3.5 there is no counter argument to the statements
which form the argument, and the ontological statement is deemed valid (as
indicated by the tick in the evidence field). Thus, the initial claim evaluates
to true, indicated by the tick next to the ‘valid’ field of the root statement,
“we should go to the queen concert”.

3.3 ArgumentSpace Concepts

The concepts involved in this project: arguments, schemes, ontologies, ABA
representation and acceptability, will be discussed in turn through the fol-

21

lowing chapters and may be introduced though the following diagram.

Schemes
define common

// Arguments

have evidence in

��

can be transformed to

))SSSSSSSSSSSSSSS

ABA representation
may be evaluated for

// Acceptability

Ontologies

Figure 3.6: ArgumentSpace concepts

3.4 Brief Technical Overview

One of the goals of ArgumentSpace is to provide a tool which can be effec-
tively used around the world for collaboration and argument, as such it is
designed for distributed use. Java was chosen as the primary implementa-
tion language in part due to its platform independence, as well as its support
for database and Java-Prolog inter-language communication.

In order that arguments be accessed and collaborated on remotely, they are
stored both on the client machine and remotely on a Postgre SQL database
server. Any updates to the local argument are reflected immediately in the
database, and in any other parties also accessing the argument.

22

Figure 3.7: System diagram

Debates are evaluated using the CaSAPI Prolog system, to support the
Java-Prolog communication the PrologBeans library [25] is used. As well
as supporting inter-communication between the two languages, it provided
the added advantage of allowing users not to carry Prolog with them, but
to instead connect to a single server running the Prolog code.

Visualisation of arguments was developed with use of the JGraph library [1],
which although not without its problems (e.g. disconnection from Java
Swing, lack of use of typing), did speed up the time to first prototype.

The resulting system uses a combination of technologies and libraries, util-
ising the advantages of Prolog for logical reasoning, Java for interface design
and databases for efficient long-term reliable data storage. Issues of software
design as discussed in greater detail in chapter 7.

23

Chapter 4

Knowledge Representation
and Validity

In this chapter we discuss the basic argument representation format in Argu-
mentSpace, and how arguments are transformed into the assumption based
argumentation (ABA) framework for evaluation. In section 4.1, the vi-
sual representation of arguments in ArgumentSpace is explained, before dis-
cussing in section 4.2 how the acceptability of arguments is evaluated. In
section 4.3 we discuss how arguments designed visually are transformed into
the ABA framework for evaluation by CaSAPI.

4.1 Argument Representation

As seen in the background section of the report, there are a number of argu-
mentation frameworks - formalisms for describing and evaluating arguments,
including ABA and abstract argumentation.

In line with assumption based argumentation, ArgumentSpace allows the use
of two types of relationship between statements: ‘supports’ and ‘attacks’.
Note that there are other tools that, like ArgumentSpace have the ability
to visualise statements and the relationships between them. These tools in-
clude Cohere [18] and Compendium [19], which provide an array of different
relations between statements. However many of these are analogous, such
as ‘challenges’, ‘is inconsistent with’ and ‘refutes’.

These links can be broadly split into just two types, those which show sup-
port and those which show disagreement. As such ArgumentSpace uses just
two types of relation ‘supports’ and ‘attacks’.

24

Existing tools also often provide neutral relations which describe neither
support nor attack of a statement but show ‘some link’. Since the operand
relation has no impact on the argument, I decided that the relation was not
necessary. Superfluous information in an argument should be avoided, since
it can cloud reasoning.

In assistance of the understanding of further sections, we will now formally
define the semantics of ArgumentSpace.

• Arguments consist of statements, which are linked by the relations
‘supports’ and ‘attacks’.

• Potential issues with arguments are identified by means of critical ques-
tions.

We now demonstrate the concepts of supports, attacks and critical questions
in detail.

If supports(A,b) where A is a set of statements which support statement b:

• The proponent believes the validity of statement b depends on every
statement in A, that is, all statements in A must be deemed valid in
order that statement b be deemed valid.

• If we accept all the statements in A, this should be sufficient for us to
accept b.

For example consider supports(A,b) where
b is “food is tasty”.
A is {“food is well cooked”, “food is hot”} states that the food must be
both well cooked, and hot, in order to be deemed tasty. This is represented
in ArgumentSpace as in figure 4.1a.

25

(a) ‘Supports’ example (b) ‘Attacks’ example

Figure 4.1: Supports and Attacks relation example

If Attacks(a,b) where a and b are arbitrary statements

• Statement a is in contradiction with statement b, or a being true is a
reason for b not to be deemed valid.

The attacks relation can be seen in figure 4.1b.

Note that attacks in Argumentation can be of two types:
Undercuts: Where a statement is in contradiction with an arguments
premise. For example given:
argument A: “We should go out because it is sunny” the statement: “It is
not sunny” is an undercutting attack on argument A.

Rebuttals: Where a statement is in contradiction with the conclusion, but
not any specific premise of an argument, for example:
“We should not go out because I don’t feel well” is a rebuttal attack on
argument A given earlier.

ABA allows only undercuts. One option in representation in ArgumentSpace
allows was to similarly only allow undercuts and force users to model situa-
tions requiring rebuttals through the use of an additional premise, as done
in 4.3; however this is a much less intuitive solution to those from a non-
argumentation background than to allowing direct rebuttals, and as such
the attacks relation can be used for both types of attack in ArgumentSpace.

The last type of relationship is that of Critical questions. This holds
between an additional statement type, also called with an abuse of termi-
nology, critical question, and an ordinary statement. Critical questions have

26

no effect on the arguments formal acceptability. They are produced when
designing an argument from a scheme (see chapter 5) and can also be added
by the user. This can be seen as a method of finding weaknesses in an argu-
ment, which may be later turned into an attack by the opponent, or prompt
the proponent to add an additional premise. Figure 4.2 illustrates the use
of a critical question in an argument.

Figure 4.2: Example illustrating the three relation types

4.1.1 Argument visualisation metadata

As has seen through the various examples shown so far, each statement in the
argument visualisation can be displayed with varying amounts of metadata.
At times the user may wish to display less than the full set of metadata, so
that that argument visualisation is more compact. Statements views can be
altered for a single statement (as shown in figure 4.3), or all statements.

Figure 4.3: View options

27

The meaning of each of the data items is as follows:
Author: The username of the person who created the statement, or last

edited it, if any editing has occurred.

Time: The time that the statement was created, or last edited, if any edit-
ing has occurred.

The following items are explained in greater detail in later chapters, however
for reference their meaning is given:
Is Valid: If the statement has been evaluated this field will show a tick or

cross indicating whether the statement is deemed acceptable or not.

Defense set: If some claim has been evaluated, this indicates whether or
not the statement is required to prove the claims’ acceptability.

Culprit: If some claim has been evaluated, this field indicates whether or
not the statement has been targeted by the proponent for counter-
attack, in order to defend the claims’ acceptability

Scheme Uses: If the statement forms part of an argument scheme, this
will be displayed here, such as ‘Conclusion of argument from expert
opinion’.

Evidence: The number of items of evidence which have been attached to
support the statement are shown here, and if an ontology and onto-
logical statement has been provided, a tick or cross indicates whether
the ontology verifies the ontological statement.

Ont. Statement: If an ontological equivalent statement has been associ-
ated with the statement, this will be displayed here.

4.2 Debate Evaluation

Statements and the relations between them can be visualised in Argu-
mentSpace as seen previously. It would be useful to be able to determine
whether or not, given the statements put forward, a particular statement is
acceptable.

When dealing with arguments, there is often uncertainty and inconsistency
in the knowledge base, statements put forward cannot be completely trusted,
and are often contradictory - from different points of view. To exemplify
this point, consider the arguments in figure 4.4.

28

Figure 4.4: Conflicting statements

Should we wish to evaluate the acceptability of p, traditional first order logic
is not suitable; since we have p and ¬p, we have ⊥, and from ⊥ we have
anything. Thus, we can be certain of nothing, and so cannot reason whether
p is acceptable or not.

Since first order logic is not suitable, a new standard of acceptance is needed,
argumentation provides this - a means of reasoning with an incomplete and
inconsistent knowledge base. In argumentation, arguments are only accept-
able on a conditional basis, subject to additional knowledge. Therefore an
acceptable argument is often termed a defeasible argument; one in which the
conclusion can be accepted tentatively in relation to the evidence known so
far in a case, but may need to be retracted as new evidence comes in (or as
the other party in the argument responds).

The concept of defeasible arguments is obviously less rigorous than validity
in logic. However, it is important in everyday reasoning, and is prominent in
legal reasoning, where laws are described in generalisations with exceptions.
An argument may be accepted tentatively, until new evidence is seen which
shows that a case is in fact an exception to the rule, and the old argument
no longer holds.

In argumentation a number of different standards of acceptability exist,
even within a particular framework. The standard of acceptance used by
ArgumentSpace is that based on admissible belief semantics described in
section 2.3. Under the representation framework used in ArgumentSpace,
this essentially means that (in the absence of ontological evidence, described
later) an argument is acceptable if every attack (or some premise of the
attack) is counter attacked.

In figure 4.4, using argumentation, we could reasonably deduce that p is
acceptable and ¬p is not (if we are willing to assume q), since by assuming

29

q, we should deduce that ¬p is not acceptable, and so we have no reason not
to accept p. This is computed formally using CaSAPI (described in section
4.2) and the ABA concept of admissibility.

CaSAPI provides a means to evaluate arguments described in the ABA
framework. Since arguments described visually in ArgumentSpace can be
transformed into ABA frameworks (as we will see in the next section), CaS-
API provides a means of evaluating arguments in ArgumentSpace.

4.3 Transformation to ABA

In order to evaluate arguments defined using my visualisation tool, I have
implemented a mapping from my visual framework to ABA.

As described previously (in section 2.2.2), an ABA framework is described
in terms of rules, assumptions and definitions of contraries of assumptions.
The mapping from visual arguments in ArgumentSpace to ABA frameworks
is explained initially through a simple example:

Example 1: Supports

Assume that the support relation in figure 4.5 is given:

Figure 4.5: p is supported by q

This can be mapped to the following ABA framework:

ABA Rules:
p← q, p asm (1)
q ← q asm (2)

Since q is required to justify p, we start with rule (1)
Since q in general may itself require supports (although in this

30

case it does not), we define another rule (2).
Every statement’s translated rule includes a defeasible condition
in the form of a corresponding assumption (p relies on p asm,
q relies on q asm etc). These defeasible conditions allow us to
turn rebuttal attacks described in the visual framework into un-
dercutting attacks in ABA, as we will see in example 2, below.
These assumptions can be thought of as saying ‘presuming noth-
ing falsifying this rule is found’.

Thus we have the two rules shown above.

Assumptions: p asm, q asm

Contraries: contrary(q asm,¬q asm) , contrary(p asm,¬p asm)

Assumptions and contraries must also be defined. Assumptions
are statements which may be subject to disproof.
Contraries define how assumptions can be disproved. We will
leave out the assumptions and contraries from future examples,
since it is is clear from our notation which assumptions and con-
traries we have - all assumptions end in asm and ¬x is always
contrary to x.

Example 2: Attacks

The following example extends the previous, in that an attack is now made
on statement q, through statement r - as shown in figure 4.6.

Figure 4.6: An attack is introduced on q

This can be mapped to the following ABA framework:

31

Rules:
p← q, p asm (1)
q ← q asm (2)
¬q asm← r (3)
r ← r asm (4)

The new attack is represented by the introduction of a new rule (3) whose
head is in contradiction with q’s defeasible condition.
This rule has a body consisting of r, the attacking statement.
r, like any statement, is defined in terms a rule (4) with all its supports (in
this case none), and a defeasible condition to allow counter-attack.

Formal mapping rules:

Formally, every node (providing support or attack) maps to
conclusion← support1, ..., supportn, conclusion assumption
every attacking arc from ‘attack’ to ’node’ maps to:
¬conclusion asm← attack

Where support1, ..., supportn and attack are themselves nodes, which are
defined recursively as above.

Critical question nodes and arcs are ignored in this transformation, as they
have no effect on the evaluation.

This is the basic mapping framework. We now present a real-world example:

Figure 4.7: Example debate

Above is a debate designed in ArgumentSpace. After evaluation using CaS-
API, statements can be highlighted based on whether their assumptions
were taken up by the proponent (of the root claim) or opponent. Proponent

32

statements are blue. Opponent statements are shown in red.

The translated ABA framework:
penguins can fly ← all known birds can fly, penguins are birds,

penguins can fly asm.
penguins are birds← penguins are birds asm.
all known birds can fly ← all known birds can fly asm.

¬all known birds can fly asm← ostriches cant fly and are a bird.
ostriches cant fly and are a bird←

ostriches cant fly and are a bird asm.

¬all known birds can fly asm← dodos cant fly and are a bird.
dodos cant fly and are a bird← dodos cant fly and are a bird asm.

¬dodos cant fly and are a bird asm← dodo are extinct.
dodo are extinct← dodo are extinct asm.

To evaluate a claim, the user clicks on the statement to be evaluated and then
clicks the evaluate button. The argument is then transformed into the ABA
framework (as above), which can be viewed in either a logical style (see figure
4.8a) or in its verbatim Prolog code (see figure 4.8b) within ArgumentSpace’s
‘ABA translation’ panel. The results from CaSAPI are sent back to the
ArgumentSpace client, and displayed in the argument visualisation and in
the ‘Evaluation result’ panel (see figure 4.9). In this case the initial claim is
not acceptable.

33

(a) Logical view of ABA framework (b) Prolog view of ABA framework

Figure 4.8: ABA translation shown in ArgumentSpace

Figure 4.9: Evaluation result panel

34

Chapter 5

Argument Schemes

In this chapter we discuss the use of Argument Schemes (commonly used
argument structures) in ArgumentSpace. In section 5.1 we introduce the
concept and uses of argument schemes, specifically the identification of en-
thymemes (‘missing premises’) in section 5.1.1, and the use of critical ques-
tions for finding argument weaknesses in section 5.1.2. In section 5.2 the
enhancements made to argument scheme definitions specifically in Argu-
mentSpace are discussed. Finally in section 5.3 the ability to define and
load new schemes is explained.

5.1 Background to Schemes

Argument schemes are forms of argument, structures of inference which are
commonly used in everyday discourse, as well as in more specialist areas such
as legal reasoning. Since the publication of D. Walton’s 1996 book [29], they
have gained increasing attention and recognition for their merits. Argument
schemes are useful for two main reasons:

• They aid in developing arguments backed by sound and commonly
accepted reasoning.

• They provide analytical tools with which to analyse arguments and
evaluate them critically, by helping identify implicit assumptions and
providing common ‘critical questions’ with which to probe the propo-
nents argument for weaknesses.

For example the scheme ‘Argument from Expert Opinion’ is especially im-
portant in legal reasoning, where experts in medicine, ballistics and other

35

areas are often called upon to make statements which are given great im-
portance in the outcome of a case.

Argument from expert opinion
Premise: Source E is an expert in domain S.
Premise: An expert in domain S should know whether A is
true.
Premise: E asserts that A is true.
Conclusion: A may plausibly be taken to be true.
Critical question: Is E credible as an expert source?
Critical question: Is A consistent with what other experts as-
sert?

ArgumentSpace provides the ability to browse known argument schemes,
and create new arguments using them. Figure 5.1 shows the scheme viewer
inspecting the scheme ‘argument from expert opinion’.

Figure 5.1: Viewing schemes in ArgumentSpace

The idea of premises and conclusion should be intuitive and is common
with the previously mentioned ABA framework. Critical questions will be
discussed later.

36

5.1.1 Enthymemes

The term enthymeme refers to an argument in which one or more statements
that are part of the argument are not explicitly stated, although in some
cases it is the conclusion that is missing [10]. Enthymemes are loosely termed
‘missing premises’.

“The corporate income tax should be abolished; it encourages
waste and high prices”

Formally:
Premise: The corporate income tax encourages waste and high
prices.
Conclusion: The corporate income tax should be abolished.

In the example above, the missing premises are “In general, whatever en-
courages waste and high price should be abolished”.

In order to assess the validity of the argument, we need to test whether we
agree with each of the premises, but if a premise is missing, then it is much
more difficult for a reasoner to assess the argument. For example, we may
disagree that high prices always bad, believing in the case of alcohol that
high prices are good, because they discourage excessive drinking.

Using the scheme browser in ArgumentSpace, we can identify when a scheme
is being used, and so identify missing premises, which can be added to the
argument. The above example fits the scheme ‘Argument from negative
consequence’, seen in figure 5.2.

37

Figure 5.2: Argument from negative consequence

5.1.2 Critical Questions

One of the most useful aspects of argument schemes are their associated crit-
ical questions. Once a scheme has been identified we can use critical ques-
tions to assist the user in accessing whether an argument is valid, whether
there is a weakness in a premise or a missing premise which would not hold.

As an example of the use of critical questions:

“James W Johnston, CEO of R.J. Reynolds Tobacco Company,
testified before Congress that tobacco is not an addictive sub-
stance and that smoking cigarettes does not produce any addic-
tion. Therefore we should believe him and conclude that smoking
does not in fact lead to any addiction.”

This is an example of argument from expert opinion (above). There is a
weakness in the argument, which can be probed by asking critical questions,
suggested by the Argument Scheme:

Critical question: Is E credible as an expert source?
Critical question: Is A consistent with what other experts asset?

The important critical question here is whether the president of a tobacco
company is a credible expert source on issues of health. Although he may be
knowledgeable on how to sell tobacco, it is likely he is not a medical expert

38

and, just as importantly, it is likely he is biased. As such these critical
questions need be assessed and, if appropriate, used as an attack on the
argument.

In ArgumentSpace, arguments can be inputted from schemes. A scheme is
selected from the list of currently available schemes in ArgumentSpace, and
the user is provided with the premises, conclusions and critical questions
associated with the scheme. The user must input the variables used in
the scheme and, once complete, the argument is added to the visual display.
Figure 5.3 shows the selection and defining of variables to input an argument
from scheme. Figure 5.4 shows the resultant argument.

Figure 5.3: Creating the tobacco argument from scheme

39

Figure 5.4: Resultant tobacco argument

As well as the conclusion and premise nodes being added as statements to
the argument, critical questions are automatically added, as shown in figure
5.4. Critical questions can be characterised into two types:

Those for which the burden of proof is placed with the opponent - crit-
ical questions which are to be turned into an attack and require pro-activity
on behalf of the attacker. For example, consider the critical question: ‘is the
author biased’. To turn this into an attack, some reasonable justification
would be required (as seen above in figure 5.4). In ArgumentSpace this kind
of critical question, where the opponent believes the critical question is rel-
evant and can be justified, can be converted into an attack. In the tobacco
example, this conversion is shown in figure 5.5.

40

Figure 5.5: Critical question turned into attack

Those for which the burden of proof is placed with the proponent -
critical questions which essentially ask for an additional premise by the op-
ponent to justify his statement. For example, consider the critical question:
‘is the statement based on any evidence?’. This kind of question should be
responded to by the proponent answering the question, justifying himself
with an additional premise. In ArgumentSpace this kind of critical ques-
tion, where the proponent believes the critical question is relevant, can be
replaced with an additional premise, as seen in figure 5.6.

(a) Critical question (b) Additional premise

Figure 5.6: Critical question converted into an additional premise

Some might argue that critical questions should simply be another premise
in the scheme in the first place, in fact Walton has presented versions of
his schemes in which this is the case [10]. However, it is argued that a bal-

41

ance is needed between having enough core premises so that arguments are
plausible and a size of scheme which makes it usable and easy to remember.
There are often many exceptions to the rule represented by a scheme, and
critical questions highlight exceptions which may or may not be appropri-
ate. In many cases they can be removed from the argument since there is
no justification for an attack, or need for an additional premise, as is the
final option in ArgumentSpace.

5.2 Enhancements to Walton’s Schemes

Critical question association

In the schemes proposed by Walton, critical questions are associated with the
whole argument. But it is clear that critical questions are generally either
associated with either a particular premise, or the conclusion (in a similar
way to attacks in ABA being either on an assumption, or the conclusion
through the use of an undercut on the defeasible condition). As such the
critical questions found in ArgumentSpace schemes are classified by premise
or conclusion. For example in ‘Argument from Expert Opinion’, the critical
question ‘Is E credible as an expert source?’ is associated with the premise
‘Source E is an expert in subject domain S containing proposition A’.

Critical question classification by burden of proof

As seen in section 5.1.2, critical questions can convey a loose burden on either
the proponent or the opponent. The schemes provided in ArgumentSpace
are classified into these two types, with different options appropriately; if on
the proponent an option to ‘replace with additional premise’ is presented, if
on the opponent an option to ‘convert to attack’ is presented.

Ontological equivalent statements

Ontological reasoning (see chapter 6) is a key component of ArgumentSpace.
Premises which may be verified through an ontology as evidence come with
an associated ontological statement in the query language devised for Ar-
gumentSpace. This encourages the use of ontologies and aids the user in
forming ontological statements.

For example:
Premise: E is an Expert in Domain D1

42

Ontological equivalent statement:
“INDIVIDUAL E ELEMENTOF CLASS D1”

The ontological statement will likely need adjustment to meet the exact
syntax ontological terms, however the suggestions for ontological statement
are useful as a starting point for the user.

5.3 Argument Scheme XML Definitions

ArgumentSpace has the ability to load new schemes defined in an XML
format into the program and onto the database server (an example of this is
seen in figure 5.7), including an XML parser for this purpose. Araucaria [26]
is another argumentation program designed at the university of Dundee, and
also provides the facility to load new XML schemes. ArgumentSpace’s XML
format is compatible with that of Aracuaria, aiding the sharing of schemes.

In this project, additions were made to the scheme definitions proposed
by Walton and used by Aracuaria (see section 5.2). The XML format is
designed to provide backwards compatibility whilst incorporating these new
features.

Figure 5.7: User informed of result of scheme load

43

Chapter 6

Ontologies

In this chapter we discuss the use of ontologies in ArgumentSpace. On-
tologies and the web ontology language are introduced in section 6.1 and
6.2 respectively. The design of an ontological query engine is discussed in
section 6.3. The query language defined for making verifiable statements
about ontologies which can be evaluated in ArgumentSpace is discussed in
section 6.4. Finally, the way in which results from ontological evaluation are
combined within arguments is discussed in section 6.5.

6.1 Background to Ontologies

The use of ontologies in argumentation is a relatively new phenomenon. On-
tologies, like argumentation, are a form of knowledge representation, used
to capture knowledge about some domain of interest. The concept of on-
tologies has existed since the ancient Greeks, originating from philosophy
and metaphysics and referring to the study of nature and the organisation
of reality. The computer science definition of ontology is more precise, de-
riving from a desire to share and reuse information among different people
and software. An ontology describes the concepts in a domain and also the
relationships that hold between those concepts (such as ‘is a sub-type of’,
‘is an instance of’ etc). An example ontology can be seen in figure 6.1.

44

Figure 6.1: Section of the Gene Ontology database

In contrast to argumentation knowledge bases, ontologies must be consis-
tent. If the ontology says classes A and B are distinct, and somewhere else
declares an individual which is an instance of both classes A and B, the
ontology is inconsistent, and should not be consulted. However, should a
consistent ontology exist and be agreed on, it could act as a source of evi-
dence. Statements by the proponent or opponent in an argument, described
using argumentation frameworks such as ABA, could be verified against the
ontology.

To explain how this might work, we present the following example:

A: Feline cancer of the liver is indicated by the CACNA1G gene;
this gene is a T-type calcium channel gene, and other cancers
indicated by this gene class have responded well to treatment
with the drug Melequine, therefore feline cancer of the liver is
also likely to respond to this treatment.
B: No, CACNA1G is a H-type calcium channel gene, so the treat-
ment is unlikely to work.

In this case A’s argument is defeated, and would not be deemed acceptable.
However, without further information there is no way of knowing whether
B’s attack is actually correct. If a medical ontology existed (such as in
figure 6.1) holding information on gene types, it could be queried to check
the result, and either validate or invalidate the statement, as is possible in
ArgumentSpace.

45

6.2 Ontology Representation and OWL

Over recent years there has been a move towards a single format for de-
scribing ontologies: Web Ontology Format (OWL). Large scale ontologies
have been developed in OWL, for example the NASA sweet ontologies1 and
the breast cancer research ontology2; however, a variety of other ontology
formats are still in use. One of the largest real-world ontologies, the Gene
Ontology3 (containing over 50,000 terms), uses a specific medical format, the
OBO (Open Biomedical Ontologies) format, although efforts are underway
to provide a mapping between OBO and OWL.

Many modern ontology languages (including OWL) derive their semantics
from those of description logic4. Description logic is a subset of first-order
logic and although various description logics exist, they all share a common
set of features: concepts, binary predicates, and constants (no variables are
allowed) [2].

OWL is considered one of the fundamental technologies underpinning the Se-
mantic Web, and has attracted both academic and commercial interest. It is
a specialisation of XML, and an extension of RDF (the resource description
framework), another W3 formalism. RDF specialises XML by standardis-
ing meanings for: class, subclass, property, subproperty, domain, range, etc.
OWL is a further specialization of RDF; it adds standard meaning for: car-
dinality, inverse properties, synonyms, and more. An example of an OWL
statement is shown below, declaring that the class Men is a subclass of the
class People.

<rdf:Description rdf:about="#Men">
<rdfs:subClassOf rdf:resource="#People"/>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Class"/>

</rdf:Description>

OWL is actually a family of knowledge representation languages for author-
ing ontologies including OWL Lite, OWL DL5, and OWL Full. OWL light
and OWL DL are the main languages, the latter providing a greater degree
of expressibility. OWL Full is quite a different language, designed to provide
backward compatibility with RDF but possessing slightly different seman-
tics - it is rarely used. In ArgumentSpace we provide support for OWL Lite

1NASA SWEET ontologies: sweet.jpl.nasa.gov/ontology
2Cancer Research UK, clinical ontology for breast cancer: acl.icnet.uk/̃ mw
3The Gene Ontology: www.geneontology.org
4A notable exception is CycL, based on first order logic.
5The ‘DL’ is an acronym for description logic.

46

http://sweet.jpl.nasa.gov/ontology
http://acl.icnet.uk/~mw
http://www.geneontology.org

and OWL DL, although only a subset of their features are used by the query
engine we define for validating ontological statements.

ArugmentSpace uses the OWL API [23] developed primarily at the Uni-
versity of Manchester, this provides a parser for OWL DL, outputting an
object-based representation of the ontology. ArgumentSpace turns this ob-
ject representation into a graph for visual inspection by the user. This
ontology viewer works in conjunction with the reasoner described in the
following section.

Once an ontology is loaded from an internet URL, the viewer (figure 6.2)
provides the ability to restrict the information included in the ontology
graph (as this information can become quite complex), by removing arcs
representing the disjoint property (if many classes are disjoint) or to show
only classes and not individuals. Users can also type in the name of a specific
class or individual to highlight in the viewer, to help find information in a
large ontology (for example in figure 6.2 the user has chosen to highlight the
class ChangesInRisk, highlighted red in the ontology viewer).

The user might use the viewer to inspect an ontology and decide whether it
may support his arbitrary natural language statements, and determine the
relevant classes for use in these statements.

Figure 6.2: Inspecting a complex ontology

After a statement about the ontology has been made, the viewer can be used
to provide visual evidence of the evaluation result.

For example, consider the case with the user stating (believing the ontology

47

to satisfy) that the classes SociablePerson and HardWorkingPerson are
disjoint. The ontological query engine (see section 6.3) may determine that
this is incorrect, due to the existence of fred belonging to both classes. The
ontology viewer in this case will highlight fred, so that the user can be
assured as to the result (figure 6.3).

Figure 6.3: Reasoner results and visual proof

6.3 Ontological Reasoning

As a result of deriving its semantics from description logic, OWL is based
on open world semantics (in contrast to SQL and Prolog which adopt the
closed world assumption). Under the open world assumption, if a statement
cannot be proved to be true using current knowledge, we cannot draw the
conclusion that the statement is false.

For example, if the only assertion about class ChildrenOfBen
is:
peter ∈ ChildrenOfBen
under the closed world assumption we would infer that Peter is
the only child of Ben. However, under the open world assump-
tion, under OWL, we can only infer that Peter is a child of Ben,
and there may or may not be other children of Ben that we do
not know about.

48

This allows the progressive development of ontologies, not requiring that all
knowledge is present before we begin using the ontology for reasoning. For
example, the Gene ontology has been under development since 1998, and is
still being added to with new discoveries in bioinformatics.

Since ontologies are not assumed to be complete, the impact on reasoning
is:

• Three valued logic is required - a statement may be proved, disproved,
or no conclusion may be made (should there be insufficient information
to draw conclusion).

• Since ontologies are often incomplete and only contain fragments of
information, if for example we wish to know whether two sets A and
B are disjoint, we can start by looking to see if ‘A disjoint B’ has been
explicitly declared. But, if it has not, we cannot stop there. There
may be other ways to work out whether A and B are disjoint (is an
individual declared a member of both? Is one a subset of the other
and non-empty?). As we can see there may be a variety of ways of
disproving an assumption. And simply checking that no individuals
are declared in both (as the definition of disjoint-ness requires), is often
not enough.

In order to check the validity of statements about OWL ontologies, an on-
tological reasoner and query engine was needed. OWL reasoners (such as
Pellet [9]) provide a means of traversing the ontology tree, whilst query en-
gines (such as ARQ6) provide a means of asking direct questions on the
ontology. Pellet was used for visualising ontologies, however after consider-
ing the currently available query engines, I decided instead to write a simple
engine myself, since those already available were too complex and poorly
documented for simple integration with ArgumentSpace.

The requirements for the query engine were:

• Provide the ability to pose statements which could be evaluated to
true/false/unknown, based around basic questions of sub-classing, type,
and properties.

• Execute on a query language which is simple to use, and could be
understood by non-expert users.

• Evaluate queries against OWL ontologies taking into account the se-
mantics of OWL, using disproof techniques as well as looking for ex-
plicit assertions.

6ARQ, a SPARQL query engine for OWL ontologies: jena.sourceforge.net/ARQ

49

http://jena.sourceforge.net/ARQ

As an example of why the third point is needed, we might state in an argu-
ment that Diane is happy.
We could check this argument against an ontology by asking: “Is Diane in
the class of Happy people?” or in the ArgumentSpace query language:
“INDIVIDUAL diane ELEMENTOF CLASS Happy”.

A simple syntactic checker might look for an assertion that diane is in the
class Happy, see that this is not the case, and return unknown. However,
using the ontology in figure 6.4, because there is an assertion that diane is
in the complement class of Happy, and we know that nobody is in both X
and complement(X), we can infer that she is not in class Happy and declare
the statement false.

Figure 6.4: Reasoner results and visual proof for a simple ontology

OWL ontologies are often incomplete, and provide situations where we are
able to prove or disprove statements by exploiting OWL’s semantics and
inferring additional knowledge that is not explicitly stated in the ontology.
As such our query engine was developed to work on top of the Pellet reasoner,
using various proof rules described in the appendix A.

50

6.4 Query Language

After developing a query engine, a means of describing queries it was needed.
At first restricting the options to a selection of common queries was used.
But we decided that a query language would be more flexible and allow for
future expansion, as well as compound queries constructed using conjunction
and disjunction.

Although existing formalisms for querying ontologies exist, in particular
SPARQL (a query language for RDF), it was decided that the language is
too complex for the needs of ArgumentSpace. For example, asking whether
fred is in both the classes HardWorkingPerson and SociablePerson, in
SPARQL, would be as follows:

ASK { #fred rdf:type #HardWorkingPerson . #fred rdf:type #SociablePerson }

Since we believe that the language did not meet the requirement to be easily
human readable, a new language was devised.

As an example, the equivalent expression to that above is:

INDIVIDUAL fred ELEMENTOF CLASS HardWorkingPerson AND
INDIVIDUAL fred ELEMENTOF CLASS SociablePerson

This simple query language was designed to provide the level of expressibility
needed to pose commonly used queries to the reasoner. The parser for this
was written using the Antlr compiler generator suite.

The exact syntax of my new query language is defined in appendix B, but
in summary, the following operators are supported:
{is subset of, is member of, is disjoint from, is empty set, not, and, or}

6.5 Combining Ontological Reasoning with the Ar-
gument

The practice of combining ontological reasoning with argumentation is rel-
atively novel, for example see [32].

One difference between existing solutions, such as [32], and mine is that their
‘argument statements’ are statements of description logic proposed automat-
ically, and so could be evaluated on the ontology directly. ArgumentSpace
is meant to be used by humans, and the statements are in natural language

51

and so need to be turned into description logic by the user. Also the ontology
they are using as a knowledge base is hand crafted for their purposes and
so is relatively complete, meaning the query engine does not need to do so
much work to prove or disprove statements. ArgumentSpace’s query engine
aims to validate statements wherever possible in an incomplete ontology (see
section 6.3).

Although requiring the user to perform the mapping from English to de-
scription logic is undesirable, computational mapping from English to logic
is as yet an unsolved problem. By making the query language as simple as
possible I have aimed to make the translation by hand a simple process for
humans.

My approach to including ontology results is simple:
For every node which includes an equivalent ontological statement and some
ontologies, each ontological statement is checked in turn:

• If all ontologies validate the statement, or the result of evaluating the
statement against the ontology is ‘unknown’, no change to the overall
argument is made.

• If any ontology invalidates the statement, a contrary to the statement
is added to the overall argument which cannot be countered. Thus, if
the overall claim relies on the statement, the initial claim will not be
deemed acceptable in the evaluation.

As an example, we present a simple argument, initially with no ontological
evidence:

52

Figure 6.5: Without any ontological evidence, the argument is trivially ac-
cepted

This argument can be mapped into ABA, as suggested in chapter 4, as
follows:

Rules:
john is a good employee← john is hardworking, john is a good employee asm
john is hardworking ← john is hardworking asm

Assumptions:
john is hardworking asm
john is a good employee asm

Contrary definitions:
contrary(john is a good employee asm, not(john is a good employee asm)).
contrary(john is hardworking asm, not(john is hardworking asm)).

Given this framework, the claim john is a good employee evaluates to true,
as shown by the tick in the valid field on the root claim in figure 6.5.

If we knew of the existence of an ontology which gave evidence to the state-
ment, “john is hardworking” it could be added to the statement, as has been
done in figure 6.7. The statement is translated by the user to:

53

“INDIVIDUAL john ELEMENTOF CLASS HardWorkingPerson”, which is
then evaluated separately.

Figure 6.6: Ontological reasoning

However the ontology invalidates the claim, since instead it declares john as a
lazy person, and we know there is nobody who is both lazy and hardworking.
As a result, an additional rule is added to the earlier ABA translation of the
argument:

not(john is hardworking asm)← failed ont john is hardworking.
failed ont john is hardworking.

On evaluation, no admissible set of assumptions can be found by CaSAPI
since there is no way in which the ‘failed ontology’ fact can be counter-
attacked. The arguments initial claim is therefore not accepted, as shown
in figure 6.7.

This simple approach scales well to arguments containing multiple state-
ments backed by ontological support.

54

Figure 6.7: Demonstrating the result of additional ontology evidence

55

Chapter 7

Issues in Software
Engineering

This chapter discusses some of the design choices and software engineering
issues tackled during implementation of the ArgumentSpace system. In sec-
tion 7.1 we discuss decisions with regard to the program structure. Using
the CaSAPI Prolog program as a component of ArgumentSpace provided
particular challenges, discussed in section 7.2. The distributed nature of
ArgumentSpace provided required concurrency and synchronisation consid-
erations, discussed in section 7.3. The use of multithreading is discussed in
7.4, and finally security issues are discussed in section 7.5.

7.1 Design Structure

ArgumentSpace was designed with extensibility and modularity in mind.
Thus the functionality of the program was broadly split into different areas
and designed with as little coupling as possible to aid modularity.

Since it was clear early on that the argument model would change little
throughout development, but the graphic representation might and did
change quite radically as new ideas were formed, the design was broadly
based on a model-view-controller design pattern. Separating interface con-
siderations from the argument logic stopped alterations in either significantly
affecting the other.

Further decoupling was achieved due to the distributed nature of the pro-
gram (database server, Prolog server, and Java client), this provided natural
separation and interface points for different code segments.

56

Thus the main packages formed were:

• The argument representation model - the internal representation of
the currently loaded argument.

• The argument visual view - graphic representation of the argument
through an adaptation of the JGraph library.

• Prolog communication code - responsible for translation from the Ar-
gumentSpace internal representation to a series of Prolog clauses, and
also handling communication with the Prolog sever.

• Ontological query engine - responsible for parsing and evaluating queries
against an ontology.

• Database communication code - responsible for fetching and updating
arguments held on the Postgre SQL database.

Figure 7.1: UML Package diagram

The aim was to maintain minimal dependencies between these different pack-
ages, and this has largely been achieved. Thus the reasoning code, argument
or ontology based, was kept separate and only called from a single point.

7.2 CaSAPI as a Server

For the CaSAPI evaluation program to be used as a server by distributed
ArgumentSpace clients, some modification was required. Sicstus Prolog-

57

Beans [25] (a Prolog and Java library) was used in order to facilitate Java-
Prolog communication. Using this, Prolog queries can be made with bound
or unbound variables to a Prolog program, and both the result of the query
(pass/fail) and the resultant variable bindings returned to Java.

An alternative was explored with the use of the Sicstus Jasper library [24],
which essentially simulates the Prolog interpreter in Java. If this method
were used the entire CaSAPI codebase would have to be included with Argu-
mentSpace. It was decided that this was an inferior solution, since separating
the ArgumentSpace and CaSAPI server code provided a number of benefits:

• It reduced the memory and processor footprint required on each client
using ArgumentSpace (since the Prolog CaSAPI code would be held
separately).

• By separating the dialectic evaluation code from the rest of the code,
any changes or improvements could be made to the evaluation code
without requiring action by the user.

In order to move from stand-alone program to server, suitable for use in
ArgumentSpace, a number of modifications had to be made:

• Previously CaSAPI loaded ABA frameworks from file. CaSAPI had
to be changed so that frameworks could be loaded and removed on the
server for each client query. This was dealt with through the use of
dynamic Prolog clauses.

• Previously CaSAPI would output the intermediary defence sets, cul-
prit nodes etc, when evaluating a claim to screen rather than return
these in a variable as part of the Prolog query. This alteration was
needed so that results could be returned to Java.

• Previously if a claim was not deemed acceptable, CaSAPI would sim-
ply return ‘no’. This was altered so that information on the assump-
tions taken by the proponent and opponent are returned to Argu-
mentSpace, even in the event that a claim is deemed invalid. This was
achieved using extra variable in the main ‘evaluate’ predicate which
was bound to either ‘pass’ or ‘fail’ depending on the original CaSAPI
predicate result (using negation as failure to complete the Prolog call
in the case where the original CaSAPI predicate fails and the claim is
not deemed valid).

Although changes were necessary, the aim was to keep these changes as sepa-
rate as possible from the main CaSAPI code, ensuring any future versions of
CaSAPI could be used with ArgumentSpace without major work. This has
been achieved, the new ‘server’ code is held in a new single Prolog module.

58

7.3 Concurrency and Synchronisation

From the onset, a desired requirement of ArgumentSpace was to provide
remote collaboration on arguments, allowing one person to contribute to an
argument, another to come along and add an attack, a further person to add
evidence to support a statement etc. Indeed, this is important to support
the sharing of information and to provide a platform of debate.

This presented issues in concurrency and synchronisation:

• If one user edits an argument, all others viewing the argument should
see that change (synchronisation).

• Protection was required to stop the situation in which two persons edit
an argument simultaneously, one person may not see his update and
wonder why (concurrency).

It was decided the simplest solution to meeting the requirements and avoid-
ing the problems, was a course grained locking mechanism on arguments,
whereby only a single user could open and edit an argument at any one time,
but any number of users may view the argument. The rules implemented
were:

• To enter an argument in read-write mode you require a write-lock on
the argument. Only a single user can hold the write-lock at a given
time.

• When you enter an argument, if no one else has the write-lock, you
acquire it. When you switch to another argument or exit the program
you loose the write-lock.

• If you enter an argument and someone else already has the write-lock,
you can choose to enter in read-only mode. In this mode the argument
is periodically updated to reflect any changes made by the owner of
the write-lock.

• To prevent users from holding the lock on an argument indefinitely, a
time-out is implemented, whereby if a user holding a write-lock on an
argument is inactive for 30 minutes, he is informed and switched to
read-only mode.

Figures 7.2, 7.3 and 7.4 illustrate how the system interacts with users to
provide collaboration and deal with the issues described above.

59

Figure 7.2: User informed of inactivity timeout

Although this mechanism could be improved, since it is not envisaged that
the time between different users collaborating is instantaneous, we believe
the solution’s complexity is appropriate to the needs of the system.

Figure 7.3: Opening a locked argument

Figure 7.4: Read-only mode indicator

60

7.4 Multithreading

The evaluation of arguments either using CaSAPI, or using the ontologi-
cal query engine is a computationally intensive process, and in the case of
CaSAPI suffers from network delays. To avoid ‘freezes’ to the user when
conducting evaluation or when viewing evidence (which involves viewing
evaluation results for evidence), the use of multithreading was employed,
described visually in figure 7.5.

Figure 7.5: Thread diagram

Evaluation code is conducted on a separate thread, so that the rest of the
program can maintain responsiveness, and a load indicator is used to inform
the user that evaluation is in progress (this is shown in figure 7.6).

Figure 7.6: Evaluation in progress indicator - whilst evaluation occurs in
separate thread

7.5 Security

Two security issues were considered in the design of ArgumentSpace: the
confidentiality of information discussed, and the authentication of users, as
a means to ensuring the non-repudiation of statements.

61

It is envisaged that ArgumentSpace may be used by people who do not wish
for the contents of their arguments to be available to anyone logging into
the system. To address this issue ArgumentSpace users can decide on the
database server storing their arguments, and the location of the CaSAPI
server where arguments are sent for evaluation (see figure 7.7). Should a
group of users wish to use ArgumentSpace to discuss arguments confiden-
tially, they can simply use their own database server, and set ArgumentSpace
to connect this. In this setup, outside users would be unable to access the in-
formation discussed, without knowing the address, username and password
of the database.

The alternative would have been to provide security restrictions on individ-
ual arguments within ArgumentSpace. However, since security can never be
absolute, placing the burden of security on the owner of the database server
was the preferred option. Thus, the individual user, or group of users, can
put in place the physical and virtual security restrictions to suit their needs.

Figure 7.7: Server settings

The second security concern was with regard to ensuring non-repudiation
of information, that is, being able to trust who wrote a particular state-
ment, and that person not being able to deny it. The result is that in
ArgumentSpace, on each statement, the time and user who last edited it is
recorded and displayed, as shown in figure 7.8. To provide this, authentica-
tion of users was required.

62

Figure 7.8: Author information

When a user registers to use ArgumentSpace, they provide a unique user-
name and associated password (see figure 7.9), and every time they login to
view or edit an argument these credentials must be supplied for authentica-
tion. In order to minimise security risks, passwords are never transmitted in
plaintext form. The Secure Hash Algorithm (SHA) [20] is used to encrypt
passwords at both the database server and client.

• On registration, the password is encrypted at the clientside, before
being sent in encrypted form to the database server where it is stored
encrypted.

• When the user attempts to authenticate himself, the supplied password
is encrypted again with SHA, sent encrypted, and then checked for
equality with the encrypted version stored on the database server.

This ensures the password is never transferred unencrypted, in a form which
if intercepted can easily be identified and re-used.

Figure 7.9: Registration

63

Chapter 8

Evaluation

In this chapter we evaluate the project and ArgumentSpace to determine
its successes and weaknesses, with a consideration for existing work. In
section 8.1 we assess ArgumentSpace through an extended example in the
legal domain. In section 8.2 we present a debate around the issue of climate
change, and discuss the ability of ArgumentSpace to express arguments in
this context. Usability issues relevant to ArgumentSpace are evaluated in
section 8.3, and the scalability of ArgumentSpace is assessed in section 8.4.
Finally in section 8.5 the system is compared to existing tools.

8.1 Case Study: A Problem in Legal Reasoning

One particular area where argumentation is of special importance is legal
reasoning [5, 3]. A legal case typically centres on a conflict between two
parties and is resolved by each side producing arguments in an effort to
persuade the judge that their side is right. Modelling legal reasoning is to a
large extent analogous to modelling arguments.

In this section we will evaluate ArgumentSpace by considering its ability to
represent knowledge in a legal context, specifically by exploring an example
adapted from that presented in [3], centered around a fragment of German
Family Law. We present the relevant legal statutes and background to the
case in section 8.1.1. Then we show how the arguments of the case could be
modelled and evaluated in ArgumentSpace in section 8.1.2 and evaluate the
model in section 8.1.3. Next we attempt to define an argument scheme of a
valid argument by the proponent for the case in section 8.1.4, and evaluate
the scheme in section 8.1.5.

64

8.1.1 Legal source

The example presented is a case involving whether or not an individual is
obliged to support a needy family member financially. The law is based
around the principle that family should support the needy before the state
does. The German law under consideration defines when a family member
is obliged to support another family member.

The statutes

The statutes which define this area of law are:

• 1601 (Support Obligations) Relatives in direct lineage are obliged to
support each other.

• 1589 (Direct Lineage) A relative is in direct lineage if he is a descen-
dant or ancestor. For example, children, grandchildren, parents, and
grandparents are in direct lineage.

• 1602 (Neediness) Only needy persons are entitled to support by family
members. A person is needy only if unable to support himself.

• 1603 (Capacity to Provide Support) A person is not obligated to sup-
port relatives if he does not have the capacity to support others, taking
into consideration his income and assets as well as his own reasonable
living expenses.

• 1611a (Neediness Caused by Own Immoral Behavior) A needy person
is not entitled to support from family members if his neediness was
caused by his own immoral behavior, such as gambling, alcoholism,
drug abuse or an aversion to work.

The case summary

John has been unemployed for 3 months, and wishes to claim state benefits.
The government benefits agency has identified Antony, John’s grandfather,
as his only living relative. Antony has been ordered to support John; how-
ever Antony no longer talks to John, and takes the case to court, arguing
that he should not be obliged to provide support.

65

8.1.2 The arguments modelled

We show below how the government agency (referred to as ‘the agency’ from
here-on) and Antony take turns to put forward their arguments in the case,
and how an equivalent model is developed in ArgumentSpace.

The agency’s initial case

The agency (1): “It is clear that from statutes 1601,1589, 1603 and 1611
that a person is obliged to support his relatives in direct lineage, if they are
in need, and the person has the capacity to provide support. Antony is the
grandfather of John, who is clearly in need of support due to his desire to
claim benefits, and there is no evidence that John’s neediness has been caused
by immoral behaviour. Therefore we argue that Antony is obliged to support
John.”

This can be visualised in figure 8.1.

Figure 8.1: The agency’s initial argument visualised in ArgumentSpace

The conclusion of the agency’s argument is clearly that ‘Antony is obliged
to support John’. This has been supported by a number of premises; a
generalisation justified by the various relevant legal statutes, as well as the
premises which enable the generalisation to apply.

66

Antony’s defense

Antony (1): “John’s state was caused by alcoholism and gambling, this im-
moral behaviour makes him disqualified from my support”
Antony (2): “Regardless, I do not have the capacity to provide support, my
pension is very little”

Figure 8.2: Antony’s defense visualised (only partial argument graph shown)

We model Antony’s defense as two new statements, each of which is an attack
on a premise of the agency’s argument (an undercutting attack). The second
statement that he does not have the money to help John is supported by
the premise that his ‘pension is very little’. This is visualised in figure 8.2.

The agency’s response

The agency (2): “Antony does have the capacity to provide support, he drives
a Maserati showing he has plenty of money”

67

Figure 8.3: The agency’s counter argument visualised

We model the agency’s final response as a new attack, a rebuttal on the
claim that Antony does not have the capacity to provide support (see figure
8.3).

Alternatively, this could have been modelled as two statements, ‘he does
have capacity to support’, supported by ‘he drives a Maserati’. The validity
would have been equivalent and so for conciseness only a single statement
was modelled.

8.1.3 The resulting model and evaluation

Figure 8.4 shows the full debate and resulting evaluation.

68

Figure 8.4: The resulting debate visualised

The decision by the judge is: “My verdict is that Antony is not obliged to sup-
port John, although I believe he has the capacity to provide support, John’s
immoral behaviour disqualifies him from support through family members.”

Figure 8.5: Result of evaluation in ArgumentSpace

69

The judge’s verdict is also found through evaluation of the ArgumentSpace
model, as seen by the valid field in the root statement in figure 8.4 and
in the detailed results window (figure 8.5). Intuitively this is the correct
conclusion.

Although the agency succeeds in counter-attacking the claim that Antony
does not have enough money to support John, they have no way of counter
attacking the claim that John’s poor state arose from immoral behavior.
Thus, an attack is left unanswered on the initial claim that John is obliged
to provide support, and the claim is deemed unacceptable.

The statement that Antony is the grandfather of John, or that Antony’s
pension is very little, could have been held and verified in an ontology (al-
though this was not the case in our example) by ArgumentSpace. However
the key claim that John’s state was caused by immoral behaviour is a kind
of claim which would be very difficult to verify automatically. In reality it
might require an analysis of John’s character and interviews with witnesses
in order to arise at a subjective judgement, a complex task likely beyond
the realm of any current computer program.

Overall, ArgumentSpace has provided an effective means of modelling and
evaluating the argument in this case. It should be noted however that a
judgement would have required more than assessment of dialectic validity,
but analysis of the validity of the underlying premises, something Argu-
mentSpace attempts to assist with through the use of ontologies. Whilst
acknowledging that many situations cannot be verified with ontologies, ver-
ifying an arbitrary statement is well beyond the scope of this project.

8.1.4 A valid case argument as a scheme

Based on the argument used by the proponent (the Agency) in the previous
example, and the attacks which eventually lead to the case being rejected,
a scheme can be developed. The scheme will represent a valid argument
leading to the conclusion that an individual should pay another support
(under German law).

‘Argument for financial support’:

Conclusion: A is obliged to support B.

Premises:
A is in direct lineage of B.
CQ: How are they in direct lineage?

B is needy, he is unable to support himself.

70

CQ: What proof is there that B is unable to support himself?

A has the capacity to provide support.
CQ: Are there any factors which show he is unable to provide support?

The neediness of B was not caused by immoral behavior
CQ: Was B’s neediness caused by alcoholism or other immoral behavior?

This scheme states that A is obliged to support relative B, if B is needy, A
has the capacity to provide support, they are in direct lineage, and B’s state
was not caused by immoral behaviour.

Figure 8.6: The scheme loaded into ArgumentSpace

This scheme can then be defined in an XML format, as in appendix C, before
being loaded into ArgumentSpace, as seen in figure 8.6.

8.1.5 Legal scheme evaluation

One of the weaknesses identified through this example is a deficiency in
the current format of schemes in ArgumentSpace. In the example above,
it would be desirable to state that certain premises require nested premise
in support, for example in the case of “A is in direct lineage of B”, stating
how they are related. However currently only a single level of premise is
supported in the XML definition. To cover this problem in the example,
critical questions are used (e.g. “How are they in direct lineage?”, which can
be turned into additional premises. However, critical questions are weaker
than premises, in that they are not used in the evaluation, and cannot be
attacked, therefore a desirable enhancement to ArgumentSpace would be
support for multi-level schemes.

71

Further, should we have the ability to represent nested premises, we could
have justified ‘A is in direct lineage of B’ with ‘A is an ancestor of B or A is
a descendant of B’. Since this is obviously the disjunction of two statements,
it would be desirable to maintain this logical structure both in graphic rep-
resentation, and for evaluative purposes. However ArgumentSpace currently
does not support this.

8.2 Case Study: An Argument on Climate Change

In this section we present an example debate about climate change, taken
from the Royal Society1 publication ‘Climate change controversies: a simple
guide’. We present the argument in its original textual form (section 8.2.1),
which, although well written, is complex and not easy to understand and
analyse. We show how it can be represented visually in ArgumentSpace (sec-
tion 8.2.2). Finally we discuss the problems identified through this example
in section 8.2.3.

8.2.1 Source argument

Climate change critic:
“Observations of temperatures taken by weather balloons and satellites do
not support the theory of global warming.”

The Royal Society:
“It is true that in the early 1990s initial estimates of temperatures in the
lowest part of the earth’s atmosphere, based on measurements taken by satel-
lites and weather balloons, did not mirror the temperature rises seen at the
earth’s surface. However these discrepancies have been found to be related to
problems with how the data was gathered and analysed and have now largely
been resolved. Our understanding of global warming leads us to expect that
both the lower atmosphere - the troposphere where most greenhouse gases
are found - and the surface of the earth should warm as a result of increased
levels of greenhouse gases in the atmosphere. At the same time, the lower
stratosphere - the part of the atmosphere above the greenhouse gas ‘blanket’
- should cool.

Some have argued that climate change, as a result of human activities, isn’t
happening because early measurements taken from satellites and weather bal-
loons seemed to show that virtually no warming was happening in the tropo-
sphere. However, this has been found to be due to errors in the data. Satel-

1The Royal Society: www.royalsociety.org

72

lites were found, for example, to be slowing and dropping in orbit slightly,
leading to inconsistencies in their measurements. Variations between the
instruments onboard different satellites also led to discrepancies - a problem
that has also been found with weather balloons. Furthermore, a mathematical
error in one of the original analyses of satellite data meant that it showed
less warming in the troposphere. However, once adjustments are made to
take account of these and other issues, the warming in the troposphere is
shown to be broadly consistent with the temperature trends we see at the
earth’s surface.”

8.2.2 Visual representation

The above argument is clearly quite complex, and representing it in Argu-
mentSpace (as in figure 8.7) can help understand the inferences, points of
agreement, and disagreement. For example, through representing the source
text in a graphical form we can instantly see there is no disagreement over
rising temperatures at surface level, and that it is argued that there are
three sources of error in 1990’s satellite data.

Figure 8.7: The climate change argument visualised

73

The debate’s root claim (that global warming is occurring) evaluates to
true, as seen in figure 8.8. This is consistent with the judgement of a logical
reasoner, the attack by the ‘climate skeptic’ has been counter-attacked with
a statement which is supported by a number of premises, which have not
been counter attacked.

Figure 8.8: The result of evaluating the climate change debate

8.2.3 Climate change case study evaluation

Although this debate is somewhat one-sided (we do not show in detail the
climate change sceptic’s view), it is a useful example showing how the tool
can be used not just to analyse short to-and-fro type dialogues, but also to
break down extended arguments, for easier analysis.

The main weakness highlighted through this example is a deficiency in the
ability to provide support to statements. It would be useful to show evi-
dence for statements such as “temperature readings in the early 1990s show
virtually no warming” with empirical data which could be evaluated. This
is currently not possible.

If data on temperature readings was stored in an ontology, a statement such
as that below could be evaluated and combined to give a more justified
statement of validity for the argument.
“PROPERTY mean temperature OF INDIVIDUAL atmosphereReading1990
≤ PROPERTY mean temperature OF INDIVIDUAL atmosphereReading1985”

Although ArgumentSpace allows OWL based ontologies to be associated
with statements, it’s ontological query engine currently does not support
properties to be associated with individuals (only classes). Thus, the state-
ment cannot be evaluated. Despite this weakness, ArgumentSpace’s mod-
elling of the debate is effective and it’s evaluation of validity is accurate.

74

8.3 Usability Evaluation

One of the aims of this project was to produce a tool which could extend
the use of computational argumentation techniques to a larger audience. As
such the tool is designed for computer-competent, but non-technical users.
As such, issues of human computer interaction (HCI) are of importance to
the project.

To assess the tool in a structured manner, we evaluate the tool against each
of the ‘principles of good design’ (section 8.3.1) proposed by Shneiderman
in [28], a pivotal researcher in human computer interaction. We describe how
well ArgumentSpace obeys each principle, and provide a scoring of ‘poor’
/‘adequate’/‘good’ for comparison. We summarise the findings in section
8.3.2.

8.3.1 Principles of Human-Computer Interface Design

1) Strive for consistency Consistent sequences of actions should be re-
quired in similar situations; identical terminology should be used in prompts,
menus, and help screens; and consistent commands should be employed
throughout.

Associated actions are all accessed from the same areas of the program,
helping users ‘know where to look’. For example all action controls are
performed through the right click menu. Also, controls for changing view
properties are always in a toolbar above the visualisation. As such there
is consistency between the ontology viewer, and the argument viewer (as
seen in figure 8.9). Help screens, error prompts and labels all use consistent
terminology, assured through the use of a language file, rather than holding
language directly in the code. This also enables ease of future translation.

Rating: ‘good’

Figure 8.9: Consistency across view toolbars for arguments and ontologies

75

2) Enable frequent users to use shortcuts As the frequency of use
increases, so do the user’s desires to reduce the number of interactions and
to increase the pace of interaction. Abbreviations, function keys, hidden
commands, and macro facilities are very helpful to an expert user.

Although initially some key-combinations were employed, ‘delete key’ to re-
move a statement, etc, these were later removed to reduce the complexity of
the main argument visualisation codebase. Although fast, efficient interac-
tion should be achievable - currently the main controls (insert/delete/edit
statement) are all accessible through a right click menu (seen in figure 8.10)
and no shortcut keys now exist. The implementation of short-cut keys would
be an improvement for future versions.

Rating: ‘adequate’

Figure 8.10: Right click action menu

3) Offer informative feedback For every operator action, there should
be some system feedback. For frequent and minor actions, the response can
be modest, while for infrequent and major actions, the response should be
more substantial.

Offering informative feedback is a key feature of any software. We achieved
this by providing descriptive but simple dialog messages in the users view
wherever needed. Two examples of these are seen below in figures 8.11 and
8.12 respectively.

Rating: ‘good’

Figure 8.11: Informing the user that a duplicate exists

76

Figure 8.12: Timeout after inactivity

4) Design dialogs to yield closure Sequences of actions should be or-
ganized into groups with a beginning, middle, and end. The informative
feedback at the completion of a group of actions gives the operators the sat-
isfaction of accomplishment, a sense of relief, the signal to drop contingency
plans and options from their minds, and an indication that the way is clear
to prepare for the next group of actions.

In general, actions performed in ArgumentSpace are atomic, and feedback
is instantaneous; providing the user feedback of his actions was ensured by
principle (3). One situation in which a sequence of actions is required is the
insertion of an argument through a scheme, the sequence for which is seen
below:

1. Open ‘insert argument through scheme’ dialog.

2. Select a scheme to use.

3. Enter variables for scheme.

4. Click insert button.

5. Argument appears (dialog closure).

The actions and closure of this dialog can be seen in figures 8.13 and 8.14.
Overall, this principle was adhered to in the small number of situations in
which it was an issue.

Rating: ‘good’

77

Figure 8.13: Scheme input (step 3)

Figure 8.14: Scheme input closure (step 5)

78

5) Offer error prevention and simple error handling As much as
possible, design the system so the user cannot make a serious error. If an
error is made, the system should be able to detect the error and offer simple,
comprehensible mechanisms for handling the error.

The possibility of errors in the system as a result of the user was relatively
small. As seen previously in figure 8.11, where a statement is inserted which
already exists in the system, the user is informed and he can try again.
When a user is logged out due to timeout, he is informed (see figure 8.12).
If a user tries to view or validate an invalid ontology URL, he is informed.

However one particular area for error was that of ontological query state-
ments, since the parser and language grammar was invented for this project.
Users are informed on entry if they are entering an grammatically invalid
statement (figure 8.15), however currently no information is provided as to
where in the statement the error has occurred, this is one area of possible
improvement.

Rating: ‘adequate’/‘good’

Figure 8.15: Grammar error in an ontological query

6) Permit easy reversal of actions This feature relieves anxiety, since
the user knows that errors can be undone; it thus encourages exploration of
unfamiliar options. The units of reversibility may be a single action, a data
entry, or a complete group of actions.

79

As with principle (2), initially undo/redo was implemented in earlier ver-
sions, however it was later removed from the program as the complexity of
maintaining this functionality increased. Since actions in ArgumentSpace
are frequently not atomic (deletion of nodes requires deletion of all asso-
ciated attack/support relations, insertion through scheme involves adding
multiple statements and arcs), implementing undo/redo was not a simple
feature.

The usefulness of undo/redo in ArgumentSpace is however acknowledged,
and is a feature which could be added in future versions.

Rating: ‘poor’

7) Support internal locus of control Experienced operators strongly
desire the sense that they are in charge of the system and that the system
responds to their actions. Design the system to make users the initiators of
actions rather than the responders.

In ArgumentSpace little action is performed involuntarily of the user. One
action which is done without the users control is automatic timeout after
inactivity in an argument (a feature which is required to prevent the in-
definite holding of an argument’s write-lock, discussed in section 7.3). A
further action is the updating of arguments to show new statements made
by other distributed user of the system. It is clear that this ‘involuntary
action’ is a fundamental part of a synchronised collaborative tool, rather
than a deficiency.

Rating: ‘good’

8) Reduce short-term memory load The limitation of human informa-
tion processing in short-term memory requires that displays be kept simple,
multiple page displays be consolidated, window-motion frequency be reduced,
and sufficient training time be allotted for codes, mnemonics, and sequences
of actions.

This principle has been adhered to throughout, notably when entering an
ontological statement, a prompt is provided so that the proprietary syntax
does not have to be remembered. Also, all toolbar icons also use hover
over tips (see figure 8.16), thus reducing the memory load for remembering
precisely what each icon represents.

Rating: ‘good’

80

Figure 8.16: Toolbar tips reduce memory load

8.3.2 Summary usability analysis

The usability of ArgumentSpace is believed to be strong, this has been
supported by comparison to ‘Shneiderman’s Principles of Human-Computer
Interface Design’. The results were largely positive, with 4 areas scoring
good or good/adequate, 1 scoring adequate and 1 scoring poor.

It is positive that the deficiencies highlighted were with regard to specific
usability features missing in the program (shortcut keys and undo/redo re-
spectively) rather than large problems prevalent throughout the program.
Also, I am confident that the additional features identified could be imple-
mented without great change. These two features were originally considered,
but not implemented due to time constraints and the chosen priorities of the
project. Overall, the results of the usability analysis have been positive.

81

8.4 Scalability and Performance Evaluation

In this section we will assess how the performance of ArgumentSpace varies,
as it is used to solve increasingly large problems, and used by an increasing
number of people. We assess the performance of ArgumentSpace as the size
and complexity of debate grows in section 8.4.1, and analyse how the system
will cope as the number of users increases in section 8.4.2.

8.4.1 Size of debate

To access how the performance of ArgumentSpace was affected, as the size
of debate increased, we performed a series of experiments. For each size of
debate, we measured the following:

1. The time to fetch the debate from the ArgumentSpace database server
and construct the internal ArgumentSpace debate model.

2. The time to construct the debate visualisation in ArgumentSpace.

3. The time taken to evaluate the debate using CaSAPI, including the
time to transform the debate to an ABA representation, and Java-
Prolog communication to send the debate and receive the result.

The tests were performed with the ArgumentSpace client and CaSAPI server
running on the same 3.6GHz Pentium IV, 1GB RAM lab machine, and
the Department of Computing database server storing the Postgre SQL
database. All results reported are averages taken over three runs and are ex-
pressed in seconds. The times were recorded using the TimerTester API [17],
to millisecond precision.

Since the debate structure, as well as size, was likely to effect performance,
we conducted tests in two ‘debate structure’ configurations, a linear support-
only structure, and a ‘binary tree structure, both of which are explained
below.

82

Linear debate structure

The first type of debate structure is shown below. Here, a claim is supported
by a chain of supports, varying k, the total number of statements. An
example is shown in figure 8.17.

a

b

supports

OO

c

supports

OO

Figure 8.17: Example debate for k=3

Figure 8.18 shows the test results for the three measured variables, and also
a comparison for the time to evaluate, to a best-fit exponential trendline.

Figure 8.18: Results from the linear debate scalability experiment

From the results we can see that the time to fetch debates from the database

83

and visualise them in ArgumentSpace is linear for all values tested. However
the time to evaluate debates closely fits an exponential curve, indicating poor
scalability at large debate sizes.

With more than 50 statements, performance becomes eratic, and a number
of tests in the 80-100 statements range failed on evaluation (indicated by
gaps in the yellow line). This is possibly due to the high memory demands
placed on Prolog (due to the size of the resultant Prolog program), or the
limitations of the PrologBeans Java-Prolog communication library in send-
ing large Prolog predicates (which contains the ABA debate framework) to
CaSAPI.

We believe the results of this test indicate that ArgumentSpace would be
effective in analysing arguments of sizes up to around 50, however, beyond
this, both performance and reliability start to deteriorate due to the limits
of the current implementation.

Binary tree debate structure

The second type of debate structure evaluated is that shown in figure 8.19,
a binary tree structure of height h (in which each statement is supported by
two more statements) with the addition of an attack, and counter attack,
on each leaf statement.

We performed tests for increasing heights (h) of the initial tree, and then
converted a depth into a number of statements (k), for comparison with the
linear debate experiment, using the formula2:
k = 2h+2 − 1

The graph in figure 8.20 shows the test results from the experiment per-
formed with a binary tree, compared to the previous results performed on a
linear debate structure. ‘Db’, ‘Vis and ‘Eval’ indicate the time to load from
database, visualise, and evaluate the debate respectively, whilst ‘lin’ and
‘bin’ indicate whether the result corresponds to a linear or binary debate
structure. Only a small number of tests were performed (with height varying
from 0-5) since an incomplete tree would alter the complexity of evaluation
(in some cases the evaluation would result in the debate not being deemed
acceptable, as is never the case with a complete tree).

2based on [30].

84

a

b

supports

77nnnnnnnnnnnnnnn c
supports

ggOOOOOOOOOOOOOO

d

supports
@@��������

e

supports

^^>>>>>>>>
f

supports
@@��������

g
supports

^^<<<<<<<<

h

attacks

OO

i

attacks

OO

j

attacks

OO

k

attacks

OO

l

attacks

OO

m

attacks

OO

n

attacks

OO

o

attacks

OO

Figure 8.19: Example binary tree debate for h=2

Figure 8.20: Comparison of binary and linear debate structure results

From the results we can see that as with the linear debate structure, for
the binary debate structure, the time to load the debate from the database
and construct the debate visualisation linearly increases with the size of the
debate, and performance is very similar.

However, the results also show that when evaluating debates, performance is
significantly slower in a complex binary structure than for a linear structure,

85

with the same number of statements. This is likely due to the increased
complexity of the proof game played out by the Prolog CaSAPI evaluator,
requiring switches from proponent to opponent (that did not take place in
the linear tree).

8.4.2 Number of users

With an increasing number of users, the probability of multiple users making
simultaneous evaluation requests to the CaSAPI server also increases. As
such, we simulated the effect of multiple ArgumentSpace clients sending
evaluation requests to the CaSAPI server in the same moment, measuring
the effect this has on response time and reliability.

We performed this experiment from a single lab machine as used in the
previous experiment, scheduling multiple evaluation requests to be executed
at the same millisecond in time, using the Java Timer API. Since the test
was performed from a single machine, the requests were not exactly simul-
taneous, however the time scale under consideration meant they were close
enough (since evaluation takes time in scale of seconds).

The debate evaluated by each ArgumentSpace instance was the same (that
shown in figure 8.7). For an increasing number of clients, we recorded the
mean delay encountered for all clients, and the number of failed requests.
The results are shown in figure 8.21.

Figure 8.21: Results from the user scalability experiment

86

The results of this experiment show us that the time to evaluate debates
using CaSAPI linearly increases, as a multiple of the number of simultane-
ous requests, since the Prolog server’s time is split between each request.
Although it may be noticed that, for a number of requests greater than 10,
the increase in delay appears to be less than linear, the additional delay was
due to overhead associated with dropping requests, rather than servicing
them.

The experiment shows us that the system is unable to deal with more than 10
simultaneous requests. After this threshold, the PrologBeans library cannot
cope, and requests start to fail with each additional request, this is due to
the monitor (PBMonitor class) in the PrologBeans library having a limit of
10 requests per server.

It is difficult to estimate the probability of more than 10 requests being
made simultaneously with a given user base size, since the frequency of
evaluation requests will depend on individual user behaviour. However,
from this experiment is is clear that should a large group of ArgumentSpace
users share a common CaSAPI server in its current form, failed requests are
likely to result. This demonstrates the limitations of the current system.

87

8.5 Comparison to Existing Tools

In this section we will compare ArgumentSpace to a number of alternative
argumentation tools, namely Compendium (8.5.1), Cohere (8.5.2), Dungine
(8.5.3), ArgDF (8.5.4) and SWAFI (8.5.5), before summarising our compar-
ison in section 8.5.6.

Each comparison tool was downloaded and tested in order to understand
their features and strengths. For each tool the focus and context of use is
described, we then conduct our comparison in terms of the following features
considered in this project:
Visualisation (visual.): Whether arguments or ideas can be displayed vi-
sually within the tool.
Evaluation (eval.): Whether the tool has the capability to evaluate the
acceptability of a claim/argument/statement.
Ontologies (ont.): Whether the tool provides the facility to display or
evaluate knowledge held in ontologies.
Schemes (sch.): Whether the tool makes use of argument schemes for rep-
resentation, construction or analysis of arguments.
Collaboration (collab.): Whether the tool allows multi-user collabora-
tion on ideas/arguments.

8.5.1 Compendium

Compendium [19] is one of the oldest and most widely used open-source
sensemaking tools, developed at the Open University’s Knowledge Media
Institute. Compendium is based around the broad idea of ‘idea mapping’
rather than argumentation, and was based on the ‘Issue Based Information
Systems’ (IBIS) model [27], developed by Horst Rittel and colleagues during
the early 1970’s. In IBIS, primitives are of three types: issues (questions
that the design or argument is addressing), positions (potential resolutions
of an issue) and arguments (statements which support or refute a position).

88

Figure 8.22: Argument Visualisation in Compendium

Compendium was developed to support the organisation of ideas, knowledge
and multimedia, concepts larger than the scope of my project or argumenta-
tion. However, this broad focus comes at a cost. Compendium provides no
means of evaluating the validity of arguments described in the IBIS model,
and also makes no use of argument schemes. Compendium provides no
collaboration among distributed parties, it also provides no evaluation func-
tionality. It provides the ability to provide ‘evidence’ to statements with
web URLs (or an ontology URL). However, there is no ability to evaluate
the URL as in ArgumentSpace. Compendium does provide a means of sup-
porting statements with multimedia source of evidence. However, ontologies
are not catered for in any specific way. They cannot be viewed or evaluated
against.

Another large problem with the program is its lack of collaborative ability,
despite its broad idea mapping focus, it provides no means of sharing ideas
and knowledge. This lack of consideration in design, lead the Knowledge me-
dia institute, designers of Compendium to develop Cohere, described next.

Visual. Eval. Ont. Sch. Collab.
Compendium X x x x x

89

8.5.2 Cohere

Cohere [18] is a web-based system also developed at the Open University’s
Knowledge Media Institute. Cohere is a general idea visualisation tool, simi-
lar in nature to Compendium, and also largely based on the IBIS model [27].
Its main advantage over Compendium is its distributed nature, supporting
collaboration and debate.

Cohere has two concepts: ideas, and connections. An idea is an arbitrary
statement or web resource, and a connection is a relation between two ideas,
which must be either of the type positive (such as supports), negative (e.g.
is inconsistent with) or neutral (e.g. responds to). New relations can be
defined by the user.

Figure 8.23: Cohere, displaying an example argument on climate change

One of the main disadvantages of Cohere’s primary functionality is the fact
that the arguments are read only when viewed visually - editing must be done
in a text only manner. There also exists no validity checking functionality
in Cohere, something which would be difficult to implement with its current
unconstrained argument structure.

Cohere provides no support for schemes or ontologies, however, like Com-

90

pendium, it provides the ability to link statements to URL’s - which could be
an OWL ontology, but again no functionality is provided to view or evaluate
against the ontology.

Visual. Eval. Ont. Sch. Collab.
Cohere X x x x X

8.5.3 Dungine

Dungine [22] is a Java library intended for developers which evaluates ar-
guments in the Abstract Argumentation framework (described in section
2.2.1).

The library is intended to be used by applications, to provide evaluative
functionality (in a similar way to ArgumentSpace’s use of CaSAPI), and so
does not directly provide functionality for schemes, ontologies, or collabo-
ration. These functions may be provided by the program using Dungine,
therefore we show ‘N/A’ (not applicable) in the comparison table.

One example integration of Dungine is with the argumentation tool, Arau-
caria [26], which visualises arguments and allows the use of schemes along-
side Dungine evaluation. Dungine is also distributed with a test applica-
tion (shown in figure 8.24), which allows argument visualisation in a simple
graph.

Dungine currently implements a reasoner for grounded and preferred seman-
tics. The reasoner is implemented using argument game proofs, and allows a
justification to be shown for each argument’s evaluation - something Argu-
mentSpace currently lacks. Its use of abstract argumentation may provide
limitations in integration with existing sense-making tools such as Com-
pendium and Cohere, which do not use an atomic argument structure as in
abstract argumentation.

91

Figure 8.24: Evaluating a simple argument framework with Dungine

Visual. Eval. Ont. Sch. Collab.
Dungine N/A X N/A N/A N/A

8.5.4 ArgDF

ArgDF [33], developed by Fouad Zablith at British University in Dubai, is
a text based online argumentation system, it was designed as a proof of
concept for the use of the argument interchange format (AIF) [described
later in section 9.2.4]. The tool provides collaborative functionality through
its web-based interface. No login system is used on the website, so anyone
can freely edit and contribute to current arguments.

In ArgDF arguments must be designed by conforming to a specified argu-
ment scheme, if no scheme exists in the system which matches the argument
structure, a new scheme must be designed before defining the argument. I
believe this requirement to use schemes to be somewhat restrictive, although
the requirement is linked to the definition of AIF, which also places a heavy
emphasis on schemes.

ArgDF provides no means of linking statements to ontologies or other evi-
dence, and it also provides no means of evaluating the validity of arguments.

92

Figure 8.25: Inspecting an argument in ArgDF

ArgDF’s arguments are displayed and constructed in a text only way, which
makes large arguments unintuitive to understand, since the argument is
structured and broken down into small statements, but the connections be-
tween those statements are not easily to see.

Visual. Eval. Ont. Sch. Collab.
ArgDF x x x X X

8.5.5 SWAFI

‘Semantic Web Argumentation For Individuals’ (SWAFI) [32, 31] is a hy-
brid argumentation-ontological tool developed by researchers at the Breast
Cancer Research Institute. It is one of only a few tools which, like Ar-
gumentSpace, use argumentative techniques and ontological reasoning to-
gether.

SWAFI is a system designed to decide on treatment choices for cancer pa-
tients, it uses an argumentation framework developed specifically for the
program. Within the system arguments are stored for/against the use of
various drugs, with premises based on details of the patient. The argu-
ments are based on the results of clinical trials describing when a particular
drug has been effective/ineffective. The framework uses a similar notion of
argument-attack and acceptability to ABA, but also resolves conflicts be-
tween arguments based on when the clinical trial was conducted (arguments
based on newer trials attack those based on older ones). The system uses
an ontology to store facts about patients, which may be used as premises to

93

the arguments described above.

Although the computational techniques used in SWAFI are similar to Ar-
gumentSpace, visually it is very different. The tool is a command-line only,
providing a textual output as to the clinical decision (no argument visualisa-
tion or use of schemes). Also only limited justification of the process taken
to come to this decision is provided.

Its aims are different, it is not designed for evaluation of arbitrary human
arguments, but rather specific medical arguments presented in a description
logic format, as such it is difficult to compare directly with ArgumentSpace.
However it is clearly a useful tool in showing how the idea of combining
ontological reasoning and argumentation is gaining attention.

Figure 8.26: SWAFI result

Visual. Eval. Ont. Sch. Collab.
SWAFI x X X x x

8.5.6 Summary of comparison

Having assessed other argumentation tools available currently, it is clear that
ArgumentSpace is relatively novel in the breadth of features provided. None
of the tools we have compared it to has provided all the functionality which
ArgumentSpace proves (visualisation, evaluation, use of ontologies, use of
schemes and collaboration), as seen in figure 8.27. However in evaluating
ArgumentSpace we should not just consider the breadth of functionality

94

provided, but also how well these features are implemented.

Visual. Eval. Ont. Sch. Collab.
Compendium X x x x x

Cohere X x x x X
Dungine N/A X N/A N/A N/A
ArgDF x x x X X
SWAFI x X X x x

ArgumentSpace X X X X X

Figure 8.27: Features comparison table

In terms of argument visualisation, there is very little difference visually be-
tween ArgumentSpace and other tools with this functionality (Compendium
is similar, but cohere does not provide visual editing). At times Argu-
mentSpace can appear more cluttered in its graphic representation than the
other tools, however this is only true when metadata about validity is shown
on each statement, a feature which can be turned off.

Two tools considered provided a mechanism to evaluate arguments, Dungine
and SWAFI. SWAFI uses an argumentation framework designed specifically
for the medical application, and comparison is difficult since the arguments
are not arbitrary, but prior defined in the program. Dungine provides eval-
uative functionality, but uses the abstract argumentation framework and
so ignores the internal structure of arguments. It does, however, illustrate
a feature which ArgumentSpace currently lacks- display of the game proof
used to arrive at the decision of acceptability.

Schemes are used in a similar fashion to ArgumentSpace in the ArgDF
tool. This program is initially provided with a number of Walton’s schemes,
as in ArgumentSpace, and additional schemes can be defined by the user.
The program provides an easier means of defining new Schemes than Ar-
gumentSpace, in that, in ArgDF, schemes are defined using a simple web
based interface, whereas in ArgumentSpace schemes must be defined in an
XML format which is not really feasible for non-technical users.

Cohere and ArgDF both provide similar collaboration functionality, although
this is much more limited than ArgumentSpace. ArgDF is a web-based tool
in which arguments are displayed in textual form, as such synchronisation
issues are not encountered. In Cohere, arguments can be collaborated on,
but again only in a textual form. Graphical visualisation is a read-only pro-
cess. Therefore, ArgumentSpace’s functionality, although not perfect in this
respect, is the best of those compared to.

95

Through comparison to existing tools, a number of features have been iden-
tified which could be improved upon in future versions of ArgumentSpace,
namely an improved method for defining new schemes, development of the
ontological query engine to a level where it could be used in more serious
contexts (as with SWAFI) and display of the proof game used to come to
a decision on acceptability of a claim. However, the comparison is also
encouraging in that it has highlighted the strength of ArgumentSpace in
comparison to prior available tools.

96

Chapter 9

Conclusions

In this chapter, we first highlight the achievements of the project in section
9.1, and then identify weaknesses in the implemented system in 9.2.

9.1 Achievements and Contributions of the Project

The primary contribution of this project is the design and implementation
of ArgumentSpace, a combined argumentation visualisation and evaluation
tool, providing a means through which the evaluative functionality of an ex-
isting argumentation system (CaSAPI) can be accessed and used by a wider
audience than was previously possible. In doing so the project provides a
mapping from a support/attack dialog-inspired framework to the assump-
tion based argumentation framework. This approach could be taken up by
related tools such as Cohere and Compendium, which share a similar visual
structure to ArgumentSpace.

The system builds on work into argumentation schemes to support the de-
velopment and analysis of arguments built on sound reasoning. In doing
so the definition of argumentation schemes has been extended to include
ideas from assumption based argumentation and research into the burden
of proof.

The application provides one of the first links between the fast expanding
area of ontology based knowledge representation and argumentation, allow-
ing users to support statements with evidence from ontologies, and validate
those claims automatically against the ontology. To support this I have de-
veloped a simple ontological query engine, which uses language semantics
and set theory as well as syntax to validate statements.

97

9.2 Current Weaknesses and Further Work

9.2.1 Expressibility

One key area in which the system could be developed is the expressibility
of the argumentation framework. Under the current implementation, ev-
ery statement (A) linked by support(A,B) becomes a requirement for the
acceptability of B. An improvement might be to allow alternative support
statement groups (using logical disjunction), for example:
(‘I will go out’) if (‘It is sunny’) ∨ (‘I am bored’). An example of how this
might be visualised is seen below.

“I will go out”

“It is sunny”

supports
55llllllllllllll

“I am bored”

OR supports
iiRRRRRRRRRRRRRR

The reason disjunction, although a primary component of traditional logic
was not considered to be of great importance here, is that a defeasible logic-
based argumentation systems and natural argumentation do not often in-
volve disjunction.

When arguing for a case, it is rare than one might say “I will go out if it is
sunny or I am bored, and I am bored, so I will go out”. Since the alternative
premise (‘it is sunny’) is not true, it is usually omitted.

However, there are cases where disjunction would be useful, for example
in describing general arguments or rules, and so it would be useful if this
feature was supported.

9.2.2 Improvements to the ontological query engine

Currently the query engine supports only a small number of operators:
{is subset of, is member of, is disjoint to, is empty set, not, and, or}.
This could be extended to support others such as individual properties as
well as property classes (for example the query “INDIVIDUAL X hasproperty
A=B”).

Also, the proof system for the query engine could be extended, currently
it works on a best effort basis, that is, we attempt a number of disproof
methods which are all shown to be sound (see appendix A) using a subset of
OWL’s language features. However no claim is made as to the completeness

98

of these methods - in some cases we may return ‘unknown’ when there is
in fact some way of proving or disproving a statement. Further work could
be conducted into ensuring completeness of the proof methods, exploiting
the full range of OWL syntax (such as class union, intersection etc) and
semantics. Alternatively, an existing query engine for OWL or RDF could
be integrated.

9.2.3 Support for alternative notions of validity

Currently ArgumentSpace uses the ABA notion of validity based on ad-
missible belief semantics. ArgumentSpace could be improved to support
alternatives such as ideal or grounded semantics (see section 2.3).

Grounded dispute derivations can be computed using the latest version of
CaSAPI (v4.5), however ArgumentSpace currently uses an older version
(v4.3). Improving ArgumentSpace to use the latest CaSAPI version, in
order to support grounded semantics, should be a simple alteration, due to
the interface design (see section 7.2).

9.2.4 Argument Interchange Format

Various frameworks exist for describing arguments, as seen in section 2.2.
Various tools have also been developed to provide sense making and argu-
ment visualisation, however different tools often use their own argument
frameworks, and even if using the same framework may store the arguments
in a different way. A standard was proposed in [8] which was designed as a
universal notation for arguments, Argument Interchange Format (AIF).

In AIF, arguments are represented by a set of nodes connected through
edges. There are two types of nodes: the information nodes (I-Nodes) which
hold pieces of information or data that acts as a claim, premise, data etc, and
scheme nodes (S-Nodes) representing the arguments scheme which represent
a model of reasoning. In AIF, edges between nodes are not typed, and their
meaning is inferred from the scheme of which they are a part.

An example argument can be seen below, where the S-Node has a thicker
border than the I-Nodes. Here the S-Node represents Modus Ponens. It
graphically represents the argument that if we accept p and p → q , using
the Modus Ponens ‘scheme’, we should accept q.

99

Figure 9.1: A simple argument in AIF

Despite the obvious benefits of a shared format, there has been limited
use of the format since its inception, ArgDF (section 8.5.4) being one of
the few tools to make use of AIF. Implementation of saving and loading
using AIF would be beneficial to the goal of achieving a common format
within the argumentation community. It would also be beneficial for users
of ArgumentSpace, by allowing the sharing of arguments with ArgDF, and
other tools, if the format becomes more widely used.

9.2.5 Improved concurrent collaboration

Under the current system, only a single user can be viewing an argument
with the ability to write to it at any time. All others must view the argument
in read only mode, and receive periodic updates (should any have occurred).
This coarse granularity provided a simple means of ensuring synchronisation,
however it could be improved.

A better system would allow multiple users to be viewing and editing an
argument at any one time, with locks present on specific argument state-
ments rather than the entire debate. This would also require an enhanced
synchronisation system, so that updates are made to specific nodes, rather
than the entire debate, as in the system at present.

9.2.6 Work to increase scalability

As a result of testing into the scalability of ArgumentSpace (section 8.4), a
number of potential improvements were identified.

The reliability of debate evaluation currently decreases with increasing de-
bate size, it is believed this is due to a deficiency in the PrologBeans li-
brary when dealing with large predicate queries (which are created by Ar-
gumentSpace from large debates). The frequency of this problem could
be reduced, by creating more compact Prolog predicates. For example,
currently the statement “the weather was very sunny yesterday” would be

100

turned into “the weather was very sunny yesterday” for evaluation, how-
ever the chosen predicate name is merely syntax, and could replaced with a
simple p, q, resulting in a much smaller Prolog representation of the debate.

The second problem identified was that a single PrologBeans server (as
used by ArgumentSpace) can only handle 10 simultaneous requests, after
which calls to evaluate debates fail, as might occur if the number of users
of ArgumentSpace grew large. One solution to the problem of dealing with
a larger number of users might be to have multiple CaSAPI servers, and
implement an intermediary program which allocates a particular CaSAPI
server depending on the current number of requests each server is dealing
with. Alternatively ArgumentSpace could select a random server instance
and thus decrease the probability of the threshold being exceeded for any
particular server. Work could be conducted to explore solutions to this
problem.

101

Bibliography

[1] Gaudenz Alder. Jgraph, a graph drawing library for java,
www.jgraph.com.

[2] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele
Nardi, and Peter F. Patel-Schneider, editors. The Description Logic
Handbook: Theory, Implementation, and Applications. Cambridge Uni-
versity Press, 2003.

[3] T. Bench-Capon and T. F. Gordon. Isomorphism and argumentation.
In Proceedings of the 12th International Conference on Artificial Intel-
ligence and Law (ICAIL 2009). ACM Press, 2009.

[4] Trevor Bench-Capon and Paul Dunne. Argumentation in artificial in-
telligence. Artif. Intell., 171(10-15):619–641, 2007.

[5] Hohmann H. Bench-Capon T., Freeman J. and Prakken H. Compu-
tational models, argumentation theories and legal practice. Argumen-
tation Machines; New Frontiers in Argument and Computation, pages
85–120, 2003.

[6] Andrei Bondarenko, Phan Minh Dung, Robert A. Kowalski, and
Francesca Toni. An abstract, argumentation-theoretic approach to de-
fault reasoning. Artif. Intell., 93:63–101, 1997.

[7] Carlos Iván Chesñevar, Ana Gabriela Maguitman, and Ronald Prescott
Loui. Logical models of argument. ACM Comput. Surv., 32(4):337–383,
2000.

[8] Carlos Iván Chesñevar, Jarred McGinnis, Sanjay Modgil, Iyad Rah-
wan, Chris Reed, Guillermo Ricardo Simari, Matthew South, Gerard
Vreeswijk, and Steven Willmott. Towards an argument interchange
format. Knowledge Eng. Review, 21(4):293–316, 2006.

[9] Clark and Parsia LLC. Pellet, an open source reasoner for owl dl in
java, www.clarkparsia.com/pellet.

102

[10] F. Macagno D. Walton, C. Reed. Argumentation Schemes. Cambridge
University Press, 2008.

[11] Phan Minh Dung. On the acceptability of arguments and its fundamen-
tal role in nonmonotonic reasoning, logic programming and n-person
games. Artif. Intell., 77(2):321–357, 1995.

[12] Phan Minh Dung, Robert A. Kowalski, and Francesca Toni. Dialec-
tic proof procedures for assumption-based, admissible argumentation.
Artif. Intell., 170(2):114–159, 2006.

[13] Essence, an event organised by the global sensemaking network,
events.kmi.open.ac.uk/essence, 2009.

[14] Dorian Gaertner. Argumentation and Normative Reasoning. PhD the-
sis, Imperial College London, 2008.

[15] Dorian Gaertner and Francesca Toni. Casapi: A system for credu-
lous and sceptical argumentation. In Proceedings LPNMR-Workshop
on Argumentation and Non-Monotonic Reasoning (ArgNMR07), 2007.

[16] Dorian Gaertner and Francesca Toni. Hybrid argumentation and its
properties. In COMMA 08, pages 183–195, 2008.

[17] Danilo Gurovich. Testertimer api, a simple java performance test utility,
danilogurovich.wordpress.com.

[18] The Open University (Knowledge Media Institute). Cohere, an online
visual tool to create, connect and share ideas, cohere.open.ac.uk.

[19] The Open University (Knowledge Media Institute). Compendium, a
software tool for managing ideas and connections between information,
compendium.open.ac.uk/institute.

[20] National institute of standards and technology. Fips 180-2, secure hash
standard, federal information processing standard (fips), publication
180-2. Technical report, Department of commerce, August 2002.

[21] Nicholas R. Jennings, Peyman Faratin, A. R. Lomuscio, Simon Par-
sons, Michael Wooldridge, and Carles Sierra. Automated negotiation:
Prospects methods and challenges. Group Decision and Negotiation,
10(2):199–215, 2001.

[22] Gerard Vreeswijk Matthew South and John Fox. Dungine, a java rea-
soner for evaluating the acceptability of abstract argumentation frame-
works, www.argkit.org.

[23] University of Manchester. Owl api, an owl interface library for java,
owlapi.sourceforge.net.

103

[24] Sicstus Prolog. Jasper, a prolog emulator for java,
www.sics.se/sicstus/docs/latest4/html/jasper.

[25] Sicstus Prolog. Prologbeans, a java-prolog communication library,
www.sics.se/sicstus/docs/latest4/html/prologbeans.

[26] Chris Reed and Glenn Rowe. Araucaria, a software tool for analysing
arguments, araucaria.computing.dundee.ac.uk.

[27] Horst W. J. Rittel and Melvin M. Webber. Dilemmas in a general
theory of planning. Policy Sciences, 4(2):155–169, June 1973.

[28] B. Shneiderman. Designing the user interface: Strategies for effective
human-computer interaction (1st edition). Addison-Wesley, 1987.

[29] D. Walton. Argumentation Schemes for presumptive reasoning.
Lawrence Erlbaum Associates, 1996.

[30] Wikipedia. Binary tree entry, en.wikipedia.org/wiki/binary tree.

[31] Matt Williams. Integrating Ontologies and Argumentation for decision-
making in breast cancer. PhD thesis, University College London, 2008.

[32] Matt Williams and Anthony Hunter. Harnessing ontologies for
argument-based decision-making in breast cancer. In Proceedings of the
International Conference on Tools with AI (ICTAI’07), pages 254–261,
2007.

[33] Fouad Zablith. Argdf, a semantic web-based argumentation system,
www.argdf.org.

104

Appendix A

Ontological Query Engine
Proofs

In chapter 6 we discussed the design of an ontological query engine for evalu-
ating statements about ontologies, and combining the result with arguments.
Here we present the proofs of the rules used by the query engine.

A.1 Individuals

Proposition (1):
for arbitrary classes A,B,X and individual x, and where U is the universal
set:

if x is declared a member of class X if x ∈ X
and X is the complement of any super-class of A (X = U −B) ∧ (A ⊆ B)
then x is not a member of the class A then x /∈ A

Proof:
If (x ∈ X) ∧ (X = U −B)
then x /∈ B;
since (A ⊆ B) ∧ (x /∈ B)
then x /∈ A.

Informally:
If x is a member of X, and X is the complement class of B, then x is not in
B (X is everything that is not in B).
If x is not in B, and B is a super-set of A, then x cannot be in A.

105

A.2 Classes

Proposition (2):
For arbitrary classes A, B, and where U is the universal set:

if X is non-empty if ∃x : x ∈ X
and X is a subclass of A and X ⊆ A
and A is a complement class of B and A = U −B
and C is a subclass of B and C ⊆ B
then X is not a subclass of C then X 6⊆ C

Proof:
since (x ∈ X) ∧ (X ⊆ A)
x ∈ A;
since (x ∈ A) ∧ (A = U −B)
(x /∈ B);
since (C ⊆ B) ∧ (x /∈ B)
then x /∈ C;
since (x ∈ X) ∧ (x /∈ C)
X 6⊆ C.

Informally:
Since x is in X, and X is a subclass of A, x must be in A.
Since A is the complement class of B, x cannot be in B.
Since C is a subclass of B, if x is not in B, it cannot be in C.
For X to be a subclass of C, all x in X must be in C, since x cannot be in C.
X cannot be a subclass of C

Proposition (3):
For arbitrary classes A,B

If X is non-empty if ∃x : x ∈ X
and X is disjoint from A and X ∩A = ∅
and A is a superclass of B and B ⊆ A
X cannot be a subclass of B X 6⊆ B

Proof:
since (X ∩A = ∅) ∧ (x ∈ X)
x /∈ A;
since (B ⊆ A) ∧ (x /∈ A)
x /∈ B;
since (x ∈ X) ∧ (x /∈ B)
X 6⊆ B.

Informally:

106

Since X is disjoint from A and x is in X, then x cannot be in A.
Since B is a superclass of A, and x is not in A, x cannot be in B.
For X to be a subclass of B, all x in X must be in B, since x is in X and not
in B,
X cannot be a subclass of B.

107

Appendix B

Ontological Query Language

In section 6.4 we presented the query language developed for querying on-
tologies in ArgumentSpace. Here we formally define the language grammar:

or_statement :: and_statement (OR and_statement)*
and_statement :: statement (AND statement)*

statement:: binary_st
| unary_st

binary_st:: individual (NOT)? ELEMENTOF class
|class (NOT)? SUBSETOF class
|class (NOT)? DISJOINTFROM class

unary_st :: class (NOT)? EMPTY

class:: CLASS name
|PROPERTY property=value

individual:: INDIVIDUAL name

108

Appendix C

XML Scheme: Argument for
Financial Support

In section 8.1.4 we presented an argument scheme in relation to a piece of
Germany family law, describing the situation in which one family member
must support another. The scheme’s XML representation is shown here.

<SCHEME>
<NAME>Argument for financial support</NAME>

<PREMISE>
<TEXT>A is in direct lineage of B</TEXT>
<CQ>
<CQTEXT>How are they in direct lineage?</CQTEXT>
<CQTYPE>1</CQTYPE>

</CQ>
</PREMISE>

<PREMISE>
<TEXT>B is needy, he is unable to support himself</TEXT>
<CQ>
<CQTEXT>What proof is there that B is unable to support himself?</CQTEXT>
<CQTYPE>1</CQTYPE>

</CQ>
</PREMISE>

Scheme definition continued on next page

109

<PREMISE>
<TEXT>A has the capacity to provide support</TEXT>
<CQ>
<CQTEXT>

Are there any factors which show he is unable to provide support?
</CQTEXT>
<CQTYPE>0</CQTYPE>

</CQ>
</PREMISE>

<PREMISE>
<TEXT>The neediness of B was not caused by immoral behavior</TEXT>
<CQ>
<CQTEXT>Was Bs neediness caused by alcoholism?</CQTEXT>
<CQTYPE>0</CQTYPE>

</CQ>
</PREMISE>

<CONCLUSION>
<TEXT>A is obliged to support B</TEXT>

</CONCLUSION>

<VARIABLE>A</VARIABLE>
<VARIABLE>B</VARIABLE>

</SCHEME>

110

	Introduction
	Motivation
	Overview of the Report

	Background to Argumentation
	Argumentation
	Argumentation Frameworks
	Notions of Validity
	CaSAPI

	ArgumentSpace
	System Introduction
	A Walkthrough Example
	ArgumentSpace Concepts
	Brief Technical Overview

	Knowledge Representation and Validity
	Argument Representation
	Debate Evaluation
	Transformation to ABA

	Argument Schemes
	Background to Schemes
	Enhancements to Walton's Schemes
	Argument Scheme XML Definitions

	Ontologies
	Background to Ontologies
	Ontology Representation and OWL
	Ontological Reasoning
	Query Language
	Combining Ontological Reasoning with the Argument

	Issues in Software Engineering
	Design Structure
	CaSAPI as a Server
	Concurrency and Synchronisation
	Multithreading
	Security

	Evaluation
	Case Study: A Problem in Legal Reasoning
	Case Study: An Argument on Climate Change
	Usability Evaluation
	Scalability and Performance Evaluation
	Comparison to Existing Tools

	Conclusions
	Achievements and Contributions of the Project
	Current Weaknesses and Further Work

	Bibliography
	Ontological Query Engine Proofs
	Individuals
	Classes

	Ontological Query Language
	XML Scheme: Argument for Financial Support

