
Department of Computing

Final Year Project Report

Refining Labelled Transition
Systems Using Scenario-Based

Specifications

Author:
Diana Ramchandani

Project Supervisor:
Dr Alessandra Russo

Project Co-Supervisor:
Dalal Alrajeh

June 25, 2009

Acknowledgements

Firstly, I would like to give special thanks to my supervisors, Dr Alessan-
dra Russo and Dalal Alrajeh, for their diligent help, support and encour-
agement throughout the entire course of the project. The critical review
and guidelines they provided me with at every meeting as well as the brain-
storming sessions helped me explore a myriad of different alternatives during
the development phase and to shape the techniques used, thus improving
my apprehension of the various concepts. On a more personal level, I really
appreciate their optimism, enthusiasm and generosity.

Secondly, I would like to thank Dr Emil Lupu for agreeing to be my
second marker, and for his invaluable feedback, guidance and suggestions
during early stages of the project.

I would also like to thank Will Heaven for contributing a significant part
of his precious time to help me better my understanding of the back-end to
the existing LTSA tool, hence providing me with an insight to some of the
design issues during the implementation of the refinement algorithm.

In addition, I would like to thank my friends and family for their endless
support, patience, and cooperation throughout my time at university.

Abstract

Labelled Transition Systems(LTSs) are often used in theoretical Com-
puter Science in order to study computations through the analysis of the
system’s states and transitions. Large and complex system models can be
constructed by the composition of multiple LTSs, and the LTSA can be
used as a general purpose tool to explore such systems through a number of
different perspectives. Amongst these, it is necessary to verify that a sys-
tem satisfies a set of defined properties. Current approaches perform similar
checking, but often they require constant involvement from the user, and
the algorithms rely on various kinds of pre-processing of the input.

The aim of this project is to ensure that a system specification adheres
to examples of desirable and undesirable system behaviour provided by end-
users, and consequently to refine the initial LTS directly such that the re-
sulting model is consistent with user-provided scenarios.

More specifically, the objective is to write and implement an algorithm
that takes an initial transition system as input together with sets of positive
and negative scenarios, and outputs a refined model if one exists. We also
include a simple addition to the existing LTSA architecture to demonstrate
functionality of this refinement feature.

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Contributions . 6

2 Background 8
2.1 Labelled Transition Systems (LTS) 8

2.1.1 Analysis of LTS . 13
2.2 Scenario-Based Specifications 15

3 Related Work 17
3.1 Generalisation of LTS models from Scenarios 18
3.2 Using ILP to Extract Operational Requirements from Scenarios 21
3.3 Refinements of LTS models based on partition-refining 25

4 Algorithm for LTS Refinement 29
4.1 Introduction . 29
4.2 Representation of Scenarios as PTAs 29
4.3 Generalisation of positive scenarios 35

4.3.1 Merging States . 35
4.3.2 State-Merging Algorithm 38
4.3.3 Discussion . 43

4.4 Refinement Process . 48
4.4.1 First-Level Pruning 49
4.4.2 Second-Level Pruning 54
4.4.3 Discussion . 61

5 Comparison to Related Work 71
5.1 Generalisation of LTSs from Scenarios 72
5.2 Using ILP to Extract Operational Requirements from Scenarios 73
5.3 LTS Refinement based on Partition-Refining 74

1

5.4 Generalising Scenarios into State Charts 75

6 Tool for the Refinement of LTSs 77
6.1 Design & Implementation . 77

6.1.1 Discussion . 88
6.2 User Interface . 88

7 Testing: A Case Study 101

8 Evaluation 117
8.1 Discussion . 117
8.2 Implementation . 119

9 Conclusions and Future Work 122
9.1 Discussion . 122
9.2 Additional features and future work 122

2

Chapter 1

Introduction

1.1 Motivation

Labelled Transition Systems (LTS), are operational models of system be-
haviours that can be analysed in various ways with respect to given safety
properties of the system. However, they often give a holistic view of the
system, thereby also covering behaviour that is undesirable according to the
system specification. It is therefore in the interest of requirements engineers
to refine these LTS models so that they can provide a more synthesised view
of the system using scenarios and knowledge about the system domain.

We may want to initiate the refinement starting from the most general
system which has no specification associated with it, and is defined by do-
main knowledge alone. However, systems can also be synthesised at later
stages of the development process as a form of validation with respect to
certain properties. Sets of scenarios and counter-examples are provided by
the user or generated as a result of the validation process, which are taken
into account in order to generate a more refined LTS. Our motivation be-
hind the LTS refinement approach presented in this report comes from the
desire to solve the problem of elaborating behavioural models from scenarios
and knowledge about the system domain, by means of subsequent stages of
refinement directly applied to the given LTS model, as shown in Figure 1.1.

Scenario-based specifications are becoming increasingly popular as part
of the requirements engineering process. They are partial operational de-
scriptions of system behaviours, and as such are very effective for commu-
nicating with the users. Initially we assume that the given sets of positive
and negative scenarios are covered by the LTS that we start from, and this
needs to be verified at every subsequent refinement stage.

3

Figure 1.1: Synthesis of LTS models

Recent work has shown how an appropriate inductive learning algorithm
can help support the process of refining end-user goals into operational re-
quirements via scenarios, so that appropriate system models can be con-
structed in line with the specification. However, this requires “encoding” of
the LTSs into specific types of logic programs and “decoding” of the learned
clauses into refined LTSs that accept (resp. reject) new given positive (resp.
negative) scenarios.

Stakeholders (users or beneficiaries) often provide partial specifications
of systems, from which LTS models are generated. These models may in-
clude an excess number of states and hence may cover a number of unwanted
scenarios if the system specification is not sufficiently constrained. We in-
tend to synthesise the most general LTS (for which there is no specification
yet, only domain knowledge) according to sets of positive and negative sce-
narios covered by the system in question, so that the resulting model is a
refined version of the initial LTS, which still accepts the desirable system
behaviour and simultaneously rejects all the given negative scenarios. This
is denoted by the edge labelled (a) in Figure 1.1, and its flow is illustrated
in Figure 1.2.

System behaviour and properties are specified using Finite State Pro-
cess(FSP) notation in the LTSA (Section 2.1.1), which in addition provides
methods for checking these properties, as described in Section 2.1. Even
though our approach does not focus on checking such properties, it forms
part of the synthesis process, which verifies their satisfaction when implicitly
expressed in the given scenarios. The following example helps clarify these
concepts.

Let us consider a train system, which can move, stop, have its alarm but-
ton pressed, and have its doors opened or closed. An FSP specification for
this system that includes mainly domain conditions would enable sequences

4

Figure 1.2: Diagrammatic Representation of Our Aim

of these actions to occur without taking into account some of the system’s
goals. If the system requires all doors to be closed while the train is in
motion due to passenger safety reasons (i.e. a safety property for the train
system), then this would not necessarily be captured by the LTS resulting
from the initial FSP. Our intention is to take in this sort of additional pre-
condition information as input, in the form of examples of behaviour that
the system should always (resp. never) be able to exhibit, and consequently
restrict the set of actions possible in order to satisfy the requirements pro-
vided. In this case, if a passenger presses the alarm button in an emergency,
the train would firstly need to come to a halt, and only then can its doors
be opened. Therefore, our algorithm would work on the initial LTS, and
output a resulting LTS which ensures that this is adhered to.

This report presents a way of developing an algorithm which analyses
LTS models with respect to positive and negative scenarios and defines re-
finement operators directly on the LTS models that would simulate the
generalisation process of an inductive computation. The outcomes of the al-
gorithm explained herewith are therefore evaluated by comparing its results
to those obtained by the ILP task when applied to a specific case study, as
they both share similar aims.

5

1.2 Contributions

The principal contribution of this project has been the development of an
algorithm that can be applied directly to Labelled Transition Systems in or-
der to refine them according to given sets of positive and negative scenarios,
representing desirable and undesirable system behaviour, respectively. The
aim is to enable the system to exhibit all the positive behaviour, whilst at
the same time to disallow it from engaging in any actions or sequences of
actions that could lead to unwanted behaviour. The relevant background
material can be studied in Chapter 2.

As part of this holistic approach, we have investigated various ways in
which the positive scenarios provided can be synthesised and deployed to-
gether with the negative scenarios, to prevent the obtention of an overly con-
strained model whilst preserving as much of the desirable system behaviour
as possible. Chapter 3 includes details regarding these related approaches.

We have implemented the proposed algorithm within the existing LTSA
tool developed at Imperial College London using Java, mainly because the
LTSA is written in this language as well. Thus, we took advantage of a
relatively quick and easy means of integrating the new code into the existing
one. Further design and implementation details are discussed in Chapter 4.

We assume that, together with an initial set of requirements or other
conditions that may have been included in the system specification, the
input to our algorithm will be the most generalised model corresponding to
the system. We can then take into account sets of positive and negative
scenarios that are covered by the system in question, respectively, rather
than relying on arbitrary ones. The LTS model given in Figure 1.3 on Page
7 is an example of an initial model containing the maximum number of
states possible, and hence exhibiting the maximum behaviour.

6

Figure 1.3: An example LTS for a Simple Mine Pump

7

Chapter 2

Background

2.1 Labelled Transition Systems (LTS)

Labelled Transition Systems (LTSs) belong to a specific class of automata,
called the Finite State Automata (FSA). A finite state automaton is a 5-
tuple (Q,Σ, δ, q0,F), where Q is a finite set of states (q0 being the initial
state where all possible paths start from), Σ is a set of event labels that are
used to identify transitions between states, δ is a transition function mapping
Q × Σ to 2Q, and F is a subset of Q representing just the accepting states,
which are the last states of all paths that are accepted by the automaton.
An example FSA is shown in Figure 2.1, where the transition labelled ε
implies that it can be traversed without an event occurring, and final states
are represented by two concentric circles. We can formally define it as the
5-tuple (Q,Σ, δ, q0,F), where the set of states Q in this case is {A, B, C, D,
E, F}, the initial state q0 is A, the set of final states F is {A, C, D}, the set
of event labels Σ is {a, b, c, d, e, f, ε}, and the elements (A, a, B), (A, a,
C), (A, b, F), (B, c, D), (B, d, E), (C, e, D), (C, f, E), (F, ε, B), and (F, a,
E) are those defined by the transition function δ.

A deterministic finite-state automaton (DFA) is present if, for any q in
Q and any e in Σ, δ(q,e) has at most one member. In addition, a DFA has
only one initial state, and no ε transitions. The corresponding DFA for the
FSA in Figure 2.1 is shown in Figure 2.2 on page 9. We can see that the
ε transition that previously existed between states F and B has now been
removed, and the multiple outgoing ‘a’ transitions from state A are now just
reduced to a single outgoing transition with this label.

An LTS only includes accepting states, and so the sets Q and F are
the same. A Labelled Transition System M can therefore be defined as in

8

Figure 2.1: An example FSA [1]

Figure 2.2: An example DFA for the FSA in Figure 2.1 [1]

[8, 9, 16], as a 4-tuple (Q,A,δ,q0), where Q is a finite set of states, A ⊆ Act
is the countable set of observable actions called the communicating alphabet
of M, δ ⊆ Q × (A ∪{τ}) × Q is a labelled transition relation, and q0 is the
initial state. τ denotes a local action that is unobservable or invisible, and
so τ /∈ Act. If a state q in the LTS has no outgoing transition with label l,
then no action with label l can take place when the system is in state q. We
use π to denote a special error state, which models the fact that a safety
property has been violated by the system. It is required that the error state
has no outgoing transitions, and the corresponding LTS can be denoted as
Π = 〈{π},Act, ∅, π〉. One thing to note is that the initial state of all LTSs
in this report is assumed to be state 0.

One of the differences between LTSs and finite state automata lies in the
finiteness of the number of states and transitions. The number of states and
transitions in an LTS need not be finite, or even countable. Each state in an
LTS is considered as an accepting state, whilst FSAs can only have a finite
number of final states, which are represented by concentric circles, and are
used for recognising a given set of finite strings.

LTSs are graph-like structures that show the different states that a sys-
tem can be in, and possible transitions between them [13, 23, 33]. Each tran-

9

sition is labelled by an action or event. An example of an LTS diagram for a
simple mine pump control system described in [2, 3] is shown in Figure 1.3
on Page 7, where the finite set of states Q is {0, 1, 2, 3, 4, 5, 6, 7}, the set of
observable actions A is {turnPumpOn, turnPumpOff, signalHighWater, sig-
nalLowWater, signalCriticalMethane, signalNotCriticalMethane}, and the
labelled transition relation δ is satisfied by elements including (0, signal-
HighWater, 0), (0, signalNotCriticalMethane, 1) and (6, turnPumpOn, 4),
the initial state q0 being state 0 in this case.

Traces

An execution or a trace of an LTS M is a sequence of observable or τ actions
that M can perform, starting at its initial state, i.e. q0. It is described as
M = 〈Q, A, δ, q0〉 transiting to M′ = 〈Q, A, δ, q′0〉 with action a, denoted as
M a→M′, iff (q0, a, q

′
0) ∈ δ. Even though all states in an LTS are accepting

states, we can define the set of states accepting a particular action a as {q′0
| (q0,a,q′0) ∈ δ}. We could, therefore, use δ(q0,a) to give us the state that M
would be in after executing action a in the state q0. The set of all traces of
M is called the language of M, denoted L(M).

Example traces in the LTS diagram in Figure 1.3 include:

0
signalLowWater−→ 4

signalhighWater−→ 0

0
turnPumpOff−→ 2

signalHighWater−→ 2
turnPumpOn−→ 0

0
signalNotCriticalMethane−→ 1

turnPumpOff−→ 3
turnPumpOn−→ 1

signalCriticalMethane−→ 0

These can also be represented as 〈signalLowWater, signalHighWater〉,
〈turnPumpOff, signalHighWater, turnPumpOn〉 and 〈signalNotCriticalMet-
hane, turnPumpOff, turnPumpOn, signalCriticalMethane〉.

We define a finite execution of an LTS M (Q,A,δ,q0) as a finite sequence
of consecutive transitions 〈a1,...,an〉 with ai ∈ A, accepted by the LTS from
its initial state, i.e. q0. As in [5], for any natural number n ∈ N, states si
∈ S (a finite set of states) and actions ai ∈ A, with i ∈ N and 0 ≤ i < n,
s0

a0→ s1
a1→ ... sn−1

an−1→ sn is called an execution sequence of length n of
M iff si

ai→ si+1 for all i ∈ N with 0 ≤ i < n. We can say that state sn is
reachable from state s0, because any state in an LTS is reachable in M iff it
is reachable from q0. This does not necessarily mean that a single transition

10

has to exist between the reachable state and q0, as the state will still be
reachable even if this is achieved through a set of transitions which start at
state 0 and cover additional states during the trace.

Composition

It is often the case where agents responsible for particular system behaviour
are each specified by a separate component, in order to clearly represent each
individual functionality. When it comes to larger systems that involve the
interaction between these agents, the individual behaviours are combined
into a single model. The scope of this kind of systems that can be modelled
using LTSs can be very large and complex, so different processes are often
composed using the parallel composition operation “||”, which results in a
composite process. The term process is used in the context of LTSs to
denote a Finite State Process (FSP). If P and Q are processes, then (P ||
Q) represents the concurrent execution of P and Q. This is a commutative
and associative operator, which means:

• (P || Q) = (Q || P)

• (P || Q) || R = P || (Q || R)

Thus, the behaviour of several LTSs can be combined because the com-
posite process allows the visible actions of processes to be shared (those
that are common to their alphabets). A shared action must be executed at
the same time by all processes that participate in the shared action, whilst
unshared actions can be interleaved arbitrarily, hence causing asynchronous
behaviour of the composed model. If M1 = 〈Q1, A1, δ1, q1

0〉 and M2 =
〈Q2, A2, δ2, q20〉, then, if M1 = Π or M2 = Π, M1 || M2 = Π. Otherwise, M1

|| M2 = 〈Q, A,δ, q0〉 where Q = Q1 × Q2, A = A1 ∪ A2, q0 = (q1
0, q2

0), and
δ is defined as follows, where a can be an observable action or τ :

• M1
a→M′1,a/∈A2

M1||M2
a→M′1||M2

• M1
a→M′1,M2

a→M′2,a 6=τ
M1||M2

a→M′1||M
′
2

An example consisting of two LTSs is shown in Figures 2.3 and 2.4
which represent a Simple Mine Pump and its Water Sensor, respectively,
together with the result of their composition in Figure 2.5 [23]. Note that
the synchronised actions are turnPumpOn and turnPumpOff, as these are

11

shared between the processes, and therefore the pump cannot execute a
turnPumpOn action because it needs to wait for a signal of highWater from
the water sensor. Similarly, the pump cannot perform the turnPumpOff
action because it needs to wait for the sensor to signal lowWater before
doing so.

Figure 2.3: LTS 1 Figure 2.4: LTS 2

Figure 2.5: Composed LTS from Figures 2.3 and 2.4

Properties

A safety LTS is a deterministic LTS that contains no π states, and is used
to specify a safety property. This LTS’s language will then define the set
of acceptable behaviours possible over the set of available actions. Another
LTS is then said to satisfy the safety LTS iff any trace in the LTS is also a
trace in the safety LTS, given its set of actions.

An error LTS is also available to check properties, and trap possible
violations using the π state. Every state other than the error state will
have outgoing transitions, hence making the error LTS complete. Detection
of violations of a property is possible via the parallel composition of the
LTS being tested, with the error LTS corresponding to the property being

12

checked. If the π state is reachable in this composition, then the LTS is said
to violate the property.

If we regard an LTS as a component of a larger specification, which con-
tains all the states a component may reach and all the transitions it may
perform, we can use the Labelled Transition Systems Analyser (LTSA) tool
to model the LTS as a set of interacting finite state machines. The prop-
erties required of the system are also modelled as state machines, and the
LTSA performs compositional reachability analysis to exhaustively search
for violations of the desired properties. The following subsection gives a
formal definition of the LTSA and its usage.

2.1.1 Analysis of LTS

For the purpose of this project, we analyse LTSs according to fluents and
events, as described in detail in Chapter 3. It is therefore crucial to famil-
iarise ourselves with Fluent Linear Temporal Logic (FLTL) and any other re-
lated notions. This subsection provides the necessary descriptions, together
with an introduction to the Labelled Transition System Analyser (LTSA).

FLTL is a Linear Temporal Logic (LTL) formalism consisting of time
modalities which are used to model event-based systems. Given a set of
atomic propositions P, a formula in LTL can be defined using the Boolean
connectives ∧, ∨, ¬, and ←, and the temporal operators © (next), 2 (al-
ways), ♦ (eventually),

⋃
(strong) and W (weak until).

Fluents are state predicates whose values are determined by the occur-
rences of initiating and terminating events, that make the fluent values eval-
uate to true or false, respectively. They are used in the stream of Artificial
Intelligence [32] in order to reason about the effects that different events
can have on the state of a system. For our purposes, we will consider only
propositional fluents, defined by Miller and Shanahan [25] as the following:

Definition 1. “Fluents (time-varying properties of the world) are true at
particular time-points if they have been initiated by an action occurrence at
some earlier time-point, and not terminated by another action occurrence in
the meantime. Similarly, a fluent is false at a particular time-point if it has
been previously terminated and not initiated in the meantime.”

The informal definition comes from the Event Calculus (EC) that was
originally introduced by Kowalski and Sergot [17] as a logic program frame-
work for representing and reasoning about events and their effects.

In line with this definition, we define a fluent Fl, initially true or false at
time zero, as a pair of sets where one represents the initiating events and the

13

other the terminating events. Note that the value of a fluent at the initial
state is denoted as InitiallyFl, and Act denotes the set of all possible events.
A fluent definition therefore takes the form:

Fl ≡ 〈IFl, TFl〉 where IFl, TFl ⊂ Act and IFl ∩ TFl = ∅

For the example LTS in Figure 1.3, we assume the fluents PumpOn,
HighWater, and Methane, defined as

• PumpOn ≡ 〈 turnPumpOn, turnPumpOff 〉

• HighWater ≡ 〈 signalHighWater, signalLowWater 〉

• Methane ≡ 〈 signalCriticalMethane, signalNotCriticalMethane 〉

A fluent will hold at a state s if it holds at the initial state and continues
holding at every state in the path between the initial state and state s, or if
some initiating event has taken place, but no terminating event has occurred
which would modify the fluent value at the state being taken into account.
A key point to note is that events immediately affect the values of fluents,
and because the sets of initiating and terminating events for a fluent have
to be disjoint, the value of a fluent is always deterministic with respect to a
system execution. Fluents are completely defined by a fixed subset of well
defined events, which enables more than one fluent to hold at the same state.
We assume that there is a one-to-one mapping between an action in an LTS
and an event in FLTL, so these terms may be used interchangeably.

LTSs can be seen as models corresponding to a given set of FLTL for-
mulae, where system states are defined by the fluent values at each state.
Similarly, De Nicola and Vaandrager introduced Doubly Labelled Transition
Systems (DTSs) [28], which have actions labelling transitions, whilst propo-
sitions label the states. In a similar way, we use fluents for implicit state
labelling.

The LTSA tool, developed by Jeff Magee, Jeff Kramer, Robert Chat-
ley and Sebastian Uchitel (all from Imperial College London), is a very
useful mechanism that enables different types of automated analysis over
LTSs, including fluent model checking. It is not only a verification tool
for concurrent systems, but can be considered as a general purpose tool
for exploring and analysing event-based system specifications. It checks,
mechanically, whether the specification of a concurrent system satisfies the
required behaviour properties. In addition, it provides an animated version
of the specification, hence enabling a more interactive analysis of system
behaviour.

14

Since the main objective of this project is to work on existing LTSs and
ensure that these can be refined to only accept positive system behaviours
according to a set of goals and conditions, whilst rejecting all unwanted
or negative ones, this report will include extensive references to them and
will exemplify them using LTSA-generated model diagrams. It is therefore
highly recommended to be familiar with the basic concepts found in [23].

2.2 Scenario-Based Specifications

A scenario, just as it is referred to in common language, is a concrete de-
scription of an action or event, or a sequence of these. The events can either
occur in the environment or be performed by the system itself. For exam-
ple, in the case of the mine pump system mentioned previously, an event
that occurs in the environment surrounding the system is the increase in
methane or water levels, whilst an event performed by the system itself is
the switching on/off of the pump.

Scenarios are widely used in the pre-requirements stage since it is eas-
ier for customers and domain experts to use than an abstract model. For
our purposes, scenarios represent examples of desirable and undesirable be-
haviour of a system. As expected, desirable behaviour is represented by
positive scenarios, which are assumed to be consistent with the system spec-
ification, whilst undesirable behaviour is represented by negative ones (in-
consistent with system goals).

More formally, a scenario can be defined [2] as a finite trace 〈e1, ..., en〉
that describes a system’s hypothetical behaviour from its initial state by
specifying the events that are initiated by the system in response to events
taking place in the environment. A positive scenario 〈e1, ..., en〉+ implies
that there should be at least one trace in the LTS representing the system
specification where 〈e1, ..., en〉 can be accepted as an input. Conversely, a
negative scenario 〈e1, ..., en〉− implies that there should be no traces in the
LTS where 〈e1, ..., en〉 is accepted as an input.

Scenarios have been represented in a myriad of different ways, including
use case maps, sequence diagrams, and message sequence charts. We have
chosen to use the latter because of the simplicity and ease with which they
can be understood. A Message Sequence Chart (MSC) is used to describe
and specify the interaction between different system components, users, and
the environment through the combined use of a graphical and textual lan-
guage. Vertical lines represent the timelines for each component, whilst
horizontal arrows between components labelled with an event are used to

15

define the interaction between those components. As for the ordering of
events, an MSC timeline defines a total ordering on the events that are in-
coming or outgoing from the component to which the timeline corresponds,
whilst the entire MSC defines a partial ordering on all events. The LTSA
is one of the tools which supports the drawing and subsequent automated
verification of message sequence charts.

Given the LTS model in Figure 1.3, a positive scenario could be one
where the water in the mine reaches a high level, which makes the pump turn
on to control the water level before it overflows. Once a low water level has
been reached, the pump can turn itself off. This is represented in the MSC in
Figure 2.6. Conversely, we could also have a situation where, following the
increase in water level, an action to turn the pump off is attempted. Turning
the pump on in this case would have been more appropriate to control water
levels, whilst the turnPumpOff action is undesirable, and hence constitutes
a negative scenario, illustrated in Figure 2.7.

Figure 2.6: A positive scenario for the
Mine Pump

Figure 2.7: A negative scenario for the
Mine Pump

Note that in the case of the negative scenario, a number of differences can
be observed when comparing its MSC to that of the positive scenario. For
example, the last message is crossed out, and is referred to as the proscribed
message. This message is separated from previous messages by a dashed
line, where the part above the line is called the precondition. This means
that once a trace described by the precondition has occurred, the next event
cannot be that defined by the proscribed message. The dotted line implies
that all the events in the precondition must occur first, before the proscribed
message.

The next chapter describes other approaches that we have studied in
order to place our work into context.

16

Chapter 3

Related Work

A number of different attempts have been made within the Requirements
Engineering field in pursuit of similar goals to our own, namely the discovery
of behavioural models using scenarios. This discipline, which is also the
first stage of the systems engineering and software development processes,
is concerned with the analysis of high-level stakeholder goals so that they
can be refined into system models such as LTSs which can be devised from
formal requirements. Our project is aimed at the refinement of these system
models through the use of scenarios.

The Requirements Engineering process can be very error-prone and may
not provide the level of accuracy needed, so ideally an automated tool would
be of great help. However, the various efforts have tried to generate be-
haviour models from scenarios, each having its benefits and drawbacks.

One method of synthesis is through the use of Message Sequence Charts
representing the desired system behaviour in terms of interactions between
system components, users, and the environment. This was developed by
Uchitel et al. [34]. However, the graphical representations provided by this
technique are often used for documentation purposes and for communica-
tion between the developers and the clients. Due to their limited use in
the design phase of the software development process, Kruger et al. [19]
proposed the translation of MSCs into state charts, to maintain their role
in the requirements capture phase and in addition to enable their exploita-
tion in later stages, such as refinement, validation and verification. Another
technique involves having sequence diagrams capturing positive scenarios,
as they can be understood by customers, software developers and require-
ments engineers alike, and UML state charts can then be generated from
these [36]. A more interactive version of the latter method was developed

17

by Mäkinen and Systä [24], which poses acceptability questions to the user
in order to avoid generating undesirable scenarios.

Other examples include the inductive learning technique suggested by
Van Lamsweerde and Willemet [35], aimed at generating goal specifications
in LTL from scenarios, or certain attempts to produce Specification and De-
scription Language (SDL) specifications from MSCs (an example is specified
in [14] for instance).

A slightly different approach to the previous ones is the L* learning algo-
rithm presented in [6], which iteratively generates and refines assumptions
based on queries and counterexamples, in order to determine whether a par-
ticular safety property holds in a system. The assumptions and properties
are represented as safety LTSs, so the technique can be used to learn a reg-
ular language expressed through fluents and events, and is guaranteed to
produce the minimal LTS that accepts the given language. We can relate
to this approach because our algorithm is also trying to ensure that the re-
fined system model adheres to the safety property(ies) that is(are) implicitly
expressed by the given sets of positive and negative scenarios.

Our work relies on the existing achievements described in [2, 3, 8, 9, 10],
which are explained in more detail later in this section.

3.1 Generalisation of LTS models from Scenarios

Similarly to the approach we present in this report, the synthesis process de-
scribed in [8] considers both positive and negative end-user scenarios, which
are incomplete, so that additional ones are generated. As further scenarios
become available, the given LTS model is incrementally refined. The inter-
active element of the algorithm is an extension of RPNI [29], as it involves
the users by asking them scenario questions.

Given the simplified LTS model of the Mine Pump in Figure 1.3, this
methodology would consider some of the positive and negative scenarios for
the system, and generate the Prefix Tree Acceptor (PTA) in Figure 3.1.
PTAs represent each example taken from the system as a separate, unique
path, where all paths start from a common unique initial state. The scenar-
ios taken in this case are

• 〈signalHighWater, turnPumpOn, signalLowWater, turnPumpOff 〉+

• 〈signalHighWater, signalLowWater〉+

• 〈signalHighWater, turnPumpOff 〉−

18

Note that due to space constraints we have replaced the signalHighWater
and signalLowWater events with highWater and lowWater, respectively, and
similarly with the turnPumpOff and turnPumpOn events, which have been
replaced with the labels turnOff and turnOn in the PTAs. However, the
highWater label is different from the HighWater fluent label, and in fact
constitutes an initiating event for this fluent.

Figure 3.1: A PTA for the simple mine pump (a)

A state-merging algorithm is then proposed for the initial PTA. A path
leading to a black state in the PTA is one that is rejected by the LTS, whilst
one ending in a grey state is accepted by the LTS. It is therefore never the
case where a pair consisting of a grey state and a black state is considered
for merging. states 0, 1, and 2 are referred to as consolidated because they
cannot be merged according to the compatibility of states defined in [8]. The
first pair of mergeable states considered is the one including states 0 and
3, which computes a quotient automaton to generalize the current set of
accepted behaviours. As a result of the merging, the new combined state is
labelled as the state in the pair which has the lowest rank (in this case state
0). The resulting LTS is shown in Figure 3.2.

Figure 3.2: A PTA for the simple mine pump (b)

After some further merging of states, which we do not describe in de-
tail here because of space constrictions, the LTS in Figure 3.3 is returned.
Details regarding the actual merge can be found in [8].

[8] presents tool-supported techniques that overcome two of the problems
that are commonly faced by recent efforts made in the area of synthesising

19

Figure 3.3: A PTA for the simple mine pump (c)

requirements or behavioural models inductively from scenarios. These are,
namely, the need to add additional input other than scenarios to the method-
ology, such as state assertions, which makes it difficult for non-technical users
to use it, and the difficulty in understanding the generated state machines
because of the lack of domain-specific properties. The issues are addressed
by extending known learning techniques for grammar induction, described
extensively in [8]. The general idea is to successively merge state pairs from
the initial LTS, and at each stage the LTS covers all positive scenarios and
excludes all the negative ones. Merging two states implies representing them
as a single state, after having checked that the resulting LTS would correctly
reject all the negative scenarios. This helps generalise the behaviour that is
currently accepted by the system.

An automated process is introduced in [9] for the approach in [8], based
on the use of knowledge about the target system, which can help constrain
the induction process, and hence ask the end-users less scenario questions.
Apart from this, it helps to produce a more adequate LTS model, which is
consistent with the additional information. This extra knowledge includes
fluent definitions, domain properties, and system goals.

Even though the output of this automated process is the same as the one
presented in [8], the actual merging of states is different. A “generate-and-
test” algorithm performs an exhaustive search for equivalent state pairs,
which are merged into equivalence classes. The equivalence of two states
is determined according to the commonly known binary relation in math-
ematics, as described in [8, 9]. As a result, the merging is not performed
in various steps as it was previously done in [8], but instead, the set of
equivalence classes denotes the states in the final LTS.

Applying this automation to the PTA in Figure 3.1 would result in the
following partition into equivalence classes, with the final LTS illustrated in

20

Figure 3.4 - note that the result is the same as the one obtained previously,
but this time there are no intermediate LTSs generated, since the equivalence
classes are defined altogether and the result is generated based on these
classes.

π = {{0, 3, 6}, {1}, {2}, {4}, {5}}

Figure 3.4: Resulting PTA for the simple mine pump (using automation)

3.2 Using ILP to Extract Operational Require-
ments from Scenarios

One of the approaches that we have studied in the context of generating be-
havioural models from scenarios is via the use of ILP. This constitutes one
of the families of inductive learning methods, whose aim is to obtain general
domain knowledge from the specific knowledge that is provided by domain
examples. Inductive learning is most commonly referred to as learning by
example, where a system induces a general rule from a set of observed in-
stances. In the case of ILP, examples and domain knowledge are represented
by Horn clauses.

The learning task presented in [2, 3] also uses scenarios. Stakeholders
usually convey system properties through a more intuitive and narrative
style, by using scenarios that provide only a partial description of a system
in terms of its desirable and undesirable behaviour. In practice, a high
level of time-consumption and inaccuracy can be experienced by extracting
formal requirements from these kinds of specifications. The ILP method
helps overcome these problems by using a partial system specification which
can be extended with event pre-conditions and trigger-conditions from the

21

Figure 3.5: Results of ILP approach

22

information contained in user-provided scenarios. It therefore tackles the
problem through a declarative representation of behaviour models. The
application of this technique to the simple LTS model shown in Figure 1.3
would give the following solution. A diagrammatic representation has been
included to help visualise the result in Figure 3.5.

2(HighWater −→© !turnPumpOff)

This solution constitutes a pre-condition, and in plain English it means:
“It should not be possible to execute a turnPumpOff event at a state where
the fluent HighWater is true”.

By taking advantage of the semantic relationship present between LTL
and Event Calculus (EC), the initial specification represented in LTL is
transformed into an EC logic program that becomes the input to the ILP
system, which in turn learns the missing requirements of the system in
question. A non-monotonic ILP system, called eXtended Hybrid Abductive
Inductive Learning (XHAIL) [30, 31] is used to generalise the scenarios with
respect to the requirements specification.

As formalised in [2], a requirements specification is comprised of a set
of initial state axioms [11, 13] stating which fluents are initially true and
which are false; persistence axioms [15, 17] formalising the law of inertia
that any fluent will remain true (resp. false) until a terminating (resp.
initiating) event occurs that causes it to switch state; change axioms [18, 20],
stating that, for any fluent f ∈ Pf , the occurrence of any initiating (resp.
terminating) event will cause f to become true (resp. false); and a set
of event precondition axioms [21] which disallow any models that include
transitions of the form sk

e→sk+1 for any state sk that satisfies a certain
conjunction of fluent literals

∧
0≤i≤n(¬)fi.

In order to fully define the process of inductive learning, a translation of
scenario properties is required, by expressing the initially incomplete spec-
ification and set of examples in LTL, and then transforming this to ILP
through the use of the EC [17, 26].

A scenario property is an LTL formula corresponding to a scenario.
When dealing with scenario properties, a positive scenario is said to have an
existential scenario property because it is expected to hold in at least one
path of a model, whilst the property associated with a negative scenario is
expected to hold in all paths of a model and is therefore referred to as the
universal scenario property.

23

The learning task pre-processes a system specification and given sets of
positive and negative scenarios as presented in Chapter 2, in order to output
a different FLTL which satisfies the required scenario properties, as formally
defined in Definition 2.

The procedure of learning pre-conditions and trigger-conditions is stated
in [3]. Given an initial requirements specification Spec, a set of undesirable
scenarios Und and a set of desirable scenarios Des, the objective is to acquire
the knowledge of a set of event precondition axioms Pre that will entail the
negation of each undesirable scenario when added to the specification, and
will also be consistent with the desirable scenarios. Definition 2 specifies two
conditions that should theoretically be satisfied as a result: Firstly, that in
any model of Spec ∪ Pre, there is no path producing an undesirable scenario
from Und ; secondly, in any model of Spec ∪ Pre, there is always a path that
corresponds to each desirable scenario in Des. If both these conditions are
fully satisfied by a set of event precondition axioms, then the set is described
as a correct extension of the requirements specification with respect to the
given scenarios, and this determines the completion of the process.

Definition 2. Let Spec be a requirements specification, Des be a set of de-
sirable scenarios, and Und be a set of undesirable scenarios. A set Pre of
event precondition axioms is a correct extension of Spec with respect to Des
and Und iff

• Spec ∪ Pre |=M ¬Pu, for each undesirable scenario Pu ∈ Und

• Spec ∪ Pre 2M ¬Pd, for each desirable scenario Pd ∈ Des

The final stage of the learning process involves taking the LTL specifica-
tions and scenarios mentioned above, and translating them into EC normal
logic programs. This methodology is explained in a detailed manner in [2, 3],
where the necessary background material on the Event Calculus is provided
as well. It is assumed that pre-condition axioms are to be learnt for the
last event of each universal and existential scenario property, because that
particular event will determine whether the path till then can be accepted
by a model or not, with respect to the desirable and undesirable scenarios.
Hence, each universal scenario property produces a sequence of facts which
state what events certainly happen, following a fact stating that some event
should not occur immediately afterwards. Each existential scenario property
states that a certain sequence of events should happen.

24

3.3 Refinements of LTS models based on partition-
refining

A well-known learning method which starts off with the most specific sys-
tem specification, and progresses to the most general form, is state-merging
in an FSA (Finite State Automaton), as referred to in multiple sources in-
cluding [4]. Different algorithms of this type are reviewed in [27], but their
outcome is a generalisation of the information found in the initial automa-
ton. However, we are more interested in a specialisation approach, which
can lead to a refinement of the LTS corresponding to the analysed system.
A similar technique, called the master algorithm, is described in [10] to learn
subclasses of regular languages by searching a partition over the states of
the initial automaton, which we refer to in this subsection.

Different criteria can be used for the partition refinement task, and so
different instantiations of the master algorithm are possible, but the results
obtained both with the k-equivalence and the k-reversibility criteria are the
same in our example. Similarly to [8, 9], the first stage of Elomaa’s approach
also involves the construction of a PTA, but this time it is only from the
given positive examples, followed by the iterative refinement of states into
several equivalence classes. The implementation starts off with a single block
containing all the states (as opposed to beginning with all the states forming
their own partition blocks for state-merging), which is then decomposed
into multiple blocks until all the blocks in the partition are consistent with
the properties defined for the system. We can apply this partition-refining
technique to the initial PTA specified in Figure 3.1, but without taking into
account state 4 and its incoming transition, as this constitutes a negative
scenario, which the partition-refinement does not take as input. Figure 3.6
illustrates the initial PTA corresponding to the positive scenarios

• 〈signalHighWater, turnPumpOn, signalLowWater, turnPumpOff 〉+

• 〈signalHighWater, signalCriticalMethane, signalNotCriticalMethane,
turnPumpOn, signalLowWater, turnPumpOff 〉+

Once again due to space constraints, the events highWater and lowWater
are replacing the signalHighWater and signalLowWater events, respectively,
so they constitute the initiating and terminating events for the fluent High-
Water. Similarly, the signalCriticalMethane and signalNotCriticalMethane
labels have been simplified to read methaneAppears and methaneLeaves,
respectively, for this example.

25

Figure 3.6: Initial PTA to Partition-Refinement

The algorithm usually starts off from a binary partitioning of states in
which the final states make up one block, and the non-final states make up
another. In our case, since we are operating on LTSs (in which all the states
are final), then we consider all states to be part of the same block, which
represents one 0-equivalence class (meaning that starting from any of the
states, no traces of length at most 0 are accepted). The next stage would
be to find corresponding 1-equivalence classes which can split up this single
block of states into multiple ones. We observe that state 1 is not equal to
any other in this case, because starting at state 1, the traces of length 1 that
we can find are

• (1
turnPumpOn−→ 2)

• (1 lowWater−→ 3)

• (1
methaneAppears−→ 4)

• ε

All these four traces of length 1 cannot be obtained by starting at any
other state of the PTA, leaving state 1 in a partition block by itself. However,
states 2 and 8 can be joined together into one block since both of them enable
a trace of length 1 which is the same, namely the transition lowWater.
Similarly, states 0, 3, 7, and 10 can execute exactly one trace of length 1
which is exactly the same, i.e. ε, hence causing these four states to form
another block. This way, by using k-equivalence of states, the algorithm
keeps constructing subsequent equivalence classes iteratively as long as there
are blocks that need to be refined. As we know that each iteration bisects

26

one block, then the maximum number of refinement steps needed will be
the number of states in the original PTA.

Eventually this would generate the equivalence classes

{{0,3,7,10}, {1}, {2,8}, {4}, {5,9}, {6}}

and the final output is illustrated in Figure 3.7. The algorithm actually
returns the same equivalence classes as those obtained through the gen-
eralisation of LTS models described at the beginning of this chapter; the
resulting PTAs from both methods are equivalent if we ignore the negative
scenario in Figure 3.3 (since no negative scenarios were considered in Section
2.3) and states 4 and 6 in Figure 3.7 (because we did not consider the sce-
nario 〈highWater, methaneAppears, methaneLeaves, turnPumpOn, lowWa-
ter, turnPumpOff 〉+ in the bottom-up generalisation approach in Section
2.1).

Figure 3.7: Final Output from Partition-Refinement

As stated in [10], the state minimisation algorithm for LTSs is the best
partition-refining algorithm [12], and it also ensures the inference of the
minimal, canonical automaton. [10] describes the approach through its ap-
plication to various classes of well-known regular languages, such as the
k -reversible languages [4].

In [36], independently-generated scenarios in the form of sequence di-
agrams are translated into state charts in order to eliminate the ambigui-
ties and inconsistencies resulting from the amalgamation of these scenarios.
Since the scenarios may portray the same, or very similar behavioural pat-
terns, the algorithm defined in [36] adds semantic information to merge these
scenarios whilst preserving the behaviour intended by the user. A separate

27

FSP is generated for each sequence diagram, and domain theory is then
used to identify the same nodes from each FSP, resulting in the merging of
these nodes. Users’ input is required to classify the necessary generalisations
and hence enable the algorithm to output a resulting state chart with fewer
nodes.

The next chapter outlines in a detailed manner our approach for the
refinement of LTSs.

28

Chapter 4

Algorithm for LTS
Refinement

4.1 Introduction

As we described previously, the objective that we intend to achieve with this
project is:

1. To accept as input an initial system model (an LTS), a set of positive
scenarios, and a set of negative scenarios, where both sets are accepted
by the initial LTS.

2. To use the input scenarios in order to refine the system model, so that
an LTS model is generated as output, which still covers all the positive
traces but simultaneously rejects the negative ones.

The process is illustrated in Figure 4.1.
Let us consider our running example of a Simple Mine Pump Control

system. We have included the corresponding LTS in Figure 4.2. We intend
our algorithm to be able to work on such an LTS and deliver a refined LTS
such as the one returned by the ILP approach, as displayed in Figure 4.3.

This chapter outlines the algorithmic details related to the refinement.

4.2 Representation of Scenarios as PTAs

The very first step in the refinement algorithm is to construct PTAs cor-
responding to the give positive and negative scenarios. Each scenario is

29

Figure 4.1: Our algorithm structure (a single refinement step)

30

Figure 4.2: An example LTS for a Simple Mine Pump

31

Figure 4.3: What we intend to achieve

32

represented on a separate branch in the PTA, so that we can use infor-
mation regarding individual states and transitions during later stages of the
refinement process. Scenarios are assumed to start in the unique initial state
of the PTA, which is defined by the same fluent values as those in the initial
state of the given LTS model. The pseudocode can be viewed in Algorithm
1.

Algorithm 1 Pseudocode for PTA Construction
1: INPUT: List of scenarios; List of fluents in initial state of LTS
2: OUTPUT: Tree representation of scenarios, pta

3: create tree with root node state 0, defined by the same fluents as fluents
4: set the index of the next state, stateNo = 1
5: for (each scenario s in scenarios) do
6: parent = root
7: for (each event label e in s) do
8: create a node n with index stateNo
9: add (stateNo,e) to the list of successors of parent

10: add (index of parent,e) to list of predecessors of n
11: add transition (parent,e,n) to list of transitions of pta
12: parent = n
13: stateNo = stateNo + 1
14: end for
15: end for

Accepting States It is a vital point to note that in the PTA correspond-
ing to positive scenarios, all states are accepting states (denoted by con-
centric circles), since a prefix of any length of any of the scenarios also
constitutes a positive scenario, and so there is no need for a trace to have to
go through each of the states of a branch to be considered as an acceptable
trace. Hence, the relevant code for constructing the positive PTA includes
a line which sets each state to be accepting.

On the other hand, in the case of the PTA for negative scenarios, only
the final state of each branch is considered as an accepting state, because
we consider the last transition in a negative trace as the unwanted one,
and which therefore leads to an undesirable state. This transition is there-
fore the most significant one compared to all other transitions in the same
branch, as the former conveys useful information regarding undesirable sys-
tem behaviour. Prefixes of a negative trace constitute acceptable system

33

behaviour, as they only include non-final states, which are not accepting in
the case of the negative PTA. Hence, these prefixes would be rejected as
traces in the negative PTA, since they do not convey negative behaviour.
Thus, the initial and non-final states of the negative PTA need to be non-
accepting. This is ensured by including the appropriate line of code after
the inner for-loop in Algorithm 1, which sets the last state of every branch
in the negative PTA to be accepting.

In addition, we need to emphasise that the significance of an accepting
state in both these cases is not related to the fluent values holding at that
state (i.e. the state’s label), but is more to do with the actual events leading
to that state. In the case of the positive PTA, each state is accepting because
we assume that the system can undergo any event that is just a prefix or part
of a positive trace, and it can end one of its executions there. As mentioned
previously, the events that can occur starting at a state will vary depending
on the fluents that hold at the particular state, but as long as they constitute
part of the system’s desirable behaviour, there is no requirement as to the
number or type of events that need to take place in order for a trace to be
considered as accepted. Similarly with the negative LTS, the sole reason for
making only the last state of each path final, is not because of the fluents
holding at those states, but is due to the unwanted incoming transitions into
those states, which we want to capture and hence remove from the general
LTS.

However, due to the nature of PTAs, it is often the case that the resulting
models include more states and transitions than are needed, because of
repetitions occurring across the different branches (for example, scenarios
can have common transitions). It is therefore feasible to reduce these by
merging states in order to speed up the overall algorithm.

The result of subsequent merges may be a system model with the min-
imum number of states possible, which maintains or maximises the posi-
tive behaviour. Note that a synthesised model may portray more positive
behaviour as a consequence of merging states in the initial PTA, since ad-
ditional traces may be entailed by the resulting model. For example, the
presence of loops in the synthesised model would allow an indefinite number
of certain transitions to occur, hence expanding the set of possible traces.
Since the merging process does not eliminate any of the existing transi-
tions, it is never the case that the synthesised model will entail less positive
behaviour.

There will always be a reduction in the number of states of the initial
PTA if at least one merge is performed. Nevertheless, the minimality con-
dition is only satisfied when we obtain a synthesised positive LTS which

34

best represents the system’s desirable behaviour, using the least number of
states; in other words, it is not possible to obtain a different synthesised
LTS with a smaller number of states, and which produces the same or an
even greater number of positive traces. The Discussion subsection explains
in a more detailed manner the reasons for which it is not always possible to
obtain the minimal synthesised LTS.

4.3 Generalisation of positive scenarios

Having analysed related approaches for LTS generalisation in Chapter 2,
we have identified various methods involving merging and/or partitioning
of states, that could prove to be useful in our context. As a result, we were
inspired by the partitioning of system states into quotient automata [8], and
we used it to synthesise the LTS representing the given positive scenarios.
The following subsections outline the steps involved.

4.3.1 Merging States

Let us first of all explain the meaning of merging states. Two or more states
in a system are considered for merging if and only if they have the same
fluent values; in simpler terms, the same fluents hold at each of those states.
The result of the merge is a new single state whose incoming (resp. out-
going) transitions correspond to a union/disjunction of the incoming (resp.
outgoing) transitions of the states that compose the merged state. As a
result, the parents (resp. children) of the individual states become parents
(resp. children) of the merged state. In addition, a merge between two
states s and t, where s is the state with a lower rank than state t, will result
in a merged state whose label is that of the state with the smallest rank in
the merge. In this case, it is state s. This concept is formally defined in
Definition 3, and an example is provided later in this section.

Definition 3. Consider an LTS M defined as the 4-tuple (Q,A,δ,q0), where
F denotes the set of fluents in the system. Let s and s’ be two states in Q
such that ∀ f ∈ F, f is true at s iff f is true at s’, and rank(s) < rank(s’).
The result of merging states s and s’ in M gives a new LTS M’ defined by
(Q’,A’,δ’,q

′
0) where

• Q’ = Q - {s’}

• A’ = A

35

• δ’ = δ ∪ {(s,a,t) | (s’,a,t) ∈ δ} ∪ {(t,a,s) | (t,a,s’) ∈ δ} - {(s’,a,t) |
(s’,a,t) ∈ δ} - {(t,a,s’) | (t,a,s’) ∈ δ}

• q
′
0 = q0

For a particular merge to be valid or successful, we need to ensure con-
sistency between scenarios. For our purpose, the result of merging states
in the positive PTA should be an LTS which does not include traces that
entail any of the negative scenarios. Hence it is necessary to check the neg-
ative scenarios whilst constructing the generalised positive LTS to ensure
this condition is satisfied. Let’s exemplify this with an example to make the
concepts clearer.

Let us consider a simple system where the set of possible actions Act
= {switchOn, switchOff }, and the only fluent in this case is On, defined
as On ≡<switchOn, switchOff>. If two positive scenarios for the system
are < switchOn, switchOff > and < switchOff, switchOn, switchOff >,
then it can be represented by the simple 6-state PTA shown in Figure
4.4. On the other hand, a negative scenario for this system may be <
switchOn, switchOff, switchOn >, if the system specification implies that
the system can only be turned on once. The PTA for this is shown in Figure
4.5.

Figure 4.4: Positive PTA

Figure 4.5: Negative PTA

If we were to perform state-merging on the positive PTA, we would
consider states 1 and 4 for merging since both of these states are defined by
the same fluent value, namely On, and states 0, 2, 3 and 5, because they are

36

defined by the fluent value ¬On. States 3 and 5 can be merged. However,
state 0 cannot form part of the merged state, because doing so would enable
an indefinite number of switchOn followed by switchOff events to occur,
which would therefore disagree with our negative scenario (see Figure 4.6).

Figure 4.6: An incorrect merge for the positive PTA (a)

As regards to state 2, merging it with states 3 and 5 would also lead to
an infinite number of switchOn followed by switchOff events, as shown in
Figure 4.7.

Figure 4.7: An incorrect merge for the positive PTA (b)

However states 0 and 2 can be merged together, and the correctly merged
model is shown in Figure 4.8.

Figure 4.8: Correctly merged positive PTA

37

Figure 4.9: PTA for positive scenarios

4.3.2 State-Merging Algorithm

Following the definition of a merge in the previous sub-section, we can now
outline the main points that need to be taken into consideration while merg-
ing states in the model shown in Figure 4.2 on Page 31.

The pseudocode for the procedure we use for coalescing states is included
in Algorithm 2. The TEST procedure referred to in the state-merging code
is shown in Algorithm 3.

Given the following positive scenarios,

• 〈signalHighWater, turnPumpOn〉

• 〈signalHighWater, signalCriticalMethane, signalNotCriticalMethane〉

• 〈signalCriticalMethane, signalNotCriticalMethane,
signalHighWater, turnPumpOn, signalLowWater, turnPumpOff〉

• 〈signalHighWater, turnPumpOn, signalLowWater, turnPumpOff〉

and negative scenarios,

• 〈turnPumpOn〉

38

Algorithm 2 Pseudocode for State-Merging
1: INPUT: Positive PTA
2: OUTPUT: Synthesised Positive PTA general

3: a label is the string of fluents at a state, i.e. PumpOn & !Methane
4: seenLabels is the set of labels encountered so far in any of the states
5: set the generalised positive LTS general to be the same as input PTA
6: groups = [(f, ls)|f ∈ seenLabels and ls is a list of lists of states]
7: for all state i in general do
8: label = label of i
9: if (label /∈ seenLabels) then

10: add label to seenLabels as it has been encountered
11: add (label,[[i]]) to groups as i is the only state with this label
12: else
13: extract element (label,[e|list]) from groups to get the indices of

other states with the same label
14: add i to the end of list e in order to try merge i with states in e
15: param = e, as param is the set of states that i has been added to
16: call procedure TEST(param)
17: if (TEST returns false, i.e. merge not valid) then
18: if (list is empty, i.e. no other states to which i can be merged)

then
19: create a new list e′

20: add i to e′

21: add (label,[e, e′]) to groups
22: else
23: there are more states to which i can be added
24: list f = head of list
25: add i to f
26: param = f
27: go to line 16
28: end if
29: else
30: the merge is valid
31: state n = the lowest-rank state in param
32: for all (state s in param, s != n) do
33: set children states of s to be children of n instead
34: set parent states of s to be parents of n instead
35: end for
36: end if
37: end if
38: end for
39: return general

39

Algorithm 3 Pseudocode for TEST - Testing a merge
1: INPUT: list = list of states being merged
2: OUTPUT: true if the merge is valid, false otherwise

3: for all (state i in list) do
4: for all (incoming trace p starting at root node and ending at state i)

do
5: for all (state j in list, i 6= j) do
6: for all (outgoing trace q starting at state j do
7: if (the joint trace p + q covers a negative scenario) then
8: invalid merge
9: return false

10: end if
11: end for
12: end for
13: end for
14: end for
15: return true

Figure 4.10: PTA for negative scenarios

40

• 〈signalHighWater, signalCriticalMethane, turnPumpOn〉

• 〈signalHighWater, turnPumpOn, turnPumpOff〉

• 〈signalCriticalMethane, signalHighWater, turnPumpOn〉

we can now devise smaller models representing these sets of scenarios
using Algorithm 1, as shown in Figures 4.9 and 4.10. Note that we have
replaced the signalHighWater and signalLowWater event labels by above-
High and belowHigh, respectively, to maintain a decent size for the PTAs.
Similarly, event labels signalCriticalMethane and signalNotCriticalMethane
have been replaced with labels methaneAppears and methaneLeaves. To
avoid confusion, we will explain the various steps using the labels from the
PTAs.

State-merging is performed on the PTA in Figure 4.9 as described in the
previous section. We can intuitively see that there is room for at least one
synthesising step - state 0 has more than one outgoing transition labelled
with the action aboveHigh, which leads to multiple states having just the flu-
ent HighWater holding. These could be merged (possibly with other states
from the PTA) into one single transition, leading to one single state, and so
on. Note that we do not necessarily need to take into account any particu-
lar order whilst carrying out the synthesis in this way, but for convenience,
consistency, and ease of comprehension, our algorithm visits states using a
depth-first search along each branch.

The algorithm starts off by looking at the initial state in Figure 4.9,
i.e. state 0, which is defined by the fluent values 〈¬HighWater, ¬PumpOn,
¬Methane〉. Since it is the first state visited, its fluent definition has not
been encountered previously, and so the if-case at line 9 in Algorithm 2 is
executed. However, states 7, 11, and 15 have the same fluent values as state
0. Thus, when they are visited, the else-case on line 12 is executed. Since
states are visited in increasing rank order, states 0 and 7 are merged first,
then states 11 and 15 are added to the same partition when they are visited
(line 14). All merges are successful, hence the else-case on line 29 is executed
for each merge. The resulting state is labelled 0, as this corresponds to the
smallest rank (line 31).

Similarly, states 1, 3, 5, 8, and 12 are defined by the fluent values
〈HighWater, ¬PumpOn, ¬Methane〉, and can therefore be merged together
into a new state numbered 1. This way, we continue merging states until no
further merging between states is possible.

At the end of the merging phase, states can be renumbered in order to
establish consecutive state numbers as we had before the states were merged.

41

For instance, if the result of merging states in a PTA results in an LTS with
states {0, 1, 3, 5, 6, 9}, then some of the states can be renumbered so that
we finally have an LTS with states {0, 1, 2, 3, 4, 5}. Note that this is not
necessary, but is possible because the actual numbers in the states are just
like state labels, and therefore insignificant with regards to the refinement
process. In our example the resulting states would be {0, 1, 2, 3, 4, 6, 10},
which can be renumbered to {0, 1, 2, 3, 4, 5, 6}.

Figure 4.11: Synthesised LTS for positive scenarios

The final result of applying this state-merging algorithm to Figure 4.9
gives the LTS shown in Figure 4.11, which, if observed closely, portrays the
same behaviour as the positive PTA, without having removed any of the
previous possible traces, but with a smaller number of states. Additionally,
we can see that the resulting model now has loops between state {0, 7,
11, 15} and state 6, as well as between state {1, 3, 5, 8, 12} and state 4,
allowing an indefinite number of methaneAppears followed by methaneLeaves
transitions to occur. Note that the result is actually an LTS, not a PTA,
because common outgoing transitions from a single state are now grouped so
that there is only one outgoing transition from that state with a particular
action label, rather than having individual paths to denote each scenario.
We remind ourselves that as a result of the generalisation, the number of
positive scenarios covered by this LTS strictly includes those covered by the
initial PTA given in Figure 4.9. In addition, we have performed a series of
merges in this case, thus the number of states in the LTS is strictly smaller
than those in the PTA.

42

4.3.3 Discussion

Minimality condition for State-Merging

We can define the smallest possible LTS corresponding to a PTA as being the
one in which all possible merges from the initial PTA are successful. Thus,
for every unique fluent combination that is found in the states composing the
initial PTA, there is only one state in the smallest resulting LTS representing
a particular fluent conjunction. In the case of the positive PTA in Figure
4.9, we can see that the different fluent conjunctions are:

• 〈¬HighWater ∧ ¬PumpOn ∧ ¬Methane〉 - occurring in states 0, 7, 11,
15

• 〈HighWater ∧ ¬PumpOn ∧ ¬Methane〉 - occurring in states 1, 3, 5,
8, 12

• 〈¬HighWater ∧ ¬PumpOn ∧ Methane〉 - occurring in state 6

• 〈HighWater ∧ PumpOn ∧ ¬Methane〉 - occurring in states 2, 9, 13

• 〈HighWater ∧ ¬PumpOn ∧ Methane〉 - occurring in state 4

• 〈¬HighWater ∧ PumpOn ∧ ¬Methane〉 - occurring in states 10, 14

This means that the minimal LTS for this PTA would have just 6 states
instead of the current 16, and in fact, luckily our merging algorithm returns
the minimal LTS in this case, as shown in Figure 4.11.

Since our merging algorithm operates on the states of the initial PTA in
increasing order of rank (denoted by the numbering of states), we studied
an example to check whether this ordering notion makes a difference to the
merging process. In order to do this, we chose to use a similar idea to the
lattice of partitions defining quotient automata in [8]. Note that apart from
the purpose of state-merging, the numbering of states plays no substantial
role in the eventual refinement process; the numbers are merely there to
establish a consistent order of traversal of the states.

Figure 4.12 shows a lattice of automata resulting from merges in an
example of a positive PTA without taking into account negative scenarios,
hence no matter what order the states are merged in, the final result is
always the same (namely the automata with 6 states at the bottom of the
lattice). However, the equivalent lattice that in addition takes into account
negative scenarios, and therefore rejects particular merges of the states in
the positive PTA if they cover any of the negative scenarios, is shown in

43

Figure 4.12: Lattice of possible state-merging steps
44

Figure 4.13: Lattice of possible state-merging steps (taking into account
negative scenarios)

45

Figure 4.13. Here it is more evident that for a given set of positive scenarios
in the PTA shown at the top of the lattice, the order in which states are
considered for merging makes a difference to the final result, as each merge
is greatly dependent on the previous merges, so the solution is not always
unique.

Each lattice has multiple levels, and as we look downwards, the automata
in each level (except the topmost one) correspond to more generalised system
models, as they are a result of merging states from the previous level. Hence,
the resulting models in one level have less states than the models in the
previous level, but within the same level, all models have the same number
of states. However, despite the generalisation of behaviour leading to a
greater number of possible traces within the models of lower levels, the
number of unit-length transitions stays the same throughout the lattice, as
we are not adding any additional edges, and the merging does not get rid
of any transitions that were present in the initial PTA.

Note that both the lattices illustrated are fluent conjunction-specific. In
other words, here we have shown all the possible steps for a set of states
which share a particular fluent conjunction, namely

{¬HighWater ∧ ¬PumpOn ∧ ¬Methane},

but there may be another fluent conjunction that is shared by a set of
different states in the system. It would be possible to perform state-merging
using those states, hence further generalising the system. A similar lattice
to the one shown in Figure 4.13 would need to be drawn for each fluent
conjunction that leads to state-merging, to show the different paths that
may be taken.

Our state-merging algorithm iterates over the first level of the lattice
till it finds the first pair of states that will lead to a successful merge (this
iteration corresponds to the else-case on line 10 of Algorithm 2, and the
merge is validated at line 14). Thereafter, the method always tries to add
states to the existing merged state (line 22), in the hope of eventually adding
all potentially mergeable states for the same fluent conjunction into one
single state, thus achieving the maximum reduction in the number of states
as a result of that particular merge. It is not necessarily the case that the
final LTS will have the least number of states, as explained in later sections
of this report.

In this case the two different solutions for the this particular fluent con-
junction are circled, and for ease of reference we have included them sepa-
rately in Figures 4.14 and 4.15.

46

Figure 4.14: Solution 1 Figure 4.15: Solution 2

In this case, both solutions have seven states, and they have the same
number of transitions as expected. The differing element, in fact, are the
traces which are possible through each solution. The left-most one in-
cludes a loop with the event label aboveHigh followed by a transition la-
belled belowHigh. This means that an indefinite number of successive above-
High−→belowHigh transitions would be considered as positive behaviour if
we were to use this as our generalised positive LTS. The right-most solution
in the lattice, on the other hand, does not include this and would therefore
not allow this form of repetition.

Nevertheless, the LTS that is eventually generated and used as the gen-
eralised positive LTS will not influence the final results of our refinement
algorithm. Despite the greater number of traces allowed by the left-most
solution, our final algorithm does not look at entire traces while refining an
initial LTS, but instead considers states and one-step transitions between
them. As we mentioned earlier, all the different LTSs produced by the
generalisation process for a given PTA include the same transitions, so no
matter which solution we choose as our generalised positive model, the re-
sults of the overall refinement will be the same. The only difference lies in
that each generalised solution may have a different number of states, and
this could have an effect on the overall execution time of the refinement
algorithm.

In fact, all the different minimal results of state-merging are valid, since
they are all compared to the negative scenarios in order to ensure that we do
not cover any undesirable behaviour with our resulting synthesised model,
but we are interested in the one with the least number of states.

It may not always be the case that the different LTSs obtained have
the same number of states, but we cannot guarantee that our algorithm
will always choose the model with the least number of states and/or the
maximum possible traces. In order to do this, we would need to go through
each and every possible merge for each different fluent conjunction, and in
each case we would need to accept the solution which has the least number

47

of states and/or maximum possible traces. This would imply storing each
different automaton generated, so that they can all be compared eventually
and the minimal one can be chosen. In real-life systems, this would involve
a tremendous computational cost and would also increase execution time
significantly.

Therefore, since all the different minimal generalised LTSs possible are
correct, we allow for different solutions in our final refinement algorithm. All
solutions are guaranteed to be correct given the generalised positive LTS and
the negative PTA, and the only difference between one and another may be
that one of them is more strictly refined than the other (i.e. one of them
allows more traces than the other).

State-Merging in the Negative PTA

Following the same methodology used for state-merging nodes in the positive
PTA, we could have also chosen to merge states in the negative PTA in
Figure 4.10, such that the final outcome would not include any of the positive
scenarios as acceptable traces, as this would incorrectly classify them as
undesirable system behaviour, but it would accept all the negative behaviour
included in the given negative PTA.

However, since we are mainly interested in the final states of the negative
PTA and their incoming transitions as discussed previously, state-merging is
not essential because all other states and transitions in the negative PTA are
prefixes of some positive behaviour, and are therefore not used for pruning
traces in the final refinement step. Hence for the purposes of our refinement
algorithm, we are only merging states in the positive PTA.

4.4 Refinement Process

Now we cover the final, most important phase, namely the actual refinement
of the system’s LTS model. This works directly on the given initial LTS
model for the system, without taking into account any declarative elements
of the specification, and consequently outputs a new LTS which portrays all
the desirable system behaviour, but none of the undesirable traces expressed
by the negative scenarios.

We can use the synthesised LTS corresponding to the set of positive
scenarios together with the negative PTA (that does not need to undergo
state-merging as mentioned in the previous section) to prune unwanted paths
from the general system LTS in Figure 4.17. There are two stages in this
procedure, the first one being the initial phase involving the pruning of traces

48

that match transitions in the negative PTA exactly (first-level pruning).
The event labels corresponding to the pruned transitions are collected, and
used in the next phase where further analysis is carried out to perform the
refinement on the modified system LTS (second-level pruning). However, we
thought of two different ways of going about this. They both share the same
initial step described in the next section, but thereafter they use different
methods to deal with second-level pruning. The one that we decided to
use is the Fluent Conjunctions Method which is explained later, whilst the
alternative method referred to as the Equivalent States Method is included
in the Discussion subsection.

4.4.1 First-Level Pruning

Algorithm 4 Pruning: Phase I
1: INPUT: neg = negative PTA, sys = initial LTS
2: OUTPUT: a refined LTS sys, which does not cover any of the negative

traces but maintains all the positive ones

3: victims = [(ev,st) | ev is the pruned event from state st]
4: victims = []
5: for (each final state i in neg) do
6: event e = incoming event into i
7: matches = list of states in sys with same fluents as i and incoming

event e
8: for (each state m in matches) do
9: find a state n such that (n,e,m) is a transition in sys

10: add (e,n) to victims
11: remove transition (n,e,m) from sys
12: end for
13: end for
14: return FURTHER PRUNE(victims)

Let us consider again the model for the Simple Mine Pump Control
system, illustrated in Figure 4.16. For simplicity reasons, we are going
to work with an equivalent model illustrated in Figure 4.17, which only
differs from the former in terms of some of fluent and event labels used. For
instance, the fluent label HighWater has been replaced by HighW, so the
set of fluents corresponding to this system is

{HighW, PumpOn, Methane}

49

Figure 4.16: An example LTS for a Simple Mine Pump

50

Figure 4.17: LTS for simple Mine Pump

51

The set of events is

{aboveHigh, belowHigh, turnPumpOn, turnPumpOff, methaneAppears,
methaneLeaves},

which determine the following fluent definitions:

• HighW ≡ 〈aboveHigh, belowHigh〉

• PumpOn ≡ 〈turnPumpOn, turnPumpOff〉

• Methane ≡ 〈methaneAppears, methaneLeaves〉

Figure 4.18: LTS for simple Mine Pump (with fluents)

The LTS diagram in Figure 4.17 is the most generalised model for the
system, and hence contains the maximum number of states and transitions
possible. To make the refinement of the initial LTS diagram easier, we can
work with an LTS such as the one in Figure 4.18, where we can clearly see
what fluents hold at each state.

Firstly, we use Algorithm 4 on this initial LTS. We find the states in the
LTS which correspond to the final states of the negative PTA (i.e. those with

52

Figure 4.19: LTS for Simple Mine Pump (Initial stage)

the same fluent values) according to line 7 in the algorithm. Each of these
goes through the for-loop on line 8 of Algorithm 4 to determine which paths
in the general LTS we will eliminate according to their incoming transitions.
States 1, 8, 9, and 10 in the negative PTA correspond to states 3, 6, 6, and
1 of the general LTS, respectively. According to the negative PTA in Figure
4.10, the incoming transitions into states 3, 6, and 1 labelled with actions
turnPumpOn, turnPumpOn, and turnPumpOff, respectively, are unwanted,
and should therefore be removed (line 11). This is illustrated in Figure 4.19.

However, doing this will not guarantee that all undesirable traces are
removed from the general LTS, because there could be other unwanted traces
present in the general LTS which have not been considered in the initial
sample of negative scenarios, including those sharing the same prefix or
suffix as one or more of these negative scenarios.

For example, the synthesised negative LTS shows that 〈aboveHigh,
methaneAppears, turnPumpOn〉 is an undesirable trace, but from our knowl-
edge of the system properties, we know that 〈methaneAppears, turnPumpOn〉
is also an example of undesirable behaviour. However, the negative PTA by
itself does not consider this trace for pruning, and so it remains in the general

53

Figure 4.20: LTS for Simple Mine Pump - First-Level Pruning

LTS.
In order to eliminate such traces as well, we need to, in addition, analyse

the states in the general LTS from which the unwanted transitions are out-
going (i.e. the previous states of the unwanted transitions), which explains
line 9 of the algorithm. Using information regarding these states, we can
then attempt to remove other transitions with the same action labels, by
conducting further analysis of the states in the modified general LTS (line
13). This is explained in the next section.

4.4.2 Second-Level Pruning

Having eliminated three of the transitions in the general LTS, we now need
to work with the states from which these transitions were outgoing, accord-
ing to line 10 of Algorithm 4. In this case, we would need to look at states
0, 4, and 7 in the general LTS in Figure 4.17, as the unwanted transitions
turnPumpOn and turnPumpOff (which have already been cut off) are out-
going from these states. Note that we no longer need to take into account
states 1, 3 and 6 in the general LTS, as their unwanted incoming transitions

54

have already been dealt with, and consequently eliminated. The procedure
is specified in Algorithm 5, which operates on the LTS shown in Figure 4.20.

Algorithm 5 Pruning: Phase II (a) - FURTHER PRUNE
1: INPUT: victims = [(ev,st) | ev is the pruned transition event and st

the source state of the pruned transition]
2: OUTPUT: refined system LTS sys

3: sys = system LTS
4: pos = generalised positive LTS
5: for all (transition t in sys) do
6: if (event e in t is such that (e,n) ∈ victims) then
7: if (e matches a transition in pos) then
8: st = state in pos with outgoing transition e
9: s = source state in t

10: if (fluent value of st does NOT match that of s) then
11: call procedure FLUENT ANALYSIS(s,victims)
12: end if
13: else
14: remove the outgoing transition e from s in sys
15: end if
16: end if
17: end for
18: return sys

Each transition in the given LTS is considered separately in order to
decide whether it should remain in the system or should be eliminated,
according to line 5 in Algorithm 5. However, to explain our approach in a
structured way in this section, we will look at one event label at a time.

Let us first consider the event turnPumpOn. The transitions with this
action label that have already been cut off are those outgoing from states
0 and 4 (this is taken into account at line 6 in Algorithm 5. As we can
see in Figure 4.21, states 1 and 2 in the general LTS also have an outgoing
transition labelled with the action turnPumpOn. In order to determine
whether these can be considered for pruning or not, there are a number of
different steps to be performed.

Firstly it is important to try and find a corresponding state with an
outgoing transition labelled with turnPumpOn in the synthesised positive
LTS in Figure 4.11, as we need to make sure that we do not unnecessarily
remove a positive scenario by pruning the transition(s) in question. This

55

Algorithm 6 Pruning: Phase II (b) - FLUENT ANALYSIS
1: INPUT: state s in sys whose outgoing transition e is being tested;
victims = [(e,st) | e is the pruned event from st]

2: OUTPUT: system LTS sys

3: f = fluent values of s
4: pos = generalised positive LTS
5: for all ((e,st) ∈ victims) do
6: inter = intersection of fluent values in s and st
7: power = power set of elements in inter, in ascending order of subset

size excluding []
8: for all (subset in power) do
9: if (subset matches a state in pos with an outgoing transition e)

then
10: go to line 8
11: else
12: remove transition e from sys
13: break
14: end if
15: end for
16: if (no state found in pos which contains fluent values in subset then
17: break
18: else
19: go to line 5
20: end if
21: end for

22: return sys

56

Figure 4.21: LTS for Simple Mine Pump - Second-Level Pruning (i)

57

takes place at line 8 in Algorithm 5. Already we can see that the transition
outgoing from state 1 cannot be removed because Figure 4.11 shows that
a state defined by the fluent HighW (such as state 1 in this case, or state
{1, 2, 4, 9, 10} in Figure 4.11) can have an outgoing transition labelled
turnPumpOn, and therefore does not satisfy the if -case on line 11.

This just leaves us with the outgoing transition from state 2 as a possible
candidate for pruning, which we compare to other transitions in the initial
LTS in order to decide whether its outgoing transition should remain or
should be eliminated.

Fluent Conjunctions Method

This is the method which we have decided to use as part of the overall
approach, because it performs an exhaustive analysis of fluents at equivalent
states in the initial and generalised positive LTSs. We still consider fluent
values within states, but this time we go further and devise sets of fluent
conjunctions for each state, and then use intersections between these sets,
together with the generalised positive LTS, in order to decide whether a
particular transition should be pruned or not. This is closely linked to the
Fluent-Set analysis that we investigated during earlier stages of the project,
as explained in the Discussion subsection, and its pseudocode is available in
Algorithm 6.

In the case of state 2, even though there is a state in the synthesised pos-
itive LTS in Figure 4.11 defined by the fluent values {Methane, ¬HighW,
¬PumpOn}, namely state 3, it only allows an outgoing transition with ac-
tion label methaneLeaves, and none labelled turnPumpOn. The if -case at
line 8 in Algorithm 5 is therefore not satisified, so according to line 15 the
turnPumpOn transition outgoing from state 2 is pruned.

Now we can perform a similar analysis on the turnPumpOff transitions
in the system LTS. As a result of the initial elimination of the outgoing
turnPumpOff transition from state 7, which was eliminated because it cov-
ered one of the negative scenarios, we now need to consider other transitions
with the same label, starting from states which have the same fluent val-
ues as state 7. These are states 3, 5, and 6 (Figure 4.22). According to
their fluent values, state 3 corresponds to state {11,14} in the synthesised
positive LTS in Figure 4.11, which shows an outgoing transition labelled
turnPumpOff as an example of a desirable trace. Therefore, we can not
consider the turnPumpOff transition outgoing from state 3 for elimination,
as this would incorrectly get rid of desirable system behaviour (hence the
if-condition at line 7 of Algorithm 5 is satisfied). States 5 and 6 do not have

58

Figure 4.22: Refined LTS for the Simple Mine Pump - Second-Level Pruning
(ii)

a corresponding state in the synthesised positive LTS, so we need to perform
the fluent analysis specified in Algorithm 6.

We note the fluent values that state 7 has in common with states 5 and
6 (according to line 6) , and these are:

• PumpOn (with state 5), and

• {HighW,PumpOn} (with state 6)

The former case is straightforward, as we know after having dealt with
state 3, which was defined by the fluent value PumpOn, that we cannot prune
an outgoing transition labelled turnPumpOff from a state in which the fluent
PumpOn is true because it covers a positive scenario. The corresponding
state in the positive LTS is state {11,14}. Hence, the outgoing transition
from state 5 cannot be removed from the general LTS.

In the case of state 6, we would need to construct the power set of
{HighW,PumpOn}, as specified in line 7, as these are the fluents that it
has in common with state 7.

59

P({HighW,PumpOn}) = {{HighW}, {PumpOn}, {HighW,PumpOn}}

We already know that the {PumpOn} fluent by itself cannot be used to
justify the pruning of the outgoing transition labelled with the action turn-
PumpOff from state 6, which would be consistent with the decision taken
when dealing with states 3 and 5 (the pruning of their outgoing transitions
with this action label was rejected because of an overlap with a positive
trace). However, we can consider the fluent HighW . State {11,14} in the
positive LTS is defined by the fluents {¬HighW, PumpOn, ¬Methane}. As
we can see, the state does not include HighW with a true value, and there
is no other state in the model with an outgoing transition labelled with
the same action (hence the else-case on line 11 is satisfied). It is therefore
safe to justify the elimination of the outgoing transition from state 6, corre-
sponding to line 12 of Algorithm 6, because of the presence of the HighW
fluent, which does not appear in the state in the positive LTS with the same
outgoing transition.

Figure 4.23: Most specific LTS for Simple Mine Pump - result using Fluent
Conjunctions

The final outcome after all these steps is returned at line 22 of Algo-
rithm 6, and is shown in Figure 4.23. We can see that all the undesirable
behaviour conveyed through the initial sample of negative scenarios is no

60

longer present, whilst all the desirable traces denoted by the positive LTS
are maintained in the new LTS.

Note that the results obtained need to be compared to the outcome of
the ILP task, which is a more “greedy” algorithm that returns the most
refined LTS possible for the given system. In this case, it produces the same
result, as shown in Figure 4.24. The diagrams themselves may look different,
but if we closely analyse the transitions in each of them, we see that they
are equivalent.

4.4.3 Discussion

Maximum number of states and transitions in the initial LTS

The maximum number of transitions in the initial LTS model can be quan-
tified. We assume that the same event cannot occur consecutively, hence we
know that at any state, there will only be a finite number of outgoing tran-
sitions, one for each different event that can occur at the state in question.
An informal proof follows.

The key factor that determines which events can take place at a partic-
ular state is the state’s fluent values. As we have described earlier, fluents
are defined by sets of initiating and terminating events which will cause the
fluents to start or to stop holding, if and only if the fluent’s value before
the event occurrence was false or true, respectively. For example, the flu-
ent definitions outlined previously for the system in Figure 4.17 show that
the fluent HighW is initiated by the aboveHigh event and terminated by
the belowHigh event. Thus, a state in which the fluent HighW is true can
have an outgoing transition with the label belowHigh - which will stop the
fluent from holding -, but not an aboveHigh event because this would mean
initiating a fluent that has already been initiated previously, and therefore
currently holds! It would therefore be a pointless action.

For the LTS in Figure 4.17, which has 6 different events and 3 fluents,
this means that every state can have 3 outgoing transitions, and 3 incoming
ones. Notice that this does add up to the total number of events, and hence
shows that in the most general LTS, all states undergo the effects of each
and every system event, some in the form of incoming transitions and others
in the form of outgoing ones.

We have shown that there are a finite number of transitions at every
state, and according to our initial assumptions, each state is unique in terms
of its fluent values. Thus the maximum number of states in the most general
LTS is purely determined by the number of fluents in the system. Because

61

Figure 4.24: Results of ILP approach

62

every fluent can take one of two values, namely true or false, this means that
for a system with n fluents, the total number of states in the most general
LTS is 2n. Checking this with our simple Mine Pump Control system which
has 3 fluents, we can see in Figure 4.17 that there are a maximum of 8 states,
which correctly corresponds to 23.

At the initial stage, only the domain conditions have been taken into
account, in order to avoid the same transitions from occurring consecutively.
This also avoids outgoing transitions that are labelled with an action that
terminates (resp. initiates) a certain fluent, from a state where that fluent
does not already hold (resp. already holds). For instance, for the LTS in
Figure 4.17, there cannot be a transition labelled turnPumpOff from state
0 because at this state the PumpOn fluent does not hold (i.e. the pump is
already off).

Fluent-Set Analysis using Positive and Negative Scenarios

This section briefly describes our very first ideas related to the analysis of
fluent values in particular states. In this case we consider the fluents holding
at the state immediately before the transition that is under examination.
Despite having a certain level of abstraction, this forms the basis of our
intuition, which then led us to take the idea further and to look at how this
could be utilised in the final refinement on the general system LTS.

For each unwanted transition in the negative PTA entailed by a negative
scenario, we thought it is sensible to study the fluents holding at states
which have these unwanted outgoing transitions. Note that working with
the states in this way rather than with specific traces introduces certain
flexibility regarding the order in which events may occur. Hence, this way
we consider all possible permutations of a particular set of events, so that in
most cases the exact order in which these occur does not matter in order to
identify paths within the initial LTS that are desirable or not.

For instance, for the Simple Mine Pump system, let us consider the
turnPumpOff event, which refers to the action of turning the pump off.
According to a given set of positive and negative scenarios, we can classify
states with an outgoing turnPumpOff event according to their fluent values,
as below. Note that positive states can be any of the states in the posi-
tive PTA, or any non-final states of the negative PTA. The latter is true
according to our definition of accepting states provided in Section 4.2. On
the other hand, negative states are final states in the negative PTA.

1. Examples of states accepting a turnPumpOff event, referred to as pos-

63

itive states are those where the following fluents hold:

• 〈PumpOn, ¬HighW, ¬Methane〉
• 〈PumpOn, HighW, Methane〉

2. Examples of states rejecting a turnPumpOff event, referred to as neg-
ative states are those where the following fluents hold:

• 〈¬PumpOn〉
• 〈PumpOn, HighW, ¬Methane〉

By considering each set of fluents as a conjunction of those fluents, we can
say the following: a turnPumpOff event is an example of desirable system
behaviour iff the state with the outgoing turnPumpOff event is defined by
the fluent values

• 〈PumpOn ∧ ¬HighW ∧ ¬Methane〉 or

• 〈PumpOn ∧HighW ∧Methane〉

Similarly, a turnPumpOff event is an example of undesirable system
behaviour iff the state with the outgoing turnPumpOff event is defined by
the fluent values

• 〈¬PumpOn〉 or

• 〈HighW ∧ ¬Methane ∧ PumpOn〉

The overall objective is to use these results when analysing states in the
initial LTS which have an outgoing turnPumpOff transition, by identifying
(conjunctions of) fluents that hold at these states. Consequently, we can
decide whether to prune these transitions or not.

One way would be by checking if there are any fluent values that are
only found in the negative states. If there exists a set F of such fluents,
then all the turnPumpOff transitions outgoing from states in which one or
more fluents in F hold, could be pruned from the initial LTS. For example,
with the example states provided above, we can see that the fluent value
¬PumpOn only occurs in the negative states; both the positive states have
the value PumpOn. Therefore any turnPumpOff transition outgoing from
a state whose fluent values include ¬PumpOn, would be pruned from the
initial LTS.

64

However, it may not always be the case that there are fluents that appear
only in the negative states, so to ensure we do not perform “greedy” learning
which could over-constrain the system by eliminating some of the positive
behaviour as well, it is necessary to construct the set of all fluents that are
encountered over the entire set of positive states, namely the union⋃

E+ = {PumpOn, ¬HighW, HighW, ¬Methane, Methane}

These can be compared to the set of fluents encountered with the nega-
tive scenarios, namely the union⋃

E− = {PumpOn, ¬PumpOn, HighW, ¬Methane}

However, since we have already considered ¬PumpOn as a fluent value
that only holds amongst the negative states, we can eliminate it from the
set to get: ⋃

E− = {PumpOn, HighW, ¬Methane}

The modified
⋃
E− set now shows the fluents which occur both in the

negative scenarios and the positive ones. It would therefore be of no use to
look at these individually and compare them to

⋃
E+ .

However, we can construct conjunctions of the fluents in
⋃
E− , and check

their occurrence in any of the positive states. If a conjunction does not
appear in any of the positive states, then it would constitute another way
of rejecting unwanted turnPumpOff transitions from the initial LTS. The
conjunctions are:

• 〈HighW ∧ ¬Methane〉

• 〈HighW ∧ PumpOn〉

• 〈¬Methane ∧ PumpOn〉

• 〈HighW ∧ PumpOn ∧ ¬Methane〉

The second and third items in the list above fail the necessary criteria, as
these conjunctions do occur amongst the positive states. The first element
of the list, however, does not occur in any of the positive states, which means
that we can eliminate the turnPumpOff event outgoing from any state in
the initial LTS where the fluents HighW and ¬Methane hold. Similarly,
the last conjunction in the list above does not violate any of the desirable

65

behaviour expressed through positive states. In fact, it coincides with one
of the negative states, and can therefore be used to eliminate further traces.

As we can see, these (conjunctions of) fluents help identify states in the
initial LTS which have undesirable outgoing turnPumpOff transitions, and
should therefore be eliminated. Using this sort of fluent-analysis together
with the system’s domain pre-conditions, the resulting LTS can reject the
negative behaviour of the system in question whilst accepting all the positive
behaviour. Hence, a similar approach has been taken in our Fluent Con-
junctions method that performs the second-level pruning in our refinement
algorithm.

Equivalent States Method

After arriving at the system shown in 4.26, this is the alternative method
that we considered to further analyse the transitions that need to be elim-
inated from the system LTS, using a comparison between states and tran-
sitions. For a given state in the system LTS, the pruning criteria used to
remove its outgoing transition is illustrated in Figure 4.25.

Following completion of the first-level pruning phase of our refinement
algorithm, this method would look for a state corresponding to state 2 from
the general LTS, in the synthesised positive LTS in Figures 4.27. We can
see that state 3 in the positive PTA is defined by the same fluent, however,
it only allows an outgoing transition with action label methaneLeaves, and
no transition with label turnPumpOn. According to the flowchart in Figure
4.25, we would therefore need to find an equivalent state in the negative
PTA. Once again, state 3 in the negative PTA is a corresponding state,
which only allows an outgoing transition labelled aboveHigh. This does not
provide us with any further information to aid the synthesis process, but at
the same time does not suggest that if we removed the outgoing transition
with this label from state 2 in the general LTS, then we would be removing
desirable behaviour. Hence, the trace 2

turnPumpOn−→ 5 is eliminated since this
method of refinement is a more “greedy” approach.

Now let us consider the action turnPumpOff. The outgoing transition
from state 7 in the general LTS labelled with this action has already been
eliminated, but we now need to consider other transitions with the same
label, starting from states which have the same fluent values as state 7.
These are states 3, 5, and 6 (see Figure 4.28). According to their fluent
values, state 3 corresponds to state {11,14} in the synthesised positive LTS in
Figure 4.11, which shows an outgoing transition labelled turnPumpOff as an
example of a desirable trace. We can therefore not consider the turnPumpOff

66

Figure 4.25: Equivalent States Method

67

Figure 4.26: LTS for Simple Mine Pump (Initial stage)

Figure 4.27: Synthesised LTS for positive scenarios

transition outgoing from state 3 for elimination, as this would incorrectly
get rid of desirable system behaviour.

States 5 and 6 do not have a corresponding state in the synthesised pos-

68

Figure 4.28: Refined LTS for the Simple Mine Pump - Equivalent States
Method (i)

itive LTS, but they do have equivalent states in the negative PTA. In the
case of state 5, the equivalent state is state 7, which enables a turnPumpOff
transition. However, the transition goes into a final state, and hence repre-
sents undesirable behaviour. Hence it suggests that the transition outgoing
from state 5 in the general LTS should be pruned.

As for state 6, the equivalent states in the negative PTA in Figure 4.10
are states 8 and 9. However, these are final states and therefore do not have
any outgoing transitions. The lack of information therefore does not suggest
that by removing the transition from state 6 in the general LTS, we would
be eliminating any desirable behaviour. Hence, the greedy approach in this
case decides to eliminate the transition.

The final outcome after all these steps is shown in Figure 4.29, where all
the undesirable behaviour conveyed through the initial sample of negative
scenarios is no longer present, whilst maintaining all the desirable traces
denoted by the positive LTS.

69

Figure 4.29: Most specific LTS for the Simple Mine Pump - Equivalent
States Method (ii)

70

Chapter 5

Comparison to Related Work

Many of the approaches presented in Chapter 2 share some common disad-
vantages, that our approach tries to avoid. Amongst other requirements, the
various efforts do not always consider both positive and negative examples,
and they may require additional input from the users. Many of the results
they produce are not easily understandable.

In some cases, end-users have to provide pre- and post-conditions of sce-
nario interactions, which is not always possible. In addition, this information
may need to be refactored during further stages when more positive or neg-
ative scenario examples are provided during synthesis. The more interactive
techniques can solve this problem as they do not need any additional input
besides the specification and some scenarios, but this also implies that a
large number of questions may need to be posed to end-users in order to
obtain the necessary information. This would require a lot of effort from the
user, and would increase the burden on them as well as making us more de-
pendent on their input. A common problem that we often experience while
synthesising behavioural models is that of overgeneralisation (resp. under-
generalisation). The former occurs when the resulting model incorrectly
covers some of the negative scenarios, and the latter implies that some of
the positive scenarios are incorrectly rejected.

The principal factor differentiating the previous methodologies from our
task is that they work towards the generation of a model starting from a
certain input, whereas our objective is to work on an existing model (in this
case an LTS), and to define an algorithm for refining the given model using
scenario-based specifications.

71

5.1 Generalisation of LTSs from Scenarios

The technique described in [8], for instance, does not take into account
negative scenarios, unlike its automated counterpart proposed in [9]. Note
that in this case the target is to ensure that the new examples (paths in
the automaton) added by users do not cover any undesirable behaviour of
the system, which is slightly different to our aim of eliminating paths whilst
making sure that all the previously accepted desirable behaviour is still being
covered.

As mentioned previously, the state-merging algorithm that forms part
of our refinement approach is based on [8], which uses this technique to
generalise system behaviour. Thus, it attempts to overcome problems such
as the need for users to provided additional input, and the difficulty in
understanding the generated LTSs.

However, the synthesised model in [8] can be prone to inconsistencies if
different users submit scenarios that are not consistent with each other, and
this is a problem that our approach could face as well if the users providing
the negative scenarios are different to those providing the positive ones.

[8] only deals with existential scenarios that state what may occur, in-
stead of covering universal scenarios as well, which state what must occur.
Similarly, our approach works on an LTS defined by domain knowledge
purely, and thus does not consider system goals and trigger conditions,
which would have helped state the system’s compulsory behaviour.

However, both the approaches mentioned in [8, 9] are sensitive to classifi-
cation errors, as the implications of accepting a scenario rather than rejecting
it can be very costly at the synthesis phase - a problem that is common to
most learning-by-examples techniques. Our approach tackles the problem in
a slightly different manner, since we assume that the positive and negative
scenarios provided at any particular refinement stage are already covered by
the given LTS. Hence it is not possible that a scenario that was rejected at
a previous refinement stage (and hence eliminated from the given LTS), is
classified as an example of desirable behaviour at a later stage.

In contrast to the bottom-up approach presented in [8, 9], we intend to
use our approach to learn a language L whilst maintaining the alphabet A,
hence solving the problem in a top-down fashion. This would imply the
specialisation of the initial automaton (rather than generalisation) into a
different automaton that would incrementally recognise a subset L∗ of the
language, i.e. L∗ ⊂ L.

72

5.2 Using ILP to Extract Operational Require-
ments from Scenarios

The inductive learning approach presented in [2, 3] also tries to learn a sys-
tem specification from given sets of scenarios. Starting with the most general
LTS as input, the learning task delivers the most specialised model which
rejects all the given negative scenarios whilst still covering all the positive
scenarios. As we can see, this approach and our refinement algorithm aim
to achieve the same objective, and hence share a number of similarities.

The ILP approach uses the notions of abduction, deduction, and induc-
tion in order to learn Horn clauses from the given sets of scenarios, which
are then used to extend the given system specification. Our implementation
encompasses the latter two, namely the notions of deduction and induction.
In our methodology, the deductive phase can be referred to as the one which
determines the boolean value of a fluent at any state. As described previ-
ously, fluents can start to hold or stop holding depending on the occurrence
of initiating and terminating events with respect to those fluents. Therefore,
given an event, we can deduce whether the value of a particular fluent is true
or not following that event. We are also borrowing the idea of checking only
those properties that are true at any state, as these represent pre-conditions
to the execution of certain events. This constitutes our inductive phase.

In addition, note that our approach can be related to some of the axioms
that comprise the requirements specification (Chapter 2) used by the ILP
approach. The initial-state, persistence and change axioms help define what
would be the most general LTS in our approach. On the other hand, event
precondition axioms form the principal component of the learning process,
as they determine how the initial LTS is modified to return a more refined
model.

However, the underlying methodologies used by the ILP task and our
approach differ slightly in a number of ways. In contrast to our approach,
the learning task presented in [2, 3] extracts operational requirements from
partial system specifications through the use of event pre-conditions and
trigger-conditions. Therefore, this method represents behavioural models in
a declarative manner through the use of logic programs, which our approach
bypasses.

Unlike the ILP approach, ours does not need to go through a translation
process from LTL to EC before the learning task can occur. Hence we may
experience an improvement in computation time when using our approach
instead of the ILP task, but in addition our approach is able to work directly

73

Figure 5.1: Comparing our approach to ILP

on the given LTS model.
The comparison between both approaches can be illustrated as in Figure

5.1. Both methods undergo a process of learning system properties implicitly
expressed by the given sets of positive and negative scenarios. The difference
lies in that the ILP uses the results from the learning task in order to
extend the initial specification with the learnt constraints. The updated
specification can then be used to generate a new LTS model corresponding
to the system, and the learning task can take place once again. On the other
hand, our refinement approach modifies the given LTS, and outputs a more
refined model that can undergo further stages of refinement as long as there
are examples of negative behaviour being covered by the system.

5.3 LTS Refinement based on Partition-Refining

[10] proposes a partition-refining algorithm that helps obtain the minimal
canonical automaton corresponding to a given initial PTA, which is what
our approach intends to achieve during the generalisation of given posi-
tive behaviour. It may not be the most efficient way of going about the
specialisation of given models, but it does avoid the execution of separate
minimisation steps after the induction phase, hence making it more efficient
in practice for many cases.

Its application scope ranges to various different regular languages, such
as those comprised of sets of strings, and pure automata in general. Hence

74

the method does not need to take into consideration additional knowledge
such as system pre-conditions and domain conditions. In contrast, our al-
gorithm is to be applied more generally to include such cases, taking into
account fluents and events. The difference lies in the nature of both the
problems, as we are not looking at sets of strings, but instead, we are work-
ing with events. In the latter case, we cannot usually have consecutive
instances of the same event, whereas with characters and/or strings, this is
acceptable, thus the number and type of possible paths in both systems will
tend to vary.

In addition, the methods in [10] are of limited use to us because they
considers positive examples only, whereas our aim is to take into account
both positive and negative scenarios for a given behavioural model in order
to correctly synthesise it.

5.4 Generalising Scenarios into State Charts

A similar merging algorithm to the one we use is described in [36], which
represents scenarios using sequence diagrams instead. Similarly to the way
in which we represent each scenario as a separate branch of a PTA, the
approach in [36] translates each scenario into a separate FSP using semantic
information. This results in the generalisation of behaviour such that user-
defined requirements are satisfied, which is equivalent to our approach since
we use scenarios provided by the users.

In addition, the approach in [36] analyses entire traces during the merg-
ing process, which is similar to our algorithm. Even though we merge states,
our state-merging algorithm only allows a merge in the positive PTA to oc-
cur if the resulting traces do not cover any undesirable traces.

However, nodes in the different FSPs are merged according to system
domain knowledge, due to which the final model is just an approximation
of the system and therefore needs to be manually reviewed and modified.
Our state-merging algorithm, on the other hand, uses given sets of positive
and negative scenarios, so no further modifications to the generalised result
need to be made by the user.

As with some of the other related approaches explained in Chapter 2,
the algorithm in [36] focuses on the generation of system specifications using
scenarios, whereas we can bypass such a stage and can directly modify the
given LTS using our approach.

Nevertheless, [36] addresses some of the assumptions that we make in
our approach, namely that the given sets of positive and negative scenarios

75

are already covered by the given LTS. In reality this may not be the case,
so the approach in [36] detects conflicts in the domain knowledge to refine
the given scenarios.

76

Chapter 6

Tool for the Refinement of
LTSs

This chapter describes the implementation of the LTS refinement algorithm
developed in this project. The implementation is a plug-in of the LTSA tool,
and as such it has been implemented in Java.

We have used the LTSA because it is a tool used to analyse labelled
transition systems and could therefore benefit from the addition of such a
functionality, as discussed in Chapter 2.

6.1 Design & Implementation

As mentioned earlier, the algorithm we propose in this report performs the
following 3 stages, given an initial LTS with examples of positive and nega-
tive scenarios covered by this LTS.

1. Representation of the input scenarios as PTAs

2. Generalisation of the positive PTA

3. Refinement of the given LTS

The overall structure of the added code can be observed in Figure 6.1,
and it has been added to the existing source code for the LTSA tool as an
additional package called refinement.

In this section we aim to describe the design choices made during the
implementation of each stage, together with the reasoning behind these deci-
sions. We will use our running example of the Simple Mine Pump to explain
various features.

77

Figure 6.1: UML diagram for the refinement package

Collection of system data

For a given LTS, The LTSA tool performs parsing on the corresponding
FSP. We use these results to populate a number of data structures which
are used throughout our algorithm, some of which are also present in the
original LTSA source code.

The sets of events and fluents for the system in question are stored in
arrays, as shown in Figures 6.2 and 6.3.

Figure 6.2: Array of System Events Figure 6.3: Array of System Fluents

The fluent definitions (in terms of sets of initiating and terminating event
as defined in Chapter 2) are used to populate a matrix of events by fluents,
showing how events influence the value of certain fluents (integer values are
used, so 1 is used where an event initiates a fluent, -1 is used when an event
terminates a fluent, and 0 is used where an event makes no difference to the
value of a fluent). An example is shown in Figure 6.4. Note that the indices
for events and fluents coincide with those in Figures 6.2 and 6.3. This makes
it easy to use the indices throughout the code, as this us allows us to use
the indices instead of the actual objects, and we can easily extract the value
at an index whenever necessary.

We also store the fluent values of the initial state in the given LTS,
as these will be used when we represent the given scenarios using defined
structures. More details follow.

78

Figure 6.4: Events × Fluents Matrix

Representation of scenarios as PTAs

Let us consider the same sets of scenarios as those used previously. These
are the following positive scenarios,

• 〈signalHighWater, turnPumpOn〉

• 〈signalHighWater, signalCriticalMethane, signalNotCriticalMethane〉

• 〈signalCriticalMethane, signalNotCriticalMethane,
signalHighWater, turnPumpOn, signalLowWater, turnPumpOff〉

• 〈signalHighWater, turnPumpOn, signalLowWater, turnPumpOff〉

and negative scenarios,

• 〈turnPumpOn〉

• 〈signalHighWater, signalCriticalMethane, turnPumpOn〉

• 〈signalHighWater, turnPumpOn, turnPumpOff〉

• 〈signalCriticalMethane, signalHighWater, turnPumpOn〉

We assume that users provide scenarios as text files. Two separate files
are needed to represent the sets of positive and negative scenarios, respec-
tively, and in both cases, scenarios are written as sequences of events in the
following format, each scenario on a separate line:

e0 >e1 > ... >en

where ∀i: 0..n, each ei is an element of the global set of system events.
Note that the representation of both positive and negative scenarios is

identical, which means we could have chosen to accept a single file that
includes all the given scenarios. Separate delimiters would then be needed

79

to differentiate between positive and negative scenarios, hence requiring the
need for additional parsing. In order to avoid this, we have decided to keep
the different types of scenarios separate from each other, hence making it
easier to access each set as and when required. In addition, we thought
this is more user-friendly, and it may even avoid incorrect classification of
scenarios by the users.

Analogous to the LTSA representation of the given LTS, we thought it
is appropriate to represent the information contained within the scenario
text files using a similar data structure. Thus, we can use them simultane-
ously during various stages of our refinement algorithm, without the need
to perform extensive changes between the underlying structures.

Each given set of scenarios is contained within an ArrayList object of
String arrays, where each String array corresponds to a separate scenario.
Scenarios are represented as tree objects called PTATree, where each tree
is represented by a set of StateNode objects denoted by the index of the
state that they represent, as well as information about the state itself, such
as its fluent values. Each node stores information regarding its parent and
children nodes. The number of nodes for the PTA is calculated using the
length of the arrays representing the scenarios, plus 1 for the root node, since
PTAs have a common root node out of which different branches emanate
to portray each scenario. For example, let us consider the first positive
scenario:

〈signalHighWater, turnPumpOn〉

Since we assume that all scenarios start at the same initial state, this means
that the node corresponding to the initial state has a number of outgoing
transitions that is the same as the number of scenarios. The event labels
for each of these transitions is the first event from each scenario. For the
example scenario provided above, there is an outgoing transition from the
initial state labelled with signalHighWater to another state. The latter state
in turn has an outgoing transition labelled turnPumpOn to another state.
Therefore, 2 different nodes are created for this scenario, and if this is done
for each scenario, then the total number of state nodes in the final structure
will be 1 plus the the length of each scenario.

For instance, the set of positive scenarios listed at the beginning of this
section would be represented as the following:

• 0
signalHighWater→ 1

turnPumpOn→ 2

• 0
signalHighWater→ 3

signalCriticalMethane→ 4
signalNotCriticalMethane→ 5

80

• 0
signalCriticalMethane→ 6

signalNotCriticalMethane→ 7
signalHighWater→ 8

turnPumpOn→ 9
signalLowWater→ 10

turnPumpOff→ 11

• 0
signalHighWater→ 12

turnPumpOn→ 13
signalLowWater→ 14

turnPumpOff→ 15

For each transition between a pair of states, a Transition object is created
of the form:

(source, event, target)

where source is the state from which the transition is outgoing, event is
the event label for this transition, and target is the state which has this tran-
sition as an incoming one. The representation coincides with the one used
in the original source code. It is then added to an ArrayList of transitions
corresponding to the PTA structure.

There is a slight difference between the structures that we use in the
refinement package to represent states, compared to those used by the ex-
isting LTSA source code. Firstly, our State objects contain information that
is relevant to the state itself, such as its accepting/non-accepting status, and
corresponding fluent values.

The former is a private field that we have added in order to differentiate
states in the negative PTA from those in the positive PTA. We remind
ourselves that all states in the positive PTA are accepting, since a trace
ending at any of the states is considered as a system execution. However
only the final states of a negative PTA are accepting because prefixes of the
negative traces contained within the negative scenarios can be acceptable
traces, but it’s only the last transition of every branch which determines the
undesirable behaviour. This information is necessary during later stages of
the refinement process, as explained later in this chapter.

The StateNode corresponding to a system state stores information re-
garding a node’s predecessors and successors. These are the nodes that
are connected to the node in question by a labelled transition, i.e. one-
step-reachable states. A node’s parent or child node is represented as a
(node,event) pair, where node is the parent (resp. child) node, and event is
the label of the transition between the two nodes. Such a tuple is present for
each parent (resp. child) node, and is stored in the corresponding map. For
example, for state 0 corresponding to the scenarios listed above, the map of
parent nodes would be empty, since the state has no parents, but the map
of children nodes would include:

{(1, signalHighWater), (3, signalHighWater), (6, signalCriticalMethane),
(12, signalHighWater)}

81

Figure 6.5: LTSA representation of a state

Figure 6.6: Our states array

On the other hand, the existing LTSA representation of a state is an
EventState object. There is a separate EventState for each transition in the
given system. Hence, for a state with multiple outgoing transitions such as
state 0 in the example provided, there would be multiple EventState objects
as shown in Figure 6.6.

Once both the positive and negative scenario trees have been populated,
the states are added to an array which stores State objects at indices that
coincide with the state’s index, as shown in Figure 5.

Using information regarding the fluent values at the initial state of the
given LTS, together with the ArrayList of transitions and the matrix which
shows the different fluent definitions such as the example in Figure 6.4, we
can determine the fluents that hold at each state.

For example, using knowledge of the fluents that hold at the initial state,
we can determine the fluents that hold at each of its children states. This
is determined by using the fluent definitions array such as those in Figure
6.4, which conveys information regarding the fluents that hold (resp. do
not hold) as a result of certain events. Using this we can determine which
fluents will hold at the children states of state 0 depending on its outgoing

82

transitions. This is repeated recursively for all other states. As a result,
we can populate the two other private fields corresponding to State objects,
namely sets which contain their true fluents and false fluents, respectively.
For example, for state 1 in the positive PTA,

• True Fluents = HighWater

• False Fluents = CriticalMethane, PumpOn

Simultaneously, we populate another global field in the Refiner class,
namely a matrix of states versus fluents, where boolean values are used
to express which fluents hold at each state and which do not, as shown
in Figure 6.7. Once again, the indices shown for states and fluents in the
diagram coincide with the indices of the arrays storing the states and fluents,
respectively, so that they can be used instead of the objects themselves. Easy
access to the objects is possible by referring to their position in the relevant
array using the indices.

Figure 6.7: States × Fluents Matrix

Generalising the input positive scenarios

Following the construction of PTA trees that represent our input scenarios,
the next step is to apply our state-merging algorithm on the PTA for the
positive scenarios. The main structure used during this stage is shown in
Figure 6.8, which gets populated as the states in the PTA are analysed and
therefore aids the generalisation process. In addition, we prefer the states
in the resulting model to have consecutive indices, hence we keep a counter
which determines the index of an individual state in the PTA when it is
added to the generalised model, or a state that has failed a merge with
other states that share the same label.

83

Figure 6.8: Internal Data Structure used for Generalisation Process

Each time a state in the positive PTA is analysed, its label is noted as
a conjunction of (negations of) fluents according to the fluents that hold or
not in that state. For instance, the label for state 1 in the positive PTA in
which the only fluent with a true value is HighWater, is

〈HighWater ∧ !PumpOn ∧ !Methane〉

If this label has not been encountered previously in any of the other
states visited, then the label is added as a new element in the labels array
shown in 6.8, and it is made to point at an ArrayList of ArrayLists which
will classify all the states in the PTA which have this label.

Let us make this clearer using the running example of a positive PTA as
shown in 6.9.

In Figure 6.10, f, g, h, i denote different labels encountered during the
analysis of states in the positive PTA. Let us take the label h as an example,
corresponding to 〈!HighWater ∧ !PumpOn ∧ !Methane〉. Suppose that dur-
ing a particular phase of the generalisation process, the groups structure is
as shown in Figure 6.10. Note that state 0 has been added to its appropriate
list, and the remaining lists for fluents f, g, i have not been included due to
space constraints.

Let us assume that state 7 is being visited. Its label is determined, which
in this case is 〈!HighWater ∧ !PumpOn ∧ !Methane〉. We note that this label
has already been visited, as it corresponds to label h. This means that there
is potential for a merge to occur between states 0 and 7. We therefore use
our testing code to check whether a merge between states 0 and 7 would
be valid (according to the definition of Merging as outlined in Chapter 3),
shown in Figure 6.11. As outlined in Chapter 4, the test passes if all traces

84

Figure 6.9: PTA for positive scenarios

Figure 6.10: Initial groups Structure

resulting from the merge do not cover any of the negative scenarios. In this
case, the traces that would be tested are those resulting from appending
preceding traces of state 0 to succeeding traces of state 7, and by appending
preceding traces of state 7 to succeeding traces of state 0.

However, state 0 has no preceding traces, so the test would check suc-
ceeding traces of 7. These are guaranteed to pass the test, since they are
already present in the positive PTA and hence exhibit desirable behaviour.

85

If we assume that the given positive and negative scenarios are consistent,
then no trace should appear in both the positive and the negative PTAs.

Examples of traces resulting by appending preceding traces of state 7 to
succeeding traces of state 0 include:

• 〈methaneAppears,methaneLeaves〉 appended to
〈aboveHigh, turnPumpOn〉,

• 〈methaneAppears,methaneLeaves〉 appended to
〈aboveHigh,methaneAppears,methaneLeaves〉,

and so on. Our testing code implies the merge is valid, so the index of
the new merged state is that of the state with the lowest index, in this case
state 0. Hence, the groups structure gets updated to include just state 0 in
the corresponding list, as shown in Figure 6.10.

Figure 6.11: Updated groups Structure (i)

This also means that any predecessor and/or successor nodes of the
original state 7 now need to become predecessors and/or successors of the
new combined state 0 instead. The PTA is updated to reflect this, by
iterating over the entire set of transitions in the model, and removing or
adding transitions between states as required. In this case, state 7 has state
6 as a parent node, and state 8 as a child. Therefore, when the PTA is
updated, the algorithm does the following:

• Adds state 8 as a child of state 0, and removes it from the children of
state 7

• Adds state 6 as a parent of state 0, and removes it from the parents
of state 7

86

• Replaces transitions (6, methaneLeaves, 7) and (7, aboveHigh, 8) with
(6, methaneLeaves, 0) and (0, aboveHigh, 8), respectively

Now let us suppose that a potential merge between states leads to an
invalid coalescence which incorrectly covers one or more of the negative
scenarios. In this case the other states that share the same label as state 0,
namely states 11 and 15, also pass the merging test.

Figure 6.12: Updated groups Structure (ii)

However, to show the steps performed by our algorithm during an invalid
merge, let us assume that state 11 fails the test. In this case, the state-
merging algorithm would try and merge state 11 to any other states with
the same label apart from state 0, but in this case there are none. Therefore
a new list is created containing the index of state 11, and a new pointer is
set up in the array of pointers as shown in Figure 6.12.

The remaining states are analysed and classified in the same way, and
when all nodes in the PTA have been visited, then the resulting groups
structure is used to populate fields related to the new structure, defined by
the GeneralPTA class of the refinement package.

Refinement of initial LTS

Now that the generalised positive LTS is available, it can be used with the
PTA corresponding to the negative scenarios in order to eliminate unwanted
traces from the general system LTS.

The different refinement steps are conducted as explained in Chapter 3,
by comparing transitions in the general system LTS to those in the gen-
eralised positive LTS and negative PTA. The Fluent Conjunctions method

87

(Chapter 3) is carried out by analysing the labels of the states involved,
and consequently deciding whether to remove a trace in the general system
LTS. When this happens, then the transition in question is removed from
the set of transitions corresponding to the general LTS. Consequently, the
predecessors and/or successors of the states involved are updated.

Once all the transitions have been considered and the appropriate deci-
sions have been taken, there is a method that converts our resulting Gen-
eralPTA object for the LTS into the LTSA representation so that it can be
visualised in the LTSA window.

6.1.1 Discussion

No refinement when no negative scenarios available

Note that in the code listing provided in Listing 6.1, line 30 makes sure that
the refinement procedure only takes place when there are negative scenarios
available. This is because the main aim of the refinement is to convert an
existing general LTS into a more specific one which does not allow any of the
negative behaviour portrayed through the set of negative scenarios, whilst
simultaneously preserving the desirable traces.

Performing the refinement process in the absence of any examples of
negative behaviour may just eliminate traces that are in fact not undesirable,
thus we would be over-constraining the model.

Updating states following elimination of a transition

It is important to realise that due to the deterministic nature of the LTSs
that we assume to be dealing with, it is not possible to have multiple transi-
tions between a pair of states. Therefore, when a transition is removed from
the system LTS as a result of the refinement procedure, then this implies
that the pair of nodes which were connected by this transition are no longer
connected. Hence, for each state, the set of predecessor or successor nodes
need to be updated to exclude the state which is no longer a parent or a
child of the state in question. For instance, the elimination of a Transition
t from state a to state b will result in the removal of state a as a parent of
state b, and the removal of state b as a child of state a.

6.2 User Interface

The interaction between the new refinement package that we have created
and the current UI package of the LTSA tool is shown in Figure 6.13 and

88

explained in this section.

Figure 6.13: Interaction between UI and new refinement package

The Refinement Feature

In order to integrate our implementation with the existing LTSA source
code, we have added a RefinedAction class that implements the ActionLis-
tener interface in the UI package. This class contains an actionPerformed
method, which is responsible for invoking the appropriate methods in the
refinement package during the refinement process. The arrow labelled (a)
in Figure 6.13 illustrates this relation, and the corresponding code for the
actionPerformed method is shown in Listing 6.1. The arrow labelled (b)
in Figure 6.13 corresponds to everything that is returned by our algorithm
as a result. This includes the representation of the positive and negative
scenarios using PTAs, the generalised model for the positive PTA, and the
refined model for the system.

Firstly, an exact copy of the general system is made (line 4), and then it
is converted into our internal representation of LTSs (line 6). This enables us
to execute the code in the refinement package on the converted model, and
as a result perform the various stages of our refinement algorithm. Amongst
other operations, the convert method enables the information extracted by
the existing parser code in the LTSA tool to be used to initialise some of
the global fields in our Refiner class. This includes the set of events for
the input system, as well as the different fluents and their corresponding
definitions.

The calls to the readNegScenarios and readPosScenarios methods from
the Refiner class at lines 15 and 21, respectively, lead to the representation
of user-provided scenarios as PTAs. Once all the relevant information has
been taken into account and the trees corresponding to the positive and
negative scenarios are fully populated, the calls to makeCompactState on

89

Listing 6.1: Code listing for the RefineAction class in UI

1 class Ref ineAct ion implements Act ionL i s t ene r {
public void act ionPerformed (ActionEvent e) {

CompactState system = (CompactState) cur rent
. compos it ion . myclone () ;

6 GeneralPTA sysLTS = Ref ine r . convert (system) ;
GeneralPTA negPTA = new GeneralPTA () ;
GeneralPTA posPTA = new GeneralPTA () ;
GeneralPTA genpos = new GeneralPTA () ;
CompactState negLTS = new CompactState () ;

11 CompactState posLTS = new CompactState () ;
CompactState genPosLTS = new CompactState () ;

i f (! negText . equa l s (neg scen . getText ())) {
negPTA = Ref ine r . readNegScenar ios (negScenar io s) ;

16 negLTS = Ref ine r . makeCompactState (” Negative PTA” ,
negPTA) ;

cur rent . machines . add (negLTS) ;
}
i f (! posText . equa l s (pos scen . getText ())) {

21 posPTA = Ref ine r . readPosScenar ios (posScenar i o s) ;
posLTS = Ref ine r . makeCompactState (” P o s i t i v e PTA” ,

posPTA) ;
cur rent . machines . add (posLTS) ;
genpos = Re f ine r . s y n t h e s i s e P o s i t i v e () ;

26 genPosLTS = Ref ine r . makeCompactState
(” Genera l i s ed P o s i t i v e LTS” , genpos) ;

cur r ent . machines . add (genPosLTS) ;
}
i f (! negText . equa l s (neg scen . getText ())) {

31 GeneralPTA r e s u l t = Re f ine r . g e t In s tance ()
. i n i t R e f i n e (negPTA , genpos , sysLTS) ;

CompactState f inalLTS = Ref ine r . makeCompactState
(” Ref ined Result ” , r e s u l t) ;

cur r ent . machines . add (f inalLTS) ;
36 }

pos tState (cur rent) ;
}

}

90

lines 16 and 22 are used to convert our internal representation of the PTA
trees to structures that are used by the existing LTSA source code. These
are added to the list of diagrams to be displayed, by executing the code at
lines 18 and 24.

Following this, the synthesisePositive method call at line 25 performs the
coalescence of states in the positive PTA. The result, which uses our internal
representation of the corresponding structure, is once again converted to the
LTSA representation at line 26 and added to the list of diagrams at line 28.

Now that the generalised positive LTS is available, it can be used together
with the negative PTA and the given LTS in order to refine the given model.
Note that line 30 ensures that refinement is only carried out if the user
has provided any negative scenarios, otherwise it would not be possible to
perform the refinement using only the given positive scenarios.

Thereafter, the method called at line 31 is one of the refinement methods
in our Refiner class. This makes calls to other private refinement methods
which deal with subsequent stages of the refinement procedure. The result is
converted to the LTSA representation at line 33, and then added to the list of
diagrams to be displayed (line 35). Finally, line 37 enables the visualisation
of all the required diagrams.

Additions to the LTSA GUI

Figure 6.14: Additional features in LTSA interface

Upon launching the LTSA tool, users can see the window shown in Fig-
ure 6.14, which is the standard LTSA tool but with a few additions from

91

our part. The first new functionality we encounter is the new menu item
Refinement. This is a JMenu object that is added to the existing JMenuBar
including the items File, Edit, Check, Build, and so on.

Figure 6.15: Options in the new menu item

In addition, three JMenuItem objects are added under Refinement, as
shown in Figure 6.15. The first two are used to open the files containing
positive and negative scenarios, respectively, similarly to the way in which
File → Open helps us open an FSP specification whose resulting model we
want to refine in this case.

The Select Positive Scenarios and Select Negative Scenarios options
work exactly the same way in which FSP files are opened using File −→
Open. In our case, Refinement −→ Select Positive Scenarios and Refinement
−→ Select Negative Scenarios enable the File Dialog windows to appear and
hence allow the user to select the appropriate files that contain the relevant
scenarios.

As you can see, there are two additional tabs other than the Edit, Output
and Draw tabs, namely Positive Scenarios and Negative Scenarios. These
are two new JEditorPane objects added to the existing JTabbedPane. When
the relevant files are opened, their contents are displayed in the new tabs
using a buffer, as shown in Figures 6.16 and 6.17.

Note that a we could have used a single tab to contain all scenarios, but
the reason for not doing so is due to user-friendliness, particularly if the tool
is extended later on to enable dynamic generation of scenarios. Users can
then add new scenarios under the appropriate tabs.

Once we have our scenarios and FSP specification ready, we can use the
third option of the Refinement menu item this time, named Refine (Figure

92

Figure 6.16: Positive Scenarios file contents

Figure 6.17: Negative Scenarios file contents

6.18). This is responsible for invoking the relevant ActionListener that
initiates the refinement process and executes the following steps:

1. The given positive and negative scenarios are read in their textual
forms displayed in their respective tabs, and corresponding diagrams
are produced which enable the user to view these scenarios diagram-
matically (Figures 6.19 and 6.20). These are named Negative PTA and
Positive PTA, respectively.

2. The positive PTA in Figure 6.19 is generalised using our State-Merging
algorithm, and can be viewed under the Draw tab (Figure 6.22 as the

93

Figure 6.18: The “refine” option

Generalised Positive LTS.

3. The PTA structure for the negative scenarios and the generalised
model for the positive scenarios are used in conjunction with the given
system model (Figure 6.21) to perform the actual refinement as spec-
ified in Chapter 3.

4. An LTS representation of the resulting model is finally created and
made available to the user for viewing under the Draw tab (Figure
6.23, as the Refined Result.

The next chapter shows the application of our refinement algorithm de-
scribed in this report on a larger system, and the results obtained are then
compared to the output of the ILP approach on the same example.

94

Figure 6.19: Diagram representing positive scenarios

95

Figure 6.20: Diagram representing negative scenarios

96

Figure 6.21: Diagram representing initial system model

97

Figure 6.22: Diagram representing generalised positive behaviour

98

Figure 6.23: Diagram representing refined system model

99

Figure 6.24: General System LTS for ESFAS
100

Chapter 7

Testing: A Case Study

In this chapter we have provided a complete working example of our al-
gorithm on a sample case study in [7, 22]. The system in question is The
Engineered Safety Feature Actuation System (ESFAS) of a nuclear power
plant, which prevents or mitigates damage to the core and coolant system
on the occurrence of a fault such as a loss of coolant. The ESFAS monitors
the water pressure of the coolant system. If the pressure falls below some
predetermined setpoint, the system sends a safety injection signal to the
safety feature components. the function of which is to cope with the acci-
dent. A manual block (pushbutton) is provided in order to override a safety
injection signal and to avoid actuation of the protection system during a
normal start-up or cool-down phase. A manual block is permitted if and
only if the steam pressure is below a specified value, and is effective if and
only if it is executed before the protection signal is sent. The manual block
must be automatically reset by the system.

We can open the FSP file corresponding to this system using the LTSA
tool. The process is compiled and composed using the appropriate LTSA
options, and the corresponding diagrammatic representation of the ESFAS
system can be seen in Figure 6.24.

The corresponding set of events, also called the alphabet A for this sys-
tem is:

A = {overrideSafetyInjection, enableSafetyInjection,
sendSafetyInjectionSignal, stopSafetyInjectionSignal, raisePressureAbovePer-
mit, raisePressureAboveLow, lowerPressureBelowPermit, lowerPressureBe-
lowLow}

101

The corresponding set of fluents F for this system is:
F = {SafetyInjection, Overridden, PressureBelowLow, PressureAbovePer-

mit}

Due to the large size of the LTS in Figure 6.24, it has not been possible
to include information regarding the fluents that hold at each of its states.
Therefore, we have presented this information in Table 7.1.

State SafetyInjection Overridden
Pressure Pressure

BelowLow AbovePermit
0 × X X ×
1 X X X ×
2 X X × ×
3 X X × X
4 × X × X
5 × × × X
6 × × × ×
7 X × × X
8 X × × ×
9 X × X ×
10 × X × ×
11 × × X ×

Table 7.1: Fluent values at States in General LTS

We are going to consider just one positive scenario for this example,
namely:

• 〈raisePressureAboveLow, raisePressureAbovePermit,
enableSafetyInjection, lowerPressureBelowPermit,
lowerPressureBelowLow, sendSafetyInjectionSignal〉

and the following negative scenarios,

• 〈sendSafetyInjectionSignal〉

• 〈raisePressureAboveLow, enableSafetyInjection〉

• 〈raisePressureAboveLow, sendSafetyInjectionSignal〉

• 〈enableSafetyInjection〉

102

These are stored in separate files, which are opened using Refinement
−→ Select Positive Scenarios..., to show the chosen positive scenarios in
the Positive Scenarios tab and similarly Refinement −→ Select Negative
Scenarios... populates the Negative Scenarios tab with the chosen negative
scenarios.

Algorithm 1 is used on both sets of scenarios to construct their respective
PTAs. In the case of the positive scenario, a tree with state 0 as the root
is created according to line 3 in the algorithm, and the for-loop at line 5
is entered once since we only have one example of positive behaviour. The
root node is then set to be the starting point, and the inner for-loop at line
7 is executed.

Each time an event label is read from the positive trace, a new state
is created with the current index (line 8) which is added to the tree as a
child of the starting node (line 9). Similarly, the starting node is set to be
a parent of the new node (line 10), and the entire transition is stored as a
3-tuple in the list of transitions for the resulting PTA (line 11).

The new node is now set to be the starting node (line 12), the index of
the next state is incremented (line 13) as we have just created a node with
the previous index, and the inner loop is repeated as many times as the
number of transitions in the positive trace.

Note that each time a state is created, its private field accepting is set to
true, since all states in a positive PTA can be accepting (Chapter 4). The
resulting positive PTA is shown in Figure 7.1.

In the case of the negative scenarios, there are more of them compared
to the single positive scenario, and so the number of steps required is slightly
greater this time. Lines 3 and 4 of Algorithm 1 are executed as before, and
the outer for-loop is executed. The first scenario is read, and the appropri-
ate state (with index 1) and transition (with event label sendSafetyInjec-
tionSignal) are added to the negative PTA. The inner for-loop is executed
just once for the first scenario, since only one transition is available in this
case.

However, when we have finished reading the first scenario, the index of
the next state to be created is set to 2, and the outer for-loop is executed for
the next negative trace. Note that this time, only the final states have their
accepting field set to true, so each time the algorithm finishes reading an
entire scenario, it sets the state at [current index -1] to be accepting (since
the current index contains the number for the next state to be created).

The corresponding negative PTA can be seen in Figure 7.2.
As explained in previous chapters, the first step is the generalisation

of positive system behaviour. States in the positive PTA are visited in

103

Figure 7.1: PTA for Positive Scenarios

104

Figure 7.2: PTA for Negative Scenario

105

increasing order of state index. We remind ourselves that the numbering of
states in a PTA is performed along the branches in a depth-first fashion,
such that all states in a particular branch are visited before traversing other
branches. In our case, we only have one positive scenario, and Figure 7.1
shows that each state in the positive PTA is defined by a different set of fluent
values. Hence there is no scope for any merge. Applying our state-merging
algorithm in Algorithm 2 to the positive PTA would leave it unchanged.

Following this, our refinement algorithm is applied to the general system
LTS shown in Figure 6.24, taking into account the negative PTA and the
positive generalised LTS (which in this case is our positive PTA). Let us
explain each step of the refinement process in more detail. We start off by
executing the code in Algorithm 4.

Firstly, we initialise the list of victims, which will subsequently get pop-
ulated with tuples (e,n). Each tuple represents an event e outgoing from a
state n in the given LTS, where the transition in question has already been
removed from the initial LTS. Initially the victims list is empty (line 4 in
Algorithm 4).

We now look at the accepting states in the negative PTA, namely the
final ones, since the incoming transitions into these states mark the unde-
sirability of these traces. In this case the final states are 1, 3, 5 and 6. Each
of these is studied in turn according to the for-loop at line 5.

Let us look at state 1 in the negative PTA. At line 6, we look at its
incoming transition labelled sendSafetyInjectionSignal which is undesirable
and should therefore be removed from the given LTS. We therefore note the
fluent values that hold at state 1:

〈 SafetyInjection, Overridden, PressureBelowLow, ¬PressureAbovePermit〉,

and we use these to find equivalent states in the given LTS which have
an incoming transition labelled sendSafetyInjectionSignal (line 7).

Looking closely at Figure 6.24, we can see that state 1 in the given LTS
satisfies this condition. According to the for-loop at line 8, we need to make
note of the states in the LTS that have the undesirable transitions outgoing
from them (line 9), and in this case state 1 in the given LTS is receiving
the undesirable transition from state 0. Consequently, this information is
added to victims (line 10) in the form of a tuple, (sendSafetyInjectionSignal,
0), and the sendSafetyInjectionSignal transition into state 1 is thus removed
from the LTS.

We now look at state 3 in the negative PTA. At line 6, we look at its
incoming transition labelled enableSafetyInjection which is undesirable and

106

should therefore be removed from the given LTS. We therefore note the
fluents that hold at state 3 and use them to find equivalent states in the
given LTS which have an incoming transition labelled enableSafetyInjection
(line 7). In this case the fluent values at state 3 are

〈 ¬SafetyInjection, ¬Overridden, ¬PressureBelowLow,
¬PressureAbovePermit〉

We can see that state 6 in Figure 6.24 shares these fluent values with
state 3 in the negative PTA. According to the for-loop at line 8, we make
note of the states in the LTS that have the undesirable transitions outgoing
from them (line 9), which in this case is state 10 in the general LTS.

Consequently, this information is added to victims (line 10) as (enable-
SafetyInjection, 10), and the enableSafetyInjection transition into state 6 is
removed from the LTS.

The steps described above are repeated for the remaining final states
in the negative PTA, but for different events. In the case of state 5, an
incoming transition labelled sendSafetyInjectionSignal is undesirable. The
corresponding state in the given LTS is state 2, which has an incoming
sendSafetyInjectionSignal from state 10. This results in the elimination of
the transition from state 10 to state 2 (line 11) in the given LTS, and the
addition of (sendSafetyInjectionSignal, 10) to the victims list, according to
line 10 in the algorithm.

As for state 6, it is not possible for it to accept an incoming transition
labelled enableSafetyInjection, and its equivalent state in the given LTS is
state 11, with an incoming transition labelled enableSafetyInjectionSignal
from state 0. This transition is removed from the given LTS (line 11), and
(enableSafetyInjectionSignal, 0) is added to the victims list (line 10).

Having looked at each of the final states in the negative PTA, our vic-
tims set which contains the following elements is given as a parameter to the
method described in Algorithm 5, as set out in line 14 of Algorithm 4. Table
7.2 shows the transitions removed so far, and as we remove further transi-
tions from the general LTS, we will update this table in order to facilitate
the analysis and verification of the final results.

victims = {(sendSafetyInjectionSignal, 0), (enableSafetyInjection, 10),
(sendSafetyInjectionSignal, 10), (enableSafetyInjectionSignal, 0)}

We now analyse each remaining transition in the given LTS according
to the for-loop at line 5 of Algorithm 5, in conjunction with the tuples in
victims.

107

Transitions removed - (source state, event, target state)
(0, sendSafetyInjectionSignal, 1)

(10, enableSafetyInjection, 6)
(10, sendSafetyInjectionSignal, 2)

(0, enableSafetyInjection, 11)

Table 7.2: Fluent values at States in General LTS

Transitions are not considered in any particular order, instead an iterator
is run across the set of transitions for the system, and each transition is
handled separately. Note that only those transitions which are labelled with
one of the event labels in {sendSafetyInjectionSignal, enableSafetyInjection}
will be analysed, as we can see on line 6 in Algorithm 5. This is because
only these event labels appear as the undesirable ones amongst the given
negative scenarios. The transitions that thus satisfy the if-condition at line
6 for each undesirable event label are shown in Table 7.3 in the form (source
state, event label, target state).

Transitions with label Transitions with label
e = sendSafetyInjectionSignal f = enableSafetyInjection

(4, e, 3) (4, f , 5)
(5, e, 7) (1, f , 9)
(6, e, 8) (2, f , 8)
(11, e, 9) (3, f , 7)

Table 7.3: Transitions to analyse in given LTS

Let us look at the first sendSafetyInjectionSignal transition. For transi-
tion (4, sendSafetyInjectionSignal, 3), the algorithm firstly checks if there is
a transition in the generalised positive LTS with the same event label (line
7). As seen in Figure 7.1, the transition from state 5 to state 6 satisfies this
condition. In lines 8-10, the fluent values of state 4 in the general LTS and
state 5 in the positive LTS are considered.

State 4 in the general LTS is defined by the fluent values
〈 ¬SafetyInjection, Overridden, ¬PressureBelowLow, PressureAbovePermit〉

On the other hand, state 5 in the positive LTS is defined by the fluent
values

〈 ¬SafetyInjection, ¬Overridden, PressureBelowLow,
¬PressureAbovePermit〉

108

As we can see, the fluent values are not exactly the same, therefore the
if-condition on line 10 is satisfied, and the method that further analyses
these states according to their fluents is called at line 11.

Algorithm 6 outlines the next steps involved. The method takes in as
input the state in the given LTS whose outgoing transition is under analysis,
i.e. state 4 in this case, together with the victims list (line 1). State 4 is
then compared to other states from the given LTS whose outgoing sendSafe-
tyInjectionSignal transitions have already been removed and are contained
in the victims list (line 5). In this case we can see that the victims list has
two entries that satisfy this:

{(sendSafetyInjectionSignal, 0), (sendSafetyInjectionSignal, 10)}

The first element refers to the transition from state 0 to state 1 which
was previously removed, and the second one is the former transition from
state 10 to state 2. We compare states 4 and 0 first.

As mentioned before, state 4 is defined by the fluent values

〈 ¬SafetyInjection, Overridden, ¬PressureBelowLow,
PressureAbovePermit〉

whilst state 0 is defined by

〈 ¬SafetyInjection, Overridden, PressureBelowLow,
¬PressureAbovePermit〉

At line 6, the intersection inter of the fluent values for both states is
determined:

inter = {¬SafetyInjection, Overridden}

According to line 7, we construct the power set power of elements in
inter, in increasing order of size and excluding the empty set:

power = {{¬SafetyInjection}, {Overridden}, {¬SafetyInjection,
Overridden}}

At line 8 we consider the first subset, namely {¬SafetyInjection}. We
need to check if this fluent value occurs in any of the states in the posi-
tive LTS with an outgoing transition labelled sendSafetyInjectionSignal. As
mentioned before, state 5 in the positive LTS has an outgoing transition
labelled sendSafetyInjectionSignal, and is defined by the fluents

109

〈 ¬SafetyInjection, ¬Overridden, PressureBelowLow,
¬PressureAbovePermit〉

and so the if-condition at line 9 in Algorithm 6 is satisfied, and another
subset from power is fetched according to line 10 and then line 8.

We now look at subset {Overridden}. Checking the fluent values of state
5 once again, we realised that this fluent value is not amongst them, and so
this time the if-condition at line 9 is not satisfied, so the else-case on line 11
is executed. According to line 12, the sendSafetyInjectionSignal transition
outgoing from state 4 in the general LTS is eliminated, and the procedure is
exited by returning the modified general LTS, following the execution of lines
13, 16, 17, and finally 22. The table including all the removed transitions is
therefore updated, as shown in Table 7.4

Transitions removed - (source state, event, target state)
(0, sendSafetyInjectionSignal, 1)

(10, enableSafetyInjection, 6)
(10, sendSafetyInjectionSignal, 2)

(0, enableSafetyInjection, 11)
(4, sendSafetyInjectionSignal, 3)

Table 7.4: Transitions removed from General LTS (i)

We then go back to line 11 where the calling method in Algorithm 5
called Algorithm 6, and exit the if-condition at line 12. Lines 15 and 16
are executed subsequently, and we are back at line 5, where we consider the
next transition in the general LTS.

Let us suppose the next transition that meets the if-condition at line 6
is (5,sendSafetyInjectionSignal, 7). Once again we look for a state in the
positive LTS which has the same outgoing transition. As mentioned in the
previous example, this corresponds to state 5 in the positive LTS, which is
defined by the fluents

〈 ¬SafetyInjection, ¬Overridden, PressureBelowLow,
¬PressureAbovePermit〉

This is compared to the fluent values holding at state 5 in the general
LTS, which are

〈 ¬SafetyInjection, ¬Overridden, ¬PressureBelowLow,
PressureAbovePermit〉

110

Similarly to the previous example, their fluent values do not match, so
we need to call Algorithm 6 again at line 11.

As before, the relevant entries in the victims list that we need to use are:

{(sendSafetyInjectionSignal,0), (sendSafetyInjectionSignal,10)}

This time let us look at the second element, namely (sendSafetyInjec-
tionSignal, 10). State 10 is defined by the fluent values

〈 ¬SafetyInjection, Overridden, ¬PressureBelowLow,
¬PressureAbovePermit〉

We construct the intersection of fluents that occur in states 5 and 10 of
the given LTS (line 6), and the corresponding power set (line 7):

inter = {¬SafetyInjection, ¬PressureBelowLow}

power = {{¬SafetyInjection}, {¬PressureBelowLow}, {¬SafetyInjection,
¬PressureBelowLow}}

From the previous example, we know that {¬SafetyInjection} occurs in
state 5 in the positive LTS, hence the if-condition on line 9 is met, and
line 10 is executed. We therefore choose the next subset in power, namely
{¬PressureBelowLow}. This time, state 5 in the positive LTS does not
include this fluent value, so the else-case at line 11 is executed, leading to the
elimination of transition (5, sendSafetyInjectionSignal, 7) from the system
LTS (line 12). Following execution of lines 13, 16, and 17, the modified
system LTS is returned at line 22 and we resume execution of Algorithm 5.
The table containing removed transitions is once again updated, as shown
in Table 7.5

Transitions removed - (source state, event, target state)
(0, sendSafetyInjectionSignal, 1)

(10, enableSafetyInjection, 6)
(10, sendSafetyInjectionSignal, 2)

(0, enableSafetyInjection, 11)
(4, sendSafetyInjectionSignal, 3)
(5, sendSafetyInjectionSignal, 7)

Table 7.5: Transitions removed from General LTS (ii)

111

The for-loop at line 5 in Algorithm 5 continues to execute on the re-
maining transitions in the system LTS, and as we mentioned previously,
only those in Table 7.3 are analysed. As a result of similar steps as those
explained in the two examples outlined above, transitions (6, sendSafety-
InjectionSignal, 8), (1, enableSafetyInjection, 9), (2, enableSafetyInjection,
8), and (3, enableSafetyInjection, 7) are also removed from the given LTS.
Table 7.6 reflects this.

Transitions removed - (source state, event, target state)
(0, sendSafetyInjectionSignal, 1)

(10, enableSafetyInjection, 6)
(10, sendSafetyInjectionSignal, 2)

(0, enableSafetyInjection, 11)
(4, sendSafetyInjectionSignal, 3)
(5, sendSafetyInjectionSignal, 7)
(6, sendSafetyInjectionSignal, 8)

(1, enableSafetyInjection, 9)
(2, enableSafetyInjection, 8)
(3, enableSafetyInjection, 7)

Table 7.6: Transitions removed from General LTS (iii)

In the case of transition (11, sendSafetyInjectionSignal, 9) the if-condition
at line 7 of Algorithm 5 is entered, as we know there exists a transition with
the same event from state 5 to state 6 in the positive LTS. State 11 in the
system LTS is defined by the fluents

〈 ¬SafetyInjection, ¬Overridden, PressureBelowLow,
¬PressureAbovePermit〉

which coincide exactly with the fluent values for state 5 in the posi-
tive LTS. This causes the if-condition at line 10 to not be met, and so no
further analysis is performed on the transition in question. Hence, the out-
going transition labelled sendSafetyInjectionSignal between states 11 and 9
remains in the system LTS.

A similar procedure occurs with transition (4, enableSafetyInjection, 5).
State 4 in the general LTS is defined by the fluent values

〈 ¬SafetyInjection, Overridden, ¬PressureBelowLow,
PressureAbovePermit〉,

112

Figure 7.3: Refined Model for ESFAS System
113

Its outgoing transition matches the outgoing transition from state 2 in
the positive LTS, which is also defined by the same fluent values. Once again,
the if-condition at line 10 is not satisfied, and so the transition between
states 4 and 5 in the system LTS remains in the LTS. As a result, we obtain
the refined model in Figure 7.3.

We can compare the results obtained through our approach, to those that
the ILP approach would return when applied to the same system. Thus we
can comment on the correctness and completeness of our approach. In this
case, the resulting model returned by the ILP technique is shown in Figure
7.4.

Our first impressions gathered by just looking at these images would
be that the two methodologies return different results. However, to check
whether this is true or not, we need to analyse transitions in each of the
models. This is because, as mentioned previously, state numbers do not play
any significant role in the representation of system models, and are merely
used as labels for the states. It is therefore possible that our approach
numbers states differently to the way the ILP approach does.

Let us try and find a mapping between the states of each model. The
results are shown in Table 7.7, which shows the correspondence between
states in the model returned by ILP, and those in the model returned by
our refinement approach. In addition, we have included a third column
which affirms for each pair of equivalent states, whether they are equivalent
in terms of their outgoing and incoming transitions. If we can confirm this
for each and every pair, then we can conclude that both models are identical.

ILP State Refinement State Equivalent?

0 0 X
1 10 X
2 4 X
3 5 X
4 6 X
5 11 X
6 9 X
7 8 X
8 7 X
9 3 X
10 2 X
11 1 X

Table 7.7: Correspondence between ILP and Refinement states

114

Figure 7.4: Result from ILP approach for ESFAS

115

As Table 7.7 shows, each and every state in our model is exactly the
same as its corresponding state in the ILP model, which proves that both
methods return the same resulting LTS for the system in question.

The following chapter assesses the performance of our approach against
different criteria, and hence helps determine its usefulness with respect to
the achievement of our goals.

116

Chapter 8

Evaluation

8.1 Discussion

As explained in Chapter 2.1 of this report, we have looked at bottom-up
techniques which output the most general LTS corresponding to a given
system, so that the resulting model will not accept any new scenarios which
exhibit negative behaviour. In our case, we have developed a top-down
approach which takes in the most general LTS as input, as well as sets
of positive and negative scenarios covered by this LTS, and it outputs a
resulting system model that is refined and covers all the positive scenarios.

We have also considered existing techniques that rely on logic programs
[2, 3] to learn a set of theories which can be applied to LTSs to synthesise
them, as the models accept only those scenarios leading to desirable system
behaviour and reject all others. However, these often rely on methods such
as language bias that limit the search space when dealing with particularly
large and complex systems, by imposing certain syntactic constraints on
the hypotheses. By applying our algorithm, we can bypass this form of
additional processing carried out by the inductive learning approach, and
our methodology can operate directly on the behavioural models without
dealing with any declarative properties. However, because we use a non-
declarative representation of the behaviour models, it is more difficult to
formally prove the correctness of our approach. We have only given an
empirical evaluation of its outcomes.

The approach presented in [10] is one of the possible ways in which a
subset of a language can be learnt by iteratively partitioning the states of
the initial automaton, but its downfall is that it only takes into account the
positive scenarios corresponding to a system specification. Conversely, we

117

consider negative scenarios to be equally as important during the refinement
process, as these tend to be quite common in the examples that stakeholders
typically provide, and we can think of them as being the safety properties
that need to be satisfied in the resulting LTS. Consequently, we use them in
our approach as a way of avoiding the problem of over-generalisation that
may result from inference rules applied to the positive scenarios.

Another limitation of some of the other algorithms that we have studied
and included in Chapter 2 is their restricted application to pure automata.
On the other hand, it should be possible to apply our algorithm to systems
defined by fluents and events as well.

We can comment on the algorithm’s correctness amongst other charac-
teristics, and hence determine the value of its contribution to the process
of LTS refinement compared to the current state of the art. Amongst all
the different approaches analysed, the ILP technique is the closest to the
one we present in this report, as both methods try to explore the generation
of behaviour models from scenarios. Hence, the different evaluation criteria
used will compare our algorithm to the ILP approach.

Correctness The results of the testing performed in the previous chapter
show that our algorithm works on a given LTS and returns a more refined
model which is the same as the one obtained by using the ILP approach on
the same LTS.

However, using our approach can prove to be advantageous for a number
of different reasons as mentioned earlier, but the differentiating contribution
in this case is that the methodology we have developed during the course of
this project works directly on the input LTS.

Completeness In contrast to some of the other similar approaches in this
field, our algorithm considers both positive and negative scenarios in order
to refine the given LTS. However, it is not possible to supply all the possible
positive scenarios related to a system as input, as there could be infinitely
many. Therefore, we ensure that the resulting model is one which still covers
all the examples of positive behaviour given as input, whilst rejecting all the
negative examples provided, without necessarily guaranteeing that the final
LTS will meet the given system goals.

Termination The algorithm is guaranteed to terminate, since we assume
that the given sets of positive and negative scenarios are covered by the
initial LTS, and so any example of undesirable system behaviour expressed

118

through the negative scenarios is used to prune the corresponding transitions
from the general LTS. It may take a sequence of refinement stages to obtain
the most specific LTS, but the final stage is eventually reached when the
resulting system does not cover any negative behaviour. This will also be
the minimal LTS, which encompasses the least number of states. However,
it is important to note that the solution produced is not always unique.

This is because each refinement is specific to the set of positive and
negative scenarios provided. Therefore, varying these whilst maintaining
the same system may cause the solution to vary as well. In other words, for
a given LTS to which we apply our refinement algorithm using examples of
positive and negative scenarios, the result obtained will be different if we
were to use different examples.

Generality All the different examples used throughout this report show
that our algorithm can be usefully applied to systems defined by FSPs or
domain knowledge alone. In this case the objective was to learn a grammar
from given positive and negative examples. In addition, it should be possible
to include pure automata defined by strings. Unlike the ILP, we are not
restricted to handling system behaviour expressed in the EC only, but it
remains to test our approach on systems with varying nature. Hence, the
algorithm may allow for the addition of certain extensions which prove its
greater usefulness as a flexible mechanism.

8.2 Implementation

We have modified the existing LTSA interface slightly to enable usage of the
refinement algorithm developed during this project. However, the primary
purpose of this is the demonstration of the concept and functionality, rather
than a complete commercial implementation.

As we have shown through the content in Chapter 3, the refinement
package is highly modular, and can therefore be extended with minimal
modifications. The makeCompactState method in the main Refiner class is
all that is needed to translate structures represented using our chosen model
representation, to the existing representation used by the LTSA. However,
it may be necessary to make corresponding changes to the HPWindow class
in the ui package for any alterations in the displayed results, since this is the
class that links the existing source code for the LTSA to the new package.

In order to assess the overall performance of our implementation in a
holistic manner, it is important to perform an evaluation according to vari-

119

ous perspectives, as outlined below.

Efficiency We are interested in minimising the number of steps required
by our algorithm. A major reduction is achieved by bypassing the additional
steps required by the ILP task, such as the translation of the initial spec-
ification expressed in LTL to EC, and the use of language bias techniques
that constrain the search space. In our case we can differentiate three main
stages:

1. Representation of the input scenarios as PTAs

2. Generalisation of the positive PTA

3. Refinement of the given LTS

It is trivial that the number of steps can increase greatly for complex
systems with much more extensive alphabets and fluent sets, but this is also
greatly dependent on the number and size of scenarios provided. However,
to be able to note a considerable change, it would be necessary to study
systems that are much larger and complex to the extent that they are hard
to understand, and would therefore require a lengthy process of analysis
which time constraints would not allow for.

Complexity & Computational Time Apart from the number of steps
required by our refinement algorithm, we are also interested in reducing the
actual time taken to execute the various steps. The case study from the
previous chapter included a system LTS with 12 states, 40 transitions, 4
different fluents, and 9 event labels excluding the hidden action tau. Both
the positive and negative PTAs corresponding to the input sets of scenarios
were composed of 6 transitions and 7 states. In this case there was no need
to generalise the positive behaviour entailed by the positive scenarios, so the
positive PTA was used during refinement. As a result of the refinement, the
number of states in the original system LTS remained unaltered, but the
number of transitions was reduced to 30.

In contrast to the ILP approach, our algorithm does not need to perform
an exhaustive search on the input, and can bypass the translation process
of LTL into EC as well as the language and search bias phases applied to
restrict the hypotheses. Therefore, we would expect improvements in the
speed with which results are returned by our methodology compared to
the time taken by the inductive learning approach. However as mentioned

120

previously, formal verification of results is much more difficult with our
approach due to the lack of any declarative representation.

In the case of the case study presented in the previous chapter, as well
as for all the other examples mentioned in this report, the LTSA returned
results from both the generalisation and the final refinement in a matter of
seconds. Though we have not calculated the exact time taken, we have re-
alised that results are computed and displayed in the LTSA Draw tab within
a time that appears as immediate once the user chooses the Refinement −→
Refine option.

Execution time could also increase with the number of steps involved in
the various stages of our refinement algorithm. For instance, the provision of
dense sets of scenarios would lead to a more time-consuming construction of
the corresponding PTAs, and generalisation of the positive PTA, as a greater
number of states and transitions would need to be taken into account. In
addition, if the given LTS itself includes numerous states and transitions,
then it would take more time to perform the refinement process on it due
to the extra processing required.

121

Chapter 9

Conclusions and Future
Work

9.1 Discussion

This report describes a methodology for refining LTSs generated from FSP
descriptions, in accordance with sets of user-provided scenarios. The ap-
proach undergoes two different stages, the first of which aims to generalise
system behaviour in order to preserve as much of the desirable properties of
the system as possible, whilst the second stage uses this generalised model
together with examples of undesirable system executions in order to output
a refined LTS which encompasses all the positive behaviour and simultane-
ously disallows any negative one.

A prototype has been developed as part of the existing LTSA tool, which
shows the algorithm in successful operation as it returns the desired output,
but there is room for further work. The tool has been tested on several (non-)
trivial examples from the literature, and despite the appropriateness/suit-
ability of results obtained when compared to the results from the ILP on
the same system, there are other areas which could be looked into in order
to enhance the current functionality provided by this tool, thus increasing
the value of its contribution to the requirements engineering domain. These
are discussed in the next section.

9.2 Additional features and future work

The current version of the tool satisfies our initial requirements of being
able to generalise positive system behaviour, and using the resulting model

122

together with examples of undesirable behaviour, to generate a modified
system model that preserves the desirable behaviour whilst rejecting any
occurrences of unwanted system execution. However, there are a number of
different features that could be included within our existing tool. These are
discussed in more detail in this section.

As discussed in Chapter 4, our lattice of automata shows that the num-
bering of states influences the order in which state-merging is performed
during the generalisation of the positive PTA, but as our current algorithm
stands, it will not always return the smallest generalised model in terms of
the number of states and transitions in the result. To guarantee minimality
in the positive LTS, the necessary code can be added to the generalisation
part of the algorithm, which in addition should go through all the different
merging options available for a set of states. Consequently it should store all
the different structures in order to eventually return the one which contains
the least number of states.

One enhancement of the existing tool could be to include LTSs of a
higher complexity for the refinement process, such as those including tau
actions, ’tick’ events, and so on. During the course of this project we have
assumed that all input LTSs are defined by sequences of events between
system states, without taking into account any notion of time. By including
these in our study we could benefit from the ability to cover a vast array
of systems, and hence provide a more general approach that considers these
differences.

Throughout this project we have assumed that everything starts at the
same unique initial state. However, if fragments of scenarios are provided by
different users, then additional checks will be needed to ensure consistency
of the scenarios.

Often in larger systems, an FSP file contains the definition for a num-
ber of sub-processes, and the final process is just a result of composing
these individual processes. If, however, we want to simultaneously perform
the refinement on two different LTSs that are closely linked, it would be a
reasonable idea to extend our algorithm to cover this genre of situations.
We would need to take into account various different issues such as shared
actions, concurrency issues, and so on.

At the present stage, we are also assuming that scenarios are complete,
i.e. that the events appearing in these scenarios are the only events possible
in the system. However, we may want to relax these assumptions and learn
requirements from a set of incomplete scenarios that satisfy a particular
system specification. This would help cover implied scenarios in addition to
the ones that we have been dealing with during this project.

123

Given that the principal reason for the existence of our tool is to satisfy
end-user requirements fully, and to not cause or allow any form of system
behaviour that would be classified as unacceptable by the user, it would be
an added value to the users if we could provide them with different ways of
generating the input scenarios. Currently we assume that the scenarios are
already contained within text files that users have access to, and which they
can select for a given LTS that needs to be refined. A possible enhancement
could be an interactive version of our approach, whereby users can actually
create scenarios on the fly, and feed these into our system using a GUI, so
that the generalisation algorithm can take these into account and adjust its
output accordingly. The dynamic addition of scenarios using MSCs as in
[34] would be helpful to verify how easily the refined LTSs can be adapted,
and their tendency to errors.

Scenarios could also be generated automatically, and so it remains to
investigate the integration of our refinement approach and model checking
techniques in order to find new ways to increase the flexibility and efficiency
of our approach.

Since the FSP files that we have been working with in order to test
our implementation have just included domain conditions and no further
specification of goals, triggers, and so on, further research would be nec-
essary to look into the inclusion of such pieces of information, including
post-conditions, which on the other hand state properties that should not
hold as a result of a certain event. An addition to this would be to include
user-defined goals.

We can think of our current refinement algorithm as being a means
through which we can satisfy certain safety properties of the system. It
would be interesting to adapt the current approach so that it can also han-
dle other types of system properties, such as liveness, fairness, and timed
properties.

124

Bibliography

[1] http://www.eti.pg.gda.pl/katedry/kiw/pracownicy/jan.daciuk/personal/
thesis/node12.html.

[2] D. Alrajeh, O. Ray, A. Russo, and S. Uchitel, Using abduction
and induction for operational requirements elaboration, in Journal of
Applied Logic, 2008.

[3] D. Alrajeh, A. Russo, and S. Uchitel, Extracting requirements
from scenarios with ilp, 16th International Conference on Inductive
Logic Programming, (2006).

[4] D. Angluin, Inference of reversible languages, J. ACM, 29 (1982),
pp. 741–765.

[5] D. Bošnački, S. Leue, and A. L. Lafuente, Partial-order reduction
for general state exploring algorithms, in SPIN, 2006, pp. 271–287.

[6] J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu,
Learning assumptions for compositional verification, 2003.

[7] P. Courtois and D. L. Parnas, Documentation for safety critical
software, in Proc. of 15th ICSE, 1993, pp. 315–323.

[8] C. Damas, P. Dupont, B. Lambeau, and A. van Lamsweerde,
Generating annotated behaviour models from end-user scenarios, IEEE
Transactions on Software Engineering, (2005).

[9] C. Damas, B. Lambeau, and A. van Lamsweerde, Scenarios,
goals, and state machines: a win-win partnership for model synthesis,
IEEE Transactions on Software Engineering, (2005).

[10] T. Elomaa, Partition-refining algorithms for learning finite state au-
tomata, in ISMIS, M.-S. Hacid, Z. W. Ras, D. A. Zighed, and Y. Ko-

125

dratoff, eds., vol. 2366 of Lecture Notes in Computer Science, Springer,
2002, pp. 232–243.

[11] D. Giannakopoulou and J. Magee, Fluent model checking for
event-based systems, in Proceedings of FSE, ACM Press, 2003.

[12] J. E. Hopcraft, R. Motwani, and J. D. Ullman, Introduction
to Automata Theory, Languages, and Computation, Reading, MA:
Addison-Wesley, 2001.

[13] M. Huth and M. D. Ryan, Logic in Computer Science: Modelling
and Reasoning about Systems, Cambridge University Press, 2000.

[14] H. Ichikawa, M. Itoh, J. Kato, A. Takura, and M. Shibasaki,
Sde: Incremental specification and development of communications
software, IEEE Trans. Computers, 40 (1991), pp. 553–561.

[15] A. Kakas, R. Kowalski, and F. Toni, Abductive logic programming,
Journal of Logic and Computation, 2 (1992), pp. 719–770.

[16] J.-P. Katoen, Labelled transition systems, in Model-Based Testing
of Reactive Systems, vol. 3472 of Lecture Notes in Computer Science,
Springer, 2005, pp. 615–616.

[17] R. Kowalski and M. Sergot, A logic-based calculus of events, New
Generation Computing, 4 (1986), pp. 67–95.

[18] J. Kramer, J. Magee, and M. Sloman, Conic: An integrated ap-
proach to distributed computer control systems, in IEE Proc., 1983,
pp. 1–10.

[19] I. Kruger, R. Grosu, P. Scholz, and M. Broy, From mscs to
statecharts, in Int’l Workshop Distributed and Parallel Embedded Sys-
tems, 1998, pp. 61–72.

[20] A. V. Lamsweerde, Goal-oriented requirements engineering: A
guided tour, in Proc. of 10th ACM SIGSOFT Symposium on Foun-
dations of Software Engineering, 2001.

[21] A. V. Lamsweerde and L. Willemet, Inferring declarative require-
ments specifications from operational scenarios, IEEE Trans. on Soft-
ware Engineering, 24 (1998), pp. 1089–1114.

126

[22] E. Letier, Goal-oriented elaboration of requirements for a safety in-
jection control system, tech. report, Dèpartement d’Ingènierie Informa-
tique, UCL, 2002.

[23] J. Magee and J. Kramer, Concurrency: State Models and Java
Programs, John Wiley and Sons, 1999.

[24] E. Mäkinen and T. Systä, Mas - an interactive synthesizer to sup-
port behavioral modelling in uml, in Proc. ICSE 2001 - Int’l Conf. Soft-
ware Eng., IEEE Computer Society, 2001, pp. 15–24.

[25] R. Miller and M. Shanahan, The event calculus in classical logic -
alternative axiomatisations, Linkoping Electronic Articles in Computer
and Information Science, 4 (1999), pp. 1–27.

[26] R. Miller and M. Shanahan, Some alternative formulations of
event calculus, in Computational Logic: Logic programming and Be-
yond, vol. 2408 of Lecture Notes in Computer Science, Springer, 2002,
pp. 452–490.

[27] S. H. Muggleton, Inductive acquisition of expert knowledge, PhD
thesis, 1986.

[28] R. D. Nicola and F. W. Vaandrager, Three logics for branching
bisimulation, Journal of the ACM, Vol. 42 (1995), pp. 458–487.

[29] J. Oncina and P. Garca, Inferring regular languages in polynomial
update time, World Scientific Publishing, 1992, pp. 49–61.

[30] O. Ray, Hybrid Abductive-Inductive Learning, PhD thesis, Imperial
College London, 2005.

[31] O. Ray, Using abduction for induction of normal logic programs, in
ECAI’06 Workshop on Abduction and Induction in Artificial Intelli-
gence and Scientific Modelling, P. Flach, A. Kakas, L. Magnani, and
O. Ray, eds., 2006, pp. 28–31.

[32] E. Sandewall, Features and fluents: The representation of knowledge
about dynamical systems, Oxford University Press, (1994).

[33] C. Stirling, Temporal Logics in Specification, 1987, pp. 1–20.

[34] S. Uchitel, J. Kramer, and J. Magee, Synthesis of behavioral
models from scenarios, IEEE Trans. Software Eng., 29 (2003), pp. 99–
115.

127

[35] A. van Lamsweerde and L. Willemet, Inferring declarative re-
quirements specifications from operational scenarios, IEEE Trans. Soft-
ware Eng., 24 (1998).

[36] J. Whittle and J. Schumann, Generating statechart designs from
scenarios, in ICSE 2000: Proceedings of the 22nd International Con-
ference on Software Engineering, ACM Press, 2000, pp. 314–323.

128

