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Abstract

Year upon year the capacity and throughput demands for data storage are
increasing. These increases have resulted in higher management overheads.
The rise of cloud computing and the push back towards mainframe style
centralization brings with it the need for more efficient and intelligent data
storage techniques.

A significant problem with modern day file systems is that they do not
take into account the characteristics of the storage devices they manage.
Some storage devices perform more efficiently than others, some more reli-
ably and others are simply more space efficient. By considering the charac-
teristics of the storage devices and the access patterns of the data operating
on them, an informed decision can be made about where space for data
should be allocated. These decisions benefit the system threefold; quicker
performance, greater reliability and cost saving through space efficiency.

This report details the implementation of a simulation intended on ex-
ploring the viability of such a system where data is placed intelligently de-
pending on its source and the characteristics of its underlying storage. The
system attempts to provide a framework for profiling a storage device, spec-
ifying and simulating data streams acting on the system and visualising the
results.

The report demonstrates that by using by using intelligent data place-
ment algorithms and a performance and reliability profile of the storage
device, these problems can be overcome.
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Chapter 1

Introduction

1.1 Motivation

The majority of large organisations today use a relatively decentralised ap-
proach to store data where each machine will read and write data to a local
storage device. Although this approach offers excellent performance it has
its pitfalls. In terms of resource utilisation it turns out this approach is
very inefficient. It also makes maintenance far more cumbersome since the
physical locations of these devices can be widely spread.

For these reasons in recent years there has been a push back towards
more centralised ‘main frame’ type storage systems. These are usually im-
plemented in the form of Virtualised Storage Systems (VSS). A VSS is a
contiguous logical volume where the notion of underlying storage devices is
abstracted away. One such example of this is RAID where multiple disks
are merged to provide a single abstract device for storage.

Different devices provide very different storage characteristics in terms of
service time for an IO request. Ideally we would like frequently accessed data
to be physically located across the high performance devices to maximise
efficiency. The problem however with VSS is that the individual devices
have been abstracted away, thereby making the job of efficiently placing
data far more complex.

Current file systems primary aim is to reduce fragmentation and preserve
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directory structures. This approach optimises sequential accesses to entire
files but fails however to take into account that the majority of applications
access multiple files in a non sequential order.

Performance is important but it is not the only characteristic to take into
account when using VSS’s. Reliability of data is another very important
aspect. If a disk fails is the data still recoverable? If hardware is stolen will
confidential data be compromised?

Space efficiency is another important aspect of VSS’s. Storage is finite
and the volume data produced is growing year upon year - ‘Total disk storage
systems capacity shipped reach 1,777 petabytes, growing 43.7% year over
year’1. It is therefore important to keep data compact wherever possible.

Throughout this report I will refer to these data considerations as Quality
of Service (QoS). For example a bank’s financial data will have to be stored in
a fashion that guarantees high reliability. A temporary file however probably
needs only high performance. These two pieces of data have very different
QoS attributes.

Allocation of data is a very important aspect of this problem but the
quality of service attributes are not static and will change over time for
different data streams. This implies that not only allocation must be con-
sidered but also migration, to keep the underlying data in the most suitable
areas possible.

1.2 Approach

There are a few ways to investigate this problem. One extreme would be to
fully implement a file system as a Linux module which could be loaded into
the Linux kernel. This file system would take into account QoS of data and
the performance characteristics of the underlying device. The other extreme
would be to do a simulation of such a file system. Although the file system
approach would be the most useful solution, due to the difficultly of the
problem and the time constraints, I decided to choose the simulation.

This report details a simulation of a system which allocates and mi-
1This statistic is from: http://www.idc.com/getdoc.jsp?containerId=prUS21411908
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grates data depending on the characteristics of a specified underlying VSS.
Specifically I present a framework which:

• The simulation profiles the VSS’s logical address space to create a QoS
model of the device. See chapter 3.

• Allows the specification of data streams and their characteristics. See
chapter 4.

• Simulates the streams operating on the model using allocation and
migration techniques. See chapter 4.

• Visualises results by shoing performance graphs and location of data.
See chapter 5.
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Chapter 2

Background

2.1 Storage Devices and Techniques

Today the most common type of storage medium, from large data centres to
the home computer, is the conventional hard disk drive. This device consists
of a mechanical read/write head which moves over a spinning disk made of
ferromagnetic material. When an I/O request is issued the read/write head
will magnetize/detect magnetism depending on the request. It uses this
technique to read/write a series of bits representing information. A disk
will typically consist of sectors, tracks and zones as demonstrated in the
figure 2.11.

1This diagram came from: http://searchoracle.techtarget.com/digitalguide/

images/Misc/disk_layout.jpg
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Figure 2.1: Simplified layout of a magnetic hard disk

One of the most significant bottlenecks in computing today is I/O. Com-
puters can process data faster than they can read or store it. This limits a
computer’s potential and can be a major deficit on performance.

There are various ways to reduce the problem imposed by this bottleneck.
A typical hard drive will spin at a rate of 7,200rpm however some more
sophisticated drives will spin at 10,000 rpm. The faster the spin the faster
data can be read from and written to the drive and the less significant
this bottleneck becomes. Another method to improve performance is RAID
(Redundant Array of Inexpensive Disks). There are two main ideas to RAID:

1. Improve I/O performance by striping data

2. Improve reliability of stored data by adding redundancy

RAID can be done on many different levels. A brief description of some
of the levels has been included below2.

RAID Level 0: ‘Distributes data across several disks in a way that
gives improved speed and full capacity, but all data on all disks will be lost
if any one disk fails.’

2The raid descriptions and images have have been taken from: http://en.wikipedia.
org/wiki/Redundant_array_of_independent_disks
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Figure 2.2: RAID 0

RAID 1: ‘Could be described as a real-time backup solution. Two (or
more) disks each store exactly the same data, at the same time, and at all
times. Data is not lost as long as one disk survives. Total capacity of the
array is simply the capacity of one disk. At any given instant, each disk in
the array is simply identical to every other disk in the array’.

Figure 2.3: RAID 1

RAID 5: ‘Combines three or more disks in a way that protects data
against loss of any one disk; the storage capacity of the array is reduced by
one disk’.
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Figure 2.4: RAID 5

RAID 6: ‘Can recover from the loss of two disks - As RAID 5 with 2
parity stripes’

RAID 10: ‘Uses both striping and mirroring. “01” or “0+1” is sometimes
distinguished from “10” or “1+0”: a striped set of mirrored subsets and a
mirrored set of striped subsets are both valid, but distinct, configurations’.

Figure 2.5: RAID 10

RAID can be implemented using either hardware or software. Hardware
RAID has the advantage of not using the local processor or memory. It is
more expensive but offers better performance.

Although RAID improves performance it does not take into account
any performance profiles of its underlying data storage devices. One might
expect the service time on a conventional hard drive for each sector to be
constant. This however is not the case. If a read at LBA 0 takes 1 time unit
this does not imply that a read at LBA 10,000 will also take 1 time unit.
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2.2 Storage Device Characteristics

Figure 2.6 is an over simplified representation of the layout of a hard disk.
The zones are differentiated by different colours. You will notice zones fur-
ther from the centre have a greater number of sectors and therefore a greater
storage capacity.

Figure 2.6: Simplified view of a hard disk with algebraic definitions

S[t+ 1] ≥ S[t]

A result of this is, I/O operations on the outer tracks are more efficient
than the inner tracks, since the rotational speed remains constant and the
linear speed varies.

ω × S[t]× s = I/O per second

So for increasing t I/O efficiency increases. This is the reason for the
nonlinear relationship between the LBA and the throughput.

Figure 2.7 is a plot of the throughput3 of a standard magnetic hard drive
across its address space.

3data size of request/time to service request
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Figure 2.7: Standard Magnetic Hard Drive Performance Profile

Of course hard disks can be set up in many different configurations for
example RAID (as mentioned earlier). This will change this curve however
the general idea that the outside regions of the disks have a greater number
of sectors will still dictate where the high throughput will occur.

In recent years flash memory is starting to become far more prominent.
‘Flash memory stores information in an array of memory cells made from
floating-gate transistors’4. Flash memory has the advantage of not having
any mechanical/moving parts. This makes its operation far faster and the
device as a whole less volatile. Since it has no moving parts its performance
profile is flat.

2.3 Virtualised Storage Systems and LVM

When it comes to virtualised storage systems this relationship between logi-
cal location and throughput becomes more complex. The reason being that
depending on the underlying devices, you get far more variance between the

4This description came from: http://en.wikipedia.org/wiki/Flash_memory
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logical location and the throughput. Figure 2.8 shows 2 VSS’s spread over
an infrastructure consisting of 4 different tiers.

Figure 2.8: Shows 2 VSS’s spread over 4 different storage tiers ordered by perfor-
mance

VSS #1 and #0 spread across different areas of the available tiers and
inherently provide different QoS attributes. VSS #1 will have a very good
performance profile due to the majority of its underlying storage devices
being of high performance and in fast raid configurations. VSS #0 however,
does not provide such good performance but it does provide good data
reliability, as every single tier it spreads over keeps redundancy data. This
shows how QoS can change depending on the underlying media.

In general an end user should not need to be concerned with the as-
pects of the separate storage devices and where (physically) the data resides.
Linux provides a useful kernel utility called LVM (Logical Volume Manager)
which abstracts the notion of individual logical drives away from the user by
combining them into a virtually contiguous logical device. In other words
it is an implementation of a VSS scheme. Figure 2.9 shows a performance
profile over a sample LVM.
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Figure 2.9: Profile of an LVM consisting of a RAID 5 configuration and a RAID
10 configuration

Suppose we have two sets of data ‘A’ and ‘B’. It is known that data
‘A’ is accessed 20 times more than data ‘B’ per unit time. For the best
performance we would desire A to be in an area of high throughput and B
to be in an area of low throughput. In terms of figure 2.9 we would prefer
data ‘A’ to lie between 0-500 and data ‘B’ to lie between 1000-1500. If there
was no room for data ‘A’ in a high performance area we would prefer it to be
placed in a low performance area (or the best available) and to be migrated
to a high performance area when space became available.

2.4 Data Streams Characteristics

If you were to investigate how individual processes perform I/O over a period
of time you will find that they are very deterministic in the way they do so.
A research project BORG [1] has built an extension to the Linux VFS to
exploit this fact to improve I/O performance.
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Application CPU (s) I/O waits (s) Seq I/O (%)
firefox 1.56 3.71 51.08%

oowriter 3.35 7.93 60.99%
xemacs 0.92 5.94 65.35%

xinit 0.57 3.55 67.42%
acroread 0.99 5.08 56.55%
eclipse 15.42 14.88 55.07%

Figure 2.10: Table of CPU and memory access data for a number of applications
from the BORG paper [1])

A main difference between the BORG project and that which I am in-
vestigating is that I will be talking about data streams (as an abstract
concept) where BORG talks about processes specifically. If we know the
characterstics of a data stream we can exploit the system to give us better
performance. Consider the following situation:

Stream A and Stream B both want to allocate space on the same VSS:

Data Stream A Data Stream B
Stream A is system critical Stream B is non critical
Over half of its I/O operation are reads. All of its I/O is writes.
All I/O operations are sequential All I/O operations are non-sequential
I/O operations are typically small I/O operations are typically large

Figure 2.11: QoS situation for 2 data streams

The most suitable place on the logical partition for data from stream A
is very likely going to be different from the most suitable place for stream B.
If the operating system had a performance profile of the device it could make
better decisions on where to place this data and thereby increase efficiency.

The 4 main aspects to consider when dealing with data placement are
the following:

1. Required I/O performance

• The speed at which the stream requires data to be read or written.

2. Required Data Reliability
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• I am going to define reliability to mean the following - probabil-
ity data will not be permanently lost in the event of a hardware
failure.

3. Required Space Efficiency

• No data store is unlimited in size and so it is important to store
data as compactly as possible without impacting performance.

4. Expected Data Growth

• Some data is more likely to grow than others. It is important
to take this into consideration since data fragmentation happens
when there is not enough spare contiguous space after the initial
allocation. This can degrade performance.

Each RAID level offers different trade-offs between the aspects I am
considering. For example RAID 0 offers very high performance as disk
accesses can be performed in parallel. Space efficiency is also very good
since it stores no redundant data. However in terms of reliability it is very
poor. If one of the drives fails all data is effectively lost.

On the other hand RAID 1 offers very good reliability as if one of the
drives is lost all data can be recovered. It also offers very good read perfor-
mance as either disk can be accessed for a particular piece of data (depending
on which one is available). Write performance is degraded however, as the
1 request must be serviced by both disks

The chart below demonstrates these trade-offs for some of the different
RAID levels:

RAID Read I/O Write I/O Data Reliability Space Efficiency
0 H H L H
1 H L M L
5 M L/M H M
10 M L/M H M

Figure 2.12: RAID Performance Chart

A VSS will typically span across multiple types of disks and RAID levels
so it is important to know the charactersic of the storage to get the best
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mapping for the Qos attributes.

The useful thing about keeping QoS attributes for data is that they can
be changed depending on the situation. For example an organisation may
have a very heavy workload one week so performance would be paramount.
The attributes could easily be changed and the data would be migrated to
give better performance. The next week perhaps there is a scheduled inspec-
tion. The QoS attributes of data could now be changed to high reliability
and the data would be migrated accordingly to reduce the risk of data being
lost/compromised.

2.5 Similar Work

The following projects investigate similar ideas in terms of intelligent data
placement:

BORG [1] (Block-reORGanization and Self-optimization in Storage Sys-
tems) is a module for the linux kernel which sits between the file system layer
(etc3, jfs, ntfs etc...) and the I/O scheduler. It constantly evaluates process
access patterns based on temporal, process-level, and block-level attributes.
It then constructs access pattern graphs which allows for more intelligent
data placement.

Data Placement and Migration in Virtualised Storage Systems [2] (Fe-
lipe Franciosi Imperial College). The task of this project is to modify the
well known file system ext3 to include QoS attributes. Ext3 leaves some
redundant bits for user modification in the individual inodes. The intent
of this project is to use these bits to mark QoS attributes for sets of data.
The system will use these attributes along with a performance profile of the
underlying storage devices to intelligently place data.
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Chapter 3

Profiling and Processing

3.1 Profiling

In order to simulate a storage device, a performance, reliability and space
efficiency profile of said device is required. Storage devices will perform dif-
ferently under different circumstances, for example large writes will usually
take longer than small reads. Not only do devices vary in how they perform
but also in terms of reliability (chance of failure) and space efficiency. For
these reasons it is necessary to take various profiles into account to get a
complete picture of how the device performs.

Figure 3.1: The GUI of the profiling utility
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My implementation provides a utility for creating, visualising and pro-
cessing a set of 10 profiles based on 5 characteristics [Order of IO, Size of
IO, Type of IO, Reliability of Device, Space Efficiency of Device]. Figure 3.1
shows the GUI for profiling the device.

Figure 3.2: Table showing the 10 different type of profiles that are created by the
utility

The profiling application will create 10 different profiles. Figure 3.2
shows how each profile is composed. Profiles 1 – 8 all describe IO perfor-
mance of the device and are composed of [Order of IO, Size of IO, Type of
IO]. Figure 3.3 and 3.4 describe the method used to achieve sequential and
random IO.

s e q u e n t i a l p r o f i l e ( Device dev , i n t b u f f e r s i z e ) {
l i s t <int> r e s u l t
Timer t
dev . seek (START)
do {

t . s t a r t ( )
dev . i o ( )
t . stop ( )
r e s u l t . add ( t . time )

} whi le ( dev . seek ( b u f f e r s i z e ) )
output r e s u l t

}

Figure 3.3: Pseudo-code for how the utility conducts a sequential profile

19



random pro f i l e ( Device dev , i n t b u f f e r s i z e ) {
l i s t <int> r e s u l t
RandomBag rb ( dev . s i z e / b u f f e r s i z e )
Timer t
whi l e ( rb . s i z e > 0) {

i n t lba = rb . p ick ( ) ∗ b u f f e r s i z e
t . s t a r t ( )
dev . seek ( lba )
dev . i o ( )
t . stop ( )
r e s u l t . add ( t . time )

}
output r e s u l t

}

Figure 3.4: Pseudo-code for how the utility conducts a random profile

One problem with storage devices is that they can’t report what type
of device they are. For example device ‘/dev/md1’ may be a raid 5 device
however this is abstracted from the system. When it comes to reliability and
space efficiency this is a problem since these attributes completely depend
on the configuration of the device. A result of this is that the profiler cannot
automate profiles 9 and 10 from figure 3.2. My implementation provides a
utility for manually choosing the type of device by selecting a range in GB.
Figure 3.5 shows an example of a VSS where ranges 0GB – 7GB describes
a Raid 1 device and 7GB onwards describes a Raid 5 device.

Figure 3.5: The GUI for selecting device types within logical ranges ranges

The colored strips in figure 3.5 represent space efficiency (upper) and
reliability (lower). Where red represents low, yellow medium and green
high.
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3.2 Processing

Profiling the device yields a set of raw data which needs to be transformed
and processed in order to make it suitable for simulation. This processing
comes in a series of steps illustrated in figure 3.6.

Figure 3.6: Pictoral representation of the operations performed while processing
the profiling data

1. Sorting – Random profiles will not be in block address order. They
must first be sorted (this is done using linux’s sort utility).

2. Averaging – The profiler is set to do a specified number of iterations of
profiles to get the most accurate model, these must be averaged into
a single file.

3. Grouping – The filesystem (detailed in section 4.2) requires a certain
set block group size. The profiles must be quantized into this size by
combining (Summing) the results from multiple adjacent elements.

4. Throughput – Throughput (kb/s) is a more useful representation than
time.

Also created are two extra files classifying Reliability and Space Effi-
ciency as High Medium and Low for each block group1.

1Block Group – defined in section 4.2
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Chapter 4

Simulation

This chapter describes the main part of the application. This section talks
about the notion of data streams and how they operate on the underlying
storage intelligently. Also described is a simple file system and various place-
ment and migration techniques. Appendix A demonstrates a UML diagram
of the simulation.

4.1 Data Streams

In real systems a ‘sea’ of requests will be made to the storage from a variety
of sources. For example the system may be a file server containing users
home directories, it may also be a database server storing experimental
data. Both examples will almost certainly have different access patterns
and so requests from these sources should be treated differently. In order
to simulate such situations I have abstracted these notions of access sources
into data streams.
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Figure 4.1: A comparison between a real system where requests are ungrouped and
a simulation where requests are grouped

My implementation provides a utility for specifying data streams ac-
cording to their individual access patterns and required quality of service.
Figure 4.2 demonstrates how settings for a stream can be selected.

Figure 4.2: The GUI for the Stream Selection utility
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• Stream Characteristics

– Name: A name is specified to identify the stream (i.e. Database)

– Proportion: Sets the proportion of requests made by the stream
relative to the other streams specified

• Quality of Service

– IO Performance: Specifies the level of IO performance required
(High Medium or Low)

– Reliability: Specifies the level of Reliability required (High Medium
or Low)

– Space Efficiency: Specifies the level of Space Efficiency required
(High Medium or Low)

• Access Patterns

– Data Size: Specifies the expected proportion of Small:Large data
accesses made by the stream

– Order of Access: Specifies the expected proportion of Sequen-
tial:Random data accesses made by the stream

– IO Type: Specifies the expected proportion of Read:Write data
accesses made by the stream
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4.2 File System

Since the point of this simulation is to manage data allocation, a file system
is necessary. The initial idea was to have an in memory data structure to
hold my file system. This became a problem however, since this simulation
should be able to represent very large storage systems (TB’s in size) the
structure would not be able to fit into main memory. To solve this problem
I designed a cache which deals with block groups.

Block groups hold meta data about fixed portions (256MB) of the file
system. Figure 4.3 shows a high level representation of what fields the block
groups contain.

Figure 4.3: Pictoral representation of a Block Group

The first field to notice is the buddy system. To reduce external frag-
mentation I decided to use the buddy memory allocation system. This works
in the following way. Storage is represented by an asymmetric 2 dimensional
matrix where each level of the matrix holds an array of bits corresponding
to a particular data size. A unset bit implies storage is available in that
section and a set bit implies that the storage is occupied. Allocation works
as follows1.

1. If memory is to be allocated

(a) Look for a memory slot of a suitable size (the minimal 2k block
that is larger or equal to that of the requested memory)

(b) If it is found, it is allocated to the program

(c) If not, it tries to make a suitable memory slot. The system does
so by trying the following:

1Method description taken from http://en.wikipedia.org/wiki/Buddy_memory_

allocation
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i. Split a free memory slot larger than the requested memory
size into half

ii. If the lower limit is reached, then allocate that amount of
memory otherwise go back to step a)

2. If memory is to be freed

(a) Free the block of memory

(b) Look at the neighbouring block - is it free too?

(c) If it is, combine the two, and go back to step 2 and repeat this
process until either the upper limit is reached (all memory is
freed), or until a non-free neighbor block is encountered

Figure 4.4: Diagram of the Buddy Allocation System of a particular block group
undergoing various operations
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Figure 4.4 shows a case study where a hypothetical block group is un-
dergoing various operations. In stage 1) all memory is currently available
denoted by the fact the bit in the top level is unset. At stage 2) a request
is made for a 64kb block of data. Since there are no free 64kb blocks this
is achieved by ‘splitting’ the 256kb block into 2 128kb blocks, and further
splitting 1 of the 128kb blocks into 2 64kb blocks. At stage 3) a request is
made for a 32kb block. Since once again there are no free 32kb blocks this is
achieved by splitting the remaining 64kb block into 2 32kb blocks. Finally
in stage 4) a request is made for another 32kb block. Since there is already
one available this is used. This diagram can also be read in reverse where
the original state of the buddy system is 1 free 32kb block. As space is
reclaimed adjacent unset bits coalesce in the higher levels eventually leading
back to stage 1).

The ‘File List’ field is a list of the files contained on the block group
including the size of the file and the start address on the storage device. This
is necessary in order to find a file for modification, deletion or migration.

The space field is an integer denoting the amount of free storage left on
the block group. This is used during allocation to check if there is enough
room for a particular piece of data to lie.

The final field, characteristics, is a composite field containing profiling
information collected from the profiling utility described in section 3.1. The
fields are composed of combinations of Large/Small, Sequential/Random,
Read/Write. An advantage of representing these attributes on a block group
by block group basis is that it quantises the profile of the logical device
removing outliers.

As previously mentioned in many cases there will be too many pages
to store in main memory so a cache is necessary. I decided to implement
a simple round robin cache. In order to retrieve a block group, the cache
calculates pagenumber ‘mod’ cahcesize and checks if the block group is in
memory at that location. If not it writes the current block group back to
storage and retrieves the desired one.
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Figure 4.5: Pictoral representation of the cache undergoing various operations

Figure 4.5 shows an example of cache set with a size of 10. The cache
has already been running for a while since it is full of block groups. The
diagram shows two situtations:

• Green: The page 10 is requested, since 10 ‘mod′ 10 = 0 the page 10
should be found in location 0. The page is then returned.

• Red: The page 5 is requested however the page 5 is not found in
location 5. The cache instead writes 15 back to disk and retrieves and
returns 5.

Figure 4.6 shows the code used for retrieving an writing pages to and
from the cache.
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i n p u t f i l e = new i f s t r e a m (/∗ f i l e ∗/ , i o s : : b inary ) ;
o u t p u t f i l e = new ofstream (/∗ f i l e ∗/ , i o s : : b inary ) ;
BuddyPage∗ BuddyCache : : requestPage ( i n t page )
{

i n t o f f s e t = page % BC BUFFERSIZE;
i f ( which page [ o f f s e t ] != page )
{

i f ( which page [ o f f s e t ] > −1)
write to memory (

which page [ o f f s e t ] ,
buddy cache [ o f f s e t ] ) ;

seek ( ( f s t ream ∗) i n p u t f i l e , page ) ;
buddy cache [ o f f s e t ] =

new BuddyPage (∗ i n p u t f i l e ) ;
which page [ o f f s e t ] = page ;
r e turn buddy cache [ o f f s e t ] ;

} e l s e re turn buddy cache [ o f f s e t ] ;
}
void BuddyCache : : write to memory ( i n t p , BuddyPage∗ bp)
{

seek ( ( f s t ream ∗) o u t p u t f i l e , page ) ;
buddy page−>s e r i a l i z e (∗ o u t p u t f i l e ) ;
d e l e t e buddy page ;

}
void BuddyCache : : seek ( f s t ream ∗ stream , i n t page )
{

stream−>seekg ( page ∗ s i z e o f ( BuddyPage ) ) ;
}

Figure 4.6: C++ code for serializing, reading and writing ‘Block Groups’ in the
cache
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4.3 Events and Event Generation

In a real system requests would be sent to the storage device. In order to
simulate this I designed an events generator to sent requests to the storage.
Each stream which has been specified, as described in section 4.1, will affect
the type and frequency of events generated. In order to achieve realistic
results there are three main points to consider:

1. Which stream triggers the event

2. What type of event is triggered

3. Amount of time until the next event

The simplest problem is picking the appropriate stream in each iteration
of the simulation. The likelihood of a stream being chosen depends directly
on its proportion. As a result of this the probability of a particular stream
being selected is proportion(stream)P

proportion(i) .

Suppose a situation where there are three streams A, B and C with
proportions 1, 2 and 3 respectively. The probabilities of each stream being
selected is as follows:

Stream Fraction Probability
A 1

1+2+3 0.17
B 2

1+2+3 0.33
C 3

1+2+3 0.5

Figure 4.7: Probabilities of a stream being selected

In order to choose a stream from this distribution I use the method de-
scribed by the pseudo-code described in figure 4.8. A random number is
selected between [0,1), each stream is then selected in turn and the proba-
bility of each stream is subtracted from the random number. At the point
where the number drops to 0 or below the loop exits and the current stream
is selected.
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choose stream ( Stream [ ] streams ,
f l o a t [ ] p r o b a b i l i t i e s ) {

f l o a t random = rand ( )
f o r ( i = 0 , random > 0 , i++)

random −= p r o b a b i l i t i e s [ i ]
output streams [ i ]

}

Figure 4.8: Pseudo-code for selecting a stream based on a set of probabilities

After the stream has been selected the type of event issued by that
stream needs to be selected. I distinguish between three types of event:

1. Creation – The introduction of a section of data into the file system

2. Deletion – The removal of a section of data from the file system

3. Modification – The modification to a section of data in the file system

Since this is a simulation of the system and there are no real data streams
it is important to produce requests as closely to a real system as possible.
The interesting cases of the simulation occur when the file system is at
various capacities. It is therefore important to be able to control the capacity
at which the file system should grow to during the simulation. In order to
achieve this capacity the events triggered should depend on the current free
space and desired free space.

A creation event will cause the system to become more full, whereas a
deletion event will cause the system to become more empty. A modification
event however won’t affect the free space at all. The current capacity should
therefore change the probabilities of each event in the following ways:

System is fuller than desired −→ P (delete) > P (creation)
System is at desired state −→ P (delete) = P (creation)

System is emptier than desired −→ P (delete) < P (creation)
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Figure 4.9: Chart plotting system capacity against the probability of each event
type occurring, with a target capacity t

P (modify) = kmodify (4.1)
P (create) = 1− P (delete) (4.2)

P (delete) =

{
x×kdelete

2t capacity ≤ t
(x−t)kdelete

2(1−t) + kdelete
2 Otherwise

(4.3)

Figure 4.10: Equations of lines plotted in figure 4.9

If I assume linearity this defines my function quite easily. The chart in
figure 4.9 shows how the probabilities of each event vary with time. Fig-
ure 4.10 shows the equations of each of the lines. The constants kmodify,
kcreate and kdelete and pre defined constants set to 2

3 , 1
6 and 1

6 respectively in
the implementation. Notice how when the capacity is at target ‘t’ the prob-
ability of a creation and a deletion is equal therefore keeping the filesystem
around this set capacity.

Finally if the type of event chosen happens to be a modify event then
the way in which the data is read must conform with the set characteristics
of the stream (Data Size, Order and IO type).
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When an event is ‘fired’ the expected time of the event is calculated
and the simulation clock is advanced. These times are calculated by work-
ing out a weighted average of the 8 performance profiles contained in each
block group and multiplying this by the size of data accessed. These times
are written to a log file which can be run through the visualisation engine
described in chapter 5.

In queuing theory the Poisson distribution represents the probability that
a certain number of events will occur in a fixed time period. The exponential
distribution represents the probabilities of the time between events.

Figure 4.11: Graph showing the Poisson distributions PDF (left) and Exponential
distributions CDF (right)

Since I would like to ‘fire’ my events realistically I will use the exponen-
tial distribution to determine the time between the current event and the
next event. The following equation describes the CDF of the exponential
distribution:

P (t, λ) = 1− e−λt

To represent this particular problem I have chosen my rate variable λ to
be the

∑
(proportions). To generate a time period however the distribution

must be in terms of t.
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x = 1− e−λt

t = − 1
λ
ln(1− x)

By generating random numbers for x in the range [0,1) I can generate
time periods between the next event.
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4.4 Placement and Migration

4.4.1 Placement

In order to find the most appropriate location to allocate space for the
data streams it is necessary to quantify how each block group performs
under the three different attributes. Data Throughput, Space Efficiency
and Reliability. Figure 4.12 shows how each combination is classified.

Figure 4.12: Table representing a function which takes a combinations of QoS
attributes to a natural number

To classify each page as such it is necessary to find a weighted combi-
nation of the throughputs. Each stream will have a separate classification
for each block group since each stream has different constants (large/small,
sequential/random, reads/writes).

weighted combinat ion ( double [ ] [ ] inputs ,
f l o a t [ ] we ights ) {

double [ ] r e s u l t
f o r ( l ength = 0 −> inputs [ ] . l ength ) {

f o r ( p r o f i l e = 0 −> inputs . l ength ) {
r e s u l t [ l ength ] +=

inputs [ p r o f i l e ] [ l ength ]
∗ weights [ p r o f i l e ]

}
}
output r e s u l t

}

Figure 4.13: Pseudo-code for finding weighted combination of throughputs from
the profiles

It is then necessary to classify these throughputs into Low, Medium
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or High. These classifications should be relative to the underlying storage
and not absolute since the profiler should not be dependent on the system
it runs. I classify them by finding the throughput which lies on the 33rd

percentile and the 66th percentile. Any throughput which lies before the
33rd percentile should be classified as low, between the 33rd percentile and
the 66th percentile should be classified as Medium and anything greater than
the 66th percentile should be classified as High.

Figure 4.14: Table displaying the first 5 block groups of a sample profile quantised
into L M H

Figure 4.14 shows an example profile where all the attributes have been
translated into L M H’s. The combinations of L M H’s can now be easily
transformed into the classifications 0 – 26. Of course each stream will value
each classification differently depending on its performance weighting. In
order to work out how each stream values a particular rating it is first
necessary to calculate a ‘request receive’ matrix based on constants which
value Throughput, Reliability and Space Efficiency against one another.
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Figure 4.15: Request Receive matrix displaying ratings between a requested block
group and a delivered block group

Figure 4.15 is an example of a ‘request receive’ matrix. The columns
represent the type of block group requested and the rows represent the block
group received. The value in the matrix represents how suitable the match
between the block groups are where zero implies perfect match, positive
numbers imply better than required and negative worse than required. For
example in the sample matrix if I request a 12 and receive a 23 I get a benefit
of +9. To calculate this matrix you first need to choose how much you value
performance over reliability over space efficiency by choosing three integer
constants. The constants in the example above are as follows: Performance:
1, Reliability: 4, Space Efficiency: 2. Figure 4.16 describes the method of
calculating a rating.

ReceiveBlockType−RequestBlockType =
kP × (PReceive − PRequest) +
kR × (RReceive −RRequest) +
kS × (SReceive − SRequest)

Figure 4.16: Demonstrates how to calculate the trade off between block groups
where P=performance, R=Reliability and S=Space Efficiency
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This matrix can now be transformed into a traversal order of classifica-
tions. For example if a particular stream perfectly matches attribute 5 what
other attributes would suite that stream and in what order should they be
traversed? Using the example of attribute 5 the matrix in figure 4.17 sug-
gests an ordering of[26,17,23,8,14,20,25....] where classifications nearer the
beginning of the list are more suitable.

Figure 4.17: Matrix showing the order in which classifications should be traversed
depending on what classification is required

Since I now have a classification for each block group, and a traversal
order of classifications it is trivial to convert these into a traversal order of
block groups on a per stream basis. The system can then traverse the pages
in this order until it finds some free space.

4.4.2 Migration

Defragmentation

When it comes to storage systems it is expected in certain situations that
the free space will grow and shrinks as time goes on. If the system gets to
a high capacity and then shrinks back to a low capacity the data will most
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likely be scattered around the storage.

This is detrimental to performance for two reasons. If like data is spread
around the storage then a lot of time will be wasted doing seek operations.
The second and more important reason is that the older data would have
been placed in less satisfactory locations since at the point where they were
allocated space the more suitable locations were already taken. However
after the systems free space grows these suitable locations are more abundant
and since they are not being used are reducing the possible throughput of
the system.

f o r ( Stream stream : streams ) {
f o r ( F i l e f i l e : stream . g e t F i l e s ( ) ) {

Space space = FS . getBestSpace ( stream )
i f ( space . r a t i n g ( ) > f i l e . r a t i n g ( ) )

FS . migrate ( f i l e , space )
e l s e

FS . r ec l a im ( space )
}

}

Figure 4.18: Pseudo-code for migrating data to more suitable locations

By periodically running the defragmentation algorithm described in fig-
ure 4.18 these wasted block groups can be filled with data increasing the
throughput of the system.

Changing of Stream Characteristics

Streams are not static entities; their characteristics can change with time.
A data stream which mostly issues small sequential reads could with time
change to a data stream which mostly issues large random writes. As the
stream characteristics change so does its perspective of the underlying stor-
age. This is a problem however since if the characteristics change then the
data placed under the old characteristics will now be in unsuitable places
stunting performance. By using the same algorithm described in figure 4.18
when the streams characteristics change this performance deficit can be mit-
igated.
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Chapter 5

Visualisation

In order to show that the simulation is doing what it’s supposed to do for
both debugging purposes and demonstration purpose, I created a visualisa-
tion engine to show how the storage is manipulated with time and to show
how performance varies. The aim of the visualisation is to display clearly
to the user the interesting and important aspects of the Simulation. I wrote
this in Java since it provides very comprehensive libraries for writing GUI’s.
The visualisation consists of 4 main views: Stream View, Storage View,
Graph View and Log View.

It is important to consider the streams individually when visualising the
data placement and migration. This is since each stream will favor different
areas of the underlying storage differently depending on their QoS attributes
and combine performance profiles.

There are two main aspects of a data stream which are important to
convey in the stream view:

1. Where the data it produced resides

2. What the underlying profile looks like

Figure 5.1: Diagram of Stream Animation
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In figure 5.1 these two aspects are represented in the following way. The
Upper strip indicates where data currently resides (A fully white bar mean-
ing ‘empty’ and a fully black bar meaning ‘full’). The lower strip represents
how each area of the storage performs (Green – Better than required, Yel-
low – As Required, Red – Underperforms). In a simulation, multiple stream
visualisations will be displayed in order to show how they interact with one
another.

Figure 5.2: Diagram of Storage View

An additional panel known as the ‘Storage View’ is available which vi-
sualises the storage as a whole (stream independent). The storage view is
similar to the stream view with the exception that is does not have the
lower strip representing storage performance. The reasons for this view are
two-fold, firstly to show a complete picture of what portion of the storage
is occupied and secondly to show how the streams combine in the larger
picture. This view is demonstrated in figure 5.2.

Figure 5.3: Diagram of Graphing View

The graph view1 plots two datasets in real time. A rate graph of the
intelligent placement technique and a rate graph of a random placement

1The graphing software used is an open source library called JFreeChart – http://

www.jfree.org/jfreechart/
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technique. This is used to show the performance benefit of using the intel-
ligent placement technique. This view is demonstrated in figure 5.3.

Figure 5.4: Diagram of Storage View

The final view is Log view. This view will display textually every opera-
tion performed on the storage ie ‘Create a file at block group 46’. This view
is demonstrated in figure 5.4.
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Chapter 6

Evaluation

For the purposes of this evaluation I will demonstrate my software using a
series of case studies. The case studies will consist of running the simulation
under different circumstances and inspecting the results using the animation.

For these tests I have used: Dual Core 2 CPU (6600 @ 2.40GHz),
4096KB cache, 3.46 GB main memory, Ubuntu Linux 2.6.27-14-generic.

Figure 6.1: Graphical representation of the 8 profiles used for the case studies. The
graph plots LBA against throughput in bytes/second.
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Since each simulation requires an underlying performance profile I will
be using a self fabricated profile in order to try and show some interesting
characteristics of the techniques. Figure 6.1 is intended to simulate an LVM
consisting of the following components:

1. Standard Magnetic Hard Disk

2. Raid 0 Array

3. Raid 1 Array

4. Read Biased Flash Memory

5. Write Biased Flash Memory

6. Raid 5 Array

7. Raid 10 Array

Each case study will be using different simulation settings. I will use the
following notation to describe these settings: {[1,H,M,L,50%,50%,50%]}.
This particular example would represent a simulation with a single data
stream with characteristics: Proportion of 1, High Performance require-
ments, Medium Reliability requirements and Low Space Efficiency require-
ments. With equal part Small Sequential Reads to Large Random Writes.
I will consistently use the QoS constants Performance: 2, Reliability: 3 and
Space Efficiency: 1 for every case study. Videos of all the case studies can
be viewed at http://www.doc.ic.ac.uk/~hab06.

6.1 Case Study: Order of placement

In order to demonstrate the order in which the simulation places data I ini-
tialised the simulation with the following settings: {[1,M,M,M,50%,50%,50%]}.
When running the simulation log through the animation engine there are
some clear results.
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t=300

t=1000

t=1600

t=2600

t=6000

Figure 6.2: Sequential Animation Timeline Showing Correct Placement Ordering

Correctness of placement

As shown in figure 6.2 the green (better than required) portions of the
storage are the first to be filled. This is because under these particular
simulation settings these areas are most suitable for storing the data. Next
(at t=6000) the yellow (as required) portions of the storage start to be filled
since there are no more green areas. In this example since the simulation
was only asked to fill 80% of the space the red portions of the storage will
never be used since no more space is needed. This is an ideal situation since
all the data will be ‘happy’ with where it is placed.

Correctness of Event Generation

Also shown by this case study is that the event generation is working cor-
rectly. When the simulation begins it is at 0% capacity and the number
of creation events occurring are high since the probability of a creation is
high (see section 4.3). These creation events occur less frequently as the
storage approaches 80% capacity. This is expected since this example of the
simulation was supposed to hover around 80% capacity.

6.2 Case Study: Performance Comparison

A major reason for using this method of allocation is to utilize the underlying
storage in the most effective way to get the highest performance. The next
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experiment therefore is to measure the performance of the placement method
in terms of rate of operations with respect to time. In order to get an
absolute measurement I will also investigate the case where instead of using
the intelligent placement technique I will use random placement. I will
explore two scenarios with the same settings {[1,M,M,M,50%,50%,50%]}:

Scenario A – Single stream, same settings as above, 80% free space aim

Scenario B – Single stream, same settings as above, 20% free space aim

Figure 6.3: Diagram of Case Study Profile at a Low Capacity (Scenario A)
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Figure 6.4: Diagram of Case Study Profile at a High Capacity (Scenario B)

The graph for scenario A (figure 6.3) demonstrates that by using the
intelligent placement technique over the random placement technique there
is a significant performance increase of nearly 2.5 disk operation per unit
time. Scenario B (figure 6.4) however only offers a performance increase of
0.75 disk operations per unit time.

The reason for these results is as follows. When the system is kept at
20% capacity the probability of finding high performance areas of storage is
high since they would not yet have been filled. This means that the majority
of the data will be placed in these areas yielding very good performance for
the system as a whole. When the capacity is set at 80% however the chance
of finding a high performance area is far lower since they have been used to
store other data. This leads to a performace deficit since the system is forced
to use areas of lower performance. If the system capacity rose to 100% it
would be expected that the intelligent placement curve would converge to
the random placement line.
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6.3 Case Study: Multiple Streams

Since in reality many data streams will be competing with each other to
allocate space this next case study explores multiple concurrent streams.
Figure 6.5 shows the animation of a run with 3 streams specified. The
stream settings are as follows:
{[1,H,M,L,17%,18%,84%], [3,L,M,H,78%,81%,13%], [1,M,M,M,50%,50%,50%]}

Stream 0

Stream 1

Stream 2

Storage View

Figure 6.5: Multiple streams acting on the same storage mid simulation

Figure 6.5 demonstrates the multiple stream simulation. An interesting
thing to notice about this run of the simulation is that since each stream
was given very different characteristics the way each values its underlying
storage is also very different. There are areas of Stream 1 which are marked
red (unsuitable) which in Stream 0 are marked green (better than required).
A result of this is that each stream will allocate different areas of the storage.

With this said it usually turns out that certain areas of the storage are
preferred by all streams. This can lead to conflict between the streams,
Stream 1 and Stream 2 clash in multiple areas where they are both trying
to allocate storage. Since Stream 1 has a far higher proportion than Stream
2, Stream 2’s data becomes quite scattered and fragmented. This could lead
to performance problems depending on how Stream 2’s data is accessed (see
section 7.2/Provisional Space Allocation).
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Figure 6.6: Performance Profile when multiple streams are acting on the same
storage

Figure 6.6 shows the performance of the system over time. It turns out
that when multiple streams are specified the performance increase is more
prominent since at points the intelligent placement method is performing 2.5
operations per second more than the random method even at 80% capacity.
The reason being that when more streams are specified the system specialises
each stream’s placement technique giving major performance benefits.

6.4 Case Study: Changing Stream Characteristics

In practice although data streams will have observable access patterns these
patterns are likely to change with time. This could pose a problem since
if for example the old access pattern expected a majority of reads and
the stream changed to expect a majority of writes then the probability
of the placement would not be optimal for the new characteristics. There
is therefore a need to detect changing characteristics and to migrate data
to accommodate these changes. The settings used for this case study are:
{[1,L,M,H,78%,81%,13%]}.
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a)

b)

c)

d)

Figure 6.7: Example of changing QoS stream characteristics at different point of
time

Figure 6.7 shows an example of a simulation where there is a change in
a streams characteristics mid run.

• Snapshot a) A small time period before the characteristics of the
stream change, where some data has already been placed in the most
appropriate locations for this profile.

• Snapshot b) The point at which the streams characteristics have changed.
Notice that portions of the storage which were deemed unsuitable be-
fore are now classified as good for the new characterstics.

• Snapshot c) The simulation in a mid migration stage where the data
is being moved around into the most suitable areas for the new profile.

• Snapshot d) The final resting place of the data post migration.
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Figure 6.8: Performance Graph after a stream’s characteristics have been changed
mid simulation

Figure 6.8 shows a performance graph of this run of the simulation. The
most noticeable aspect of the graph is the spike at t=16,000. This spike is
caused by the migration code which writes the poorly placed data to the
best available space. This space is very high performance hence the spike.
Interestingly the stream’s new performance profile yields better performance
since it is more suited to the storage. If the migration code had not been
run the performance would have tended far closer to the random placement
line.

6.5 Case Study: Growing and Shrinking File Sys-

tem

It is to be expected that with time a system’s capacity will grow and shrink.
If a system grows to a large size then some of the newer pieces of data will be
forced to reside in under performing areas due to lack of high performance
areas. If the system were to then shrink to a smaller size there would be
two things to observe:

1. High performance areas would become available

2. Some data would still remain in low performance areas
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This is of course not utilizing the full potential of the system since the
data in the low performing areas would be ‘happier’ in the free high perform-
ing areas. Migration techniques can be used to move this data into more
appropriate locations. This next case study shows how migration techniques
can be applied to mitigate this problem. Figure 6.9 shows an example of
the simulation with settings {[1,M,M,M,50%,50%,50%]} as it goes through
its various stages.

a)

b)

c)

d)

Figure 6.9: Example of a simulation when the file system grows and then shrinks
at different time periods

• Snapshot a) The file system reaches its highest capacity.

• Snapshot b) The file system is approaching its lowest capacity.

• Snapshot c) The migration techniques are being applied and are 50%
complete

• Snapshot d) The final resting place of the data post migration.

Figure 6.10: Performance Graph at the point just before and after defragmation
migration

The performance of the system rises by an entire operation per unit time
after the migration has been applied demonstrated in figure 6.10.
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Chapter 7

Conclusion

7.1 Summary

This report has described methods of profiling and characterising a storage
device under different conditions to achieve an indepth picture of how the
device will perform. Algorithms have been described for allocating and
migrating data on such a storage device to maximise performance, reliability
and space efficiency. These algorithms have been put to practice using a
simulation where data streams can be specified to operate on the storage.
Lastly described is a visualisation technique for observing how data gets
placed and migrated thoughout the simulation.

After observing results from the case studies in chapter 6 it seems obvious
that there are major benefits of using these techniques. These benefits
include a performance boost, increase in data reliability and cost saving
with space efficiency.

A user should not be expected to know where their data should physically
reside. Instead a user should be able to set some expectations of their data
and have the system allocate the data as it sees fit.

There are many problems which my simulation does not cover which
would need to be carefully considered if put into practice. One attractive
feature of VSS (particularly linux’s LVM) is the ability to add new devices
and extend the file system dynamically. Adding a new device however would
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completely change the performance profile of the entire device. Hard drives
are also prone to failure, if a hard drive were to fail this would also change the
performance profile. For these reasons it is important for an implementation
to periodically profile the VSS so it does not have an incorrect model.

Profiling itself has its own problems. Profiling takes a very long time
to complete since is does relativly small operations to the entire device and
‘eats’ up the device’s bandwidth. Since some of these operations will be
writes it is important that when doing these writes no data is destroyed.

Data streams in my simulation were specified from the offset and could be
changed mid run. In a real application of the system only the QoS attributes
would be able to be specified by the user. The other attribues (i.e. the ratio
small:large io) would be worked out by taking statistical information about
the streams on the fly.

Taking all these considerations into account there is a possibility that
the overheads would outweigh the benefits. However this is only speculation
and can only be confirmed through further investigation.

7.2 Further Work

Since the time period allocated for this project was relatively short there
are many aspects which I either didn’t have time to explore or only thought
about during implementation.

7.2.1 Load Balancing

Since this system would be intended to be run on VSSs there will be many
separate storage devices involved. Usually the allocation of space would be
assigned quite contiguously (i.e. one after another on the same device). Since
it is using only one device at a time it is not taking advantage of possible
parallelism between the devices (a pseudo raid 0 type striping scheme). This
parallelism is a big motivation for spreading frequently accessed data around
different storage devices as it would increase throughput greatly.
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7.2.2 Simulated Drive Failure and Degraded Mode

One big problem of magnetic hard disks is that they are prone to failure. My
implementation tries to mitigate this problem by placing more important
data in more reliable sections of storage. What would be interesting is
to simulate a drive failing and seeing what data gets affected. Another
interesting experiment would be to have a single drive from a raid array fail
and see how performance is affected in degraded mode, and how data would
migrate away from the array until the drive is replaced.

7.2.3 Provisional Space Allocation

Since some areas of storage happen to be the most appropriate areas for
data no matter what stream characteristics are set, streams often end up
competing for the same space in some areas. This leads to the data being
interleaved and spread for all the different streams. Since it is likely that
the access of these data items will be sequential it is not optimal if it is
spread across the device. For this reason there is motivation for allocating
provisional areas for each data stream. This would lead to far less stream
wise fragmentation and a higher throughput.

7.3 Closing Remarks

Overall I believe this project has been successful in showing that by using
intelligent data placement techniques and a performance profile a systems
throughput and reliability can be greatly increased. My experiments show
that such a system is viable and I hope that future work will build upon
these methods and come up with a concrete implementation.
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Appendix B

Contact Details

If you have any questions about this project please feel free to contact me
at: hab06@doc.ic.ac.uk

63

mailto:hab06@doc.ic.ac.uk

	Introduction
	Motivation
	Approach

	Background
	Storage Devices and Techniques
	Storage Device Characteristics
	Virtualised Storage Systems and LVM
	Data Streams Characteristics
	Similar Work

	Profiling and Processing
	Profiling
	Processing

	Simulation
	Data Streams
	File System
	Events and Event Generation
	Placement and Migration
	Placement
	Migration


	Visualisation
	Evaluation
	Case Study: Order of placement
	Case Study: Performance Comparison
	Case Study: Multiple Streams
	Case Study: Changing Stream Characteristics
	Case Study: Growing and Shrinking File System

	Conclusion
	Summary
	Further Work
	Load Balancing
	Simulated Drive Failure and Degraded Mode
	Provisional Space Allocation

	Closing Remarks

	Bibliography
	Design Diagrams
	Contact Details

